
TECHNICAL UNIVERSITY OF CRETE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

AUTOMATION DEPARTEMENT

DIPLOMA THESIS

PREDICTOR-FEEDBACK ON-RAMP METERING

CONTROL OF TRAFFIC FLOW AT DISTANT

BOTTLENECKS

Author:

Proestakis Emmanouil
I.D. 2013030192

Thesis Committee:

Assistant Professor Nikolaos Bekiaris-Liberis (Supervisor)
Associate Professor Eftychios Koutroulis

Edip Elefteria Sergaki

July,2020





Abstract

Increasing population in cities around the world creates congestion problems. Freeways,tunels,
bridges are the most common bottlenecks where tra�c jam occurs since drivers choose them as a
quick path to their destination. Tra�c conjestion can be avoided either by tra�c police or by tra�c
lights. As far as the latter is concerned the use of an automatic control system for the coordination
of the tra�c controllers is necessary.

Although an automatic control system is an e�ective way for regulating tra�c �ow, a major
drawback that inhibits its proper function is that of time delay (also known as dead time), this
concerns the velocity in which a variable measure is received by the sensors of the control system,
then to be processed, the distance to be transmitted and then to be evaluated.

Several techniques have been designed for dealing with time delay in contol systems such as Smith
predictor, the Padé approximation, PID controller with a lead lag compensator, combinations of the
aforementioned with observers or not.
Α predictor-feedback law constitutes an alternative for delay compensation and it is employed

here. Μore precisely there is a proposal for the use of a predictor-feedback law in the place of a
PI controller under delay e�ect, as an e�cient manner for the regulation of tra�c �ow in a distant
bottleneck in a highway.

In �rst place the construction, under the state variable model, of a PI controller is taking place
for the tra�c �ow management. We then study the delay e�ect for various parameters of the PI
controller. Last but not least the implementation of a predictor-feedback law for the compensation
of the delay is presented. Simulation results are also presented under each case and control system
plus a comparison review for the aforementioned.
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Περίληψη

Η αύξηση του πληθυσμού στις πολιτείες φέρνει με την σειρά της και μία αύξηση του πλήθους

μηχανοκίνητων οχημάτων σε αυτές με αποτέλεσμα να παρουσιάζεται το φαινόμενο της κυκλοφοριακής

συμφόρησης. Σημεία της πόλης όπως αυτοκινητόδρομοι,τούνελ, γέφυρες προσφέρουν μία γρήγορη διέξ-
οδο την οποία θα χρησιμοποιήσει ο οδηγός ώστε να φτάσει γρήγορα στον προορισμό του, παράλληλα
όμως αποτελούν και σημεία όπου παρουσιάζεται κυκλοφοριακό μποτιλιάρισμα. Το κυκλοφοριακό μποτιλ-
ιάρισμα μπορεί να αποφευχθεί είτε με την παρουσία τροχαίας είτε με φωτεινούς σηματοδότες. Οσον
αφορά το τελευταίο, η χρήση ενός συστήματος αυτομάτου ελέγχου για τον συντονισμό του κυκλοφο-
ριακού είναι απαραίτητη.
Αν και ένα σύστημα αυτομάτου ελέγχου είναι ένας αποδοτικός τρόπος για την ρύθμιση του κυκλο-

φοριακού στους δρόμους ένα σημαντικό μειονέκτημα που απειλεί την αποδοτικότητά του είναι αυτό

της χρονοκαθυστέρης, αυτή αφορά την ταχύτητα που χρειάζεται μία πληροφορία για να διανύσει μία
απόσταση ώστε να φτάσει έγκαιρα στο σύστημα ελέγχου και να την επεξεργαστεί.
Τεχνικές όπως ο προβλεπτής Smith, η μαθηματική προσέγγιση Padé, ο PID ελεγκτής με αντιστα-

θμιστή καθυστέρησης καθώς και συνδυασμοί των προαναφερόμενων με ή χωρίς κάποιον παρατηρητή,
είναι σύνηθες εφαρμοζόμενες.

O προβλεπτής-ανατροφοδότησης είναι επίσης μία εναλλακτική τεχνική για την εξάλειψη του παρά-
γοντα καθυστέρηση και σε αυτή τη διπλωματική παρουσιάζεται η εφαρμογή ενός τέτοιου συστήματος

ελέγχου. Πιο συγκεκριμένα προτείνεται η χρήση ενός κανόνα προβλεπτή-ανατροφοδότησης στη θέση
ενός PI ελεγκτή υπό την επίδραση καθυστέρησης, ως ένας αποτελεσματικός τρόπος για τον έλεγχο
του κυκλοφοριακού σε κάποιο απομακρυσμένο σημείο συμφόρησης ενός αυτοκινητόδρομου.
Σε πρώτη φάση γίνεται η κατασκευή, ακολουθώντας το μοντέλο μεταβλητών κατάστασης ,ενός PI

ελεγκτή για τον έλεγχο της κυκλοφοριακής ροής. Επειτα εξετάζουμε την επίδραση της καθυστέρησης
για μία σειρά παραμέτρων του PI ελεγκτή. Τέλος γίνεται η εφαρμογή ενός προβλεπτή για την αντι-
στάθμιση των περιπτώσεων χρονοκαθυστέρησης. Αποτελέσματα προσομοιώσεων επίσης παρουσιάζον-
ται για κάθε περίπτωση καθυστέρησης, για το κάθε σύστημα, όπως και μία συγκριτική αξιολόγηση.
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Chapter 1

Introduction

Tra�c congestion in big cities is an important problem where human coordination is di�cult to
solve. Intersections equiped with tra�c lights o�er a solution to control the tra�c �ow but in order
to maximize the e�ciency the need of a coordinated system is necessary.

Communication processes are involved in tra�c �ow control presenting delay issues cause of
measuring, evaluating,transfering information etc. leading in turn the control of the tra�c �ow in
instability.

Di�erent control strategies have been developed in the last decades for dealing input delay
systems and these are devided in two categories, one is of frequency domain and the other is of time
domain. Smith predictor along with its modi�ed versions is considered a frequency-domain control
technique, on the other side Lyapunov�Krasovskii, ALINEA [1] along with its evolved versions (PI
ALINEA,FF-ALINEA) are considered time-domain control methods.

In this thesis an implementation of a predictor-feedback control is being presented aiming in the
elimination of any delay e�ect in a control system that regulates tra�c �ow in a distant bottleneck
of a speci�c length in a highway and render this system as stable as possible. The aforementioned
implemantaton was held in matlab enviroment and in discrete time.

1.1 Thesis Outline

In chapter 2 a methodology for the constuction of a nominal PI controller is being carried
out. Calculations of tra�c density in a distant bottleneck takes place along with the evaluation of
the performance of the PI controller for �ve cases of gain factors. In chapter 3 delay e�ect as a
parameter of the PI controller is being evaluated in four scenarios. In chapter 4 a predictor-feedback
law is implemented as a compensator of the four delay scenarios. A performance comparison between
predictor-feedback law and PI controller is conducted. Finally in chapter 5 the main conclusions
of this thesis are presented along with suggested potential directions for future work.

8



Chapter 2

Implemantation of a PI controller for traf-

�c �ow management in a distant bottle-

neck

A controller is a mechanism with main purpose to minimize the di�erence between the response
of a system and the desired value that is set for the system (this di�erence is also known as steady-
state error). Controllers are used in most automatic process control applications in industry to
regulate �ow, temperature, pressure, level, and many other process variables. The important uses of
controllers include improvement of the steady-state accuracy (sensitivity) by decreasing the steady
state error, improvement of system stability, reducing the unwanted o�sets (sustained errors) pro-
duced by the system, control of the maximum overshoot of the system, reducing the noise signals
produced by the system, speed up the slow response of an overdamped system, etc.

Controllers in �rst place are seperated according to their mode of control action. There are two
modes of control action, one is continuous and the other is discontinuous as shown in �gure 2.1

In the discontinuous mode of a controller the process variable changes between discrete values, the
output signal generated by the controller shows a variation from one value to another. According
to this mode of operation, controllers can be considered as On-O�/Two-position controllers and
multiposition controllers. Examples of systems using two-position controllers are domestic heating
systems, refrigeration, water tanks.

In the continuous mode of controller the process variable has an even variation over the entire
range of operation. According to this mode of operation, a controller can be classi�ed as a Propor-
tional, Integral or Derivative. Practicaly there is a use of a combination of these modes to control

Figure 2.1: Controllers modes of operation
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2.1. Control systems

the system such that the process variable is equal or as close as it can to the setpoint. There are
three combinations of controllers which are:

• Proportional and Integral controllers (PI Controllers)

• Proportional and Derivative controllers (PD Controllers)

• Proportional Integral Derivative controllers (PID Controllers)

A description for each seperate controller is presented below.

2.1 Control systems

2.1.1 Proportional controller

As the name suggests in a proportional controller the output is directly proportional to the error
signal. Mathematicaly this can be described from the folowing equation:

u(t) = Kpe(t)

where Kp is the proportional gain and e(t) = SetPoint− ProcessV ariable.
The proportional gain is the one that by increasing it tends to amplify the error thus making

the system to respond faster. On the other hand increased proportional gain of this controller is a
major cause for overshoot and oscillations as shown in �gure 2.2.

Figure 2.2: Proportional control response

Steady-state error can be reduced but not eliminated since proportional controller adjusts in the
varying di�erence between the next steady state and the desired setpoint and not in the maintainance
of the error.

10



2.1. Control systems

2.1.2 Integral controller

As the name suggests in an integral controller the output is directly proportional to the integral
of the error signal. Mathematicaly this can be described from the folowing equation:

u(t) = Ki

∫ t

0
e(t)dt

where Ki is the integral gain.
The integration of the error actualy stands as the summation of the error from zero time up to

the current time t.
The I controller on its own has a very slow response because it needs the error to build up before

it can start working (as shown in �gure 2.3). This property helps to reduce the steady-state error, as
long as there is no change in the error. On the other hand a change in the error causes an oscillatory
behavior and makes the system unstable. To overcome this problem I controller is combined with a
P controler.

Figure 2.3: Integral control response
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2.1. Control systems

2.1.3 Derivative controller

As the name suggests in a derivative controller the output is directly proportional to the deriva-
tive of the error signal. Mathematicaly this can be described from the folowing equation:

u(t) = Kd
de(t)

dt

where Kd is the derivative gain.
The derivative of the error actualy stands as the slope of the error signal at time t, where the

slope implies that every rate of change of error signal provides a signi�cantly di�erent value of the
output of the controller. Thus it never improves the steady-state error and also ampli�es the noise
signals produced in the system (as shown in �gure 2.4).

Figure 2.4: Derivative control response

The reason why this controller is used is that it can improve the transient response of the system
and so derivative controller is never used alone.

Since in this thesis PI controller is the base element upon the implemented predictor-feedback
law, an extensive description folows for it.

12



2.1. Control systems

2.1.4 PI controller

PI controller is a combination of a proportional and an integral controller. As a consequence it
combines the properties of proportional and integral action and thus eliminates the disadvantages
associated with each one of them. Mathematical representation of proportional plus integral action
is given from the folowing equation:

u(t) = Kpe(t) +Ki

∫ t

0
e(t)dt

It is therefore important to note that PI controllers are useful in systems where the response speed
is not important. PI controllers have small e�ect on the rise time and cannot eliminate oscillations
in a system because they are unable to predict future errors within the system.

PI controller is the most applied in automatic process control applications in industry [2]. It is
a feedback closed loop mechanism (�gure 2.5) that has the advantage to diminish the steady-state
error of the system up to zero.

Figure 2.5: Closed loop control system with PI controller.

13



2.2. Description of the model for the traffic regulation in a distant bottleneck

2.2 Description of the model for the tra�c regulation in a distant

bottleneck

In this section the description of a tra�c �ow management model is being presented. More
precisely there is a given highway stretch with two controlled ramps U1 and U2 and a distant
bottleneck of Δ length(see �gure 2.6).

Figure 2.6: Tra�c density regulation with two on ramp controllers U1(t) and U2(t).

The equation for the control of the tra�c �ow in the distant bottleneck is:

dY (t)

dt
=

1

∆
[−avY (t) + U1(t−D1) + U2(t−D1 −D2) + d] (2.1)

where Y denotes the tra�c density in the distant bottleneck, D1 = L1
v , D2 = L2

v are time delays for
road sections L1 and L2 respectively, a ∈ [0.3, 0.9] is a slow factor (cause of the obstruction by other
vehicles present in the same highway), υ>0 is the free �ow velocity of the vehicles (that is, with
no control), Δ>0 is the length of the distant bottleneck, d is the in�ow of the vehicles before the
main highway stretch and last U1,U2 are the corresponding ramps to be controlled by a PI controller
respectively .

2.2.1 Tra�c regulation under the state variable model

The state of a dynamic automatic control system can be expressed by a set of di�erential equa-
tions and thus by a set of variables. Being aware of the inputs of the system it is possible to predict
the response of the system, that is the output for a future time moment t.

Since in this thesis only one PI controller is being considered then it is settled that U2 = 0 and
because in �rst case no delay is taking place the equation 2.1 is turned into:

dY (t)

dt
=

1

∆
[−avY (t) + U1(t) + d] (2.2)

Additionaly the PI controller is expessed as:

U1(t) = K11(Υ(t)−Υ∗) +K12σ(t) (2.3)

14



2.2. Description of the model for the traffic regulation in a distant bottleneck

where σ(t) is the integral operator from which:

dσ(t)

dt
= Υ(t)−Υ∗ (2.4)

The state variable model which describes the tra�c regulation system is :

dx(t)

dt
=

[
dY (t)
dt

dσ(t)
dt

]
=

[
(−av)

∆ 0
1 0

] [
Y (t)
σ(t)

]
+

[
1
∆
0

] [
K11 K12

] [Y (t)
σ(t)

]
(2.5)

the equation 2.5 can be brie�y represented as:

x(t)

dt
= Ax(t) +BKx(t) (2.6)

where A =

[
(−av)

∆ 0
1 0

]
, B =

[
1
∆
0

]
, x(t) =

[
Y (t)
σ(t)

]
and K =

[
K11 K12

]

Figure 2.7: Block diagramm of the closed loop system for the tra�c regulation at a distant bottle-
neck.

Equation 2.4 will be used for the deduction of the gain array K (that is, the determination of
the gain coe�cients Κ11,Κ12 of the PI controller).

2.2.2 De�ning the gain matrix K of the PI controller

A system mathematically can be ordered by the degree of its highest derivative of its governing
di�erential. The system depicted in equation 2.2 is a second order control system 1

οf the following
form:

Q(λ) = λ2 + 2ζωnλ+ ω2
n (2.7)

1This can be prooved by evaluating the transfer function of the system
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2.2. Description of the model for the traffic regulation in a distant bottleneck

Second order systems are capable of an oscillatory response to a step input and their stability is
determined by their characteristic equation. The latter is de�ned as:

det(λI − (A−BK)) = 0 (2.8)

As a consequence

det(λI − (A−BK)) = det

∣∣∣∣ [λ 0
0 λ

]
−
[−av−K11

∆
−K12

∆
1 0

] ∣∣∣∣ = λ2 + λ(
av +K11

∆
) +

K12

∆
(2.9)

Equalizing 2.9 with 2.7 it ends up that:

av +K11

∆
= 2ζωn (2.10)

K12

∆
= ω2

n (2.11)

So to evaluate the gains Κ11,Κ12 of the PI controller there must be a choise for values concerning the
damping factor ζ 2 and the natural frequency ωn 3 that will not give large overshoot and negative
�ow.

Before proceeding to the aforementioned evaluation there must be a testing for the system either
being controllable or not.

2.2.3 System controllability

The de�nition of a system to be controllable or not4 goes like this:

�A system is completely controllable if there exists an unconstrained control u(t) that can transfer

any initial state x(t0) to any other desired location x(t) in a �nite time, t0 ≤ t ≤ T . �

In order to ascertain for a system to be controllable or not it must be shown that rank |AAB A2B · · ·An−1B| =
n or alternatively det |A AB A2B · · ·An−1B| 6= 0 . Indeed if Pc=[A AB] then:

detPc =

[
1 −av

∆
0 1

]
= 1 · 1− −av

∆
· 0 = 1 6= 0 (2.12)

Hence the system is controllable.

2Damping factor ζ is a dimensionless magnitude which express how fast an oscillation decays.
3Natural frequency ωn(rad/sec) is the frequency in which the system oscillates for ζ=0.
4From Richard's C. Dorf and Robert's H Bishop �Modern Control Systems�.
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2.3. Simulation model and gain parameter evaluation

2.3 Simulation model and gain parameter evaluation

2.3.1 Simulation setup

The model of equation 2.2 represents the tra�c density at a distant bottleneck of length Δ and
the model of equation 2.3 represents the tra�c �ow on ramp U1. For the former model, a parameter
set up is presented in table 2.1.

Parameter value

a 0.3
Δ(km) 1
v(km\h) 100
d(veh\h) 1000

Table 2.1: A set up of tra�c density parameters

For simulating equation 2.2 in discrete time, derivative dY (t)
dt was approximated with forward

di�erence method 5, time is discretized with a model time step dt=0.00002 h, while 100000 samplings
were evaluated in process time, all ending up in a 2 h represantation of tra�c behavior (see appendix
A).

2.3.2 Gain parameter evaluation

Before any tra�c density and tra�c �ow calculation occurs, an optimal response must be con-
sidered for the control system, so there is the need to specify which damping factor ζ and natural
frequency ωn will be used so as to evaluate PI's controler gain factors Κ11,Κ12. One diagram as
displayed in �gure 2.8 is used for choosing a value of natural frequency ωn that corresponds to a
certain gain factor Κ12, and four diagrams as displayed in �gure 2.9 are used for choosing which
damping factor ζ is appropriate for gain factor Κ11, under natural frequency ωn.

5 dY (t)
dt

= Y (t+dt)−Y (t)
dt
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2.3. Simulation model and gain parameter evaluation

Figure 2.8: Integral gain variation related to natural frequency.

Figure 2.9: Proportional gain variation related to damping factor concerning ωn=5, 10, 20 and 25
rad/sec (that is K12=25, 100, 400 and 625 respectively).

We ascertain from �gure 2.9 that gain factor Κ12 should be positive but for a small gain factor
Κ11 because the latter exponentially increases. An adequent amplitude for the natural frequency
and for the dambing factor can be speci�ed yieldind a positive set of gain factors Κ11, Κ12, for the
former that is 10 ≤ ωn ≤ 20 while for the latter is 0.78 ≤ ζ ≤ 2 .
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2.3. Simulation model and gain parameter evaluation

2.3.3 Performance characteristics of a second order system

In order for the performance of a second order control system to be de�ned, a set of performance
characteristics is being used. These are depicted in �gure 2.10

Figure 2.10: Performance characteristics of a response for a second order system.

• Rise Time (Tr): the time taken for the output to go from 10% to 90% of the �nal value.

• Peak Time (Tp): the time taken for the output to reach its maximum value.

• Overshoot: (max value - �nal value)100/�nal value.

• Settling Time (Ts): The time taken for the signal to be bounded to within a tolerance of x%
of the steady state value.

• Steady State Error (ess): The di�erence between the input set point (dashed line) and the �nal
value.

If a control system is asked to follow certain criteria then a designing upon these parameters
is useful. This can be done either by running a simulation and measure the parameters from the
step response directly or to de�ne expressions for the parameters in terms of the transfer function
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2.3. Simulation model and gain parameter evaluation

coe�cients. Mathematical expressions regarding the latter are as follows:

Overshoot(%) = 100exp(
−ζπ√
1− ζ2

) for 0 < ζ < 1 (2.13)

Tr ≈
1

ωn
(2.3ζ2 − 0.078ζ + 1.12) for 0 < ζ < 1 (2.14)

Tp ≈
π

ωn
√

1− ζ2
(2.15)

Ts ≈ −
ln(tolerance x%)

ζωn
for ζ << 1 (2.16)

(2.17)

In this thesis the evaluation of these parameters was done by running a simulation and measure
the parameters from the step response directly.

2.3.4 Gain parameter results

An applied combination of gain factors Κ11, Κ12 for calculating U1 and therefore Y(t), is presented
in table 2.2.

ζ ωn(rad\sec) Κ11 Κ12

1.5 10 0 100
1.5 15 15 225
1.8 15 24 225
1.8 20 42 400
2 20 50 400

Table 2.2: A proposed combination of damping factor ζ with natural frequency ωn

Of course other combinations can be used in terms of the response behaviour for the tra�c
control system as long as they are in the speci�ed limits.

In the �gures below (�gures 2.11 - 2.15) we ascertain the set of gain factors Κ11, Κ12 that yield
an acceptable response (only positive) for tra�c density Y(t) in accordace with �ow U1 on the
corresponding ramp.
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2.3. Simulation model and gain parameter evaluation

(i) Tra�c density response for Κ11=0 and Κ12=100. (ii) Flow response for Κ11=0 and Κ12=100.

Figure 2.11: Tra�c density response Y(t) and �ow response U1(t) for ζ=1.5 and ωn=10 (that is,
Κ11=0 and Κ12=100 in PI controller).

(i) Tra�c density response for Κ11=15 and Κ12=225. (ii) Flow response for Κ11=15 and Κ12=225.

Figure 2.12: Tra�c density response Y(t) and �ow response U1(t) for ζ=1.5 and ωn=15 (that is,
Κ11=15 and Κ12=225 in PI controller).
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2.3. Simulation model and gain parameter evaluation

(i) Tra�c density response for Κ11=24 and Κ12=225. (ii) Flow response for Κ11=24 and Κ12=225.

Figure 2.13: Tra�c density response Y(t) and �ow response U1(t) for ζ=1.8 and ωn=15 (that is,
Κ11=24 and Κ12=225 in PI controller).

(i) Tra�c density response for Κ11=42 and Κ12=400. (ii) Flow response for Κ11=42 and Κ12=400.

Figure 2.14: Tra�c density response Y(t) and �ow response U1(t) for ζ=1.8 and ωn=20 (that is,
Κ11=42 and Κ12=400 in PI controller).
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2.3. Simulation model and gain parameter evaluation

(i) Tra�c density response for Κ11=50 and Κ12=400. (ii) Flow response for Κ11=50 and Κ12=400.

Figure 2.15: Tra�c density response Y(t) and �ow response U1(t) for ζ=2 and ωn=20 (that is,
Κ11=50 and Κ12=400 in PI controller).

It is obvious from sub�gures (i) and (ii) of �gure 2.11 that only the set Κ11=0, Κ12=100 (that is,
ζ=1.5, ωn=10) presents a smooth behavior for both tra�c density Y(t) and �ow U1(t). The rest of
gain K sets are also accepted depending on how fast the tra�c density response Y(t) must respond
in the distant bottleneck and as a consequence which overshoot is tolerated on the ramp U1 so as
the corresponding PI controller to be implemented.
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2.3. Simulation model and gain parameter evaluation

(i) Tra�c density response for all sets of Κ11, Κ12.

(ii) Flow response for all sets of Κ11, Κ12.

Figure 2.16: Tra�c density response Y(t) and �ow response U1(t) for all sets of Κ11, Κ12.
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2.3. Simulation model and gain parameter evaluation

For all K set cases except the �rst one, �ow response U1(t) exposes signi�cant increased rise time
Tr and heightened overshoot. On the contrary settling time Ts is proportionally decreased as matrix
K increases. As far as tra�c density response is concerned, this exposes increased rise time (Tr),
zero overshoot and decreased settling time (Ts) as matrix K increases.

An other point that sub�gures of on ramp �ow control exhibit is that the desired tra�c density
of 50 veh/km in the distant bottleneck corresponds to an on ramp �ow of 500 veh/h. Flow is related
with density from the following equation:

Q(veh/h) = Density(veh/km) · V elocity(km/h) (2.18)

So for an on ramp velocity of 100 km/h the on ramp tra�c density would be 5 veh/km and for
a bottleneck velocity of 100 km/h the �ow through bootleneck would be 5000 veh/h, since the
bootleneck length is 1 km this means that 50 vehicles cross the bottleneck.

As a conclusion in order for a ramp metering to be e�ective, the sum of road sections L2, L1

demand and on ramp demand should be higher than the bottleneck capacity.
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Chapter 3

Tra�c �ow control in a distant bottleneck

under delay e�ect

Delay e�ect is a phenomenon that is caused mainly due to the transmission of information, that
is the distance in which the information travells in a speci�c velocity. Communication networks,
chemical processes, teleoperation systems, biosystems, processes industries and so on undergo delay
phenomenons. Time delay may cause performance decline, even instability of any system [3].

In this section delay e�ect scenarios, as an input parameter for the PI controller, are being
evaluated for equation 2.2.

3.1 Delay scenarios

Four cases of the delay e�ect D1 are considered for all gain sets of table 2.2. These are shown in
table 3.1

D1

0.0084 h (30 sec)
0.017 h (1 min)
0.083 h (5 min)
0.16 h (10 min)

Table 3.1: Delay scenarios for U1 controller.

Under delay e�ect equation 2.2 turns into:

dY (t)

dt
=

1

∆
[−avY (t) + U1(t−D1) + d] (3.1)

Why there is no control in time space [0, D1) a vehicle free �ow speed is 100 km/h, thus the �ow for
the corresponding bottleneck length (that is, 1 km) will be 100 veh/h, so equation 3.1 becomes:
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3.1. Delay scenarios

dY (t)

dt
=


1
∆ [−avY (t) + 100 + d] for 0 ≤ t < D1

1
∆ [−avY (t) + U1(t−D1) + d] for t ≥ D1

(3.2)

now equation 3.2 shows altogether how tra�c density is evaluated before and after delay e�ect.
From relation D1 = L1

v , the distance L1between the exit of the ramp and the entrace of the
bottleneck can be estimated. Table 3.2 presents the corresponding distances for the proposed delay
cases.

D1 L1

0.0084 h (30 sec) 0.84 km
0.017 h (1 min) 1.7 km
0.083 h (5 min) 8.3 km
0.16 h (10 min) 16 km

Table 3.2: Corresponding distance between ramp U1 exit and entrance of bottleneck for the delay
scenarios.

Time is discretized with a model time step Δt=0.00002 h, while 100000 samplings were evaluated
in process time, all ending up in a 2 h represantation of tra�c behavior (see appendix B).
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3.2. Simulation results

3.2 Simulation results

The following results appeard after implemanting equations 3.2, 2.2 for each delay case in order.

• case Κ11=0, Κ12=100 (ζ=1.5, ωn=10)

(i) Tra�c density response for D1=0.0084 h. (ii) On ramp U1 �ow response.

Figure 3.1: Tra�c density response Y(t) for delay e�ect D1=0.0084 h and �ow response U1(t).

(i) Tra�c density response for D1=0.017 h. (ii) On ramp U1 �ow response.

Figure 3.2: Tra�c density response Y(t) for delay e�ect D1=0.017 h and �ow response U1(t).
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3.2. Simulation results

(i) Tra�c density response for D1=0.083 h. (ii) On ramp U1 �ow response.

Figure 3.3: Tra�c density response Y(t) for delay e�ect D1=0.083 h and �ow response U1(t).

(i) Tra�c density response for D1=0.16 h. (ii) On ramp U1 �ow response.

Figure 3.4: Tra�c density response Y(t) for delay e�ect D1=0.16 h and �ow response U1(t).
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3.2. Simulation results

• case Κ11=15, Κ12=225 (ζ=1.5, ωn=15)

(i) Tra�c density response for D1=0.0084 h. (ii) On ramp U1 �ow response.

Figure 3.5: Tra�c density response Y(t) for delay e�ect D1=0.0084 h and �ow response U1(t).

(i) Tra�c density response for D1=0.017 h. (ii) On ramp U1 �ow response.

Figure 3.6: Tra�c density response Y(t) for delay e�ect D1=0.017 h and �ow response U1(t).
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3.2. Simulation results

(i) Tra�c density response for D1=0.083 h. (ii) On ramp U1 �ow response..

Figure 3.7: Tra�c density response Y(t) for delay e�ect D1=0.083 h and �ow response U1(t).

(i) Tra�c density response for D1=0.16 h. (ii) On ramp U1 �ow response.

Figure 3.8: Tra�c density response Y(t) for delay e�ect D1=0.16 h and �ow response U1(t).
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3.2. Simulation results

• case Κ11=24, Κ12=225 (ζ=1.8, ωn=15)

(i) Tra�c density response for D1=0.0084 h. (ii) On ramp U1 �ow response.

Figure 3.9: Tra�c density response Y(t) for delay e�ect D1=0.0084 h and �ow response U1(t).

(i) Tra�c density response for D1=0.017 h. (ii) On ramp U1 �ow response.

Figure 3.10: Tra�c density response Y(t) for delay e�ect D1=0.017 h and �ow response U1(t).
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3.2. Simulation results

(i) Tra�c density response for D1=0.083 h. (ii) On ramp U1 �ow response.

Figure 3.11: Tra�c density response Y(t) for delay e�ect D1=0.083 h and �ow response U1(t).

(i) Tra�c density response for D1=0.16 h. (ii) On ramp U1 �ow response.

Figure 3.12: Tra�c density response Y(t) for delay e�ect D1=0.16 h and �ow response U1(t).
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3.2. Simulation results

• case Κ11=42, Κ12=400 (ζ=1.8, ωn=20)

(i) Tra�c density response for D1=0.0084 h. (ii) On ramp U1 �ow response.

Figure 3.13: Tra�c density response Y(t) for delay e�ect D1=0.0084 h and �ow response U1(t).

(i) Tra�c density response for D1=0.017 h. (ii) On ramp U1 �ow response.

Figure 3.14: Tra�c density response Y(t) for delay e�ect D1=0.017 h and �ow response U1(t).
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3.2. Simulation results

• case Κ11=50, Κ12=400 (ζ=2, ωn=20)

(i) Tra�c density response for D1=0.0084 h. (ii) On ramp U1 �ow response.

Figure 3.15: Tra�c density response Y(t) for delay e�ect D1=0.0084 h and �ow response U1(t).
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3.2. Simulation results

• Overall cases under delay D1

(i) Tra�c density response for D1=0.0084 h. (ii) On ramp U1 �ow response.

Figure 3.16: Tra�c density response Y(t) for delay e�ect D1=0.0084 h and �ow response U1(t) for
all sets of Κ11, Κ12.

Examining the overall progress of �ow response U1(t) in sub�gure (ii) of �gure 3.16 there is the
conclusion that the overshoot is increasing as gains Κ11, Κ12 are increasing respectively. Furthermore
Tr exhibits a rapid increase and Ts decreases. As a consequence a more fast tra�c density response
Y(t) is being produced with no oscillatory behavior.

Generall the delay e�ect D1=0.0084 h has a small impact in the system response, that is obvious
by comparing it with the equivallent graphs of �gure 2.16.
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3.2. Simulation results

(i) Tra�c density response for D1=0.017 h. (ii) On ramp U1 �ow response.

Figure 3.17: Tra�c density response Y(t) for delay e�ect D1=0.017 h and �ow response U1(t) for
all sets of Κ11, Κ12.

Comparing sub�gure (ii) of �gures 3.17, 3.16 it can be seen that delay e�ect D1=0.017 h has
caused a decreasing overshoot, regarding �ow response U1(t), for all sets of Κ11, Κ12 except the �rst
one. Moreover, delay e�ect D1=0.017 h has caused a deceleration in Tr and an increasing behaviour
in Ts. Oscillatory behavior is presented under the case Κ11=42, Κ12=400 both for tra�c density
and �ow rate. For case Κ11=50, Κ12=400 �ow response U1(t) exhibited negative values so it is not
recommended for a control system to be applied.
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3.2. Simulation results

(i) Tra�c density response for D1=0.083 h. (ii) On ramp U1 �ow response.

Figure 3.18: Tra�c density response Y(t) for delay e�ect D1=0.083 h and �ow response U1(t) for
all sets of Κ11, Κ12.

From �gure 3.18, comparing it with the previous �gures 3.17-3.16 it is ascertained that delay
e�ect D1=0.083 h has caused a decreased overshoot, as far as �ow response U1(t) is concerned, except
the �rst set of Κ11, Κ12. Rise time (Tr) is decreased and settling time (Ts) is getting higher ending
in an oscillatory behavior and all this because PI controller responds late. The last two cases for
Κ11, Κ12 yield negative values in their response so they were excluded.
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3.2. Simulation results

(i) Tra�c density response for D1=0.16 h. (ii) On ramp U1 �ow response.

Figure 3.19: Tra�c density response Y(t) for delay e�ect D1=0.16 h and �ow response U1(t) for all
sets of Κ11, Κ12.

From �gure 3.19 it is veri�ed that as delay increses oscillatory behavior becomes more intense.
The last two cases for Κ11, Κ12 yield negative values in their response so they were excluded. Only
the set Κ11=0, Κ12=100 presented a smooth response reaching the desired set point with a zero
steady state error.
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Chapter 4

Predictor-feedback implementation

Predictors as their name suggests are predicting the future values of a state variable for the
control system. This property is used mainly for the compensation of the input delay in a control
system thus render it stable and even with no oscillations [4].

The predictor feedback law is the product of a feedback gain matrix with an exponential term
that represents the phase lag, the predicted state of the controlled system and a �nite summation
of past values of the predictor in a de�ned time window, altogether.

In this section an evaluation of a predictor-feedback law, for the tra�c �ow control system of
equation 2.2, is being presented as a time delay compensator. The implemented predictor-feedback
control system is given by the following equation:

U1(t) = K

(
eAD1

[
Y (t)
σ(t)

]
+

∫ t

t−D1

eA(t−θ)BU1(θ)dθ

)
(4.1)

where K is the gain matrix, B =

[
1
∆
0

]
, U1(θ) represents past values of the predictor-feedback law

in the time window [t-D1, t] and eAD1, eA(t−θ) are the delay factors to be compensated. Figure 4.1
presents the block diagramm of the implemented predictor-feedback controller for the tra�c �ow
management in a distant bottleneck.
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4.1. Simulation setup

Figure 4.1: Block diagramm of an implemented predictor-feedback law for tra�c �ow management
in a distant bottleneck.

4.1 Simulation setup

For the evaluation of the predictor feedback law of equation 4.1 in discrete time there was a use
of a trapezoidal rule for the integral summation. The general form of this rule is as follows.

∫ b

a
f(x)dx ≈

Q∑
k=1

f(xk−1) + f(xk)

2
∆xκ (4.2)

where x0=a, xQ=b and Δxk=xk - xk-1. The approximation increases as Q intervals increase too,
which means also that Δxk decreases.

A number of samplings N=100000 where estimated with an interval dt=Δxk=2 ∗ 10−5 ending in
a 2 h simulation process while index Q of equation 4.2 was seted for 1000 (see appendix c). Delay
values to be compansated are these of table 3.1.
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4.2. Simulation results

4.2 Simulation results

• Predictor Vs PI controller under delay D1=0.0084 h

(i) Tra�c density response for D1=0.0084 h. (ii) On ramp U1 �ow response.

Figure 4.2: Comparing predictor response with that of PI controller under delay D1=0.0084 h.

• Predictor Vs PI controller under delay D1=0.017 h

(i) Tra�c density response for D1=0.017 h. (ii) On ramp U1 �ow response.

Figure 4.3: Comparing predictor response with that of PI controller under delay D1=0.017 h.

42



4.2. Simulation results

• Predictor Vs PI controller under delay D1=0.083 h

(i) Tra�c density response for D1=0.083 h. (ii) On ramp U1 �ow response.

Figure 4.4: Comparing predictor response with that of PI controller under delay D1=0.083 h.

• Predictor Vs PI controller under delay D1=0.16 h

(i) Tra�c density response for D1=0.16 h. (ii) On ramp U1 �ow response.

Figure 4.5: Comparing predictor response with that of PI controller under delay D1=0.16 h.
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4.2. Simulation results

• Overall evaluation

Figure 4.6: Alteration of predictors gain K11 through delay D1 and for steady gain K12= 10−8.

In all the above cases predictor exhibits the same rise time Tr, same settling time Ts, zero
overshoot and no oscillations both for tra�c density and �ow. Furthermore it yields a smooth
transient response that rests in the desired set point thus producing a zero steady state error (ess=0).

What changes in each delay case for the predictor is the gain factor K11, it acquires positive
values for the �rst two delay cases and negative for the last two (�gure 4.6). On the contrary gain
factor K12 remains the same for all delay cases (of course other combinations of gains K11,K12 can
be used proportionally to yield the same response for the predictor).

Now, what was presented in �gures 4.2-4.5 is how gain K of predictor was altered from the view of
delay e�ect D1. In the following �gures tra�c density and �ow response of the predictor is presented
from the view of the proposed set of gain factors Κ11, Κ12 of table 2.2 compared with an optimal PI
controller (that is, PI controller with Κ11=0, Κ12=100, with no delay e�ect, which yielded a smooth
response both for tra�c density and �ow rate).
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4.2. Simulation results

• Predictor under delay D1=0.0084 h for the proposed set of gain factors Κ11, Κ12

Vs an optimal PI controller

(i) Tra�c density response for D1=0.0084 h. (ii) On ramp U1 �ow response.

Figure 4.7: Comparing predictor response for the proposed gain factors Κ11, Κ12 under D1=0.0084
h with that of a PI controller with no delay e�ect.

What can be veri�ed from sub�gure (i) of �gure 4.7 is that no set of the proposed gain factors
Κ11, Κ12 is appropriate for the predictor to meet the desired value. If there is a small tolerance in
the desired value to be met (or else a tolerance in the steady-state error) then the most appropriate
set would be that of Κ11=15, Κ12=225, but again it deviates from the gain set of the optimal PI
controller.
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4.2. Simulation results

• Predictor under delay D1=0.017 h for the proposed set of gain factors Κ11, Κ12

Vs an optimal PI controller

(i) Tra�c density response for D1=0.017 h. (ii) On ramp U1 �ow response.

Figure 4.8: Comparing predictor response for the proposed gain factors Κ11, Κ12 under D1=0.017 h
with that of a PI controller with no delay e�ect.

From sub�gure (i) of �gure 4.8 it is ascertain that only the set Κ11=15, Κ12=225 of the predictor
meets the desired value with zero steady-state error. The only issue for the set Κ11=15, Κ12=225 of
the predictor is that it deviates from the gain set of the optimal PI controller.

46



4.2. Simulation results

• Predictor under delay D1=0.083 h for the proposed set of gain factors Κ11, Κ12

Vs an optimal PI controller

(i) Tra�c density response for D1=0.083 h. (ii) On ramp U1 �ow response.

Figure 4.9: Comparing predictor response for the proposed gain factors Κ11, Κ12 under D1=0.083 h
with that of a PI controller with no delay e�ect.

In sub�gure (i) of �gure 4.9 it is veri�ed that the set Κ11=0, Κ12=100 of the predictor meets the
desired value with zero steady-state error. Moreover an overshoot 90% is presented in the �ow rate
of the predictor (sub�gure (ii) of �gure 4.9).
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4.2. Simulation results

• Predictor under delay D1=0.16 h for the proposed set of gain factors Κ11, Κ12 Vs
an optimal PI controller

(i) Tra�c density response for D1=0.16 h. (ii) On ramp U1 �ow response.

Figure 4.10: Comparing predictor response for the proposed gain factors Κ11, Κ12 under D1=0.16 h
with that of a PI controller with no delay e�ect.

What can be veri�ed from sub�gure (i) of �gure 4.10 is that the set Κ11=0, Κ12=100 of the
predictor fails to meets the desired value for delay case D1=0.16 h. So it is appropriate here for the
optimal PI controller to be used in place of the predictor.
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Chapter 5

Conclusions

In this thesis, an evaluation of a predictor-feedback law was presented for the tra�c �ow regula-
tion in a distant bottleneck in a highway. Furthermore there was a performance comparison of the
implemented predictor-feedback law with a PI controller under scenarios concerning delay e�ect.

First of all, a tra�c regulation model with a PI controller was introduced applying the state
variable model. There was an estimation for the gain matrix of the PI controller and for the
controllability of the system proving that the tra�c regulation system is controllable. Simulations
were carried out for �ve gain sets of matrix K and for four cases of delay e�ect for the PI controller
seperately and together. Finaly a predictor-feedback law was implemented as a delay compensator
for the tra�c control system under the same delay scenarios and the same gain sets of matrix K.

As far as the PI controller is concerned, free of delay e�ect, simulation results proved that it
responded fast as gain matrix K increases. Overshoot increased proportionally ending in the desired
value with no signi�cant oscillations. A question that emerges is what overshoot can be tolerated
for the ramp to be implemented the PI controller when there is a need of a fast response.

For the PI controller, under delay e�ect, simulation results proved that increased gain K combined
with increased delay make the system unstable and thus not suitable for tra�c regulation. On the
other hand gain set Κ11=0, Κ12=100 was the one that presented a smooth response both for tra�c
density in the distant bottleneck and �ow rate on ramp U1, thus this gain set was considered optimal
for the PI controller and as a reference point for comparing it with the predictor-feedback law.

About predictor-feedback law, comparing estimations from view of delay e�ect and the proposed
gain K matrices it is concluded that there is a need of calibration for the two �rst delay cases and
the last one. As far as the third delay case is concerned, predictor-feedback law reached the desired
value with fast response while the corresponding �ow rate exhibited a high overshoot, so there is a
choise between fast response for tra�c density and ramp vehicle tolerance. So, what can be declared
here is that the implemented predictor-feedback law is suitable after being calibrated.

In future work ramp U2 may be added for further analysis. In addition, an other mathematical
approach for discetizing the predictor-feedback law may be implemented for facing the presented
calibration issues. An other option is that of implementing a di�erent predictor-feedback law(e.g a
discrete-time Smith predictor) for controlling tra�c �ow in the proposed distant bottleneck.
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Appendix A

%variables
Delta=1; %bottleneck length in Kilometers.
a=0.3; %slow factor for velocity of cars.
d=1000; %the in�ow (#veh/h) at the mainstream of the considered stretch lane
v=100; %free �ow carvelocitykm/h
dt=0.00002; %sim step-2h output response
N=100000; %100000 number of samplings in time
q=1000; %index of summation of trapezoidal rule

Desired_density=50; %The desired tra�c density (number of vehicles per km)
tra�c_dens=zeros(1,N);
tra�c_dens1=zeros(1,N);
pi_controller=tra�c_dens;
predictor=pi_controller;
bottleneck=tra�c_dens;
var4=zeros(1,N);
error=var4;

%PI controllers gains k11,k12
%k12
wn=0.0001; %natural frequency
ki = w2

n;
%k11
z = 20.3 ∗ 104;%damping factor
kp = ((2 ∗ z ∗ wn) ∗Delta)− a ∗ v;

%main equation. Use this for control with no delay e�ect
par=(1+((a*v*dt)/Delta));
var4=zeros(1,N);
error=var4;
for n=1:N
if n<2

tra�c_dens(1,n)=0;
error(1,n)=0;

else
error(1,n)=(Desired_density-tra�c_dens(1,n-1));
tra�c_dens(1,n)=((d+ kp*( error(1,n))+dt*ki*sum( error) )*dt/Delta)+tra�c_dens(1,n-1);
tra�c_dens(1,n)=tra�c_dens(1,n)/par;
pi_controller(1,n)=( kp*( error(1,n))+dt*ki*sum( error) )/Delta;

end
end
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Appendix B

%pi controller with delay e�ect.
delay=420;%in discrete time 420,850,4150,8000
par=(1+((a*v*dt)/Delta));
var4=zeros(1,N);
error=var4;
for n=1:N

if n<2
tra�c_dens(1,n)=0;
error(1,n)=0;
else
error(1,n)=(Desired_density-tra�c_dens(1,n-1));
pi_controller(1,n)=( kp*( error(1,n))+dt*ki*sum( error) )/Delta;
if n-delay>1
tra�c_dens(1,n)=((d+ pi_controller(1,n-delay))*dt/Delta)+tra�c_dens(1,n-1);
tra�c_dens(1,n)=tra�c_dens(1,n)/par;
else
tra�c_dens(1,n)=((d+100)*dt/Delta)+tra�c_dens(1,n-1);
tra�c_dens(1,n)=tra�c_dens(1,n)/par;
pi_controller(1,n)=100/Delta;
end
end

end

% PI's plots
�gure(1)
plot(time,tra�c_dens,'r');
hold on
line([0 N*dt],[Desired_density Desired_density],'Color','green');
ylim([0 60])
legend('Regulated tra�c density Y(t) at delta point ','Desired density Y�* at delta point')xlabel('Time
(hours)');
ylabel('Y(t) (veh/km)');
grid on
�gure(2)
plot(time,pi_controller,'m');
%ylim([0 600])
legend('Regulated tra�c �ow rate U_1(t) ')%under delay D_1=0.0084 h
xlabel('Time (hours)');
ylabel('U_1(t) (veh/h)');
grid on
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Appendix C

delay=420;%in discrete time 420,850,4150,8000
%predictor's Kp,Ki
%k12
wn=0.0001;%natural frequency
ki = w2

n;
%k11
z = 20 ∗ 104;%damping factor (0.0084h) kp=((2*z*wn)*Delta)-a*v;

%feedback-predictor. A=[-a*v 0;1 0];
B=[1;0];
D1=delay;
par=(1+((a*v*dt)/Delta));
var4=zeros(1,N);
error=var4;

smt=(eye(2)+A*D1*dt);%approximate value of exp(AD1)
for n=1:N

if n<2
predictor(1,n)=0;
tra�c_dens1(1,n)=0;
error(1,n)=0;
else
error(1,n)=(Desired_density-tra�c_dens1(1,n-1));
K=[kp ki];
Y=[ tra�c_dens1(1,n-1);error(1,n-1)];
if n-delay>1
for i=2:q %Integral to summation
AD11=(eye(2)+A*D1*dt*(i-1))*B*predictor(1,i-1);%dt is in hours
AD12=(eye(2)+A*D1*dt*(i))*B*predictor(1,i);
AD1=(AD12+AD11)*dt/2;
end
predictor(1,n)=K*( smt*Y+(AD1));
end
if n-delay<=1
predictor(1,n)=K*(smt*Y);
end
tra�c_dens1(1,n)=((d+predictor(1,n) )*dt/Delta)+tra�c_dens1(1,n-1);
tra�c_dens1(1,n)=tra�c_dens1(1,n)/par;
end

end
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