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Abstract: Renewable Energy Sources provide a viable solution to the problem of ever-increasing
climate change. For this reason, several countries focus on electricity production using alternative
sources. In this paper, the optimal positioning of the installation of wave energy converters is
examined taking into account geospatial and technical limitations. Geospatial constraints depend on
Land Use classes and seagrass of the coastal areas, while technical limitations include meteorological
conditions and the morphology of the seabed. Suitable installation areas are selected after the
exclusion of points that do not meet the aforementioned restrictions. We implemented a Deep Neural
Network that operates based on heterogeneous data fusion, in this case satellite images and time
series of meteorological data. This fact implies the definition of a two-branches architecture. The
branch that is trained with image data provides for the localization of dynamic geospatial classes
in the potential installation area, whereas the second one is responsible for the classification of
the region according to the potential wave energy using wave height and period time series. In
making the final decision on the suitability of the potential area, a large number of static land use
data play an important role. These data are combined with neural network predictions for the
optimizing positioning of the Wave Energy Converters. For the sake of completeness and flexibility,
a Multi-Task Neural Network is developed. This model, in addition to predicting the suitability of
an area depending on seagrass patterns and wave energy, also predicts land use classes through
Multi-Label classification process. The proposed methodology is applied in the marine area of the
city of Sines, Portugal. The first neural network achieves 98.7% Binary Classification accuracy, while
the Multi-Task Neural Network 97.5% in the same metric and 93.5% in the F1 score of the Multi-Label
classification output.

Keywords: wave energy converters; deep neural networks; renewable energy sources; spatial
planning; sentinel satellite imagery

1. Introduction

Currently, the multifaceted phenomenon of climate change is a matter of increasing
concern. Despite the fact that the rapid technological progress leads to the improvement of
human well-being, some of the industrial sectors are responsible for a significant part of
greenhouse gas emissions. More specifically, industry emits 37% of the total gas emissions
and a significant part of this percentage represents the environmental cost of producing the
required electrical energy for the operation of industrial activities [1]. The need to meet the
growing energy demand combined with the least possible environmental consequences,
leads to the emergence of renewable energy plants [2]. A challenge for Europe is the
ability to generate electricity from renewable sources at high and increasing, over time,
levels. Particularly, the objective of EU is to cover the 32% of the total European energy
demand from renewable sources by 2030 and to reduce the greenhouse gas emissions
by 40% compared to 1999 [3]. It is necessary for various renewable energy plants to be
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developed in order to achieve the aforementioned objectives. Many countries are looking
for an efficient way to use the ocean as a renewable energy source. Wave energy systems
are characterized by high efficiency and their contribution to Europe’s energy demand is
estimated to be 15% by 2050 [4]. Towards this end, Wave Energy Converters (WEC) are
systems that exploit the wave energy, converting it into electricity and they can be installed
either independently or in combination with Offshore Wind Generators [5].

Optimal positioning of WECs, is a crucial issue for the marine environment, human
activities and the wave energy potential. Suitable areas for WEC installation are selected
after the exclusion of points that do not meet certain restrictions. WEC planning limitations
are determined by a specific set of rules included in the Marine Spatial Planning (MSP) [6].
In this way, the negative aspect of these systems on the marine activities and the natural
environment (i.e., algae, beaches, protected areas and coastal agriculture activities) is
prevented. In addition, it is necessary to exclude regions in which the operation of WEC
is not efficient (i.e., weather conditions and seabed morphology). Thus, WEC positioning
constitutes a decision-making problem in which multiple constraints should be taken
into account.

The first step for the optimal positioning of WEC devices is the assessment of the
wave energy resource. The most recent research in potential wave energy characteriza-
tion is based on in situ, satellite and reanalysis data or wave model simulations. Farkas
et al. [7], used the third-generation wave model (WAM) combined with altimetry data and
characterised the annual, monthly and seasonal wave energy for two specific devices. Au-
thors compared Wave Energy Potential at seven different locations. Additionally, Nilsson
et al. [8] utilized WAM evaluated by bouy data and calculated the wave energy potential of
the Exclusive Economic Zone (EEZ). They performed wave energy classification in five cat-
egories comparing the energy resource of selected locations to the mean wave energy and
standard deviation of other sites at similar distance to the shoreline. An additional wave
model is the Simulating Waves Nearshore (SWAN) which is developed at Delft University
of Technology. Veigas et al. [9] utilized SWAN to find out the offshore wave conditions
near the shoreline. Wave energy resource characterization is carried out according to the
wave power matrix of the Sea Slot-cone Generator (SSG) data [10] of an offshore bouy
and the calculation of the mean annual energy values. Amarouche et al. [11] developed a
historical dataset using the SWAN model. Authors classified the potential wave energy
flux through the calculation of different temporal variations of wave energy, the probability
of distribution, the wave energy development index and the yearly wave energy. Fairley
et al. [12] presented a novel method for the wave energy resource characterization. One of
the main results of this study are the consequences of the different temporal variability at
wave power time series of two locations. Despite the fact that these time series have the
same mean value, the standard deviation is different. Thus, the traditional methods for the
wave energy resource assessment (i.e., Annual Wave Energy Flux) lead to inefficient results
because they cannot handle temporal variability differences. The authors proposed a novel
clustering-based method to evaluate wave height and period time series.

Additional to the aforementioned analysis, optimal locations for WEC installation
are carried out through geospatial analysis. Researchers and practitioners use Geographic
Information Systems (GIS), Multiple-criteria, or a combination of them to deal with optimal
positioning of Renewable Energy Systems. Aydin et al. [13], used a GIS-based method in
order to find optimal locations for hybrid renewable energy plants in Turkey. Regarding the
WEC positioning, Castro-Santos et al. [14], proposed a GIS-based approach under which
data were collected for the corresponding geospatial limitations, the seabed morphology, as
well as the meteorological conditions and developed four GIS tools. After the combination
of corresponding GIS layers, the final decision is made by identifying the available areas
on the resulting map. Galparsoro Iza et al. [15], developed a decision making system
that combines the MSP approach and GIS. Authors calculated Suitability Index in order
to find optimal locations for WEC installation. Apart from the aforementioned methods,
some researchers have used Multiple-criteria decision-making (MCDM) systems. Vasileiou
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et al. [16] developed a combined GIS-MCDM system to select cites for a hybrid offshore
wind-wave farm in Greece. Ghosh et al. [17] proposed a system for WEC positioning.
Limitations of WEC planning are defined with the corresponding weights and the MCDM
System derives the Feasibility Index (FI) for each of the potential installation regions.
An Artificial Neural Network (ANN) is also used to predict the FI value according to
the criteria.

The state-of-the-art methods for wave energy resource assessment and for optimal
positioning of WEC including geospatial analysis are summarized on Tables 1 and 2, re-
spectively. As a rule, both geospatial and technical limitations criteria for WEC positioning
can be modeled using the traditional GIS-based methods. However, in some cases it is
essential to examine restrictions related to dynamically changing patterns in marine areas.
This is the major limitation of the state of the art methods for WEC positioning, including
geospatial analysis (Table 2). For instance, algae are important for the environmental
balance and cannot be identified using a GIS database. Geographic datasets entail only
historical algae presence records for specific dates. Towards this end, Effrosynidis et al. [18]
proposed a Machine Learning (ML) based method to identify seagrass presence according
to environmental variables. In addition, satellite imagery is an efficient method for seagrass
mapping [19] and Deep Neural Networks (DNN) are used to automate this process. More
precisely, Li et al. [20] trained a Convolutional Neural Network (CNN) for the seagrass
segmentation of satellite images. Thus, in our study we use Deep Learning methods and
remote sensing data in order to identify dynamically changing patterns such as algae in
marine areas. Last but not least, relying on Fairley’s et al. [12] study, one may highlight the
major limitation of the state of the art methods for wave energy resource characterization.
According to their results, traditional studies lead to inefficient results due to the difference
in time variability of separated locations. In order to deal with this limitation, we expand
Fairley’s et al. [12] method for the assessment of wave energy potential through the genera-
tion of a wave energy dataset with the corresponding suitability labels of wave height and
period time series, in order to implement a Deep Learning based algorithm for time series
classification. Using this method, we handle differences of temporal variability and we are
able to use the proposed model for other case studies.

Based on the above information, in the present study we address the optimal po-
sitioning of WEC establishments using a DNN approach. Machine learning techniques
are widely used in Renewable Energy Systems in order to estimate the maximum energy
production [21], to predict production and load time series [22–24] or to identify potential
space for new installations such as photovoltaic systems [25,26]. The heterogeneity and
dynamic nature of data and the desire for automation are the main driving forces to un-
dertake the proposed methodology. Thus, we divide the necessary data into static (i.e.,
land use classes) and dynamic (i.e., algae and wave energy potential). We propose a Deep
Learning-based decision system that detects dynamic geospatial limitations, while it evalu-
ates the wave energy potential with respect to time variability. Particularly, we developed a
DNN that operates on heterogeneous data fusion [27], in this case satellite images and time
series of meteorological data. This fact implies the definition of a two-branches architecture.
The branch that is trained with image data provides the localization of dynamic geospatial
classes in the potential installation area, whereas the second one is responsible for the
classification of the region according to the potential wave energy. The proposed Neural
Network is the core of the system that we implemented to automate the process of WEC
optimal positioning. Our system operates in two modes: in Mode I, the image recognition
branch of DNN only detects algae. The land use classes are received from a land use
database and are combined with DNN predictions for the WEC optimizing positioning.
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Table 1. Related work for the assessment of wave energy resource.

Authors Method Wave Energy Resource
Assessment Results

Farkas et al. Numerical Method and
Wave Model

Annual, Monthly and Seasonal
Wave Energy. Comparison with
Offshore Wind Energy potential.

Authors compared Wave Energy
Potential at seven different locations.
Highest values are obtained during

winter and lowest at summer.

Nilsson et al. Numerical Method and
Wave Model

Wave energy resource
classification through the

comparison of mean wave energy
potential and its standard

deviation of sites at similar
distance to the shoreline.

Areas with the highest Wave Energy
potential located within the Exclusive

Economic Zone of Sweden.

Veigas et al.
Numerical Method, Wave

Model and SSG Wave
Power Matrix

Comparison with offshore buoy
data and SSD Wave Power Matrix.

Authors selected the three best
locations. In addition, they calculated

the WEC capacity factor (33% or
2628 equivalent hours).

Amarouche et al. Numerical Method and
Wave Model

Temporal variations of different
scales, probability of distribution,
wave energy development index

and annual wave energy.

Authors characterized Eastern
Algerian coast as one of the highest

energy potential locations in
the Mediterranean.

Fairley et al. Multivariate Clustering K-means for wave energy
resource clustering.

Traditional methods for the wave
energy resource assessment (i.e.,

Annual Wave Energy Flux) lead to
inefficient results because they cannot

handle temporal variability.

Table 2. Related work for WEC positioning assuming geospatial analysis.

Authors Plant Method Geospatial Analysis Renewable Energy
Resource Assessment

Aydin et al. Hybrid Solar and
Wind Farms GIS and MCDM

Data Collection,
Objectives as fuzzy sets,

Environmental
performance index

Energy
Performance Index

Castro-Santos et al. Hybrid Offshore Wind
and Wave Farms GIS Data Collection and

GIS techniques
Annual Energy

Production

Vasileiou et al. Hybrid Offshore Wind
and Wave Farms GIS and MCDM

Data Collection,
Exclusion of unsuitable

areas, AHP for site
selection

Average Power

Ghosh et al. Wave Farm
MCDM and ANN that

predicts index for
decision-making.

Historical Data
Significant Wave
Height and Wind

Speed Average

Galparsoro Iza et al. Wave Farm
Marine Spatial

Planning and GIS.
Suitability Index.

Data Collection and
GIS techniques Local Wave Atlas

On the other hand, in Mode II, the image recognition branch classifies land use as well
as the algae patterns. Thus, the potential regions classified as suitable or as not suitable
for WEC installation are exclusively processed via DNN predictions. In both cases, final
classification is based upon feature extraction from both image and time series datasets.
Overall, the main contributions of this paper include:

• Automation of WEC optimal positioning through Deep Learning algorithms.
• Recognition of dynamically changing patterns—geospatial WEC planning constraints.
• Wave energy potential assessment using time series classification.
• Recognition of dynamic spatial constrains and characterization of wave height and

period time series simultaneously via Data Fusion DNN.



Energies 2021, 14, 6773 5 of 21

In the next section, the methodology and architecture of both implementation modes
are described, along with the data used. Section 3 presents the results of both methodolog-
ical modes and concludes with a real-life case study paradigm. Section 4 discusses the
findings of the proposed work and suggests further development paths.

2. Methodology

In this section, we present the proposed methodology for WEC positioning. At first,
we describe how we developed our heterogeneous dataset. More precisely, we created
a Geographic Information Tool with the usage of which we receive satellite imagery
and time series data. In addition, we present the labeling method, in order to develop
the training, validation and test dataset for Deep Learning models. The Deep Learning
algorithm consists of two modes and for each of them two different DNN architectures
are shown. In conclusion, we can use this algorithm after the training process to develop
a decision-making system for WEC positioning. All procedure was carried out with the
use of our code written in Python programming language and GeoPandas, GDAL and
Tensorflow libraries.

2.1. Dataset Generation—Geographic Information Tool

The extraction of specific geographic datasets is necessary in order to implement the
proposed method. We developed a Geographic Information Tool, which is necessary to
generate the training dataset and apply the methodology to the selected area of interest. In
its general form, this tool uses bounding box coordinates of the area of interest as an input
and defines the grid of the potential WEC installation points, as well as it incorporates
the necessary data. The flowchart of this tool is shown in Figure 1. Initially, we acquire
the Sentinel-2 Tile [28] for the corresponding geographical coordinate using the Open
Access Hub API. Then, we define the grid of the potential points for WEC installation and
we create the georeferenced patch of Sentinel-2 images for each of the patches using the
geometric buffer operation. We receive bathymetric data from GEBCO [29] and 12-year
Wave Height and Period time series using 3 h time-step from ERA-5 dataset [30] via the
Climate Data Store (CDS) API. In addition, we interpolate bathymetric and time series
data to our grid, via the CDS Toolbox. For nearshore potential regions we extract land use
classes and their polygons from Corine Land Cover (CLC) dataset [31].

The output of our Geographic Information Tool is two databases connected via an
information file. The first database contains the georeferenced image patches and the other
one the historical wave height and period time series. In Figure 2, an example of a potential
WEC installation point is shown. In time series plot the x-axis represents the 3-h time step
for the past 12 years and y-axis represents the values of Significant Wave Height (meters)
and Peak Wave Period (seconds). Despite the fact that image patches and time series are
stored to the corresponding database, the water depth and land use classes are stored in
the information file.

Generation of training dataset involves the labeling process of both satellite images
and time series. More precisely, we must assign labels to image patches according to
algae presence or absence. For this purpose, we use the algae presence observations from
UNEP-WCMC dataset [32,33]. By extracting the potential WEC installation points with the
aforementioned tool, the event dates from UNEP-WCMC records are used for the region
of South Italy to acquire the corresponding Sentinel images. In this way, we used spatial
intersection operation between seagrass and patches polygons to assign labels to potential
WEC installation regions. On the other hand, time series labeling process is crucial for
the assessment of the wave energy potential. In this paper, the novel method of Fairley
et al. [12] is used to assign labels about the wave energy. Particularly we implemented
the W-based approach. Considering the Significant Wave Height (Hs) and Peak Wave
Period (Tp) we calculate the Coefficient of Variation (CV) of H2

s , Tp. Precise, CV is the ratio
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of standard deviation of a variable and its mean value. For each of the time series the
following variables are calculated:

H2
s , Tp

CVH2
s
=

σH2
s

H2
s

(1)

CVTp =
σTp

Tp
(2)

Energies 2021, 14, x FOR PEER REVIEW 6 of 32 
 

 

Area Of interest 
(Box Coordinates) Sentinel 2 Tile

Preprocessing – Data exported for each of the grid points:
• Bathymetry
• Wave Height and Period Historical Time Series
• Land Use classes and their corresponding Polygons 
   for nearshore patches (If they are available).

Information 
File

Grid Potential Points for WEC 
Installation

Georeferenced patch of 
Sentinel-2 Image

Georeferenced 
Patches

Historical Wave 
height & period 

Time Series

 
Figure 1. Flowchart of Geographic Information Tool. 

The output of our Geographic Information Tool is two databases connected via an 
information file. The first database contains the georeferenced image patches and the 
other one the historical wave height and period time series. In Figure 2, an example of a 
potential WEC installation point is shown. In time series plot the x-axis represents the 3-h 
time step for the past 12 years and y-axis represents the values of Significant Wave Height 
(meters) and Peak Wave Period (seconds). Despite the fact that image patches and time 
series are stored to the corresponding database, the water depth and land use classes are 
stored in the information file. 

roiIndex geometryPOI distanceToCoastline bathymetry geometryEnvelope landUse
T33SUC-54 POINT (4650132.57 358.1372551 -13 POLYGON ((4650882.57 Beach, Agriculture

Wave Period
Wave Height

Information filePoint Of Interest/
Sentinel Patch

 
Figure 2. Example of a potential WEC installation point. 

Figure 1. Flowchart of Geographic Information Tool.

Energies 2021, 14, x FOR PEER REVIEW 6 of 32 
 

 

Area Of interest 
(Box Coordinates) Sentinel 2 Tile

Preprocessing – Data exported for each of the grid points:
• Bathymetry
• Wave Height and Period Historical Time Series
• Land Use classes and their corresponding Polygons 
   for nearshore patches (If they are available).

Information 
File

Grid Potential Points for WEC 
Installation

Georeferenced patch of 
Sentinel-2 Image

Georeferenced 
Patches

Historical Wave 
height & period 

Time Series

 
Figure 1. Flowchart of Geographic Information Tool. 

The output of our Geographic Information Tool is two databases connected via an 
information file. The first database contains the georeferenced image patches and the 
other one the historical wave height and period time series. In Figure 2, an example of a 
potential WEC installation point is shown. In time series plot the x-axis represents the 3-h 
time step for the past 12 years and y-axis represents the values of Significant Wave Height 
(meters) and Peak Wave Period (seconds). Despite the fact that image patches and time 
series are stored to the corresponding database, the water depth and land use classes are 
stored in the information file. 

roiIndex geometryPOI distanceToCoastline bathymetry geometryEnvelope landUse
T33SUC-54 POINT (4650132.57 358.1372551 -13 POLYGON ((4650882.57 Beach, Agriculture

Wave Period
Wave Height

Information filePoint Of Interest/
Sentinel Patch

 
Figure 2. Example of a potential WEC installation point. Figure 2. Example of a potential WEC installation point.



Energies 2021, 14, 6773 7 of 21

The aforementioned variables are used to cluster time series using K-Means (K = 6).
According to Significant Wave Height cluster-mean we can sort clusters from 1 to 6 or low
wave energy to high wave energy potential, respectively. Thus, we define the clusters 1 to
3 as unsuitable for WEC installation and the clusters from 4 to 6 as suitable. Finally, we
can combine the above information in order to assign labels to potential WEC installation
points as follows:

• High Wave energy potential and Algae Absence means Suitable Area;
• High Wave energy potential and Algae Presence means Unsuitable Area;
• Low Wave energy potential and Algae Absence means Unsuitable Area;
• Low Wave energy potential and Algae Presence means Unsuitable Area.

2.2. Deep Learning Algorithm

The proposed Deep Learning algorithm is the core of the system that we implemented
to automate the process of WEC optimal positioning. As mentioned above, our system
operates in two modes: In Mode I, we developed a Data Fusion based Neural Network.
The image recognition branch only detects algae. The land use classes are received from a
land use dataset. On the other hand, in Mode II, the image recognition branch classifies
land use as well as the algae patterns. Thus, the potential regions classified as suitable
or as not suitable for WEC installation is performed exclusively via DNN predictions. In
this mode, we have implemented a Multitask Data Fusion based Neural Network. In
both modes, we used heterogeneous data fusion techniques because the second branch of
proposed architecture classifies wave height and period time series.

The Deep Learning model that we implemented is a Convolutional Neural Network
(CNN), which is widely used for image recognition and is trained using the Backpropaga-
tion algorithm like the traditional ANN [34–37]. Besides this, CNN are efficient for time
series classification [38,39]. Consequently, we developed a Convolutional architecture for
each of two branches.

2.2.1. Data Fusion Based Neural Network

Consequently, we developed a Convolutional architecture for each of two branches. In
order to create Multimodal DNN, its two branches are developed as individual Neural Net-
works. The reason leading to the specific implementation is to find the optimal architecture
for each branch. One of the popular neural networks that work efficiently in the process of
identifying marine algae in satellite imagery is the U-Net [20]. This architecture is used for
the Semantic Segmentation of an image. However, since we aim to classify images on the
presence or absence of algae, an architecture inspired by the Encoder of U-Net is created,
due to its efficiency in extracting features from images.

According to Figure 3, the image recognition branch of the Neural Network has three
convolutional blocks, in each of which two consecutive Convolutional Layers with the
Relu activation function followed by Max Pooling are placed. The number of feature Maps
defined per block is 32–64–128, respectively with a 3 × 3 filter. The Max Pooling process
runs in 2 × 2 regions. At the final step, a Global Average Pooling (GAP) layer is used
instead of the flatten operation. In this way, the average value is extracted from each
feature map of the last convolutional node. GAP can replace the Fully Connected Layer,
while helping to avoid overfitting because it reduces the number of training parameters.
The time series branch of DNN consists of 1-D Convolutional and Pooling Layers. As it
is shown in Figure 3, this branch has one Convolution of 32 feature maps with a kernel
size 5, followed by Max Pooling and then another Convolutional Layer with Filter size
7 from which 64 Feature Maps are extracted, followed again by Max Pooling of size 2.
GAP Layer is used instead of Dense Layer too. The extracted features of the two branches
are merged via the Concatenation Layer and this layer is fed to a Fully Connected Layer
of 256 neurons which are activated via ReLU. Because the task is a Binary Classification
problem, the Activation Function that is defined for the final neuron is the Sigmoid. The
DNN is implemented on the Tensorflow and Keras Python libraries.
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During the training process we need a heterogeneous-data fetching tool, which is
developed using the Custom Data Generator of Keras and its input is the information file
that connects the two databases (Section 2.1). Satellite images are normalized, dividing
each pixel value with 255. The secondary input of Neural Network is a multivariate time
series, in particular with two variables, for wave height and period, respectively. Thus,
time series are modeled as a 2-D matrix, which consists of two columns, while the number
of rows corresponds to the time-steps. Before starting the training process, we split the
dataset using 60% for training, 20% for validation and 20% for testing. The validation
dataset is fed to the Neural Network at the end of each epoch and when the value of the
loss function during the prediction of the data does not improve further, Early Stopping
occurs. The Dataset Test is used after the end of the training in order to verify the ability of
Neural Network to be generalized. Finally, we use the Adam optimizer [40], 16 batch size,
Binary Cross Entropy (BCE) loss function and we estimate model performance according
to Accuracy, Precession, Recall and F1 metrics. This Neural Network represents Mode I.

2.2.2. Multitask Data Fusion Based Neural Network

In this section, we present the Neural Network that constitutes the core of Mode
II. Particularly, the process of land use classification via the image recognition branch
is integrated. This implementation requires the adaptation of both the Neural Network
architecture and the training dataset. At the first stage, we determined a One-Hot label for
each of the potential WEC installation points. The first four cells of the corresponding table
describe the geospatial constraints (Agriculture Activities, Beaches/Dunes, Forest Pattern
and Algae) and the last cell is the suitability label of wave energy potential. We provide an
example of One-Hot label in Figure 4.
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When the table has the value 1, then the corresponding class exists in the area. The
last cell of the table concerns the wave energy assessment, and values 0 or 1 correspond to
low or high wave energy, respectively. Based on the One-Hot table, each point is labelled
as suitable or not for WEC installation. In this case, the encoding that implies a suitable
point (Label equal to 1) is [0,0,0,0,1]. In any other case, the potential region is not suitable
and the final label is equal to 0. In Figure 4, an example of an unsuitable region for WEC
installation is shown. In this case, we need to build a Neural Network for the solution of
two tasks: Multi-label classification and Binary Classification.

When a neural network consists of two outputs, during backpropagation, the common
weights are modified in order to optimize two loss functions in parallel. In other words, the
model learns to recognize the suitability of a region based on which classes are recognized.

The architecture of Multimodal DNN is modified, initially, as the to the depth of the
satellite image recognition branch. In particular, one more Convolution Block is added, and
as a result, the number of Feature Maps defined per block are 32–64–128–256, respectively.
The time series classification branch remains unchanged. After combining the extracted
features from two branches through the Concatenation Layer, a Fully Connected Layer of
256 neurons is used. The first output is for the Binary Classification problem (suitable or
not suitable WEC installation point), while the second is used to predict the above One-Hot
table. We use BCE loss function on both outputs and we define the Accuracy metric and
F1 score in order to estimate the performance of the Binary Classification and Multi-Label
classification, respectively. Figure 5 shows the Neural Network Mode II architecture.

2.3. Optimal Positioning of WECs Using Deep Learning—System Implementation

As mentioned before, the decision-making system for WEC positioning, is imple-
mented through two modes, which differ in how the information related to the land use of
coastal areas is obtained. In Mode I, the satellite imagery branch recognizes exclusively
algae patterns which constitutes the dynamic component. Therefore, the prediction of the
suitability of each potential point is based on both the presence or absence of algae and the
energy availability of the region, which is classified through the time series branch. The
output of the Multimodal DNN is combined with the CLC data in order to avoid additional
geographic limitations. The variant in Mode II, is the recognition of land use/cover classes
by the satellite image branch. In this case, the suitability of each potential WEC installation
point is predicted via the DNN.

Common processes for both modes are the definition of potential installation points
and the integration of the corresponding data (Section 2.1). In addition, points that are not
in the depth range between 10 and 200 m are excluded.
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2.3.1. Mode I

The first implementation of the WEC installation positioning system is modeled
according to the flowchart in Figure 6. The Data Fusion based DNN of Section 2.2.1 takes
the georeferenced Sentinel patch and time series as input and predicts the corresponding
binary label. If the latter is zero, then the point is considered as not suitable for WEC
installation. In contrast, prediction of suitable points implies both the absence of algae and
high wave energy potential. In this case, the system further processes some information in
order to make the final decision. In particular, if the potential region is offshore, then it is
considered suitable for WEC installation, while if it is a nearshore point, it is required to
avoid additional spatial restrictions related to the use/coverage of the closest coastal land.
If in the latter beaches, swimming zones, dunes, woodland or agricultural facilities are
located, then the point is automatically rejected. Finally, decisions of each of the potential
WEC installation sites are combined, in order to construct the suitability map of the overall
area of interest.

2.3.2. Mode II

The second mode of the WEC optimal positioning methodology contains the Multitask
data fusion based Neural Network analyzed in Section 2.2.2 as a core unit. In this way, the
decision for each point is taken directly through the corresponding output of DNN, that is,
the one that implements the Binary Classification problem. In addition, the output of the
Multi-label Classification process is used to monitor how the final decision is formed, since
as a result, the land use classes identified, including algae, as well as the energy suitability
results are given. The flowchart of this process is in Figure 7.
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3. Results

In this section, we present the results of our approach. At first, we analyze the training
diagrams and the performance of Deep Learning models. Then, we showcase the proposed
methodology to the selected geographical area. We trained our models using the NVDIA
GTX 1650 GPU and we used TensorBoard for training process monitoring.

3.1. Performance Metrics

In Binary Classification problems, we can estimate the performance of our classifier
calculating the number of samples that are classified correctly or incorrectly. If the value of
the final neuron output is greater than 0.5, our sample belongs to positive class, whereas our
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sample belongs to the negative one. Regions that are suitable for the installation of WEC
device correspond to class one, whereas the unsuitable locations are marked as samples of
negative class. Thus, we calculate True Positive (TP), True Negative (TN), False Positive
(FP) and False Negative (FN) classified samples. Using these statistical variables, we can
see how many of testing samples are classified correctly or not. In order to visualize the
aforementioned statistical approach, we define the Confusion Matrix as follows:

Con f usion Matrix =

[
TP FP
FN TN

]
(3)

Far from these, we examine effectiveness of the proposed model using Recall and
Precision. Recall is the ratio of actual positive predictions divided by the number of actual
positive samples. In other words, is a metric that shows the effectiveness of our model to
accomplish true predictions of positive labels. On the other hand, Precision is the ratio of
actual positive samples divided by the number of all positive predictions. Thus, Precision
is the proportion of actually correct positive predictions [41].

Recall =
TP

TP + FN
(4)

Precission =
TP

TP + FP
(5)

Precision and Recall combined in a single performance metric. F1 score is the harmonic
mean of both. We defined F1 as the actual model performance metric during training
process. F1 is using in Binary Classification problems [42].

F1 = 2 ∗ Precision ∗ Recall
Precission + Recall

(6)

3.2. Data Fusion Based Neural Network

Searching about the optimal architecture of the Data Fusion-Based Neural Network,
we implemented each branch of it as an individual DNN. Particularly, we added a sigmoid
neuron after the GAP layer. Thus, two binary classifiers have developed, for algae and time
series classification, respectively. Compared to other methods for algae classification and
detection based on remote sensing data [18,20,43], our approach achieves 98.5% (Table 3).
F1 score on test dataset according to the Confusion Matrix. The equivalent percentage for
testing samples of time series classification CNN is 98.8% (Table 4).

Table 3. Confusion Matrix for algae detection problem.

Predicted—Class 0 Predicted—Class 1

Actual—Class 0 TN: 2071 FP: 14
Actual—Class 1 FN: 30 TP: 1959

Table 4. Confusion Matrix for time series classification problem.

Predicted—Class 0 Predicted—Class 1

Actual—Class 0 TN: 1053 FP: 6
Actual—Class 1 FN: 18 TP: 1023

The combination of the above Deep Learning implementations leads to the develop-
ment of the Data Fusion based Neural Network, which is shown in Figure 3. Training
curves are presented in Figure 8. Training process ends in the 19th Epoch due to the Early
Stopping condition, because there is no improvement of the loss function, while in the 16th
the minimum value of BCE is observed. The F1 metric performance results in test Dataset
are 98.7%, while Table 5 presents the confusion matrix on test dataset. Therefore, the DNN



Energies 2021, 14, 6773 13 of 21

can be used to classify the potential regions as suitable or not for WEC installation. The
final decision depends upon the combination of the presence or absence of algae and wave
energy assessment. According to Figure 9, the Binary Classifier works efficiently because
it identifies the potential regions of the test dataset with high accuracy. In particular, it
correctly classifies both suitable sites, and non-suitable ones that they are points with algae
presence or with low wave energy. Both the prediction of DNN and the actual labels are
shown in order to understand the final decision.
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Table 5. Confusion Matrix of Neural Network that classifies the suitability of potential WEC installa-
tion regions.

Predicted—Class 0 Predicted—Class 1

Actual—Class 0 TN: 799 FP: 10
Actual—Class 1 FN: 7 TP: 847
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3.3. Multitask Data Fusion Based Neural Network

Proceeding to the development of Multitask Data Fusion based Neural Network
(Figure 5), we integrate the land cover classification task to our model. The architecture
consists of two outputs. The first output is for the binary prediction of the potential region
as suitable or not suitable for the WEC system installation and the second for the prediction
of One-Hot vector of limitations, in this case land use classes, algae detection and the wave
energy class. Regarding Figure 10, in the 24th Epoch the training ends, while in the 15th
the lower value of the BCE is observed. We defined as the loss function and metric for both
outputs BCE-F1 Score. The overall F1 Score is 94%.
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For potential WEC installation points classified as True Positive or True Negative, the
corresponding One-Hot Label is predicted correctly as well. Figure 11 shows the results on
test data. As observed, for each region, both the Multilabel vector containing the detected
classes is predicted, as well as the designation as suitable or not. As the two loss functions
are optimized at the same time, there is an interdependence between the outputs, which
is the objective of our approach. The difference between the F1 score of the two Neural
Networks arises because in Mode II we have larger prediction complexity due to the
dependence of the two outputs and the recognition of land use classes.

3.4. Expreriments of Methodology Application
Case Study

We applied the proposed methodology to the geographical area of Figure 12a. By
defining the geographical coordinates of the selected bounding box on the map, data
extraction and preprocessing is performed, as shown in Section 2.1. In particular, we
receive the Sentinel-2 images and we define the Grid of the potential WEC installation
points. For each point, the Patch of the image is extracted and the wave height and period
time series are obtained from the Era-5 dataset. In Figure 12b, the gaps observed, are regions
that were automatically excluded because they are out of the desired water depth range.
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Figure 12. (a) Case study; Sines, Portugal; (b) potential WEC installation points of interest.

In Mode I, the suitability map is first derived based on the algae detection and wave
energy assessment. Neural Network predictions are presented in Figures 13a and 14a. Then,
the available land use/land cover data are fetched from the CLC dataset and depending on
the geographical constraints that arise, the final decision is formed, as Figures 13b and 14b
show. The areas highlighted in red color are excluded, while in green the suitable for WEC
system sites are shown.
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Figure 14. (a) Neural Network Prediction; (b) final decision considering land use data.

Utilizing the Multitask Data Fusion based Neural Network in Mode II, the suitability
map is generated directly from the DNN predictions and specially the output of Binary
Classification task (Figures 15a and 16a). In addition, One-Hot label, which results from
the second output of the Neural Network, appears for each of the potential regions. In
this way, the cause for which the area was excluded from the study becomes known. In
Figures 15b and 16b there is a sample of predictions of the second task.
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Both Modes make common predictions of offshore points of interest with algae pres-
ence. In Figures 13a and 15a our models classify differently the wave energy potential
in some offshore points of interest due to FN predictions of Neural Network in Mode II,
because the Binary Classification task depends on the Multilabel Classification task. In
the majority of nearshore regions, which are affected by land use, there is an agreement
between the two approaches. Nevertheless, we notice in Figures 14a and 16a that the Mul-
titask DNN does not properly classify coastal areas in the southern part, because in order
to identify a land use class in the satellite image, the latter must correspond to a significant
percentage of the coast and be clearly visible. When using Mode I, land use classes are
found using the spatial intersection operation, which always implies their correct detection.
Nobre et al. [44] focus in this geographical area during their study. Comparison of the
results with the proposed approach can only be done for offshore points, because the
authors reject the areas near the coast. Although the estimate of the potential wave energy
is made in a different way and in the present paper we detect seagrass in marine areas,
there is an agreement of the results to a very large extent.

4. Conclusions and Discussion

This paper presents a new, Deep Learning-based methodology to automate the process
of WEC optimal positioning. The presented models work with freely available satellite
images, as well as Climate Reanalysis data. The methodology is applied through two
different approaches. In Mode I, land use data are received from CLC dataset, while in the
second method they are extracted from the satellite images in order to avoid additional
geographic limitations. At the end of the training process, the model being developed is
capable of identifying the spatial restrictions in satellite images, including algae patterns
that are dynamically changing features. At the same time, the system estimates the wave
energy potential by treating it as a dynamic phenomenon, which is characterized by
non-predictable temporal variability. In addition, our model can identify the differences
in temporal variability of multiple locations. In this way, it is confirmed that merging
heterogeneous data works efficiently in solving complex problems. Thus, it turns out that
CNNs are efficient in both image and time series recognition.

In this paper, we initiate a new method for the spatial positioning of WEC that is
based in recognition of geospatial constraints which are dynamically changing patterns in
marine areas. Thus, the main limitation of this study is the fact that additional dynamic
classes can be added to satellite image recognition task. Under this rationale, the proposed
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model can be generalized to include several image-related dynamic phenomena. In marine
areas there are characteristics that change in time, so their identification is difficult without
Machine Learning or costly monitoring. In addition, the main technical challenge of this
study is the fact that the examination of dynamic geospatial and technical restrictions
should be combined in terms of Levelized Cost of Energy (LCOE) of wave energy and
GIS methods [45]. Regarding land use, the interconnection of the proposed system with
an API such as Google Maps/Places or Open Street Map could be efficient because these
platforms contain data that are frequently updated. Finally, in addition to assessing
climatic conditions, a third branch can be added to the proposed Neural Network for time
series forecasting.
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