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Algorithms for Online Federated Machine Learning

Abstract

In the contemporary landscape, the proliferation of data, driven by the internet, social
media, and the Internet of Things (IoT), has catalyzed transformative shifts across various
sectors, with Machine Learning (ML) standing at the forefront of this revolution. As the
Big Data era fosters remarkable ML advancements in domains like image recognition and
natural language processing, it also introduces substantial computational challenges, lo-
gistical hurdles, and privacy concerns. These complexities have pushed traditional ML ap-
proaches to the limit, often proving inadequate, prompting the rise of innovative paradigms
such as Federated Learning (FL). We delve into the challenges posed by FL’s traditional
iterative training process, which is non-dynamic and prescribes predetermined operations
for participating learners. We investigate a dynamic approach anchored in the principles
of Functional Geometric Monitoring (FGM), a state-of-the-art technique for monitoring
distributed data streams, with the aim to enhance the training process by significantly
mitigating communication overhead. Through the lens of FGM and employing three
approximation techniques, our work evaluates its efficacy in refining FL’s conventional
training procedures, supported by comprehensive experimental analyses.
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Chapter 1

Introduction

1.1 Machine Learning in the Big Data Era

In the modern era, data has become an invaluable resource. The advent of the internet,
social media, and the Internet of Things (IoT) has led to an explosion in the volume,
velocity, and variety of data being generated every second. This phenomenon, known as
Big Data, has transformed numerous fields, from business and healthcare to science and
engineering. One field that has particularly benefited from this data deluge is Machine
Learning (ML).

The surge in available data has provided ample opportunities for ML algorithms to
evolve and improve, leading to remarkable advancements in areas such as image recogni-
tion, natural language processing, and predictive analytics.

However, the Big Data era is not without its challenges. The sheer volume of data and
the computational resources required to process it are becoming increasingly demanding.
Traditional approaches may struggle to keep up, leading to inefficiencies and potential
privacy concerns. These challenges have spurred innovation and the development of new
paradigms, such as Distributed Machine Learning and Federated Learning, which we will
explore throughout this thesis.

1.2 Distributed Machine Learning & Federated Learning

1.2.1 Overview

Have you ever pondered the process behind training intricate models that encompass
millions or even billions of parameters using data that spans terabytes? It’s mind-boggling
to consider that some of these models are so massive that they surpass the memory limits of
a single processor. Traditional training methods fall short under such burdens, prompting
the need for innovative techniques. One standout solution is Distributed learning. Central
to the machine learning frameworks of today’s leading tech companies, it capitalizes on
the combined processing power of numerous machines. By doing so, it facilitates the swift
training of extensive models on vast datasets, enabling the creation of top-notch models
that can be refined at an accelerated rate. The following is Google’s take on the matter
more than a decade ago [1] :

”Our experiments show that the distributed optimization approach can both greatly
accelerate the training of modestly sized models, and that it can also train models that are
larger than could be contemplated otherwise.”

Generally, when faced with a gigantic task in any field, we try to divide it into sub-
tasks and run them in parallel. This saves us time and makes such a complex task doable.
When we do the same in deep learning, we call it Distributed Learning. Distributed ML
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1.2 Distributed Machine Learning & Federated Learning

algorithms have received considerable attention over the last years as data continuously
grows and the models become more and more complex. Even though we try to refrain from
diving into technical details at this point, we have to note the following: most Distributed
ML algorithms entail some sort of data partitioning1 (splitting the data and assigning
parts to individual learners for parallelization) - this fact is intuitive, after all. However,
the underlying assumption is that we have access to the entire data-set during training.
Furthermore, our main objective is to speed-up and make possible the training process.
But what if the data can not be centralized? What if the data is confidential (e.g. medical
records [2]) and malicious adversaries come into play? What if we want to train a model
under such challenging conditions?

These are some of the questions and concerns that gave birth to Federated Learning
(FL). It was first introduced as a term in 2016 by Google [3]. During this period, there
was escalating awareness around the world about the potential pitfalls of personal data
handling. Notably, events like the Cambridge Analytica incident heightened user caution
on platforms like Facebook, spotlighting the risks associated with sharing personal data. In
contrast to Distributed Learning which aims at parallelizing computing power, Federated
Learning aims at training on heterogeneous data-sets in settings where data centralization
is infeasible, adversaries are not ruled out, and privacy is one of the top concerns [4]. Their
main difference lies in the assumptions made on the properties of the local data-sets. The
need for a comprehensive survey paper addressing the numerous open challenges in the
field of FL was underscored during the Workshop on Federated Learning and Analytics,
held on June 17-18, 2019, at Google’s Seattle office. Consequently, a seminal paper was
developed [4], which provided the following definition of Federated Learning:

”Federated learning is a machine learning setting where multiple entities (clients)
collaborate in solving a machine learning problem, under the coordination of a central
server or service provider. Each client’s raw data is stored locally and not exchanged
or transferred; instead, focused updates intended for immediate aggregation are used to
achieve the learning objective.”

One of the first deployments of FL was Google’s Gboard in 2017. The project aimed to
be ”privacy forward” by implementing strong guidelines for identifying data that should
be considered classified. Rather than centralizing this data, Gboard utilized an on-device
cache of local interactions. This approach showcased the potential of FL in a real-world
application.

1.2.2 Learning Process

In both Distributed Machine Learning and Federated Learning, the learning process in-
volves multiple clients (e.g. devices or organizations) that collaboratively aim to train a
global model. The process can be broken down into rounds, with each round consisting of
two main steps: local training and model aggregation.

During the local training step, each client independently trains the model on its own
local data. This is typically done using a method like Stochastic Gradient Descent (SGD)
and variants.

Once clients have completed their local training, the model aggregation begins. In this
step, a central server 2 collects the locally trained models from each client and combines
them into a single, global model. This is often done by averaging the collected models.

The global model is then sent back to the clients, and the next round of local training
begins. This process continues until the model’s performance on a validation set stops

1This statement is a simplification. Some distributed learning approaches, such as model-parallelism,
may not involve data partitioning.

2Decentralized approaches are also common, but in this introduction, we focus on the centralized
scenario to convey the key concepts.
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1.4 Objectives & Methodology

improving or after a predetermined number of rounds (or epochs) is reached.
The main difference between Distributed Machine Learning and Federated Learning

lies in where the data is stored and how it’s used. In Distributed Machine Learning, the
data can be centrally stored and partitioned among the clients for parallel processing. In
contrast, in Federated Learning, the data remains on the clients’ devices, and only the
model parameters are exchanged, usually under the promise of Differential Privacy (which
guarantees data privacy) [4].

In the context of this thesis, the model aggregation step, also known as synchronization,
is of particular interest. The synchronization process can be resource-intensive, especially
in terms of communication cost, due to the potentially large number of clients and the
size of the models involved. This sets the stage for the problem that this thesis aims to
address, which will be discussed in more detail in Section 1.4.

Bear in mind that this is a high-level overview of the learning process in Distributed
Machine Learning and Federated Learning. We’ll delve into more technical details later
on.

1.3 Monitoring Non-linear Functions on Distributed Data
Streams

In the era of Big Data, the information infrastructure of modern societies is increasingly
defined by data flowing continuously from diverse sources. This data influx poses chal-
lenges for data centralization given the immense communication expenses associated with
consolidating all data into one processing hub. These challenges have spurred extensive
research focused on monitoring complex ongoing queries across vast and swiftly moving
distributed streams. Two methods that have emerged from this research are Geometric
Monitoring (GM) and Functional Geometric Monitoring (FGM). Geometric Monitoring
(GM), introduced in [5, 6], utilizes geometric principles to reduce the communication
overhead in monitoring distributed data streams by representing data streams in a high-
dimensional space and defining boundaries. Functional Geometric Monitoring (FGM),
which can be seen as a generalization of GM, was introduced by Vasilis Samoladas and
Minos Garofalakis [7]. FGM’s approach involves applying specific non-linear functions to
transform the multi-dimensional data points, allowing for more efficient and adaptable
monitoring of distributed data streams [8, 9, 7].

While GM and FGM were initially developed for monitoring distributed data streams,
their principles and techniques have potential applications in Distributed Machine Learn-
ing (ML) and Federated Learning (FL). In the journey ahead, we will explore how these
methods can be adapted to alleviate communication challenges in FL, providing innovative
solutions for modern data-driven challenges.

1.4 Objectives & Methodology

The primary objective of this thesis is to explore algorithms and techniques specifically de-
signed for Federated Learning (FL), with a particular focus on the synchronization process.
This process, which involves the aggregation of client models by a central coordinator, is
resource-intensive and presents a significant challenge to the scalability of FL. Specifically,
the communication overhead incurred by clients sending their models over the network for
aggregation is a major bottleneck in FL. This is due to the potentially large size of the
models and the number of clients involved, which can lead to substantial network conges-
tion and latency. Therefore, techniques that can reduce this communication overhead are
of paramount importance for improving the efficiency and scalability of FL.
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1.5 Outline

In the Federated Learning (FL) setting, training typically follows a round-based ap-
proach, where each round is carefully structured and predefined, complete with specific
local steps and local epochs (details of which we will explore later on). This fixed structure,
dictating when the round terminates and synchronization occurs, has become the stan-
dard. However, we aim to investigate an alternative approach that leverages the principles
of Geometric Monitoring (GM) and its generalization, Functional Geometric Monitoring
(FGM). This approach seeks to dynamically determine when rounds should be terminated,
aiming to minimize unnecessary synchronizations and reduce communication overhead. In
this work, we will investigate this innovative method, delving into its potential to reshape
the conventional training process in FL.

While the Functional Geometric Monitoring (FGM) protocol provides a robust theo-
retical foundation, our experimental work will primarily leverage three simplified approx-
imation methods: the ”naive”, ”linear”, and ”sketch” approaches. Although we may not
strictly adhere to the standard FGM protocol in our experiments, the principles and in-
sights derived from FGM will guide our methodology and analysis throughout this work.
The specific measure we monitor, along with its significance, will be introduced and ex-
plored in detail later on.

We will apply this approach to training two different Convolutional Neural Networks:
a relatively small network and a more complex, deeper network. Our goal is to determine
the extent of improvement offered by the FGM approach in the Federated Learning (FL)
setting. To achieve this, we will conduct a thorough experimental evaluation, including
a comprehensive exploration of hyper-parameters. This rigorous methodology will ensure
the robustness of our findings and provide a detailed understanding of the FGM approach’s
performance and potential applications in FL.

1.5 Outline

• Chapter 2: Related Work - This chapter lays the groundwork for the thesis by in-
troducing fundamental concepts in Machine Learning, descent methods, Distributed
Machine Learning, and Artificial Neural Networks. Additionally, the chapter offers
an overview of the TensorFlow platform and its high-level API, Keras. It builds the
necessary knowledge to understand the Federated Learning (FL) setting and training
in FL, ensuring a smooth transition to the more advanced topics in the subsequent
chapters.

• Chapter 3: Functional Dynamic Averaging - This chapter delves into the Func-
tional Dynamic Averaging (FDA) strategy, adapted to suit the Federated Learning
setting, with the primary goal of minimizing communication overhead during train-
ing. The concept of weighted variance is introduced that serves as a gauge, indi-
cating if training is progressing in the desired direction, forming the foundation for
the Round Terminating Condition (RTC). The chapter then explores three distinct
approximation methods to monitor the RTC: the ”naive,” ”linear,” and ”sketch”
approaches.

• Chapter 4: Experiments - The chapter delves into the empircal evaluation of the
Functional Dynamic Averaging (FDA) algorithm within the Federated Learning (FL)
setting. We compare the three FDA strategies (”naive,” ”linear,” and ”sketch”) with
the baseline ”synchronous” strategy. A significant portion is dedicated to detailing
our custom-developed Python package, a simulator tailored for the FDA algorithm
in the FL setting.

• Chapter 5: Conclusion - This chapter concludes the thesis with a summary of
our work and outlines potential directions for future exploration.
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Chapter 2

Related Work

2.1 Machine Learning (ML)

Machine Learning (ML) is a subset of artificial intelligence centered around crafting algo-
rithms and statistical frameworks that empower computers to undertake particular tasks,
all without relying on explicit instructions. Essentially, it’s about equipping machines
with the ability to assimilate data, identify patterns, and execute decisions with minimal
human intervention. Machine learning can be broadly categorized into two main types:
Unsupervised Learning and Supervised Learning. In this thesis, we will explore various
aspects of machine learning, with a particular emphasis on supervised learning, as it plays
a central role in many modern applications and forms the basis for the methods and
concepts discussed in the following sections.

2.1.1 Supervised Learning

Supervised learning is a category of machine learning where the model is trained on a
labeled dataset. This means that for every input in the dataset, there is a corresponding
known output. The model’s task is to learn the underlying relationship between the inputs
and outputs, allowing it to make predictions on unseen data.

In a typical supervised learning problem, we have a dataset consisting of examples or
samples, where each example is made up of a feature vector and a corresponding label
or class. The feature vector represents the input, and the label represents the desired
output. The dataset can be denoted as D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where each
xi represents a feature vector, and each yi represents the corresponding label.

Supervised learning encompasses a wide variety of tasks, including regression, where
the output is a continuous value, and classification, where the output is a discrete class
label. Common methods used in supervised learning include linear regression, logistic re-
gression, support vector machines, and the application of various types of neural networks.

The training process typically involves iteratively adjusting the model’s parameters to
minimize a loss function (objective function), which quantifies the discrepancy between
the model’s predictions and the actual target values in the training data. This process is
guided by various optimization techniques, including Stochastic Gradient Descent (Section
2.2.2), among others that will be explored in the following sections.

2.1.2 Unsupervised Learning

Unsupervised learning is another major category of machine learning that operates without
labeled outputs in the training data. Unlike supervised learning, where the goal is to learn
a mapping from inputs to known outputs, unsupervised learning seeks to discover hidden
patterns, structures, or features within the data itself.
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2.2 Descend Methods

The primary tasks in unsupervised learning include clustering, dimensionality reduc-
tion, and anomaly detection. Clustering aims to group similar examples together based
on some measure of similarity, such as Euclidean distance. Dimensionality reduction seeks
to represent the data in a lower-dimensional space, preserving as much of the relevant
information as possible. Anomaly detection focuses on identifying abnormal or unusual
patterns that differ significantly from the majority of the data. Common algorithms and
techniques used in unsupervised learning include k-means clustering, hierarchical cluster-
ing, Principal Component Analysis (PCA), and auto-encoders.

Unsupervised learning offers unique advantages, particularly when labeled data are
scarce or expensive to obtain. It can be used to explore the underlying structure of the
data, identify hidden relationships, and provide insights that may not be apparent through
supervised methods.

Applications of unsupervised learning are diverse and include customer segmentation
in marketing, topic modeling in text analysis, image compression, and fraud detection in
financial transactions.

2.2 Descend Methods

Consider a differentiable function f : Rd → R. We will refer to f as the objective function.
We want to solve the unconstrained optimization problem:

minimize
w∈Rd

f(w)

The algorithms described in this section produce a minimizing sequence wt, t = 1, . . . ,
where

wt+1 = wt +mt∆wt

and mt > 0 (except when wt is optimal). Here the concatenated symbols ∆ and w
that form ∆wt are to be read as a single entity, a vector in Rd called the step or search
direction, and t = 1, . . . , denotes the iteration number. The scalar mt is called the step
size or step length at iteration t. We will drop the superscripts and use the lighter notation
w ← w +m∆w, in place of wt+1 = wt +mt∆wt.

The outline of a general descent method is as follows: It alternates between two steps:
determining a descend direction ∆w, and the selection of a step size m.

Algorithm 1 General descent method [10]

given A starting point w ∈ dom f
repeat

1: Determine a descent direction ∆w
2: Line search. Choose a step size m > 0
3: Update. w ← w +m∆w

until stopping criterion is satisfied

The second step is called the line search since selection of the step size t determines
where along the line (more accurately, ray) {w+m∆w | m ∈ R+} the next iterate will be.
There are many different line search methods, each with its own advantages and specific
use cases [10].

2.2.1 Gradient Descend

A natural choice for the search direction is the negative gradient ∆w = −∇f(w). The
resulting algorithm is called Gradient algorithm or Gradient Descend method [10].

10



2.2 Descend Methods

In the context of machine learning, particularly when training deep neural networks,
it’s common to use a fixed step size (learning rate) denoted as η for the gradient descent
method. This is primarily due to computational inefficiency, as performing a line search at
each step can be computationally expensive, especially when dealing with large datasets
and complex models. The update rule becomes:

w ← w − η∇f(w)

2.2.2 Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is a variation of the gradient descent method that
computes the gradient using a single randomly chosen example from the dataset at each
step, rather than the entire dataset. This makes SGD faster and more scalable to large
datasets compared to the standard gradient descent method.

In the context of training a machine learning model, we typically have a dataset of
examples and a loss function that measures how well the model fits each example. The
goal is to find the model parameters (denoted by w) that minimize the average loss over
all examples in the dataset. This is equivalent to minimizing the function

f(w) =
1

n

n∑
i=1

fi(w)

where n is the number of examples in the dataset, and fi(w) is the loss for the i-th example.
More specifically, fi(w) is the loss l(xi, yi;w) on example (xi, yi) with parameters w.

For the sake of succinctness and ease of understanding, we will use the notation fi(w)
to denote the loss for the i-th example throughout this thesis. This notation will allow us
to express complex mathematical concepts more clearly and concisely.

The update rule for SGD is similar to that of gradient descent, but with the gradient
∇f(w) replaced by a stochastic estimate of the gradient

w ← w − η∇fi(w)

where i is chosen uniformly at random from {1, . . . , n} at each step [11].
Despite its simplicity, SGD has proven to be highly effective for training a wide range of

machine learning models, including deep neural networks. However, one of the challenges
with SGD is the selection of the learning rate η. If η is too large, SGD may fail to converge;
if η is too small, the convergence may be too slow. Various strategies have been proposed
to adaptively adjust the learning rate during the course of optimization, leading to several
variants of SGD.

2.2.3 Mini-batch Gradient Descent

One popular variant of SGD is Mini-Batch Gradient Descent, which computes in parallel
the gradient using a small batch of examples at each step, rather than a single example.
This can lead to a more stable and accurate estimate of the gradient, while still being
much faster than computing the gradient over the entire dataset.

The update rule for Mini-Batch Gradient Descent is

w ← w − η∇fB(w)

where B is a mini-batch of examples chosen at random at each step. The function fB(w)
is the average loss over the examples in the mini-batch, and its gradient is computed as
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∇fB(w) =
1

|B|
∑
i∈B
∇fi(w) (2.1)

where |B| is the number of examples in the mini-batch.
Mini-batch gradient descent strikes a balance between the computational efficiency of

stochastic gradient descent and the stability and accuracy of full-batch gradient descent1.
By averaging the gradients over a mini-batch of examples, it reduces the variance of
the gradient estimates, which can lead to more stable and consistent progress towards a
minimum. This can be particularly beneficial in the presence of noisy data or non-smooth
optimization landscapes, where the gradient can vary significantly from one example to
another.

Moreover, Mini-Batch Gradient Descent is highly amenable to parallelization, as the
gradients for different examples in the mini-batch can be computed simultaneously. This
makes it a popular choice for training deep neural networks on modern hardware acceler-
ators such as GPUs, which can perform many computations in parallel.

However, similar to SGD, the choice of the learning rate and the mini-batch size can
significantly affect the performance of Mini-Batch Gradient Descent. A learning rate that
is too large can cause the method to diverge, while a learning rate that is too small
can result in slow convergence. Similarly, a mini-batch size that is too large can lead to
less frequent updates, which might slow down the convergence. On the other hand, a
mini-batch size that is too small can result in noisy gradient estimates. Therefore, these
hyperparameters often need to be carefully tuned for each specific problem.

In the machine learning community, the term Stochastic Gradient Descent (SGD) often
implicitly encompasses Mini-Batch Gradient Descent. While the original SGD algorithm
computes the gradient using a single example at each step, it’s common in practice to
use a mini-batch of examples for computational efficiency and stability. This mini-batch
variant is technically a different algorithm, but it’s often simply referred to as SGD,
without explicitly mentioning the use of mini-batches. The transition from single-sample
SGD to its mini-batch counterpart is straightforward, which further blurs the distinction
between the two in practical applications. Therefore, when interpreting machine learning
literature or using machine learning software, it’s important to understand that SGD might
actually be implemented as Mini-Batch Gradient Descent. This understanding simplifies
the discourse, as we can refer to both single-sample and mini-batch variants under the
umbrella term of SGD, without the need for constant differentiation.

2.2.4 Adaptive Moment Estimation (Adam)

Adaptive Moment Estimation (Adam), introduced in 2014 [12], combines the advantages
of two popular gradient descent methods: Momentum [13] and RMSProp 2. From Mo-
mentum, Adam borrows the idea of adding fractions of previous gradients to current ones,
which amplifies the speed of descent in consistent directions and dampens oscillations.
From RMSProp, Adam takes the concept of normalizing the gradient by an exponential
moving average of its past squared values, which helps in navigating through ravines, i.e.,
areas where the surface curves much more steeply in one dimension than in another.

Adam’s update rule is more complex than that of SGD or Mini-Batch Gradient De-
scent, and it involves maintaining an exponentially decaying average of past gradients and

1Full-batch gradient descent refers to the variant of gradient descent where the gradient is computed
over the entire dataset at each step. This method provides the most accurate estimate of the gradient, but
it is computationally expensive and less scalable.

2Unusually, RMSProp was not published in an article but merely described in a Coursera lecture.
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past squared gradients. This is why we will present it in the form of an algorithm, to
provide a complete and clear picture of all the steps involved.

Algorithm 2 Adam: Adaptive Moment Estimation [12]

Require: η: Step size (learning rate)
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(w): Stochastic objective function with parameters w
Require: w0: Initial parameter vector

m0 ← 0 ▷ Initialize 1st moment vector
v0 ← 0 ▷ Initialize 2nd moment vector
t← 0 ▷ Initialize step
repeat

t← t+ 1
gt ← ∇wft(wt−1) ▷ Get gradients w.r.t. stochastic objective at step t
mt ← β1 ·mt−1 + (1− β1) · gt ▷ Update biased first moment estimate
vt ← β2 · vt−1 + (1− β2) · g2t ▷ Update biased second raw moment estimate
m̂t ← mt/(1− βt

1) ▷ Compute bias-corrected first moment estimate
v̂t ← vt/(1− βt

2) ▷ Compute bias-corrected second raw moment estimate
wt ← wt−1 − η · m̂t/(

√
v̂t + ϵ) ▷ Update parameters

until wt has converged
return wt ▷ Resulting parameters

In the context of the Adam algorithm (Algorithm 2), it is important to clarify certain
elements. The term ϵ represents a small scalar that serves the purpose of preventing
division by zero. All operations performed on vectors are executed element-wise. The
notation g2t indicates the element-wise square gt ⊙ gt. Finally, the expressions βt

1 and βt
2

denote β1 and β2 raised to the power t.
Adam has been widely adopted in the machine learning community due to its efficiency

and robustness. It is particularly suitable for problems with large data or parameters, such
as deep learning, and can handle sparse gradients on noisy problems, which are common
in natural language processing and computer vision tasks.

One of the key features of Adam is its adaptive learning rate mechanism. While the
global learning rate η is fixed, the effective learning rate for each parameter is adaptive.
This is achieved by the update rule in Adam, which divides the first moment estimate (an
estimate of the mean of the gradients) by the square root of the second moment estimate
(an estimate of the variance of the gradients). This scales the learning rate for each
parameter inversely proportional to the square root of the sum of the squares of its past
gradients. As a result, parameters with larger average past gradients have smaller effective
learning rates, and vice versa. This mechanism allows the learning rate to change over
time based on the historical gradients for each parameter, making Adam often described
as having an ”adaptive learning rate” mechanism.

Moreover, Adam is user-friendly for practitioners as it requires little tuning of hyper-
parameters. The defaults usually work well, with the only parameter that may require
tuning in practice being the learning rate η. The exponential decay rates for the moment
estimates are usually initialized as β1 = 0.9 and β2 = 0.999, and the fuzz factor ϵ is usually
set to 10−8.

In conclusion, Adam is a powerful and versatile optimization algorithm that can handle
a wide range of optimization problems with ease and efficiency. It has become a go-to
choice for many machine learning practitioners and researchers for training deep neural
networks.
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2.3 Distributed Machine Learning (DML)

Distributed Machine Learning (DML) is a subfield of machine learning that focuses on
training models across multiple computational nodes, or ”nodes” for short. This approach
is primarily motivated by the need to handle large-scale data and complex models that
exceed the capacity of a single machine. By distributing the computational load across
multiple nodes, DML enables faster training times and the ability to handle larger models
and datasets.

In DML, the training process is typically organized into a series of iterations. In each
iteration, every node performs computations on its local data or model parameters and
communicates the results to a central entity, often referred to as the coordinator3. The
coordinator then aggregates the results from all nodes to update the global model. This
process continues until the model’s performance meets a predefined criterion or after a
certain number of iterations.

The specifics of the training process can vary depending on the particular DML algo-
rithm used. For instance, in Synchronous Stochastic Gradient Descent (SSGD), updates
from all nodes are collected before updating the global model, thus forming distinct rounds.
On the other hand, in Asynchronous Stochastic Gradient Descent (ASGD), updates from
the nodes are incorporated into the global model as soon as they arrive at the coordinator,
without waiting for updates from all nodes.

2.3.1 Architecture

The architecture of a DML system is primarily composed of a coordinator and multiple
nodes.

The coordinator, also known as the parameter server or master, orchestrates the train-
ing process. It is responsible for managing the training process, distributing the data or
model parameters to the nodes, aggregating the updates from the nodes, updating the
global model, and checking for convergence. The coordinator ensures that all nodes are
working in harmony towards the common goal of training the model.

On the other hand, the nodes, also known as workers or clients, are the computational
units in a DML system. Each node performs computations on its local data or model
parameters and communicates the results to the coordinator. The nodes operate indepen-
dently of each other, allowing for parallel computation and thus speeding up the training
process.

In the following sections, we will delve into the specifics of how the training process is
carried out in a DML system, focusing on two key algorithms: Asynchronous Stochastic
Gradient Descent (ASGD) and Synchronous Stochastic Gradient Descent (SSGD). These
algorithms leverage the DML architecture to efficiently train models on large-scale data.

2.3.2 Asynchronous Stochastic Gradient Descend (ASGD)

The Asynchronous Stochastic Gradient Descent (ASGD) algorithm is a variant of the
Stochastic Gradient Descent (SGD) algorithm that allows for parallel and asynchronous
updates of the model parameters. This makes it particularly suitable for distributed
computing environments, where multiple workers can compute gradients and update the
model parameters independently and simultaneously. The ASGD algorithm works as
follows:

1. Each worker independently selects a data point and computes the stochastic estimate
of the gradient of the loss function with respect to the model parameters.

3While we focus on centralized DML in this thesis, it’s worth noting that there are also decentralized
or peer-to-peer learning frameworks that do not rely on a central coordinator.
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2. Each worker then sends its computed gradient to a parameter server, which maintains
the current estimate of the model parameters.

3. The parameter server updates the model parameters asynchronously as soon as it
receives a gradient from a worker. This means that the parameter server does not
wait for gradients from all workers before updating the model parameters, which is
what makes ASGD asynchronous.

4. Each worker fetches the latest model parameters from the parameter server before
computing the next gradient.

5. This process continues until the model parameters have converged, or until a pre-
specified stopping criterion is met.

The Asynchronous Stochastic Gradient Descent (ASGD) algorithm can be succinctly
described by the following update rule, which is executed by the parameter server at each
iteration:

wt+1 ← wt − η∇fγt(wt−τt)

In the update rule, η represents the step size or learning rate, and γt is an index chosen
uniformly at random from {1, . . . , n}, representing a selected data point. The term wt−τt

denotes a delayed version of the model parameters, read by a worker, where the delay,
or staleness, is denoted by τt. Moreover, ∇fγt(wt−τt) is the stochastic estimate of the
gradient of the loss for the γt-th example (data-point), computed by a worker using the
delayed parameters wt−τt , and sent to the parameter server to perform the update [14].

While the description of ASGD above uses a single data point for each gradient compu-
tation, in practice, it is common to use a mini-batch of data points, similar to Mini-Batch
Gradient Descent. This is often implicitly understood, and the term ’ASGD’ may be
used to refer to both the single data point and mini-batch versions of the algorithm. The
transition from using a single data point to a mini-batch of data points is straightforward,
similar to the transition from SGD to Mini-Batch Gradient Descent (as discussed in 2.2.3).

ASGD offers significant speedup in the training process in a distributed computing en-
vironment, as it allows for simultaneous computation and application of gradients. How-
ever, its asynchronous nature can introduce additional noise into the optimization process,
as the model parameters can be updated with stale gradients, i.e., gradients computed with
respect to an outdated version of the model parameters. This can potentially slow down
the convergence of the algorithm, or even cause it to diverge. The issue of stale gradients
has been addressed in several research studies. For instance, Zhu and Ying [15] provided
a sharp convergence rate for ASGD when the loss function is a perturbed quadratic func-
tion, showing that longer delays result in slower convergence rate. Similarly, Zhang et al.
[16] proposed a variant of the ASGD algorithm in which the learning rate is modulated
according to the gradient staleness, providing theoretical guarantees for the convergence
of this algorithm. Despite these challenges, ASGD remains a powerful tool for large-scale
machine learning tasks.

2.3.3 Synchronous Stochastic Gradient Descent (SSGD)

The Synchronous Stochastic Gradient Descent (SSGD) algorithm is another variant of the
Stochastic Gradient Descent (SGD) algorithm that is designed for distributed computing
environments. Unlike ASGD, SSGD operates in a synchronous manner, meaning that
all workers must complete their computations and send their gradients to the parameter
server before the model parameters are updated. The SSGD algorithm works as follows:
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1. Each worker independently selects a data point or a mini-batch of data points and
computes the stochastic estimate of the gradient of the loss function with respect to
the model parameters.

2. Each worker then sends its computed gradient to the parameter server, which main-
tains the current estimate of the model parameters.

3. The parameter server waits until it has received gradients from all workers. It then
averages these gradients and updates the model parameters synchronously.

4. Each worker fetches the latest model parameters from the parameter server before
computing the next gradient.

5. This process continues until the model parameters have converged, or until a pre-
specified stopping criterion is met.

The Synchronous Stochastic Gradient Descent (SSGD) algorithm can be succinctly
described by the following update rule, which is executed by the parameter server at each
iteration:

wt+1 ← wt − η
1

K

K∑
i=1

∇fγt,i(wt)

In the update rule, η represents the step size or learning rate, K the number of work-
ers, and γt,i is an index chosen uniformly at random by the i-th worker from {1, . . . , n},
representing a selected data point. Each ∇fγt,i(wt) is the stochastic estimate of the gra-
dient, from the i-th worker, of the loss for the γt,i-th example (data-point). The term
1
K

∑K
i=1∇fγt,i(wt) is the average of the stochastic estimates of the gradient, computed by

the workers, and sent to the parameter server to perform the update [17].
While the description of SSGD above uses a single data point for each gradient compu-

tation, in practice, it is common to use a mini-batch of data points, similar to Mini-Batch
Gradient Descent. This is often implicitly understood, and the term ’SSGD’ may be used
to refer to both the single data point and mini-batch versions of the algorithm. The
transition from using a single data point to a mini-batch of data points is straightforward,
similar to the transition from SGD to Mini-Batch Gradient Descent (as discussed in 2.2.3).

While SSGD offers the advantage of reduced noise in the optimization process com-
pared to ASGD, as it eliminates the issue of stale gradients, its synchronous nature can
potentially slow down the training process. This is because the parameter server must wait
for all workers to complete their computations before updating the model parameters. This
can lead to a problem known as the straggler effect, where the overall computation time
is dictated by the slowest worker. If one or more workers are significantly slower than
the others, perhaps due to hardware issues or network latency, they can delay the entire
process, leading to inefficient use of resources. Various strategies have been proposed to
mitigate the straggler effect in SSGD, such as backup workers [18], gradient coding [19,
20, 21], and adaptive batch sizes [22, 23, 24]. Despite these challenges, SSGD remains a
popular choice for distributed machine learning tasks due to its simplicity and robustness.

2.4 Federated Learning (FL)

Federated Learning (FL), as introduced in Section 1.2, is a paradigm shift in the way we
approach machine learning. It addresses the need for decentralized learning in a world
where data is increasingly distributed, sensitive, and often restricted in its mobility due
to privacy laws and logistical constraints.
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The motivation for Federated Learning arises from two main factors. First, the need to
respect user privacy and data confidentiality, especially in sectors like healthcare, finance,
and telecommunications. By keeping data on local devices, FL reduces the risk of data
breaches and misuse. Second, the logistical constraints and legal restrictions that often
prevent data from being freely moved and centralized. Federated Learning allows for the
utilization of rich, diverse data sources that would otherwise be inaccessible due to these
constraints.

The primary goal of FL is to train accurate and robust machine learning models while
ensuring data privacy and reducing communication costs. It aims to achieve this by
aggregating locally-computed updates rather than raw data, thus minimizing the amount
of sensitive information transmitted. Another goal is to enable learning from non-IID
(Independent and Identically Distributed) data, which is a common scenario in real-world
applications where data is collected from diverse sources.

Despite its potential, FL faces several challenges. Privacy preservation, while a key
advantage of Federated Learning, is also a challenge as it requires careful design to en-
sure that sensitive information cannot be inferred from model updates. Communication
efficiency is another major challenge due to the need to transmit model updates over po-
tentially unreliable and slow networks. Model personalization is also a concern, as the
global model may not perform well for all clients due to the heterogeneity of local data.
Addressing these challenges is an active area of research in Federated Learning.

In the following sections, we will delve into the technical aspects of Federated Learning,
starting with the architecture, followed by a detailed exploration of the redefined objec-
tive function, and methods of Federated Learning such as Federated Stochastic Gradient
Descent (FedSGD) and Federated Averaging (FedAvg).

2.4.1 Architecture

The architecture of a Federated Learning system is primarily composed of a central server
and multiple client devices. Each client device has a local dataset that it uses to train
the model, and the central server is responsible for coordinating the learning process and
aggregating the model updates from the clients.

The Central Server, also known as Parameter Server or Coordinator, is the orchestrator
of the Federated Learning process. It initiates the learning process by distributing the
initial global model to the client devices. After each round of local training, the server
collects the model updates from the clients, aggregates them to update the global model,
and then disseminates the updated global model back to the clients for the next round of
training. The server also monitors the learning process and decides when to terminate it
based on the model’s performance on a validation set or after a predetermined number of
rounds.

The Clients, which can range from smartphones to IoT devices, each have a local
dataset that they use to train the model. Upon receiving the global model from the
server, the clients use their local data to train the model and then send the model updates
back to the server. The clients do not share their raw data with the server or with each
other, thus preserving data privacy. This is a key characteristic of Federated Learning,
where the raw data remains on the client device and only model updates are exchanged.

The Communication Protocol in Federated Learning involves the exchange of model
updates between the server and the clients. The server sends the global model to the
clients, who then train the model on their local data and send the model updates back
to the server. This process is repeated for several rounds until the learning objective is
achieved. The communication protocol needs to be efficient and robust to network failures,
as the clients may be connected over unreliable and slow networks.
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This architecture allows Federated Learning to train machine learning models on dis-
tributed data while preserving data privacy and reducing communication costs. However,
it also presents several challenges, such as ensuring privacy preservation, maintaining com-
munication efficiency, and achieving model personalization, which are areas of ongoing
research in Federated Learning.

Central Server

Clients

Local Updates

Model

Figure 2.1: A typical architecture of a Federated Learning system. The central server
coordinates the learning process, while the clients perform local training on their data.
Model updates, not raw data, are exchanged between the server and the clients.

As illustrated in Figure 2.1, the architecture of a Federated Learning system is designed
to facilitate decentralized learning while preserving data privacy and reducing communi-
cation costs. The central server plays a crucial role in coordinating the learning process,
but the actual learning happens at the clients, each training on their own local data. This
decentralization of learning is a key characteristic of Federated Learning, enabling the
utilization of diverse and distributed data sources.

In this architecture, the exchange of information between the server and the clients is
limited to model updates. This approach is designed to keep the raw data on the client
devices, addressing the need for data privacy and logistical constraints that often prevent
data from being freely moved and centralized.

The communication protocol in this architecture involves the server sending the global
model to the clients, who then train the model on their local data and send the model
updates back to the server. This process is repeated for several rounds until the learning
objective is achieved.

2.4.2 Objective Function

In the context of Federated Learning (FL), the objective function takes a slightly different
form compared to the traditional Stochastic Gradient Descent (SGD) setting. In SGD, as
we have seen in section 2.2.2, the objective function is defined as f(w) = 1

n

∑n
i=1 fi(w),

where n is the number of examples in the dataset, and fi(w) is the loss for the i-th example.
However, in FL, we have a network of K clients, each with a unique local dataset. The

data distribution across clients can be highly skewed, with some clients holding signifi-
cantly more data points than others. To account for this disparity, we need to adjust our
objective function.

For each client k, we denote Pk as the set of indices corresponding to its local data
points, and nk = |Pk| as the number of these points. We then redefine the objective
function in FL as a weighted sum of the local loss functions, where the weight for each
client is proportional to the number of data points it has:
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f(w) =
K∑
k=1

nk

n
Fk(w) , where Fk(w) =

1

nk

∑
i∈Pk

fi(w) (2.2)

This new formulation ensures that clients with more data have a larger influence on
the global model, reflecting their greater contribution to the learning process [25].

2.4.3 Iterative Training Process

To ensure good task performance of a final, central machine learning model, FL relies on
an iterative process broken up into an atomic set of client-server interactions known as
Federated Learning rounds. Each round consists of the following steps [4]:

1. Client Selection: A fraction of local clients are selected to participate in training.
Selection criteria might include device availability, connection type, and idle status.

2. Broadcast: The selected clients download the current model weights and training
program from the central server.

3. Client Computation: Each client computes an update to the model locally, typi-
cally using Stochastic Gradient Descent (SGD) or similar algorithms.

4. Aggregation: The server collects and aggregates the updates from the clients.
Techniques like secure aggregation, lossy compression, and differential privacy might
be applied at this stage.

5. Model Update: The server updates the global model based on the aggregated
updates from the participating clients.

The training process in FL involves many such rounds, iteratively refining the global
model. The procedure described above assumes synchronized model updates, where all
selected clients complete their computations before the server aggregates the updates.

The separation of client computation, aggregation, and model update phases is not
a strict requirement in FL, but it offers distinct advantages. This separation allows for
a structured approach that facilitates research in areas like compression, differential pri-
vacy, and secure multi-party computation. These advances can be composed with various
optimization or analytics algorithms, as long as they align with aggregation primitives.
On the other hand, asynchronous approaches like ASGD (Section 2.3.2), where clients’
updates are applied immediately before aggregation, are also prevalent. While these asyn-
chronous methods may simplify system design and offer optimization benefits, they are
outside the scope of this work. Instead, this section focuses on the synchronous approach,
which provides a more coherent framework for integrating various research advancements.

2.4.4 Federated Stochastic Gradient Descent (FedSGD)

Federated Stochastic Gradient Descent (FedSGD) is a fundamental algorithm in the field
of Federated Learning. It is a direct adaptation of the traditional Stochastic Gradient
Descent (SGD) algorithm to the federated setting, where data is distributed across a large
number of clients. The FedSGD algorithm is outlined below:

In the Federated Stochastic Gradient Descent algorithm (Algorithm 3) [26], each client
computes the gradient over its entire dataset and sends it to the server. The server then
aggregates these gradients, taking into account the size of each client’s dataset, to update
the global model.

19



2.4 Federated Learning (FL)

Algorithm 3 Federated Stochastic Gradient Descent (FedSGD)

Require: f(w): Stochastic objective function with parameters w ∈ Rd

Require: η: Step size (learning rate)
Require: K: The number of clients indexed by k
Require: C: Fraction of clients performing computations in each round

Server executes:
1: initialize w1

2: for each round t = 1, 2, . . . do
3: s← max(C ·K, 1)
4: St ← (random set of s clients)
5: for each client k ∈ St in parallel do
6: gk ← ClientUpdate(k, wt)
7: st ←

∑
k∈St

nk

8: wt+1 ← wt − η
∑

k∈Sk

nk
st
gk

ClientUpdate(k, w): ▷ Run on client k
9: gk ← 1

nk

∑
i∈Pk
∇fi(w)

10: return gk to server

In the context of Federated Learning, due to the distributed nature of the data and
the potentially large number of clients, it’s reasonable to view each client’s entire dataset
as a single batch. This perspective is different from the traditional setting of Stochastic
Gradient Descent where a batch is a small subset of the entire dataset that resides in
one place. In other words, a randomly selected client with nk training data samples
in Federated Learning is analogous to a randomly selected batch in traditional machine
learning. This understanding is crucial for interpreting the FedSGD algorithm.

The server does not have access to the entire dataset at once but only to the gradients
computed on the individual clients’ datasets which are aggregated by a weighted average.
This is in accordance with the redefined objective function for FL (Equation 2.2), which is
a weighted sum of the local loss functions, where the weight for each client is proportional
to the number of data points it has. This ensures that each client’s contribution to the
global model is proportional to its data size, providing a fair and representative update,
especially critical in Federated Learning where the data distribution can be highly skewed
across clients.

It’s worth noting that when the fraction of clients performing computations in each
round, C, is set to 1, FedSGD becomes equivalent to full-batch SGD. In this case, all
clients are selected in each round, and the server receives and aggregates gradients from
all clients. This means that the server is effectively using the entire dataset (distributed
across all clients) to compute the update for each round.

2.4.5 Federated Averaging (FedAvg)

Federated Averaging (FedAvg), introduced by McMahan et al. [3], is a cornerstone in
the field of Federated Learning. Building upon the principles of Federated Stochastic
Gradient Descent (FedSGD), FedAvg introduced a transformative concept: the application
of classical Stochastic Gradient Descent, complete with epochs and mini-batches, at the
client level. This seemingly simple yet profoundly impactful idea not only reduces the
communication overhead but also enhances the quality of learning by allowing each client
to make more effective use of its local data before sending the updated model to the server.
This innovation has had a substantial impact on the field, serving as the foundation for
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many subsequent advancements in Federated Learning. Despite the challenges posed by
the unique characteristics of Federated Learning, such as non-IID data and unbalanced
data distribution across clients, FedAvg has proven to be a robust and versatile algorithm.

Algorithm 4 Federated Averaging (FedAvg) [3]

Require: f(w): Stochastic objective function with parameters w ∈ Rd

Require: η: Step size (learning rate)
Require: E: The number of local epochs
Require: K: The number of clients indexed by k
Require: b: The local mini-batch size
Require: C: Fraction of clients performing computations in each round

Server executes:
1: initialize w1

2: for each round t = 1, 2, . . . do
3: s← max(C ·K, 1)
4: St ← (random set of s clients)
5: for each client k ∈ St in parallel do

6: w
(k)
t+1 ← ClientUpdate(k, wt)

7: st ←
∑

k∈Sk
nk

8: wt+1 ←
∑

k∈Sk

nk
st
w

(k)
t+1

ClientUpdate(k, w): ▷ Run on client k
9: Split Pk into batches of size b

10: for each local epoch e from 1 to E do
11: for each batch B ∈ Pk do
12: w ← w − η∇fB(w) ▷ As per Equation (2.1)
13: return w to server

In the Federated Averaging algorithm (Algorithm 4), the key innovation lies in the
client update step. Each client performs multiple iterations of SGD on its local data for
a specified number of local epochs before sending the updated model to the server. This
approach allows for more efficient use of each client’s local data, enhancing the quality of
learning and reducing the communication overhead between the server and the clients.

The server’s role in FedAvg is to aggregate the updated models from the clients, rather
than the gradients as in FedSGD. This aggregation is performed in accordance with the
redefined objective function for FL (Equation 2.2), which is a weighted sum of the local
loss functions, where the weight for each client is proportional to the number of data points
it has. This ensures that each client’s contribution to the global model is proportional to
its data size, providing a fair and representative update. This is especially crucial in FL
where the data distribution can be highly skewed across clients.

2.5 Time & Communication Costs

In the realms of Distributed Machine Learning (ML) and Federated Learning (FL), al-
gorithmic efficiency is benchmarked against two critical measures: CPU Time Cost4 and
Communication Cost. The CPU Time Cost captures the parallel local computational ac-
tivities during the training phase. On the other hand, the Communication Cost signifies

4The term ”CPU Time Cost” encompasses aspects such as CPU processing, GPU processing, I/O
operations, and memory access, with the specifics contingent upon the hardware setup and the software
implementation.
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data transmissions between client nodes and the central server, encompassing exchanges
of model parameters (or gradients) and local state information.

Both in Distributed ML and FL, communication cost is predominantly anchored in two
central operations: a reduction step and a subsequent broadcast, or vice-versa [27]. These
operations have been foundational pillars in distributed systems, with extensive research
efforts striving to optimize them, yielding well-defined patterns and algorithms.

2.5.1 All-Reduce

The All-Reduce pattern [27] stands as a cornerstone in traditional distributed systems,
particularly within the High-Performance Computing (HPC) domain. Essential to the
Message Passing Interface (MPI) libraries, this mechanism facilitates distributed units in
aggregating their local values – most often gradients or model parameters in an ML con-
text – and then disseminating the aggregated result to all participating nodes. Conceptu-
ally, All-Reduce seamlessly integrates the reduction and broadcast functions, orchestrating
them in sequence, as depicted in Figure 2.2.

a
Node 1 Node 2 Node n

b c

Node 1 Node nNode 1

Figure 2.2: Information flow of All-Reduce operation performed on n nodes, where f(·) is
the aggregation function and α is the result of the reduction.

2.5.2 Unification of costs

In the quest to provide a holistic analysis of algorithmic efficiency in Distributed ML and
FL, it’s paramount to have a singular metric that encapsulates both CPU Time Cost and
Communication Cost. Thus, a unified metric, termed as the Time Cost, emerges:

(Time Cost) = (CPU Time Cost) + (Communication Time Cost) (2.3)

The Communication Time Cost is derived through abstract approaches, reflecting the
underlying communication channels, topology, and other factors. These approaches are
not drawn from specific literature but are based on general principles of distributed sys-
tems. The primary objective is to construct a coherent framework for contrasting different
methodologies rather than delineating precise models. By doing so, this framework em-
powers us to evaluate various strategies on a singular, cohesive time scale.

For both communication models described below, let C symbolize the total communi-
cation cost in Gbit, B be the channel bandwidth in Gbps, and K be the number of clients
(or nodes).
Common Channel Communication Model: This model aims to capture the dynamics
in a distributed system where all clients share a single communication channel to access the
central server. The inherent nature of this shared resource can induce delays, exacerbated
as the client count increases.

(Communication Time Cost) = (K − 1) · C
K
· 1
B

(2.4)
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2.6 Artificial Neural Networks (ANNs)

Hypercube Communication Model: In a hypercube topology, the communication
time cost decreases logarithmically as the number of clients increases.

(Communication Time Cost) = ⌈logK⌉ · C
K
· 1
B

(2.5)

In High-Performance Computing (HPC) environments, hypercube-based designs can be
advantageous, especially when reducing latency is pivotal, like in All-Reduce operations.

2.6 Artificial Neural Networks (ANNs)

In this section, we delve into the fascinating world of Artificial Neural Networks (ANNs),
the driving force behind many modern machine learning systems. ANNs have revolu-
tionized fields ranging from image recognition to natural language processing, and un-
derstanding their inner workings is essential for any researcher in the field of machine
learning.

In the forthcoming subsections, we embark on an exploration of the fundamental build-
ing blocks of Neural Networks, specifically focusing on the structure and operation of
Multi-Layer Perceptrons (MLPs), which are composed of multiple fully-connected layers
of neurons. This exploration is guided by the approach adopted by Professor Karystinos
in his lectures on Neural Networks [28]. His intuitive approach allows us to convey the
essential concepts in a clear and accessible manner, circumventing the often confusing
notation prevalent in the general literature on the subject.

We then extend our discussion to Convolutional Neural Networks (CNNs), a specialized
kind of neural network that has proven exceptionally effective in tasks related to image
processing. We also delve into the learning process in these networks, focusing on the
backpropagation algorithm and optimization methods. Along the way, we highlight some
of the challenges encountered when training deep networks and present strategies for
mitigating these issues.

2.6.1 Perceptron & Neuron

To understand the concept of a Perceptron and a Neuron, let’s start with a simple dataset
D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where each xi is a d-dimensional vector and each yi
is a real number.

A neuron is a computational unit that takes as input a vector xi and produces an
output (or prediction) ŷ, based on a set of parameters (w, b) and a nonlinear function σ(·),
known as the activation function. The parameters w and b are a weight vector and a bias
term, respectively. The weight vector is the same dimension as the input vector, and the
bias is a single real number.

The output of the neuron is computed as follows:

ŷ = σ

(
b+

d∑
i=1

wixi

)
= σ

(
w⊤x+ b

)
This equation represents the neuron taking a weighted sum of its inputs (plus the bias

term), and then applying the activation function to this sum. The activation function
introduces non-linearity into the model, allowing it to learn more complex patterns. The
structure of a single neuron is depicted in Figure 2.3.

A Perceptron is a special case of a neuron, where the activation function is a threshold
function. This means that the Perceptron outputs a binary value, depending on whether
the weighted sum of its inputs exceeds a certain threshold [29, 30].
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Single Neuron
Input

Single Neuron

Figure 2.3: Two equivalent representations of a single neuron

In the next section, we will extend this concept to a network of neurons, forming a
Multi-Layer Perceptron (MLP).

2.6.2 Multi-Layer Perceptron (MLP)

Building upon the concept of a single neuron, we can create a more complex structure
by stacking multiple neurons together. This leads us to the concept of a fully-connected
layer.

In a fully-connected layer, we have a set of neurons, each of which is connected to all
inputs. Let’s consider our dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where each xi is a
d-dimensional vector and each yi is a p-dimensional vector. This is a slight departure from
our previous discussion where yi was a scalar. Now, we are considering the case where the
output could be a vector, allowing us to handle multi-output problems.

In this layer, each neuron has its own set of parameters (wi, bi), where wi ∈ Rd and
bi ∈ R, and uses the same activation function σ(·). The output of this layer is a vector
ŷ ∈ Rp, where each element is the output of a neuron:

ŷ =


y1
y2
...
yp

 =


σ
(
w⊤
1 x+ b1

)
σ
(
w⊤
2 x+ b2

)
...

σ
(
w⊤
p x+ bp

)
 = σ

[w1 w2 . . . wp

]⊤
x+


b1
b2
...
bp


 = σ

(
W⊤x+ b

)

Here, W ∈ Rp×d is a matrix where each column is a weight vector of a neuron, and
b ∈ Rp is a vector where each element is the bias of a neuron. Furthermore, the activation
function σ(·) is applied element-wise. The structure of a fully-connected layer is depicted
in Figure 2.4.

A remarkable property of a fully-connected layer, and indeed of any layer in a neural
network, is that its entire functionality can be encapsulated by the weight matrix W
and the bias vector b. This succinct representation not only provides a clear and concise
description of the layer’s operation but also facilitates efficient computation.

Now, imagine stacking multiple fully-connected layers one after the other. The output
of one layer becomes the input to the next. This structure is known as a Multi-Layer
Perceptron (MLP). Despite the term ”Perceptron” suggesting a network composed solely
of Perceptrons, the term ’MLP’ is used more broadly to denote any fully-connected feed-
forward network, regardless of the specific activation functions used. This is more of a
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Single, fully connected layer

Single, fully connected layer

Figure 2.4: Two equivalent representations of a single, fully-connected layer

historical artifact. The layers in between the input and output layers are often referred to
as hidden layers, as they are not directly exposed to the input or output of the network.
This architecture allows the network to learn more complex representations of the input
data, as each layer can potentially capture different features or patterns.

2.6.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a specialized kind of neural network that are
exceptionally effective at tasks related to image processing, such as image classification,
object detection, and semantic segmentation. The defining characteristic of CNNs is the
use of convolutional layers, which are designed to automatically and adaptively learn
spatial hierarchies of features from the input data.

CNNs can be viewed as a regularized version of Multi-layer Perceptrons (MLPs). Recall
that in an MLP (Section 2.6.2), each neuron in one layer is connected to all neurons in
the next layer. In contrast, CNNs connect each neuron only to a local region of the
input, referred to as the neuron’s receptive field. This difference in architecture reduces
the number of parameters in the model, as each filter is typically much smaller than the
input data, and provides a degree of translation invariance 5, as the same filter is applied
across the entire input. By limiting the complexity of the model in this way, CNNs help
prevent overfitting, a common problem in fully connected networks.

In a convolutional layer, the weights of the neuron, also known as a filter or kernel,
are convolved with the input data, producing a feature map. This process is repeated
with multiple filters, each producing a separate feature map, and the results are stacked
together to form the output of the layer. This operation allows the model to learn local
features, which are often more meaningful in image data.

Furthermore, CNNs exploit the hierarchical structure in data, building on simpler
features to form more intricate representations. Instead of processing the entire image or
input at once, CNNs dissect it into smaller, simpler features. As the network progresses
through the layers, these features are combined and assembled into more sophisticated

5This refers to the property that the network’s detection of a particular feature is not dependent on
where in the image that feature is located. In other words, the network can recognize the same feature
regardless of its position in the input space.
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structures, allowing the network to learn increasingly abstract representations of the input.
This hierarchical approach allows CNNs to efficiently learn complex patterns in data.

In addition to convolutional layers, CNNs often include other types of layers, such as
pooling layers, which reduce the spatial dimensions of the data, and fully-connected layers,
which are typically used at the end of the network for classification or regression tasks.

CNNs have been the driving force behind many of the recent advances in image pro-
cessing and computer vision, and they continue to be a topic of active research. For more
detailed information on CNNs, we refer the reader to the seminal works by LeCun et al.
[31] and Krizhevsky et al. [32].

2.6.4 Learning: Backpropagation & Optimization

The goal of learning in neural networks is to find the set of parameters (weights and
biases) that minimize a loss function (or objective function as we saw in Sections 2.2,
2.3, 2.4). The loss function quantifies the discrepancy between the network’s predictions
and the actual target values. If we had the gradient of the loss function with respect
to the parameters, we could easily update the parameters using one of the optimization
algorithms we’ve previously covered, such as Stochastic Gradient Descent (Section 2.2.2),
Mini-batch Gradient Descent (Section 2.2.3) etc.

However, the challenge lies in efficiently computing these gradients, especially for deep
networks with many layers and a large number of parameters. This is where the backpropa-
gation algorithm comes into play. It was first introduced in 1960s [33] and almost 30 years
later (1989) popularized by Rumelhart, Hinton and Williams in [34]. Backpropagation is
a method for efficiently computing the gradient of the loss function with respect to the
parameters of the network. The algorithm is based on the chain rule from calculus and
operates in two passes through the network: a forward pass and a backward pass.

In the forward pass, the input is propagated through the network to compute the
output and the loss. In the backward pass, the algorithm works backward from the output
layer to the input layer, propagating the error information back into the network. For each
layer, the algorithm computes the gradient of the loss with respect to the parameters of
that layer.

This process of forward propagation, backpropagation, and parameter update is re-
peated iteratively over multiple epochs until the network’s performance on the data reaches
a satisfactory level or until some stopping criterion is met.

Despite the power of backpropagation and gradient-based optimization, these methods
are not without their challenges. Two common issues in training deep neural networks
are the vanishing gradients and exploding gradients problems. The vanishing gradients
problem occurs when the gradients of the loss function become very small as they are
propagated back through the network. This can slow down learning or cause it to stop al-
together, as the updates to the weights become negligibly small. The exploding gradients
problem, on the other hand, occurs when the gradients become very large, leading to large
updates to the weights and potentially causing the model to diverge. These problems are
particularly pronounced in deep networks and recurrent neural networks, and they are
influenced by factors such as the choice of activation function, the initialization of the
weights, and the architecture of the network. Various techniques have been proposed to
mitigate these problems. For instance, the use of activation functions like ReLU that are
less prone to vanishing gradients was proposed by Nair and Hinton [35], careful initializa-
tion strategies were suggested by Glorot and Bengio [36], and normalization techniques
like batch normalization were introduced by Ioffe and Szegedy [37].

In summary, backpropagation is a fundamental building block in a neural network,
enabling the efficient computation of gradients. Coupled with an optimization algorithm,
it forms the backbone of learning in neural networks, allowing the network to iteratively
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adjust its parameters to minimize the loss and make accurate predictions on the data.
However, the training process is not always straightforward and can present challenges that
require specific solutions. For a comprehensive understanding of these topics, including
an in-depth discussion of the challenges encountered in training deep neural networks
and the various strategies proposed to mitigate them, we refer the reader to the work by
Goodfellow et al. [38].

2.7 Frameworks for Deep Learning

Deep learning, has been pivotal in driving advancements across a myriad of domains, from
computer vision and natural language processing to medical diagnostics and autonomous
systems. At the heart of these advancements lie powerful computational frameworks that
facilitate model design, training, and deployment. Among these, TensorFlow, comple-
mented by its high-level API, Keras, has gained widespread adoption in both academia
and industry. While several formidable frameworks mark the landscape of deep learning,
this section focuses on TensorFlow and Keras, which were chosen for their alignment with
our requirements in the creation of the Simulator later discussed in Section 4.1.

2.7.1 TensorFlow

TensorFlow is an open-source machine learning platform designed for efficiency, scalability,
and flexibility [39, 40]. Its foundational capabilities include:

• Versatile Execution: TensorFlow can efficiently manage tensor operations across
a variety of hardware, from CPUs and GPUs to TPUs. Its design is rooted in
the computation graph paradigm, where mathematical operations are nodes and
multi-dimensional arrays (tensors) are the edges, ensuring efficient computation and
gradient calculations.

• Deep Learning with Keras: Within the TensorFlow framework, Keras acts as
the high-level API, making deep learning accessible and intuitive. This combination
allows users to design sophisticated models using Keras, all while harnessing the
computational prowess of TensorFlow—be it on TPU clusters, GPU arrays, or other
configurations.

• Flexibility in Model Building: Whether a beginner or an expert, TensorFlow
caters to all with its layered abstraction. While the high-level Keras API offers
simplicity, eager execution provides a more hands-on approach for immediate model
iteration and debugging.

• Deployment Everywhere: TensorFlow streamlines the path from development to
production, allowing models to be trained and deployed across servers, edge devices,
or web platforms. Its versatility ensures that regardless of the target platform,
deploying a TensorFlow model remains consistent and straightforward.

• Research and Experimentation: TensorFlow isn’t just a tool—it’s a playground
for research. Advanced features like the Keras Functional API and Model Subclass-
ing API let users create complex model architectures. Coupled with the vibrant
ecosystem of libraries such as TensorFlow Probability and BERT [41], it’s primed
for state-of-the-art research.

In essence, TensorFlow is a robust platform for everything from simple model devel-
opment to groundbreaking machine learning research, offering tools that cater to a wide
spectrum of needs and complexities.
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2.7.2 Keras

Keras, developed in Python, is a deep learning API that stands at the forefront of the
TensorFlow machine learning platform [42]. Designed with a clear focus on modern deep
learning, Keras provides an approachable and highly-productive interface for tackling ma-
chine learning (ML) challenges. It addresses every phase of the machine learning workflow,
spanning data processing, hyperparameter tuning, and deployment. Keras epitomizes the
principle of swift experimentation—turning ideas into results efficiently, a fundamental
aspect of state-of-the-art research. Key attributes of Keras include:

• Simplicity: By abstracting underlying complexities, Keras minimizes developers’
cognitive load, allowing them to zero in on central aspects of the problem.

• Power and Scalability: Despite its streamlined interface, Keras doesn’t compro-
mise on performance. This balance between ease-of-use and power has led to its
adoption by renowned organizations, including Netflix, YouTube, and Uber.

• Research Excellence: Keras’s flexibility caters to both fundamental tasks and
pioneering research ideas. Its adaptability is reflected in its utilization by prestigious
scientific institutions worldwide, such as CERN, NASA, and NIH, playing a role even
in groundbreaking experiments at the LHC.

While TensorFlow provides the foundational infrastructure, Keras stands as its high-
level API, furnishing an intuitive yet productive interface tailored for machine learning
challenges, especially in the domain of deep learning.
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Chapter 3

Functional Dynamic Averaging

In this chapter, we introduce the Functional Dynamic Averaging (FDA) synchronization
strategy, which is specifically tailored for Server-based architectures. Originally conceived
for application in the Distributed Online ML setting [43], the FDA strategy addresses
scenarios where training is protracted, and the influx of training data varies over time.
Particularly in environments where computational resources, such as network bandwidth,
are shared with other tasks, the FDA strategy aims to minimize the communication over-
head during training.

The adaptability of the FDA strategy allows for its seamless integration into the Feder-
ated Learning (FL) setting with only minor modifications. In this chapter, we will elucidate
its application in the FL context, including the incorporation of additional server function-
ality into the FL round, as detailed in Section 2.4.3. Readers can infer that all concepts
and methodologies discussed herein are derived from the work in [43], thus eliminating the
need for repetitive referencing.

In Chapter 2, we have laid the groundwork for the discussions that follow. This ground-
work ensures that any notation, concept, or definition not introduced in later discussions
has been clearly defined beforehand. As we progress, we will build upon these foundational
elements and introduce new concepts as needed, referencing previous material to foster a
coherent exploration of the subject matter.

3.1 Setting & Notation

In this subsection, we briefly restate the notation and terminology relevant to the standard
Federated Learning (FL) setting, and introduce additional concepts that will be utilized
in the discussions that follow. The goal is not to delve into detailed explanations, as most
of these have been covered in Section 2.4, but to offer readers a convenient reference,
consolidating all pertinent information in one place for ease of access.

Consider a FL system with K clients. For each client k, we define Pk as the set of
indices corresponding to its local data points, and nk = |Pk| as the count of these points.
The total number of data points across all clients is denoted by n. At any given time t,

each client k maintains a model with d-dimensional parameters, represented by w
(k)
t .

The system’s objective is to minimize a loss function f(w), defined as:

f(w) =

K∑
k=1

nk

n
Fk(w) , where Fk(w) =

1

nk

∑
i∈Pk

fi(w)

At time t, let wt0 be the model 1 last sent to the clients by the parameter server, and

1Throughout this work, the terms ”model” and ”model parameters” may be used interchangeably. This
shorthand is common in the literature and is adopted here for brevity.
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wt be the weighted average model of the clients. We introduce ∆
(k)
t as the change to the

local model at time t since the beginning of the current round at time t0, and ∆t as the
weighted average change. These are defined as:

wt =
K∑
k=1

nk

n
w

(k)
t (3.1)

∆
(k)
t = w

(k)
t − wt0 (3.2)

∆t =
K∑
k=1

nk

n
∆

(k)
t (3.3)

3.2 Intuition

In this section, we step away from the formalities and delve into the intuitive understanding
of the Federated Learning training process. Through an engaging analogy and a closer
look at the underlying challenges, we aim to provide a clear and relatable insight into
the complex dynamics at play. This exploration serves as a foundation, shedding light on
the reasoning behind the approach we take in this chapter, and setting the stage for the
technical details that follow.

The Federated Learning training process embarks on a complex quest to discover a
local minimum that serves the global model effectively, recognizing that finding a good
enough local minimum is often the best one can aspire to. This task is complex, given
that models often reside in extremely high-dimensional spaces filled with numerous local
minima, many of which could be suitable solutions, but are often vastly separated from
one another. Even if individual clients were to possess satisfactory model parameters,
aggregating them can lead to a meaningless model—a random point in the space with
poor accuracy. The challenge, then, is to coordinate the clients so they can cooperatively
navigate this high-dimensional space along a roughly similar path. This coordination is
achieved through an iterative, round-based approach (Section 2.4.3). In each round, the
server broadcasts the global model, clients train locally, and the server then aggregates
the models. The process is akin to a shared journey, where all participants start from the
same point, follow the gradients to explore and progress through the landscape, and then
combine their discoveries to set a new common starting point for the next iteration. To
better illustrate this complex process, let’s consider an analogy that captures the essence
of the FL iterative training process:

Consider a classroom filled with children and a teacher who has tasked them with
collaboratively painting a house on a canvas. Each child has a specific section of the
canvas to work on. They begin with a shared goal, but as they paint, each part appears
unconnected and almost random, regardless of the beauty of each piece. The teacher soon
observes this and halts their progress, pointing out that they’ve strayed from the shared
objective: creating a beautiful depiction of a house. After assessing the current state
of the artwork, the teacher outlines a strategy to unify the disparate elements, and the
children resume painting. Inevitably, they once again become absorbed in their individual
tasks, losing sight of the collective goal. The teacher, recognizing the recurring issue,
redirects them towards the common vision and offers guidance on weaving their separate
contributions into a cohesive whole. This cycle repeats, but as the painting evolves and
the image of the house takes shape, the children’s focus on the shared goal sharpens.
With the beautiful house now clearly emerging before them, and no alternative paths to
distract them, they find themselves needing less and less guidance to bring the artwork to
completion.

The classroom painting scenario offers a striking analogy to the Federated Learning
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(FL) training process. In FL, the server acts as the guiding teacher, coordinating the efforts
of clients (the children) as they navigate the high-dimensional space of model parameters.
The clients in FL, like the children, begin with a common model, but as they train or
paint individually, especially at the beginning, their efforts diverge, resulting in disparate
and unconnected outcomes. The iterative, round-based approach refines and aligns these
models, akin to the teacher’s guidance in aligning the children’s work towards the shared
goal of a beautiful house. The process continues, with the clients converging towards a
common path in the high-dimensional space, much like the children seeing the painting
take shape and recognizing the one clear direction to complete it.

There exists a key distinction between the classroom painting scenario and the Fed-
erated Learning (FL) training process, a distinction that will be the focal point in the
sections that follow. In the classroom, the teacher monitors the progress of the canvas, in-
tervening to halt the children’s painting and redirect them toward the common goal only
when their individual parts have drifted apart. If their work aligns, the teacher allows
them to continue without interruption. In contrast, in FL, as exemplified by methods like
FedSGD (Section 2.4.4) and FedAvg (Section 2.4.5), the rounds are terminated at prede-
termined intervals, such as after a single large local step in FedSGD or some local epochs
in FedAvg. This round termination occurs on a fixed schedule, regardless of whether the
clients’ models are harmonious and on the same path. Moreover, especially at the start,
as clients navigate the high-dimensional space with no clear common goal, each following
a path to a different local minimum, rounds must terminate more frequently to set the
clients on a common path. This is akin to the early stages of the children’s painting,
where the image of the house is not yet apparent, and they may quickly lose focus or
stray in different directions. The teacher must intervene more often to guide them back
to a shared vision. In FL, it’s this rigid, often unnecessary round termination, coupled
with the occasional need for more frequent terminations to realign divergent paths, that
we aim to address and alleviate. We recognize these as potential bottlenecks in terms of
communication and time cost in the FL training process.

However, there is another nuanced distinction between the two scenarios that sets
them apart. In the classroom, the teacher has a collective view of the progress at all
times. A simple glance at the canvas reveals whether the children’s individual efforts have
drifted from the common goal. In the FL training process, the server lacks this collective
view. To understand if the clients’ models have drifted apart and if the round should be
terminated, the server would have to centralize all the client models for aggregation. This
centralization is exactly what we aim to circumvent. Recognizing this challenge, in the
next section, we will introduce a measure known as the weighted-variance. This measure
serves as a gauge, indicating to the server if the clients’ models have begun to drift apart.
In the following sections, we will explore how the server can monitor this measure, allowing
it to take a ”sneak peek” at the state of the training with minimal cost, and providing
insight into whether the clients are working collectively towards a shared goal. By doing so,
the server can make informed decisions about round termination without centralizing and
aggregating the models, reducing unnecessary communication and keeping the training
process aligned with the principles of Federated Learning.

3.3 Model Variance

In the context of FDA in the Federated Learning setting, understanding the variance
among the models maintained by different clients is crucial. The concept of weighted
model variance quantifies the dispersion or spread of the client models around the weighted
average model. At time t, it is defined as:
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K∑
k=1

nk

n

∥∥∥w(k)
t − wt

∥∥∥2
2

This measure provides insight into how closely aligned the clients’ models are at any
given time. A high variance indicates that the models are widely spread out, possibly
leading to a lack of cohesion in the aggregated model. Conversely, a low variance suggests
that the clients’ models are closely aligned, working collectively towards the shared ob-
jective. The weighted model variance plays a critical role in our approach, as it helps the
server to gauge the state of the training process and make informed decisions about round
termination and other aspects of the training process.

In the FL setting, the data distribution across clients is often highly skewed. As a
result, the models of clients with more data must be given more consideration than those
from clients with less data. This is why taking the weighted average is standard practice,
and the variance is no exception to this rule. The aggregated global model must align more
closely with the models from clients with more data and less so with models from clients
with less data. This approach ensures that the aggregated model reflects a meaningful
point in the parameter space, taking into account the underlying data distribution.

Theorem 1 The weighted model variance can be written as
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3.4 Round Terminating Condition (RTC)

Building on the concept of weighted model variance, we introduce a specific condition
to determine when to terminate a round in the Federated Learning process. This condi-
tion, referred to as the Round Terminating Condition, plays a vital role in enhancing the
efficiency of the training process.

We define Θ, a hyper-parameter of the FDA, at the beginning of each round; it may
change at each round. When the model variance exceeds this value, the FL round must
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3.5 Monitoring the Round Terminating Condition (RTC)

terminate. As long as it is below this threshold, local training on the clients continues.
The Round Terminating Condition (RTC) is expressed as:

K∑
k=1

nk

n

∥∥∥w(k)
t − wt

∥∥∥2
2
≤ Θ ⇔

Theorem 1

(
K∑
k=1

nk

n

∥∥∥∆(k)
t

∥∥∥2
2

)
−
∥∥∆t

∥∥2
2
≤ Θ (3.4)

3.5 Monitoring the Round Terminating Condition (RTC)

At this juncture, our focus shifts to devising a method for the server to monitor the
RTC, as defined in Equation (3.4). The challenge lies in adapting techniques from the
well-established field of distributed stream monitoring to the specific requirements of the
Federated Learning (FL) setting. To align with the general literature, we will restate
the problem of monitoring the RTC using the standard distributed stream monitoring
formulation. This alignment allows us to leverage optimal methods such as Functional
Geometric Monitoring [7].

We begin by defining the local state for each client k. The local state, denoted by
Sk(t), encapsulates information from client k for the monitoring task at time t:

Sk(t) ∈ Rp, k = 1, . . . ,K

The local state is updated arbitrarily, reflecting the client’s local data and computations.
Next, we introduce the global state, S(t), which represents the collective state of the

Federated Learning system at time t. It is defined as the weighted average of the local
states:

S(t) =

K∑
k=1

nk

n
Sk(t) (3.5)

The monitoring task aims to observe a threshold condition on the global vector, ex-
pressed as:

F (S(t)) ≤ Θ (3.6)

where F : Rp → R is a non-linear function.
While the above definitions may appear abstract, they will be concretized in subsequent

sections. We begin with the following theorem:

Theorem 2 Define Sk(t) =

[∥∥∥∆(k)
t

∥∥∥2
2

∆
(k)
t

]⊤
∈ Rd+1 and F (v, x) = v − ∥x∥22. The

condition F (S(t)) ≤ Θ is equivalent to the RTC.

Proof: Follows directly from Equation (3.4).

Unfortunately, the Functional Geometric Monitoring (FGM) method faces a challenge
in monitoring the RTC (as outlined in Theorem 2) with low communication cost. This
difficulty arises from the high dimensionality of Sk, where d + 1 could be in the order of
millions to billions. Such high dimensions are particularly common in widely used models
like deep neural networks, making the application of FGM in this context a complex task.
To mitigate this communication burden, we must apply dimensionality reduction to the
local model changes ∆(k) and identify an appropriate function to monitor based on the
chosen reduction.

However, this reduction in information within the local state vectors causes monitor-
ing the RTC to become approximate. A tradeoff emerges between the performance of
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3.5 Monitoring the Round Terminating Condition (RTC)

the monitoring task and the tightness of the approximation. In the following sections,
we will introduce three specific reduction methods for monitoring the RTC with mini-
mal communication. These methods, referred to as the ”naive,” ”linear,” and ”sketch”
approximations, provide different ways to approximate the local state vectors.

We now turn our attention to devising the general FDA algorithm for FL iterative
training with monitoring the RTC approximately. The details of the algorithm, which
integrates the concepts discussed earlier, are presented below:

Algorithm 5 FDA: FL training with Approximate RTC Monitoring [43]

Require: f(w): Stochastic objective function with parameters w ∈ Rd

Require: K: The number of clients indexed by k
Require: Θ: Monitoring threshold
Require: Sk(t): The local state for client k where Sk(t) ∈ Rp and p≪ d
Require: F (x): A function F : Rp → R such that F (S(t)) ≤ Θ implies the RTC
Require: η: Step size (learning rate)
Require: s: The number of local steps
Require: b: The local mini-batch size

Server executes:
1: initialize w1

2: for each round t = 1, 2, . . . do
3: Broadcast wt to all clients
4: repeat
5: for each client k = 1, . . . ,K in parallel do
6: Sk(t)← ClientTrain(k)
7: until F (S(t)) > Θ ▷ As per Equation (3.5)
8: for each client k = 1, . . . ,K in parallel do

9: w
(k)
t+1 ← (download the model of client k)

10: wt+1 ←
∑K

k=1
nk
n w

(k)
t+1

ClientTrain(k): ▷ Run on client k
11: B ← (Choose s batches of size b from Pk)
12: for each batch B ∈ B do
13: w ← w − η∇fB(w) ▷ As per Equation (2.1)
14: return Sk(t) to server

To clarify the context of Algorithm 5, the expression ”F (S(t)) ≤ Θ implies the RTC”
indicates that if the condition F (S(t)) ≤ Θ is met, then the RTC condition of Equation
(3.4) is also satisfied. For the sake of simplicity, we assume that Θ is fixed throughout
all rounds. While this assumption may not reflect all practical scenarios, it serves our
analytical purpose in this context. The algorithm primarily employs Stochastic Gradient
Descent (SGD) for optimization, but it can be easily adapted to accommodate other op-
timization methods. In the algorithm, we posit that all clients participate in every round.
This departure from the classic FL round definition, as presented in Section 2.4.3, serves
a specific analytical purpose. Ensuring uniform participation simplifies the discourse and
allows us to focus on the core mechanics of monitoring the Round Terminating Condition
(RTC). The approach facilitates exploration of specific aspects such as communication
efficiency and dimensionality reduction, without the complexity of client selection. Most
importantly, it serves as a basis for our methodological exploration, and the insights gained
can be extended to more generalized client selection strategies. It’s a deliberate modelling
choice that, within the scope of this work, does not compromise the validity or applicability
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3.8 Sketch Approximation

of our findings.

3.6 Naive Approximation

In the naive approach, we eliminate the ∆(k) vector from the local state, i.e., reduce its
dimension to zero [43].

Theorem 3 (Naive FDA) Define Sk(t) =
∥∥∥∆(k)

t

∥∥∥2
2
∈ R. Also, define F (v) = v. Then,

the condition F (S (t)) ≤ Θ implies the RTC.

Proof:

F (S (t))
(3.5)
= F

(
K∑
k=1

nk

n
Sk(t)

)
=

K∑
k=1

nk

n

∥∥∥∆(k)
t

∥∥∥2
2
≥

(
K∑
k=1

nk

n

∥∥∥∆(k)
t

∥∥∥2
2

)
−
∥∥∆t

∥∥2
2

(3.7)

We proved in (3.7) that F (S (t)) always overestimates the actual variance (Theorem 1).
Hence, the condition F (S (t)) ≤ Θ implies the RTC, completing the proof [43].

3.7 Linear Approximation

In the linear approach, we reduce the ∆(k) vector to a scalar,
〈
ξ , ∆

(k)
t

〉
∈ R where ξ is

any unit vector [43].
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(Cauchy–Schwarz) (3.9)

We proved in (3.8) that F (S (t)) always overestimates the actual variance (Theorem 1).
Hence, the condition F (S (t)) ≤ Θ implies the RTC, completing the proof [43].

A random choice of ξ is likely to perform poorly (terminate a round prematurely), as
it will likely be close to orthogonal to ∆t. A good choice would be a vector correlated to
∆t. A heuristic choice is to take ∆t0 , i.e., the change vector right before the current round
started. All nodes can estimate this without communication cost as the difference of the
last two models broadcasted by the server [43]:

ξ =
wt0 − wt−1∥∥wt0 − wt−1

∥∥
2
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3.8 Sketch Approximation

An optimal estimator for the square of the euclidean norm of ∆t can be achieved through
the utilization of AMS sketches, as detailed in [44]. We will commence by outlining the
fundamental characteristics and properties of AMS sketches.

Theorem 5 (Sketch Properties) An AMS sketch of a vector v ∈ Rd is an l ×m real
matrix Ξ:

sk (v) = Ξ =
[
ξ1 ξ2 . . . ξl

]⊤ ∈ Rl×m , where l ·m≪ d

The following properties hold for AMS sketches:

(i) Complexity: The l ×m sketch of a vector v ∈ Rd can be computed in O (ld) steps.

(ii) Linearity: Operator sk (·) is linear.

(iii) Estimation: The function M2 (Ξ) = median
i=1,...,l

∥ξi∥22 is an excellent estimator of the

euclidean norm of v (within relative ϵ-error):

(1− ϵ) ∥v∥22 ≤M2 (Ξ) ≤ (1 + ϵ) ∥v∥22 with probability at least (1− δ)

where l = O (log 1/δ) and m = O
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)
.

Theorem 6 (Sketch FDA) Define Sk(t) =

[∥∥∥∆(k)
t

∥∥∥2
2

sk
(
∆

(k)
t

)]⊤
∈ R1+l×m where

l = O (log 1/δ) and m = O
(
1/ϵ2

)
. Also, define F (v,Ξ) = v − 1

1+ϵM2 (Ξ). Then, the
condition F (S (t)) ≤ Θ implies the RTC with probability at least (1− δ).
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We proved in (3.10) that F (S (t)) overestimates the actual variance (Theorem 1) with
probability at least (1− δ). Hence, the condition F (S (t)) ≤ Θ implies the RTC with
probability at least (1− δ), completing the proof [43].

3.9 Synchronous strategy

The synchronous2 strategy serves as a comparative baseline. It can be understood as a
special case of the FDA algorithm (Algorithm 5) where Θ is set to zero3. Its structure
harkens back to traditional non-dynamic Federated Learning training algorithms.

2While the name ”synchronous” is used for this strategy, it’s worth noting that the previous methods
discussed are also synchronous in nature. The distinction here is in its similarity to the ”Synchronous
SGD” (Section 2.3.3), rather than its operational synchronicity.

3This renders operations regarding local/global states redundant, but is mentioned for clarity.
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Chapter 4

Experiments

In the Experiments section, we undertake an empirical investigation of the performance
of the three FDA strategies delineated in the preceding sections: ”naive” (Section 3.6),
”linear” (Section 3.7), and ”sketch” (Section 3.8) within the Federated Learning (FL)
setting. Our goal is to discern the relative merits and potential shortcomings of each
strategy not only in juxtaposition with each other but also in comparison to the baseline
”synchronous” strategy (Section 3.9).

4.1 Simulator

We have developed a Python package tailored for simulating the FDA algorithm (Al-
gorithm 5) in the Federated Learning (FL) setting with customizable hyper-parameters.
Built atop the TensorFlow framework, our package is designed for adaptability, allow-
ing the evaluation of diverse experiments on a variety of Convolutional Neural Networks
(CNNs). Although we initially crafted two specific CNNs for our experiments, the pack-
age’s architecture is receptive to the integration of other Neural Network designs in future
studies.

Emphasizing efficient execution, the package is highly parallelized, capable of simulta-
neously managing a spectrum of tasks—from a single simulation to orchestrating dozens
or even hundreds of simulations. The only limitation, in this case, tends to be the available
computational resources. With a focus on deployment flexibility, our package seamlessly
functions in both High-Performance Computing (HPC) environments and local clusters.
Beyond native support for SLURM execution [45] and integration with ”Dask” [46], the
package automatically utilizes all available CPU and GPU resources, ensuring efficient
computation regardless of the setup.

To further contextualize our experiments, we will first detail the architectures of the
two primary CNN models utilized: ”LeNet-5” and ”AdvancedCNN”.

4.1.1 LeNet-5

”LeNet-5”, introduced by LeCun et al. in 1998 [47], is one of the earliest Convolutional
Neural Network (CNN) structures. Its historical significance and relatively small number
of parameters (specifically 61.706) make it an attractive model for various applications,
particularly in digit recognition tasks.

The concise yet comprehensive design of ”LeNet-5” makes it an ideal choice for our
experiments, allowing us to explore the behavior of the FDA algorithm with a well-
established model.

Figure 4.1 illustrates the architecture of ”LeNet-5”, comprising multiple convolutional
and pooling layers followed by fully connected layers. The structure’s simplicity and
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Figure 4.1: LeNet-5 architecture

efficiency have contributed to its enduring relevance in the field of deep learning.

4.1.2 AdvancedCNN

The ”AdvancedCNN” is a custom-built Convolutional Neural Network (CNN) tailored for
our experiments. Comprising 2.592.202 parameters, this architecture allows us to test the
FDA algorithm in a more complex environment compared to LeNet-5. As depicted in
Figure 4.2, the structure consists of multiple convolutional and pooling layers, followed by
fully connected layers.
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Figure 4.2: AdvancedCNN architecture

While the figure provides a detailed view of the structure, it’s worth noting that two
dropout layers are included in the architecture but not shown in the diagram. These
dropout layers, with a rate of 0.5, are strategically placed after the dense layers to prevent
overfitting.

The ”AdvancedCNN” model offers a more intricate architecture, allowing us to inves-
tigate the FDA algorithm’s performance with varying levels of complexity. The inclusion
of dropout layers adds an additional layer of robustness to the model.
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4.1 Simulator

4.1.3 Training

Our experiments operate within the Federated Learning (FL) setting, leveraging the two
Convolutional Neural Networks: ”LeNet-5” (Section 4.1.1) and ”AdvancedCNN” (Section
4.1.2). To initialize these networks, we employ random Xavier (Glorot uniform) initializa-
tion [48].

Training utilizes the MNIST dataset [49], which we partition into approximately equal
segments for all participating clients, in alignment with the FL setting. In the context
of the Functional Dynamic Averaging (FDA) algorithm (Algorithm 5), we test the four
distinct techniques: ”naive” (Section 3.6), ”linear” (Section 3.7), ”sketch” (Section 3.8)
and the baseline ”synchronous” (Section 3.9). All of our experimental designs align with
the assumptions presented in Section 3.5. As a loss function we employ the cross-entropy,
a gold standard for classification endeavors.

For evaluation, we introduce and leverage the term epoch. Within our experiments,
an epoch refers to a single pass through the entire FL dataset, completed when all clients
have trained once on their whole local dataset. The training for each local client uniformly
adopts the Adam optimization method (Algorithm 2), maintaining parameters: η = 0.001,
β1 = 0.9, and β2 = 0.999.

A fundamental constant in our varied simulations is the data allocation to each client,
contingent, naturally, on the consistent number of clients. To illustrate, any simulation
involving thirty clients will share an identical dataset across all its tests. Beyond this
consistency, all other elements can be regarded as stochastic in nature: the shuffling of
data, the Glorot uniform initialization, and more. This design choice is intentional. Given
the extensive array of unique simulations, any variance from less ideal or highly favorable
initializations or shuffles becomes inconsequential.

4.1.4 Hyper-Parameters

The Functional Dynamic Averaging (FDA) algorithm (Algorithm 5) necessitates the spec-
ification of several hyper-parameters. These include the number of clients (K), the local
mini-batch size (b), the monitoring threshold (Θ), the strategy that defines Sk(t) and F (·),
and the number of local steps (s) which is consistently set to one throughout our testing.

The hyper-parameters and their corresponding values are summarized in Table 4.1.

Parameter Values

CNN name {”LeNet-5”, ”AdvancedCNN”}
FDA method {”naive”, ”linear”, ”sketch”, ”synchronous”}
K (Number of clients) {5, 10, 15, . . . , 60}
b (Local mini-batch size) {32, 128, 256}
Θ (Monitoring threshold) {0.5, 1, 2}
E (Epochs, as defined in 4.1.3) (Dynamic)

Table 4.1: Hyper-parameters used in the experiments. 1

In our experimental design, we define a simulation as the process of training in the FL
setting using a specific strategy, guided by a particular combination of hyper-parameters
as outlined in Table 4.1. The number of epochs for each simulation is predetermined, yet
it dynamically varies depending on a combination of factors. These include the specific
FDA strategy in use, the selected hyper-parameters like the monitoring threshold (Θ),
local mini-batch size (b) and the number of clients (K), as well as the choice of model

1For the baseline ”synchronous” strategy (Section 3.9), the hyper-parameter Θ is not applicable and
can be disregarded.
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between ”LeNet-5” and ”AdvancedCNN”. This adaptively chosen number of epochs serves
as the predetermined stopping criterion for our experiments.

The selection of hyper-parameters was not arbitrary or made without consideration.
Extensive exploratory testing was conducted to identify the most suitable values for in-
vestigation. This process, although vital to the experimental design, is beyond the scope
of this work and will not be detailed further.

By conducting comprehensive testing across all possible combinations of the above
hyper-parameters with both models and all four strategies, we were able to record a
wealth of results and useful metrics.

4.1.5 Data Analysis

Our experiments unfold in a simulated environment, a departure from a real-world Fed-
erated Learning context. While we model all pertinent costs, such as communication and
computation time, it’s essential to understand these as approximations. For clarity, when
transmitting a 32-bit float from clients to the server, we account for 4 bytes and vice versa.
Additionally, the local computation time, which is largely driven by backpropagation, is
empirically determined for each batch size, capturing the average time consumed, and this
measurement is then applied in our analyses based on the specific batch size used.

While our analysis isn’t precisely tailored to reflect real-world scenarios in their entirety,
it is meticulously crafted to ensure valid and equitable comparisons between the different
strategies.

For the computation of transmission times, we turn to the two communication models
detailed in Section 2.5.2. Specifically, the transmission time for a data amount C is
calculated using equations (2.4) for the Common channel communication, and (2.5) for
the Hypercube communication model. In both scenarios, we operate under the premise of
a channel bandwidth B set at 1Gbit.

In the subsequent Results section (Section 4.2), we grapple with the challenge of visu-
alizing and comparing the performance of various strategies across a multitude of hyper-
parameters. The extensive data generated from different simulations, each representing a
unique combination of hyper-parameters, makes creating a comprehensive and meaningful
comparison a complex task.

To aid this comparative analysis, we introduce the notion of an Accuracy Target. The
essence is to juxtapose different strategies based on the epoch in which they first attain
this accuracy target, assessing their efficiency through the lens of the unified time cost
(Equation (2.3)).

For illustration, imagine two simulations—one where the ”sketch” strategy meets the
accuracy target by the tenth epoch and another where the ”synchronous” strategy reaches
the same in merely the first epoch. Our comparison will focus on the specific epoch where
the target is first met, rather than subsequent epochs where the target may be repeatedly
achieved. It’s worth noting that some simulations might not reach the accuracy target,
and therefore, they will not be included at all.

We term this evaluative paradigm as the Filtered approach. It offers an unambiguous,
equitable assessment, spotlighting the efficiency of strategies in accomplishing the set
accuracy.

4.2 Results

In this section, we delve into the results, beginning with high-level overview plots that
encapsulate the essence of all conducted simulations. Then, we’ll transition to showcasing
select examples from the comprehensive collection of plots available in Appendix A
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4.2.1 LeNet-5
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(a) Accuracy Target is 0.96.
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(b) Accuracy Target is 0.965.
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(c) Accuracy Target is 0.97.
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Figure 4.3: Filtered (Section 4.1.5). Kernel Density Estimation plots offering a high-
level overview of the efficiency of different strategies. The density curves represent the
distribution of time costs incurred – as defined in (2.3) – at the first epoch where the
accuracy target is met. The height of the curve at any given point indicates the estimated
density of simulations with that specific time cost.
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Figure 4.4: Filtered (Section 4.1.5). Kernel Density Estimation plots offering a high-
level overview of the efficiency of various strategies. The density curves represent the
distribution of communication costs and CPU time costs incurred at the first epoch where
the accuracy target is met. The height of the curves at any given point indicate the
estimated density of simulations with that specific cost.
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Figure 4.5: Filtered (Section 4.1.5). Detailed view of individual simulations with a batch
size (b) of 32 and a monitoring threshold (Θ) set to 0.5. We illustrate the time cost
incurred at the first epoch where the accuracy target of 0.96 is met. Each dot within a
chain of line segments represents an individual simulation. For the exhaustive collection
of results, refer to Appendix A.A.
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Figure 4.6: Detailed view an individual simulation’s progression in time, using the ”sketch”
strategy, with a batch size (b) of 32 and a monitoring threshold (Θ) set to 0.5, after
reaching the accuracy target of 0.95. Each chain of line segments represents an individual
simulation. Each dot within a chain represents a specific epoch within the simulation,
capturing the time cost and accuracy at that moment. For the exhaustive collection of
results, refer to Appendix A.A.
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4.2.2 AdvancedCNN
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(a) Accuracy Target is 0.97.
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(c) Accuracy Target is 0.985.
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(d) Accuracy Target is 0.99.

Figure 4.7: Filtered (Section 4.1.5). Kernel Density Estimation plots offering a high-
level overview of the efficiency of different strategies. The density curves represent the
distribution of time costs incurred – as defined in (2.3) – at the first epoch where the
accuracy target is met. The height of the curve at any given point indicates the estimated
density of simulations with that specific time cost.
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Figure 4.8: Filtered (Section 4.1.5). Kernel Density Estimation plots offering a high-
level overview of the efficiency of various strategies. The density curves represent the
distribution of communication costs and CPU time costs incurred at the first epoch where
the accuracy target is met. The height of the curves at any given point indicate the
estimated density of simulations with that specific cost.
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Figure 4.9: Filtered (Section 4.1.5). Detailed view of individual simulations with a batch
size (b) of 32 and a monitoring threshold (Θ) set to 0.5. We illustrate the time cost
incurred at the first epoch where the accuracy target of 0.985 is met. Each dot within a
chain of line segments represents an individual simulation. For the exhaustive collection
of results, refer to Appendix A.B.
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Figure 4.10: Detailed view an individual simulation’s progression in time, using the
”sketch” strategy, with a batch size (b) of 32 and a monitoring threshold (Θ) set to
0.5, after reaching the accuracy target of 0.985. Each chain of line segments represents
an individual simulation. Each dot within a chain represents a specific epoch within the
simulation, capturing the time cost and accuracy at that moment. For the exhaustive
collection of results, refer to Appendix A.B.
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4.2.3 Discussion

In the previous section, we presented several density plots capturing the time cost incurred
at the first epoch where different accuracy targets are achieved by individual simulations
(Figures 4.3 and 4.7). Given the multitude of experiments, specifying hyper-parameter
details were omitted for clarity. Instead, we emphasized on the overall performance trends
across different strategies, including the baseline algorithm. Within each plot, we also
provided information indicating the average cost for each strategy, offering a summarized
view of their representative performance.

We begin by evaluating the performance of different strategies using the relatively
small ”LeNet-5” model. As depicted in Figure 4.3, all three FDA strategies exhibit simi-
lar performance across all accuracy targets. Consequently, we group them together for a
collective comparison against the ”synchronous” strategy, which follows a non-dynamic,
predetermined round termination typical of many Federated Learning algorithms. Table
4.2 encapsulates the improvement achieved by employing FDA strategies over the tradi-
tional ”synchronous” approach.

Accuracy Target
0.96 0.965 0.97 0.975

Common Channel Communication Model 5.5 6.8 8.2 9.4
Hypercube Communication Model 1.8 2.5 2.8 3

Table 4.2: ”LeNet-5”: Comparative Speedup of FDA Strategies vs. ”Synchronous” Strat-
egy

The observed speedup in our experiments is not only substantial but also exhibits a pat-
tern where the improvement correlates with the accuracy target. This behavior aligns with
our expectations, as discussed in Section 3.2. During the early stages of training, round
terminations occur frequently as clients diverge more easily, leading the FDA strategies
to prescribe regular round terminations. As training progresses and the models approach
higher quality, the impact of the FDA strategies becomes more pronounced. When train-
ing for the highest achievable accuracy, known to be approximately 0.98 for ”LeNet-5”,
we observe a speedup of 11 for the Common Channel Communication model and 3 for the
Hypercube communication model. These results hold particular promise in the context
of neural networks, where the phenomenon of ”diminishing returns” is well-known. As
a model nears its learning limits for a given data-set and architecture, each additional
increment in accuracy may necessitate a disproportionate increase in training time, tun-
ing, and resources. The FDA strategies, growing more effective as training advances, can
substantially enhance the accuracy limits of models in the FL setting, where the classic
non-dynamic approach might otherwise stumble.

To elucidate how the ”speedup” numbers were derived, consider the example of an
accuracy target equal to 0.96 using the Common Channel Communication model. The
calculation, derived from the informative text about the averages in Figure 4.3a, is given
by 99.67

(17.33+18.57+18.86)/3 ≈ 5.5.
Continuing our exploration, we shift focus to the ”AdvancedCNN” model. As with

the ”LeNet-5”, Figure 4.7 demonstrates that the FDA strategies maintain consistent per-
formance across all accuracy targets. Given this consistency, we once again group them
for a direct comparison with the ”synchronous” approach. Table 4.3 encapsulates the
improvement achieved by employing FDA strategies over the traditional ”synchronous”
strategy.

For both the ”LeNet-5” and the ”AdvancedCNN” models, our experiments revealed
a consistent trend: the advantage of FDA strategies generally amplifies as the accuracy
target escalates. Training for the highest achievable accuracy, which is roughly 0.99 for the
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Accuracy Target
0.97 0.98 0.985 0.99

Common Channel Communication Model 3 3.3 4.3 9.2
Hypercube Communication Model 1.6 1.8 2 3.1

Table 4.3: ”AdvancedCNN”: Comparative Speedup of FDA Strategies vs. ”Synchronous”
Strategy

”AdvancedCNN”, resulted in a speedup of 11 with the Common Channel Communication
model and 3 with the Hypercube communication model.

Upon examination of Figures 4.4 and 4.8, a counter-intuitive finding arises. In Feder-
ated Learning, it’s commonly understood that fewer round terminations typically translate
to longer convergence times. However, against this prevalent expectation, the FDA meth-
ods show nearly identical CPU time distributions when compared to the ”synchronous”
approach for achieving the same accuracy level. This suggests that while FDA methods
have fewer synchronizations, they may be offering a more efficient exploration of the pa-
rameter space. Conversely, the regular realignments in the ”synchronous” strategy might
confine exploration, limiting clients due to constant synchronizations and potentially ham-
pering their ability to locate optimal parameters effectively.

Building on the insights from Figures 4.4 and 4.8, we further detail the raw com-
munication costs required to attain the designated accuracy targets. Regardless of the
methodology for correlating communication costs with time expenditure (as detailed in
Section 2.5.2), the raw communication data is undeniable. Considering the similar local
computation times and the clear results from raw communication costs, the benefits of
employing the FDA methods in Federated Learning are evident.

Turning our attention to Figures 4.5 and 4.9, we can observe the trends of simulations
with specific batch size (b) and monitoring threshold (Θ). Across the board, the three
FDA strategies showcase consistent performance. These figures provide a snapshot; they
only hint at the comprehensive collection of results cataloged in Appendix A. Within
the Common Channel model, there emerges a distinct trend: the cost-effectiveness of
achieving a particular accuracy target largely remains unaffected by the selection of clients
for the simulation. Conversely, the Hypercube communication model, due to its efficient
communication capabilities, seems to favor deploying a greater number of clients – a trend
reflected in the time cost assessments.

Lastly, in Figures 4.6 and 4.10, we delve deeper, showcasing the progression of individ-
ual simulations in time after meeting a specific accuracy target. While these detailed plots
may seem complex at first glance, they effectively highlight the intricacies and challenges
of achieving convergence in the Federated Learning (FL) setting. Conclusive insights
from these plots are best derived by examining the comprehensive collection of results in
Appendix A. By offering this granular view, we aim to emphasize the depth of training
involved and the challenges faced in the FL setting.
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Chapter 5

Conclusion

The Functional Dynamic Averaging (FDA) offers a renewed approach to the traditional
Federated Learning (FL) training methodology, inspired by the principles of Functional
Geometric Monitoring (FGM). The central aim of this work was to explore the capabilities
of the FDA approximation algorithm in the FL setting. Through experimental evalua-
tions on two distinct CNNs, ”LeNet-5” and ”AdvancedCNN”, it was evident that the FDA
strategies consistently outperformed a traditional non-dynamic FL training method, rem-
iniscent of FedSGD with small local steps. The FDA approximation algorithm, in essence,
serves as a naive embodiment of the FGM protocol. Its demonstrated effectiveness not
only stands on its own merit but also suggests FGM’s potential to refine and enhance
the conventional FL iterative training process into a more agile, adaptable, and efficient
paradigm.

Building on this foundation, the next logical step is to delve deeper into the implica-
tions of the FDA algorithm in diverse contexts. One such avenue for future exploration
emerges from our foundational assumption: all clients participate in every FL round.
Analyzing the dynamics of various client selection strategies, both empirically and theo-
retically, will undoubtedly provide insights into FDA’s performance and adaptability in
diverse FL scenarios.

An additional layer of complexity is introduced when we consider the choice of opti-
mizer. In our work, we anchored the experiments on the Adam optimizer for local client
training. Yet, the relationship between FDA and a spectrum of optimizers, from SGD to
AdaGrad, remains uncharted territory. Exploring these interactions could further high-
light FDA’s versatility across different FL environments.

Lastly, an intriguing dimension worth pursuing stems from the choice to monitor the
variance of the models, a decision grounded in a wealth of empirical evidence. The poten-
tial of alternatives, such as cosine similarity, could provide valuable insights and pave the
way for future research directions in refining the traditional Federated Learning iterative
training process.

49



Appendices

50



Appendix A

Detailed Results

A.A LeNet-5
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Figure A.1: Synchronous Strategy. Each chain of line segments represents a simulation’s
progression in time for a specific number of clients (K), after reaching the accuracy target
of 0.95. Each dot within a chain represents a specific epoch within the simulation, cap-
turing the time cost and accuracy at that moment.
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Figure A.2: Naive FDA. Each chain of line segments represents a simulation’s progression
in time for a specific number of clients (K), after reaching the accuracy target of 0.95.
Each dot within a chain represents a specific epoch within the simulation, capturing the
time cost and accuracy at that moment.
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Figure A.2: Naive FDA. Each chain of line segments represents a simulation’s progression
in time for a specific number of clients (K), after reaching the accuracy target of 0.95.
Each dot within a chain represents a specific epoch within the simulation, capturing the
time cost and accuracy at that moment.
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Figure A.3: Linear FDA. Each chain of line segments represents a simulation’s progression
in time for a specific number of clients (K), after reaching the accuracy target of 0.95.
Each dot within a chain represents a specific epoch within the simulation, capturing the
time cost and accuracy at that moment.
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Figure A.3: Linear FDA. Each chain of line segments represents a simulation’s progression
in time for a specific number of clients (K), after reaching the accuracy target of 0.95.
Each dot within a chain represents a specific epoch within the simulation, capturing the
time cost and accuracy at that moment.
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Figure A.4: Sketch FDA. Each chain of line segments represents a simulation’s progression
in time for a specific number of clients (K), after reaching the accuracy target of 0.95.
Each dot within a chain represents a specific epoch within the simulation, capturing the
time cost and accuracy at that moment.
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Figure A.4: Sketch FDA. Each chain of line segments represents a simulation’s progression
in time for a specific number of clients (K), after reaching the accuracy target of 0.95.
Each dot within a chain represents a specific epoch within the simulation, capturing the
time cost and accuracy at that moment.

57



A.A LeNet-5

5 10 15 20 25 30 35 40 45 50 55 60
Number of clients

25

50

75

100

125

150

175

200
Ti

m
e 

Co
st

Common Channel Communication Model
linear
naive
sketch
synchronous

5 10 15 20 25 30 35 40 45 50 55 60
Number of clients

10

20

30

40

50

60

Ti
m

e 
Co

st

Hypercube Communication Model
linear
naive
sketch
synchronous

Batch Size : 32 ,  : 0.5

5 10 15 20 25 30 35 40 45 50 55 60
Number of clients

25

50

75

100

125

150

175

200

Ti
m

e 
Co

st

Common Channel Communication Model
linear
naive
sketch
synchronous

5 10 15 20 25 30 35 40 45 50 55 60
Number of clients

10

20

30

40

50

60

Ti
m

e 
Co

st

Hypercube Communication Model
linear
naive
sketch
synchronous

Batch Size : 32 ,  : 1.0

5 10 15 20 25 30 35 40 45 50 55 60
Number of clients

25

50

75

100

125

150

175

200

Ti
m

e 
Co

st

Common Channel Communication Model
linear
naive
sketch
synchronous

5 10 15 20 25 30 35 40 45 50 55 60
Number of clients

10

20

30

40

50

60

Ti
m

e 
Co

st

Hypercube Communication Model
linear
naive
sketch
synchronous

Batch Size : 32 ,  : 2.0

5 10 15 20 25 30 35 40 45 50 55 60
Number of clients

20

30

40

50

60

70

80

90

Ti
m

e 
Co

st

Common Channel Communication Model
linear
naive
sketch
synchronous

5 10 15 20 25 30 35 40 45 50 55 60
Number of clients

10

15

20

25

30

Ti
m

e 
Co

st

Hypercube Communication Model
linear
naive
sketch
synchronous

Batch Size : 128 ,  : 0.5

5 10 15 20 25 30 35 40 45 50 55 60
Number of clients

10

20

30

40

50

60

70

80

90

Ti
m

e 
Co

st

Common Channel Communication Model
linear
naive
sketch
synchronous

5 10 15 20 25 30 35 40 45 50 55 60
Number of clients

10

15

20

25

30

Ti
m

e 
Co

st

Hypercube Communication Model
linear
naive
sketch
synchronous

Batch Size : 128 ,  : 1.0

Figure A.5: Filtered (Section 4.1.5). Each dot within a chain of line segments represents
an individual simulation, capturing the time cost incurred after reaching the accuracy
threshold of 0.96. We illustrate the trends of the various methods in respect to the number
of clients (K).
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Figure A.5: Filtered (Section 4.1.5). Each dot within a chain of line segments represents
an individual simulation, capturing the time cost incurred after reaching the accuracy
threshold of 0.96. We illustrate the trends of the various methods in respect to the number
of clients (K).
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Figure A.6: Synchronous Strategy. Each chain of line segments represents a simulation’s
progression in time for a specific number of clients (K), after reaching the accuracy target
of 0.985. Each dot within a chain represents a specific epoch within the simulation,
capturing the time cost and accuracy at that moment.
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Figure A.7: Naive FDA. Each chain of line segments represents a simulation’s progression
in time for a specific number of clients (K), after reaching the accuracy target of 0.985.
Each dot within a chain represents a specific epoch within the simulation, capturing the
time cost and accuracy at that moment.
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Figure A.7: Naive FDA. Each chain of line segments represents a simulation’s progression
in time for a specific number of clients (K), after reaching the accuracy target of 0.985.
Each dot within a chain represents a specific epoch within the simulation, capturing the
time cost and accuracy at that moment.
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Figure A.8: Linear FDA. Each chain of line segments represents a simulation’s progression
in time for a specific number of clients (K), after reaching the accuracy target of 0.985.
Each dot within a chain represents a specific epoch within the simulation, capturing the
time cost and accuracy at that moment.
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Figure A.8: Linear FDA. Each chain of line segments represents a simulation’s progression
in time for a specific number of clients (K), after reaching the accuracy target of 0.985.
Each dot within a chain represents a specific epoch within the simulation, capturing the
time cost and accuracy at that moment.
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Figure A.9: Sketch FDA. Each chain of line segments represents a simulation’s progression
in time for a specific number of clients (K), after reaching the accuracy target of 0.985.
Each dot within a chain represents a specific epoch within the simulation, capturing the
time cost and accuracy at that moment.
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Figure A.10: Sketch FDA. Each chain of line segments represents a simulation’s progression
in time for a specific number of clients (K), after reaching the accuracy target of 0.985.
Each dot within a chain represents a specific epoch within the simulation, capturing the
time cost and accuracy at that moment.
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Figure A.11: Filtered (Section 4.1.5). Each dot within a chain of line segments represents
an individual simulation, capturing the time cost incurred after reaching the accuracy
threshold of 0.985. We illustrate the trends of the various methods in respect to the
number of clients (K).
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Figure A.11: Filtered (Section 4.1.5). Each dot within a chain of line segments represents
an individual simulation, capturing the time cost incurred after reaching the accuracy
threshold of 0.985. We illustrate the trends of the various methods in respect to the
number of clients (K).
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