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ABSTRACT 
 
During the past few years there has been an increasing interest in studying and 

understanding the neural mechanisms behind cognitive brain activity. This kind of 
knowledge is of great importance in many scientific areas such as clinical prognosis 
and diagnosis, brain computer interfaces design, etc. In this context, various 
methodological approaches have been suggested for the analysis of the EEG signal, 
which is one of the most widely used brain representations.  

This work explores two different approaches for the EEG analysis. In the first 
approach there is a case of ongoing EEG in which we use the power spectrum (PS) 
and linear coherence (LC) in order to investigate the differences in the channel 
activations for two mathematical thinking tasks. The goal in this case is to identify 
differences between the mathematical tasks through the measures of PS and LC and 
evaluate them through statistical testing. In the second approach there is a case of 
evoked EEG from a working memory experiment on which populations of control 
and dyslexic subjects participate. In this case, various synchronization measures are 
applied on the time-frequency (TF) maps of the corresponding independent 
components (ICs). Those measures were very important for the evaluation of the 
components and helped us recognize a number different cases for the generation of 
our ERPs. We also tried to identify differences between the two populations overall 
activation comparing the TF maps of the synchronizations measures and evaluate 
them through statistical testing. For both datasets, we had findings with statistical 
significance which also are in support and complementary to previous research.  
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ΠΕΡΙΛΗΨΗ 
 
Κατά τις τελευταίες δεκαετίες υπάρχει ολοένα αυξανόμενο ενδιαφέρον για τη 

μελέτη και κατανόηση των νευρωνικών μηχανισμών που βρίσκονται πίσω από τη 
νοητική εγκεφαλική δραστηριότητα. Τέτοιου τύπου γνώσεις είναι εξαιρετικά 
σημαντικές σε πολλές επιστημονικές περιοχές όπως η κλινική πρόγνωση και 
διάγνωση, ο σχεδιασμός διασύνδεσης υπολογιστή-εγκεφάλου και λοιπές συναφείς 
περιοχές. Σε αυτό το πλαίσιο, έχουν προταθεί ποικίλες μεθοδολογικές προσεγγίσεις 
για την ανάλυση του ηλεκτροεγκεφαλογραφήματος (ΗΕΓ), το οποίο αποτελεί μία 
από τις πιο διαδεδομένες εγκεφαλικές απεικονίσεις. 

Η εργασία αυτή διερευνά δύο διαφορετικές προσεγγίσεις ανάλυσης του ΗΕΓ. 
Στην πρώτη προσέγγιση έχουμε μια περίπτωση συνεχούς ΗΕΓ στο οποίο 
χρησιμοποιούμε το μέτρο της φασματικής ισχύος  και της γραμμικής συνοχής έτσι 
ώστε να διερευνήσουμε τις διαφορές στη δραστηριότητα των καναλιών για δύο 
πειράματα μαθηματικής σκέψης. Το ζητούμενο σε αυτή την περίπτωση είναι να 
αναγνωρίσουμε τις διαφορές μεταξύ των δύο μαθηματικών πειραμάτων με τη 
χρήση των παραπάνω μέτρων και να τις αξιολογήσουμε μέσω τεστ αξιολόγησης 
στατιστικής σημαντικότητας. Η δεύτερη προσέγγιση αφορά την περίπτωση 
προκλητού ΗΕΓ (ΠΔ) από ένα πείραμα μνήμης στο οποίο συμμετέχουν  μη 
παθολογικά και δυσλεκτικά άτομα. Σε αυτή την περίπτωση, χρησιμοποιούνται 
διάφορα μέτρα συγχρονισμού στο χρονοσυχνοτικό περιεχόμενο των προκυπτόντων 
ανεξάρτητων συνιστωσών. Τα μέτρα αυτά είναι ιδιαιτέρως σημαντικά για την 
αξιολόγηση των συνιστωσών και βοηθητικά στην αναγνώριση των διαφορετικών 
περιπτώσεων γένεσης των ΠΔ. Επιχειρήσαμε επίσης να αναγνωρίσουμε τις 
διαφορές μεταξύ των δύο πληθυσμών όσον αφορά τη γενική δραστηριότητα που 
εμφανίζεται στα ΠΔ συγκρίνοντας τις χρονοσυχνοτικές απεικονίσεις των μέτρων 
συγχρονισμού και αξιολογώντας τις χρησιμοποιώντας τεστ στατιστικής 
σημαντικότητας. Εν τέλει, και για τα δύο σετ δεδομένων είχαμε ευρήματα με 
στατιστική σημαντικότητα τα οποία είναι σε συμφωνία και συμπληρωματικά με 
προηγούμενα ερευνητικά ευρήματα.  
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PREFACE 
 
Here we will give a brief preview of the structure of this work. 
 
1. Electroencephalography: An introduction in the basic concepts of the 

electroencephalogram such as the electrodes, the artifacts and the frequency 
bands.  

2. Methods of EEG Analysis: A mathematical background on the main tools we 
used for the analysis of the EEG signal. 

3. Dataset 1: Methodology and Results: Presentation of the first dataset, 
description of the methodological approach we used and demonstration of 
our results. 

4. Dataset 2: Methodology and Results: Presentation of the second dataset, 
description of the methodological approach we used and demonstration of 
our results. 

5. Conclusions: A review of the thesis and suggestions for future work. 
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INTRODUCTION 
 
During the past few years there has been an increasing interest in studying and 

understanding the neural mechanisms behind cognitive brain activity. This kind of 
knowledge is of great importance in many scientific areas such as clinical prognosis 
and diagnosis, brain computer interfaces design, etc. On this direction the 
electroencephalogram (EEG) has been developed, which indicates all physiological 
and neurophysiological activity. Ongoing and event related potentials are the two 
main EEG representations studied and evaluated for the extraction of important 
information. In ongoing EEG abnormalities can be detected concerning seizures or 
other brain disorders by the studying and evaluation of long term recordings. 
Multiple trial evoked responses can also be encountered as ongoing EEG if general 
term characteristics need to be extracted from the EEG. The other useful EEG 
representation involves event related potentials (ERPs) which are in fact responses 
caused by an external or internal stimulus and give us valuable information on how 
the brain responds in different occasions such as cognitive, movement, visual and 
other tasks. In this context, various methodological approaches have been suggested 
in order to bring forward the interesting characteristics each EEG representation is 
associated with.  

In this work we explore two different approaches for the analysis of the EEG 
signal using two individual datasets each representing ongoing EEG or ERPs, 
accordingly. The first dataset (ongoing EEG) consist of EEG recordings during simple 
mathematical task performance. Power spectrum (PS) and linear coherence (LC) 
measures are used in this approach in order to investigate the differences in the 
channel activations for two mathematical thinking tasks. The goal in this case is to 
identify differences between the mathematical thinking tasks through the measures 
of PS and LC and evaluate them through statistical testing. This study resulted in the 
identification of topographic brain locations having statistical significant differences 
for the different tasks for both measures and correlations indication between the 
two measures. The second dataset (ERPs) concerns EEG recordings during a working 
memory experiment for a dyslexic and control group of subjects. In this case, various 
synchronization measures are applied on the time-frequency (TF) maps of the 
corresponding independent components (ICs). These measures are used for the 
evaluation of the components and recognition of a number of different cases for the 
generation of the ERPs. Furthermore evidence from time-frequency maps of the 
measures are evaluated via statistical testing in order to evaluate differences 
between the two populations. The results of this study concern the identification of 
various types of ERP activations using the measures’ results, as well as the 
identification of ERP components having significant differences for the two 
populations in specific frequency bands. To sum up, for both datasets, we have 
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findings with statistical significance which are also in support and complementary to 
previous research.   



11 Electroencephalography > 
 

1. Electroencephalography  
 

1.1. Introduction 

The first electroencephalographic recording (EEG) in humans, performed by the 
German psychiatrist Hans Berger in 1942, was greeted in skepticism by the scientific 
community. The recording was achieved by placing electrodes on the surface of the 
scalp and revealed the existence of rhythmic oscillatory activity.  

The conventional EEG shows cortical electrical activity and includes cortical 
manifestations of the sub cortical regions. More specifically, EEG oscillations are 
hypothesized to be generated by the summation of excitatory and inhibitory post-
synaptic potentials in cortical pyramidal neurons. Tens of thousands of 
synchronously activated pyramidal cortical neurons are assumed to take part in the 
generation of an EEG oscillation. The coherent orientation of their dendritic trunks 
(parallel to each other and perpendicular to the cortical surface) allows summation 
and propagation to the scalp surface. [1] 

 The EEG reflects the brain functionality and as such, it can be used from 
clinicians for the diagnosis of a variety of neurological problems and inspection of 
the brain integrity. The most commonly diagnosed pathological cases using EEG 
recordings include common headaches and dizziness, seizure disorders, stroke, brain 
tumors, epilepsy, multiple sclerosis, sleep disorders and movement disorders.[2] 

Even though the first attempt was to exploit spontaneous EEG oscillations, the 
recent research tendency focuses to EEG activity time-locked to the events such as 
event related potentials (ERPs). The ERP activity expresses brain activity coming from 
synchronously active populations of neurons which occurs before or after an internal 
or external to the subject event. Consequently, ERPs can be interpreted as neural 
manifestations of specific psychological functions.[1] 

The main purpose of this chapter is to review the EEG basic principles (electrode 
montages, frequency activity etc) and introduce ERPs, which are the brain’s electrical 
potentials mostly analyzed and discussed by the scientific community. 

 

1.2. Electrodes 

To allow comparisons among studies it is important to adhere to standardized 
electrode locations. The most widely used system for the placement of the 
electrodes on the head is the 10-20 international system proposed by Jasper (1958). 
The locations for the electrodes are determined in the following way: The reference 
points are the nasion (the delve at the top of the nose) and the inion (the bony 
prominence at the base of the skull on the midline at the back of the head). 
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According to this line, the first electrode is placed 10% of its distance and the others 
are arranged at 20% intervals (Figure 1.1).[2] 

The typical number of electrodes used in the 10-20 international system is 64, 
though some high-density (128 or 256 electrodes) or low-density (15 or 32 
electrodes) systems are also used depending on the application. As far as the names 
of the electrodes are concerned, each site has a letter to identify the lobe and a 
number to identify the hemisphere location. The letters F, T, C, P and O stand 
for frontal, temporal, central, parietal, and occipital lobes, respectively. The C letter 
is the only case that does not correspond to a lobe and is just used to describe the 
central area. The usage of letter z refers to an electrode placed on the midline. Even 
numbers and odd numbers refer to electrode positions on the right and the left 
hemisphere correspondingly. 

Since the EEG signal represents the voltage difference between two electrodes 
the result may have several different ways to be expressed according to the 
electrode pair selection. The electrode placement and the different combination 
patterns of the electrode pairs so as to measure the potential differences on the 
scalp constitute the electrode montage. The main EEG montage patterns are: 
referential, average reference and bipolar montage. Referential montage shows the 
potential difference between an active and a designated non-active electrode. 
Midline positions are often used because they do not amplify the signal in one 
hemisphere vs. the other. Another popular reference is linked ears, which is a 
physical or mathematical average of electrodes attached to either earlobes or 
mastoids. In the ideal case, the reference electrode should be electrically inactive, 
allowing the measurement of an absolute EEG value. Though there is no position in 
the human body following these specifications and as so the reference chosen 
contributes to the EEG recording. In the bipolar case each electrode potential 
represents the difference between two adjacent electrodes. Due to the fundamental 
issue of reference-dependency of EEG waveforms, reference-free transformations 
have been proposed for an unbiased assessment of EEG measures such as average 
reference. With the average reference approach EEG signals are re-derived against 
the average value across all electrodes. [1], [2] 

 

 
Figure 1.1: 10-20 system representation and electrode positions.[2]  
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1.3. Artifacts 
In most of the cases the raw EEG signal contains along with the desired content, 

various types of noise and artifacts. These artifacts can either be biological or 
environmental. The most common biological artifacts are: eye artifacts such eye 
blink and movement, muscle artifacts (EMG) and cardiac artifacts (ECG). 
Electrocardiogram (ECG), electrooculogram (EOG), and electromyogram (EMG) can 
be very important tools for the proper detection and removal of these artifacts. 
Environmental artifacts mainly derive from interferences from power lines (50/60 
Hz), additional electrical noise, poor subject grounding, and poor electrode contact. 
Though, the use of notch filters, proper subject grounding, and shielding of the 
recording system can even eliminate their influence.  

Removal of eye and muscle artifacts is particularly important, because these 
artifacts overlap in frequency and amplitude with the EEG. If it is not of great 
concern, the contaminated EEG part can be removed by cutting out the specific 
milliseconds. Though, one of the most effective and non-destructive ways to remove 
the artifacts from the EEG signal is independent component analysis (ICA). ICA works 
very well on the raw EEG separating the useful EEG components from the artifact 
components. [1] 

 

 

 
Figure 1.2: Raw EEG with eye artifact (first row) and its clean result after removing the infected 

component ICA gave (second row).  



14 Electroencephalography > 
 

1.4.  EEG Frequency Activity 
 
The EEG is mainly described by its patterns of rhythmic activity which is divided 

into bands according to the frequency. The cerebral cortex signal typically falls in the 
range of 1-40Hz. It has been observed that low frequencies (e.g., delta and theta) 
show large synchronized amplitudes, whereas high EEG frequencies (e.g., beta and 
gamma) show small amplitudes because of the high degree of desynchronization in 
the underlying neuronal activity. [1]  

The frequency bands can be categorized according to their range (from the 
lowest frequency range to the higher) as Delta, Theta, Alpha, Beta and Gamma. [2] 
There follows a quick review of the EEG frequency bands and their functional roles. 

 

1.4.1. Delta Band 
 
Delta is the EEG low-frequency rhythm ranging from 1 to 4 Hz. It is usually 

associated with healthy human sleep and neurological pathology. Tumors, brain 
lesions, anesthesia and sleep condition are some cases in which delta power has 
been reported to increase. [1] Also, in infants during the first two years of their life 
delta is found to be the predominant activity. Both delta and theta (low frequency 
bands) relent with increasing age in contrast to alpha and beta band. [1], [3] 

In oddball experiments it has been found that the amplitude of the delta 
response is considerably increased. Accordingly, it has been concluded that the delta 
response is related to signal detection and decision making. More specifically, in 
response to stimuli at the hearing threshold delta oscillations are observed in human 
subjects something that confirms the hypothetical role of the delta response in 
signal detection and decision making. [4] 

 

  
Figure 1.3: An original EEG signal (left figure) and its delta activity (right figure) isolated. 

 

1.4.2. Theta Band 
 
The EEG activity within the 4-8 Hz range is referred as theta activity. The power 

of theta is increased and alpha power lowered in subject with a variety of different 
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neurological disorders (not only demented subjects but also children with 
reading/writing difficulties) as compared to subjects of the same age. [3] 

Theta activity is prominently seen during sleep. Two different types of theta have 
been reported during wakefulness in adults. In the first one, theta seems to have a 
widespread distribution and is affiliated with drowsiness and impaired information 
processing. On the other hand, the second type of theta is located midline frontally 
(frontal midline theta activity) and it is associated with focused attention, mental 
effort, and effective stimulus processing. More specifically, theta synchronization has 
been connected to cognitive tasks where mental effort is required. This attitude 
relates theta to alpha in an opposite way. [3]  

Physiologically, the septo-hippocampal system has been strongly implicated in 
the generation of theta oscillations, although theta has also been recorded in 
numerous other limbic regions, including the anterior cingulate cortex (ACC), 
entorhinal cortex, and the medial septum, among others. [1] 

 

  
Figure 1.4: An original EEG signal (left figure) and its theta activity (right figure) isolated. 

 

1.4.3. Alpha Band 
 
The EEG activity ranging from 8 to 13 Hz is the so-called alpha band. In healthy 

adults alpha can easily be detected during relaxing states of wakefulness, although 
large individual differences in amplitudes are not uncommon. [1] The alpha rhythms 
show their greater amplitudes in posterior regions, and more specifically in posterior 
occipito-temporal and parietal regions, and can best be seen during resting periods 
in which the subjects closed eyes. [1], [3]  

Alpha can be greatly diminished or abolished by eye opening, sudden alerting, 
and mental concentration, a phenomenon known as alpha desynchronization. The 
alpha rhythm can also be attenuated when alertness decreases to the level of 
drowsiness. However this attenuation is often accompanied by a decrease in 
frequency. [1], [3] 

Although the physiological role of alpha rhythm remains largely unknown, there 
have been studies relating alpha synchronization to information processing. [3] 
Further complicating the physiological interpretation of alpha, emerging evidence 
indicates that different alpha sub-bands may be functionally dissociated, in particular 
with increasing task demands (e.g. waiting for a stimulus/task). [1] More specifically, 
in cognitive tasks lower alpha (8-10 Hz) desynchronization has been affiliated with 
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tasks that require increased attention. [3] On the other hand, upper alpha 
desynchronization seems to be associated with processing of sensory-semantic 
information, increased semantic memory performance, and stimulus-specific 
expectancy. [3] 

 

  
Figure 1.5: An original EEG signal (left figure) and its alpha activity (right figure) isolated. 

 

1.4.4. Beta Band 
 
Beta is the EEG rhythm raging from 13 to 30 Hz and typically topographically 

located symmetrically in the fronto-central location. Although classically considered 
as being related to sensorimotor functions, the functional role of beta-band 
oscillations at present seems to be least understood. It seems to replace alpha 
rhythm during cognitive activity, as it has been reported that it increases with 
attention and vigilance. According to the previous, beta increases generally reflect 
increased excitatory activity, particularly during diffuse arousal and focused 
attention. [1]  

A number of recent studies suggest that interactions in the beta-band 
predominate in tasks that strongly involve endogenous top-down processes. 
According to this, the most extreme case is probably provided by the processing of 
ambiguous stimuli where the percept is fully determined by endogenous factors, 
whereas stimulus features do not deliver any task-relevant information. [5] 

 

  
Figure 1.6: An original EEG signal (left figure) and its beta activity (right figure) isolated. 

 

1.4.5. Gamma Band 
 
Gamma EEG oscillations are low amplitude rhythms in the 30–100 Hz range. 

Gamma oscillations have been associated with attention, arousal, object recognition, 
top-down modulation of sensory processes, and perceptual binding (integration of 
information processed in distributed neurons and/or neural circuits and/or cortical 
areas into a coherent cognitive process/percept). [1], [6], [7] Various findings 
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indicate that gamma activity is directly associated with brain activation. It has been 
linked with various mental processes, including perception and learning. [1], [6], [7] 
There have been described dose-dependent decreases during anesthesia and 
systematic decreases throughout the sleep-wake cycle. [1]  

 

  
Figure 1.7: An original EEG signal (left figure) and its gamma activity (right figure) isolated. 

 

1.5. Event Related Potentials 
 
Aside from the conventional continuous EEG which represents the ongoing brain 

activity, another useful EEG that can be recorded is the evoked or event related 
potential (ERP). It is called so because of its arousal in response to a stimulus 
(auditory, visual or somatosensory, etc.).  

ERPs are very useful as they provide very interesting information on how the 
sensory processing is achieved in the brain. This information is very important as it 
gives diagnostic background to clinicians and/or researchers and can also be used for 
the design of brain computer interface (BCI) for different applications. In contrast to 
continuous EEG, ERPs are much smaller in amplitude and as such they are difficult to 
be distinguished. Therefore, there usually has to be a series of trials of the 
experiment with the stimulus to the subjects so as to have enough repetitions and 
be able to apply signal averaging method so as to improve the signal-to-noise ratio 
(SNR) of the recorded signals to allow interpretation. Averaging is one of the most 
common methods used for the discrimination of the ERP from the noise because the 
EEG aspects which are not time-locked are assumed to vary among the trials and so 
taking the average should reduce the noise potentials, rendering the ERPs. [1], [2], 
[8] 

For the averaging technique to be satisfactory, three assumptions have to be 
accomplished. The ERPs should be consistent across the trials, the noise (ongoing 
EEG) random and the ERP signals independent of the background noise. In this case, 
the SNR increases by the square root of the number of trials included in the average. 
In a typical experiment these assumptions may not be satisfied. For example there is 
usually reported a latency jitter from trial to trial, so that the average ERP will not be 
a representative of the actual ERP of any individual trial. To deal with these problems 
a number of pattern recognition techniques have also been applied to ERP analysis 
such as independent component analysis [9], principal component analysis and time-
frequency techniques [10], [11] (wavelets, Wigner-Ville distribution etc). [1] 
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The average ERP has many positive and negative peaks that can be subjected to 
various measurement operations. Positive and negative peaks in the ERP are 
typically described according to their characteristic scalp distribution, their polarity 
and latency. In fact, the labels given to the ERP peaks are subject to the polarity (P 
for the positive peak and N for the negative peak) and latency (50, 100, 300, etc.) of 
the peaks. [1], [8] 

The ERPs are usually described by their amplitudes and latencies of their 
characteristic waveform. Depending to the time the ERP components appear, they 
have a different nature. The ERP components which have latency below 10-12ms are 
called early ERPs (or 'far-fields') and they are associated with the response of the 
receptors and peripheral nervous system. As late ERPs (or 'near-fields') are 
distinguished the ERP components with latency greater than 50ms, and they are 
generated in the brain. In late ERPs there can be distinguished endogenous and 
exogenous components. The endogenous components are associated with internal 
cognitive purposes and the exogenous with the characteristics of the external 
stimulus. Endogenous components of 100-200ms latencies are usually fired by the 
attention to the stimulus. The later components at about 300ms (usually P300) seem 
are associated with recognition and discrimination between the stimuli. P300 
amplitude is considered as a manifestation of CNS activation that reflects attention 
to incoming stimulus, when memory representations are updated. P300 latency is 
dependent on the stimulus classification speed (gets smaller for known stimuli) and 
the latency is connected with individual cognitive capability.  [12] 

The generation of an ERP is associated with an integration of the activity of many 
neurons, as the electrical activity coming from single neurons is comparable small at 
the scalp. So as for this integrated activity to be expressed the neurons have to be 
synchronously activated as well as the electric fields generated by each particular 
neuron must have a specific orientation to give a cumulative effect detectable at the 
scalp. Taking in account these considerations, ERPs represent only a sample of the 
brain electrical activity. Thus, there are cases in which the ERPs do not show activity 
before or after the stimulus even though there occurs information processing in the 
brain organization. This is the reason why there has to be caution in the 
interpretation of the ERP results. If an experimental manipulation has no effect on 
the ERP we cannot conclude that it does not influence brain processes, in the same 
way that we cannot assume that two experimental manipulations that have the 
same effect on the ERP are not necessarily influencing the exact same processes. [1] 

 

1.6. Ongoing EEG 
 
One way to go in the EEG analysis is the ERP which we previously described. In 

the ERP analysis we need to have many trials so as to succeed reliable results (high 
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SNR). On the other hand, we have other EEG analysis directions, where many trials 
are not necessary, and even if we have them, we treat them as one by 
concatenation. The final EEG signal is called ongoing EEG. In particular, when we 
treat EEG as 'ongoing EEG', power spectrum and coherence behavior of the multiple 
electrodes are what we are interested in.  

Such analysis is very helpful for the clinicians and researchers because the brain 
topographic behavior is revealed under different kind of situations (cognition, 
attention, thinking etc.). Results of this analysis can also be used for the 
discrimination of pathological cases (Alzheimer, neurological disorders etc.). It has to 
be noted that aside from the definition we gave to the ongoing EEG, there are also 
other interpretations. In the case of the ERPs, ongoing EEG is conceptualized as noisy 
activity or else the activity of internal processes not associated with the experiment. 
From now on, any reference to the ongoing EEG will be associated with the 
definition presented here.  

 

 
Figure 1.8: a) The ongoing EEG, b) ERP.[8] 
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2. Methods of EEG Analysis 
 

2.1. Introduction 
 
The EEG signal is one of the most complicated signals to analyze, as it represents 

the activity of thousand of neurons responding to multiple processes.  In order to 
interpret, visualize and evaluate the content of an EEG signal, the use of different 
mathematical tools is necessary. Here we will give a brief presentation of some 
modern methods for the analysis of the EEG signal (wavelets, independent 
component analysis etc.) which are regularly used in the field, and which we also use 
in this work. 

 

2.2. Time-Frequency Representation 
 
Spectral analysis (usually achieved via Fast Fourier Transform or FFT) is 

considered to be a very important tool as it decomposes an EEG signal into a 
sinusoidal set of functions having different frequencies, amplitudes and phases. 
Consequently, the spectral analyses can provide valuable information about the 
frequency compositions of EEG oscillations. Nevertheless, spectral analysis cannot 
provide any evidence about when in time such frequency shifts occur, which is a 
drawback because the EEG signal is dynamic, time-varying, and often non-stationary. 

For these reasons, approaches allowing the investigation of transient changes in 
the frequency domain appear particularly important. In order to achieve this, many 
time-frequency methods have been developed such as short time Fourier Transform 
(STFT) which computes a time dependent spectrum the so-called spectrogram, 
Wigner-Ville transform (WVT) which is a principal member of the quadratic time-
frequency transformations and computes the so-called scalogram and wavelet 
analysis which recently is gaining ground in EEG analysis as it allows a more adaptive 
time-frequency approach affording flexible resolution. [1], [13], [14], [15] 

 

2.2.1. Short-Time Fourier Transform 
 
Short time Fourier Transform (STFT) also known as windowed Fourier Transform 

is an extension of the Gabor transform, in which we have time-frequency windows 
(or atoms) to create a window of time from which the spectrum of the local signal 
values is computed. Mathematically, this is written as: 
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𝑋�(𝜏, 𝜔) = � 𝑥(𝑡)𝑤(𝑡 − 𝜏)𝑒����𝑑𝑡

�

��

 (2.1)  

Where x(t) is the signal in time and w(t) is the window function. Commonly 
used window functions are the Gaussian and Hanning window functions. There 
follows a table giving the some widely used window functions. 

 

 
Table 2.1: Widely used window functions in STFT. Parameter a > 0 regulates the window width 

appropriate to the signal features of interest and parameter b > 0 normalizes the window function. [13] 

 
The time-frequency windows having smaller t-dimensions provide higher time 

resolution. On the other hand, those having tighter ω-dimensions provide higher 
frequency dimensions. So it is obvious that the smaller the cells are the better 
resolution is succeeded. Unfortunately there is an offset of how small the cell can be. 
The time-frequency window used in the STFT has fixed time duration and a fixed 
frequency resolution. More specifically, the uncertainty principle of Heisenberg 
states that: 
 𝜎�𝜎� ≥

1
2

 (2.2)  

This holds for the transformation pair 𝑔(𝑡) ↔ 𝐺(𝜔)  where 𝜎�, 𝜎�  are the 
squared variances of 𝑔(𝑡), 𝐺(𝜔). So, STFT can be interpreted as a filtering of signal 
𝑥(𝑡) by a filter bank in which each filter is centered at a different frequency but has 
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the same bandwidth (Figure 2.1, first column). In this case there occurs the problem 
that for both high and low frequency components, we have the same window 
length, and thus an unsatisfactory overall localization of events is achieved (Figure 
2.4, second row and column). More specifically, signals with both low and high 
frequencies or with abrupt are not conveniently analyzed by STFT. Choosing a 
window of variable length could be the solution to this problem. That way, a larger 
window could analyze long-time, low-frequency components while a shorter one 
could detect high-frequency, short-time components. That exactly is what wavelets 
transform (WT) came to offer. More specifically, wavelets are very popular in EEG 
analysis because of their accuracy in resolving resolve EEG waveforms into specific 
time and frequency components. [1], [13], [14], [15] 

 

  
Figure 2.1: The resolution cells for the STFT and the wavelets transform correspondingly. [14] 

 

2.2.2. Wavelets 
 
As we previously mentioned, modern transform techniques such as the wavelet 

transform are gaining an increasing importance in biomedical signals analysis (e.g. 
EEG). The wavelets transform (WT) is based on wavelets, which are small waves of 
varying frequency and limited duration, and thus represents a deviation from the 
traditional Fourier transform concept that has sinusoids as basis functions. Also, it is 
clear from the previous section that in contrast to the Fourier Transform (FT) which 
just shows a frequency representation, WT also contains temporal information of 
the signal. [13], [14], [16]  

A wavelet represents a basis function in continuous time and can serve as an 
important component in a function representation: any function 𝑓(𝑡)  can be 
represented by a linear combination of basis functions, such as wavelets. One of the 
most important characteristics in the WT is that all the wavelet functions are 
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generated from a single so-called 'mother' wavelet. Some of the most popular 
'mother' wavelets are the Morlet (most widely used in EEG case), Mexican hat and 
Meyer wavelets. An example of those is presented in the figure below. [13], [14], 
[16] 

 

   
Figure 2.2: Examples of 'mother' wavelets. The first, second and third column show the Morlet, Mexican 

hat and Meyer wavelets correspondingly. 

 
WT’s most important feature is its capability to analyze different frequency 

components of a signal with different resolution. This attribute requires the notion 
of functions at different scales. It is obvious that the small scales show the content of 
the signal with great detail and the large scales show basically coarse features. In 
such an analysis, we basically use translations and scaling (or dilations) of a basis 

function 𝜓(𝑡). A scaled version of a function 𝜓(𝑡)is the function 𝜓 ��
�

�, for any 𝑎 

scale. For 𝑎 > 1, there is obtained a function of lower frequency which can describe 
slowly changing signals. In contrast, for 𝑎 < 1 there is obtained a function of higher 
frequency which can detect fast signal changes. It should be noted here, that the 
scales are inversely proportional to the frequencies. [13], [14], [16] 

 

 
Figure 2.3: The wavelet function in time and frequency domain having, a) scale factor 0<a<1 and 
 b) scale factor a>1. [14] 
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Wavelet functions are localized in frequency in the same way sinusoids are. The 
only difference they have from sinusoids is that they are localized in time too. Each 
of the several families of wavelets has a characteristic shape. The basic scale for each 
wavelet family covers a specific, standard time interval. The time span, for wavelets 
of the same family gets wider for larger scales and tighter for smaller scales. 
Subsequently, wavelet functions can offer either good time resolution or good 
frequency resolution. Good time resolution is associated with tight, small-scale 
windows, while good frequency resolution is associated with wide, large-scale 
windows. In order to estimate what frequencies a signal has and when they emerge, 
the wavelet functions must be translated through the signal for each scale. The 
function: 
 𝜓 �

𝑡 − 𝑏
𝑎

� (2.3)  

is a scaled and translated version of the wavelet function 𝜓(𝑡), for any scale α and 
translation b. In the case where we have similarity between the signal, there is 
generated a large WT and in the opposite case, there is generated a small WT. The 
small scales correspond to high frequencies and the large scales to low frequencies. 
[13], [14], [16] 

So, the WT is produced by a translation and dilation or scaling of the 'mother' 
wavelet or prototype function 𝜓(𝑡). As such, according to the Fourier transform we 
have: 
 𝜓(𝑡) ↔ 𝛹(𝜔) 

and 
1

√𝑎
𝜓 �

𝑡
𝑎

� ↔ √𝑎𝛹(𝜔𝛼) 

 

(2.4)  

with α>0. From this equation it is obvious that as we rescale, the frequency 
increases by a certain quantity and at the same time the time interval decreases by 
the same quantity. Also the amplitude in frequency increases by a √𝑎 factor which 
means that we have greater amplitude for the low frequencies (greater a) than for 
the high frequencies (lower a). Subsequently, the uncertainty principle (equation 
2.2) holds. If we define the wavelet function as: 
 𝜓�,�(𝑡) =

1
√𝑎

𝜓 �
𝑡 − 𝑏

𝛼
� (2.5)  

The WT is given by the inner product: 
 

𝑊(𝑎, 𝑏) = � 𝑓∗(𝑡)𝜓�,�(𝑡)
�

��
𝑑𝑡 = 〈𝑓, 𝜓�,�〉 

(2.6)  

with 𝑎 ∈ 𝑅�and 𝑏 ∈ 𝑅. The mostly used wavelet functions are the Morlet wavelets 
which are basically define as the product of a complex exponential wave and a 
Gaussian envelope: 
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𝑤(𝑡, 𝑓) = 𝐴𝑒𝑥𝑝 �

−(𝑡 − 𝑡�)�

2𝑠� � 𝑒𝑥𝑝(2𝜋𝑖𝑓𝑡) (2.7)  

Morlet wavelets 𝑤(𝑡, 𝑓) have a Gaussian shape both in the time (around time 𝑡�) 
and in the frequency domain (around frequency 𝑓 ).[13], [14], [16] 

2.2.3. Wigner-Ville transform 
 
In contrast to STFT and WT, Wigner-Ville transform (WVT) does not depend on 

the windows functions. Instead it emerges out of the properties of the analyzed 
signal. The absence of a window in this transform seems to be the asset of WVT, as 
we do not have the window effect we had in the two other transforms. The WVT is 

the radial Fourier transform of the product 𝑥(𝜏 + �
�
)𝑥∗ �𝜏 − �

�
� given by: 

 
𝑋��(𝜏, 𝜔) = � 𝑥(𝜏 +

𝑡
2

)𝑥∗ �𝜏 −
𝑡
2

� 𝑒����𝑑𝑡
�

��

 (2.8)  

When τ is close to zero 𝑥(𝜏 + �
�
) and 𝑥∗ �𝜏 − �

�
� terms are coherent and their 

product contributes to the integral. On the case where τ is large, those terms are 
incoherent (in phase) and as such average to zero. [13], [14], [15] 

The Wigner-Ville distribution is quadratic in x, so if x is a sum of two individual 
signals a,b, the Wigner-Ville distribution of x contains an interference term 2ab in 
addition to the desired quantity (a2+b2). These interference terms result in an 
increased noise level of the Wigner-Ville distribution relative to the spectrogram. In 
practice, these interference terms can be dramatically reduced by smoothing in time 
and frequency. The result is the smoothed-pseudo Wigner-Ville transform (SPWVT) 
which is defined by: 
 

𝑋���(𝜏, 𝜔) = 𝑔(𝑡) ∗ � ℎ(𝑡)𝑥(𝜏 +
𝑡
2

)𝑥∗ �𝜏 −
𝑡
2

� 𝑒����𝑑𝑡
�

��

 (2.9)  

Where we have a convolution of g(t) with the integral in time. The function g(t) 
is the smoothing function in time and h(t) restricts the range of the integral in t. 
Restricting the range in t is equivalent to smoothing in frequency. The SPWVD 
reduces to the conventional Wigner-Ville distribution when h(t) = 1 and g(t) = δ(t).  

 

2.2.4. Example  
 
In order to compare the three TF representations we previously described, we 

made two simulations with three sinusoidal signals. In the first example we have the 
linear combination of three sinusoidals each having frequency content in different 
time instants than the others. That way, the linear combination of the three signals. 
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1 Frequency per time instant 3 Frequencies per time instant 

  
Short Time Fourier Transform (STFT) 

  
  

Smoothed-Pseudo Wigner-Ville Transform (SPWVT) 

  
Wavelet Transform (WT) 

  
Figure 2.4: STFT, WVT, and WT (Morlet wavelets) on two different linear combinations of sinusoidal 

signals. The first signal (1st column) has one frequency per time instant and the second three. 
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has a unique frequency per time instant. In the second example all three sinusoidals 
have frequency content in the whole time range, such that the linear combination 
gives three different frequencies per time instant. Those two examples and their TF 
transforms are given in the previous figure. 

In the first example where we have one frequency per time instant, all three TF 
transforms have satisfactory results. The WVT has sharper results in frequency, 
though it has inference terms in this case too. In the second example, only the WT 
has good results as it distinguishes successfully the three different frequencies. On 
the other hand, in STFT the 20Hz activity is preserved, though it mixes the 5Hz and 
10Hz frequency content in a way that they cannot be distinguished. Finally, WVT 
mixes the frequency content in a way that no frequency can be distinguished 
sufficiently. 

Taking these into consideration and also that EEG signal usually consists of many 
different frequencies; wavelets seem to be the proper TF tool to decompose an EEG 
signal to its frequency content. 

2.3. Independent Component Analysis 
 
One of the major problems in data analysis is that there is a large amount of data 

most of which does not contain important information. To a variety of scientists and 
engineers, the existence of high-dimensional datasets makes it is an important 
challenge to identify underlying statistical patterns that facilitate the interpretation 
of the data set using techniques from machine learning. Commonly, linear 
representations have several potential applications including the decomposition of 
objects into 'natural' components, redundancy and dimensionality reduction, 
biomedical data analysis, microarray data mining or enhancement, feature 
extraction of images in nuclear medicine, etc. [14] 

We assume that the data is given by a multivariate time series 𝑥(𝑡) ∈ ℛ�where 
𝑡 indexes time (or some other quantity). The definition of data analysis could be as 
finding a meaningful representation of 𝑥(𝑡)  as 𝑥(𝑡) = 𝑓�𝑠(𝑡)� , with unknown 
features 𝑠(𝑡) ∈ ℛ� and a mixing mapping 𝑓. In many cases 𝑓 is assumed to be 
linear, so we have the case: 
 𝑥(𝑡) = 𝐴𝑠(𝑡) (2.10)  
with mixing matrix 𝐴 ∈ ℛ�×�. Often white noise is added which results in: 
 𝑥(𝑡) = 𝐴𝑠(𝑡) + 𝑛(𝑡) (2.11)  

Noise (𝑛(𝑡)) can be absorbed by 𝑠(𝑡) increasing its dimension. The prospect of 
the decomposition in equation 2.10 is the feature signal 𝑠(𝑡) allows more insight 
into the data than 𝑥(𝑡) does.  
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Source signals 

    
Linear mixture of the source signals 

    
Sourse signal retrieval via ICA 

    
Figure 2.5: Source signals retrieval using ICA. The source signals are a sinusoidal signal, a tangent signal, a 
triangle signal and Gaussian noise correspondingly. 

 
Typically, there are two approaches in finding data representations the way 

equation 2.10 does and those are the supervised and unsupervised models. In the 
supervised models, we have additional information for the input-output pairs 

��𝑥(𝑡�), 𝑠(𝑡�)�, ⋯ , �𝑥(𝑡�), 𝑠(𝑡�)�� , which can be used for interpolation and 

learning of the map 𝑓 or the basis 𝐴 (regression). In the unsupervised models, often 
called blind source separation (BSS) since neither features or sources 𝑠(𝑡) nor mixing 
mapping 𝑓 are assumed to be known, we make weak statistical assumptions on 
either 𝑠(𝑡) or 𝑓/ 𝐴. [14], [17] 

Independent Component Analysis (ICA) belongs to the category of the 
unsupervised models and is of great interest, as it promises to reveal the driving 
forces which underlie a set of observed phenomena. These phenomena include the 
firing of a set of neurons, mobile phone signals, brain images such as functional 
magnetic resonance imaging (fMRI), stock prices, and voices. In each case, there 
needs to be measured a large dataset of signals, affected by a mixture of underlying 
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factors. These factors are the so-called source signals, which are of great importance 
and buried in a set of signal mixtures. The ICA is a statistical method which works in a 
way that the underlying source signals can be extracted from the aggregated signal. 
The sources revealed through ICA are maximally independent. A schematic 
representation of ICA is given in Figure 2.6 and a simulation with four signals 
(original, mixed and recovered via ICA) is given in Figure 2.5 . [14], [17] 

 

 
Figure 2.6: A schematic representation of the ICA procedure in a voice example. [18] 

 
Typically, ICA assumes a generative model where observations are assumed to be 

linear mixtures of independent sources. In contrast to principal component analysis 
(PCA) which only uncorrelates the data, ICA works with higher-order statistics to 
achieve independence. Independence is stronger than uncorrelatedness, as if two 
random variables are independent they are uncorrelated but the vice versa is not 
always true. In Figure 2.7 there is given an example of two independent source 
signals, for which PCA finds two corresponding orthogonal vectors in contrast to ICA 
which finds two independent vectors and is thus able to restore the original sources. 
The fact that PCA components are both spatially and temporally orthogonal is an 
unrealistic constraint for real EEG sources, which arise in domains (spatial regions) of 
partially synchronous activity in electrically oriented cortical neurons (and possibly 
glia). The scalp projections of actual brain EEG sources, are nearly always overlapping 
and non-orthogonal, contrary to the assumption of PCA. [14],[17],[19] 
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Figure 2.7: The differences between ICA and PCA.[20] 

 
In an ICA model, it is usually assumed that the source signals cannot be observed 

and also that they are non-Gaussian, statistically independent and that they are 
mixed with an unknown but linear mixing process. Consider an observed 
M−dimensional random vector denoted by 𝒙 = [𝑥�(𝑡), 𝑥�(𝑡), … , 𝑥�(𝑡)]�, which is 
generated by the ICA model: 
 𝒙 = 𝐴𝒔 (2.12)  
where 𝒔 = [𝑥�(𝑡), 𝑥�(𝑡), … , 𝑥�(𝑡)]� is an N-dimensional vector whose elements are 
the random variables that refer to the independent sources and 𝐴�×�  is an 
unknown mixing matrix. Typically M≥N, so that A is usually a full rank matrix. What 
ICA tries to succeed is the estimation of an unmixing matrix 𝑊�×� such that y given 
by: 
 𝒚 = 𝑊𝒙 (2.13)  
Is a good approximation of the true sources 𝒔. According to the linear algebra we 
have that: 
 𝒙 = 𝑊��𝒚 (2.14)  
where 𝑊�� is an estimation of the unknown mixing matrix A. It has to be mentioned 
that the ith column of 𝑊��gives the so-called (in EEG analysis) scalp topography of 
the corresponding component because it extracts channel weights for component i. 
Those topographies can be visualized in topography maps for which the source 
locations of independent components are assumed to be stationary, not changing in 
space during time of recording. An example of the raw EEG signal, the independent 
components and the corresponding topographies is given in the following figure. 
[14], [17], [20] 
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Figure 2.8: Raw EEG signal (a), its independent components (b) and the corresponding topographies (c). [20] 

 
The waveforms of the independent components are considered as the 

activations sources. It has to be mentioned that the only meaningful value is that of 
the raw EEG (scalp recording). We can multiply both topographies (the mixing matrix 
columns) and the independent components (estimated sources, rows of y) by -1 
without changing the value of the raw EEG. This creates the ambiguity in defining 
polarities of waveforms and topographies. So, neither the sign of the topography nor 
the sign of the waveform are meaningful in themselves. [19], [20] 

As we previously mentioned, in order to achieve ICA there needs to be used 
higher order statistics, generated using either non-linear functions or explicitly 
calculated. The most popular ICA approaches have been those algorithms with non-
linear functions to generate higher-order statistics. Most of these algorithms are 
based on maximum likelihood estimation, maximization of information transfer, 
mutual information minimization (maximize joint entropy), and maximization of non 
Gaussianity. The first three approaches are equivalent to each other, and they 
coincide with maximization of non Gaussianity when the unmixing matrix W is 
constrained to be orthogonal. This mathematical concept corresponds to the fact 
that ICA’s goal is to find a coordinate frame in which the data projections have 
minimal temporal overlap. Some commonly used ICA algorithms within are Infomax, 
FastICA and joint approximate diagonalization of eigenmatrices (JADE) which relies 
on explicit computation of fourth order statistical information. [14], [17], [19] 

Infomax, which is widely used in EEG analysis, is derived from the infomax 
principle which states that in an input- output system, independence at the output is 
achieved by maximizing the information flow that is the mutual information 
between inputs and outputs. This makes sense only if some noise is introduced into 
the system: 
 𝑿 = 𝑨𝑺 + 𝑵 (2.15)  
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where N is an unknown white Gaussian random vector. One can show that in the 
noiseless limit (|N|→ 0) Infomax corresponds to maximizing the output entropy. 
Often input-output systems are modeled using neural networks. A single-layered 
neural network output function reads as: 
 𝒚 = 𝛷(𝑩𝒙) (2.16)  
where 𝛷 = 𝜑� × 𝜑� is a componentwise monotonously increasing nonlinearity and 
B is the weight matrix. In this case, the entropy can be written as: 
 𝐻(𝒚) = 𝐻(𝒙) + 𝐸 �log |𝑑𝑒𝑡

𝜕𝛷
𝜕𝜝

� 
(2.17)  

where 𝒙 is the input vector. Then: 
 

𝐻(𝒚) = 𝐻(𝒙) + � 𝐸 �𝑙𝑜𝑔𝜑�(𝒃�
�𝒙)�

�

���

+ log |𝑑𝑒𝑡𝑩| (2.18)  

Since 𝐻(𝒙) is fixed, comparing this with the logarithmic likelihood function shows 
that Infomax directly corresponds to maximum likelihood, if we assume that the 
componentwise nonlinearities are the cumulative densities of the source 
components (i.e. 𝜑� = 𝑝�). [14], [17], [19] 

 

2.4. Measures of Evoked/Induced Activity 
 
One of the most important and studied brain responses is the so-called ERP. Its 

origins and the functional meaning of its components (N100, P300, etc.) have been 
greatly debated. The ERP analysis is basically based in two different approaches. The 
classical approach considers that the ERP response is generated by fixed latency, 
phase-locked responses [21]. Its underlying assumption implies that the interesting 
ERP response is evoked by the task and can be detected by averaging the so called 
evoked responses over trials, which increases the signal-to-noise ratio (SNR) in the 
average signal [7]. The second (alternative) approach, states that ERP and ongoing 
EEG oscillations may be closely interacting with each other, reflecting different 
aspects of the brain response to the event. In this direction, targeted experiments 
have revealed activities that are time but not phase-locked to the stimulus, 
suppressed in averaging operations. Furthermore, EEG non-phase-locked oscillations 
have been associated with a variety of different functions related to perception and 
different types of cognitive processes [3]. This form of non-phase-locked activity, 
referred to as induced response, is quantified and measured with techniques 
motivated by the time-locked nature of its envelope. 

The evoked and induced responses are concerned to have separate 
neurophysiological origins. This is the reason why they are assumed to have different 
functional roles [22] and nature [23] even though they may correlate with similar 
cognitive events. Evoked and induced oscillations may be considered as coupled 
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processes progressing in time, with different spatial localization of origin and 
partially overlapping frequency content [23]. Thus, the separation, identification and 
analysis of independent activities of different nature and origin are of primary 
importance in considering alterations in EEG recordings due to brain pathologies or 
in characterizing the neurophysiological origin of brain processes. 

Taking into consideration both scenarios about the ERP evaluation there have 
been developed measures for the quantization of phase locked and not phase-locked 
activity. There follows a brief presentation of these measures 

 

2.4.1. Spectral Energy 
 
As it was previously mentioned, the similarity or consistency of components 

across trials has been initially addressed in ERP studies through the average signal 
across trials or the spectral energy of the intertrial average. Based on that concept 
and going further to TF analysis using wavelets the first measure we use is the widely 
used spectral energy (SE) of the ERP.  

For the TF representation of a component Xi[k,n], with k and n indicating the 
frequency and time ticks, respectively, and i corresponding to the ith trial, the SE 
measure is defined as: 
 

𝑆𝐸[𝑘, 𝑛] = �� 𝑋�[𝑘, 𝑛]
�

�
�
 (2.19)  

In this measure there is estimated the average spectral energy. Nevertheless, 
spectral energy does not reflect synchronization across the trials, since a strong 
activity in just a few trials can induce significant spectral energy, but without 
providing any indication of synchronization among trials. There follows a figure 
showing all the procedure from the trials to the SE measure. 

This measure is expected to show activation in most phase-locked EEG scenarios. 
In the case of phase-locked EEG with phase resetting we expect to have SE activity 
both when the phase resetting is linked to a power increase (activity due to the 
phase-locking + increased power effect) and when the power does not change 
(activity due to the phase-locking effect).  Also, in the case of partial phase resetting, 
where in only part of the trials we have the phase resetting phenomenon, if those 
trials power contribution is efficient, the SE measure detects the activity. Finally, in 
the case where we have phase locked activity due to an additive activity (not phase 
resetting) which eventually results in power increase, here also the SE measure 
shows the relevant activity. 
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30 EEG trials in time 30 EEG trials in frequency 

  
The corresponding ERP (time) The ERP Fourier (frequency) 

  
The corresponding SE 

 
Figure 2.9: An extended  example of the EEG trials (in time and frequency), the evolving ERP (in time and 

frequency) and the corresponding SE. 

Averaging 

  FT 

  FT 

Wavelets 
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2.4.2. Phase Intertrial Coherence 
 
As we previously mentioned the SE measure can detect phase locked activity 

without the certainty of synchronization among the trials. For phase locked 
synchronization we use the phase intertrial coherence (PIC) measure, which 
considers phase alignment for the evaluation of component consistency among trials 
[24], [25]. This metric is defined as: 
 

𝑃𝐼𝐶[𝑘, 𝑛] =
|∑ 𝑋�(𝑘, 𝑛)� |
∑ |𝑋�(𝑘, 𝑛)|�

≤ 1 (2.20)  

with equality holding if and only if the trials resonate in phase. Thus, if all 'i' trials are 
phase-locked to the same phase shift at a certain frequency band, then the PIC 
measure will have large values at the corresponding frequency range. The PIC 
measure is a variant of the ITC measure given by: 
 

𝐼𝑇𝐶[𝑘, 𝑛] = �
1
𝑇

� �
𝑋�(𝑘, 𝑛)

|𝑋�(𝑘, 𝑛)|
�

�
� 

(2.21)  

Where T is the total number of trials [22]. More specifically, the PIC measure can be 

rewritten as: 𝑃𝐼𝐶[𝑘, 𝑛] = ∑ �� ��(�,�)
|��(�,�)|

� � |��(�,�)|
∑ |��(�,�)|�

���  where the first part relates to 

the ITC measure. In this form, PIC measures the uniformity of distribution of angles 
(first part) weighted by the relative amplitudes (second part), in contrast to the ITC 
that measures the uniformity of pure angles. Based on the study performed in [26], 
the ITC measure alters the distribution of TF wavelet coefficients (Xi[k, n]) from 
multiple trials in the complex plain, projecting them all to the unit circle with no 
respect to amplitude. Alternatively the PIC measure preserves the structure of the 
cloud of coefficients (amplitude and phase) performing just scaling, so that it 
measures uniformity on a mixed product term involving both the angle and 
amplitude of coefficients. Certain trials of little amplitude in a frequency band affect 
the ITC measure exactly the same as trials with significant activity (amplitude), but 
this is not true for PIC which is proportionally affected by the amplitude of phase-
locked trials. Thus, PIC is less sensitive to intertrial variations and forms a more 
stable measure than ITC for the discrimination of phase-locked oscillatory activity in 
ERP. 

The PIC measure just like the SE measure is expected to show the relevant 
activation in most phase locking scenarios. Only for the case of partial phase locked 
activity in the EEG trials it is not certain that the PIC measure will detect the activity, 
since we have phase-locking in a group of trials and not in all of them. 
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SE measure PIC measure ITC mesure 

   
Figure 2.10: An example on real EEG data of the three phase-locked measures: SE, PIC and ITC. 
  
In the figure above, we give an example of the three phase locked measures in 

order to compare and contrast their behavior. From the SE measure we see that the 
activation (~1) is mainly gathered from -100 to 300 ms in the low frequencies (<3Hz) 
and there is a smaller activation (almost half the main activation ~0.5) between 0 to 
200ms in the 3 to 5Hz frequency region. On the other hand, the two synchronization 
measures show the main activation in the opposite way SE does which means that 
trials are more synchronized in theta than in delta. Comparing the two 
synchronization measures (PIC and ITC), we see that ITC which does not take into 
consideration the amplitude but only the phase synchronicity, has a greater 
difference in theta synchronization compared to delta than the PIC measure which 
also takes the amplitude into consideration. 
 

2.4.3. Phase-shift Intertrial Coherence 
 
Phase-shift intertrial coherence is a measure used for the evaluation of the non 

phase locked activity. What PsIC metric actually does is the utilization of the signal’s 
energy instead of its value so that the phase effect is eliminated. More specifically, in 
case of the same basic signal with different shifts from trial to trial, there is a 
different exponential (phase) term remaining in the TF wavelet coefficients of each 
trial which is not helpful when we want to detect non-phase locked activity. So, for 
phase-shift responses, this metric eliminates the complex phase effects and 
compares the intertrial content of the signal based only on its energy in specific 
frequency bands. The definition of PsIc is given by: 
 

𝑃𝑠𝐼𝐶[𝑘, 𝑛] =
∑ |𝑋�(𝑘, 𝑛)|�

�

𝑚𝑎𝑥�,�(∑ |𝑋�(𝑘, 𝑛)|�
� ) ≤ 1 (2.22)  

where equality implies the same magnitude for all trials, even though they may have 
different phase. From this formula we understand that when we have persistent 
power within the trials the PsIC measure will give results close to 1. The 
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disadvantage of this measure is that also phase locked trials with coherent powers 
could have high PsIC, so we cannot be sure to characterize the underlying activity.  

It should be noted here that PsIC due to the low temporal resolution at low 
frequencies (delta band), the wavelet coefficients present little variation in 
amplitude, so that the specificity of the measure decreases. Thus, the reliability of 
this measure at very low frequencies must be carefully handled, similar to the cone 
of interest for the energy analysis of WT coefficient [27]. 

 

2.4.4. Event Related Synchronization/Desynchronization 
 
The ERD/ ERS measure represents a mean increase or decrease in event- related 

power. It is defined as the percentage of increase or decrease in mean trial power 
from a mean power baseline (usually the pre-stimulus mean power), time-locked to 
an event [28]. There is an assumption behind this measure implying that there are 
brain sources which are inactive in the pre-stimulus period and triggered by the 
event. In other words, it is assumed that the ongoing brain processes, pre-stimulus, 
are unaffected by the event and retain the same state in all trials. For the definition 
of ERD/ERS we give the following formula: 
 ERD/ERS[k, n] =

𝐴[𝑘, 𝑛] − 𝑅[𝑘]
𝑅[𝑘]

× 100 (2.23)  

where A[k,n] is the power of the kth and nth frequency and post-stimulus time 
instant correspondingly and R[k] is the power in frequency k averaged in all the pre-
stimulus time instants. It is obvious that in the non phase locked scenarios where we 
have either power increase or decrease ERD/ERS is expected to detect the activity 
showing the associated synchronization or desynchronization correspondingly. Here 
it has to be noted that a phase locked scenario with power increase is also expected 
to give activation in ERD/ERS measure if it is comparable or greater that the 
corresponding non phase locked activity.  
 

 
Figure 2.11: An example on real EEG data of the two non phase locked measures: PsIC and ERD/ERS. The 

black line in 0ms shows where the stimulus is located in time. 
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In the figure above we give an example of the two measures used for the 
detection and evaluation of the non phase locked activity. In the PsIC measure, there 
seems to be a profound activity in the low frequencies (delta) and in the frequencies 
7-10Hz (low alpha). We have previously marked that delta activity given by PsIC has 
to be encountered with skepticism and in combination with ERD/ERS results. The 
ERD/ERS measure mainly shows a ~60% power increase in alpha (0-300ms and 700-
900ms postimulus) in accordance with PsIC which shows power synchronization 
among trials in the same region of interest. There is also ERD/ERS detects a 
desynchronization activation (~40%) in 300-700ms in theta (between 3-5Hz) which 
could be implied by PsIC because we see that the pre-stimulus power 
synchronization in theta is greater than postimulus in the region of interest. 
 

2.5. Tests of Statistical Significance 
 
A statistical significance/hypothesis test is a method of making decisions using 

data, either from a controlled experiment or an observational study. In statistics, a 
result is called statistically significant if it is unlikely to have occurred by chance 
alone, according to a pre-determined threshold probability, the significance level. In 
order to solve any statistical problem there have to be defined some basic aspects as 
the followings. 

A very important feature in any statistical investigation is the population. We 
define as population, the aggregate of evidence (animate or inanimate objects) 
under study. The number of units in any population, known as population size, can 
be either finite or infinite.  Any finite, small subset of units of a population is called a 
sample and the number of units in a sample is called sample size. Every member of a 
sample is called sample unit and the numerical values of such sample units are called 
observations. If each unit of population has an equal chance of being included in it, 
then such a sample is called random sample. The process of selecting a sample is 
known as sampling. Statistical measures such as mean, standard deviation, variance 
etc. calculated based on the population are called parameters. [29], [30]  

The process of ascertaining or arriving valid conclusions to the population based 
on a sample or samples is called statistical inference and has two major divisions: 
estimation and testing of hypothesis. In the case of estimation, the parameters are 
estimated using their respective statistics based on their samples. On the other 
hand, hypothesis testing begins with an assumption or hypothesized value that we 
make about the unknown population parameter.  Then using the statistics coming 
from the data, we test whether the assumption made about the parameter is valid. 
The acceptance or rejection of the hypothesized value for the population parameter 
is not intuitive but based on the statistical test or test of significance which 
determines whether the difference between the hypothesized value and the actual 
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value of the sample statistic or the difference between any set of sample statistics is 
significant. [29], [30] 

The statistical tests for testing the parameters of the population are called 
parametric tests. In the parametric tests we have the concept of the null hypothesis 
usually denoted by H0 which refers to a tentative statement about the unknown 
population parameter. Any hypothesis, which is complementary to the null 
hypothesis, is called an alternative hypothesis. The null hypothesis is to be tested, for 
possible rejection under the assumption that it is true. Another very important 
aspect in statistical tests, is the level of significance. It has to be noted that there is 
no standard or universal level of significance for testing hypotheses. Nevertheless, 
five or one percent significant levels are very commonly used. The usage of a higher 
level of significance leads to a higher probability of rejecting the null hypothesis. 
[29], [30] 

A region corresponding to a statistic t in the sample space S which amounts to 
rejecting of H0 is termed as region of rejection or critical region. If ω is the critical 
region and t is a statistic based on a sample of size n then 𝑃(𝑡 ∈ 𝜔|𝛨�) = 𝛼. That is, 
the null hypothesis is rejected, if the observed value falls in the critical region. The 
boundary value of the critical region is called as critical value Zα. Concerning that Z is 
the observed value of the test statistic we have arrive at the following conclusions. If 
𝑍 ≤ 𝑍� then there is no evidence against the null hypothesis H0 and thus we accept 
it. In the opposite case we assume there is evidence against the null hypothesis H0 
and thus we reject it and we accept the alternative hypothesis. [29], [30] 

There are many different statistical tests, each testing different parameters such 
as, the distribution, the mean, the variance, the median or other statistical aspects of 
the data. The appropriate test for each situation depends on the assumptions the 
test requires for the dataset which have to be satisfied. The parametric tests take 
use of statistical parameters of the data, while non-parametric tests do not need 
such evidence because they instead use medians, ranks and other methods to 
evaluate the data. 

 

2.5.1. One-way Analysis of Variance 
 
One-way analysis of variance (ANOVA) is a widely used parametric statistical test, 

developed by the great British statistician R. A. Fisher in the 1920s. It actually is an 
inferential method for comparing several means of different groups. ANOVAs basic 
requirements involve, independent observations, normally distributed data in each 
group, and equal variances for all groups and difficult to be found in raw biomedical 
data. Even though the method compares populations’ means, it is called analysis of 
variance because the test statistic compares two estimates of variance. The first uses 
the variability between the different groups and the second uses the variability 
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within the groups. The basic concept of ANOVA is that the variability between groups 
mean is large and the variability within the groups is small. The F-test is used for 
comparisons of the components of the total deviation. For example, in one-way 
ANOVA, statistical significance is tested for by comparing the F test statistic: 

 
 F =

Between groups estimate of variance (BGEV)
Within groups estimate of variance(WGEV)

 (2.24)  

 
This is called the analysis of variance F statistic, or ANOVA F statistic for short. 

The degrees of freedom for the between groups estimate of variance is N-g where N 
is the total sample size and g is the number of groups. The BGEV is given by: 
 

BGEV =
∑ (n� − 1)s�

�
�

N − g
 (2.25)  

Where N is the sum of the populations’ samples, i is the group ni is the population of 
group i and si2 is the estimate of σ2 using only the group i. si2 is given by: 
 

s�
� =

∑(y − y��)�

n� − 1
 (2.26)  

Where y are the observations of group i and y��  is the mean of this group 
observations. Finally, the degrees of freedom for the between groups estimate of 
variance is g-1 and the WGEV formula is given by: 
 

WGEV =
∑ n�(y�� − y�)�

�

g − 1
 (2.27)  

2.5.2. Kruskal-Wallis Test 
 
A non-parametric version of ANOVA is the Kruskal–Wallis test. It does not require 

the data to be normally distributed, but just them to follow a continuous distribution 
in each of the groups and, the samples to be independent. The same hypotheses as 
in the ANOVA case are tested, but now the median values of the groups are 
compared. It should be noted that the non-parametric test is more reliable because 
it is dependent on fewer assumptions, and thus more trust should be placed on its 
results. The Kruskal–Wallis test starts by substituting the rank in the overall data set 
for each measurement value. The smallest value gets a rank of 1, the second-
smallest gets a rank of 2, etc. Tied observations get average ranks, so for example if 
there were two identical values occupying the tenth and eleventh smallest places, all 
would get a rank of 10.5. The sum of the ranks is calculated for each group, then the 
test statistic, H, is calculated. H is given the following formula:  
 

H = �
12

N(N − 1)
�

R�
�

n��
� − 3(N + 1) (2.28)  

Where N is the sum of the populations samples, i is the group, Ri the sum of 
ranks for group i and ni is the population of group i. That basically represents the 
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variance of the ranks among groups, with an adjustment for the number of ties. H is 
approximately chi-square distributed, meaning that the probability of getting a 
particular value of H by chance, if the null hypothesis is true, is the P value 
corresponding to a chi-square equal to H and the degrees of freedom is the number 
of groups minus 1. If the sample sizes are too small, H does not follow a chi-squared 
distribution very well, and the results of the test should be used with caution. Each 
group should contain more than 5 samples in order not be considered too small. 
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3. Dataset 1: Methodology and Results 
 

3.1. Introduction 
 
The brain mapping of activity during task performance gives important 

information about the organization of the brain, which can be exploited for clinical 
purposes [31], [32], [33] such as disease diagnosis or for application developments as 
in brain computer interfaces [34]. Towards this direction many studies have been 
published considering EEG activation under specific tasks. Simple 2-d brain mapping 
is often used for qualitative comparisons. This essentially reflects a mapping of EEG 
amplitude distribution on a 2-D circular head map, where the electrodes are 
projected and the areas among electrodes are filled up by means of spatial 
interpolation. In order to quantify the activity and provide objective comparisons 
among tasks, several measures of activation (such as band power and electrode 
synchronization) and statistical comparison test (Kruskal-Wallis test) have been 
exploited. Comparison among different tasks has also been investigated by other 
studies either among control population [35], [36], [37] or between a control 
population and pathological subjects [33], [38] . 

The main goal here is to consider multiple measures for differentiation of brain 
activity during the performance of different tasks. In particular, we consider the 
power spectrum at different bands and its localization in brain regions, as well as the 
dynamic coherence of these brain regions during the performance of each task. The 
derivation of significant differences is then achieved through between-task 
comparisons with appropriate statistical measures. The development of this chapter 
proceeds as follows. Firstly, the experimental protocol and the analysis tools are 
presented. Then, we have the presentation of the experimental results in terms of 
activation and synchronization of brain lobes. The results are discussed and 
compared with other relevant references, which also concludes this chapter. 

 

3.2. Experimental Procedures 

3.2.1. Participants 
 
In this experiment, there participated 25 graduate or postgraduate students (14 

male, 11 female) of the medical school of Iraklion/Greece who voluntarily 
participated in the current study. Their age ranged from 19 to 32 years. The study 
was approved by the local ethical committee and written informed consent was 
obtained from each participant. 
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3.2.2. EEG Recording and Test Description 
 
The EEG signals were recorded using 30 electrodes according to the international 

10/20 system. The electrode positions used are: FP2, F4, FC4, C4, CP4, P4, O2, F8, 
FT8, T4, TP8, PO8, Fz, FCz, Cz, CPz, Pz, Oz, FP1, F3, FC3, C3, CP3, P3, O1, F7, FT7, T3, 
TP7, PO7, and A1 +A2 as reference. Vertical and horizontal eye movements and 
blinks were monitored through a bipolar montage from the supraorbital ridge and 
the lateral canthus. A connected ear- lobe electrode (A1 + A2) was used as reference 
electrode. The A1 and A2 electrodes were positioned on ear-lobed far from the scalp 
electrodes (and far from muscles). The signals were filtered online with a 0.1–200 Hz 
band pass and digitized at 500 Hz. 

During the acquisition, the subjects were performing one of the two arithmetic 
tasks: Simple addition of one digit numbers (fundamental task for students) i.e. 3 + 2 
and comparison of three digit numbers i.e. 123 vs. 232. There was also recorded a 
control EEG during a passive viewing of simple digit numbers (control task). 1 person 
was discarded from the control task and another person was discarded from the 
compare task because of incomplete data (1 channel was problematic). Stimuli were 
presented on an LCD screen located in front of the participants at a distance of 
approximately 80 cm, subtending 2–4◦ of horizontal and 2– 3◦ of vertical visual 
angle. The recorded EEG was under inspection on a PC screen and the recording was 
stopped when there were pieces of proper length free of artifacts. The EEG signals 
were further inspected offline for artifacts (especially eye artifacts) using EEGLAB 
tools such as ICA for component rejection and backprojection to the channels, or 
rejection by eye of continuous part of the EEG signal. Also the EEG signal was re-
referenced to an average reference instead of the default common reference using 
the tools of EEGLAB, since, this selection could influence significantly the subsequent 
computations of power spectrum and coherence [39], [40]. 

 

3.2.3. EEG Analysis 
 
The EEG signals (~8 sec. duration) were transformed from the temporal domain 

to the time-frequency domain by means of the wavelet transform using the complex 
Morlet wavelet functions. The WT has developed into an important tool for the 
analysis of time series that contain non-stationary activity at multiple different 
frequencies such as the EEG signal. Instead of frequencies, the WT employs the 
alternative notion of scales, resulting to the so called time-scale representation [41]. 

The Complex Morlet Wavelets are denoted as 𝑊�(𝑠), where t denotes the 
discretized-time (sample) number and s indicates the scale. In our analysis we use 
the power spectrum |𝑊�(𝑠)|�  for each EEG signal. There exists a concrete 



44 Dataset 1: Methodology and Results 
 

relationship between scales and equivalent Fourier frequencies, often known as 
pseudo-frequencies. The correspondence of the scales to the frequency-bands used 
in our analysis is demonstrated on Table 3.1 (a total of 56 scales). 

 
Band Frequency (Hz) Scales 
Delta 1-4 37-56 
Theta 4-8 27-36 
Alpha 8-13 20-26 
Beta 13-30 8-19 

Gamma 30-45 1-7 
Table 3.1: The matching of frequency band to wavelet scales. 

 
After the EEG is zero-mean normalized for each task (control, addition and 

comparison), channel and frequency band, we estimate from the power spectrum 
the average power spectrum for all the participants. The estimation of the power 
spectrum through wavelets has also been used in other studies [37]. 
 

𝑃𝑆����(𝑓) =
1
𝑃

� �
1

𝑚𝑠 − 𝑙𝑠
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1
𝑇

�|𝑊�(𝑠)|�
�

���

�
��

����

�
�

���

 (3.1)  

where 𝑓 is the frequency band, 𝑠 is the wavelet-scale (𝑙𝑠 and 𝑚𝑠 are the scales 
corresponding to the appropriate frequency band), t is the time instant (T is the last 
time instant) and p corresponds to the participant index (P is the number of 
participants).  

 After estimating 𝑃𝑆���� for every electrode, band and task we subtract pair 
wisely all the different combinations of the PSs of the different tasks (a total of 3 
combinations (e.g. 𝑃𝑆����������� ���� − 𝑃𝑆������������ ����) for the corresponding electrodes 
and bands so as to detect significantly different power differences (via Kruskal-Wallis 
significance test) in the brain activation between the different mathematical thinking 
tasks and in contrast to a control condition. 

 Different groups of electrodes were selected so as to be representatives of 
the different brain regions taking also representing the left and right hemisphere. 
This was important in order to reduce the degrees of freedom in the non-parametric 
analysis of PS and since entire cortical regions are assumed to function in a similar 
manner. We use non-parametric analysis because our data do not follow a Gaussian 
distribution. The considered groups of electrodes are: Frontal left (FL): FP1, F3, F7, 
FC3, FT7, Frontal right (FR): FP2, F4, F8, FC4, FT8, Temporal left (TL): FT7, T3, TP7, 
Temporal right (TR): FT8, T4, TP8, Central left (CL): FC3, C3, CP3, Central right (CR): 
FC4, C4, CP4, Parietal left (PL): P3, TP7, PO7, Parietal right (PR): P4, TP8, PO8, 
Occipital left (OR): O1, PO7 and Occipital right (OR): O2, PO8. For the significance of 
the power increase or decrease the resulting power spectrum of each task in the 
groups of electrodes were submitted to Kruskal-Wallis one way analysis of variance 
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significance test so as to examine the significance between the distributions of the 
different pairs of tasks, for the different frequency bands and regions.  Kruskal-Wallis 
test is a non-parametric version of the classical one-way ANOVA. We consider as 
significant the p-values which are under 0.05 (𝑝 < 0.05). 

In addition to the previous analysis, we also examine the magnitude squared 
coherence (MSC) of the EEG electrode groups. The MSC is calculated for all the 
different pairs of electrodes in the region group which we evaluate through Kruskal-
Wallis test and then for the significant regions we take the average within the group 
for the different tasks. After the MSC is computed, it is averaged for all participants 
in every frequency band. MSC is a normalized cross-spectral density function and 
measures the strength of association and relative linearity between two stationary 
stochastic processes on a scale from zero to one. The coherence will be zero when 
the processes are independent and absent a linear time-invariant relationship [42]. 
 

𝑀𝑆𝐶(𝑓) =
𝑃�,�(𝑓)�

𝑃�,�(𝑓)𝑃�,�(𝑓)
 (3.2)  

Where P�,�(f) is the cross-spectral density, and P�,�(f), P�,�(f) are the autospectral 
densities of x and y correspondingly at frequency f. The spectral density function is 
given by the Fourier of autocorrelation function R(τ) and the cross-correllation by 
the Fourier of the corresponding cross-correlation function. The coherence results 
are examined for their significance via Kruskal-Wallis one way analysis of variance 
significance test for the different regions and tasks. 
 

3.3. Results 
 
The outcome of our analysis in terms of power on the experimental datasets is 

summarized in Figure 3.1 and Table 3.2. The tabulated brain lobes are the significant 
ones extracted from the five frequency bands under investigation. Figure 3.1 depicts 
the topographies which show the power-activation differences between the 
different tasks and in  we have the regions in which there exist significant 
differences. In addition to power, the coherence behavior is also explored in terms 
of different bands, regions and tasks. The results for the coherence differences 
between the tasks are summarized in Table 3.3. 

 

3.3.1. Power 
 
As observed in Table 3.2, there are no significant results concerning the theta 

band. In terms of power values (Figure 3.1) reflects that the comparison task has an 
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increase of delta both in FL and FR regions (mostly in FL) compared to the control 
(p<0.05 for FL and FR); the same is also observed in addition (p<0.05 for FL). 

We observe from Table 3.2 that the most significant results occur for the alpha 
band, where we have power decrease for the more demanding tasks, in agreement 
to other studies [3]. In both tasks of addition and comparison, we have alpha 
decrease mostly in central, occipital and parietal regions (addition: p<0.01 for PL, PR, 
and CL and p<0.05 for OL, OR; comparison: p<0.001 for PL, PR, CL, CR and p<0.01 for 
OL, OR). The actual power distribution is presented in detail in Figure 3.1. Comparing 
the two mathematical tasks, it appears that number comparison has an alpha power 
decrease in contrast to the addition task in the central-parietal regions (p<0.001 for 
PR, p<0.01 for CL and CR, and p<0.05 for PL). The comparison task shows a greater 
power decrease especially in the central-parietal region of the left hemisphere (an 
asymmetry can be easily distinguished). This can be clearly observed in Figure 3.1 in 
agreement with [43]. 

For the gamma band we do not observe significant differences in Table 3.2. In 
beta band, the addition task shows a power decrease in contrast to the control task 
in the PR site (p<0.05). The comparison task expresses power decrease compared to 
the control task in the central-parietal sites (p<0.01 for CL, and p<0.05 for PR, PL and 
CR). From Figure 3.1 we observe a slight asymmetry in the power decrease, with 
larger decrease in the right hemisphere both in addition and comparison task as 
compared to the control task. Asymmetries in the two hemispheres are also 
reported by other studies [44]. 

 
𝑃𝑆�����

𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 − 𝑃𝑆�����
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑃𝑆�����𝑐𝑜𝑚𝑝𝑎𝑟𝑒 − 𝑃𝑆�����

𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑃𝑆�����
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 − 𝑃𝑆�����𝑐𝑜𝑚𝑝𝑎𝑟𝑒 

   
𝑃𝑆�����𝑐𝑜𝑚𝑝𝑎𝑟𝑒 − 𝑃𝑆�����

𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑃𝑆�����
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 − 𝑃𝑆�����

𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑃𝑆�����𝑐𝑜𝑚𝑝𝑎𝑟𝑒 − 𝑃𝑆�����
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

   

Figure 3.1: Power differences between the tasks for Alpha in the 1st row, Delta band in the 2nd row, 1st 
column and Beta in the 2nd row, 2nd and 3rd column (topographic representation). 
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Band 
Addition-Control 

Task 
Comp.-Control 

Task 
Comp.-Addition 

Task 
Delta - FL↑, FR↑, TL↑, 

TR↑ 
FL↑, TL↑, TR↑ 

Theta - - - 
Alpha FL↓, PL↓, PR↓, 

OL↓ ,OR↓ , CL↓ , 
CR↓ 

FL↓, FR↓, TL↓, 
TR↓, PL↓, PR↓, 
OL↓, OR↓, CL↓, 
CR↓ 

PL↓, PR↓, CL↓, 
CR↓ 

Beta PR↓ PL↓, PR↓, CL↓, 
CR↓ 

- 

Gamma - - - 
Table 3.2: The tabulated results for significant power differences between the tasks. The arrows denote 

either an increase or a decrease in the power of the first task compared to the second. 

 

3.3.2. Coherence 
 
In Table 3.3 we present the coherence differences found to be significant 

(p<0.05) for the three different tasks. The brain regions in bold are those also found 
to be important in Table 3.3 in terms of power changes. In particular, the coherence 
differences appear to be consistent with power differences. For example, in the 
addition compared to the control task we have a power and coherence decrease for 
PR region in alpha and beta bands. Only for the pair (comparison, control) tasks in 
beta band for the CR region we have a decrease in power and an increase in 
coherence. This could imply phase-locked activity in CR (increase of coherence 
despite the power decrease) in beta, in contrast to the other regions (decrease both 
in power and coherence).  

In general, we have the following behavior in the coherence differences: For the 
coherence of addition compared to control task we have a power decrease in theta, 
alpha, beta, and gamma bands for the regions  (a) TL, (b) PR, (c) PL, PR, TR, OL, and 
(d) PR, OL, OR, whereas we observe a power increase for beta and gamma in the 
regions (e) TL, CL, CR and (f) FL, TL, PL. For the coherence of the (compare, control) 
pairs we have a power decrease in delta,  theta, alpha, beta and gamma for the 
regions  (a) PL, OL, (b) TL, TR, (c) FL, FR, TR, PL, PR, OL, OR, (d) PL, PR, FR, TR, OL, OR 
and (e) PL, OL, OR, while we have a power increase for beta and gamma in the 
regions (f) CR, FL, TL and (g) FL, CR. Finally, for the coherences of the compare 
compared to the addition task we have a power increase for theta, alpha, beta, and 
gamma for the regions (a) TR (b) TR, PL, PR, OR (c) FR, TL, TR, PL, OR, CL and (d) FR, 
PL, OR, and we have a power increase for delta and gamma for (e) FL, (f) PR, CR.  
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The coherence behavior for the addition and comparison compared to the 
control task are similar for the common regions, except from PL coherence in gamma 
which has an increase in the addition and a decrease for compare task. 

 

Band 
Addition-Control 

Task 
Comp.-Control 

Task 
Comp.-Addition 

Task 
Delta - PL↓, OL↓ FL↑ 
Theta TL↓ TL↓,TR↓ TR↓ 
Alpha PR↓ FL↓, FR↓, TR↓, 

PL↓, PR↓, OL↓, 
OR↓ 

TR↓, PL↓, PR↓, 
OR↓ 

Beta PR↓, TL↑, TR↓, 
PL↓, OL↓, CL↑, 
CR↑ 

PL↓, PR↓, CR↑, 
FL↑, FR↓, TL↑, 
TR↓, OL↓, OR↓ 

FR↓, TL↓, TR↓, 
PL↓, OR↓, CL↓ 

Gamma FL↑, TL↑, PL↑, 
PR↓, OL↓, OR↓ 

FL↑, PL↓, OL↓, 
OR↓, CR↑ 

FR↓, PL↓, PR↑, 
OR↓, CR↑ 

Table 3.3: The tabulated results for significant coherence differences between the tasks. The bold results 
correspond to the common regions which both have significant power and coherence differences. 

 

3.4. Discussion 
 

There are some key findings to notice in our data. First, the two mathematical 
tasks are associated with: (a) reduced power in the alpha (mostly) and beta band, 
primarily over the central-parietal regions in agreement with, [3], [35], [36]. Alpha 
oscillation is associated by many studies with memory retrieval processes. More 
specifically, alpha power has been found to decrease with increasing retrieval 
demands (alpha ERD) [3]. It is also reported that alpha decrease in mathematical 
tasks is mainly localized in central and parietal regions [35]. (b) a power increase of 
delta in the frontal regions for the task of comparison in agreement with [36], [40]. A 
delta increase has been reported in some experiments during mental arithmetic or 
other mental tasks, especially at frontal or central regions [36]. (c) A larger power 
decrease in alpha along with a larger increase in delta for the compare task in 
contrast to the addition task. To the best of our knowledge, there is no, literature 
study relating such band effects at those specific mathematical tasks. Though, these 
differences could be an implication for the different functionalities in the two 
mathematical tasks (addition, comparison). 

At this point it is important to observe that the power decrease often reflects a 
coherence decrease. For example in the alpha band for the comparison and addition 
task, in contrast to the control case, we observe a power and coherence decrease for 
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the corresponding regions. The only exception is for the case of comparison task 
compared to the control in beta, for which we have a decrease in power and an 
increase in coherence in CR. However, this could be explained as an indication of 
phase-locked activity. We also observe a common tendency in the coherence 
differences of the two mathematical tasks compared to the control task. The only 
exception is for PL in gamma, which could imply a different functionality for the two 
mathematical tasks in this region. We should emphasize that these results need 
extensive verification, since there exist only a few studies relating tasks in terms of 
coherence [35]. Nevertheless, the joint consideration of power and coherence (or 
other measures of dynamic synchronization) can shed light to the complex 
organization of brain operation during mental tasks, in terms of both source 
activations and interactions. For instance, power measures can differentiate 
between evoked and induced activations, whereas coherence can characterize the 
effects of phase resetting in ongoing EEG oscillations [45]. 

At this point, it has to be noted that the findings of this work can be found at 
[46]. 
  



50 Dataset 2: Methodology and Results 
 

4. Dataset 2: Methodology and Results 
 

4.1. Introduction 
 
The internal or external stimulus, evoke brain activity which is caused by the 

firing of different neural assemblies in different locations of the brain. These 
activations are captured in the scalp electrodes either as phase-locked (evoked) or 
non-phase-locked (induced) oscillations.[47]  Phase-locked and non-phase locked 
responses have differences because of their neurophysiologic origins.[7], [48] They 
also have different functional roles, even though they may reflect similar cognitive 
events and correlate in their various parameters.[22], [49] In order to extract phase 
locked activity from the EEG signal, we need to average EEG single trials, which 
results to the well known ERP. 

The ERP is one of the brain response most widely and extensively studied as it 
has been proven extremely useful in clinical and physiological research. There is a 
rich literature about the functional meaning of the different peaks of ERP (such as 
the P100, N100 and P300), which are thought to reflect different aspects of 
information processing in the brain. This classical point of view states that ERPs are 
generated by fixed latency, phase-locked responses. Its underlying assumption 
implies that the interesting ERP response is evoked by the task and can be detected 
by averaging the recorded signals over trials, which increases the signal-to- noise 
ratio (SNR) in the average signal.[7], [21], [50] 

Targeted experiments have revealed activities that are time but not phase-locked 
to the stimulus, which are suppressed in averaging operations. Such activities are 
exemplified by the increase or decrease of energy in a specific band post-stimulus, 
denoted as event related synchronization (ERS) or desynchronization (ERD), 
respectively.[28] Non phase-locked oscillations have been associated with a variety 
of different functions related to perception and different types of cognitive 
processes.[3] Extensive findings correlate alpha energy and alpha phase, on stimulus 
onset with the ERP amplitude, indicating that the ERP and EEG oscillations interact 
and relate to each other.[51] Evoked and induced oscillations may be considered as 
coupled processes progressing in time, with different spatial localization of origin 
and partially overlapping frequency content [7], [48], [22], [50], [24]. Thus, the 
separation, identification and analysis of independent activities of different nature 
and origin are of primary importance in considering alterations in EEG recordings 
due to brain pathologies or in characterizing the neurophysiological origin of brain 
processes. Efficient decomposition frameworks include wavelet analysis and 
independent component analysis (ICA) [52] followed by a variety of methods to 
characterize the nature of derived components in terms of their TF activity. 
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In this part of the study ICA, wavelets and measures reflecting the phase-locked 
and not-phase locked activity were used in a population of dyslexic and control 
subjects having a Wechsler experiment, in order to find possible significant 
differences for the different ERP components regions (P50, N100, P300 and P600) 
and frequencies (delta, theta and alpha).  

 

4.2. Background 
 
Often children of average intelligence even though they do not have general 

learning difficulties, they show symptoms of difficulty in reading not connected to 
extraneous factors such as socioeconomic disadvantage. These children manifest 
difficulties in acquiring basic reading sub-skills such as word identification and 
phonological decoding [53]. There is a 10-15% of school aged children showing these 
symptoms accompanied by specific deficits in cognitive abilities related to reading 
skills. This symptom pattern is called ‘dyslexia’, or, alternatively, ‘specific reading 
disorder’ [according to the 10th edition of the International Classification of 
Diseases].[54] This is the main diagnosis of the general diagnostic category: specific 
developmental disorders of scholastic skills (DDSS) [53].  

It is not clear what the pathophysiological mechanisms underlying DDSS are and 
there is a long way till they are identified, though researchers have made some 
interesting suggestions in the fields of biological and cognitive research. There have 
been implicated deficits of the working memory operation and attention within the 
patterns of cognitive characteristics of dyslexia. [53] ,[55] Contemporary 
neuropsychological thinking defines working memory as the capacity to keep 
information on line, as necessary, for an ongoing task [56]. According to this view, 
working memory is not for ‘memorizing’ in itself, but is used for complex cognitive 
activities such as language, reasoning, problem solving and decision-making [54]. 

There have been various studies comparing control to dyslexic subjects under the 
basis of ERP methodology and more specifically relating information processing 
deficiency with patterns of N100 component. In many of these studies it has been 
found that dyslexics have reduced N100 amplitude [57], [58], [59] and prolonged 
latency [60] as compared to controls. Though, there were also studies which failed to 
detect differences between the two populations [61] or made the opposite 
conclusions. Such inconsistencies appear due to the variability of the experiments 
methodology.  

For the particular dataset, previous research on the time-frequency of the 
channels has reported differences between the group of dyslexics and controls lying 
mainly in the time period 50-200msec after the warning stimulus, most prominently 
around the N100 ERP component, and containing frequencies 5- 20Hz [11]. More 
specifically the analysis showed reduced mean peaks for the N100 ERP components 
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[11]. The attenuation of the N100 ERP component [62] and prolonged latency of the 
P50 ERP component [54] for the group of dyslexics did also emerge from the analysis 
of this dataset in time. Furthermore, research on the Wechsler experiment in heroin 
addicts showed significant differences for the P300 [63] and P600 [64] ERP 
components. 

 

4.3. Experimental Procedures 

4.3.1. Participants 
 
In this experiment, there participated 57 children from which 38 (26 boys and 12 

girls) were outpatient cases who had been diagnosed as having dyslexia according to 
the 10th edition of the International Classification of Diseases (ICD-10) and the rest 
19 children (7 boys and 12 girls) were control sibling of the dyslectic group. The 
mean ages and the standard deviations for the dyslectic children and for the controls 
were 11.47±2.12 and 12.21±2.25 years, respectively and did not have significant 
differences. In each case, the following assessments were performed: child 
psychiatric examination, psychological examination and educational evaluation. The 
Wechsler Intelligence Scale for Children – Third Edition (WISC-III) was used to obtain 
the IQ of each child. Also, the participants did not enter the study if they had (1) 
clinically notable neurological disease (including seizure disorder), (2) a history of 
head injury, (3) hearing difficulties and (4) attention deficit disorder and hyperkinetic 
syndrome. Prior to participation in the examination, parents were informed about 
the aims of the study, received a full description of the procedure, and provided 
written consent. Children were tested individually and the investigators explained to 
each child the procedure and the children also gave their consent. The study was 
approved by the local ethical committee. For more experimental information see 
Papageorgiou et al [54]. 

 

4.3.2. EEG Recording and Test Description 
 
The children's EEG/ERP signals were recorded at 15 electrodes (Fp1, F3, C5, C3, 

Fp2, F4, C6, C4, O1, O2, P4, P3, Pz, Cz, Fz) according to the 10–20 international 
system, referred to both earlobes. Ag/AgCl electrodes were attached to the scalp 
with adhesive cream in order keep the electrode resistance below 5 kΩ. An electrode 
placed on the subject's forehead served as ground. The pass band of the amplifiers 
was set from 0.05 Hz to 35 Hz. During the recordings the subjects had their eyes 
closed in order to minimize eye movements and blinks. Eye movements were 
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recorded through electrooculogram (EOG) and recordings with EOG higher than 75 
μV were rejected. Warning stimuli, as well as learning material (i.e. the numbers to 
recall), were presented binaurally via earphones at an intensity of 65 dB sound 
pressure level. The evoked biosignal was submitted to an analog-to-digital 
conversion, at a sampling rate of 1 kHz and the total procedure consisted of 52 
repetitions. [10], [62] 

During the acquisition, the subjects were evaluated with the digit span Wechsler 
auditory test [65]. There was a warning stimulus of either high (3kHz) or low (0.5kHz) 
frequency presented through earphones to the participants, who were asked to 
memorize the numbers that followed in the same or opposite order correspondingly. 
Firstly, there was a warning stimulus (100ms) and 1sec after the stimulus onset the 
numbers to be memorized were presented by a male voice. If the frequency of the 
signal tone was low, the participants had to recall the numbers in the same order as 
presented else the participants had to recall the numbers in the opposite order. At 
the end of the number sequence presentation, the same signal tone was repeated. 
Before the procedure was followed in the participants, practice trials were 
administered until the participants could clearly discriminate the warning stimuli 
(tones). The ERPs were recorded during the 1.1-s interval between the warning 
stimulus and the first administered number.[54], [62]  

 
Figure 4.1: Outline of the experimental procedure. [10], [62] 
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4.4. EEG Analysis  
 
The EEG signals (~1.5s) were zero-mean normalized and then ICA was applied on 

them. Previous research on the dataset focused on its analysis in time [54] or time-
frequency [11] giving results specifically for each channel. We used ICA, in order to 
investigate the overall activity of the EEG signals of this dataset, so instead of 
channels have components of activity. ICA was applied on the entire collection of 
concatenated (one trial after the other) EEG signals 𝑒�(𝑛), 𝑖 = 1, … , 𝐿  and 
𝑛 = 1, … , 𝑁, where L indicates the number of channels on the scalp and N denotes 
the number of data points in the signal. Thus the estimated de-mixing matrix W is 
assumed to initially produce the EEG signals 𝑒�(𝑛) based on mutually independent 
sources 𝑠�(𝑛): 𝒔 = 𝑾𝒆 

In our approach we use ICA on concatenated trials (all the trials of both high and 
low frequency acquisition) under the assumption of similar decomposition across 
trials, which can effectively recover the intertrial variability of sources (derived 
components) [66] while preserving stability and avoiding overtraining of the 
inversion process [67]. Concatenated ICA also has the advantage that the ordering of 
components in the various trials is preserved, so that similar components can be 
statistically studied over trials. 

In this analysis we use the Infomax ICA algorithm [19], which minimizes the 
mutual information among the data projections in order to achieve independence. 
The column elements of the inverse matrix W-1 reflect the projection intensity of 
each independent component back to the electrodes and form the basis of 
topographic mapping of this component. 

After we had the ICs coming from the original EEG channel data, we applied the 
well-known wavelet transform on them using in specific the complex Morlet wavelet 
function which has been extensively studied in EEG analysis [68]. We have already 
emphasized that in the second chapter that wavelets form a great tool for the 
presentation of the EEG signal to the time-frequency domain. More specifically, in 
the wavelet approach, we have the signal decomposition into constituent time–
frequency ranges of energy based on the notion of scale applied to a set of basis 
functions. There is a tradeoff between frequency and time in the wavelet analysis as 
we have small scale (high-frequency) intervals with shorter time windows and large 
scale regions (low-frequency) with longer time windows. Due to this fact, there is a 
higher resolution in frequency (but not in time) for the low frequencies and a higher 
resolution in frequency (but not in time) for the high frequencies.  

In order to evaluate the activity of the TF transformed ICs, we apply on then 
measures revealing the evoked and induced activity. That way, we extract the phase 
locked and induced characteristics of the ICs in the time-frequency domain. The first 
measure we use is the widely used spectral energy (SE) of the ERP. For the TF 
representation of a component Xi[k,n], with k and n indicating the frequency and 
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time ticks, respectively, and i corresponding to the ith trial, the SE measure is defined 
as: 
 

𝑆𝐸[𝑘, 𝑛] = �� 𝑋�[𝑘, 𝑛]
�

�
�
 (4.1)  

In this measure there is estimated the average spectral energy. Nevertheless, 
spectral energy does not reflect synchronization across the trials, since a strong 
activity in just a few trials can induce significant spectral energy, but without 
providing any indication of synchronization among trials. For phase locked 
synchronization we use the phase intertrial coherence (PIC) measure, which 
considers phase alignment for the evaluation of component consistency among trials 
[24], [25]. This metric is defined as: 
 

𝑃𝐼𝐶[𝑘, 𝑛] =
|∑ 𝑋�(𝑘, 𝑛)� |
∑ |𝑋�(𝑘, 𝑛)|�

≤ 1 (4.2)  

with equality holding if and only if the trials resonate in phase. More details on the 
measure are given in chapter 2. For the quantification of the event-related but non 
phase-locked activity there is used the so-called phase-shift intertrial coherence 
(PsIC) and the ERD/ERS measures. PsIC is based on the energy of single-trial 
decompositions and highlights frequency bands of increased energy in all trials. The 
PsIC measure reflects persistent activity in all trials and is defined as: 
 

𝑃𝑠𝐼𝐶[𝑘, 𝑛] =
∑ |𝑋�(𝑘, 𝑛)|�

�

𝑚𝑎𝑥�,�(∑ |𝑋�(𝑘, 𝑛)|�
� ) ≤ 1 (4.3)  

where equality implies the same magnitude for all trials, even though they may have 
different phase. The disadvantage of this measure is that also phase locked trials 
with coherent powers could have high PsIC, so we cannot be sure to characterize the 
underlying activity [24], [25]. On the other hand, ERD/ERS measure is defined as the 
percentage of increase or decrease in mean trial power from a mean power baseline 
(usually the pre-stimulus mean power), time-locked to an event [28]: 
 ERD/ERS[k, n] =

𝐴[𝑘, 𝑛] − 𝑅[𝑘]
𝑅[𝑘]

× 100 (4.4)  

where A[k,n] is the power of the kth and tth frequency and post-stimulus time 
instant correspondingly and R[k] is the power in frequency k averaged in all the pre-
stimulus time instants. These measures are analyzed in detail in the second chapter 
of this essay.  

After some indicative components were examined in order to evaluate the 
activity of the subjects in response to the specific memory experiment they 
attenuate, from the TF maps of the measures applied on the ICs of the two groups 
(controls, dyslexics) there were collected evidence for their comparison via Kruskal-
Wallis significance test. Statistical significance was set at the 0.05 level in all cases. 
We considered as evidence the 'main activity' (or main components) of each TF map. 
More specifically, per each TF map there were chosen those regions whose value 
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were up to 20% lower than the maximum value of the overall TF map. Such an 
example is presented in the following figure. 

 

 

 
Figure 4.2: An example for the component area selection. On the left there is the TF map of an IC and on 

the right the 'important' areas of the IC have been circled with blue and the frequency and time instants of the 
centroids of those areas have been projected on the axis as (tA,fA) and (tB,fB). 

 
After that, the centroid of those areas was computed so as to have a central time 

and frequency instant for each area. There was also estimated their average value 
over the points meeting the previously described criteria. Then, the time, frequency 
and average value evidence coming from the TF maps were compared via Kruskal-
Wallis significance test for the control and dyslexic subjects for the different ERP 
component regions and frequency bands. The ERP component regions considered 
were: P50 (30ms-80ms postimulus (ps.)), N100 (70-150ms ps.), P300 (240-500ms ps.) 
and P600 (500-800ms ps.), and the frequency bands considered were: delta (1.6-
3Hz), theta (3-7Hz), low alpha (8-10Hz), high alpha (10-12Hz) and overall alpha (8-
12Hz). Thus, there took place 60 distinct significance tests for all the combination of 
characteristics (time, frequency, value), ERP regions and frequency bands for each 
measure. It was only possible to compare the main activity of the components and 
not separate the TF map in grids and compare the corresponding component grids 
like [28] did in channels because ICs are not comparable the way channels are. There 
follows a diagram showing an outline of the procedure. 
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Figure 4.3: An outline of the process. 

4.5. Results 
 

4.5.1. Activity Evaluation via Synchronization Measures 
 
At this point it should be mentioned that there is still going on a debate about 

the underlying mechanisms causing the ERP. Two are the main alternatives 
proposed. In the first alternative it is assumed that stimulation induces a partial 
phase resetting of ongoing EEG rhythms in each trial, and averaging these phase-
coherent rhythms produces the ERP [47], [69]. The additive ERP alternative view 
suggests that stimulation elicits a neural population response with fixed polarity and 
latency in each trial which is additive to and independent from ongoing activity and 
that averaging these evoked responses produces the ERP [28],[69]. In former studies 
[47], [70] it has been stated that a pure phase-reset of ongoing activity would be 
indicated by changes in evoked activity and phase locked activity without a change in 
signal power in single trials. This is not true though because of the background 
oscillations which exhibit modulations of amplitude to a stimulus at the same time 
[69].  
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In our analysis we consider three scenarios in the phase locked case, the phase 
resetting, the partial phase resetting and the additive activity. We consider both 
phase resetting and partial phase resetting assuming the cases that the majority of 
the trials get the phase resetting effect or just a minority of them accordingly. In the 
phase resetting case, we have the alternative of power increase or no power 
increase and in the additive activity we expect a power increase due to the fact that 
a new activity is added to the existent one. In the partial phase resetting it is more 
likely that we will not have any power increase due to the fact that the activity 
concerns a few trials. In all those case we basically expect the phase locking 
measures to detect the activity. Nevertheless in the case where a power increase 
accompanies the phase locked activity, ERD/ERS (a classical measure used for the 
non phase locked activity evaluation) is expected to detect it. 

On the other hand, induced activity is a measure of oscillatory power in single 
trials which captures signals that are not phase-locked to stimulus onset. We make 
three possible assumptions for the generation of the induced activity, oscillations 
causing power increase, power decrease or additive activity to the existing 
oscillations. The measures revealing non phase locked activity are ERD/ERS and PsIC 
which in combination help us make a clearer interpretation of the results. There 
follows a figure summing up the ERP activations with all the possible scenarios we 
assumed for the phase locked and non phase locked case and also the most 
significant measures expected to reveal the activity per case. 

 

 
Figure 4.4: The ERP activations scenarios and the measures expected to point them out. 
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Taking these into consideration, we randomly picked three control subjects in 
order to see what kind of activation (evoked/induced) the specific memory 
experiment brings out and how we can use the measures in order try to decode it. In 
the figure below there are presented the tabulated results showing the different 
phase locked activity scenarios detected in those subjects using the four measures 
we previously described (SE, PIC, PsIC and ERD/ERS). 

In the first component picked, we observe that we have a phase locked delta in 
~100-400ms indicated by both SE and PIC. In the case of this component we seem to 
have power increase clearly implied by the ERD/ERS measure. Also in the PsIC there 
seems to be power synchronization in the region of the activity described greater 
than the prestimulus power activity.  In this case we could either assume that this 
phase locked activity is due to phase resetting or due to an additive activity. We 
chose the phase resetting scenario taking into consideration the long duration of the 
activity implied by all measures. The thought behind this assumption is that an 
additive activity provoked by the event (stimulus) would stop some ms after the 
event stopped in contrast to a phase resetting of an existent activity which could 
remain longer in the new phase state. The particular component could also be 
discussed on its secondary activity marked by an orange arrow. We characterize it as 
alpha induced activity in ~50-100ms with power increase mostly brought out by 
ERD/ERS, implied by PsIC’s greater power synchronization in the area having a small 
phase locked part shown not very loudly by the two phase locked measures (SE and 
PIC).  

The second selected component shows a phase locked theta activity concerning 
the 50-150ms region with no power increase (ERD/ERS does not show power 
increase evidence in the area). This could be characterized as pure phase-reset 
according to [70],[47]. This component also has a secondary activity pointed by an 
orange arrow showing theta desynchronization in the ERD/ERS measure in the ~400-
700ms region. The third and fourth components are both examples of partial phase 
resetting. In both the third and fourth component there is pronounced phase locked 
delta activity shown by SE measure and very less (~0.3) in PIC measure.  This implies 
that just a few trials are phase locked (due to the PIC results). The difference in those 
two components is that for IC #3 we do not have any evidence for non phase locked 
activity in the specific area (ERD/ERS and PIC measure) in contrast to IC #4 which 
seems to have a pronounce non phase locked activity in the specific area brought 
out clearly by both non phase locked measures (ERD/ERS and PsIC). Both these ICs 
also have secondary phase locked activity in theta in ~50-100ms which in the case of 
IC #3 has no power increase in contrast to IC #4 which also shows a power increase. 

The last component we picked has phase locked theta in ~50-150ms with power 
increase and it is clearly seen in all the measures. We characterize it as additive 
phase locked activity because of its relatively small duration, knowing that such a 
characterization might need deeper skepticism. In this component there is also 
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another non phase locked activity in ~100ms basically expressed from the ERD/ERS 
measure and less from the PsIC measure. 

 
Phase Locked Activity 

#IC SE PIC PsIC ERD/ERS 
Phase Resetting Power Increase  SE, PIC, PsIC, ERS 

1 

    
Phase Resetting No Power Increase SE, PIC 

2 

    
Partial Phase Resetting SE 

3 

    
Partial Phase Resetting SE, PsIC 

4 

    
Additive  power increase SE, PIC, ERS, PsIC 

5 

    
Figure 4.5: Selected ICs from 3 random control subjects to evaluate phase locked activity. The activity 

described above each component group is pointed by a red arrow. Possible other activities in parallel to the 
described one are pointed by an orange arrow. 
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Non-Phase Locked Activity 
#IC SE PIC PsIC ERD/ERS 

Additive PsIC, ERS 

1 

 
 

   

Power Increase ERS 

2 

    
Power Increase ERS, PsIC 

3 

    
Power Decrease ERD 

4 

    
Figure 4.6: Selected ICs from 3 random control subjects to evaluate non phase locked activity. The activity 

described above each component group is pointed by a red arrow. Possible other activities in parallel to the 
described one are pointed by an orange arrow. 

 
In the figure above there are exposed the component selections we made in 

order to evaluate the non phase locked activity brought out by this experiment. The 
first IC picked we have non phase locked theta in the ~400-700ms clearly shown by 
both ERD/ERS and PsIC. Some of this activity is also observed in the SE and PIC 
measure but it is not as strong so we could say that maybe a few trials are phase 
locked (partial phase locking). We characterize this activity as additive non phase 
locked activity considering its relatively small duration.  

Both the second and third component show non phase locked activity resulting 
in power increase. The second one has non phase locked upper alpha in mainly 
~500-700ms (it starts though less intense just after the stimulus onset and peaks in 
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~600ms) mostly shown by ERD/ERS and less by PsIC. This activity seems to be pure 
non phase locked as we do not see any interesting activity by the phase locked 
measures. The third IC has non phase locked theta staring from ~100-200ms as 
phase locked (SE and PIC) and evolving as non phase locked in ~700-900ms (no SE or 
PIC). 

The last component we choose has non phase locked activity in ~500-800ms in 
alpha shown very clearly by the ERD/ERS measure. This could be considered a very 
interesting component as it also has ~0-100ms phase locked theta (SE, PIC) with 
power increase (ERS). This is a typical example of activity in a working memory 
experiment. 

 

4.5.2. Population Evidence 
 
Taking into consideration the activity evaluation of selected components we 

presented in the previous section, gathered evidence the populations of controls and 
dyslexics in the P50, N100, P300 and P600 region in delta, theta, low and high alpha 
and also overall alpha. Based on these and [11], evidence were gathered the way or 
procedure briefly explains, and we investigated the percentage of appearance of 
'main activity' for the different ERP component regions, frequency bands and 
measures for both the population of controls and dyslexics. The results are 
demonstrated in Table 4.1. Most of the subjects’ activity, both for the controls and 
the dyslexics, is gathered in the measures showing phase locked activity (SE and PIC). 
It should be mentioned that the phase locked activity mostly concerns delta and 
theta band. There is also some low alpha mainly in the PIC measure. The percentages 
for the two populations are relevant, with the controls percentages being higher in 
most of the cases. The non phase-locked measures are generally more interesting for 
alpha or maybe theta. In overall alpha there seem to be a few components of activity 
mainly for the control population and mostly by the PsIC measure. In theta there are 
also some non phase-locked components revealed by the two measures (PsIC and 
ERS). In both non phase locked measures controls outreach dyslexics by having a 
greater percentage of non phase locked activity. It is remarkable that there is a ~20% 
of controls having non phase locked activity in alpha (PsIC measure) for the N100 
ERP component in contrast to the dyslexics whose percentage is zero in the 
corresponding case. Also, in theta controls have ~30% more P50 ERP components 
than dyslexics in the SE measure. In the only case dyslexic outreach dyslexics by 
~20% is theta P50 ERP component. 
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Controls% Dyslexics% 

 
Delta 

P50 N100 P300 P600 P50 N100 P300 P600 
SE 37 68 58 58 32 53 42 42 
PIC 26 26 42 42 18 47 47 34 
PsIC Ni Ni Ni Ni Ni Ni Ni Ni 
ERS Ni Ni Ni Ni Ni Ni Ni Ni 

 
Theta 

P50 N100 P300 P600 P50 N100 P300 P600 
SE 58 74 42 16 29 71 37 13 
PIC 84 89 95 63 74 89 87 68 
PsIC 11 11 16 5 0 8 11 5 
ERS 32 53 32 26 13 47 29 13 

 
Alpha1 

P50 N100 P300 P600 P50 N100 P300 P600 
SE 11 0 5 0 3 3 3 8 
PIC 37 26 26 21 24 18 21 13 
PsIC 5 11 11 11 3 0 8 11 
ERS 11 0 5 0 3 5 3 3 

 
Alpha2 

P50 N100 P300 P600 P50 N100 P300 P600 
SE 0 0 5 11 3 3 0 3 
PIC 11 5 0 26 21 18 11 13 
PsIC 0 11 5 11 0 0 0 11 
ERS 5 5 0 11 0 0 3 5 

 
Alpha 

P50 N100 P300 P600 P50 N100 P300 P600 
SE 11 0 11 11 5 5 3 11 
PIC 42 32 26 42 39 32 32 24 
PsIC 5 21 16 21 3 0 8 18 
ERS 16 5 5 11 3 5 5 8 
Table 4.1: The percentage of appearance for the specified activity. The results in red concern cases found 

to be significant in Table 4.2 and results in purple to percentage differences between the two groups greater 
than 20%. Ni refers to not interested. 
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4.5.3. Significance Test 
 
In Table 4.2 we have the tabulated results found to be significant via Kruskal-

Wallis significance test. The first letter of the table results corresponds to the 
frequency band (D for delta, T for theta, A1 for low alpha, A2 for high alpha) and the 
second letter corresponds to the characteristic (t for time, f for frequency and a for 
amplitude). The arrows (↑ and ↓) correspond to an increase or a decrease for the 
corresponding value of the controls compared to this of the dyslexics. For example 
TT↓ corresponds to a prolonged latency in time for the dyslexics compared to the 
controls (the time instant of the controls is previous to that of the dyslexics). 

 
Controls-Dyslexics 

Measure ERP Region 
 P50 N100 P300 P600 

SE - Tt↓ Df↓ Df↓ 
PIC - Tt↓,A1a↑ Df↓ Df↓ 
PsIC - - - - 
ERS - - - - 

Table 4.2: The tabulated statistically significant results. The arrows denote an increase (↑) or decrease 
(↓) of the corresponding value for the controls compared to the dyslexics. 

 
There were differences found between the controls and dyslexics mainly for the 

N100 component for the mean latency values and the amplitudes. More specifically, 
the dyslexics had a significantly prolonged latency in theta for both ERP SE and PIC 
measure. There was also significantly reduced amplitude for the dyslexics in low 
alpha for the PIC measure.  For the P300 and P600 ERP components, delta was 
significantly lower in both ERP SE and PIC measure. From the results in Table 4.2 it is 
obvious that there is not found any significant activity for the P50 component and 
the non-phase locked measures. From the fact that we did not have significant 
results for the two non phase-locked measures (PsIC and ERS) we assume that they 
may are not the most appropriate measures for our data as they were for other 
datasets such as [24]. Thus, the differences of our population are not detected in the 
non phase-locked activity, but they are detected in the phase locked activity. 
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4.6. Discussion 

 
The purpose of this analysis was the evaluation of the differences between the 

population of controls and dyslexics using measures of phase locked (SE and PIC) and 
non phase-locked (PsIC and ERS) activity. In order for the evaluation to be achieved a 
statistical framework was introduced. The analysis took place using the ICs instead of 
the original channels so as to achieve proper decomposition of the data as well as 
characterization of the overall channels’ activity (instead of channel-by-channel 
activity). The measures were applied on the TF content of the ICs from which there 
was then made an analysis concerning what kind of activity we are given by this 
memory experiment based on selected components of three random control 
subjects. Then, in means of percentage we examined what kind of activation the 
control and dyslexic populations have in the different measures for the different 
frequency bands and ERP components based on the collection of evidence (main 
activity) from all the subjects. The gathered evidence where then used in the 
statistical analysis concerning time, frequency and amplitude features. The statistical 
analysis took into consideration the different ERP components and frequency bands.  

In this analysis we tried to decode the activation of the independent components 
using measures of synchronicity for phase locked and non phase locked activity. 
Doing this we found phase locked activity mainly in theta in the ~100ms region and 
non phase locked activity both in theta (mainly late theta ~700ms) and alpha (mainly 
late alpha ~600ms both ERS and ERD cases). There was also recognized in those 
components the very interesting case of ERS in theta followed by alpha ERD, met in 
the majority of working memory experiments like this one. Examining the different 
scenarios of ERP activation concerning different expressions of phase locked and non 
phase locked activity, we can say we distinguished representatives of every possible 
scenario. It has to be noted here that further research has to be made in order to 
make safe conclusions for the origination of an activity. 

Furthermore, by the quantification of the evidence we gathered from the two 
populations, we showed that both groups mainly had phase locked activity and just a 
few had non phase locked activity. Generally the controls had a greater contribution 
in both phase locked and non phase locked activity in most of the cases. More 
specifically, for the PsIC measure we had ~20% of the controls having non phase-
locked alpha in the N100 ERP component in contrast to the dyslexics who did not 
have any non phase-locked alpha in the N100 ERP component. Also, for the SE 
measure we had ~60% of the controls having phase locked theta in contrast to ~30% 
of dyslexics having phase locked theta in the P50 ERP component. The only case 
dyslexics outreached controls by a great percentage is for the SE in delta where 
~50% of them  had phase locked (via SE) N100 ERP components in contrast to ~25% 
of controls. 
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Our analysis showed that the dyslexic group demonstrated significantly 
prolonged latency in theta for both phase-locking measures and reduced amplitudes 
in low alpha for PIC of the N100 ERP component. Our results are in accordance with 
relevant studies on dyslexic populations such as  [57], [58], [59] and [61] which also 
noticed the prolonged latency and reduced amplitude of dyslexics compared to 
controls for the N100 ERP component. In particular, studies on the specific dataset 
using channel TF maps showed reduced mean peaks of the N100 ERP components in 
the 5-20Hz range for the majority of the channels [11]. Also, other studies on this 
dataset in time, also found significantly reduced amplitudes for dyslexics in N100 ERP 
component [62]. The reduced amplitude and prolonged latency of N100 ERP 
component has been connected with impairments in 'attentional operation' of 
information processing in such cases [62]. In addition to this, we found that the 
frequency ticks in delta were significantly higher in the dyslexic group compared to 
the controls for both phase-locking measures in the latter ERP components (P300 
and P600).   
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5. Conclusions 
 

5.1. Work Review & Conclusions 
 
In this study two individual datasets consisting of ongoing and evoked responses 

accordingly were analyzed and evaluated using well known EEG analysis tools and 
distinct methodological patterns. 

The main goal in the first dataset was to compare the different mathematical 
thinking tasks by means of power and coherence. In this context, the measures of 
power spectrum (PS) and magnitude squared coherence (MSC) were applied on the 
EEG electrodes of this dataset. The PS was estimated for each electrode and 
presented using a topographic mapping and the MSC was estimated for the neighbor 
channel pairs of selected topographic regions. The selected topographic regions 
were finally the ones used for the evaluation of the differences between the tasks 
using Kruskal-Wallis statistical significance test.  

The key findings of this dataset considered significant differences for both power 
and coherence measures in specific frequency bands and topographic regions 
matching in support and additional to previous research in this area. There were also 
indications of correlation between the power and coherence results. More 
specifically, the findings show, (a) reduced power in the alpha (mostly) and beta 
band for the mathematical thinking tasks compared to the control task (b) power 
increase of delta in the frontal regions for the task of comparison (c) larger power 
decrease in alpha along with a larger increase in delta for the compare task in 
contrast to the addition task. We also noticed that (d) the power decrease often 
reflected a coherence decrease and (e) power and coherence for the two 
mathematical tasks had relevant behavior compared to the control task. 

The second dataset consists of ERPs from a working memory experiment for a 
group of controls and dyslexics. The concept in this case was the application of 
synchronization measures on the TF maps of the ICs of the EEG signals in order to 
evaluate the activation evoked by the stimulus and furthermore try to find 
significant differences between the populations using Kruskal-Wallis statistical 
significance test. 

An evaluation of the evolving activity was performed here, which verified the 
emergence of statistical significant ERP components in specific frequency bands for 
certain synchronization measures. In particular we had (a) phase locked activity 
basically in theta and delta, (b) non phase locked activity basically in theta and alpha, 
recognized by the analysis made on three random control subjects. Also, using the 
evidence we gathered in the whole of the populations we observed that (c) there 
was a greater percentage of phase locked components than non phase locked 
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components and (d) generally the activity components of the controls outreached 
those of the dyslexics in most of the cases. Furthermore, by the statistical analysis 
made on the evidence gathered for the synchronization measures we found (e) 
prolonged latency of the N100 ERP component in theta for SE and PIC measure and 
(f) reduced amplitude of N100 ERP component in low alpha for PIC measure for the 
dyslexics compared to the controls as well as (g) higher central frequency in delta for 
SE and PIC measure in the latter ERP components (P300, P600). 

In both datasets we had finding which are verified by previous research and also 
some complementary findings. More specifically, our findings in the first dataset 
concerning alpha and delta for the two mathematical thinking tasks compared to the 
control task are verified by [3], [35], [36], [40]. On the other hand the comparison we 
made between the two mathematical thinking tasks and the correlation of the 
power and coherence results of the electrodes are tasks not quite investigated in the 
relevant bibliography and as such they might need further verification. On the 
second dataset, it is not of our greatest knowledge that a relevant methodology has 
not been followed for the specific working memory experiment. Previous analysis on 
the dataset in time [62] or time-frequency [11] on the channels though has shown 
relevant significant ERP components as the ones we found in our analysis. We 
additionally, tried to get evidence concerning the generation of the ERP 
components.  

 

5.2. Future Work 
 
In the first dataset there can also be investigated the coherence between 

channels of neighbor or distant lobes except from the inter-lobe coherences. 
Furthermore the synchronization of the channels could be further investigated using 
non-linear coherence measures or even graph techniques. Also the correlation of 
power and coherence could be 'deeper' established using more subjects for the 
investigation and stricter mathematical formulas. It would also be very interesting to 
redesign the experiment for many trials so as to combine this analysis with a 
corresponding ERP analysis which is the analysis followed for the second dataset. 

We applied synchronization measures on the ICs of the second dataset which 
could be expanded by using the measures on the channels and compare the results 
to these of the ICs. This set of results could be combined and reviewed with the 
results of previous publications concerning the analysis of the specific dataset in 
time. Also, more effort must be devoted to the decoding of the synchronization 
measures, by using and examining more datasets on the measures and also trying 
out specially designed simulations. In addition the evidence from the measures used 
in the statistical analysis could be gathered in different ways, for example taking into 
consideration the special characteristics of the ERP activity. For further analysis we 
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could also use the topographic maps of the components in order to also extract head 
location complementary to the synchronization measures. Finally, the working 
memory experiment could be rerun using a variety of pathological groups for 
verification of abnormalities.  
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APPENDIX 
 
In order to have a better picture of the EEG data behavior of the second dataset we 
developed a preliminary evaluation of the signals in time. From the channel ERPs of 
the individual subjects and from the grand average ERPs of all the subjects for both 
controls’ and dyslexics’ populations the ERP components which can be easily 
distinguished are P50, N100 and maybe P300. According to these observations and 
considering the fact that these components are also examined by relative analysis 
[62] we also used these component areas in our analysis. The analysis in time and 
the evaluation of the results has been considered in detail in [62]. 
 

 
Figure 0.1: The time representation of the EEG signals of the 19 control subjects for all 15 electrodes. Each 

subplot represents a subject’s channel content. 

 
 

 
Figure 0.2: Grand average ERPs of controls for each channel. 
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Figure 0.3: The time representation of the EEG signals of the 19 dyslexic subjects for all 15 electrodes. 

Each subplot represents a subject’s channel content. 

 

 
Figure 0.4: Grand average ERPs of dyslexics for each channel. 
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There are also included all TF maps for two selected controls and two selected 
dyslexics for all the synchronization measures. More specifically, we give the TF map 
of the phase locked measures (SE and PIC) and also the TF map of the non phase 
locked measures (PsIC and ERD/ERS) for all 15 ICs. Each subplot concerns a TF map of 
the corresponding IC for the specific measure. The order of the components is kept 
for all the measures concerning the specified subject. 

 
SE 

 
PIC 

 
Figure 0.5: Control subject 1, phase locked measures on its 15 ICs. 
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PsIC 

 
ERD/ERS 

 
Figure 0.6: Control subject 1, non phase locked measures on its 15 ICs. 
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Figure 0.7: Control subject 2, phase locked measures on its 15 ICs. 
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Figure 0.8: Control subject 2, non phase locked measures on its 15 ICs. 
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Figure 0.9: Dyslexic subject 1, phase locked measures on its 15 ICs. 
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Figure 0.10: Dyslexic subject 1, non phase locked measures on its 15 ICs. 
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Figure 0.11: Dyslexic subject 2, phase locked measures on its 15 ICs. 
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Figure 0.12: Dyslexic subject 2, non phase locked measures on its 15 ICs. 
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