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Abstract

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease that affects approximately 2.8
million persons globally. While there is currently no cure for this neurodegenerative disease, MS has become a
highly manageable disease through treatment options like disease-modifying medications, that can help to
control the symptoms and slow disease progression. Among them, interferon beta (IFNf) therapy is a first-line
treatment for MS but has shown to be only partially effective. Information from extensive databases for large
groups of multiple sclerosis patients indicates that the natural history of MS evolves in two stages: (i) in the
focal inflammatory process with flares, and ii) in disability that progresses irrespective of the focal
inflammation (lesion or relapse) Thus, it is important to identify biomarkers that aid in early identification of
the disease as well as of IFNf3 responders. A second aim of our study was to identify biomarkers that aid in
early identification of MS stages, i.e. the relapsing-remitting form (RRMS), the secondary progressive phase
(SPMS) and the primary progressive MS (PPMS).

Gene co-expression patterns for various phenotypes can be reveal with the aid of microarrays but the
variation and heterogeneity of the disease act as limitations for the utility of gene-expression profiles. In
addition, the different microarray platforms utilized, as well as the different experimental protocols followed,
make difficult to combine gene-expression datasets from heterogeneous platforms and different studies.
Another limitation is the great imbalance between the huge number of transcripts and genes (tens of
thousands) and the relatively small number of available sample cases (hundreds). Furthermore, it is essential
to combine feature-selection approaches and the ‘biological validity’ of the resulted gene biomarkers. Thus, our
purpose in not only to focus on highly differential genes but combine different approaches in order to reach a
gene signature after examining the relationships of gene signatures and deduce submodules of greater
prognostic/diagnostic significance in relation to Multiple Sclerosis, the progression of the disease and future
therapy.

In this study, based on gene expression profiles from untreated, interferon treated patients and healthy
subjects from publicly available datasets, we performed differential expression analysis and Pigengene network
association (weighted correlation network analysis (WGCNA) and Bayesian networks modeling) so as to
construct a high-confidence protein-protein (PPI) interaction network. Subsequently, aiming to find the most
significant clustering modules and hub genes, we applied several topological analysis methods (cytoHubba
plugin) followed by MCODE clustering algorithm. Our approach resulted in highly connected hub genes
generating four highly reliable hub-gene-signatures. Finally, we approached the topic of drug repurposing by
examining the drug-gene relationships through different databases.



Mepiinym

H oxAnpuvon katd mAdkag (ZKIT) eivat pla xpovia @AEYHovV®OSNG ATTOUVEAVWTIKY VOOOG TIOU ETNPEATEL
mepimov 2,8 exkatoppvpla atopa maykoopiwg Eve eml tou mapdvtog Sev vmapxel Oepameia yia auty
VEUPOEKPUALOTIKY] VOOO, 1] OKANPUVOT KOTA TAAKOG €xel yivel pia eEaipetika Sioxelploun aoBévela peEow
eMAOYWV Bepameiog OTWG TA TPOTOTOMTIKA TNG VOOOU QPAPUAKA, TIOU UTOPOoUV va fonbBricouvv otov £Aeyxo
TWV CUUTITWUATWVY Kal 6TV emLBpaduven ¢ eEEAENGS ™G vOoou. MeTall auTtwy, 1 Bepatmeia pe vtep@epdvn
Brta (IFNP) eival pla Bepatmeia TPOTNG YPAUUNS YIX TN OKATIPUVOT KATA TTAAKAS, dAAQ €xel amodelyOel povo
HEPIKWG amoTeEAETUATIKY. [IANpo@opleg amd exteTapeves Baoels SeSo0UEVWY Yo HEYRAEG OUASEG aoBeVWVY UE
OKATpUVOT KaTA TAGKAG Selyvouv O0TL 1 @uoikn otopia g XKIT e€ediooetal og §Vo otadi: (i) otnv eoTioKy
@Aeypovwdn Sadikacio pe €apoelg kal ii) oty avammpia mov eEeAlooeTal aveEdpTNTA ATO TNV EGTLOKN
@Aeypovn (BAapn 1 vmotpomn). Emopuévwg, eival onuavtikd va evtomiotovv PBlodeikteg mouv Bonbovv atnv
£YKOALPT avayvmpLon TG vooov KabBwe Katl Twv amokpicewv otnv IFN. ‘Evag 6e0tepog 6TdX0G TNG LEAETNG HOG
glvat o evtomiopdg Blodeiktwv mov Bonbolv oty TPWLIUN avayvwplon Twv pop@wv tng ZKII, dnAadn tng
umotpoTmialovoag-SlaAeimovoag pop@ng MoAAamANG okAnpuvong (RRMS), tng Sevtepomabwe mpoiolioag
Hop@NG MoAAATANG okAnpuvong (SPMS) kot g mpwtomabwe mpoiooag Hop@NG TOAAATANG OKANpUVONG
(PPMS).

MoTtiBa cuvékppPaomS YoVISiwVy yia SLa@opous alvoTUTIOUS UTTopoV Vo aTtokaAv@BoUv pe n Borfeta
HWKPOOUOTOLXLWV, OAAG 1M TOWKWAIA KoL 1) €TEPOYEVELX TNG VOOGOU AELTOUPYOUV WG TEPLOPLOHOL Yl TN
XPNOUOTNTA TWV TIPOPIA YoVISLaKN G Ek@paonG. EMTAE0Y, ol S1aOopETIKEG TAATPOPHEG LIKPOGUGTOLYLWV TIOU
XPNOLUOTIOLOVVTAL, KAOWG Kol TA SLOPOPETIKA TEPAUATIKE TIPWTOKOAAQ ToU akoAovBovvtal Kabiotolv
800oKkoA0 TOV oLVOLAOUO BESOUEVWY YOVISLOKNG EKPPACNG ATIO ETEPOYEVEIG TTAATPOPUES KAl SLOAPOPETIKEG
ueAétes. 'Evag dAAog Teploplopog eivat 1 LeydAn avicoppoTia LETAE) TOV TEPAGTIOU APLOUOV TWV UETAYPAP WV
Kol YoviSlwv (8ekadeg XIALASEG) KAl TOU OXETIKA HIKPOU aplBpol Sabeoipwy SelyHATwy (EKATOVTASES).
EmumAéov, eivat onuavtikd va cuvduaoTtoUv Ol TPOCEYYIOELS ETIAOYNG XAPAKTNPLOTIKWV Kol 1 «BLOA0YIKN)
eYKUpOTNTOH» TWV YoviSlakwy Blodelktwv Tou mpoékuPav. 'ETol, 0 okomog pag eivat oyt povo va
ETKEVTPWOOUE OE ONUAVTIKA SlX@OPIKA eK@PACUEVA YoViSla, oAA& va oLVOLACOUUE SLAPOPETIKEG
Tpooeyyioels yia va e€dyovpe pa yoviSlaky vmoypa@n Ue VmAN TPOYVwoTIKY/SlayvwaoTiky adia yio tnv
TxkAnpuvon kata [MAdkag, tnv €eAdn TG vooou kat TN HeAAovTikn Bepameia, a@ol eEeTACOVUE TIG OXECELS
HETAEL TWV YOVISLAKWOV UTIOYPAP®V KXL CUVAYOUE UTIoSiKTLA.

Ze quTn TN UEAETT, xpnowomomaoaue dnuocia Stabéoiua ovvola Sedopévwy kat pe Baomn ta mpo@iA
YovISLaKn G ek@paong amo: a) acbeveis mov dev vTOBANONKav oe Oepameia pe VTEPPEPOVN Kol ATOUA TIOU
vmofAnbnkav ot Bepameia pe wtep@epovn, B) atopa mouv Sev voPANONKav og Bepameia pe vTePPEPOVN KoL
Uyl] ATOUN, Kol Y) GTOPX TTIOU QVIKOUV G€ UL OTO TIG TPELS KUPLEG HOPWPEG TIOAAATIATIG OKAT)PUVOTS Kal Sev
£€xouv umofAnBel o Bepamela kAl Lyu] ATOHUX, TIPAYUATOTIOW|OAUE OVAAUOT SL@POPIKNG EKQPOOTG Kal
ovoxétion Siktvou Pigengene (otaBuiopévn avaivon Swktvouv cvoxétiong (WGCNA) kat povtedomoinom
SiktOwv Bayes), £101 (VOTE VA KATAOKEVAGOUUE £va LoYLPO SiKTLO TPWTEIVIK®WYV aAAnAemi§pacewv (PPI). It
OUVEXELN, PE OTOXO TNV €UPECT TWV TILO ONUAVTIK®OV HOVASWV opadoTo(nomng Kol ONUAVTIK®OV YoviSiwy,
gpappocape Sapopes peBoSoug TomoAoyikniG avaivong (cytoHubba) akolovBovpeveg amd tov aiyopiBuo
opadomoinong MCODE. H mpocéyylon pog elxe wg amotédsopa vymAd ouvvdedepeva yovidia (hub) mou
TAPAYOUV TEGCEPLS EEALPETIKA EVPWOTES ‘YOVISIAKES VTIOYPAPES KOUPBWY e LYNAN amddoon tadvounong.
Télog, Tpooeyyioapue To Béua NG EMAVAXPNOUOTOMONG PAPUAKWY €EETATOVTAG TIS OXECELS PUPUAKOL-
yoviSilov peoa amd SLa@opeTIKEG BAoels eSOUEVWV.
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Introduction

1 INTRODUCTION

Multiple sclerosis (MS) is the most common autoimmune disease, a potentially disabling disease of the
brain and spinal cord, the central nervous system (CNS). It is characterized by the infiltration of
autoreactive immune cells into the CNS, which target the myelin sheath, leading to the loss of neuronal
function. Eventually, the disease can cause permanent damage or deterioration of the nerves. Signs and
symptoms of MS vary widely and depend on the amount of nerve damage and which nerves are
affected. Some people with severe MS may lose the ability to walk independently or at all, while others
may experience long periods of remission without any new symptoms. Although it is accepted that MS
is a multifactorial disorder with both genetic and environmental factors influencing its development
and course, the molecular pathogenesis of multiple sclerosis (MS) has not yet been fully elucidated.
There's currently no cure for multiple sclerosis. However, the growing arsenal of disease-modifying
therapies offers opportunities to reduce disability and extend survival of people with multiple sclerosis
(MS). [1]

According to 2020 data on multiple sclerosis (MS), the number of people suffering from the disease
worldwide amount to 2.8 million [1]. MS is the most common demyelinating disease that affects the
central and peripheral nervous system. This autoimmune disorder shows a significant variation in
prevalence, reaching high levels in Europe (lower in the South, higher in the North). Although the
etiology of this multifactorial disease remains unknown, the implications of environmental and
immunogenetic factors appear to be major [2]. Information from extensive databases for large groups
of multiple sclerosis patients indicates that the natural history of MS evolves in two stages: (i) in the
focal inflammatory process with flares, and ii) in disability that progresses irrespective of the focal
inflammation (lesion or relapse) [2]. Despite its impact and increasing rates on the global population,
there is still no cure for MS. Among the available treatments, disease-modifying therapies such as
interferon beta (IFN[) are designed to help patients by reducing the relapse rates and delaying the
onset of disability [3]. Although IFN is used as first-line therapy, many MS patients do not benefit from
this treatment.

Chapter 1 proceeds with a brief presentation of the disease, the biological and bioinformatics
perspectives, the related work and thesis outline and innovation. In Chapter 2 the biological and
mathematical knowledge in bioinformatics, needed for our study is presented. Our Methodology
pipeline is explained in Chapter 3. The process of our data, integration, differential expression analysis
and network construction, are explained in detail. After generating the subnetworks and extracting the
final gene signatures, we examine the nature of the involved pathways as well as the relationships
between genes. Furthermore, we evaluate our results in a new independent dataset, after applying a
classification algorithm, SVM, and also taking into consideration their biological significance. Finally, we
examine the potential of drug repurposing based on our results which are presented in Chapter 4.
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Introduction
1.1 Multiple Sclerosis

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS)
with varied clinical presentations and heterogeneous histopathological features (Figurel.1). The
underlying immunological abnormalities in MS lead to various neurological and autoimmune
manifestations. There is strong evidence that MS is, at least in part, an immune-mediated disease.
Immunogenetic markers have been identified and, in particular thanks to studies of genome-wide
associations, more than 100 genetic variants have been reported. Most of these are involved in the
immune response and often associated with other autoimmune diseases. Studies of the natural history
of MS suggest it is a two-phase disease: in the first phase, inflammation is focal with flares; and in the
second phase, disability progresses independently of focal inflammation. This has clear implications for
therapy. [2]
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FIGURE 1.1.MULTIPLE SCLEROSIS COURSE OF ACTION [4]

Studies using imaging, serology, pathology and genetics, and patient response to anti-inflammatory
treatments indicate that multiple sclerosis (MS) is primarily an inflammatory demyelinating disease of
the central nervous system (CNS) with wvaried clinical presentations and heterogeneous
histopathological features. The disease has a peak onset between ages 20 and 40 years [4]; however, it
may also develop in children and in addition has been reported in individuals aged above 60 years. MS
affects women approximately twice as often as men [5-8]. MS results in a plethora of neurological
manifestations and is a leading cause of nontraumatic disability among young adults and has great
socioeconomic impact in developed countries [9]. Based on the epidemiological studies, approximately
400,000 people have MS in the United States, with 200 new cases added every week. In Europe is the
leading cause of non-traumatic disabilities in young adults, with more than 700,000 EU cases. The
pathogenesis of MS remains elusive and there were no definitive cause and no effective cure. Therefore,
MS can be classified as an episodic demyelinating disease of the central nervous system. The two main
factors of MS are genetic and environmental. Exposure to Epstein-Barr virus [10], low levels of vitamin
D [11-12], and smoking [13] have been cited as plausible factors, which may increase the probabilities
of developing MS.
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Introduction
The commonly used disease-modifying therapies (DMTs), interferon (IFN) beta and Glatiramer acetate
are believed to modulate the immune response, reduce new inflammatory lesions in the CNS and
partially protect against progression of disability. However, patients vary considerably in their
responsiveness to these therapies, and for any individual patient, the natural history of MS is extremely
heterogeneous, varying from a benign condition to a devastating and rapidly incapacitating disease. For
these reasons, a better characterization of patients is much needed to ultimately understand the
diversity of disease presentation. A number of studies in neurodegenerative disorders and autoimmune
diseases [9, 14-16] suggest that gene expression changes in blood mirror pathologic processes in the
CNS. Blood transcriptomics have also been used to study therapeutic response to treatment with
different drugs, toxins and infections in different diseases [17-19]. Several microarray-based gene
expression studies have used whole blood or peripheral blood mononuclear cells (PBMCs) to
investigate de-regulated patterns of gene expression in MS patients [20-22]. Unfortunately, owing to
small sample sizes and disease heterogeneity, reproducibility across studies has been limited.

1.2 Multiple Sclerosis and Bioinformatics

Multiple Sclerosis occurs in both men and women, in younger as well as older individuals. Although a
cure has not yet been found, identifying the genetic causes that rule the disease can play an important
role. Bioinformatics is an integrative area combining biological, statistical and computational sciences.
Bioinformatics enables researchers not only to manage, analyze and understand the currently
accumulated, valuable, high-throughput data, but also to integrate these in their current research
programs. The need for bioinformatics will become even more important as new technologies increase
the already exponential rate at which data are generated. Computational models could give a
considerable advance in the study of diseases characterized by a partially understood etiology of the
disease. The main goal of bioinformatics is to enable the discovery of new biological insights as well as
to create a global perspective from which unifying principles in biology can be discerned. We have
therefore to do with the development and the advancement of databases, algorithms, computational
and statistical techniques and theory to solve formal and practical problems arising from the
management and analysis of biological data. (www.wikidoc.org/index.php/Bioinformatics)

1.3 Genomic and Network Analysis

In genetics the term Genomics refers to the field that combinesrecombinant DNA, DNA
sequencing methods, and bioinformatics to sequence, assemble, and analyze the function and structure
of genomes. Functional genomics employs diverse experimental approaches to investigate gene
functions. High-throughput techniques, such as loss-of-function screening and transcriptome profiling,
allow the identification of specific sets of genes involved in biological processes of interest (so called hit
list of genes). [23-24]

Gene expression profiling is being applied in many areas of research in order to identify new targets for
treatment, resistance mechanisms and to improve the current tools of prognosis and treatment.
Pathways analysis methods, aim at searching for statistical enrichment of genes with annotated
biological process or molecular functions. Thought computational scientists and statisticians that
participate in the process of data analysis are often not well informed of the sample collection processes
or the impact of genetics/transcriptomics. Therefore, a pressing need has occurred for better
understanding of the challenges and limitations of high-throughput approaches, both in experimental
design and data analysis. [24-25]
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Introduction

The investigation of the roles and functions of single genes is a primary focus ofmolecular
biology or genetics and is a common topic of modern medical and biological research. Understanding
complex systems often requires a bottom-up analysis towards a systems biology approach. The need to
investigate a system, not only as individual components but as a whole, emerges. This can be done by
examining the elementary constituents individually and then how these are connected. The myriad
components of a system and their interactions are best characterized as networks and they are mainly
represented as graphs where thousands of nodes are connected with thousands of vertices. [25]

In the field of Bioinformatics the main goal of several studies has been revealing the pathways that give
rise to diseases, identifying genetic alterations that determine clinical phenotypes as well as
identification of both gene and protein networks causing a disease as well as the investigation of
biochemical networks of drugs metabolism and mechanisms of action. Network biology involves the
study of the complex interactions of biomolecules that contribute to the structures and functions of
living cells. Given the functional interdependencies between the molecular components in a human cell,
a disease is rarely a consequence of an abnormality in a single gene but reflects the perturbations of the
complex intracellular and intercellular network that links tissue and organ systems [25]. Once the
model has been chosen, the parameters need to be fit to the data. Even the simplest network models are
complex systems involving many parameters, and fitting them is a non-trivial process, known as
network inference, network identification, or reverse engineering. Genetic networks are often
described statistically using graphical models. The interpretation of the network structure constitutes a
serious challenge in microarray analysis due to the fact that the sample size is small compared to the
number of considered genes. As a result, many standard algorithms for graphical models are considered
inapplicable. In order to better understand genetic networks, we have to look at graph theory and
models. [26]

Graph theoretical models (GTMs) are used mainly to describe the topology, or architecture, of a
network. These models feature relationships between genes and possibly their nature, but not
dynamics: the time component is not modeled at all and simulations cannot be performed. GTMs are
particularly useful for knowledge representation, as most of the current knowledge about gene
networks is presented and stored in databases in a graph format. In GTMs, gene networks are
represented by a graph structure, G (V, E), where V = {1, 2,.,, n} represent the gene regulatory elements,
e.g. genes, proteins, etc., and E = {(], j) |, j € V } the interactions between them, e.g. activation, inhibition,
causality, binding specificity, etc. Most often G is a simple graph, and the edges represent relationships
between pairs of nodes, although hyper edges, connecting three or more nodes at once, are sometimes
appropriate. Edges can be directed, indicating that one (or more) nodes are precursors to other nodes.
They can also be weighted, the weights indicating the strengths of the relationships. Either the nodes, or
the edges, or both are sometimes labeled with the function, or nature of the relationship, i.e. activator,
activation, inhibitor, inhibition, etc. The edges imply relationships which can be interpreted as temporal

(e.g. causal relationship) or interactional. (en.wikipedia.org/wiki/ Graph_theory)

1.4 Related Work

High-throughput techniques, such as loss-of-function screening and transcriptome profiling, allow to
identify lists of genes potentially involved in biological processes of interest (so called hit list). Several
computational methods exist to analyze and interpret such lists, the most widespread of which aim
either at investigating of significantly enriched biological processes, or at extracting significantly
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represented subnetworks. Also, in the field of drug discovery, taking into account that discovery and
design is a time-consuming process, it often requires a lengthy period. A drug prescribed for a specific
disease can be also effective for another disease if the two diseases share a common pathophysiologic
mechanism. To identify a new use of existing drugs is called drug repositioning, and this approach is
gathering momentum because it can markedly shorten the time to obtain drug approval.[27]

In order to comprehend the mechanisms and improve the methods of prognosis and treatment many
studies focus on the analysis of gene expression profiles to identify markers linked to a disease as well
as pathways and associations between gene expression and phenotype which can be extended to enable
systematic search for candidates for drug repositioning [28]. Protein-protein interaction (PPI)
networks, co-expression networks or pathways from databases such as KEGG, has been proposed to
overcome variability of prognostic signatures and to increase prognostic performance. Relevant studies
have been made that focus on the interaction or association between genes and clinical outcomes and
the discovery of disease-related gene signatures and the integration of PPI networks in their
methodology [27-29].

Y Liu et al., 2019 [30] proposed a methodology combining gene expression data for the investigation of
hub genes in bipolar disorder integrating PPI networks and graph theory. In addition, Machine learning
techniques for biological networks are proposed in [31]. Most recent work in Multiple Sclerosis to
identify the potential key candidate genes of MS and uncover mechanisms in the disease is [32-33]
where data from the microarray expression profile of MS patients were combined and bioinformatics
analysis was performed. Defective pathways suggest viral or bacterial infections as plausible
mechanisms involved in MS development were examined in [34] providing additional knowledge to
identify new therapeutic targets.

This thesis is based on the study of D Nickles et al., 2013 [35] combining different methodological
approaches [32-37] to create a new pipeline for disease investigation, gene signature discovery and
drug repositioning analysis for Multiple Sclerosis. D Nickles et al., 2013 study proposes a protein
network-based approach that identifies markers not as individual genes but as subnetworks from
differentially expressed genes in MS extracted from protein interaction databases. Gene expression
differences between MS patients and controls as well as MS patients that have received treatment, of a
large data set allowed several significant de-regulated genes to be detected. A proportion of transcripts
up-regulated in untreated patients were counter-regulated by IFN treatment, suggesting a set of
possible effectors for this first-line therapy in MS. We have followed same steps of the methodology and
combined it with the works of Diogo M. Camacho et al., [31], Y Liu et al,, 2019 [30], AS Nangraj, 2020
[37], in order to explore the potentials of our data set and investigate the ability to perform drug
repositioning based on G Fiscon et al.,, 2021 [38]. Clustering and classification algorithms have been
successfully used to elucidate the functional relationship between genes and pathways. In this context,
our goal in this thesis is to implement our methodology into our main transcriptomic dataset and locate
the structural differences within the network between the two populations MS untreated patients
versus Healthy controls and MS Interferon treated versus MS untreated patients as well as patients in
different stages of the disease such as Relapsing Remitting (RRMS) versus Healthy controls, Secondary
Progressive (SPMS) versus Healthy Controls and Primary Progressive (PPMS) versus Healthy controls.

The gene expression profile of each gene differentiates along the samples and according to the group
that each sample belongs; the value of each gene alters significantly. Therefore, we aim in finding the
genes that most differ between the two groups and are more likely to dominate in our networks. The
resulting subnetworks will give us the information we need in order to determine how the genes
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behave and probably going to behave, as well as how they influence each other so as to have a better

knowledge in predicting “disease triggering” relations/pathways.

1.5 Thesis Outline and Innovation

The development of this thesis is based on the necessary theoretical background covered In Chapter 2.
In the first part of this Chapter the human genome and biological concepts regarding DNA microarrays
are included and form the biological background. Gene networks and methodologies concerning the
analysis of DNA microarray data as well as the construction of gene networks compose the second part.
Machine learning approaches and the mathematical background involving the knowledge in the field of
bioinformatics and its applications is also presented. Chapter 3 introduces the proposed methodology
concerning this study and we analyze in detail the steps chosen for the elaboration of our methodology
for the gene subnetwork construction, the hub genes discovery, and the steps towards drug
repositioning examination. We have also performed an evaluation method implemented for the
generalization ability of the observed results. The integration of the Multiple sclerosis gene expression
datasets and the methodology is presented in section 4, as well as the generation of PPI networks from
our data along with their organization in subnetworks. Our results were evaluated after applying the
supervised and unsupervised classification methods in the steps accordingly, for statistical prediction
and examination of the biological significance of our results.

In this work the innovative concept involves the process of gene expression data from a combinational
pipeline, that to our knowledge, has not been performed on Multiple sclerosis data.

Moreover, taking into account the heterogeneity of the disease as well as the limited sample size, we
can safely say that investigating Multiple sclerosis at the molecular level has provided valuable insight,
but there is a lot of research in this to be done. The current knowledge for the development of strategies
for preventing or predicting the progression of the disease is insufficient, therefore a combination of
clinical data and different machine learning techniques must be explored.
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2 THEORETICAL BACKGROUND

In this Chapter we introduce the reader to the necessary biological background followed by the
mathematical background (bioinformatics and machine learning), needed for the composition of this
thesis. The human genome is presented in the first section and the significance of DNA microarrays as
well as their analysis is covered in section 2.1. Following, in section 2.2, which constitutes the beginning
of the second theoretical part, we introduce the scientific field of machine learning and pattern
recognition followed by the process of feature subset selection (FSS), applied in DNA microarray data,
which is distinguished in three fundamental algorithms, also presented, wrappers, filters and
embedded methods, is interpreted in Section 2.3. In sections 2.4 and 2.5, the general process of
classification and an introduction of classifiers, including linear and nonlinear classifiers, along with the
classification methods Support Vector Machines (SVM) and decision trees, implemented in this thesis,
are covered respectively. Furthermore, in section 2.6, different evaluation methods are described such
as holdout validation, k-fold cross validation, leave one out cross validation, repeated random sub-
sampling validation.

Finally, the relationship of network biology and bioinformatics is introduced in section 2.7 where a part
of different biological networks that exist are presented.

2.1 The Human Genome

2.1.1 Genome

The human genome is a complete set of nucleic acid sequences for humans, encoded as the molecule of
DNA (deoxyribonucleic acid) within the 23 chromosome pairs in cell nuclei and in a small DNA
molecule found within individual mitochondria. These are usually treated separately as the nuclear
genome and the mitochondrial genome. Human genomes include both protein-coding DNA genes and
noncoding DNA. Haploid human genomes, which are contained in germ cells (the egg and sperm gamete
cells created in the meiosis phase of sexual reproduction before fertilization creates a zygote) consist of
more than three billion DNA base pairs, while diploid genomes (found in somatic cells) have twice the
DNA content. The study, analysis and mapping of HUMAN GENOME, has been the subject of the “Human
Genome Project” (www.genome.gov). All living organisms are composed of cells, small units of
biological activity.

The discovery that DNA contains the code for life, urged a global effort to understand how the genome
sequences of many organisms associated with their health. The study of the human genome led to the
genomic revolution since the notification of the first draft sequence of the genome had a huge impact on
human cancer research. Genes is the basic physical unit of inheritance. Genes are passed from parents
to offspring and contain the information needed to specify traits. Genes are arranged, one after another,
on structures called chromosomes. A chromosome contains a single, long DNA molecule, only a portion
of which corresponds to a single gene. Humans have approximately 20,000-25,000 genes arranged on
their chromosomes. (www.medlineplus.gov)

DNA and RNA

Each gene is made of DNA. Deoxyribonucleic acid (DNA) is the central information storage system of
most animals and plants, and even some viruses. The name comes from its structure, which is a sugar
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and phosphate backbone which have bases sticking out from it--so-called bases. So that "deoxyribo"
refers to the sugar and the nucleic acid refers to the phosphate and the bases. The bases go by the
names of adenine, cytosine, thymine, and guanine, otherwise known as A, C, T, and G. DNA is a
remarkably simple structure. It's a polymer of four bases--A, C, T, and G--but it allows enormous
complexity to be encoded by the pattern of those bases, one after another. DNA is organized structurally
into chromosomes and then wound around nucleosomes as part of those chromosomes. Functionally,
it's organized into genes, of which are pieces of DNA, which lead to observable traits. And those traits
come not from the DNA itself, but from the RNA that is made from the DNA, or most commonly of
proteins that are made from the RNA which is made from the DNA. So, the central dogma, so-called of
molecular biology, is that genes, which are made of DNA, are made into messenger RNAs, which are
then made into proteins. But for the most part, the observable traits of eye color or height or one thing
or another of individuals come from individual proteins. Sometimes, we're learning in the last few years
they come from RNAs themselves without being made into proteins--things like micro RNAs. But those
still are relatively the exception for accounting for traits. (www.technologynetworks.com)

As mentioned above RNA is a nucleic acid that is similar in structure to DNA but different in subtle
ways. The cell uses RNA for several different tasks, one of which is called messenger RNA, or mRNA.
And that is the nucleic acid information molecule that transfers information from the genome into
proteins by translation. Another form of RNA is tRNA, or transfer RNA, and these are non-protein
encoding RNA molecules that physically carry amino acids to the translation site that allows them to be
assembled into chains of proteins in the process of translation. (www.technologynetworks.com)
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FIGURE 2.1 DNA AND RNA DIFFERENCES

Genes are the blueprint for our bodies. Humans typically have 46 chromosomes in each cell of their
body, made up of 22 paired chromosomes and two sex chromosomes. These chromosomes contain
between 20,000 and 25,000 genes. New genes are being identified all the time. The paired
chromosomes are numbered from 1 to 22 according to size. (Chromosome number 1 is the biggest.)
These non-sex chromosomes are called autosomes. People usually have two copies of each
chromosome. One copy is inherited from their mother (via the egg) and the other from their father (via
the sperm). A sperm and an egg each contain one set of 23 chromosomes. When the sperm fertilises the
egg, two copies of each chromosome are present (and therefore two copies of each gene), and so an
embryo forms. The chromosomes that determine the sex of the baby (X and Y chromosomes) are called
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sex chromosomes. Typically, the mother’s egg contributes an X chromosome, and the father’s sperm
provides either an X or a Y chromosome. A person with an XX pairing of sex chromosomes is
biologically female, while a person with an XY pairing is biologically male. As well as determining sex,
the sex chromosomes carry genes that control other body functions. There are many genes located on
the X chromosome, but only a few on the Y chromosome. Genes that are on the X chromosome are said
to be X-linked. Genes that are on the Y chromosome are said to be Y-linked.
Gene expression is the process by which information from a gene is used in the synthesis of a functional
gene product that enables it to produce end products, protein, or non-coding RNA, and ultimately affect
a phenotype, as the final effect. These products are often proteins, but in non-protein-coding genes such
as transfer RNA (tRNA) and small nuclear RNA (snRNA), the product is a functional non-coding RNA.
Gene expression is summarized in the central dogma of molecular biology first formulated by Francis
Crick in 1958, further developed in his 1970 article, [39] and expanded by the subsequent discoveries
of reverse transcription and RNA replication. The process of gene expression is used by all known life—
eukaryotes (including multicellular organisms), prokaryotes (bacteria and archaea), and utilized by
viruses—to generate the macromolecular machinery for life. (en.wikipedia.org/wiki/Gene_expression)

In genetics, gene expression is the most fundamental level at which the genotype gives rise to the
phenotype, i.e., observable trait. The genetic information stored in DNA represents the genotype,
whereas the phenotype results from the "interpretation” of that information. Such phenotypes are often
expressed by the synthesis of proteins that control the organism's structure and development, or that
act as enzymes catalyzing specific metabolic pathways. All steps in the gene expression process may be
modulated (regulated), including the transcription, RNA splicing, translation, and post-translational
modification of a protein. Regulation of gene expression gives control over the timing, location, and
amount of a given gene product (protein or ncRNA) present in a cell and can have a profound effect on
the cellular structure and function. Regulation of gene expression is the basis for cellular differentiation,
development, morphogenesis and the versatility and adaptability of any organism. Gene regulation may

therefore serve as a substrate for evolutionary change. (www.basicZtech.com/genetics/)

cell

nucleus

FIGURE 2.2 DNA
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2.1.2 Genetics

Genetics is a branch of biology concerned with the study of genes, genetic variation, and heredity in
organisms. Though heredity had been observed for millennia, Gregor Mendel, Moravian scientist and
Augustinian friar working in the 19th century in Brno, was the first to study genetics scientifically.
Mendel studied "trait inheritance", patterns in the way traits are handed down from parents to
offspring over time. He observed that organisms (pea plants) inherit traits by way of discrete "units of
inheritance". This term, still used today, is a somewhat ambiguous definition of what is referred to as a
gene. Trait inheritance and molecular inheritance mechanisms of genes are still primary principles of
genetics in the 21st century, but modern genetics has expanded beyond inheritance to studying the
function and behavior of genes. Gene structure and function, variation, and distribution are studied
within the context of the cell, the organism (e.g.,, dominance), and within the context of a population.
Genetics has given rise to several subfields, including molecular genetics, epigenetics and population
genetics. Organisms studied within the broad field span the domains of life (archaea, bacteria, and
eukarya). Genetic processes work in combination with an organism's environment and experiences to
influence development and behavior, often referred to as nature versus nurture. The intracellular or
extracellular environment of a living cell or organism may switch gene transcription on or off. A classic
example is two seeds of genetically identical corn, one placed in a temperate climate and one in an arid
climate (lacking sufficient waterfall or rain). While the average height of the two corn stalks may be
genetically determined to be equal, the one in the arid climate only grows to half the height of the one in
the temperate climate due to lack of water and nutrients in its environment.
(www.basic2tech.com/genetics/)

2.1.3 DNA Microarray and analysis

A microarray is a laboratory tool used to detect the expression of thousands of genes at the same time.
DNA microarrays are microscope slides that are printed with thousands of tiny spots in defined
positions, with each spot containing a known DNA sequence or gene. Often, these slides are referred to
as gene chips or DNA chips. The DNA molecules attached to each slide act as probes to detect gene
expression, which is also known as the transcriptome, or the set of messenger RNA (mRNA) transcripts
expressed by a group of genes. To perform a microarray analysis, mRNA molecules are typically
collected from both an experimental sample and a reference sample. For example, the reference sample
could be collected from a healthy individual, and the experimental sample could be collected from an
individual with a disease like cancer. The two mRNA samples are then converted into complementary
DNA (cDNA), and each sample is labeled with a fluorescent probe of a different color. For instance, the
experimental cDNA sample may be labeled with a red fluorescent dye, whereas the reference cDONA may
be labeled with a green, fluorescent dye. The two samples are then mixed together and allowed to bind
to the microarray slide. The process in which the cDNA molecules bind to the DNA probes on the slide is
called hybridization. Following hybridization, the microarray is scanned to measure the expression of
each gene printed on the slide. If the expression of a particular gene is higher in the experimental
sample than in the reference sample, then the corresponding spot on the microarray appears red. In
contrast, if the expression in the experimental sample is lower than in the reference sample, then the
spot appears green. Finally, if there is equal expression in the two samples, then the spot appears
yellow. The data gathered through microarrays can be used to create gene expression profiles, which
show simultaneous changes in the expression of many genes in response to a particular condition or
treatment. (www.nature.com/scitable/definition/microarray-202/).
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Microarray can be a valuable tool in order to define transcriptional signatures bound to a pathological

condition, to determine whether the DNA from a particular individual contains a mutation in genes as

well as to exclude molecular mechanisms tightly bound to transcription. Microarray analysis frequently

does not imply a final answer to a biological problem but allows the discovery of new research paths

which let to explore it by a different perspective. (www.genome.gov)

Today, DNA microarrays are used in clinical diagnostic tests for some diseases. Sometimes they are also

used to determine which drugs might be best prescribed for certain individuals, because genes
determine how our bodies handle the chemistry related to those drugs. With the advent of new DNA
sequencing technologies, some of the tests for which microarrays were used in the past now use RNA

sequencing instead. But microarray tests still tend to be less expensive than sequencing, so they may be

used for very large studies, as well as for some clinical tests. (www.genome.gov)

The principal steps of a microarray analysis are [40]:

Analysis step

Caveats

Experimental design and implementation-

Define the biological question and hypothesis
clearly

Design the microarray experimental scheme
carefully; include biological replication in
experimental design

Avoid experimental errors

Data collection and archival

Compliance with microarray information
collection standards (e.g. MIAME)

Image acquisition

Try to balance the overall intensities between
the two dyes
Scan image at appropriate resolution
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Analysis step

Caveats

Image analysis

Inspect the gridding result manually; adjust the
mask and flag poor-quality spots if necessary
Choose and apply an appropriate segmentation
algorithm

Apply quality measures to aid decision of spot
quality

Data pre-processing

Remove poor-quality spots

Remove spots with intensity lower the
background plus two standard deviations.
Log-transform the intensity ratios

Data normalization

Use diagnostic plots to evaluate the data
Consider using LOWESS and its variants for
normalization

Identifying differentially expressed genes

Do not use fixed threshold (i.e. two-fold
increase or decrease) to infer significance
Calculate a statistic based on replicate array
data for ranking genes

Select a cut-off value for rejecting the null
hypothesis that a gene is not differentially
expressed; remember to adjust for multiple
hypothesis testing

Exploratory data analysis

Use different analysis tools with different

setting to ‘explore’ the data
e Validate the result by follow-up experiments

TaBLE2.1 SUMMARY OF MICROARRAY ANALYSIS STEPS
2.2 Machine Learning and Pattern Recognition

2.2.1 Datasets

Data

Data completeness and generalizability are other important considerations when developing and
training Machine Learning (ML) algorithms. The familiar concept of “garbage-in/garbage-out”
highlights the critical importance of having high-quality data for ML applications, since incomplete
and/or erroneous values may inappropriately train an algorithm in the wrong direction. Likewise,
highly controlled data may not represent real-world conditions. “Quality data” for Al/ML training
applications must include accurate, precise, complete, and generalizable information [43]. Laboratory
data are often assumed to be sufficiently accurate and precise by both health-care providers and
researchers.

Unfortunately, it is a truism that not all laboratory tests are created equal, and poor analytical bias and
imprecision degrade the performance of ML algorithms. Additionally, both providers and researchers
are often not aware that test methods may lack standardization. The concept of imprecision reported as
coefficient of variation is also poorly understood by most bedside providers with many assuming any
change in numerical values reflecting a true biological change without taking into account sources of
variability. Despite the convenience of collecting real-world information from electronic health records,
the retrieved medical data are often incomplete. This is attributed to the several inconsistencies in test
ordering and resulting. Ordered laboratory tests may be cancelled due to patients not showing up for a
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visit, or samples were found to be not acceptable upon receipt by the laboratory. Incomplete data create
significant challenges for ML developers, where the predictive power of algorithms may be severely
diminished. The limitation of real-world evidence has thus prompted investigators to gravitate toward
more complete and rigorous data derived from clinical trials. However, caution is advised when using
data that are “too complete” or “too controlled,” since it may not represent the real-world population
and contribute to overfitting [44]. Ultimately, the best and most balanced approach is to pilot ML
algorithms using more controlled data during the initial stages and later refining these algorithms using
real-world data to confirm generalizability.

Here, our data is presented as a set of N samples. Each sample contains the expression value of K genes
also called predictors. In the dataset, each sample N can be expressed as a vector x; € R wherei=1,...,
N. To each of the samples, a class label y is assigned. The data can also be expressed in array form as X €
RNK where each row represents a sample containing the expression values of K genes, while the class
labels of all samples are expressed as a vector y € RN,

Pattern recognition

Pattern recognition [41-42] is classified in the field of machine learning, a scientific area that focuses on
the recognition of patterns and regularities in vast amount of data. Today, there is clearly a need to
apply rational and systems-based data science principles for handling the ever-growing body of both
qualitative and quantitative aspects of medical laboratory information and classification. Faced with the
limitations of human processing of rapid, accurate, and precise retrieval of data in real time, the
heuristic provided and amplified by Machine Learning offers an attractive approach to substantially
improve the delivery of health care. Current health problems that are deemed suitable to ML include,
but are not limited to, integrating multiple variables to mimic human clinical decision-making skills (eg,
multiparameter disease diagnosis), automation of testing and treatment algorithms (eg, reflex testing)
and workflows, pattern recognition using imaging data (eg, radiology, histology slides, and vital sign
waveforms), and/or test utilization trends. However, although one could use Al/ML, it may not always
be necessary to apply such tools for every situation since simple statistical approaches may sometimes
suffice[41].

» Supervised learning

Supervised learning entails learning a mapping between a known dataset called the training dataset, a
set of input variables X and an output variable Y and applying this mapping to predict the outputs for
unseen data. If the desired output consists of continuous variables, then the task is called regression
whereas cases, in which the output falls within discrete values the task is called classification.
Supervised learning is the most important methodology in machine learning and it also has a central
importance in the processing of class prediction in DNA microarray data analysis. (ex. linear regression,
logistic regression, naive Bayes, decision tree, k-nearest neighbor (k-NN), support vector machine
(SVM), and the ensemble decision tree algorithm random forest (RF)).

» Unsupervised learning

Unsupervised learning is the type of machine learning that is trying to find hidden structure in data
with unlabeled responses. Due to the fact that the data given are unlabeled, this concludes that there is
no error or reward signal to evaluate a potential solution. Various unsupervised classification
techniques can be employed with DNA microarray data in microarray data analysis that affect statistical
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analysis, in the part of class discovery. (ex. k-means algorithm, principal component analysis (PCA),
hierarchical clustering).

» Reinforcement learning

Reinforcement learning is the type of machine learning where an agent interacts with its environment.
The agent senses the environment and based on this sensory input choosing an action to perform in it.
This action changes the environment in some manner and this change is communicated to the agent
through a scalar reinforcement signal. Reinforcement learning utilizes a positive or negative reward
signal sent to the agent after an action is complete (ex. International Business Machine (IBM)’s Deep
Blue (Armonk, New York) and Google’s Go (Alphabet, Mountain View, California)). Currently
reinforcement learning approaches are rarely employed in pathology.
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FIGURE 2.4 OVERVIEW DIAGRAM OF MACHINE LEARNING ALGORITHMS

2.2.2 Patterns -Classes - Features

Machine learning starts with the design of appropriate data representations. In machine learning and
pattern recognition the features can be symbolic (e.g. condition) or numerically (e.g. weight). The
combination of some features is the feature vector. A pattern is a composition of characteristics which
are divided into specific decision areas called classes. The classes are separated by decision boundaries.
The n-dimensional space defined by the feature vector space is called feature space. Feature spaces may
overlap each other, allowing patterns of different classes to share same characteristics. Moreover, each
pattern can be illustrated in the set of features F. Thus, each feature can be a member not only of
different patterns but also different classes. The classification model is a pair of variables {x, w} where x
is a collection of features, feature vector, and w is the concept of observation, the label [45-46].

2.2.3 Applications and implementation of pattern recognition

Pattern recognition as a field of study developed significantly in the 1960s. It is an interdisciplinary
subject, covering developments in the areas of medical, engineering, artificial intelligence, computer
science, psychology and physiology, among others. Human being has natural intelligence and so can
recognize patterns [47-48]. As we mentioned above pattern recognition is the study of how machines
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can observe the environment, learn to distinguish patterns of interest from their background, and make
sound and reasonable decisions about the patterns [49]. But in spite of almost 50 years of research,
design of a general-purpose machine pattern recognizer remains an elusive goal. The best pattern
recognizers in most instances are humans, yet we do not understand how humans recognize patterns.
Given a pattern, its recognition/classification may consist of one of the following two tasks:

» supervised classification in which the input pattern is identified as a member of a predefined

class,
» unsupervised classification (e.g., clustering) in which the pattern is assigned to an unknown class.

The steps that take place in a pattern recognition task are:

1. Data acquisition. Through data acquisition the data are converted from one form (speech,
character, pictures etc.) into another in order to be acceptable to the computing device.

2. Preprocessing and Feature extraction. After data acquisition the task of analysis begins.
Where the learning about the data takes place and information is collected about the different
events and pattern classes available in the data.

3. Classification. Its purpose is to decide the category of new data on the basis of knowledge
received from data analysis process. Classifier is the algorithm that implements classification
and maps input data to class which performs classification. Finally, it is ought to evaluate the
decision taken. This involves applying the trained classifier to an independent test set of labeled
patterns.

System learns from training set and efficiency of system is checked by presenting testing set to it.

FIGURE 2.5 PATTERN RECOGNITION PROCESS
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2.3 Processing Features

2.3.1 Feature pre-processing

In a typical high throughput experiment, we assay thousands of features (gene transcripts, proteins,
metabolites) in a certain number of biologically diverse samples (from about 6 to hundreds or
thousands). In biomedical research, experiments aim at measuring biological variability by comparing
two or more biological conditions in a controlled setting. To be able to measure any biologically signal
in the data, the biological variability of interest, i.e., the one produced by the treatment, must be larger
than the technical variability. However, before analyzing any data, it is necessary to make the samples
as comparable as possible by removing the unwanted technical variability that should be shared among
all samples without removing biological variability, that will differentiate the samples biologically. [49-
50]

The steps that can be followed are:

> Data transformation

The first step in preparing a dataset is to visualize the distribution of the values. Very often dew to the
skewness of their distribution we see that most of the data are at very low values with some very high
values. Such data are difficult to visualize and to analyze, therefore we log-transform the data.

» Normalization

In order to remove as much as technical variability as possible while keeping biological variability of
the data, it is necessary to further process them through normalization. One of the important
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requirements of most normalization techniques is that most features aren’t expected to change among
biological conditions thus normalization expects only a minority of biological features to be
differentially expressed in the conditions of interest. Normalization techniques are:

1. Centering

Centering refers to the operation of modifying the mean value of a set of values by subtracting a fixed
value from each individual value. A typical value is the mean of all the data to be centered. The reasons
for centering are quite subjective and qualitative. It is possible to formulate rational reasons for
centering on scientific grounds. Basically, centering should be performed only if there are common
offsets in the data or if modeling such offsets provides an approximately reasonable model. Thus
centering is performed to make interval-scale data behave as ratio-scale data, which is the type of data
assumed in most multivariate models. Said more simply, centering should make a difference. This
difference can manifest itself as:

(i) reduced rank of the model
(ii) increased fit to the data
(iii) specific removal of offsets

(iv)avoidance of numerical problems.

2. Scaling

Scaling refers to the operation of rescaling a set of values to scale in the range of 0 and 1 (or -1 and 1).
Scaling is a subject often treated in conjunction with centering. Scaling is used for several reasons. Some
important ones are:

(i) to adjust scale differences.
(ii) to accommodate for heteroscedasticity.
(iii)to allow for different sizes of subsets of data (block scaling)

However, the purpose of scaling is very different from that of centering. Scaling is a way of introducing a
loss function other than the least squares loss function normally used, therefore scaling does not change
the interpretation of the model and its parameters. As for centering, scaling must be performed in a
specific way in order not to introduce artificial structure that needs to be modeled. This becomes even
more apparent when going to three-way models.[50]

3. Quantile normalization

Quantile normalization is a non-parametric normalization method. The goal of the quantile method is to
make the distribution of probe intensities for each array in a set of arrays the same. The method is
motivated by the idea that a quantile-quantile plot shows that the distribution of two data vectors is the
same if the plot is a straight diagonal line and not the same if it is other than a diagonal line. This
concept is extended to n dimensions so that if all n data vectors have the same distribution, then

plotting the quantiles in n dimensions gives a straight line along the line given by the unit vector (\/_ﬁ

\/%). This suggests we could make a set of data have the same distribution if we project the points of our

n dimensional quantile plot onto the diagonal.
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Let gk = (qx1,-- 9xn) for k = 1,.., p be the vector of the kth quantiles for all n arrays qx = (qx1,- 9xn) and

d= (\/iﬁ \/iﬁ) be the unit diagonal. To transform from the quantiles so that they all lie along the diagonal,

consider the projection of q onto d
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This implies that we can give each array the same distribution by taking the mean quantile and
substituting it as the value of the data item in the original dataset. This

motivates the following algorithm for normalizing a set ofdata vectors by giving them the same
distribution:

1. given n arrays of length p, form X of dimension p x n where each array is a column;
2. sort each column of X to give X,,;

3. take the means across rows of X+ and assign this mean to each element in the row to get

X'sorts
4. get X, ormatizea DY rearranging each column of X’,,;to have the same ordering as original X

The quantile normalization method is a specific case of the transformation x’; = F~1(G(x;)) , where we
estimate G by the empirical distribution of each array and F using the empirical distribution of the
averaged sample quantiles. Extensions of the method could be implemented where F~'and G are more
smoothly estimated. One possible problem with this method is that it forces the values of quantiles to
be equal. This would be most problematic in the tails where it is possible that a probe could have the
same value across all the arrays. However, in practice, since probeset expression measures are typically
computed using the value of multiple probes, we have not found this to be a problem [50].

2.3.2 Feature extraction

Feature extraction addresses the problem of finding the most compact and informative set of features,
to improve the efficiency or data storage and processing. Defining feature vectors remains the most
common and convenient means of data representation for classification and regression problems. Data
can then be stored in simple tables (lines representing “entries”, “data points, “samples”, or “patterns”,
and columns representing “features”). Each feature results from a quantitative or qualitative
measurement, it is an “attribute” or a “variable”. Modern feature extraction methodology is driven by
the size of the data tables, which is ever increasing as data storage becomes more and more efficient
[51].

Dimensionality reduction is an important approach in machine learning. To identify the set of
significant features and to reduce the dimension of the dataset, there are three popular dimensionality
reduction techniques that are used.
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» Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is the main linear approach for dimensionality reduction. It
performs a linear mapping of the data from a higher-dimensional space to a lower-dimensional space in
such a manner that the variance of the data in the low-dimensional representation is maximized.

» Kernel PCA (KPCA)

Kernel Principal Component Analysis (KPCA) is an extension of PCA that is applied in non-linear
applications by means of the kernel trick. It is capable of constructing nonlinear mappings that
maximize the variance in the data.

2.3.3 Feature Subset Selection (FSS)

When building a machine learning model in real-life, it's almost rare that all the variables in the dataset
are useful to build a model. Adding redundant variables reduces the generalization capability of the
model and may also reduce the overall accuracy of a classifier. Furthermore, adding more and more
variables to a model increases the overall complexity of the model. The goal of feature selection in
machine learning is to find the best set of features that allows one to build useful models of studied
phenomena.

There are three important reasons why we choose Feature Selection and not just give all the features to
the ML algorithm and let it decide which feature is important. The first reason is the Curse of
dimensionality — Overfitting. As the dimensionality of the feature space increases, the number
configurations can grow exponentially and thus the number of configurations covered by an
observation decreases. The second reason is that we want our models to be simple and explainable. We
lose ability to explain our models properties when we have a lot of features. Finally, most of the times,
we will have many non-informative features. For example, Name or ID variables. Poor-quality input will
produce Poor-Quality output. Also, a large number of features make a model bulky, time-taking, and
harder to implement in production.

In supervised learning, feature selection is often viewed as a search problem in a space of feature
subsets. To carry out this search we must specify a starting point, a strategy to traverse the space of
subsets, an evaluation function and a stopping criterion. Depending on how and when the utility of
selected characteristics is evaluated, different methods may be adopted which are divided into the
following categories: [52-53]

1. Filter methods

2. Wrapper methods

3. Embedded methods

Filter methods

Filter approaches [52, 53] remove irrelevant features according to general characteristics of the data.
Filter algorithms provide fast execution, since they do not include repetitions and they are not based on
a specific classifier. They have a simple construction, which typically uses a simple search strategy and
characteristics evaluation criterion is planned based on a specific criterion, the feature/feature subset
relevance. In this method for every possible characteristics combination, we choose a criterion (e.g.
Bhattacharya distance, Divergence, Scatter Matrices) and select the best combination of features vector.
We must note that filter algorithms are relatively robust against overfitting and may fail to select the
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most “useful” features. The primary advantage of filter methods is their speed and ability to scale, to

large datasets.

Filter methods are divided into multivariate and univariate methods. Multivariate methods are able to
find relationships among the features, while univariate methods consider each feature separately.
Univariate filter techniques can be divided into two categories: parametric and model-free methods. In
parametric methods the data is drawn from a given probability distribution while in model-free
methods, or non-parametric, the data may not follow a normal distribution. In microarray studies the
most widely used techniques are t-test and ANOVA.

A typical feature selection process involves two phases:
» Selection of characteristics and
» Fitting the model to evaluate performance.

[t consists of three steps:
1. The first step is the creation of a candidate set which contains a subset of the original features
through certain research strategies. Some of the feature selection techniques are:

» Chi-square Test:
The Chi-square test is used for categorical features in a dataset. We calculate Chi-square between each
feature and the target and select the desired number of features with the best Chi-square scores. In
order to correctly apply the chi-squared in order to test the relation between various features in the
dataset and the target variable, the following conditions have to be met: the variables have to be
categorical, sampled independently and values should have an expected frequency greater than 5.

» Control cases: t-test
The basic idea in the t-test is to check if the mean value of the attribute of each class differs significantly
from another. T-test is the most popular option when the data follow a normal distribution.

The aim is to check which of the following two cases applies:

H1: The feature has a different average value in each class

HO: The feature has the same average in each class

If HO (null hypothesis) is applied, then feature is discarded because it is difficult on this basis to
distinguish data into categories. On the contrary if H1 (alternative hypothesis) is applicable, the
attribute values differ considerably between categories and can be distinguished easily. This feature is
selected.

» The Receiver Operating Characteristic (ROC) curve
If when applying the previous method, the respective average values are close, the information may not
be sufficient to guarantee good properties classification. The ROC technique gives information on the
overlap between categories after quantifying an area defined by two curves.

» Fisher Discrimination Ratio
In order to quantify the resolution of a feature Fisher Discrimination Ratio is used. The ratio is
independent of the distribution followed by the class and defined as:

> =3 ey oy

i=1 j=1
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These criteria do not take into consideration the correlations between features and also do not exploit

the cross- correlation coefficient between them. In the scalar selection of characteristics, after choosing
a criterion is needed to prioritize features in descending order and calculate the cross-correlation of the
first in hierarchy, with all the rest. The cross-correlation process may affect significantly the hierarchy
of features.

Additionally, in feature selection a high-dimensional generalization scheme which maximizes the
mutual information between the joint distribution and other target variables is found to be useful.

The mutual information (MI) of two discrete random variables X and Y is defined as:

I(X;Y) = Z Ep(x y)log (pz(jJE)P)(lz’))

YyEY x€X

, wherep(x,y) is thejoint probability distribution functionofXandY, andp(x)and p(y)are
the marginal probability distribution functions of X and Y respectively. In the case of continuous
random variables, the summation is replaced by a definite double integral

_ p(x,y)
1Y) = f fp(x y)lo g<p( )p(y)>d xdy

, where p(x, y) is now the joint probability density function of X and Y, and are the marginal probability
density functions of X and Y respectively.

Mutual information measures the information that X and Y share. Thus, this can be translated as a
measurement of the “knowledge” one of these variables gives us, to reduce uncertainty about the other.
In the case that X and Y are independent, then knowing X does not give any information aboutY and
vice versa, so their mutual information is zero. On the other hand, if Xis a deterministic function
of Y and Y is a deterministic function of X then all information conveyed by X is shared with Y:

Knowing X determines the value of Y and vice versa. As a result, in this case the mutual information is
the same as the uncertainty contained in Y (or X) alone, namely the entropy of Y (or X). Moreover, this
mutual information is the same as the entropy of X and as the entropy of Y, with a very special case of
this is when X and Y are the same random variable.

Mutual information is a measure of the inherent dependence expressed in thejoint
distribution of X and Y relative to the joint distribution ofXandY under the assumption of
independence. Mutual information therefore measures dependence in the following sense:

(X;Y) = 0if and only if Xand Y are independent random variables. this is easy to see in one
direction: if X and Y are independent, then p(x,y) = p(x) p(y), and therefore:

p(x,y) \ B
log <p(x)p(y)> =log1=0

Moreover, mutual information is nonnegative [(X; Y) 2 0 and symmetric [(X;Y) = I(Y; X).

> Correlation Coefficient
Correlation is a measure of the linear relationship of 2 or more variables. Through correlation, we can
predict one variable from the other. The logic behind using correlation for feature selection is that the
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good variables are highly correlated with the target. Furthermore, variables should be correlated with
the target but should be uncorrelated among themselves. If two variables are correlated, we can predict
one from the other. Therefore, if two features are correlated, the model only really needs one of them,
as the second one does not add additional information.

» Variance Threshold
The variance threshold is a simple baseline approach to feature selection. It removes all features which
variance doesn’t meet some threshold. By default, it removes all zero-variance features, i.e., features
that have the same value in all samples. We assume that features with a higher variance may contain
more useful information but note that we are not taking the relationship between feature variables or
feature and target variables into account, which is one of the drawbacks of filter methods.

Continuing on, with the steps needed to create a candidate set of features the second step is the
evaluation of the candidate set and assess the usefulness of characteristics in the set. Based on the
assessment, some features in the candidate set may be rejected or added to selected set of features.

Finally, the last step is to determine whether the current set of selected features is quite good after
applying certain switching criteria. If the set meets the prerequisites, a selection algorithm
characteristics will return all the selected features, otherwise, it will be repeated until the stop criterion
is satisfied. [53]

Significance Analysis of Microarrays (SAM)

Significance Analysis of Microarrays (SAM) [54-55] is a filter, univariate, statistical technique for finding
significant genes in a set of microarray data. It was proposed by Tusher, Tibshirani and Chu and the
software was written by Michael Seo, Balasubramanian Narasimhan and Robert Tibshirani. SAM
identifies genes with statistically significant changes in expression by assimilating a set of gene-
specific tests. Each gene is assigned a score on the basis of its change in gene expression relative to the
standard deviation of repeated measurements for that gene. Genes with scores greater than a threshold
are chosen as potentially significant. The percentage of such genes identified by chance is the false
discovery rate (FDR). To estimate the FDR, nonsense genes are identified by analyzing permutations of
the measurements. The threshold can be adjusted to identify smaller or larger sets of genes, and FDRs
are calculated for each set. The cutoff for significance is determined by a tuning parameter delta, chosen
by the user based on the false positive rate. One can also choose a fold change parameter, to ensure that
called genes change at least a pre-specified.

Filtering and Ranking

i
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FIGURE 2.7 FILTER PROCESS
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Wrapper methods

Wrapper approaches [51] apply machine learning algorithms to feature subsets and use cross-
validation to evaluate the score of feature subsets. Wrapper methodology provides a way to resolve
the problem of choice characteristics independent of the learning engine that we have chosen. For each
combination of feature vectors to estimate the possibility of false classification is estimated and choose
based on the lower smallest error. Wrapper feature selection methods create many models with
different subsets of input features and select those features that result in the best performing model
according to a performance metric. These methods are unconcerned with the variable types, although
they can be computationally expensive. In this method the criterion that is used is the feature subset
“usefulness” measurement. Finally, we must mention that wrapper methods, in principle, result in the
most “useful” features, contrary to filter methods which are prone to overfitting. The main disadvantage
of wrapper approaches is that during the feature selection process, the classifier must be repeatedly
called to evaluate a subset.

Some of the wrapper selection techniques are:

» Forward Feature Selection
This is an iterative method wherein we start with the best performing variable against the target. Next,
we select another variable that gives the best performance in combination with the first selected
variable. This process continues until the preset criterion is achieved.

» Backward Feature Elimination
This method works exactly opposite to the Forward Feature Selection method. Here, we start with all
the features available and build a model. Next, the variable from the model which gives the best
evaluation measure value is chosen. This process is continued until the preset criterion is achieved.

» Exhaustive Feature Selection
This is the most robust feature selection method covered so far. This is a brute-force evaluation of each
feature subset. This means that it tries every possible combination of the variables and returns the best
performing subset.

Selected Genes

Classification

FIGURE 2.8 WRAPPER PROCESS
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Embedded methods

The embedded model algorithms [51-53] incorporate the feature selection as part of the training/ load
process model, and the utility of the characteristics is obtained by optimizing the function of the
learning model. This method does not separate the training data in the training dataset and in a set of
validation data. Embedded methods are similar to wrappers, they use the same criterion features
subset usefulness. Their advantage is that they are less computationally expensive and less prone to
overfitting. Some of the embedded selection techniques are:

» Recursive Feature Elimination (RFE)

Recursive feature elimination is an embedded feature selection approach based on the idea to
repeatedly construct a model, for example an SVM or a regression model, and choose the best or worst
performing feature, for example based on coefficients, setting the feature aside and then repeating the
process with the rest of the features. This process is applied until all features in the dataset are
exhausted. Features are ranked according to when they were eliminated. As such, it is a greedy
optimization for finding the best performing subset of features. The least significant feature is
determined through a feature weighting scheme which can be the weight given to each feature by a
linear classifier or by non-linear feature weighting methods.

» LASSO Regularization (L1)

Regularization consists of adding a penalty to the different parameters of the machine learning model to
reduce the freedom of the model, i.e., to avoid over-fitting. In linear model regularization, the penalty is
applied over the coefficients that multiply each of the predictors. From the different types of
regularization, Lasso or L1 has the property that is able to shrink some of the coefficients to zero.
Therefore, that feature can be removed from the model.

» Random Forest Importance

Random Forests is a kind of a Bagging Algorithm that aggregates a specified number of decision trees.
The tree-based strategies used by random forests naturally rank by how well they improve the purity of
the node, or in other words a decrease in the impurity (Gini impurity) over all trees. Nodes with the
greatest decrease in impurity happen at the start of the trees, while notes with the least decrease in
impurity occur at the end of trees. Thus, by pruning trees below a particular node, we can create a
subset of the most important features.
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2.4 Clustering

2.4.1 Clustering analysis and methods

Clustering analysis is a type of unsupervised learning which aims to find the most natural way of
grouping a dataset. This is achieved by organizing a set of observations based on a similarity criterion,
such that observations in the same group are more alike than observations in different groups [56-57].
Many gene clustering methods have been proposed and applied in the literature. Hierarchical clustering
[57], K-means [58], partitioning around medoids (PAM; a.k.a. K-memoids) [59], self-organizing maps
(SOM) [60] are traditional algorithms and are among the most popular ones in microarray analysis.

Hierarchical clustering

Hierarchical clustering is the first method used to cluster genes and samples in microarray data. It
starts by considering the n data points as n nodes. Instead of partitioning into several clusters, at each
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iterative stage, a pair of nodes with the shortest distance between them are agglomerated to form a new
node (agglomerative method) or the n nodes are successively separated into finer groups (divisive
method). Thus, a hierarchical tree is constructed after n-1 steps. In this paper we only consider
agglomerative hierarchical clustering. To define distance between two nodes, different linkages
including single linkage (shortest pair-wise distance), complete linkage (largest distance), or average
linkage (average distance) may be chosen in the method. Hierarchical clustering has been widely used
in clustering microarray data and is especially successful in ordering genes to visualize the global
patterns. The method, however, suffers from some intrinsic difficulties. At each iterative stage, the
merge of two nodes is based on pair-wise distances of all nodes at that stage instead of any global
criterion. When n is large, accumulation of mistakes is pronounced, and the method lacks robustness.
The method by nature forms a hierarchical tree and does not require estimation of the number of
clusters. It is, however, possible to generate clusters by cutting the tree at a pre-determined level of
branch.[57]

K-means

This is a classical clustering method [58] also widely used in microarray data. The algorithm aims to
split the data into K clusters by minimizing the within cluster dispersion Zﬁ-‘;l inecj|xi - x‘(j)| Zwhere

x~Wis the centre of cluster j and ||.|| denotes Euclidian distance. The optimization is usually
implemented by a classification EM-type algorithm that very often falls into a local minimum in a
complex data. As a result, the clustering may differ using different initial values in the optimization. One
common way to avoid such local minimum problem is to run K-means algorithm multiple times with
random initial cluster centers and select the cluster solution with smallest within cluster sum of
squares. As an algorithm of global criterion, K-means usually produces good clustering results if K
correctly. chosen. The method is, however, unstable and highly affected by the presence of scattered
genes in the complex microarray data. In addition, since K-means calculates the cluster centers in the
criterion, it requires the data be in the Euclidean space with Euclidean distance as the dissimilarity
measure.

SOM

Self-organizing maps (SOM) [60] has been applied in many microarray analysis. It first maps K nodes in
a low-dimensional (usually two-dimensional) grid space from the d-dimensional space that the data set
is situated and then the nodes are adjusted iteratively. Each time, a point from the data is randomly
chosen. The movement of the nodes in d-dimensional space depends on their distance to the chosen
point and the two-dimensional geometry of the nodes. The magnitude of movement decreases as
iterations goes on. Usually, the process continues more than 20,000 iterations for the nodes to converge
and serve as cluster centers to form clustering. Essentially SOM can be viewed as a K-means criterion
restricted on the two-dimensional grid geometry. Thus, clusters generated from nodes close to each
other in the two-dimensional grid geometry will have similar expression patterns. We not only can
visualize expression patterns within each cluster but also can observe relation and connections
between clusters on the two-dimensional node space. On the other hand, SOM (compared to K-means)
is a sub-optimal algorithm because the optimization is restricted on the two-dimensional node space.
Similar to K-means, SOM is very sensitive to the choice of the number of nodes and the presence of
scattered genes.
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2.5 Classification

2.5.1 Classification analysis and Classifiers

As we already mentioned the aim of classification is to find a rule, which, based on external
observations, assigns a sample to one of several classes, which implements training a classifier to
accurately recognize patterns from given training samples and to classify test samples with the trained
classifier. Binary classification is the simplest case where the classifier categorizes the samples of given
set into two different classes based on that rule.

Classifier is the algorithm that implements classification and maps input data to class which performs
classification. Classifiers are divided to linear and nonlinear (Linear and nonlinear classifiers” Online.
Available: http://cs.brown.edu/courses/cs1955/fall2009 /docs/lecture_10-27.pdf)

Linear and non-Linear Classifier

A linear classifier can separate two classes only, when they are linearly separable, i.e. there exists a
hyperplane, in two-dimensional case just a straight line, that separates the data points in both classes.
An opposite case is that classes are linearly inseparable. In this case it is still possible that only few data
points are in the wrong side of a hyperplane, and thus the error in assuming a linear boundary is small.
Depending on the degree of error, linear classifier can still be preferable, because the resulting model is
simpler and thus less sensitive for overfitting (poor generalization ability to new data points). However,
some classes can be separated only by a non-linear boundary and we need a nonlinear classifier.

More precisely: Let's have numeric attributes x; ,X; whose values are denoted by dom(x;). For
example if x;can have values between 0 < x < 1, then dom(x;) = [0,1]. These compose attribute
space: dom(x;) X dom(xy) X...X dom(xy).

All data points lie somewhere in this space. If the points fall into two classes, there is some boundary
which separates them. If the classes are linearly separable, then in two-dimensional case we can
describe the boundary by a line, for 3-dimensional data we need a plane and for higher dimensional
data a hyperplane. One way to define this hyperplane is a discriminant functionf (x4, ....., X;) , which is
0 on the plane, positive, when (x4, ....., x) belongs to class 1, and negative otherwise. The discriminant
function is linear i.e.

f=aixq +ayx,+...+apx;, +b

The simplest example of non-linear boundary is exclusive-or function of two attributes: XOR (x4, x;) =
1, if x4 is true or x, is true, but not both.

However, if we map the datapoints to higher dimensional attribute space, it becomes possible to
separate the classes by a hyperplane.

In this study, the linear classifier that is implemented is linear Support Vector Machine (SVM). Other
examples of linear classifiers are RLS methods like RR and the LASSO, as well as RVM. An example of
anonlinear classifier is K Nearest Neighbor (K-NN) Classifier which classifies new samples depending
on a set of samples closest to them, which are called their “nearest neighbors”.

(Www.en.wikipedia.org /wiki/K-nearest_neighbors_algorithm)
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FIGURE 2.11 LINEAR (1) AND NON-LINEAR (II) PROBLEMS
Support Vector Machines (SVM)

Support Vector Machines [61] are supervised learning methods used for classification and regression
tasks that originated from statistical theory. SVM is a suitable algorithm to deal with interaction among
features and redundant features. The advantage of Support Vector Machines is that they can make use
of certain kernels to transform the problem, such that we can apply linear classification techniques to
non-linear data. Applying the kernel equations arranges the data instances in such a way within the
multi-dimensional space, that there is a hyper-plane that separates data instances of one kind from
those of another. The kernel equations may be any function that transforms the linearly non-separable
data in one domain into another domain where the instances become linearly separable. Kernel
equations may be linear, quadratic, Gaussian, or anything else that achieves this particular
purpose. Once the data is divided into two distinct categories, our aim is to get the best hyper-plane to
separate the two types of instances. This hyper-plane is important because it decides the target variable
value for future predictions.

The learnt hyperplane is optimal in the sense that it maximizes the margin while minimizing some
measure of loss on the training data. Support vectors are those instances that are either on the
separating planes on each side, or a little on the wrong side. SVMs have been shown to work well for
high dimensional microarray datasets. One important thing to note is that the data to be separated
needs to be binary. Even if the data is not binary, Support Vector Machines handles it as though it is, and
completes the analysis through a series of binary assessments on the data.

Linear SVM

In this part of section 2.5.1, we further explain the case of the simple linear SVM algorithm [61],[62] in
order to be more clearly the concept of support vectors. Linear SVMs are particular linear discriminant
classifiers.

Given a training set X of N samples of the form:

X={(x,y)|lx; € R™,y; € {-1,+1}},i=1,..,N

where x; the samples and y; the class labels, the support vector method approach aims at constructing
the maximum - margin hyperplane of dimension R(m1) that separate the samples having y; = +1 from
those having y; = —1. Any hyperplane can be expressed as the set of samples x satisfying:
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H:w-x—b=0

, Where b a real constant and w the normal vector to the hyperplane. The offset of the hyperplane from
b
iwl

separable, there are two hyperlplanes which can be described by the equations :

the origin along the normal vector w can be expressed by the parameter If the data are linearly

Hi:w-x—b=1
Hy:w-x—b=-1

that fully separate the two classeses without any samples between of them. The region bounded by
2

wl

need to be minimized. Given the fact that ||w|| is minimized, samples of either class may fall into the

margin, so in order to avoid it, extra constraints need to be applied:

these hyperplanes is called “the margin” and is equal to The aim is to maximize the margin, so ||w/||

w-x;—b = 1,forsamplesofclassy; = +1
w-x; —b < — 1, for samples of classy; = —1

The above equations can be expressed in one as:
yiw-x;—b) = 1,fori=1,..,N
Moreover, the previous constrained equation can be expressed as an optimization problem:

Minimize inw, b

Subject to
yiw-x;—b) = 1,fori=1,..,N

This optimization problem is difficult to solve because it is necessary to calculate the norm of w, which
involve a square root. Without changing the solution, it is possible to substitute ||w|| with %Ilwllz. So

the optimization problem can be also expressed as:

Minimize inw, b

1
- 2
~lwl
Subject to
yiw-x;—b) > 1,fori=1,..,N

By using the Lagrange multipliers a, the previous problem can be expressed as a problem of quadratic
programming;:
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n
1 2
arg minmax{z“WH - Z a;[yi(w - x; —b) — 1]
w,b

az=0 .
=1

Then, conforming to the stationary Katush - Kuhn - Turkey condition, the solution can be expressed as
a linear combination of the training input vectors:

N

w = Z a; yiXxi

i=1

Only a few of the Lagrange multipliers a will be greater than zero. These corresponding x; are the
support vectors and lie on the margin, satisfying:

yiw x—b) = 1

Solving the above equation for b can derive that the support vectors also satisfy:

w-x;- b= }7 = b=w-x;-Y;
l

The b depends on x;, y;, so it will vary among the samples. In that manner, a more stable approach for b
is to average over all support vectors:

Ngy

1
N R
NSV £ l L

The optimization problem can also be expressed in its dual form, using the fact that ||w||? = w - w and
w = YN a;v;x; . In dual form the classification task takes into account only a function of the support
vectors, which are a small subset of the set of the training samples that lie on the margin. Thus, the
problem expressed in dual form is computationally efficient.

Maximize in a;
N

. 1 ,
L(a)= z a; — EZ a;a;yiyj Xi Xj =
i=1 i,j
N
1
Z a — = aiajyiyj k(xi, xj)
i=1 i,j

,subjectto a; = 0, YN, a;y; = 0 and the kernel function is defined by K(xi,xj) = X Xj
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BLUE DOTS HAVE A LABEL YI = -1

Decision Trees

Decision tree method is a technique in statistical learning that can be applied to both regression and
classification problems, where the target variable is categorical, and the tree is used to identify the
"class" within which a target variable would likely fall into. They are used to predict a qualitative
response. The science and technology behind the review of large and complex datasets to discover
valuable patterns is very important for modeling and knowledge extraction from the data which are
available [63]. Researchers in this field have continually made great progress and are still making
progress in acquiring methods to make the process more efficient, cost effective and accurate. The
algorithms were originally implemented in decision theory and statistics and are used to extract
knowledge by making decision rules from the large amount of available information. The benefits of
decision trees are in its ability to handle a variety of input data such as nominal, numeric, and textual,
its processing of dataset that containing errors and missing values, and its availability in various
packages of data mining and number of platforms. A decision tree classifier [64] has a simple form
which can be compactly stored and that efficiently classifies new data.

When choosing a decision tree, we start with N labeled “training records” of the form (X, Y) where X is
a k-dimensional vector of features describing the data we have, and Y is a label we give this record.

Each component of X is called as “input variable”, Y is called “dependent variable” or “target variable”,
and each row in such a table is called a “training example”. Let us consider two input variables, such
that X= (X1, X2). We assume there is a value of X1 that we can split the dataset around and few values
of X2. Then, an example partitioning of our space of (X1, X2) values is depicted in the left side of Figure
2.13, and a decision tree corresponding to such a partitioning is shown in the right side of Figure 2.13.
Given an unlabeled vector X = (X1, X2), we first test whether X1>a. Then, if that turns out to be true, we
test whether X2>d. This allows us to classify X into the region R4 or the region R5. If we initially had
that X1<a, then we will test X2 against c and then against b, which allows us to further classify X into
one of the regions R1,2, or R3.

Next, let Y take on a single constant value for each of the regions R1...,5. Let Yi be the value chosen for
the region Ri, and let (X) be an indicator function that equals 1 when X€Ri. This allows us to obtain a
model that can predict Y based on X:

Y(X)=E1 ¥ X L;(X)
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Obtaining such a model is the ultimate goal of training a decision tree. Same as the model represented in
Fig. 2.11 as a partition of 2D space and as a decision tree.

The most basic process of training a decision tree on a dataset involves the following elements as,
1. The selection of attribute

2. Splits in the tree

3. Stop splitting a node and mark it terminal

4. The assignment of a label to each terminal node

Some algorithms add an element called pruning. There are many ways of implementing splitting
criteria, stopping criteria, and pruning methods. Splitting criteria are algorithmic rules that decide
which input variable to split the dataset around next. Stopping criteria are rules that determine when to
stop splitting the dataset and instead output a classification. Stopping criteria are actually optional, but
in their absence, a trained tree would have a separate region for each training record. As this is
undesirable, stopping criteria are used as a method of deciding when to stop growing the tree. Lastly,
pruning methods are ways to reduce the size and complexity of an already trained tree by combining or
removing rules that do not significantly increase classification accuracy. All three of these things
directly affect the complexity of a tree, which can be measured according to various metrics such as tree
height, tree width, and a number of nodes. It is desirable to train trees that are not overly complex
because of the fact that simpler trees require less storage.[64]

» SPLITTING CRITERIA

An option of making splits is the classification error rate and this is simply the fraction of the training
observations in that region that do not belong to the most common class. The classification error is
given by;

E=1-maxp px (D
where pmk represents the proportion of training observations in the region m that are from class k.
Other measures for making splits are Cross entropy and Gini index which are preferred since the
classification error is insufficiently sensitive for tree growth. The Gini Index, is given by

G=Yk=1 Pkl — Pm) (2

which is a measure of the total variance across k classes, where pmk represents the proportion of
training observations in the region m that are from class k. Gini Index is also called a measure of node
purity because if all of the values of pmk, the proportion of training observations in the region m that
are from class k are close to 0 or 1 then the Gini index has a small value which can be verified from (1).
This implies that a node contains mostly training observations from a single class k.

Cross entropy, is an alternative to the Gini Index and its given by

'Zle IA) mKk 10g(f) mk)

Since;
0<Pmk<1wehaveO<-p nxlog(P mk)

The cross entropy will take a value near 0 if the p , ‘s are all near 0 or 1.
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In building a classification tree, we use either Cross entropy or Gini index to evaluate the quality of a
particular split, because these two approaches are more sensitive to node purity than the classification
error rate. However, when pruning the tree any of the three approaches can be used but the
classification error rate is preferable if the prediction accuracy of the final pruned tree is the goal. In the
case of classification trees, the deviance is given by the summary function and it can be calculated by

-2 Zm Zk fi mk log (ﬁ mk)

fi ykis the number of observations in the m*"* terminal node that belongs to class k. A tree gives a good
fit to the training data if the deviance is small. The residual mean deviance is simply the deviance
divided by n - |TO |.

In order to improve the accuracy of machine learning algorithms for statistical classification and
regression, bagging, random forest and boosting are machine learning ensembles that can be used.[66]
They are most commonly applied to decision tree methods as building blocks in the creation of very
powerful predictive models.

» STOPPING CRITERIA
Stopping criteria are usually not as complicated as splitting criteria. Common stopping criteria include:

1. Tree depth exceeds a predetermined threshold
2. Goodness-of-split is below a predetermined threshold
3. Each terminal node has less than some predetermined number of records

Generally stopping criteria are used as a heuristic to prevent overfitting, when a decision tree begins to
learn noise in the dataset rather than structural relationships present in the data. An over-fit model still
performs very well in classifying the dataset it was trained on, but would not generalize well to new
data, just like the example with credit card numbers or other unique identifiers. If we did not use
stopping criteria, the algorithm would continue growing the tree until each terminal node would
correspond to exactly one record.[64]
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FIGURE 2.13 DEcISION TREE
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2.6 Validation

2.6.1 Validation methods

Holdout Validation

Holdout Validation is the simplest cross validation method. The dataset is partitioned in two sets, the
training set and the testing set. Using the training set only, which consists of the majority of available
samples the model, is trained. Then the function is asked to predict the output values for the data in the
testing set where the values are unknown. The errors it makes are accumulated to give the mean
absolute test set error, which is used to evaluate the model. The advantage of this method is that it is
usually preferable to the residual method and takes no longer to compute. However, the drawback of
the method is that its evaluation can have a high variance. The evaluation may depend heavily on which
data points end up in the training set and which end up in the test set, and thus the evaluation may be
significantly different depending on how the division is made. These limitations of this holdout method
can be overcome with other validation methods at the expense of higher computational cost.
(www.towardsdatascience.com)

«— Totalsamples — »

Training Set

FIGURE 2.14 HoLDOUT VALIDATION METHOD
K-Fold Cross Validation (K-Fold CV)

As we mention before we can use other cross validation methods to improve over the holdout method.
K-fold cross validation is one of them. Here, the data set is divided into k subsets, and the holdout
method is repeated k times. Each time, one of the k subsets is used as the test set and the other k-
1 subsets are put together to form a training set. Then the average error across all k trials is computed.
The advantage of this method is that it matters less how the data gets divided. Every data point gets to
be in a test set exactly once and gets to be in a training set k-1 times. The variance of the resulting
estimate is reduced as k is increased. The disadvantage of this method is that the training algorithm has
to be rerun from scratch k times, which means it takes k times as much computation to make an
evaluation. A variant of this method is to randomly divide the data into a test and training set k different
times. The advantage of doing this is that you can independently choose how large each test set is and
how many trials you average over. (www.towardsdatascience.com)
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FIGURE 2.15 K-FoLD CROSS VALIDATION METHOD

Leave One Out Cross Validation (LOOC)

Leave-one-out cross validation is K-fold cross validation taken to its logical extreme, with K equal to N,
the number of data points in the set. This means that for each fold use N-1 samples for training and the
remaining sample for testing. As before the average error is computed and used to evaluate the model.
The evaluation given by leave-one-out cross validation error is good, but at first it seems very expensive
to compute. Fortunately, locally weighted learners can make LOO predictions just as easily as they make
regular predictions. That means computing the LOO validation error takes no more time than
computing the residual error and it is a much better way to evaluate models.

Total samples

lteration 1/N: I Training Set
lteration 2/N: ] Training Set
lteration 3/N: II\ Training Set

Iteration N/N: Training Set

FIGURE 2.16 LEAVE ONE oUT VALIDATION METHOD
Repeated Random Sub-Sampling Validation

In Repeated random sub-sampling validation [56] the dataset splits K times. Each data split randomly
selects a fixed number of samples without replacement. For each such iteration, the model is fit to the
training data, and predictive accuracy is assessed using the validation data. The results are then
averaged over all iterations. In this method unlike k-fold cross validation, the proportion of the training
split is not dependent on the number of folds. But the disadvantage using repeated random sub-
sampling is that some observations may never be selected in the validation subsample, whereas others
may be selected more than once.
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FIGURE 2.17 REPEATED RANDOM SUB-SAMPLING VALIDATION METHOD

2.7 Biological Networks

The term Biological Networks is assigned on biological systems which are represented as networks.
Biological networks are the interpretation of the interaction between molecules such as DNA, RNA,
proteins and metabolites. There are different types of biological networks such as Gene co-expression
network (GCN), Protein-protein interaction networks (PPI), Metabolic networks, Transcriptional
regulation networks, Boolean Networks, Bayesian Networks. Those examined in our study are:

Gene co-expression network (GCN)

A gene co-expression network (GCN) is an undirected graph, where each node corresponds to a gene,
and a pair of nodes is connected with an edge if there is a significant co-expression relationship
between them [66]. Having gene expression profiles of a number of genes for several samples or
experimental conditions, a gene co-expression network can be constructed by looking for pairs of genes
which show a similar expression pattern across samples, since the transcript levels of two co-expressed
genes rise and fall together across samples. Gene co-expression networks are of biological interest since
co-expressed genes are controlled by the same transcriptional regulatory program, functionally related,
or members of the same pathway or protein complex.

The direction and type of co-expression relationships are not determined in gene co-expression
networks like in a gene regulatory network (GRN). Compared to a GRN, a GCN does not attempt to infer
the causality relationships between genes and in a GCN the edges represent only a correlation or
dependency relationship among genes. Modules or the highly connected sub graphs in gene co-
expression networks correspond to clusters of genes that have a similar function or involve in a
common biological process which causes many interactions among themselves.

Gene co-expression networks are usually constructed using datasets generated by high-throughput

gene expression profiling technologies such as Microarray or RNA-Sequencing. (Www.illumina.com)
Protein-protein interaction networks (PPI)

Protein-protein interaction networks (PPIs) can be associations of proteins such as functional
interactions and their role is highly important for the structure and the function of a cell. These
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interactions participate in signal transduction and play an important role in many diseases (e.g.,
cancer). We can encounter stable interactions that form a protein complex (a form of a quaternary
protein structure, set of proteins which bind to do a particular function (e.g., ribosome), or transient
interactions, which form the dynamic part of PPI networks, are brief interactions that modify a protein
that can further change PPIs —(e.g., protein kineases, add a phosphate group to a target protein). It is
estimated that about 70% of interactions are stable and 30% are dynamic in a PPI network thus they
are essential to almost every process in a cell. Understanding PPIs is crucial for understanding life,
disease, as well as the development of new drugs.[27]

Boolean Networks

Boolean Networks [66] are a class of graphical deterministic models represented as a graph G(V,E),
annotated with a set of states X = {x; |i = 1, ...,n}, together with a set of Boolean functions B =
(b;|i=1,..,k}b;:{0,1} ¥ - {0,1}. Each node v; has associated to it a function, with inputs the states of
the nodes connected to v;.The state of node v; at time t is denoted as x; (t) the state of that node at time
t+1 is given by : x; (t + 1) = b; (x1,%2,.--, X ) Where x;; are the states of the nodes connected
to v;. This set of functions determines topology connectivity on the set of variables, which then become
nodes in a network.

In biological Boolean networks each node represents a gene which takes on two possible values, as
mentioned, 0 and 1 and the way these nodes interact with each other is formulated by standard logic
functions and genetic interactions and regulations are inextricably linked with the assumption of
biological determinism. Though, a gene regulatory network is not a closed system and has interactions
with its environment and other genetic networks, and it is also likely that genetic regulations are
inherently stochastic; therefore, Boolean networks will have limitations in their modeling power.
Probabilistic Boolean networks [67] were introduced to address this issue, such that they are composed
of a family of Boolean networks, each of which is considered a context. At any given time, gene
regulations are governed by one component Boolean network and network switching is possible such
that at a later time instant, genes can interact under a different context. In this sense, probabilistic
Boolean networks are more flexible in modeling and interpreting biological data. Interaction networks
have proven to be a useful source of information for analyzing genomic data. Using gene expression
data we attempt to estimate the network structure using gene and protein information. Boolean
Network models belong to the group of qualitative network models, because they do not yield any
quantitative predictions of gene expression in the system.

Bayesian Networks

Bayesian Networks [68] are a class of graphical probabilistic models that provide a well-ordered
representation for the expression of joint probability distributions (JPDs) and inference. Their
application is found in many domains such as the of inference of cellular networks, modeling protein
signaling pathways, systems biology, data integration, classification and genetic data analysis. They
combine two very well developed mathematical areas: probability and graph theory. A Bayesian
network consists of an annotated directed acyclic graph G (X, E), where the nodes x; € X, are random
variables representing gene expressions and the edges indicate the dependencies between the nodes.
The random variables are drawn from conditional probability distributions P(x;|Pa(x;)), where Pa(x;)
is the set of parents for each node. A Bayesian network implicitly encodes the Markov Assumption that
given its parents; each variable is independent of its non-descendants.

Besides the set of dependencies (children nodes depend on parent nodes) a Bayesian network implies a
set of independencies too. This probabilistic framework is very appealing for modeling causal
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relationships because one can query the joint probability distribution for the probabilities of events
(represented by the nodes) given other events. From the joint distribution one can do inferences and
choose likely causalities.

The complexity of such a distribution is exponential in the general case, but it is polynomial if the
number of parents is bounded by a constant for all nodes.

Testing for all possible
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3 METHODOLOGY

In our study, we aim to provide reliable biomarkers that could be predictive of responder status. By
using gene expression profiles from untreated and interferon treated patients as well as healthy
controls, we followed a feature selection strategy by combining differential expression analysis,
Pigengene methodology, network analysis, and clustering approaches in order to identify key modules,
and also hub genes as potential biomarkers for early identification of IFNB responders as well as
Multiple sclerosis affected patients. Moreover, based on related studies as in [69], we sought to identify
hub genes, i.e. a limited number of genes - a varying number of 10 to 77 has been recognized in different
disease contexts - that interact with many other genes in the clustering modules; thus conferring them
high importance in the biological system under study. Publicly available databases were also used for
the exploration of drug repurposing relating Multiple sclerosis. The proposed methodology follows.

[ GEO microarray dataset J

}

[ Preprocessing ]

Differential
expression analysis [ Pigengene ]

SAM and Limma Methodology

} }

[ Significant DEGs J Significant DEGs
String interaction
—
network

}

Hub genes extraction (Cytohubba,
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Statistical &
Biological
validation

Drug
repurposing

based on hub
genes

FIGURE 3.1 PROPOSED METHODOLOGY

3.1 Microarray Dataset Preprocessing

Quantile Normalization has been performed on all data and log2 transformation has been performed on
their expression values. Variance filtering was applied to the dataset as a feature selection method.
Scaling as a normalization method was also applied on the validation datasets.
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3.2 Differential expression

Differential

SAM and Limma Significant DEGs
expression analysis

FIGURE 3.2 DIFFERENTIAL EXPRESSION ANALYSIS STEP

Differential expression analysis was performed on the significant genes using the package ‘limma’ [70],
as well as “Significant analysis of Microarray” (SAM)”. In general, when the list of Differentially
Expressed Genes (DEGs) is only obtained with the use of one high-level analysis, it should not be
regarded as reliable and definitive. A possible approach is to use a few methods and acknowledge DEGs
as only those genes that are within an intersection of sets of DEGs obtained by different methods [71].

3.2.1 Limma

LIMMA stands for “linear models for microarray data” and contains functionality for fitting a broad class
of statistical models called “linear models”. Examples of such models include linear regression and
analysis of variance. While most of the functionality of limma has been developed for microarray data,
the model fitting routines of limma are useful for many types of data and is not limited to microarrays.
The objective of Differential expression analysis is to discover which features (genes) are different
between groups or stated differently: to discover which genes are differentially expressed between
cases and controls.

How samples are distributed between groups determines the design of the study. In addition to the
design, there is one or more question(s) of interest(s) such as the difference between two groups. Such
questions are usually formalized as contrasts; an example of a contrast is indeed the difference between
two groups.

This can be formalized a

Y=ﬁ0+31X1+E

In this equation of a linear model, Y is the response variable. [t must be a continuous variable. In the
context of DEA, it is a relative measure of mRNA expression level for one gene. X; is an explanatory
variable, which can be continuous or discrete, for example, control group versus treatment, or mutant
versus wild type. fB; quantifies the effect of the explanatory variable on the response variable.
Furthermore, we can add additional explanatory variables to the equation for more complicated
experimental designs. Lastly, models the random noise in the measurements.

3.2.2 Significant analysis of Microarrays (SAM)

SAM is a statistical method used to determine statistical significance in gene expressions between
groups. In terms of mode of action, SAM uses a modified t-statistic and permutations of the repeated
measurements of the data in order to decide if the gene expression is strongly related to the response.
However, SAM uses non-parametric statistics since microarray data are not normally distributed. The
input to SAM is gene expression measurements from a set of microarray experiments, as well as a
response variable from each experiment. The response variable may be a grouping like untreated,
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treated (either unpaired or paired), a multiclass grouping (like breast cancer, lymphoma, colon cancer),
a quantitative variable (like blood pressure) or a possibly censored survival time. SAM computes a
statistic di for each gene i, measuring the strength of the relationship between gene expression and the
response variable and order the genes according to their d- values. It uses repeated permutations of the
data to determine if the expression of any genes is significantly related to the response by randomly
shuffle the values of the genes between groups, such that the reshuffled groups have the same number
of elements as the original groups and computes the d-value for each randomized gene. These two steps
are repeated many times.

Thus, each gene has many randomized d-values corresponding to its rank from the observed
(unpermitted) d-value (100 or 200 permutations are descent for initial exploratory analysis). Then,
take the average of the randomized d-values for each gene which is the expected d-value of that gene.
The observed d-values versus the expected d-values are then plotted and for each permutation of the
data, the number of positive and negative significant genes for a delta parameter, which is the cutoff for
significance, chosen by the user based on the false positive rate, is computed. The median number of
significant genes from these permutations is the median False Discovery Rate (FDR). Thus, any genes
designated as significant from the randomized data are being picked up purely by chance. Therefore,
the median number picked up over many randomizations is a descent estimate of FDR. One can also
choose a fold change parameter, to ensure that called genes change at least a pre-specified amount.

For accessing the Differential expression of the “Untreated MS patients in different disease stages vs
Healthy Controls” cases, we chose to proceed by performing only SAM. When the sample size is small
usually leads to unstable test results. In addition, by chance some genes have very small variance, which
will result in large t-statistics and small p-values even when the difference is small. Finally, Sometimes

data are not normally distributed that can lead to incorrect p-values. For these reasons we proceed with
the non-parametric approach to obtain p-values. All results are shown in Chapter 4.
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3.3 Pigengene Methodology
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FIGURE 3.3 PIGENGENE STEPS

Pigengene methodology [72] provides an efficient way to infer biological signatures from gene
expression profiles. The signatures are independent from the underlying platform, e.g., the input can be
microarray or RNA Seq data. It can even infer the signatures using data from one platform and evaluate
them on the other. Pigengene identifies the modules (clusters) of highly co expressed genes using co
expression network analysis, summarizes the biological information of each module in an eigengene,
learns a Bayesian network that models the probabilistic dependencies between modules, and builds a
decision tree based on the expression of eigengenes. The crucial steps of the methodology include the
identification of gene modules using coexpression network analysis [73] and the summarization of the
biological information of each module in one eigengene using principal component analysis (PCA) [74].
The approach is different from applying PCA directly to the entire expression profile, which can lead to
a significant loss of information. The eigengenes are used as features of our biological signature to
identify mechanisms underlying the disease. They are also used to train a Bayesian network that
models the probabilistic dependencies between all modules. In addition, we infer a decision tree to
predict the state based on eigengenes.

The Pigengene methodology is presented in detail, in the following sections.

3.3.1 Weighted correlation network analysis (WGCNA)

Weighted correlation network analysis (WGCNA) [75] can be used for finding
clusters (modules) of highly correlated genes, for summarizing such clusters using the module
eigengene or an intramodular hub gene, for relating modules to one another and to external sample
traits (using eigengene network methodology), and for calculating module membership measures.
Correlation networks as mentioned in Chapter 2, facilitate network-based gene screening methods that
can be used to identify candidate biomarkers or therapeutic targets. These methods have been
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successfully applied in various biological contexts, e.g., cancer, mouse genetics, yeast genetics, analysis
of brain imaging data and in our study, for the first time, Pigengene methodology is applied in the
context of Multiple Sclerosis.
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FIGURE 3.4 WEIGHTED CORRELATION NETWORK ANALYSIS (WGCNA) OUTLINE
1. Network construction

The first step of the WGCNA analysis is the creation of a similarity matrix, which is done by Pearson
correlation of all gene pairs. The similarity matrix is then transformed into an adjacency Matrix.

From the input n x m matrix X = [x;;] where the row indices (i = 1, ..., n) correspond to network nodes

(such as genes) and the column indices (1=1, ... m) correspond to sample measurements, similarities
in expression profiles are calculated by Pearson correlation,

Cor (x;x;)

creating a correlation matrix. The adjacency matrix A = [a;;], is then calculated from the correlation
matrix s;; = |Cor (x;x;)|, by raising the correlation to a soft threshold power f3:

x; and x; are vectors of expression value for gene i and j, s;; represented the Pearson's correlation
coefficient of gene i and gene j, a;; encoded the network connection strength between gene i and gene j.

An adjacency function transforms the correlation matrix containing co-expression similarities into the
adjacency matrix containing connection strengths. The choice of adjacency function is determined by
the weight properties of the network. The term weight properties references whether a network is
weighted or unweighted. Unweighted networks apply hard thresholding using the signum function

. 1 lf Sij =T
Sij = SLgnum(Sij,T)z Oifs;; <t
]

which presents intuitive networks (i.e. the number of direct neighbors equals the node connectivity).
However, this can present a problem. For example, if the threshold T is 0.75 and the similarity is 0.74,
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the connection does not occur and consequently information is lost. Additionally, node connectivity
using hard thresholding is sensitive to the choice of the threshold.

The basis of choice of the power [ is the assumption of scale free topology of the gene expression
network. The node degree distribution p(k) follows a power law in a scale free network. To calculate
the scale free model fit for each soft threshold power 3, log(p(k)) is plotted against log(k). The R2 value
(model fitting index) is close to 1 if the network is scale free. The scale free topology criterion [76]
proposes only to consider (3 that leads to a network that satisfies scale free topology approximately,
with R2 > 0.8.

From the adjacency matrix, topological overlap matrix (TOM) Q = [w;;] is constructed, which describes
how well connected the genes are, in respect of how many neighbors they share. All entries in the TOM
have a connection value to each other between 0 and 1, where a value of 1 meaning that all connections
between two nodes and other nodes are the shared and 0 meaning that no connections to other nodes
are shared. (TOM) Q = [w;;] provides a similarity measure, which has been found useful in biological
networks (Ravasz et al,, 2002; Ye and Godzik,2004). For unweighted networks (i.e, a;;= 1 or a;;= 0),
Ravasz and colleagues report the following topological o v e r 1 a p matrix in the methods supplement of
their paper

wij = lU + aU/mln{kl,k]} 4+ 1- al-j

Where [;;=Y,, a;,,ayj, and k;=Y,, a;, is the node connectivity. Then

n
w; = z wij
j=1

a TOM-based measure of connectivity w; is superior to the standard k; measure. The topological
overlap matrix () = [w;] is transformed into a dissimilarity matrix defined by d;; = 1 — w;; , which is
subsequently used for clustering gene expression profiles.

2. Gene Module Identification

The following step is the identification of gene modules through unsupervised hierarchical clustering
using a TOM-based dissimilarity. Specifically, average linkage hierarchical clustering is performed, and
modules are depicted as dendrogram branches. Cutting is performed using the dynamic hybrid tree cut
algorithm.

A TOM plot is a color-coded matrix representation of a summary of the co-expression network, which
depicts the values of the dissimilarity matrix. Rows and columns are sorted by the hierarchical
clustering dendrogram. Red and yellow indicate low and high dissimilarity respectively . Modules are
described as red squares along the diagonal. Note that TOM plots are symmetric along the diagonal
because they are graphical representations of the topological overlap matrix which is also symmetric.
Modules, i.e., groups of genes that are highly co-expressed in most samples are then created from the
clusters given from the topological overlap matrix.

3. Module eigengenes

After the construction of the modules, for each module, an eigengene is computed as a weighted
average of the expression of all genes in that module. This is a representative gene, defined as the 1st
principal component for the co-expression module. The biological information of each module is
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summarized in one eigengene. By clustering the eigengenes, modules that are very similar are joined
together. These steps produced a final set of modules, grouped together based to similarity in gene
expression pattern and connectivity.

The modules can then be compared to an external trait or another group, to find the most significant
modules to work with. We investigate gene significance (correlation between gene and sample trait)
for the trait for each gene in the chosen module, as well as a quantitative measure of module
membership (based on the correlation between each gene to the module eigengene). The module
membership should be closely correlated to intramodular connectivity and can therefore be used as a
measure for this. By investigating the module membership for the genes in the module, it is possible to
detect hub genes, which are likely to be biologically important for the pathways or processes
represented by that module.[75]
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3.3.2 Bayesian network

A Bayesian network is a statistical model that represents a set of random variables using a
directed acyclic graph. Nodes of the network correspond to random variables and the edges (arcs)
model their conditional dependencies. An important property of Bayesian networks is that each node
conditioned on its parent variables is independent of its non-descendants. In particular, if two nodes
are not connected by a directed path, they are conditionally independent. We trained a Bayesian
network to model the probabilistic dependencies between the modules. Each module eigengene was
represented by a node (observed random variable). To model the state of the disease we added
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“Disease” as an observed random variable to the network taking values 0 and 1 accordingly. No
eigengene was allowed to be a parent of Disease node.

We used bnlearn package to infer the edges and fit the above Bayesian network to the eigengenes.
Specifically, we discretized the values of eigengenes into three levels using Hartemink’s method. We
used the bn.boot() function from the bnlean package to fit 1000 networks to the discretized data. This
function used hill climbing strategy to optimize Bayesian Dirichlet equivalent (BDe) score. Consistent
with the approach taken by other scholars, we averaged one-third of the networks with the highest
scores to obtain the consensus network.

3.3.3 Inferring the decision tree

Module eigengenes are used as features to infer a decision tree as described in Chapter 2. To achieve
optimal performance and select the best set of features, when too many features are provided, the
Bayesian network is used to determine the relationships of the modules with each other and with the
type of sample state in each case of our study. In addition, the parameters of the algorithm, were
adjusted, enforcing the number of samples in each node to be at least 10%. We fitted a decision tree to
the children of the Disease node in our Bayesian network. We used our data to infer the topology of the
tree and the corresponding parameters. Module eigengenes are used to build a classifier that
distinguishes two or more classes. Each eigengene is a weighted average of the expression of all genes
in the module, where the weight of each gene corresponds to its membership in the module. Each
module might contain dozens to hundreds of genes, and hence the final classifier might depend on the
expression of many genes. In practice, it is desirable to reduce the number of necessary genes by a
decision tree.

3.4 Comparison of resulted significant genes

Differential Pigengene
expression ana|y5|s Methodology

[ SAM and Limma ’

I{ Significant DEGs ] N [ Significant Genes ]I String interaction PPI
I network

FIGURE 3.6 RESULTED SIGNIFICANT GENES & PPI INPUT STEPS

We have decided to combine the Differentially expressed genes and the significant genes resulted from
each Pigengene module. The intersection of the resulted signature in most cases, is then used to explore
the protein-protein interaction network and investigate the potential to identify biomarkers related to
the study.
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3.5 Protein-Protein Interaction Network

The STRING App [77] in the Cytoscape software [78] was used to analyze the significant genes resulted
from the two methods mentioned above. The STRING database is one of several online resources
dedicated to organism-wide protein association networks. STRING aims to place its focus on coverage
(applying to thousands of genome-sequenced organisms), on completeness of evidence sources (e.g.
including automated text mining) and on usability features (such as customization, enrichment
detection and programmatic access). It allows users to log on and make their searches persistent, and it
offers online-viewers to facilitate the inspection of the underlying evidence supporting each protein-
protein association. The criteria for constructing the network are based on text-mining, co-expression
and databases as well as minimum required interaction score with highest confidence = 0.8.

3.6 Critical Subnetworks and Hub Genes
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FIGURE 3.7 FINDING HUB GENES

We used the STRING database to analyze the up-regulated and down-regulated DEGs and analyzed the
protein protein interaction (PPI). Cytoscape is a software for visualizing interaction networks and
biological pathways. The MCODE plugin was used to find clusters in PPI networks with the degree
cutoff, node score cutoff, k-core and max depth as 2, 0.2, 0.2, and 100 as threshold. Moreover, the
cytoHubba plugin was used to identify hub genes of the network we imported by calculating the node
scores. To get a more reliable result, we analyzed the top 20 nodes with highest degree with all the 11
methods. Then we ordered the number of occurrences of these genes, and the genes with the highest
occurrence were the most significant hub genes.

3.6.1 CYTOHUBBA

Based on the PPI network, hub genes were screened according to network topology. Cytoscape
software (version 3.9.1) and the cytoHubba plugin [79] was used for ranking nodes in a network by
their network features. CytoHubba provides 11 topological analysis methods including Degree, Edge
Percolated Component, Maximum Neighborhood Component, Density of Maximum Neighborhood
Component, Maximal Clique Centrality and six centralities (Bottleneck, EcCentricity, Closeness,
Radiality, Betweenness, and Stress) based on shortest paths.
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CytoHubba provides a simple interface to analyze a network with eleven scoring methods. First, scores
from all eleven methods are granted to each node of the loaded PPI network by executing "compute
hubba result" function in the cytoHubba options in cytoscape menu bar [plugins]. Next, top-ranked
nodes of a particular scoring method are retrieved from the cytoHubba tab in Cytoscape control panel,
listed in the result panel, and the sub-graph of these selected nodes are shown in the main window with
a color scheme from highly essential (red) to essential (yellow). The sub-graph of essential nodes is
extendable to include nodes that directly interact with these top-ranked nodes by the option of "check
first stage node" in the control panel. Network topological features of nodes are retrievable in the data
panel as options of node attributes.

The algorithms

A. Local-based Methods

We assume that a biological network G = (V, E) is an undirected network, where V is the collection of
nodes within the network and E is the edge set. We can use another notation G = (V(G), E(G)) to
represent a network, where V(G) is the collection of nodes in a network G, and E(G) is the collection of
edges in a network G. For a set S, we use |S| to denote its cardinality (i.e. the number of elements in the
set).

Local based method only considers the direct neighborhood of a vertex. Given a node v, N(v) denotes
the collections of its neighbors. There are four local based methods shown as follows:

i. Degree method (Deg)

Deg(v)=IN(v)|.
ii. Maximum Neighborhood Component (MNC)

MNC(v) = |V(MC(v)) |,

where MC(v) is a maximum connected component of the G[N(v)] and G[N(v)] is the induced subgraph
of G by N(v).
iii. Density of Maximum Neighborhood Component (DMNC)

Based on MNC, Lin et. al. proposed DMNC(v) = |[E(MC(Vv)) | / [V(MC(v))?]|, where € = 1.7 [80].
iv. Maximal Clique Centrality (MCC)

To increase the sensitivity and specificity, MCC is proposed, to discover featured nodes. Given a node v,
the MCC of v is defined as MCC(v) = Xcesv)(IC| — 1)!, where S(v) is the collection of maximal cliques
which contain v, and (|C|-1)! is the product of all positive integers less than |C|. If there is no edge
between the neighbors of the node v, then MCC(v) is equal to its degree.

B. Global-based methods

In CytoHubba six node ranking methods are implemented, based on shortest paths and one method
based percolated connectivity. The length of a shortest path between nodes u and v is denoted as dist(u,
v). Let C(v) be the component which contains node v. The dist (u, v) is equal to infinite if C(v) # C(w),
and it makes methods of this category cannot be applied to networks with disconnected components.
To overcome this problem the score of a node in a connected network computed by enhanced method is
the same as that computed by original one.

59



Methodology

1. Closeness (Clo)

1

2. EcCentricity (EC)

_IVEm)I 1
EC (V) - \Z X max{dist(v,w):weC(v)}

3. Radiality (Rad)
_ V(€W _ Zwecw)(Acw) +1—-dist(v,w))
Rad(v)= 4 max{dist(v,w):weC(v)},

where 4. (,,)is the maximum distance between any two vertices of the component C(v).

4. BottleNeck (BN)

Let Ts be a shortest path tree rooted at node s. BN(v) = Ysey Ps(v)y Where pgpy = 1 if more than
[V(Ts)|/4 paths from node s to other nodes in Tg meet at the vertex v; otherwise pg,,;) = 0.

5. Stress (Str)

Str (v) = Zs:ﬁt:ﬁvEC(v) o5t (V)
where o, (v) is the number of shortest paths from node s to node t which use the node v.

6. Betweenness (BC)

ast(v)
Ost

BC (v) = ZsitiveC(v)
where gy, is the number of shortest paths from node s to node t.

7. Edge Percolated Component (EPC)

Given a threshold (0 < the thresholds< 1), we create 1000 reduced networks by assigning a random
number between 0 and 1 to every edge and remove edges if their associated random numbers are less
than the threshold.

Let the Gj, be the reduced network generated at the kth time reduced process. If nodes u and v are
connected in Gy, set 8Xto be 1; otherwise §%=0. For a node v in G, EPC(v) is defined as

1
EPC(v) i Z;lciof) YievOn

3.6.2 MCODE

"Molecular Complex Detection" (MCODE) [81], is an algorithm that detects densely connected regions in
large protein-protein interaction networks that may represent molecular complexes. It is a graph
theoretic clustering algorithm, and it is based on vertex weighting by local neighborhood density and
outward traversal from a locally dense seed protein to isolate the dense regions according to given
parameters. The algorithm has the advantage of having a directed mode that allows fine-tuning of
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clusters of interest without considering the rest of the network and allows examination of cluster
interconnectivity, which is relevant for protein networks.

The algorithm

The MCODE algorithm may be run in an undirected or a directed mode. Typically, when analyzing
complexes in a given network, one would find all complexes present (undirected mode) and then switch
to the directed mode for the complexes of interest. The algorithm operates in three stages:

1. vertex weighting
2. complex prediction

3. optionally post-processing to filter or add proteins in the resulting complexes by certain
connectivity criteria.

A network of interacting molecules can be intuitively modeled as a graph, where vertices are molecules
and edges are molecular interactions. If temporal pathway or cell signalling information is known, it is
possible to create a directed graph with arcs representing direction of chemical action or direction of
information flow, otherwise an undirected graph is used. Using this graph representation of a biological
system allows graph theoretic methods to be applied to aid in analysis and solve biological problems.
This graph theory approach has been used by other biomolecular interaction database projects such as
DIP [82], CSNDB [83] and is discussed by Wagner and Fell [84].

Algorithms for finding clusters, or locally dense regions, of a graph are an ongoing research topic in
computer science and are often based on network flow/minimum cut theory [85] and spectral
clustering [86]. To find locally dense regions of a graph, MCODE instead uses a vertex-weighting scheme
based on the clustering coefficient, C;, which measures 'cliquishness' of the neighborhood of a vertex.

Ci =2n/k; (k;-1)

where k; is the vertex size of the neighborhood of vertex i and n is the number of edges in the
immediate neighborhood density of v not including v. A clique is defined as a maximally connected
graph. We can define the density of a graph, G = (V, E), with number of vertices, |V|, and number of
edges, |E|, as |E|; divided by the theoretical maximum number of edges possible for the graph, |E|ax-
For a graph with loops, |E|max= V] (JV]|+1)/2 and for a graph with no loops, |E|max = |V| (|V|-1)/2.

So, density of G, DG = |E|/|E|pax and is thus a real number ranging from 0.0 to 1.0.
Undirected Mode
1. Vertex weighting

Vertex weighting, weights all vertices based on their local network density using the highest k-core of
the vertex neighborhood. A k-core is a graph of minimal degree k (graph G, for all v in G, deg(v) >= k).
The highest k-core of a graph is the central most densely connected subgraph. We define here the term
core-clustering coefficient of a vertex, v, to be the density of the highest k-core of the immediate
neighborhood of v (vertices connected directly to v) including v (note that Ci does not include v). The
core-clustering coefficient amplifies the weighting of heavily interconnected graph regions while
removing the many less connected vertices that are usually part of a biomolecular interaction network,
known to be scale-free [76]. A given highly connected vertex, v, in a dense region of a graph may be
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connected to many vertices of degree one (singly linked vertex). These low degree vertices do not
interconnect within the neighborhood of v and thus would reduce the clustering coefficient, but not the
core-clustering coefficient. The final weight given to a vertex is the product of the vertex core-clustering
coefficient and the highest k-core level, k max, of the immediate neighborhood of the vertex. This
weighting scheme further boosts the weight of densely connected vertices. This specific weighting
function is based on local network density.

2. Complex prediction

Molecular complex prediction, takes as input the vertex weighted graph, seeds a complex with the
highest weighted vertex and recursively moves outward from the seed vertex, including vertices in the
complex whose weight is above a given threshold, which is a given percentage away from the weight of
the seed vertex. This is the vertex weight percentage (VWP) parameter. If a vertex is included, its
neighbors are recursively checked in the same manner to see if they are part of the complex and the
process stops once no more vertices can be added to the complex based on the given threshold which
defines the density of the resulting complex. If the threshold is closer to the weight of the seed vertex a
smaller, denser network region around the seed vertex is identified. A vertex is not checked more than
once since complexes cannot overlap in this stage of the algorithm. The process is repeated for the next
highest unseen weighted vertex in the network in order to identify the densest regions of the network.

3. Post-processing

Complexes are filtered if they do not contain at least a graph of minimum degree=2.
Post-processing can be achieved with two options:

i.  'fluff' option, which increases the size of the complex according to a given parameter
between 0.0 and 1.0. For every vertex in the complex, v, its neighbors are added to the
complex if they have not yet been seen and if the neighborhood density (including v) is
higher than the given parameter. Vertices that are added by the fluff parameter are not
marked as seen, so there can be overlap among predicted complexes with the fluff
parameter set.

ii.  The 'haircut’ option where the resulting complexes are 2-cored, thereby removing the
vertices that are singly connected to the core complex.

If both options are specified, fluff is run first, then haircut.

Resulting complexes from the algorithm are scored and ranked. The complex score is defined as the
product of the complex subgraph, C = (V,E), density and the number of vertices in the complex subgraph
(DC x |V]). Thus larger and more dense complexes are ranked higher in the results.

Directed mode

A seed vertex is specified as a parameter. When directed mode is chosen, MCODE only runs once to
predict the single complex that the specified seed is a part of. The directed mode allows one to
experiment with MCODE parameters to fine tune the size of the resulting complex according to existing
biological knowledge of the system. In directed mode, MCODE will first pre-process the input network
to ignore all vertices with higher vertex weight than the seed vertex. If this were not done, MCODE
would preferentially branch out to denser regions of the graph, if they exist, which could belong to
separate, but denser complexes. Thus, a seed vertex for directed mode should always be the highest
density vertex among the suspected complex.
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The time complexity of the entire algorithm is polynomial O(nmh3) where n is the number of vertices,
m is the number of edges and h is the vertex size of the average vertex neighborhood in the input graph,
G.

Finally, we have to mention the advantages of MCODE:

» weighting is done once and comprises most of the time complexity, many algorithm parameters
can be tried, in O(n), once weighting is complete which is useful when evaluating many different
parameters.

» relatively easy to implement

» since it is local density based, has the advantage of a directed mode and a complex connectivity
mode. These two modes are generally not useful in typical clustering applications but are useful
for examining molecular interaction networks. Additionally, only those proteins above a given
local density threshold are assigned to complexes. This is in contrast to many clustering
applications that force all data points to be part of clusters, whether they truly should be part of
a cluster or not.[81]

3.7 Statistical Evaluation-Generalization

In microarray and data analysis evaluation methods are used to estimate the generalization ability of
genome signature, that is to discover predictive relationships of the results in independent data.
Evaluation methods can be performed in a portion of the existing dataset as well as in an
independent/new dataset, called the training set while a test set is used for evaluating whether the
discovered relationships are accurate. A test set is a set of data used to assess the strength and utility of
a predictive relationship. Cross-validation, explained in section 2.7 is a well-known and used strategy
because of its simplicity and its universality. The k - fold cross validation approach, implemented in this
study, can also be used to assess how the results of a statistical analysis will generalize to an
independent data set. In this context, a new independent dataset is used and the procedure of 10 - fold
cross validation is repeated.

3.8 Biological Evaluation

Apart from the important step of the statistical evaluation of our results and their prediction ability, a
fundamental role in the process of evaluation is the biological significance of the resulted genes. In
combination, these two methods can help us uncover known as well as new relationships between
genes/proteins which if applying either one or the other separately, our conclusion would be
incomplete and would lack in terms of statistical as well as biological significance.

A commonly used step to understand biological data is to evaluate the functional properties of gene sets
of interest. For this purpose, functional enrichment tests are widely applied in biomedicine field to
uncover trends in large scale biological datasets, and to identify disease and drug mechanisms. Here, we
performed an over-representation analysis to explore the functional information (biological processes,
pathways) of our gene sets, the differentially expressed gene (DEG) signatures and the hub-gene
signatures, in order to identify clear trends for each case study. The over-representation analysis of the
gene signatures was performed in WebGestalt (2019) (http://www.webgestalt.org/) using Gene
Ontology-Biological Process categories and Pathway categories and the entire genome as a reference

63



Methodology

set. Enrichment p values were adjusted using Benjamini-Hochberg correction and a false discovery rate
(FDR) threshold of 5% was used as significance cut-off. In the case that no significant results were
found under threshold FDR 0.05, the top 10 enrichment terms were selected to present the general
trends. In section 4 the results from the biological evaluation of our resulted gene signature are
presented.

3.9 Drugs and Gene signature interaction

The final step of our methodology is the exploration of the ability to repurpose drugs based on oyr
resulted gene signature. The resulted hub genes are screened and used for searching drugs-genes
associations through the DGIdb database [87] towards drug repurposing in Multiple Sclerosis. This
database has drug-gene interaction data from 30 disparate sources such as ChEMBL, DrugBank,
Ensembl, NCBI Entrez, PharmGKB, and literature in NCBI PubMed. Drugs supported by no less than 2
databases or PubMed references are validated as the candidate drugs. The final list only contains the
drugs that have been approved by the Food and Drug Administration. Additionally, the identified target
gene network is constructed through the STITCH database, a software that also incorporates drug-gene
relationships [88].
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4 RESULTS AND DISCUSSION

In this Chapter, we present the results deriving from the application of our proposed methodology after
examining two cases: A) MS untreated patients vs MS interferon treated patients, B) MS untreated
patients vs Healthy controls and C) MS untreated patients in different stages of the disease vs Healthy
controls. In section 4.1 we introduce the datasets that we have used, followed by section 4.2, 4.3 where
each case is presented separately. Furthermore, in section 4.4 the statistical significance as well as the
resulted genome signature significance of our approach and our implementation results is assessed. In
section 4.5 we examine the drug repurpose ability based on the genomic signature deriving from each
examined case and finally in section 4.6 we present our conclusions, remarks and future work goals.

4.1 Datasets

In this study the datasets that were examined were acquired from Gene Expression Omnibus [89]. We
have selected the raw data in order to process them, as mentioned in the following sections.

For the overall design, the following cases were examined:
A. Untreated MS vs Interferon treated MS (discovery and replication), dataset GSE41850
B. Untreated MS vs Controls (discovery and replication), dataset GSE41850

C. Untreated MS in different disease stages vs Controls, dataset GSE136411

4.1.1 Dataset GSE41850

Our first raw dataset was acquired from Gene Expression Omnibus, accession number GSE41850 [35].
Gene expression values derived from whole blood RNA from a cohort of 195 MS patients treated with
interferon  and untreated and 66 healthy controls. We examined samples from 120 MS patients (at
three consecutive years) and 41 healthy controls (at two time points) as discovery data set and another
set of 75 MS patients (at three consecutive years) and 25 healthy controls (at two time points) that
were selected at random as the replication data set. In total, 626 Affymetrix exon arrays were analyzed
arrays split into discovery and replication data sets. (Figure 4.1A, B)

For each comparison, respective arrays were processed, background corrected and normalized
together but separate from other comparisons. The two time points for controls were averaged
(baseline + 1 year). Our data were processed in R.
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B) Untreated MS vs Healthy Controls samples
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FIGURE 4.1 A) UNTREATED MS vs INTERFERON TREATED MS (DISCOVERY AND REPLICATION), B) UNTREATED MS vs
INTERFERON TREATED MS (DISCOVERY AND REPLICATION)

4.1.2 Dataset GSE136411

The second dataset that was examined was also from Gene Expression Omnibus, accession number
GSE136411 [90]. The dataset includes a total of 313 individuals (172 females and 141 males, with a
mean age of 41.7 y.), comprising of 60 healthy controls (HC), 57 subjects with Clinically isolated
syndrome (CIS), 169 clinically defined MS cases. The MS cohort contained 108 relapsing-remitting MS
(RRMS), 26 secondary progressive MS (SPMS) and 35 primary progressive MS (PPMS) cases. 176
subjects (39 HC, 46 CIS, 23 PPMS, 47 RRMS, 21 SPMS) out of 313 were included in a previously
published study, 115 subjects were sampled twice to evaluate biological variability. Additional 137
subjects (21 HC, 11 CIS, 12 PPMS, 61 RRMS, 5 SPMS, 27 OND) were recruited for this study. The
datasets raw intensities were background subtracted and filtered according to detection p values
(p<0.05 in at least 20% of samples) and then normalized using quantile normalization. Pre-processed
data were log2 transformed.

4.1.3 Dataset GSE73608

Dataset GSE73608 [91] was the validation dataset in the “untreated MS vs Interferon treated MS
patients” Case study. The dataset had two group of samples, first group (N =35, RRMS-untreated n = 25,
RRMS_IFN responders n=10) and second group (N=50, SPMS_untreated n=30, SPMS_IFN treated
n=20). Peripheral blood mononuclear cells (PBMC) were collected from RRMS and SPMS patients. All
patients were diagnosed according to McDonald's 2010 diagnostic criteria. The raw dataset was
processed based on the pre-processing steps of GSE41850 dataset.

4.1.4 Dataset E-MTAB-5151

We have acquired Dataset E-MTAB-5151 [92] from the ArrayExpress database. This dataset was used
as validation in the “untreated MS vs Healthy Controls” case. It was established on the platform of A-
AFFY-44-Affymetrix Gene Chip Human Genome U133 Plus 2.0 [HG-U133_Plus_2]. Dataset E-MTAB-5151
contains 76 peripheral blood mononuclear cell samples, including 15 PPMS, 21 RRMS, 13 SPMS, in total
49 MS diagnosed patients and 27 healthy control samples. The patients with MS were diagnosed
according to McDonald criteria6 and were not suffering from any other acute or chronic inflammatory
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diseases or other autoimmune disorders. Furthermore, they had not started any immunomodulatory
therapy for MS yet. The raw gene expression data of the three MS stages were considered one group of
MS untreated patients and were processed following the pre-processing steps of the GSE41850 dataset.

4.1.5 Dataset E-MTAB-4890

Dataset E-MTAB-4890[93] was downloaded from the ArrayExpress database and was used for the
validation and the examination of the generalization ability of the results from case “Untreated MS
patients in different disease stages vs Healthy Controls”. E-MTAB-4890 includes a total of 182
individuals and global mRNA expression from peripheral blood mononuclear cells (PBMC) was
measured, comprising of 142 multiple sclerosis (MS) patients affected with distinct MS clinical forms
(PPMS=23, RRMS=52, SPMS=21) and 40 healthy controls. The raw gene expression data of the three MS
stages were processed following the pre-processing steps of the GSE136411 dataset.

4.2 Case untreated MS vs Interferon treated MS patients

The commonly used disease-modifying treatment (DMT) interferon (IFN) beta is believed to modulate
the immune response, reduce new inflammatory lesions in the CNS and partially protect against
progression of disability. However, patients vary considerably in their responsiveness to these
therapies, and for any individual patient, the natural history of MS is extremely heterogeneous, varying
from a benign condition to a devastating and rapidly incapacitating disease. For these reasons, a better
characterization of patients is much needed to ultimately understand the diversity of disease
presentation.

4.2.1 Datasets preprocessing and Differential expression

The first step was Filtering our dataset. We have created a new file with all discovery samples with
18.726 genes x 318 samples. In the discovery data set, a variance filter, difference between the 10% and
90% quantiles > 0.7, yielding 6.924 genes (329 > than original paper) was applied to normalized gene
expression values in order to decrease the number of tested genes. Then group 1 (untreated patients)
was compared to group 2 (IFN treated patients) at any of the three measured time points. The union of
genes at all three time points passing the FDR cutoff of 0.0001 were considered to be differentially
expressed and assessed for differential expression in the replication data set.

In the replication dataset the procedure was repeated: group 1 (untreated patients) was compared to
group 2 (IFN treated patients) at all three measured time points, and the union of genes reaching a
nominal p-value of 0.05 or smaller at any of these time points was considered to be replicated.

We report differentially expressed genes at the FDR cutoff was 0.0001. The respective genes were
validated in the replication data set when they passed a nominal p-value cutoff of 0.05 at any of the
three tested time points. In the discovery data set, differentially expressed genes were identified by
applying stringent FDR-corrected P-value filters; these genes were then tested for validation in the
replication data set. ( R limma : Linear Models for Microarray Data )

After applying gene filtering and differential analysis in each time point we have concluded in 6.924
genes from discovery dataset (FDR < 10-4) and their union yielded 313 significant genes. The
replication dataset was tested based on these 6.924 genes and 531 genes were selected with p-value<
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0.05. Based on the discovery and replication set, 274 genes were common and were considered
significant from our “Ms_Untreated- INF_treated” case.

Discovery Replication
ey
arrays arrays

: Genes of
Variance T s
Filter neres
6924 genes FDR <0,0001

Untreated INF Untreated INF

Baseline Baseline Baseline Baseline

1year 1year

2 years 2 years

1v2u3 1v2u3

¥ ¥

[ 313 genes ] . [ 531 genes ]
— ) S —

FIGURE 4.2 DATASET PREPROCESSING AND DIFFERENTIAL EXPRESSION: UNTREATED MS Vs INTERFERON TREATED MS
(DISCOVERY AND REPLICATION)

4.2.2 Significance Analysis of Microarrays (SAM)

To further evaluate the results, we conducted a Significance Analysis of Microarrays (SAM) on our
filtered datasets for both cases, in order to find differentially expressed genes based on T-statists. The
cutoff for significance is determined by a tuning parameter delta, chosen by the user based on the false
positive rate. One can also choose a fold change parameter, to ensure that called genes change at least a
pre-specified amount.

MS Untreated vs INF treated at three-time points
LIMMA Discovery Replication dataset FINAL COMMON
and SAM dataset (DEGs) Common genes GENES
(DEGs)
LIMMA 313 >31 274
SAM 777 936 614 213

TABLE4.1 DIFFERENTIALLY EXPRESSED GENES MS UNTREATED VS INF TREATED

After the analysis with SAM, we compared the SAM results to our Limma analysis in R and we
concluded in 213 genes considering the case MS Untreated- INF treated.

4.2.3 Clustering

Hierarchical clustering using maximum distance and ward clustering was performed on the
discriminant 213 signature genes from untreated subjects and Interferon treated (Fig. 2). Two distinct
clusters are observed. A subset of patients in both data sets shows a strong IFN response (high IFN gene
expression). 182 genes out of 213 were found also in our reference paper [35].
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We observe the discriminatory power of the resulted 213 gene signature in unsupervised hierarchical
clustering (Figure 4.3). The heatmap shows a uniform cluster of MS INF treated patients (grey) with several
smaller uniform clusters, an observation that stands in the replication set.MS untreated cases also clustere in a
distinct cluster (pink), indicating that gene expression changes evoked by the INF treatement are noticable.

4.2.4 Pigengene Methodology

The proposed methodology aims to find a minimum set of significant genes that will be able to predict
the state of a new sample as well as provide meaningful biological information through the correlation
and combination of genes in pathways and smaller groups/networks. We apply the Pigengene
methodology streps on the 6.924 genes that derived from the preprocessing step.

Weighted correlation network: Weighted Coexpression network analysis (WGCNA) was applied to
group related genes into gene modules (clusters) based on their coexpression patterns in MS.
WGCNA uses the average linkage hierarchical algorithm to cluster the genes. (Figure4.4 A). For each
gene module, WGCNA computes one eigengene, which summarizes the biological information in
that module into one value per sample. We used these eigengenes to train a Bayesian network (BN)
in which nodes (random variables) represent gene modules, and the directed edges (arcs) represent
the conditional dependencies between the eigengenes.

Eigengenes: We computed an eigengene for each module as a weighted average of the expression of
all genes in that module. Eigengenes are important biological signatures that can predict disease
types solely based on gene expression (Figure4.4 B). Module 5 is negatively associated with the
Interferon treatment, whereas Module 6 is positively associated with Interferon treatment. To
validate this, we modeled the probabilistic dependencies between the eigengenes using a BN
(Figure 4.5). We used Bayesian networks as probabilistic predictive models to determine the state.
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FIGURE 4.4 A) MODULES DENDROGRAM B) THE TWO (2) EIGENGENES THAT ARE DIFFERENTIALLY EXPRESSED ME5, ME6. THE
INTENSITY OF THE COLORS IN EACH HEATMAP CORRESPONDS TO THE NORMALIZED AVERAGE EXPRESSION. EACH COLUMN
CORRESPONDS TO AN EIGENGENE. EACH ROW SHOWS THE EXPRESSION OF A CASE FROM THE MS vs MS_INF DATASET.

Bayesian network: We fitted a Bayesian network to the eigengenes to determine the relationships of
the modules with each other and with the state of the samples. Descendants of the “Disease” node,
the variable that models the state, show high dependency between these eigengenes and the state
type and suggest that they have useful biological information that can explain the differences
between the two states. We trained a Bayesian network to model the probabilistic dependencies
between the modules. Several individual networks from random staring networks were built
(n0.1000) by optimizing their score. Then, we inferred a consensus network from the ones with
relatively "higher" scores. The default hyper-parameters and arguments are then selected. Each
module eigengene is represented by a node (observed random variable). To model the condition,
we added “Disease” as an observed random variable to the network.
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/
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FIGURE 4.5 THE BAYESIAN NETWORK FITTED TO THE EIGENGENES. EACH NODE REPRESENTS AN EIGENGENE OF A MODULE. THE
ARCS MODEL THE PROBABILISTIC DEPENDENCIES BETWEEN THE MODULES. THE “DISEASE” NODE IS SET TO 1 FOR MS AND 0 FOR
MS_INF, AND ITS CHILDREN ARE HIGHLIGHTED IN PINK.
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Decision tree: A decision tree is fitted to the two children of the Disease node in our Bayesian
network (R package C50 version 0.1.0-24). We used the data to infer the topology of the tree and the
corresponding parameters. The algorithm automatically selected the ME5 and ME6 eigengenes
(modules 5 and 6). Module eigengenes are used to build a classifier that distinguishes two or more
classes. Each eigengene is a weighted average of the expression of all genes in the module, where
the weight of each gene corresponds to its membership in the module. Each module might contain
dozens to hundreds of genes, and hence the final classifier might depend on the expression of a
large number of genes. In practice, it is desirable to reduce the number of necessary genes by a
decision tree. The inferred decision tree had a relatively high predictive accuracy (Figure 4.6).

FIGURE 4.6 THE DECISION TREE FOR DISTINGUISHING MS FROM MS_INF CASES. IF THE NORMALIZED EIGENGENE OF A CASE IS
GREATER THAN -0.002, IT IS CLASSIFIED AS MS_INF. IF IT IS LESS THAN -0.002 AND LESS THAN -0.01, IT IS CLASSIFIED AS MS.
OTHERWISE, THE ME6 EIGENGENE DETERMINES WHETHER THE CASE IS MS (>0.01) orR MS_INF (£-0.01). AT THE FIXED
THRESHOLDS SHOWN ABOVE, THIS TREE CORRECTLY CLASSIFIED 267 CASES (84%) IN THE DATASET.

4.2.5 Construction of PPI Network of Common DEGs for MS and MS_INF Treated
Patients from two Approaches

We compared the resulted genes from Modules 5 and Module 6 to our 213 differentially expressed
genes from SAM and Limma. 190 genes were common between the two methodological approaches, so
we choose to keep the 213 DEGs and proceed by taking into account the extra 23 genes to construct the
PPI network and examine for hub genes. The STRING App in the Cytoscape software was used to
analyze 213 DEGs that had been entered into the STRING database. A total of 208 genes/nodes with 312
edges were enriched in the construction of the PPI network. (Figure 4.7)
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FIGURE 4.7 PPI NETWORK FROM 213 DIFFERENTIALLY EXPRESSED GENES

4.2.6 Critical Subnetworks and Identification of Hub Genes for MS and MS_INF
Treated Patients

Hub genes were identified by 11 topological analysis methods from the CytoHubba, a Cytoscape plugin,
where the top 20 genes were selected for each method. The 32 resulted genes (Table4.2) were found in
the intersection of all methods and were selected as MS_INF related hub genes. We also obtained the
clustering module with the highest score from PPI network of all DEGs (Figure 4.8 A) by MCODE
algorithm. It was found that 21 genes from 32 hub genes were contained in this module (Figure 4.8 B)
providing a minimal gene set toward potential clinical testing.

CytoHubba & MCODE: Hub genes by 11 topological analysis methods or Hub genes by CytoHubba
and MCODE algorithm*
OAS3|RSADZ2|IFIT3| IRF5/IFIT1|IFI6|IFIT5|0AS2/MX2[IFIT2|STATZ/|
IRF7|BSTZ2[IFITM3[STAT1/ADAR[SAMHD1XAF1|IFI35[IFI27|/0ASL
[IFIH1|UBE2L6[IFI44|CCR1|NT5C3A] HERC5|/CASP1| CMPK2|CXCL10] PARP9/DDX58

TABLE4.2 IDENTIFICATION OF HUB GENES *21 HUB GENES CYTOHUBBA & MCODE (IN BOLD);32 GENES CYTOHUBBA
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4.2.7 Statistical Evaluation-Generalization

The resulting genomic signature of 21 hub genes is used to assess the classification and generalization
ability of the model. The final gene signature arrived from GSE41850 dataset which was used as a
training dataset (N=224, MS_Utreated=130, MS_INF Treated=94) and testing dataset (N=94,
MS_Utreated= 55, MS_INF Treated =39). The validation dataset GSE73608 as we mentioned in section
4.1 had two group of samples. Both groups were examined as independent validation sets. Twenty-one
(21) hub genes served as features in training data set, and their corresponding gene expression profiles
were obtained. Then, the classification model was established by support vector machine (SVM).

By applying 10fold cross-validation in the model, 76 out of the 94 samples were correctly classified,
with a classification accuracy of 80%, model sensitivity to INF of 77%, specificity of 85%, and area
under the ROC curve (AUC) was 0.86 (Figure 4.9 a). Furthermore, the established model was used to
predict the samples in the validation data sets to test the prediction ability of the model.

In the first validation group, (N = 35, RRMS-untreated n =25, RRMS_IFN responders n=10) the samples
were classified, with a classification accuracy of 80%, moreover, the sensitivity was 100 % and
specificity of the model was 64%, and the area under the receiver operating characteristic (ROC) curve
was 0.92 (Figure 4.9 b). In the second validation group, (N =50, SPMS_untreated n=30, SPMS_IFN
treated n=20) the samples were classified, with a classification accuracy of 70%, the sensitivity was 90
% and specificity of the model was 57%, the area under the receiver operating characteristic (ROC)
curve was 0.88 (Figure 4.9 c).

We merged the two groups and applied the model to the merged dataset with a classification accuracy
of 75%, moreover, the sensitivity was 94 % and specificity of the model was 64%, the area under the
receiver operating characteristic (ROC) curve was 0.90 (Figure 4.9 d). Compared to other studies and
published results [18] the methodology performs very well and these results indicated that the
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diagnostic prediction model constructed in this study can effectively distinguish patients with MS from
Interferon treated patients, and that the twenty one hub genes can be used as reliable biomarkers for

MS diagnosis.
a b
GSE41850 Real INF Real MS GSE73608 Real INF | Real RRMS
Predict INF 42 6 Predict INF 10 8
Predict MS 13 33 Totals Predict RRMS 0 17 Totals
Totals 55 39 94 Totals 10 25 35
Correct 42 33 75 Correct 10 17 27
Sensitivity (%) 77 Sensitivity (%) 100
Specificity (%) 85 Specificity (%) 64
AUC 0.86 AUC 092
c d
GSE73608 | RealINF | Real SPMS GSE73608 | Real INF Real
(Merged) SPMS+RRMS
PredictINF 18 13 Predict INF 28 20
Predict SPMS 2 17 Totals Predict SPMS+ 2 35 Totals
RRMS
Totals 20 30 50 Totals 30 55 85
Correct 18 17 35 Correct 28 35 63
Sensitivity (%) 90 Sensitivity (%) 94
Specificity (%) 57 Specificity (%) 64
IAUC= 0.88 AUC 0.90

FIGURE 4.9 CONSTRUCTION OF DIAGNOSTIC MODEL AND VALIDATION OF MODEL. A) CLASSIFICATION RESULTS AND ROC CURVES OF
SAMPLES BY DIAGNOSTIC MODEL IN TRAINING DATA SET. B) CLASSIFICATION RESULTS AND ROC CURVES OF SAMPLES BY
DIAGNOSTIC MODEL IN GSE73608 1ST GROUP. C) CLASSIFICATION RESULTS AND ROC CURVES OF SAMPLES BY DIAGNOSTIC MODEL
IN GSE73608 2ND GROUP. D) CLASSIFICATION RESULTS AND ROC CURVES OF SAMPLES BY DIAGNOSTIC MODEL IN GSE73608 (1sT
GROUP + 2ND GROUP.)

4.2.8 Biological interpretation

Each selected Affymetrix probe set was mapped to an annotation of Entrez Gene ID and Gene Symbol
using the online tool WebGestalt (2013) (http://www.webgestalt.org/2013/). Considering the case
untreated MS and INF treated, an over-representation analysis of the resulted 213-DEG-gene signature
was performed in WebGestalt (2019). The enriched biological process categories are presented in Table
4.3A, whereas the enriched pathway categories are presented in Figure 4.10A.

GO0:0098542 defense response to other organism <2.2e-16 <2.2e-16
G0:0009615 response to virus <2.2e-16 <2.2e-16
G0:0034340 response to type I interferon <2.2e-16 <2.2e-16
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G0:0043900 regulation of multi-organism 6.6613E- 1.42E-13
process 16

GO0:0035456 response to interferon-beta 9.08E-14 1.54E-11

G0:0019058 viral life cycle 5.61E-13 7.95E-11

GO0:0034341 response to interferon-gamma 1.81E-12 2.20E-10

GO0:0035455 response to interferon-alpha 4.34E-11 4.61E-09

GO0:0002831 regulation of response to biotic 5.81E-09 5.49E-07
stimulus

G0:0032606 type I interferon production 1.15E-08 9.78E-07

GO0:0060759 regulation of response to cytokine 8.85E-08 6.8406E-06
stimulus

GO0:0045088 regulation of innate immune 1.10E-07 7.8222E-06
response

G0:0007249 I-kappaB kinase/NF-kappaB 5.89E-07 0.000038516
signaling

G0:0001818 negative regulation of cytokine 2.8E-06 0.00016929
production

G0:0002697 regulation of immune effector 3.8E-06 0.0002148
process

G0:0000209 protein polyubiquitination 1.4E-05 0.00072239

G0:0001819 positive regulation of cytokine 4.8E-05 0.0024223
production

G0:0061025 membrane fusion 7.8E-05 0.0036921

GO0:0016050 vesicle organization 0.00011 0.0050468

G0:0002237 response to molecule of bacterial 0.00019 0.0080888
origin

G0:0051701 interaction with host 0.0002 0.0086105

GO0:0044764 multi-organism cellular process 0.0002 0.0086492

G0:0002764 immune response-regulating 0.0003 0.0099609
signaling pathway

GO0:0031349 positive regulation of defense 0.0007 0.0246
response

Note: Common GO-biological processes between DEG-signatures and hub-gene-signatures are

highlighted in blue.

B FOR < 0.05

FDR > 0.05

Antiviral mechanism by IFN-stimulated genes

Negative regulators of DDX58/IFIH1 signaling

DDX58/FIH1-mediated induction of interferon-alpha/beta

Cytokine Signaling in Immune system

TABLE 4.3A GO-BIOLOGICAL PROCESSES ANALYSIS OF 213 DEGS IN THE

CASE OF UNTREATED MS VS INF TREATED
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FIGURE 4.10A REACTOME PATHWAY ANALYSIS OF 213 DEGS IN THE CASE OF UNTREATED MS VS INF TREATED.

1
40

As demonstrated in Table 4.3A and Figure 4.10A, the enrichment analysis of the 213-DEG-gene
signature revealed an overwhelming representation of immune processes and pathways, which are

75



Results and Discussion

known to play a role in MS [35].As interferons are known to take part in regulating innate and adaptive
immune responses, the excessive presentation of interferon signaling is rather expected [94].

Of note, in accordance with the original study, four out of 213 genes (0AS3, RSADZ, EPSTI1, IFI44L)
were found among the most significantly and strongly differentially expressed genes between untreated
MS and INF-treated patients [35].

Moreover, we also performed an over-representation analysis to further explore the functional
information (biological processes, pathways) of the 21-hub-gene signature, which may be linked with
MS interferon treatment. The analysis of the gene signature was performed using the online tool
WebGestalt (2019).

G0:0098542 defense response to other <2.2e-16 <2.2e-16
organism
G0:0009615 response to virus <2.2e-16 <2.2e-16
G0:0034340 response to type I interferon <2.2e-16 <2.2e-16
G0:0035455 response to interferon-alpha 1.42E-13 3.02E-11
G0:0035456 response to interferon-beta 4.01E-12 6.82E-10
G0:0043900 regulation of multi-organism 2.14E-11 3.03E-09
process
G0:0019058 viral life cycle 7.67E-11 9.31E-09
G0:0034341 response to interferon-gamma 1.22E-10 1.29E-08
G0:0032069 regulation of nuclease activity 3.72E-06 0.0003513
G0:0032606 type I interferon production 0.0005205 0.044243
Note: Common GO-biological processes between DEG-signatures and hub-gene-signatures are
highlighted in blue.

TABLE 4.3B GO-BIOLOGICAL PROCESSES ANALYSIS OF THE 21-HUB-GENE SIGNATURE IN THE

CASE OF UNTREATED MS VS INF TREATED
B FOR < 0.05 FDR > 0.05

QAS antiviral response

Interferon alpha/beta signaling

Interferon Signaling

Antiviral mechanism by IFN-stimulated genes
Interferon gamma signaling

Cytekine Signaling in Immune system

Immune System

T T T T T T T T T 1
0 20 40 60 80 100 120 140 160 180 200
Enrichment ratio

FIGURE 4.10B REACTOME PATHWAY ANALYSIS OF THE 21-HUB-GENE SIGNATURE IN THE
CASE OF UNTREATED MS vs INF TREATED.

As presented in Figure 4.8A, our approach resulted in a clustering module (subnetwork) with 21 highly
interconnected hub genes. After performing enrichment analysis, significant (P<0.01, FDR<0.001) GO
biological processes (Table 4.3B), KEGG, Wikipathways, and Reactome (Figure 4.10B) pathways were
obtained. The GO functional enrichment analysis indicated that the 21 MS_INF-associated genes were
enriched in biological processes, such as response to type I interferon, defense response to other
organism, response to virus, and response to interferon-alpha/beta/gamma. Furthermore, the pathway
enrichment analysis (KEGG/Wikipathways/Reactome) showed that these genes were significantly
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enriched in signaling pathways, such as NOD-like receptor signaling, Toll-like receptor signaling,
Cytokine Signaling in Immune system, Interferon Signaling, Interferon alpha/beta signaling, Type
I1/Type III interferon signaling, IL-10 Anti-inflammatory Signaling, but also Non-genomic actions of
1,25 dihydroxyvitamin D3 [95]. These findings highlight the affected processes and pathways in MS that
are linked with a response to INF treatment and are in accordance with current knowledge [35, 96, 97,
98, 99, 100]. Moreover, eight out of 21 hub genes (0AS2, IRF5, MX2, OASL, IFIT1, IRF7, IFI35 implicated
in Interferon inducible and interferon pathway; STATI implicated in Cell signaling) were found to be
up-regulated in MS patients following IFN{3 therapy [100] whereas two out of 21 genes (0OAS3, RSADZ2)
were found, as 77forementioned, among the most significant differentially expressed genes between
untreated MS and INF-treated patients, reported in the original study [35]. As depicted in Figure 4.8B,
there is a variance in the expression pattern of some cases illustrating both the heterogeneity of the
clinical course of MS and the partial response to IFN[3 therapy. Thus, we suggest that the derived hub
genes provide a reliable 21-hub-gene signature that could predict the response of IFNf therapy in
patients with MS [95].

4.2.9 Candidate drugs targeting hub genes

Using the DGIdb database we explore drug-gene interactions of the 21 hub genes that derived from the
MCODE analysis. 21 genes were found common between CYTOHUBBA and MCODE. The drugs for
possibly addressing patients in MS when they do not respond to INFb, are shown in Table4.4. We used
the STITCH database, in order to construct downstream networks of the genes that have a drug
relationship, to investigate the additional effects caused by inhibitors of these genes. All networks are

also included in Table4.4. The network setting were “Experiments”,” Databases”,”Coexpression” and
confidence was set to high=0,9.

GENE SYMBOL DRUGS NETWORK

Protein-protein interactions: Grey,
Chemical-protein interactions: Green
Interactions between chemicals: red.

SAMHD1
dATP
E SAMHD1
OASL e  RIBAVIRIN

TRIP12 ADAR

" D
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STAT1 e  GARCINOL

e  GUTTIFERONE K
e  PICOPLATIN

e  CISPLATIN

e CHEMBL85826
e [PRIFLAVONE

TABLE 4.4 GENES THAT HAVE DRUG INTERACTIONS AND INHIBITOR NETWORKS OF THE GENES THAT HAVE A DRUG RELATIONSHIP

4.3 Case untreated MS vs Healthy Controls

4.3.1 Dataset preprocessing and Differential expression

We have created a new file with all discovery samples, and we have 18.726 genes x 174 samples. Gene
expression patterns were relatively stable across the three time points, so we adopted a cross-sectional
analysis strategy.

In the discovery data set, a variance filter, difference between the 10% and 90% quantiles > 0.6,
yielding 8.979 genes (104 > than original paper) was applied to normalized gene expression values in
order to decrease the number of tested genes. Then group 1 (untreated patients) was compared to
group 2 (averaged controls) at any of the three measured time points. The union of genes at all three
time points passing the FDR cutoff of 0.01 were considered to be differentially expressed and assessed
for differential expression in the replication data set. In the replication dataset the procedure was
repeated: group 1 (untreated patients) was compared to group 2 (averaged controls) at all three
measured time points, and the union of genes reaching a nominal p-value of 0.05 or smaller at any of
these time points was considered to be replicated. Differentially expressed genes were identified in the
discovery data set and then validated in the replication data set. In the discovery data set, differentially
expressed genes were identified by applying stringent FDR-corrected P-value filters; these genes were
then tested for validation in the replication data set.( R limma)

After applying gene filtering and differential analysis in each time point we have concluded in 8.979
genes from discovery dataset (FDR < 10-4) and their union yielded 76 significant genes. For controls,
the two available time points were considered biological replicates and were averaged; these averaged
expression profiles were then used for comparison with untreated MS patients for all three time points.

The replication dataset was tested based on these 8.979 genes and 2.270 genes were selected with p-
value< 0.05. Based on the discovery and replication set, 76 genes were common and were considered
significant from our “MS Untreated- Control” case.
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FIGURE 4.11 DATASET PREPROCESSING AND DIFFERENTIAL EXPRESSION: B) UNTREATED MS vs HEALTHY CONTROLS
(DISCOVERY AND REPLICATION)
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4.3.2 Significance Analysis of Microarrays (SAM)

As previously stated, in order to further evaluate the results, we conducted a Significance Analysis of
Microarrays (SAM) on our filtered dataset so as to find differentially expressed genes based on T-
statists. The cutoff for significance is determined by a tuning parameter delta, chosen by the user based
on the false positive rate. One can also choose a fold change parameter, to ensure that called genes
change at least a pre-specified amount.

MS Untreated vs Control
LIMMA Discovery L. FINAL COMMON GENES
Replication dataset
and SAM dataset (DEGs) Common genes
(DEGs)
LIMMA 221 2270 76
SAM 284 1440 238 31

TABLE4.5 DIFFERENTIALLY EXPRESSED GENES MS UNTREATED VS CONTROL

After the analysis with SAM, we compared the SAM results to our Limma analysis in R and we
concluded in 31 genes considering the case Ms Untreated- Control.

We proceed with hierarchical clustering and k means clustering of our datasets to visualize and
evaluate our results.

4.3.3 Clustering

In contrast with the transcriptional responses observed for IFN treatment, gene expression differences
between untreated cases and controls were much more subtle. Despite modest differences in
expression levels, the identified MS signature is discriminatory in unsupervised hierarchical clustering
(Figure 4.11). The heatmap shows a uniform cluster of MS patients (group A) as well as several smaller
uniform clusters of controls, an observation that stands in the replication set. MS cases who do not
belong to group A, rather clustered with the controls (group B), indicating that gene expression changes

79



Results and Discussion

evoked by the disease are much more heterogeneous and complex than those induced by IFN.
Hierarchical clustering was performed using Euclidean distance and average clustering.
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FIGURE 4.12 UNSUPERVISED HIERARCHICAL CLUSTERING OF MS PATIENTS AND HEALTHY CONTROLS ACCORDING TO THE
EXPRESSION OF MS SIGNATURE GENES IN THE DISCOVERY (A) AND THE REPLICATION (B) DATA SETS. THE ROWS ARE DIFFERENT
GENES, THE COLUMNS REFLECT DIFFERENT EXPERIMENTS. THE COLORED BAR ABOVE THE HEATMAP IDENTIFIES PATIENTS (PINK)

AND CONTROLS (GREY). TWO SUBGROUPS OF MS PATIENTS, GROUP A WITH A STRONGER SIGNATURE AND GROUP B, EMERGE.
BLUE DEPICTS LOW EXPRESSION AND RED HIGH EXPRESSION.
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4.3.4 Statistical Evaluation

The resulting genomic signature of 31 hub genes derived from GSE41850 dataset and we proceed to
examine the classification and generalization ability of it in an independent dataset. We have acquired
Dataset E-MTAB-5151 [92] downloaded from the ArrayExpress database. This dataset was established
on the platform of A-AFFY-44-Affymetrix Gene Chip Human Genome U133 Plus 2.0 [HG-U133_Plus_2].
The final gene signature from GSE41850 dataset was used as a training dataset (N=150,
MS_Utreated= 94, Healthy controls = 56) and testing dataset (N =62, MS_Utreated= 39, MS_INF Treated
=23). Thirty-one (31) genes served as features in training data set, and their corresponding gene
expression profiles were obtained. Then, the classification model was established by support vector
machine (SVM).

By applying 10fold cross-validation in the model, 38 out of the 62 samples were correctly classified,
with a classification accuracy of 63%, model sensitivity to CTR of 65%, specificity of 80%, and area
under the ROC curve (AUC) was 0.78 (Figure 4.13 a). Furthermore, the established model was used to
predict the samples in the validation data sets to test the prediction ability of the model.

In the validation group, (N=76, MS-untreated n=49, Healthy controls n=27) the samples were
classified, with a classification accuracy of 79%, moreover, the sensitivity was 55 % and specificity of
the model was 98%, and the area under the receiver operating characteristic (ROC) curve was 0.69
(Figure 4.13 b).

a b
GSE41850 Real CTR Real MS E-MTAB-5151 Real CTR Real MS
Predict CTR 8 8 Predict CTR 12 1
Predict MS 15 31 Totals Predict MS 15 48 Totals
Totals 23 39 62
Totals 27 49 76
Correct 8 31 39
— Correct 12 48 60
Sensitivity (%) 65
Sensitivity (%) 55
Specificity (%) 80 Specificity (%) 98
_ —
AUC 0.78 AUC 0.69

FIGURE 4.13 CONSTRUCTION OF DIAGNOSTIC MODEL AND VALIDATION OF MODEL. A) CLASSIFICATION RESULTS AND ROC CURVES
OF SAMPLES BY DIAGNOSTIC MODEL IN TRAINING DATA SET. B) CLASSIFICATION RESULTS AND ROC CURVES OF SAMPLES BY
DIAGNOSTIC MODEL IN E-MTAB-5151.

As we can see from the results, the algorithm performs well when classifying MS patients based on the

expression values of the datasets. As we have already mentioned gene expression changes evoked by
the disease are much more heterogeneous and complex and thus, we choose to examine each MS stage
versus Healthy control samples in order to identify candidate genes that could be indicative of the
disease progression as well as the prediction of new samples. In section 4.4 we present the application
of our methodology in a new data set with MS cases in different stages and Healthy control samples.

4.3.5 Biological Interpretation

Each selected Affymetrix probe set was mapped to an annotation of Entrez Gene ID and Gene Symbol
using the online tool WebGestalt (2013) (http://www.webgestalt.org/2013/). Considering the case
untreated MS and controls, an over-representation analysis of the resulted 31-DEG-gene signature was
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performed in WebGestalt (2019). The results of the enrichment analysis of the 31-DEG-gene signature
are presented in Table 4.6 and Figure 4.14.

G0:0002446 Neutrophil mediated 1.29E- 0.0058
immunity 05

G0:0036230 granulocyte activation 1.36E- 0.0058
05

TABLE 4.6 GO-BIOLOGICAL PROCESSES ANALYSIS OF 31 DEGS IN THE CASE OF UNTREATED MS VS CONTROLS

I FDR < 0.05 FDR > 0.05

Neutrophil degranulation

T T T T T T T 1
0 1 2 3 4 5 6 7 2
Enrichment ratio

FIGURE 4.14 REACTOME PATHWAY ANALYSIS OF 31 DEGS IN THE CASE OF UNTREATED MS VS CONTROLS.

The depicted pathway and biological processes become more important as our knowledge about
neutrophils, first-responding innate myeloid cells, and their effector functions as contributing
components in the pathogenesis of MS is increasing. Naegele et al [??] showed that neutrophils in MS
patients are more numerous and exhibit a primed state that is based, among others, on enhanced
degranulation and oxidative burst. [paper in preparation]

In order to reveal more information about MS, we sought to identify the DEGs among the distinct stages
of MS versus healthy controls, as aforementioned.

4.4 Cases Untreated MS patients in different disease stages vs Healthy
Controls

In this section we will present the application of our pipeline on a new dataset, GSE136411. There are
three clinical courses of MS. The most frequent is the relapsing-remitting form (RRMS), which accounts
for approximately 85% of MS cases. RRMS is characterized by relapse followed by remission, where
symptoms may vary from mild to severe, and relapses and remissions may last for days or months.
After a variable time, most individuals with RRMS advance to a secondary progressive phase (SPMS),
where neurologic worsening occurs without periods of remission. In contrast, 15% of individuals with
MS experience a progressive course, called primary progressive MS (PPMS), which is characterized by a
steady worsening of neurologic functioning, without any distinct relapses or periods of remission. For
PPMS, the rate of progression may vary over time, with occasional plateaus or temporary
improvements, but the progression is continuous. [90]

The cases that we have examined are:
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i. Relapsing-Remitting MS (RRMS) vs Healthy Controls
ii. Primary Progressive MS (PPMS) vs Healthy Controls
iii. Secondary progressive MS (SPMS) vs Healthy Controls

4.4.1 Case Relapsing-Remitting MS (RRMS) vs Healthy Controls

After normalization, our dataset consists of 188 samples (RRMS N=121 and HC N=67) and 10.160 gene
with their expression values.

4.4.1.1 Significance Analysis of Microarrays (SAM)

We conducted a Significance Analysis of Microarrays (SAM) on our filtered dataset, so as to find
differentially expressed genes based on T-statists. The cutoff for significance is determined by a tuning
parameter delta, chosen by the user based on the false positive rate. One can also choose a fold change
parameter, to ensure that called genes change at least a pre-specified amount.

RRMS Untreated vs Control

SAM upregulated downregulated FINAL GENES

35 95 130

TABLE4.7 DIFFERENTIALLY EXPRESSED GENES RRMS UNTREATED Vs CONTROL

After the analysis with SAM, we concluded in 130 Differentially expressed genes considering the case
RRMS Untreated-Control. We proceed with the Pigengene methodology

4.4.1.2 Pigengene Methodology

Our goal is to find a minimum set of significant genes that will be able to predict the state of a new
sample as well as provide meaningful biological information through the correlation and combination
of genes in pathways and smaller groups/networks. We apply the Pigengene methodology streps on the
10.160 genes that derived from the preprocessed dataset.

i. Weighted correlation network: Weighted Coexpression network analysis (WGCNA) was applied
to group related genes into gene modules (clusters) based on their coexpression patterns in MS.

ii. Eigengenes: We computed an eigengene for each module as a weighted average of the
expression of all genes in that module. (Figure 4.15 B). To validate the association of the
modules to each state, we modeled the probabilistic dependencies between the eigengenes
using a BN (Figure 4.16). We used Bayesian networks as probabilistic predictive models to
determine the state.
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FIGURE 4.15 A) MODULES DENDROGRAM B) THE EIGENGENES HEATMAP. WE COMPUTED AN EIGENGENE FOR EACH MODULE AS A
WEIGHTED AVERAGE OF THE EXPRESSION OF ALL GENES IN THAT MODULE. THE INTENSITY OF THE COLORS IN EACH HEATMAP
CORRESPONDS TO THE NORMALIZED AVERAGE EXPRESSION. EACH COLUMN CORRESPONDS TO AN EIGENGENE. EACH ROW SHOWS
THE EXPRESSION OF A CASE FROM THE MICROARRAY DATASET. THE EIGENGENE THAT IS DIFFERENTIALLY EXPRESSED Is ME13.

iii.

Bayesian network: We fitted a Bayesian network to the eigengenes to determine the

relationships of the modules with each other and with the state of the samples. Descendants of
the “Disease” node, the variable that models the state, show high dependency between these
eigengenes and the state type and suggest that they have useful biological information that can
explain the differences between the two states. We trained a Bayesian network to model the
probabilistic dependencies between the modules. Several individual networks from random
staring networks were built (no.1000) by optimizing their score. Then, we inferred a consensus
network from the ones with relatively “higher” scores. The default hyper-parameters and
arguments are then selected. Each module eigengene is represented by a node (observed
random variable). To model the condition, we added “Disease” as an observed random variable
to the network.
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FIGURE 4.16 THE BAYESIAN NETWORK FITTED TO THE EIGENGENES. EACH NODE REPRESENTS AN EIGENGENE OF A MODULE. THE
ARCS MODEL THE PROBABILISTIC DEPENDENCIES BETWEEN THE MODULES. THE “DISEASE” NODE IS SET TO 1 FOR RRMS AND 0
FOR HEALTHY CONTROLS, AND ITS CHILDREN ARE HIGHLIGHTED IN PINK

iv. Decision tree: A decision tree was not fitted to the model due to the Bayesian network results;
we investigated the gene signature of Module 13.

4.4.1.3 Construction of PPI Network of Common DEGs for RRMS and
Healthy Controls from two Approaches

We compared the resulted 185 genes from Modules 13 to the 130 differentially expressed genes from
SAM. All 130 genes were common between the two methodological approaches, so we choose to keep
the additional 55 genes and we proceed to construct the PPI network genes, using the STRING App in
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the Cytoscape software, with the 185 DEGs and examine for hub. (Figure 4.17) A total of 179
genes/nodes with 43 edges were enriched in the construction of the PPI network.
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FIGURE 4.17 PPI NETWORK FROM 185 DIFFERENTIALLY EXPRESSED GENES

4.4.1.4 Critical Subnetworks and Identification of Hub Genes for Primary
Progressive MS (RRMS) vs Healthy Controls Patients

Hub genes were identified by 11 topological analysis methods from the CytoHubba, a Cytoscape plugin,
where the top 20 genes were selected for each method. The 44 resulted genes (Table4.8) were found in
the intersection of all methods and were selected as RRMS related hub genes, providing a minimal gene
set toward potential clinical testing. We also obtained one clustering module of 16 genes with the
highest score from the PPI network of all DEGs (Figure 4.18) by MCODE algorithm. It was found that 8
genes from 16 were included in 44 hub genes contained in this module (Table4.8)
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CytoHubba & MCODE: Hub genes by 11 topological analysis methods or Hub genes by CytoHubba
and MCODE algorithm*

IL1RN/C1QC|CSTA|CTNNA1|CTSG/CTSH|/CXCL8/CXCR1/ELANE/IL1R2|LY96/MMP9/MOSPD2/
MPO|0SBPL1A|PAK1|PTAFR|S100A|TIMP2/WDR33/FBLN5|ARL11|ATP8B2|BACH2|C100rf11]
CAMP|CEACAM3|CYP4F3/DUSP14/DYSF/HNM/PCED1B/PINK1/SLC22A16/TNFSF13/TRNP1/ZN
F789/LPAR1/S100A12/TNFAIP6/ZYX|CD14/CXCL1/MMP25

TABLE4.8 IDENTIFICATION OF HUB GENES *8 HUB GENES CYTOHUBBA & MCODE (IN BoLD);44 GENES CYTOHUBBA

FIGURE 4.18 THE HIGHEST SCORE CLUSTERING MODULE WAS GENERATED BY MCODE, WiTH 16 GENES.

4.4.1.5 Statistical Evaluation

The resulting genomic signature of 44 hub genes is used to assess the classification and generalization
ability of the model. The final gene signature arrived from GSE136411 dataset which was used as a
training dataset (N =132, RRMS n=85, CTRn=47) and testing dataset (N =56, RRMS n=36, CTRn=20).
Dataset E-MTAB-4890 was used to access the generalization ability of the resulted gene signature as an
independent dataset. It consists of (N=92, RRMS n =52, CTRn=40). Then, the classification model was
established by support vector machine (SVM).

By applying 10fold cross-validation in the model, 46 out of the 56 samples were correctly classified,
with a classification accuracy of 83%, model sensitivity to CTR of 0.60%, specificity of 94%, and area
under the ROC curve (AUC) was 0.83 (Figure 4.19 a). Furthermore, the established model was used to
predict the samples in the validation data sets to test the prediction ability of the model.

In the validation group the samples were classified, with a classification accuracy of 78%, moreover, the
sensitivity was 65 % and specificity of the model was 94%, and the area under the receiver operating
characteristic (ROC) curve was 0.84 (Figure 4.19 b).
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a b
GSE136411 Real CTR  |Real RRMS E-MTAB-4890 Real CTR Real RRMS
Predict CTR 12 2 Predict CTR 22 3
Predict MS 8 32 Totals Predict MS 18 49 Totals
Totals 20 34 54 Totals 30 =2 =
Correct 12 32 44 Correct 22 49 71
—
Sensitivity (%) 60 Sensitivity (%) n
1fict 0,
Specificity (%) 94 Specificity (%) 94
_ — _
AUC 0.83 AUC 0.84

FIGURE 4.19 CONSTRUCTION OF DIAGNOSTIC MODEL AND VALIDATION OF MODEL. A) CLASSIFICATION RESULTS AND ROC CURVES
OF SAMPLES BY DIAGNOSTIC MODEL IN TRAINING DATA SET. B) CLASSIFICATION RESULTS AND ROC CURVES OF SAMPLES BY
DIAGNOSTIC MODEL IN E-MTAB-4890

The diagnostic prediction model constructed in this study can effectively distinguish patients in
relapsing remitting stage of the disease and that the 33 out of 44 hub genes can be used as reliable
biomarkers for RRMS diagnosis.

4.4.1.6 Biological interpretation

Each selected Illumina probe set was mapped to an annotation of Entrez Gene ID and Gene Symbol
using the online tool WebGestalt (2013) (http://www.webgestalt.org/2013/). Considering the case
RRMS versus controls, an over-representation analysis of the resulted 130-DEG-gene signature was
performed in WebGestalt (2019). The enriched biological process categories are presented in Table
4.9A, where the enriched pathway categories are presented in Figure 4.20A

G0:0036230 granulocyte activation <2.2e- <2.2e-16
16

G0:0002446 neutrophil mediated immunity <2.2e- <2.2e-16
16

G0:0002237 response to molecule of bacterial origin 4.15E- 0.00012
07

G0:0006959 humoral immune response 8.51E- 0.00017
07

GO0:0001819 positive regulation of cytokine production 1E-06 0.00017

G0:0009620 response to fungus 1.9E-05 0.00269

G0:0006766 vitamin metabolic process 3.3E-05 0.00403

G0:0050727 regulation of inflammatory response 3.8E-05 0.00404

GO:0071706 tumor necrosis factor superfamily 4.8E-05 0.00458

cytokine production

G0:0042107 cytokine metabolic process 9E-05 0.00755

GO0:0098542 defense response to other organism 9.8E-05 0.00755

G0:0050900 leukocyte migration 0.00014 0.00962

G0:0071216 cellular response to biotic stimulus 0.00015 0.00962

GO0:0031348 negative regulation of defense response 0.00031 0.01868

G0:0007249 I-kappaB kinase/NF-kappaB signaling 0.00042 0.02287
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G0:0043062 extracellular structure organization 0.00043 0.02287
G0:0060191 regulation of lipase activity 0.00047 0.02287
G0:0051047 positive regulation of secretion 0.00048 0.02287
GO0:0050663 cytokine secretion 0.00063 0.0284
G0:0006732 coenzyme metabolic process 0.00075 0.03043
G0:0001906 cell killing 0.00075 0.03043
G0:0060326 cell chemotaxis 0.00086 0.03314

Note: Common GO-biological processes between DEG-signatures and hub-gene-signatures are
highlighted in blue.

TABLE 4.9A GO-BIOLOGICAL PROCESSES ANALYSIS OF 130 DEGS IN THE
CASE OF RRMS VS CONTROLS

B FOR = 0.05 FDR » 0.05

TRIF-mediated programmed cell death
Activation of Matrix Metalloproteinases
Antimicrobial peptides

Neuftrophil degranulation

Innate Immune System

Immune System

T T T T T T 1
0 5 10 15 20 25 30 35
Enrichment ratio

FIGURE 4.20A. REACTOME PATHWAY ANALYSIS OF 130 DEGS IN THE CASE OF RRMS VS CONTROLS

Moreover, we also performed an over-representation analysis to further explore the functional
information (biological processes, pathways) of the 16-hub-gene signature, which may be more specific
to RRMS stage. The analysis of the gene signature was performed using the online tool WebGestalt
(2019).

GO0:0036230 granulocyte activation <2.2e- <2.2e-16
16
G0:0002446 neutrophil mediated immunity <2.2e- <2.2e-16
16
GO0:0006959 humoral immune response 2.64E- 7.49E-09
11
G0:0098542 defense response to other organism 5.40E- 1.1E-06
09
G0:0009620 response to fungus 1.29E- 2.2E-05
07
GO0:0035821 modification of morphology or 3.25E- 4.2E-05
physiology of other organism 07
G0:0001906 cell killing 3.46E- 4.2E-05
07
G0:0002237 response to molecule of bacterial origin 4.94E- 5.3E-05
07
GO0:0043900 regulation of multi-organism process 9.21E- 8.7E-05
07
GO0:0050900 leukocyte migration 2E-06 0.00017
G0:0051702 interaction with symbiont 5.2E-05 0.00403
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G0:0071216 cellular response to biotic stimulus 5.9E-05 0.00417
GO0:0045926 negative regulation of growth 9.3E-05 0.00611
G0:0042107 cytokine metabolic process 0.00015 0.00925
GO0:0050727 regulation of inflammatory response 0.00038 0.02171
G0:0045730 respiratory burst 0.00041 0.02177
G0:0043062 extracellular structure organization 0.00056 0.02825

Note: Common GO-biological processes between DEG-signatures and hub-gene-signatures are highlighted
in blue.

TABLE 4.9B GO-BIOLOGICAL PROCESSES ANALYSIS OF THE 16-HUB-GENE SIGNATURE IN THE

CASE OF RRMS VS CONTROLS

I FDR < 0.05 FDR > 0.05

Activation of Matrix Metalloproteinases

Antimicrobial peptides

Neutrophil degranulation

Innate Immune System

Immune System

F T T T T T T T T T T T 1
0 10 15 20 25 30 35 40 45 50 55 60 65
Enrichment ratio

FIGURE 4.20B REACTOME PATHWAY ANALYSIS OF THE 16-HUB-GENE SIGNATURE IN THE CASE OF RRMS VS CONTROLS

As illustrated in above tables (Table 4.9A, 4.9B) and figures (Figures 4.204, 4.20B), both the 130-gene
signature and the 16-hub-gene signature provide overlapped processes and pathways related to
immune system processes. This is an expected finding, since MS is characterized by immune
dysregulation, which results in the infiltration of the CNS by immune cells, triggering demyelination,
axonal damage, and neurodegeneration [101]. Interestingly, these GO biological processes have greater
statistical significance in the 16-hub-gene signature, while the opposite happens with the Reactome
pathways. In addition, the unique pathway (antimicrobial peptides) and GO biological processes (eight)
of the 16-hub-gene signature provide a narrower range of immune system components and
mechanisms. [paper in preparation]

4.4.1.7 Candidate drugs targeting hub genes

Using the DGIdb database we explore drug-gene interactions of the 16 hub genes that derived from the
MCODE analysis. 8 genes out of 16, were found common between CYTOHUBBA and MCODE. The drugs
for possibly addressing patients in the Relapsing Remitting stage of MS are shown in Table4.10. We
used the STITCH database, in order to construct downstream networks of the genes that have a drug
relationship, to investigate the additional effects caused by inhibitors of these genes. All networks are

also included in Table4.10. The network setting were “Experiments”,” Databases”,” Coexpression” and
confidence was set to high=0,9.

GENE DRUGS NETWORK

SYMBOL Protein-protein interactions: Grey
Chemical-protein interactions: Green
Interactions between chemicals: Red
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GENE
SYMBOL

DRUGS

NETWORK
Protein-protein interactions: Grey
Chemical-protein interactions: Green
Interactions between chemicals: Red
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GENE
SYMBOL

DRUGS

NETWORK
Protein-protein interactions: Grey
Chemical-protein interactions: Green
Interactions between chemicals: Red

CXCL8/IL8

ABX-IL8
HUMAX-IL8
LEFLUNOMIDE
YANGONIN

E319

FOSCARNET
NAPROXEN
ALDRIN
COLCHICINE
MIDAZOLAM
FENTANYL
ACETAMINOPHEN
CORONOPILIN
DIPYRIDAMOLE
IBUPROFEN
IONOMYCIN
CHLORDANE
DANAZOL
CHEMBL1902074
OMEPRAZOLE
DINITRO CRESOL
QUESTIOMYCIN B
FENRETINIDE
HEPTACHLOR
PYROGALLOL
CANERTINIB
HYDROQUINONE
ENDOSULFAN
EMODIN
LANSOPRAZOLE
RETINAL
HARMINE HYDROCHLORIDE
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BEVACIZUMAB
PAMIDRONIC ACID
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TRETINOIN
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ALPRAZOLAM
METHIMAZOLE
RETINOL
RIBAVIRIN
TERFENADINE
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GENE
SYMBOL

DRUGS

NETWORK
Protein-protein interactions: Grey
Chemical-protein interactions: Green
Interactions between chemicals: Red
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T GENE DRUGS NETWORK
A SYMBOL Protein-protein interactions: Grey
f Chemical-protein interactions: Green
B Interactions between chemicals: Red
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TABLE4.10 GENES THAT HAVE DRUG INTERACTIONS AND INHIBITOR NETWORKS OF THE GENES THAT HAVE A DRUG RELATIONSHIP
CASE OF RRMS VS CONTROLS

4.4.2 Case Secondary progressive MS (SPMS) vs Healthy Controls

After normalization, our dataset consists of 93 samples (SPMS N=26 and HC N=67) and 10.160 gene
with their expression values.

4.4.2.1 Significance Analysis of Microarrays (SAM)

We conducted a Significance Analysis of Microarrays (SAM) on our filtered dataset so as to find
differentially expressed genes based on T-statists. The cutoff for significance is determined by a tuning
parameter delta, chosen by the user based on the false positive rate. One can also choose a fold change
parameter, to ensure that called genes change at least a pre-specified amount.

SPMS Untreated vs Control

SAM upregulated downregulated FINAL GENES

37 8 45

TABLE4.11 DIFFERENTIALLY EXPRESSED GENES SPMS UNTREATED VS CONTROL

After the analysis with SAM, we concluded in 45 Differentially expressed genes considering the case
SPMS Untreated-Control. We proceed with the Pigengene methodology.
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4.4.2.2 Pigengene Methodology

We apply the Pigengene methodology streps on the 10.160 genes that derived from the preprocessed
dataset for the case Primary Progressive MS (SPMS) vs Healthy Controls:

il.

Height
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L
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Meodule colors

Weighted correlation network: Weighted Coexpression network analysis (WGCNA) was applied
to group related genes into gene modules (clusters) based on their coexpression patterns in MS.

Eigengenes: We computed an eigengene for each module as a weighted average of the
expression of all genes in that module. (Figure 4.28 B). Module 5 is negatively associated with
the Interferon treatment, whereas Module 6 is positively associated with Interferon treatment.
To validate this, we modeled the probabilistic dependencies between the eigengenes using a BN
(Figure 4.29). We used Bayesian networks as probabilistic predictive models to determine the
state.
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FIGURE 4.21 A) MODULES DENDROGRAM B) THE TWO (2) EIGENGENES THAT ARE DIFFERENTIALLY EXPRESSED ME5, ME16,
ME33, ME35, ME39, ME38, ME58, THE INTENSITY OF THE COLORS IN EACH HEATMAP CORRESPONDS TO THE NORMALIZED
AVERAGE EXPRESSION. EACH COLUMN CORRESPONDS TO AN EIGENGENE. EACH ROW SHOWS THE EXPRESSION OF A CASE FROM THE
SPMS vs HC DATASET.

iii.

Bayesian network: We fitted a Bayesian network to the eigengenes to determine the
relationships of the modules with each other and with the state of the samples. Descendants of
the “Disease” node, the variable that models the state, show high dependency between these
eigengenes and the state type and suggest that they have useful biological information that can
explain the differences between the two states. We trained a Bayesian network to model the
probabilistic dependencies between the modules. Several individual networks from random
staring networks were built (n0.1000) by optimizing their score. Then, we inferred a consensus
network from the ones with relatively “higher” scores. The default hyper-parameters and
arguments are then selected. Each module eigengene is represented by a node (observed
random variable). To model the condition, we added “Disease” as an observed random variable
to the network.
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Results and Discussion

s

FIGURE 4.22 THE BAYESIAN NETWORK FITTED TO THE EIGENGENES. EACH NODE REPRESENTS AN EIGENGENE OF A MODULE. THE
ARCS MODEL THE PROBABILISTIC DEPENDENCIES BETWEEN THE MODULES. THE “DISEASE” NODE IS SET TO 1 FOR SPMS AND 0

FOR HC, AND ITS CHILDREN ARE HIGHLIGHTED IN PINK.

iv.

Decision tree: A decision tree is fitted to the two children of the Disease node in our Bayesian
network (R package C50 version 0.1.0-24). We used the data to infer the topology of the tree
and the corresponding parameters. The algorithm automatically selected the ME58 eigengene
(modules 58). Module eigengenes are used to build a classifier that distinguishes two or more
classes. Each eigengene is a weighted average of the expression of all genes in the module,
where the weight of each gene corresponds to its membership in the module. Each module
might contain dozens to hundreds of genes, and hence the final classifier might depend on the
expression of a large number of genes. In practice, it is desirable to reduce the number of
necessary genes by a decision tree. The inferred decision tree had a relatively high predictive

accuracy (Figure 4.30).
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Node 2 (n = 27) ] Node 3 (n = 66)
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FIGURE 4.23 THE DECISION TREE FOR DISTINGUISHING SPMS FROM HC CASES. IF THE NORMALIZED EIGENGENE OF A CASE IS
GREATER OR EQUAL THAN -0.013, IT IS CLASSIFIED AS SPMS. IF IT IS LESS THAN -0.013, IT IS CLASSIFIED AS HC. AT THE FIXED
THRESHOLDS SHOWN ABOVE, THIS TREE CORRECTLY CLASSIFIED 760CASES (82%) IN THE DATASET. (MISCLASSIFIED 9 HC AND
8 SPMS)

4.4.2.3 Construction of PPI Network of Common DEGs for SPMS and Healthy Controls from two
Approaches

We compared the resulted 79 genes from Modules 58 to the 45 differentially expressed genes from
SAM. All 45 genes were common between the two methodological approaches, so we choose to include
the additional 32 genes and proceed to construct the PPI network using the STRING App in the
Cytoscape software. A total of 79 genes/nodes with 6 edges were enriched in the construction of the PPI
network. (Figure 4.31).
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FIGURE 4.24 PPI NETWORK FROM 79 DIFFERENTIALLY EXPRESSED GENES

4.4.2.4 Critical Subnetworks and Identification of Hub Genes for SPMS and Healthy Controls

Patients

Hub genes were identified by 11 topological analysis methods from the CytoHubba, a Cytoscape plugin,
where the top 20 genes were selected for each method. The 24 resulted genes (Table4.16) were found
in the intersection of all methods and were selected as SPMS related hub genes, providing a minimal
gene set toward potential clinical testing. We also obtained one clustering module with the highest
score from the PPI network of all DEGs (Figure 4.32) by MCODE algorithm. (Table4.16)

CytoHubba & MCODE: Hub genes by 11

and MCODE algorithm*

topological analysis methods or Hub genes by CytoHubba

GPRASP2/AXIN2|BACH2|BZW2|CEP41|CYP2]2|DNAJC30/EDAR|EPHX2|FAM102A|KIAA0355/LE
F1/MYH10/NBEA|NPAS2|PDK4|TBC1D4|TCEA3|TCF7/XK|CNN3/AL3ST4/SALL2|ZBP1

TABLE4.12 IDENTIFICATION OF HUB GENES *3 HUB GENES CYTOHUBBA & MCODE (IN BOLD);24 GENES CYTOHUBBA

fa)

FIGURE 4.25 THE HIGHEST SCORE CLUSTERING MODULES WERE GENERATED BY MCODE, WITH 3 GENES
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4.4.2.5 Statistical Evaluation

The resulting genomic signature of 24 hub genes is used to assess the classification and generalization
ability of the model. The final gene signature arrived from GSE136411 dataset which was used as a
training dataset (N=75, SPMS n=21, CTRn=54) and testing dataset (N=18, SPMS n=5, CTRn=13).
Dataset E-MTAB-4890 was used to access the generalization ability of the resulted gene signature as an
independent dataset. It consists of (N =61, SPMS n=21, CTRn=40). Then, the classification model was
established by support vector machine (SVM).

By applying 10fold cross-validation in the model, 13 out of the 18 samples were correctly classified,
with a classification accuracy of 72%, model sensitivity to CTR of 84%, specificity of 40%, and area
under the ROC curve (AUC) was 0.57 (Figure 4.26 a). Furthermore, the established model was used to
predict the samples in the validation data sets to test the prediction ability of the model.

In the validation group the samples were classified, with a classification accuracy of 82%, moreover, the
sensitivity was 98 % and specificity of the model was 52%, and the area under the receiver operating
characteristic (ROC) curve was 0.81 (Figure 4.26 b).

a b
GSE136411 Real CTR | Real SPMS E-MTAB-4890 Real CTR Real SPMS
Predict CTR 11 3 Predict CTR 37 10
Predict MS 2 2 Totals Predict MS 3 11 Totals
CT Otalst ﬁ ; 12 Totals 40 22 63
S .(iirr.ec oy ) Correct 39 11 51
ensitivity (%) Sensitivity (%) 98
Specificity (%) 40 Specificity (%) 52
AUC 0.57 AUC 0.81

FIGURE 4.26 CONSTRUCTION OF DIAGNOSTIC MODEL AND VALIDATION OF MODEL. A) CLASSIFICATION RESULTS AND ROC CURVES
OF SAMPLES BY DIAGNOSTIC MODEL IN TRAINING DATA SET. B) CLASSIFICATION RESULTS AND ROC CURVES OF SAMPLES BY
DIAGNOSTIC MODEL IN E-MTAB-4890.

Our diagnostic model does not perform well as we can see from the Results in Figure. After inspecting
our data, we noticed that the density plots showed the feature's distribution for all features over the
two classes, and there is really not much discriminative power between conditions. The extracted
features are overlapping between the two classes, and we might have a "garbage in, garbage out" issue,
more than a "this is not enough data" issue. The imbalance between the majority class Controls and
Secondary Progressive shows that building the classifier using the data as it is, would in most cases give
us a prediction model that always returns the majority class. The classifier would be biased.

We performed oversampling. [t makes no sense to create instances based on our current minority class
and then exclude an instance for validation, pretending we didn’t generate it using data that is still in
the training set. We balance the dataset by oversampling the minority class. First, we start cross-
validating. This means that at each iteration we first exclude the sample to use as test set, and then
oversample the remaining of the minority class. We are not using the same data for training and testing.
Therefore, we will obtain more representative results. The same holds even if we use other cross-
validation methods, such as leave one out cross-validation. By applying 10fold cross-validation in the
model and up-sampling the resulted model is shown in Figure 4.
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a b
GSE136411 Real CTR | Real SPMS E-MTAB-4890 Real CTR Real SPMS
Predict CTR 10 1 Predict CTR 31 8
Predict MS 3 4 Totals Predict MS 9 13 Totals
Totals 13 5 18
Correct 10 4 14 Totals 40 21 61
Sensitivity (%) 76 Correct 31 13 44
— Sensitivity (%) 76
Specificity (%) 80 | Specificity (%) 62
_ e
AUC 0.75 AUC 78

FIGURE 4.27 CONSTRUCTION OF DIAGNOSTIC MODEL AND VALIDATION OF MODEL. A) CLASSIFICATION RESULTS AND ROC CURVES
OF SAMPLES BY DIAGNOSTIC MODEL IN TRAINING DATA SET. B) CLASSIFICATION RESULTS AND ROC CURVES OF SAMPLES BY
DIAGNOSTIC MODEL IN E-MTAB-4890

There were 14 out of the 18 samples correctly classified, with a classification accuracy of 70%, model
sensitivity to CTR of 76%, specificity of 80%, and area under the ROC curve (AUC) was 0.75. (Figure
4.27 a). In the validation group the samples were classified, with a classification accuracy of 72%,
moreover, the sensitivity was 76 % and specificity of the model was 62%, and the area under the
receiver operating characteristic (ROC) curve was 0.78 (Figure 4.27 b).

4.4.2.6 Biological interpretation

Each selected Illumina probe set was mapped to an annotation of Entrez Gene ID and Gene Symbol
using the online tool WebGestalt (2013) (http://www.webgestalt.org/2013/). Considering the case
SPMS versus controls, an over-representation analysis of the resulted 45-DEG-gene signature was
performed in WebGestalt (2019). The enriched biological process categories are presented in Table
4.13A, where the enriched pathway categories are illustrated in Figure 4.28A.

G0:0060326 cell chemotaxis 5E-05 0.0449

G0:0017145 stem cell division 0.0001 0.0478
TABLE 13.A GO-BIOLOGICAL PROCESSES ANALYSIS OF 45 DEGS IN THE
CASE OF SPMS vSs CONTROLS

I FDR < 0.05 FDR > 0.05

Defective SFTPA2 causes idiopathic pulmonary fibrosis (IPF) |

Progressive trimming of alpha-1,2-linked mannose residues from Man®/8/7GIcNAc2 to produce Man. |
Binding of TCF/LEF.CTNNB1 to farget gene promoters |

RUNX3 regulates WNT signaling |

N-glycan trimming and elengation in the cis-Golgi |

Repression of WNT target genes

D of the bet: teni i complex
Ca2+ pathway

Loss of Nip from mitofic centrosomes

Loss of proteins required for i T from the centrosom

Sl g P % P s s pa e % % o
FIGURE 4.28A. REACTOME PATHWAY ANALYSIS OF 45 DEGS IN THE CASE OF SPMS VS CONTROLS

Furthermore, we also performed an over-representation analysis to explore the functional properties

(GO biological processes, pathways) of the 3-hub-gene signature, which may be more specific to SPMS

stage. The analysis of the gene signature was performed using the online tool WebGestalt (2019).
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G0:1904837 beta-catenin-TCF complex assembly 7.50E- 6.4E-06
09
G0:0070670 response to interleukin-4 1.6E-05 0.00691
G0:0198738 cell-cell signaling by wnt 3E-05 0.00844
G0:0002200 somatic diversification of immune 5.9E-05 0.01244
receptors
G0:0061053 somite development 0.00011 0.01939
G0:0042476 odontogenesis 0.00021 0.03035

TABLE 4.13B GO-BIOLOGICAL PROCESSES ANALYSIS OF THE 3-HUB-GENE SIGNATURE IN THE

CASE OF SPMS vs CONTROLS
I FDR = 0.05 FDR > 0.05

Binding of TCF/LEF:CTNNB1 to target gene promoters
RUNX3 regulates WNT signaling

Repression of WNT target genes

Deactivation of the beta-catenin transactivating comp.
Formation of the beta-catenin:TCF transactivating co...
Ca2+ pathway

Degradation of beta-catenin by the destruction comp.
Transcriptional regulation by RUNX3

TCF dependent signaling in response to WNT

Signaling by WNT

T T T T T T T T T T T T T 1
0 100 200 300 400 500 600 700 800 800 1,000 1,100 1,200 1,300 1,400
Enrichment ratio

FIGURE 4.28B REACTOME PATHWAY ANALYSIS OF THE 3-HUB-GENE SIGNATURE IN THE CASE OF SPMS VS CONTROLS.

As depicted in above tables (Table 4.13A, 4.13B) and figures (Figures 4.284, 4.28B), five out of ten
enriched pathways provided by the 3-hub-gene signature are also enriched in the 45-DEG-gene
signature, but without statistical significance. Regarding the enriched GO biological processes provided
by both gene signatures, no overlap exists between these enriched processes. Figure 4.28B illustrates
the dominance of the WNT signaling pathways, but also the non-canonical WNT Ca2+ signaling, which
are implicated in inflammatory response [103,104]. Lengfeld et al [105] report that Wnt signaling
pharmacologic enhancement may be helpful to restrain blood-brain barrier (BBB) damage and central
nervous system (CNS) immune cell infiltration in multiple sclerosis. Disruption of the BBB, that
sometimes results from a dysregulated Wnt/B-catenin signaling pathway under various
pathophysiological conditions, is also a determing and early feature of MS that directly damages the
CNS, promotes immune cell infiltration, and influences clinical outcomes [106] [paper in preparation]

4.4.2.7 Candidate drugs targeting hub genes

Using the DGIdb database we explore drug-gene interactions of the 10 hub genes that derived from the
CYTOHUBBA analysis. The 3 genes cluster given from MCODE did not produce any results, so we chose
to examine the hub genes resulted from CYTOHUBBA. The drugs for possibly addressing patients in the
Secondary Progressive stage of MS are shown in Table4.14. We used the STITCH database, in order to
construct downstream networks of the genes that have a drug relationship, to investigate the additional
effects caused by inhibitors of these genes. All networks are also included in Table4.14 The network

»n nn

setting were “Experiments”,” Databases”,” Coexpression” and confidence was set to high=0,9.
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GENE SYMBOL DRUGS NETWORK
Protein-protein interactions: Grey,
Chemical-protein interactions: Green
Interactions between chemicals: red.
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TABLE4.14 GENES THAT HAVE DRUG INTERACTIONS AND INHIBITOR NETWORKS OF THE GENES THAT HAVE A DRUG RELATIONSHIP

CASE OF SPMS VS CONTROLS.

4.4.3 Case Primary Progressive MS (PPMS) vs Healthy Controls

After normalization, our dataset consists of 102 samples (PPMS N=35 and HC N=67) and 10.160 gene

with their expression values.

4.4.3.1 Significance Analysis of Microarrays (SAM)

We conducted a Significance Analysis of Microarrays (SAM) on our filtered dataset so as to find
differentially expressed genes based on T-statists. The cutoff for significance is determined by a tuning
parameter delta, chosen by the user based on the false positive rate. One can also choose a fold change
parameter, to ensure that called genes change at least a pre-specified amount.
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PPMS Untreated vs Control

SAM upregulated downregulated FINAL GENES
13 38 51

TABLE4.15 DIFFERENTIALLY EXPRESSED GENES PPMS UNTREATED vS CONTROL

After the analysis with SAM, we concluded in 51 Differentially expressed genes considering the case
PPMS Untreated- Control. We proceed with the Pigengene methodology.

4.4.3.2 Pigengene Methodology

We apply the Pigengene methodology streps on the 10.160 genes that derived from the preprocessed
dataset for the case Primary Progressive MS (PPMS) vs Healthy Controls:

i. Weighted correlation network: Weighted Coexpression network analysis (WGCNA) was applied
to group related genes into gene modules (clusters) based on their coexpression patterns in MS.
ii. Eigengenes: We computed an eigengene for each module as a weighted average of the

expression of all genes in that module. (Figure 4.29 B). Module 64 is associated with the disease.
To validate this, we modeled the probabilistic dependencies between the eigengenes using a BN

(Figure 4.30). We used Bayesian networks as probabilistic predictive models to determine the
state.

A B

Cluster Dendrogram
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FIGURE 4.29 A) MODULES DENDROGRAM B) THE EIGENGENES THAT IS DIFFERENTIALLY EXPRESSED ME2, ME41, ME43,
ME45, ME64, ME73, M74 THE INTENSITY OF THE COLORS IN EACH HEATMAP CORRESPONDS TO THE NORMALIZED AVERAGE

EXPRESSION. EACH COLUMN CORRESPONDS TO AN EIGENGENE. EACH ROW SHOWS THE EXPRESSION OF A CASE FROM THE PPMS vs
HC DATASET.
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Results and Discussion

Bayesian network: We fitted a Bayesian network to the eigengenes to determine the
relationships of the modules with each other and with the state of the samples. Descendants of
the “Disease” node, the variable that models the state, show high dependency between these
eigengenes and the state type and suggest that they have useful biological information that can
explain the differences between the two states. We trained a Bayesian network to model the
probabilistic dependencies between the modules. Several individual networks from random
staring networks were built (n0.1000) by optimizing their score. Then, we inferred a consensus
network from the ones with relatively “higher” scores. The default hyper-parameters and
arguments are then selected. Each module eigengene is represented by a node (observed
random variable). To model the condition, we added “Disease” as an observed random variable
to the network.
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FIGURE 4.30 THE BAYESIAN NETWORK FITTED TO THE EIGENGENES. EACH NODE REPRESENTS AN EIGENGENE OF A MODULE. THE
ARCS MODEL THE PROBABILISTIC DEPENDENCIES BETWEEN THE MODULES. THE “DISEASE” NODE IS SET TO 1 FOR PPMS AND 0
FOR HC, AND ITS CHILDREN ARE HIGHLIGHTED IN PINK.

iv. Decision tree: A decision tree is fitted to the two children of the Disease node in our Bayesian
network (R package C50 version 0.1.0-24). We used the data to infer the topology of the tree
and the corresponding parameters. The algorithm automatically selected the ME64 eigengene
(modules 64). Module eigengenes are used to build a classifier that distinguishes two or more
classes. Each eigengene is a weighted average of the expression of all genes in the module,
where the weight of each gene corresponds to its membership in the module. Each module
might contain dozens to hundreds of genes, and hence the final classifier might depend on the
expression of a large number of genes. In practice, it is desirable to reduce the number of
necessary genes by a decision tree. The inferred decision tree had a relatively high predictive
accuracy (Figure 4.31).
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FIGURE 4.31 THE DECISION TREE FOR DISTINGUISHING PPMS FROM HC CASES. IF THE NORMALIZED EIGENGENE OF A CASE IS
GREATER OR EQUAL THAN -0.003, 1T 1S CLASSIFIED AS HC. IF IT IS LESS THAN -0.003, IT IS CLASSIFIED AS PPMS. AT THE FIXED
THRESHOLDS SHOWN ABOVE, THIS TREE CORRECTLY CLASSIFIED 86 CASES (84%) IN THE DATASET. (MiIScLASSIFIED 3 HC AND
13 PPMS)

4.4.3.3 Construction of PPI Network of Common DEGs for PPMS and Healthy
Controls from two Approaches

We compared the resulted 73 genes from Modules 64 to the 51 differentially expressed genes from
SAM. All 51 genes were common between the two methodological approaches, so we choose to keep the
additional 22 genes and proceed to construct the PPI network with 73 significant genes using the
STRING App in the Cytoscape software. A total of 72 genes/nodes with 31 edges were enriched in the
construction of the PPI network. (Figure 4.32)
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FIGURE 4.32 PPI NETWORK FROM 73 DIFFERENTIALLY EXPRESSED GENES

4.4.3.4 Critical Subnetworks and Identification of Hub Genes for PPMS and
Healthy Controls Patients

Hub genes were identified by 11 topological analysis methods from the CytoHubba, a Cytoscape plugin,
where the top 20 genes were selected for each method. The 32 resulted genes (Table4.12) were found
in the intersection of all methods and were selected as PPMS related hub genes. We also obtained one
clustering module with the highest score from the PPI network of all DEGs (Figure 4.25) by MCODE
algorithm. It was found that 8 genes from 10 were included in 32 hub genes were contained in this
module (Table4.12).

CytoHubba & MCODE: Hub genes by 11 topological analysis methods or Hub genes by CytoHubba
and MCODE algorithm*
AHSP|DERLZ2|EPB42|FECH/HBD|MRPL27|MRPL4/MYL4/HBA1/HBG1/HBQ1/MRPL15/MRPL32/|
MRPL40[PFDN1|PFDN6|SLC25A37/SLC4A1|/UBB[YOD1|ADIPOR1|BCR|CA1/CNTNAP2|/DCANP1\
FBXO7[IGF2BP2[IKZF4|KISSIR[MAP7|TRIM10|YBX3

TABLE4.16 IDENTIFICATION OF HUB GENES *8 HUB GENES CYTOHUBBA & MCODE (IN BOLD);32 GENES CYTOHUBBA
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FIGURE 4.33 THE HIGHEST SCORE CLUSTERING MODULES WERE GENERATED BY MCODE, wiTH 10 GENES

4.4.3.5 Statistical Evaluation

The resulting genomic signature of 32 hub genes is used to assess the classification and generalization
ability of the model. The final gene signature arrived from GSE136411 dataset which was used as a
training dataset (N =72, PPMS n=25, CTRn=47) and testing dataset (N =30, PPMS n=10, CTRn=20).
Dataset E-MTAB-4890 was used to access the generalization ability of the resulted gene signature as an
independent dataset. It consists of (N =63, PPMS n =23, CTR n=40). Then, the classification model was
established by support vector machine (SVM).

By applying 10fold cross-validation in the model, 25 out of the 30 samples were correctly classified,
with a classification accuracy of 83%, model sensitivity to CTR of 100%, specificity of 50%, and area
under the ROC curve (AUC) was 0.9 (Figure 4.34 a). Furthermore, the established model was used to
predict the samples in the validation data sets to test the prediction ability of the model.

In the validation group the samples were classified, with a classification accuracy of 79%, moreover, the
sensitivity was 100% and specificity of the model was 43%, and the area under the receiver operating
characteristic (ROC) curve was 0.9 (Figure 4.34 b).
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a b
GSE136411 Real CTR | Real PPMS E-MTAB-4890 Real CTR | Real PPMS
Predict CTR 20 5 Predict CTR 40 13
Predict MS 0 5 Totals Predict MS 0 10 Totals
Totals 20 10 30
Correct 20 5 25 Totals 40 23 63
Sensitivity (%) 100 Correct 40 10 50
— Sensitivity (%) 100
Specificity (%) 50 ] Specificity (%) 43
| —
AUC 0.9 AUC 0.9

FIGURE 4.34 CONSTRUCTION OF DIAGNOSTIC MODEL AND VALIDATION OF MODEL. A) CLASSIFICATION RESULTS AND ROC CURVES
OF SAMPLES BY DIAGNOSTIC MODEL IN TRAINING DATA SET. B) CLASSIFICATION RESULTS AND ROC CURVES OF SAMPLES BY
DIAGNOSTIC MODEL IN E-MTAB-4890

As we can see our diagnostic model performs purely talking into account the specificity percentage.
After inspecting our data, we noticed that the density plots showed the feature's distribution for all
features over the two classes, and there is really not much discriminative power between conditions.
The extracted features are overlapping between the two classes, and we might have a "garbage in,
garbage out" issue, more than a "this is not enough data" issue. The control cases are twice the size of
Primary Progressive so we can say that building the classifier using the data as it is, would in most cases
give us a prediction model that always returns the majority class. The classifier would be biased.

We performed Under-sampling that balances the dataset by reducing the size of the abundant class.
This method is used when quantity of data is sufficient. By keeping all samples in the rare class and
randomly selecting an equal number of samples in the abundant class, a balanced new dataset can be
retrieved for further modelling. By applying 10fold cross-validation in the model and under sampling
the resulted model is shown in Figure 4.35

a b
GSE136411 Real CTR | Real PPMS E-MTAB-4890 Real CTR Real PPMS
Predict CTR 14 0 Predict CTR 27 4
Predict MS 6 10 Totals Predict MS 13 19 Totals
Totals 20 10 30
Correct 14 10 24 Totals 40 23 63
Sensitivity (%) 70 Correct 27 19 46
Sensitivity (%) 67
Specificity (%) 100 Specificity (%) 82
AUC 0.845 AUC 0.90

FIGURE 4.35 CONSTRUCTION OF DIAGNOSTIC MODEL AND VALIDATION OF MODEL. A) CLASSIFICATION RESULTS AND ROC CURVES
OF SAMPLES BY DIAGNOSTIC MODEL IN TRAINING DATA SET. B) CLASSIFICATION RESULTS AND ROC CURVES OF SAMPLES BY
DIAGNOSTIC MODEL IN E-MTAB-4890

There were 24 out of the 30 samples correctly classified, with a classification accuracy of 80%, model
sensitivity to CTR of 70%, specificity of 100%, and area under the ROC curve (AUC) was 0.90.(Figure
4.35 a). In the validation group the samples were classified, with a classification accuracy of 73%,
moreover, the sensitivity was 67% and specificity of the model was 82%, and the area under the
receiver operating characteristic (ROC) curve was 0.90 (Figure 4.35 b).
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4.4.3.6 Biological interpretation

Each selected Illumina probe set was mapped to an annotation of Entrez Gene ID and Gene Symbol
using the online tool WebGestalt (2013) (http://www.webgestalt.org/2013/). Considering the case
PPMS versus controls, an over-representation analysis of the resulted 51-DEG-gene signature was
performed in WebGestalt (2019). The enriched biological process categories are presented in Table
4.17A, where the enriched pathway categories are illustrated in Figure 4.36A.

GO0:0051291 protein heterooligomerization 0.00032213 0.27381

GO0:0051187 cofactor catabolic process 0.00085814 0.36471

GO0:1903513 endoplasmic reticulum to cytosol 0.0031050 0.87976
transport

G0:0042737 drug catabolic process 0.0076230 1

G0:0032527 protein  exit from endoplasmic 0.0085681 1
reticulum

G0:0016999 antibiotic metabolic process 0.0090822 1

G0:0051705 multi-organism behavior 0.017844 1

G0:0015893 drug transport 0.026145 1

GO0:0048872 homeostasis of number of cells 0.036027 1

GO0:0072593 reactive oxygen species metabolic 0.040215 1
process

Note: Common GO-biological processes between DEG-signatures and hub-gene-signatures are highlighted

in blue.

TABLE 4.17A GO-BIOLOGICAL PROCESSES ANALYSIS OF 51 DEGS IN THE

CASE OF PPMS VS CONTROLS

I FOR < 0.05 FOR > 0.05

Erythrocytes take up oxygen and release carbon dioxide

Erythrocytes take up carbon dioxide and release oxygen

02/C0O2 exchange in erythrocytes

T T T T T T T 1
0 20 40 60 80 100 120 140 160
Enrichment ratio

FIGURE 4.36A. REACTOME PATHWAY ANALYSIS OF 51 DEGS IN THE CASE OF PPMS VS CONTROLS.

Moreover, we also performed an over-representation analysis to further explore the functional
information (pathways, GO biological processes) of the 10-hub-gene signature, which may be more
indicative to PPMS stage. The analysis of the gene signature was performed using the online tool
WebGestalt (2019).

GO0:0051187 cofactor catabolic process 4E-06 0.00344
G0:0051291 protein heterooligomerization 2.2E-05 0.00949
GO0:0042737 drug catabolic process 4.1E-05 0.01056
G0:0016999 antibiotic metabolic process 5E-05 0.01056
GO0:0015893 drug transport 0.00016 0.0276

GO0:0048872 homeostasis of number of cells 0.00024 0.03256
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GO0:0072593 reactive oxygen species metabolic 0.00027 0.03256
process

Note: Common GO-biological processes between DEG-signatures and hub-gene-signatures are
highlighted in blue.

TABLE 4.17B GO-BIOLOGICAL PROCESSES ANALYSIS OF THE 10-HUB-GENE SIGNATURE IN THE
CASE OF PPMS VS CONTROLS

I FOR < 0.05 FOR > 0.05

Erythrocytes take up oxygen and release carbon dioxide

Erythrocytes take up carbon dioxide and release oxygen

02/C02 exchange in erythrocytes

T T T T T T T 1
100 200 300 400 500 600 700 800

0
Enrichment ratio

FIGURE 4.36B. REACTOME PATHWAY ANALYSIS OF THE 10-HUB-GENE SIGNATURE IN THE CASE OF PPMS VS CONTROLS.

As shown in above tables (Table 4.17A and 4.173B) and figures (Figures 4.36A and 4.36B), all the
enriched processes and pathways provided by the 10-hub-gene signature are also enriched in the 51-
DEG-gene signature and related to metabolic processes and 02/CO2 exchange in erythrocytes.
Interestingly, these GO biological processes become statistical significance (<0.05) or the pathways
have greater statistical significance (10-¢) in the 10-hub-gene signature. More recently, Geiger et al
[102] point out to the potential role of erythrocyte (red blood cells) in the mechanisms and treatment of
MS, given that release key molecules (adenosine triphosphate (ATP), nitric oxide (NO)), which are
determinants in immune response, and reports suggest that release levels of these signaling molecules
are often abnormal in autoimmune disease. [paper in preparation]

4.4.3.7 Candidate drugs targeting hub genes

Using the DGIdb database we explore drug-gene interactions of the 10 hub genes that derived from the
MCODE analysis. 8 genes out of 10, were found common between CYTOHUBBA and MCODE. The drugs
for possibly addressing patients in the Primary Progressive stage of MS are shown in Table4.18. We
used the STITCH database, in order to construct downstream networks of the genes that have a drug
relationship, to investigate the additional effects caused by inhibitors of these genes. All networks are

also included in Table4.14. The network setting were “Experiments”,”Databases”,”Coexpression” and
confidence was set to high=0,9.
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GENE SYMBOL

DRUGS

NETWORK

Protein-protein interactions: Grey,
Chemical-protein interactions: Green
Interactions between chemicals: red.

SLC4A1 .

METOPROLOL
ATENOLOL

bicarbonate cA2

niflumic acid

CA1

ACETAZOLAMIDE SODIUM
POLMACOXIB
ZONISAMIDE
METHAZOLAMIDE
ETHOXZOLAMIDE
ACETAZOLAMIDE
DICHLORPHENAMIDE
TRICHLORMETHIAZIDE
METHOCARBAMOL
CHLOROTHIAZIDE
RESORCINOL
MEDRONIC ACID
PHENOL

CURCUMIN

CATECHOL

SULFAMIDE

PARABEN
LEVETIRACETAM

4o

DB08157

N-(4-sulfa.ene.

brinzolamide

sulfamate

bicarbonate

. methazolamide
acetazolamide

TABLE4.18 GENES THAT HAVE DRUG INTERACTIONS AND INHIBITOR NETWORKS OF THE GENES THAT HAVE A DRUG RELATIONSHIP

CASE OF PPMS VS CONTROLS.
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5 CONCLUSIONS

The aim of this thesis was to identify biomarkers that aid in early identification of Multiple Sclerosis
disease as well as of IFN[3 responders. A second aim of our study was to identify biomarkers that aid in
early identification of MS stages, i.e. the relapsing-remitting form (RRMS), the secondary progressive
phase (SPMS) and the primary progressive MS (PPMS). The methodological approach that we chose to
implement was a combination of statistical and biological analysis. The steps that we followed was
firstly accessing the Differential expression of our datasets through two different statistical methods,
Significant Analysis of Microarrays (SAM) a non-parametric approach as well as “linear models for
microarray data” (Limma). Then, we compared and combined our results with the PIGENGENE
Methodology. Pigengene methodology enabled us to create gene coexpression networks through the
identification of significant gene co expressed modules and examine the cases under study by gathering
all the biological information of each module into eigengenes. In addition, Bayesian networks inference
was implemented based on the eigengenes of each module, in order to elucidate the significant genes
that can classify our samples under study. From the resulted gene signature, a Protein-Protein
Interaction Network was created, demonstrating the relationships between genes and different
topological clustering algorithms were performed (CytoHubba, MCODE) in order to conclude in a
minimum set of pathways and hub-genes, that play an important role in the identification of IFNf3
responders and give a chance to predict or prognose Multiple sclerosis patients outcome. Moreover, the
generalization ability of the observed results was examined. The ability of how the results of a statistical
analysis will generalize to an independent data set was evaluated as well as their biological significance.
Finally, a good generalization performance is achieved when a gene signature is able to predict the label
of unseen samples correctly. That said, every case that we examined, a new independent dataset is used
and the procedure of 10 - fold cross validation is repeated. The resulted gene signature in every case,
was examined for its generalization performance when it comes to the classification of unknown
samples through the classification method SVM. Our approach resulted in highly connected hub genes
generating four highly reliable hub-gene-signatures with high classification performance: a) 21-hub-
gene signature that could predict the response of interferon beta (IFN[3) therapy in patients with MS
(Accuracy = 91,49%, Sensitivity = 94.55%, Specificity = 87.15%), b) a 44-hub-gene signature that is
linked to RRMS (Accuracy =83%), Sensitivity 60%, Specificity=94%,), c) a 32-hub-gene signature that is
related to PPMS stage (Accuracy = 80% , Sensitivity =70% , Specificity = 100%) and d) a 24-hub-gene
signature that is connected with SPMS stage (Accuracy =72% , Sensitivity =76% , Specificity =62% ),
demonstrating potential clinical benefit. Finally, we approached the topic of drug repurposing by
examining the drug-gene relationships through different databases.

We used functional analysis to test for enrichment of both DGE-signatures and hub-gene-signatures in
INF treated versus untreated MS, untreated MS versus controls, RRMS versus controls, PPMS versus
controls, and SPMS versus controls. Our biological findings indicate that our methodological approach
identifies structured (non-random) selections of genes involved in MS disease pathogenesis.
Furthermore, the analysis of all examined cases provides specific aspects of immune system processes
and related pathways, and also significant determinants of immune response, which highlight their
importance in the design of laboratory experiments for the elucidation of disease mechanisms and also
for drug discovery in MS. Moreover, our methodological approach creates highly interconnected hub-
genes that are more informative than the DEGs and can be more easily validated as novel therapeutic
targets or diagnostic/prognostic biomarkers in MS. Finally, our results point out that the proposed
combined framework is effective in discovering of potentially causal pathways, gene networks and hub-
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genes. Finally, we investigated the drug repurposing by examining the drug-hub gene relationships
through different databases.

We can safely say that we managed to examine relationships of transcriptomic signatures and deduce
submodules of greater significance in relation to Multiple Sclerosis, the progression of the disease and
future therapy. In addition, we determine how gene molecules influence each other, to improve the
means of predicting “DISEASE triggering” relations/pathways and we introduced a methodology
generic enough to be applied to several complex genetic diseases.
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Conclusions

APPENDIX

DGIdb database drug-gene interaction results.

GENE DRUG INTERACTION_TYPES | SOURCES PMIDS
STAT1 GARCINOL DTC
GUTTIFERONE K DTC
PICOPLATIN CIviC 15726096
CISPLATIN CIviC 15726096
CHEMBL85826 DTC
IPRIFLAVONE DTC
OASL RIBAVIRIN PharmGKB 21993426
CCR1 AZD4818 antagonist ChemblInteractions
BMS-817399 antagonist TTD
CCX354 antagonist TdgClinicalTrial|ChemblInteractions|TTD
TERPYRIDINE DTC 22957890
CHEMBL2205805 DTC 22957890
CASP1 NIVOCASAN inhibitor ChemblInteractions|TTD
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GENE DRUG INTERACTION_TYPES | SOURCES PMIDS
EMRICASAN inhibitor ChemblInteractions
PRALNACASAN inhibitor TTD 17845807
BERKELEYAMIDE C DTC 18330993
CHEMBL337173 DTC
4-CHLOROMERCURIBENZOIC ACID DTC
BERKELEYDIONE DTC 17970594
GOSSYPOL DTC
MESALAMINE DTC
BERKELEYACETAL A DTC 17970594
DIACEREIN TTD
VERMISTATIN DTC 22295871
BERKELEYACETAL B DTC 17970594
BELNACASAN TdgClinicalTrial|TTD
CHEMBL578512 DTC
CHEMBL429095 DTC
JUGLONE DTC
ISOBOLDINE DTC
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GENE DRUG INTERACTION_TYPES | SOURCES PMIDS
CHEMBL415893 DTC 10386941
BERKELEYAMIDE B DTC 18330993
BERKELEYACETAL C DTC 17970594
CHEMBL580421 DTC
BERKELEYTRIONE DTC 17970594

CXCL10 NI-0801 inhibitor ChemblInteractions|TTD
REGRAMOSTIM NCI 11591765
METHYLPREDNISOLONE NCI 17220550
ANTIBIOTIC NCI 10634213
RITONAVIR NCI 11141242
STAVUDINE NCI 11141242
ATORVASTATIN NCI 10559511
ATROPINE NCI 15315164
TESTOSTERONE NCI 9681518
OXALIPLATIN NCI 16101140
ELDELUMAB TdgClinicalTrial| TTD
ZIDOVUDINE NCI 11141242
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GENE DRUG INTERACTION_TYPES | SOURCES PMIDS
NT5C3A CYTARABINE PharmGKB 25000516
IDARUBICIN PharmGKB 25000516
GEMCITABINE PharmGKB 22838949
TABLE4.19 GENES THAT HAVE DRUG INTERACTIONS CASE FOR THE CASE “UNTREATED MS VS INTERFERON TREATED MS PATIENTS”
GENE DRUG INTERACTION_TYPES | SOURCES PMIDS
PEMT CANTUZUMAB MERTANSINE ChemblInteractions
HUHMFG1 ChemblInteractions
CANTUZUMAB RAVTANSINE ChemblInteractions
SONTUZUMAB ChemblInteractions
PEMTUMOMAB ChemblInteractions
AR-20.5 ChemblInteractions
LST1 ABACAVIR PharmGKB
B2M PEMBROLIZUMAB CIviC 27433843
THYROGLOBULIN NCI 9609129
AMIKACIN NCI 7672871
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GENE DRUG INTERACTION_TYPES | SOURCES PMIDS
CDA CYTARABINE NCI|PharmGKB 21325291|21521023
|12008078|22304580|
22379997|25003625|
19458626|23651026|
23230131|18473752
GEMCITABINE NCI 12477049
DEOXYCYTIDINE NCI 12008078
TETRAHYDROURIDINE NCI|TTD 2932216
CAPECITABINE PharmGKB 21325291|24167597|
28347776
18473752|23736036
AZACITIDINE PharmGKB 25850965
S100A9 TASQUINIMOD TTD 24162378
PAQUINIMOD TTD
TABLE4.20 GENES THAT HAVE DRUG INTERACTIONS FOR THE CASE “UNTREATED MS PATIENTS VS HEALTHY CONTROLS”
GENE DRUG INTERACTION_TYPES | SOURCES PMIDS
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IL1RN METHOTREXATE NCI 8877917
HALOPERIDOL PharmGKB 27023437
DIACEREIN TdgClinicalTrial

CTSG MANNITOL NCI 3142269
CHEMBL374027 TTD

CXCL8 ABX-IL8 inhibitor ChemblInteractions|TTD
HUMAX-IL8 inhibitor ChemblInteractions
LEFLUNOMIDE NCI 10902750
YANGONIN DTC
E319 DTC
FOSCARNET NCI 10630964
NAPROXEN NCI 11852880
ALDRIN DTC
COLCHICINE DTC
MIDAZOLAM NCI 9620522
FENTANYL NCI 9527747
ACETAMINOPHEN NCI 15878691
CORONOPILIN DTC
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DIPYRIDAMOLE NCI 10660968
IBUPROFEN TTD

IONOMYCIN NCI 7510691
CHLORDANE DTC

DANAZOL NCI 16161451
CHEMBL1902074 DTC

OMEPRAZOLE NCI 17122965
DINITRO CRESOL DTC

QUESTIOMYCIN B DTC

FENRETINIDE NCI 16979119
HEPTACHLOR DTC

PYROGALLOL DTC

CANERTINIB NCI 15956251
HYDROQUINONE DTC|NCI 17118622
ENDOSULFAN DTC

EMODIN DTC

LANSOPRAZOLE NCI 17122965
RETINAL DTC
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HARMINE DTC

HYDROCHLORIDE

PACLITAXEL NCI 9271387

BEVACIZUMAB PharmGKB 23584701

PAMIDRONIC ACID NCI 12006522

TALC NCI 17000556

TRETINOIN NCI 8900181

SUNITINIB PharmGKB 26387812

CETUXIMAB NCI 10614716|15908664
[10037173

CHEMBL1579130 DTC

ALPRAZOLAM NCI 12218154

METHIMAZOLE NCI 11453524

RETINOL DTC

RIBAVIRIN DTC

TERFENADINE NCI 8919641

DICYCLOHEXYLCARBODII DTC

MIDE

CEFTRIAXONE NCI 8011012
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ASPIRIN NCI 12576442
CLARITHROMYCIN NCI 12003967
DACARBAZINE DTC
PENTOXIFYLLINE NCI 12576442
CIDOFOVIR NCI 10630964
BROXURIDINE DTC
TROGLITAZONE NCI 12364456
DICHLORVOS DTC
VERAPAMIL NCI 2686646
CXCR1 LADARIXIN modulator ChemblInteractions
REPARIXIN allosteric ChemblInteractions|TTD
modulator|modulator
NAVARIXIN antagonist TdgClinicalTrial|TTD
NAVARIXIN antagonist ChemblInteractions
IBUPROFEN TTD
ELANE SIVELESTAT inhibitor DTC|TdgClinicalTrial|TTD 23350733
DEPELESTAT TTD
SYMPLOSTATIN 5 DTC 23350733
CHEMBL310871 DTC 17535802
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NICOTINE NCI 8912774
TIPRELESTAT TTD
ERDOSTEINE TdgClinicalTrial
NIFEDIPINE NCI 9796781|8833599
IL1R2 ANAKINRA TEND
LY96 ERITORAN TETRASODIUM | antagonist ChemblInteractions
MMP9 MARIMASTAT inhibitor TdgClinicalTrial TEND 17234180(12763661
11752352
PRINOMASTAT vaccine TALC
ANDECALIXIMAB inhibitor|antibody ChemblInteractions|TTD
S-3304 vaccine TALC
CURCUMIN PYRAZOLE DTC 19128977
TOZULERISTIDE TTD
CURCUMIN TTD
INCYCLINIDE TdgClinicalTrial
BEVACIZUMAB CIViC 26921265
CARBOXYLATED DTC 16616490
GLUCOSAMINE
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DEMETHYLWEDELOLACT DTC 22926226
ONE
CELECOXIB PharmGKB 22336956
MPO DIMETHYL SULFOXIDE NCI 1845843
PSORALEN NCI 15865234
TOLMETIN NCI 6266970
DICLOFENAC NCI 2173589
DOXYCYCLINE NCI 14564835
ASULACRINE NCI 1333205
NIMESULIDE NCI 17176264
PYRAZINAMIDE NCI 2832129
PROPYLTHIOURACIL DTC 26509551
FLUDARABINE NCI 15608444
LORATADINE NCI 17159802
OCTREOTIDE NCI 15003363
TRIMETHOPRIM NCI 7425598
THEOPHYLLINE NCI 8630596
LITHIUM NCI 8224362
LIDOCAINE NCI 8973808

133




TENECTEPLASE NCI 16650886

FLUTAMIDE NCI 16330533

FENTANYL NCI 8391745
PAK1 CENISERTIB DTC

TAE-684 DTC

AZD-1152-HQPA DTC

TOZASERTIB DTC

RG-1530 DTC

ILORASERTIB DTC

LAUROGUADINE DTC

PF-00562271 DTC

MLN-8054 DTC

R-406 DTC
PTAFR RUPATADINE antagonist TTD 8996188

ISRAPAFANT antagonist TTD

MINOPAFANT antagonist ChemblInteractions

LEXIPAFANT TTD

DERSALAZINE TTD 21790535
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TICLOPIDINE TTD
S100A8 METHOTREXATE NCI 14722212
CEACAM3 ARCITUMOMAB TTD
HNMT AMODIAQUINE inhibitor TTD 6789797|1203620(17222819|117
52352
ASPIRIN PharmGKB 19178400
METOPRINE TTD 10592235
DABIGATRAN DTC 22494098
DIPHENHYDRAMINE TTD
SLC22A16 FLUOROURACIL PharmGKB
CYCLOPHOSPHAMIDE PharmGKB 28036387|20179710
DOXORUBICIN PharmGKB 28036387]|17559346|20179710
TNFSF13 ATACICEPT inhibitor TdgClinicalTrial|ChemblInteraction
s|TTD
LPAR1 BMS-986020 antagonist TTD
S100A12 ATOGEPANT TTD
RIMEGEPANT TTD
METHOTREXATE NCI 15077313
EPTINEZUMAB TTD
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UBROGEPANT TTD
CD14 IC14 inhibitor TdgClinicalTrial|ChemblInteraction
s|TTD
LOVASTATIN NCI 7506029
TABLE4.21 GENES THAT HAVE DRUG INTERACTIONS FOR THE CASE “UNTREATED PPMS PATIENTS VS HEALTHY CONTROLS”
GENE DRUG INTERACTION_TYPES SOURCES PMIDS
CYP2]J2 TERFENADINE inhibitor PharmGKB 15861034
THIORIDAZINE PharmGKB 19923256
TACROLIMUS PharmGKB 28316087
DICLOFENAC PharmGKB 15861034
AMIODARONE PharmGKB 19923256
NABUMETONE PharmGKB 19923256
ASTEMIZOLE PharmGKB 15861034
ALBENDAZOLE PharmGKB 19923256
MESORIDAZINE PharmGKB 19923256
DANAZOL PharmGKB 19923256
EPHX2 FULVESTRANT DTC 23684894
6BIO DTC 24697244
AR9281 TdgClinicalTrial|TTD 10592235
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GENE DRUG INTERACTION_TYPES SOURCES PMIDS
LITHIUM PharmGKB 29121268
ALOE-EMODIN DTC 26372074
ALOIN DTC 26372074
NBEA METFORMIN PharmGKB 29650774
XK ENSITUXIMAB TTD
TABLE4.22 GENES THAT HAVE DRUG INTERACTIONS FOR THE CASE “UNTREATED SPMS PATIENTS VS HEALTHY CONTROLS”
GENE DRUG INTERACTION_TYPES SOURCES PMIDS
SLC4A1 ATENOLOL PharmGKB
METOPROLOL PharmGKB
BCR IMATINIB inhibitor TALC|DTC|PharmGKB|FDA 15206509|22148584|12600228]232
26582|20072827|24681986
DASATINIB inhibitor TALC|PharmGKB|FDA 15256671
PONATINIB inhibitor ChemblInteractions
HYDROCHLORIDE
PONATINIB inhibitor TALC|PharmGKB|FDA 23409026
BOSUTINIB inhibitor PharmGKB|FDA
SARACATINIB inhibitor TALC
VINCRISTINE PharmGKB|FDA
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GENE DRUG INTERACTION_TYPES SOURCES PMIDS

BUSULFAN PharmGKB|FDA

OMACETAXINE PharmGKB

MEPESUCCINATE

BLINATUMOMAB PharmGKB|FDA

NILOTINIB PharmGKB|FDA

CHEMBL483847 DTC 16415863

CA1 ACETAZOLAMIDE SODIUM | inhibitor ChemblInteractions

POLMACOXIB inhibitor TdgClinicalTrial|ChemblInteractio
ns|TTD

ZONISAMIDE inhibitor TEND 15837316|17762320|18537527|183

43915|18782051|17582922|849457
0]18162396

METHAZOLAMIDE inhibitor TdgClinicalTrial| ChemblInteractio | 10533697|15110853|9336012|1468
ns|TEND|TTD 4332|10649985

ETHOXZOLAMIDE inhibitor TdgClinicalTrial|Chemblinteractio | 12956733|10649985|7929150|1952
ns|TEND|TTD 0577|6816217|10995826

ACETAZOLAMIDE inhibitor TdgClinicalTrial|Chemblinteractio | 10713865|12956733|18336310|866
ns|TEND|TTD 7211|10651143|11430635

DICHLORPHENAMIDE inhibitor TdgClinicalTrial|Chemblinteractio | 19019313]|9336012|14684332|1964
ns|TEND|TTD 8295|17228881

TRICHLORMETHIAZIDE inhibitor TdgClinicalTrial| TEND 19119014|17139284|17016423
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GENE DRUG INTERACTION_TYPES SOURCES PMIDS
METHOCARBAMOL inhibitor ChemblInteractions 1460006
CHLOROTHIAZIDE inhibitor TdgClinicalTrial TEND 10713865|10954127
RESORCINOL DTC 26073005
MEDRONIC ACID DTC 24813742
PHENOL DTC|TTD 26073005
CURCUMIN TTD
CATECHOL DTC 26073005
SULFAMIDE TTD
PARABEN TTD
LEVETIRACETAM TEND

IGF2BP2 REPAGLINIDE PharmGKB

KISS1R BENZETHONIUM DTC 17266198
CHLORIDE

TABLE4.23 GENES THAT HAVE DRUG INTERACTIONS FOR THE CASE “

UNTREATED PPMS PATIENTS VS HEALTHY CONTROLS”
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