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Abstract 

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease that affects approximately 2.8 
million persons globally. While there is currently no cure for this neurodegenerative disease, MS has become a 
highly manageable disease through treatment options like disease-modifying medications, that can help to 
control the symptoms and slow disease progression. Among them, interferon beta (IFNβ) therapy is a first-line 
treatment for MS but has shown to be only partially effective. Information from extensive databases for large 
groups of multiple sclerosis patients indicates that the natural history of MS evolves in two stages: (i) in the 
focal inflammatory process with flares, and ii) in disability that progresses irrespective of the focal 
inflammation (lesion or relapse) Thus, it is important to identify biomarkers that aid in early identification of 
the disease as well as of IFNβ responders. A second aim of our study was to identify biomarkers that aid in 
early identification of MS stages, i.e. the relapsing-remitting form (RRMS), the secondary progressive phase 
(SPMS) and the primary progressive MS (PPMS). 

Gene co-expression patterns for various phenotypes can be reveal with the aid of microarrays but the 
variation and heterogeneity of the disease act as limitations for the utility of gene-expression profiles. In 
addition, the different microarray platforms utilized, as well as the different experimental protocols followed, 
make difficult to combine gene-expression datasets from heterogeneous platforms and different studies. 
Another limitation is the great imbalance between the huge number of transcripts and genes (tens of 
thousands) and the relatively small number of available sample cases (hundreds). Furthermore, it is essential 
to combine feature-selection approaches and the ‘biological validity’ of the resulted gene biomarkers. Thus, our 
purpose in not only to focus on highly differential genes but combine different approaches in order to reach a 
gene signature after examining the relationships of gene signatures and deduce submodules of greater 
prognostic/diagnostic significance in relation to Multiple Sclerosis, the progression of the disease and future 
therapy. 

In this study, based on gene expression profiles from untreated, interferon treated patients and healthy 
subjects from publicly available datasets, we performed differential expression analysis and Pigengene network 
association (weighted correlation network analysis (WGCNA) and Bayesian networks modeling) so as to 
construct a high-confidence protein-protein (PPI) interaction network. Subsequently, aiming to find the most 
significant clustering modules and hub genes, we applied several topological analysis methods (cytoHubba 
plugin) followed by MCODE clustering algorithm. Our approach resulted in highly connected hub genes 
generating four highly reliable hub-gene-signatures. Finally, we approached the topic of drug repurposing by 
examining the drug-gene relationships through different databases. 
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Περίληψη 

 Η σκλήρυνση κατά πλάκας (ΣΚΠ) είναι μια χρόνια φλεγμονώδης απομυελινωτική νόσος που επηρεάζει 
περίπου 2,8 εκατομμύρια άτομα παγκοσμίως. Ενώ επί του παρόντος δεν υπάρχει θεραπεία για αυτή τη 
νευροεκφυλιστική νόσο, η σκλήρυνση κατά πλάκας έχει γίνει μια εξαιρετικά διαχειρίσιμη ασθένεια μέσω 
επιλογών θεραπείας όπως τα τροποποιητικά της νόσου φάρμακα, που μπορούν να βοηθήσουν στον έλεγχο 
των συμπτωμάτων και στην επιβράδυνση της εξέλιξης της νόσου. Μεταξύ αυτών, η θεραπεία με ιντερφερόνη 
βήτα (IFNβ) είναι μια θεραπεία πρώτης γραμμής για τη σκλήρυνση κατά πλάκας, αλλά έχει αποδειχθεί μόνο 
μερικώς αποτελεσματική. Πληροφορίες από εκτεταμένες βάσεις δεδομένων για μεγάλες ομάδες ασθενών με 
σκλήρυνση κατά πλάκας δείχνουν ότι η φυσική ιστορία της ΣΚΠ εξελίσσεται σε δύο στάδια: (i) στην εστιακή 
φλεγμονώδη διαδικασία με εξάρσεις και ii) στην αναπηρία που εξελίσσεται ανεξάρτητα από την εστιακή 
φλεγμονή (βλάβη ή υποτροπή). Επομένως, είναι σημαντικό να εντοπιστούν βιοδείκτες που βοηθούν στην 
έγκαιρη αναγνώριση της νόσου καθώς και των αποκρίσεων στην IFNβ. Ένας δεύτερος στόχος της μελέτης μας 
είναι ο εντοπισμός βιοδεικτών που βοηθούν στην πρώιμη αναγνώριση των μορφών της ΣΚΠ, δηλαδή της 
υποτροπιάζουσας-διαλείπουσας μορφής πολλαπλής σκλήρυνσης (RRMS), της δευτεροπαθώς προϊούσας 
μορφής πολλαπλής σκλήρυνσης (SPMS) και της πρωτοπαθώς προϊούσας μορφής πολλαπλής σκλήρυνσης 
(PPMS).  
 Μοτίβα συνέκφρασης γονιδίων για διάφορους φαινοτύπους μπορούν να αποκαλυφθούν με τη βοήθεια 
μικροσυστοιχιών, αλλά η ποικιλία και η ετερογένεια της νόσου λειτουργούν ως περιορισμοί για τη 
χρησιμότητα των προφίλ γονιδιακής έκφρασης. Επιπλέον, οι διαφορετικές πλατφόρμες μικροσυστοιχιών που 
χρησιμοποιούνται, καθώς και τα διαφορετικά πειραματικά πρωτόκολλα που ακολουθούνται καθιστούν 
δύσκολο τον συνδυασμό δεδομένων γονιδιακής έκφρασης από ετερογενείς πλατφόρμες και διαφορετικές 
μελέτες. Ένας άλλος περιορισμός είναι η μεγάλη ανισορροπία μεταξύ του τεράστιου αριθμού των μεταγράφων 
και γονιδίων (δεκάδες χιλιάδες) και του σχετικά μικρού αριθμού διαθέσιμων δειγμάτων (εκατοντάδες). 
Επιπλέον, είναι σημαντικό να συνδυαστούν οι προσεγγίσεις επιλογής χαρακτηριστικών και η «βιολογική 
εγκυρότητα» των γονιδιακών βιοδεικτών που προέκυψαν. Έτσι, ο σκοπός μας είναι όχι μόνο να 
επικεντρωθούμε σε σημαντικά διαφορικά εκφρασμένα γονίδια, αλλά να συνδυάσουμε διαφορετικές 
προσεγγίσεις για να εξάγουμε μια γονιδιακή υπογραφή με υψηλή προγνωστική/διαγνωστική αξία για την 
Σκλήρυνση κατά Πλάκας, την εξέλιξη της νόσου και τη μελλοντική θεραπεία, αφού εξετάσουμε τις σχέσεις 
μεταξύ των γονιδιακών υπογραφών και συνάγουμε υποδίκτυα. 
 Σε αυτή τη μελέτη, χρησιμοποιήσαμε δημόσια διαθέσιμα σύνολα δεδομένων και με βάση τα προφίλ 
γονιδιακής έκφρασης από: α) ασθενείς που δεν υποβλήθηκαν σε θεραπεία με ιντερφερόνη και άτομα που 
υποβλήθηκαν σε θεραπεία με ιντερφερόνη, β) άτομα που δεν υποβλήθηκαν σε θεραπεία με ιντερφερόνη και 
υγιή άτομα, και γ) άτομα που ανήκουν σε μια από τις τρεις κύριες μορφές πολλαπλής σκλήρυνσης και δεν 
έχουν υποβληθεί σε θεραπεία και υγιή άτομα, πραγματοποιήσαμε ανάλυση διαφορικής έκφρασης και 
συσχέτιση δικτύου Pigengene (σταθμισμένη ανάλυση δικτύου συσχέτισης (WGCNA) και μοντελοποίηση 
δικτύων Bayes), έτσι ώστε να κατασκευάσουμε ένα ισχυρό δίκτυο πρωτεϊνικών αλληλεπιδράσεων (PPI). Στη 
συνέχεια, με στόχο την εύρεση των πιο σημαντικών μονάδων ομαδοποίησης και σημαντικών γονιδίων, 
εφαρμόσαμε διάφορες μεθόδους τοπολογικής ανάλυσης (cytoHubba) ακολουθούμενες από τον αλγόριθμο 
ομαδοποίησης MCODE. Η προσέγγισή μας είχε ως αποτέλεσμα υψηλά συνδεδεμένα γονίδια (hub) που 
παράγουν τέσσερις εξαιρετικά εύρωστες ‘γονιδιακές υπογραφές κόμβων’ με υψηλή απόδοση ταξινόμησης. 
Τέλος, προσεγγίσαμε το θέμα της επαναχρησιμοποίησης φαρμάκων εξετάζοντας τις σχέσεις φαρμάκου-
γονιδίου μέσα από διαφορετικές βάσεις δεδομένων. 
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1 INTRODUCTION               

Multiple sclerosis (MS) is the most common autoimmune disease, a potentially disabling disease of the 
brain and spinal cord, the central nervous system (CNS). It is characterized by the infiltration of 
autoreactive immune cells into the CNS, which target the myelin sheath, leading to the loss of neuronal 
function. Eventually, the disease can cause permanent damage or deterioration of the nerves. Signs and 
symptoms of MS vary widely and depend on the amount of nerve damage and which nerves are 
affected. Some people with severe MS may lose the ability to walk independently or at all, while others 
may experience long periods of remission without any new symptoms. Although it is accepted that MS 
is a multifactorial disorder with both genetic and environmental factors influencing its development 
and course, the molecular pathogenesis of multiple sclerosis (MS) has not yet been fully elucidated. 
There's currently no cure for multiple sclerosis. However, the growing arsenal of disease-modifying 
therapies offers opportunities to reduce disability and extend survival of people with multiple sclerosis 
(MS). [1] 
 
According to 2020 data on multiple sclerosis (MS), the number of people suffering from the disease 
worldwide amount to 2.8 million [1]. MS is the most common demyelinating disease that affects the 
central and peripheral nervous system. This autoimmune disorder shows a significant variation in 
prevalence, reaching high levels in Europe (lower in the South, higher in the North). Although the 
etiology of this multifactorial disease remains unknown, the implications of environmental and 
immunogenetic factors appear to be major [2]. Information from extensive databases for large groups 
of multiple sclerosis patients indicates that the natural history of MS evolves in two stages: (i) in the 
focal inflammatory process with flares, and ii) in disability that progresses irrespective of the focal 
inflammation (lesion or relapse) [2]. Despite its impact and increasing rates on the global population, 
there is still no cure for MS. Among the available treatments, disease-modifying therapies such as 
interferon beta (IFNβ) are designed to help patients by reducing the relapse rates and delaying the 
onset of disability [3]. Although IFNβ is used as first-line therapy, many MS patients do not benefit from 
this treatment. 
 
Chapter 1 proceeds with a brief presentation of the disease, the biological and bioinformatics 
perspectives, the related work and thesis outline and innovation. In Chapter 2 the biological and 
mathematical knowledge in bioinformatics, needed for our study is presented. Our Methodology 
pipeline is explained in Chapter 3. The process of our data, integration, differential expression analysis 
and network construction, are explained in detail. After generating the subnetworks and extracting the 
final gene signatures, we examine the nature of the involved pathways as well as the relationships 
between genes. Furthermore, we evaluate our results in a new independent dataset, after applying a 
classification algorithm, SVM, and also taking into consideration their biological significance. Finally, we 
examine the potential of drug repurposing based on our results which are presented in Chapter 4. 
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1.1 Multiple Sclerosis 

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) 
with varied clinical presentations and heterogeneous histopathological features (Figure1.1). The 
underlying immunological abnormalities in MS lead to various neurological and autoimmune 
manifestations. There is strong evidence that MS is, at least in part, an immune-mediated disease. 
Immunogenetic markers have been identified and, in particular thanks to studies of genome-wide 
associations, more than 100 genetic variants have been reported. Most of these are involved in the 
immune response and often associated with other autoimmune diseases. Studies of the natural history 
of MS suggest it is a two-phase disease: in the first phase, inflammation is focal with flares; and in the 
second phase, disability progresses independently of focal inflammation. This has clear implications for 
therapy. [2] 

 
FIGURE 1.1.MULTIPLE SCLEROSIS COURSE OF ACTION  [4]  

Studies using imaging, serology, pathology and genetics, and patient response to anti-inflammatory 
treatments indicate that multiple sclerosis (MS) is primarily an inflammatory demyelinating disease of 
the central nervous system (CNS) with varied clinical presentations and heterogeneous 
histopathological features. The disease has a peak onset between ages 20 and 40 years [4]; however, it 
may also develop in children and in addition has been reported in individuals aged above 60 years. MS 
affects women approximately twice as often as men [5–8]. MS results in a plethora of neurological 
manifestations and is a leading cause of nontraumatic disability among young adults and has great 
socioeconomic impact in developed countries [9]. Based on the epidemiological studies, approximately 
400,000 people have MS in the United States, with 200 new cases added every week. In Europe is the 
leading cause of non-traumatic disabilities in young adults, with more than 700,000 EU cases. The 
pathogenesis of MS remains elusive and there were no definitive cause and no effective cure. Therefore, 
MS can be classified as an episodic demyelinating disease of the central nervous system. The two main 
factors of MS are genetic and environmental. Exposure to Epstein-Barr virus [10], low levels of vitamin 
D [11-12], and smoking [13] have been cited as plausible factors, which may increase the probabilities 
of developing MS. 
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The commonly used disease-modifying therapies (DMTs), interferon (IFN) beta and Glatiramer acetate 
are believed to modulate the immune response, reduce new inflammatory lesions in the CNS and 
partially protect against progression of disability. However, patients vary considerably in their 
responsiveness to these therapies, and for any individual patient, the natural history of MS is extremely 
heterogeneous, varying from a benign condition to a devastating and rapidly incapacitating disease. For 
these reasons, a better characterization of patients is much needed to ultimately understand the 
diversity of disease presentation. A number of studies in neurodegenerative disorders and autoimmune 
diseases [9, 14-16] suggest that gene expression changes in blood mirror pathologic processes in the 
CNS. Blood transcriptomics have also been used to study therapeutic response to treatment with 
different drugs, toxins and infections in different diseases [17–19]. Several microarray-based gene 
expression studies have used whole blood or peripheral blood mononuclear cells (PBMCs) to 
investigate de-regulated patterns of gene expression in MS patients [20-22]. Unfortunately, owing to 
small sample sizes and disease heterogeneity, reproducibility across studies has been limited. 

1.2 Multiple Sclerosis and Bioinformatics 

Multiple Sclerosis occurs in both men and women, in younger as well as older individuals. Although a 
cure has not yet been found, identifying the genetic causes that rule the disease can play an important 
role. Bioinformatics is an integrative area combining biological, statistical and computational sciences. 
Bioinformatics enables researchers not only to manage, analyze and understand the currently 
accumulated, valuable, high-throughput data, but also to integrate these in their current research 
programs. The need for bioinformatics will become even more important as new technologies increase 
the already exponential rate at which data are generated. Computational models could give a 
considerable advance in the study of diseases characterized by a partially understood etiology of the 
disease. The main goal of bioinformatics is to enable the discovery of new biological insights as well as 
to create a global perspective from which unifying principles in biology can be discerned. We have 
therefore to do with the development and the advancement of databases, algorithms, computational 
and statistical techniques and theory to solve formal and practical problems arising from the 
management and analysis of biological data. (www.wikidoc.org/index.php/Bioinformatics) 

1.3 Genomic and Network Analysis 

In genetics the term Genomics refers to the field that combines recombinant DNA, DNA 
sequencing methods, and bioinformatics to sequence, assemble, and analyze the function and structure 
of genomes. Functional genomics employs diverse experimental approaches to investigate gene 
functions. High-throughput techniques, such as loss-of-function screening and transcriptome profiling, 
allow the identification of specific sets of genes involved in biological processes of interest (so called hit 
list of genes). [23-24] 
 
Gene expression profiling is being applied in many areas of research in order to identify new targets for 
treatment, resistance mechanisms and to improve the current tools of prognosis and treatment. 
Pathways analysis methods, aim at searching for statistical enrichment of genes with annotated 
biological process or molecular functions. Thought computational scientists and statisticians that 
participate in the process of data analysis are often not well informed of the sample collection processes 
or the impact of genetics/transcriptomics. Therefore, a pressing need has occurred for better 
understanding of the challenges and limitations of high-throughput approaches, both in experimental 
design and data analysis. [24-25] 
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The investigation of the roles and functions of single genes is a primary focus of molecular 
biology or genetics and is a common topic of modern medical and biological research. Understanding 
complex systems often requires a bottom-up analysis towards a systems biology approach. The need to 
investigate a system, not only as individual components but as a whole, emerges. This can be done by 
examining the elementary constituents individually and then how these are connected. The myriad 
components of a system and their interactions are best characterized as networks and they are mainly 
represented as graphs where thousands of nodes are connected with thousands of vertices. [25] 
 
In the field of Bioinformatics the main goal of several studies has been revealing the pathways that give 
rise to diseases, identifying genetic alterations that determine clinical phenotypes as well as 
identification of both gene and protein networks causing a disease as well as the investigation of 
biochemical networks of drugs metabolism and mechanisms of action. Network biology involves the 
study of the complex interactions of biomolecules that contribute to the structures and functions of 
living cells. Given the functional interdependencies between the molecular components in a human cell, 
a disease is rarely a consequence of an abnormality in a single gene but reflects the perturbations of the 
complex intracellular and intercellular network that links tissue and organ systems [25]. Once the 
model has been chosen, the parameters need to be fit to the data. Even the simplest network models are 
complex systems involving many parameters, and fitting them is a non-trivial process, known as 
network inference, network identification, or reverse engineering. Genetic networks are often 
described statistically using graphical models. The interpretation of the network structure constitutes a 
serious challenge in microarray analysis due to the fact that the sample size is small compared to the 
number of considered genes. As a result, many standard algorithms for graphical models are considered 
inapplicable. In order to better understand genetic networks, we have to look at graph theory and 
models. [26] 
 
Graph theoretical models (GTMs) are used mainly to describe the topology, or architecture, of a 
network. These models feature relationships between genes and possibly their nature, but not 
dynamics: the time component is not modeled at all and simulations cannot be performed. GTMs are 
particularly useful for knowledge representation, as most of the current knowledge about gene 
networks is presented and stored in databases in a graph format. In GTMs, gene networks are 
represented by a graph structure, G (V, E), where V = {1, 2,.., n} represent the gene regulatory elements, 
e.g. genes, proteins, etc., and E = {(I, j) |I, j ∈ V } the interactions between them, e.g. activation, inhibition, 
causality, binding specificity, etc. Most often G is a simple graph, and the edges represent relationships 
between pairs of nodes, although hyper edges, connecting three or more nodes at once, are sometimes 
appropriate. Edges can be directed, indicating that one (or more) nodes are precursors to other nodes. 
They can also be weighted, the weights indicating the strengths of the relationships. Either the nodes, or 
the edges, or both are sometimes labeled with the function, or nature of the relationship, i.e. activator, 
activation, inhibitor, inhibition, etc. The edges imply relationships which can be interpreted as temporal 

(e.g. causal relationship) or interactional. (en.wikipedia.org/wiki/Graph_theory) 

1.4 Related Work 
 
High-throughput techniques, such as loss-of-function screening and transcriptome profiling, allow tο 
identify lists of genes potentially involved in biological processes of interest (so called hit list). Several 
computational methods exist to analyze and interpret such lists, the most widespread of which aim 
either at investigating of significantly enriched biological processes, or at extracting significantly 
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represented subnetworks. Also, in the field of drug discovery, taking into account that discovery and 
design is a time-consuming process, it often requires a lengthy period. A drug prescribed for a specific 
disease can be also effective for another disease if the two diseases share a common pathophysiologic 
mechanism. To identify a new use of existing drugs is called drug repositioning, and this approach is 
gathering momentum because it can markedly shorten the time to obtain drug approval.[27] 
 
In order to comprehend the mechanisms and improve the methods of prognosis and treatment many 
studies focus on the analysis of gene expression profiles to identify markers linked to a disease as well 
as pathways and associations between gene expression and phenotype which can be extended to enable 
systematic search for candidates for drug repositioning [28]. Protein-protein interaction (PPI) 
networks, co-expression networks or pathways from databases such as KEGG, has been proposed to 
overcome variability of prognostic signatures and to increase prognostic performance. Relevant studies 
have been made that focus on the interaction or association between genes and clinical outcomes and 
the discovery of disease-related gene signatures and the integration of PPI networks in their 
methodology [27-29]. 
 
Y Liu et al., 2019 [30] proposed a methodology combining gene expression data for the investigation of 
hub genes in bipolar disorder integrating PPI networks and graph theory. In addition, Machine learning 
techniques for biological networks are proposed in [31]. Most recent work in Multiple Sclerosis to 
identify the potential key candidate genes of MS and uncover mechanisms in the disease is [32-33] 
where data from the microarray expression profile of MS patients were combined and bioinformatics 
analysis was performed. Defective pathways suggest viral or bacterial infections as plausible 
mechanisms involved in MS development were examined in [34] providing additional knowledge to 
identify new therapeutic targets. 
 
This thesis is based on the study of D Nickles et al., 2013 [35] combining different methodological 
approaches [32-37] to create a new pipeline for disease investigation, gene signature discovery and 
drug repositioning analysis for Multiple Sclerosis. D Nickles et al., 2013 study proposes a protein 
network-based approach that identifies markers not as individual genes but as subnetworks from 
differentially expressed genes in MS extracted from protein interaction databases. Gene expression 
differences between MS patients and controls as well as MS patients that have received treatment, of a 
large data set allowed several significant de-regulated genes to be detected. A proportion of transcripts 
up-regulated in untreated patients were counter-regulated by IFN treatment, suggesting a set of 
possible effectors for this first-line therapy in MS. We have followed same steps of the methodology and 
combined it with the works of Diogo M. Camacho et al., [31], Y Liu et al., 2019 [30], AS Nangraj, 2020 
[37], in order to explore the potentials of our data set and investigate the ability to perform drug 
repositioning based on G Fiscon et al., 2021 [38]. Clustering and classification algorithms have been 
successfully used to elucidate the functional relationship between genes and pathways. In this context, 
our goal in this thesis is to implement our methodology into our main transcriptomic dataset and locate 
the structural differences within the network between the two populations MS untreated patients 
versus Healthy controls and MS Interferon treated versus MS untreated patients as well as patients in 
different stages of the disease such as Relapsing Remitting (RRMS) versus Healthy controls, Secondary 
Progressive (SPMS) versus Healthy Controls and Primary Progressive (PPMS) versus Healthy controls. 
 
The gene expression profile of each gene differentiates along the samples and according to the group 
that each sample belongs; the value of each gene alters significantly. Therefore, we aim in finding the 
genes that most differ between the two groups and are more likely to dominate in our networks. The 
resulting subnetworks will give us the information we need in order to determine how the genes 
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behave and probably going to behave, as well as how they influence each other so as to have a better 
knowledge in predicting “disease triggering” relations/pathways. 

1.5 Thesis Outline and Innovation 

The development of this thesis is based on the necessary theoretical background covered In Chapter 2. 
In the first part of this Chapter the human genome and biological concepts regarding DNA microarrays 
are included and form the biological background. Gene networks and methodologies concerning the 
analysis of DNA microarray data as well as the construction of gene networks compose the second part. 
Machine learning approaches and the mathematical background involving the knowledge in the field of 
bioinformatics and its applications is also presented. Chapter 3 introduces the proposed methodology 
concerning this study and we analyze in detail the steps chosen for the elaboration of our methodology 
for the gene subnetwork construction, the hub genes discovery, and the steps towards drug 
repositioning examination. We have also performed an evaluation method implemented for the 
generalization ability of the observed results. The integration of the Multiple sclerosis gene expression 
datasets and the methodology is presented in section 4, as well as the generation of PPI networks from 
our data along with their organization in subnetworks. Our results were evaluated after applying the 
supervised and unsupervised classification methods in the steps accordingly, for statistical prediction 
and examination of the biological significance of our results.  
 
In this work the innovative concept involves the process of gene expression data from a combinational 
pipeline, that to our knowledge, has not been performed on Multiple sclerosis data. 
Moreover, taking into account the heterogeneity of the disease as well as the limited sample size, we 
can safely say that investigating Multiple sclerosis at the molecular level has provided valuable insight, 
but there is a lot of research in this to be done. The current knowledge for the development of strategies 
for preventing or predicting the progression of the disease is insufficient, therefore a combination of 
clinical data and different machine learning techniques must be explored. 
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2 THEORETICAL BACKGROUND 

In this Chapter we introduce the reader to the necessary biological background followed by the 
mathematical background (bioinformatics and machine learning), needed for the composition of this 
thesis. The human genome is presented in the first section and the significance of DNA microarrays as 
well as their analysis is covered in section 2.1. Following, in section 2.2, which constitutes the beginning 
of the second theoretical part, we introduce the scientific field of machine learning and pattern 
recognition followed by the process of feature subset selection (FSS), applied in DNA microarray data, 
which is distinguished in three fundamental algorithms, also presented, wrappers, filters and 
embedded methods, is interpreted in Section 2.3. In sections 2.4 and 2.5, the general process of 
classification and an introduction of classifiers, including linear and nonlinear classifiers, along with the 
classification methods Support Vector Machines (SVM) and decision trees, implemented in this thesis, 
are covered respectively. Furthermore, in section 2.6, different evaluation methods are described such 
as holdout validation, k-fold cross validation, leave one out cross validation, repeated random sub-
sampling validation. 
Finally, the relationship of network biology and bioinformatics is introduced in section 2.7 where a part 
of different biological networks that exist are presented. 

2.1 The Human Genome  

2.1.1 Genome 

The human genome is a complete set of nucleic acid sequences for humans, encoded as the molecule of 
DNA (deoxyribonucleic acid) within the 23 chromosome pairs in cell nuclei and in a small DNA 
molecule found within individual mitochondria. These are usually treated separately as the nuclear 
genome and the mitochondrial genome. Human genomes include both protein-coding DNA genes and 
noncoding DNA. Haploid human genomes, which are contained in germ cells (the egg and sperm gamete 
cells created in the meiosis phase of sexual reproduction before fertilization creates a zygote) consist of 
more than three billion DNA base pairs, while diploid genomes (found in somatic cells) have twice the 
DNA content. The study, analysis and mapping of HUMAN GENOME, has been the subject of the “Human 
Genome Project” (www.genome.gov). All living organisms are composed of cells, small units of 
biological activity.  
The discovery that DNA contains the code for life, urged a global effort to understand how the genome 
sequences of many organisms associated with their health. The study of the human genome led to the 
genomic revolution since the notification of the first draft sequence of the genome had a huge impact on 
human cancer research. Genes is the basic physical unit of inheritance. Genes are passed from parents 
to offspring and contain the information needed to specify traits. Genes are arranged, one after another, 
on structures called chromosomes. A chromosome contains a single, long DNA molecule, only a portion 
of which corresponds to a single gene. Humans have approximately 20,000-25,000 genes arranged on 
their chromosomes. (www.medlineplus.gov) 

DNA and RNA 

Each gene is made of DNA. Deoxyribonucleic acid (DNA) is the central information storage system of 
most animals and plants, and even some viruses. The name comes from its structure, which is a sugar 
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and phosphate backbone which have bases sticking out from it--so-called bases. So that "deoxyribo" 
refers to the sugar and the nucleic acid refers to the phosphate and the bases. The bases go by the 
names of adenine, cytosine, thymine, and guanine, otherwise known as A, C, T, and G. DNA is a 
remarkably simple structure. It's a polymer of four bases--A, C, T, and G--but it allows enormous 
complexity to be encoded by the pattern of those bases, one after another. DNA is organized structurally 
into chromosomes and then wound around nucleosomes as part of those chromosomes. Functionally, 
it's organized into genes, of which are pieces of DNA, which lead to observable traits. And those traits 
come not from the DNA itself, but from the RNA that is made from the DNA, or most commonly of 
proteins that are made from the RNA which is made from the DNA. So, the central dogma, so-called of 
molecular biology, is that genes, which are made of DNA, are made into messenger RNAs, which are 
then made into proteins. But for the most part, the observable traits of eye color or height or one thing 
or another of individuals come from individual proteins. Sometimes, we're learning in the last few years 
they come from RNAs themselves without being made into proteins--things like micro RNAs. But those 
still are relatively the exception for accounting for traits. (www.technologynetworks.com) 

 
As mentioned above RNA is a nucleic acid that is similar in structure to DNA but different in subtle 
ways. The cell uses RNA for several different tasks, one of which is called messenger RNA, or mRNA. 
And that is the nucleic acid information molecule that transfers information from the genome into 
proteins by translation. Another form of RNA is tRNA, or transfer RNA, and these are non-protein 
encoding RNA molecules that physically carry amino acids to the translation site that allows them to be 
assembled into chains of proteins in the process of translation.  (www.technologynetworks.com) 
  

 

FIGURE 2.1  DNA  AND  RNA  DIFFERENCES 

Genes are the blueprint for our bodies. Humans typically have 46 chromosomes in each cell of their 
body, made up of 22 paired chromosomes and two sex chromosomes. These chromosomes contain 
between 20,000 and 25,000 genes. New genes are being identified all the time. The paired 
chromosomes are numbered from 1 to 22 according to size. (Chromosome number 1 is the biggest.) 
These non-sex chromosomes are called autosomes.  People usually have two copies of each 
chromosome. One copy is inherited from their mother (via the egg) and the other from their father (via 
the sperm). A sperm and an egg each contain one set of 23 chromosomes. When the sperm fertilises the 
egg, two copies of each chromosome are present (and therefore two copies of each gene), and so an 
embryo forms. The chromosomes that determine the sex of the baby (X and Y chromosomes) are called 
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sex chromosomes. Typically, the mother’s egg contributes an X chromosome, and the father’s sperm 
provides either an X or a Y chromosome. A person with an XX pairing of sex chromosomes is 
biologically female, while a person with an XY pairing is biologically male. As well as determining sex, 
the sex chromosomes carry genes that control other body functions. There are many genes located on 
the X chromosome, but only a few on the Y chromosome. Genes that are on the X chromosome are said 
to be X-linked. Genes that are on the Y chromosome are said to be Y-linked. 
Gene expression is the process by which information from a gene is used in the synthesis of a functional 
gene product that enables it to produce end products, protein, or non-coding RNA, and ultimately affect 
a phenotype, as the final effect. These products are often proteins, but in non-protein-coding genes such 
as transfer RNA (tRNA) and small nuclear RNA (snRNA), the product is a functional non-coding RNA. 
Gene expression is summarized in the central dogma of molecular biology first formulated by Francis 
Crick in 1958, further developed in his 1970 article, [39] and expanded by the subsequent discoveries 
of reverse transcription and RNA replication. The process of gene expression is used by all known life—
eukaryotes (including multicellular organisms), prokaryotes (bacteria and archaea), and utilized by 
viruses—to generate the macromolecular machinery for life. (en.wikipedia.org/wiki/Gene_expression) 
 
In genetics, gene expression is the most fundamental level at which the genotype gives rise to the 
phenotype, i.e., observable trait. The genetic information stored in DNA represents the genotype, 
whereas the phenotype results from the "interpretation" of that information. Such phenotypes are often 
expressed by the synthesis of proteins that control the organism's structure and development, or that 
act as enzymes catalyzing specific metabolic pathways. All steps in the gene expression process may be 
modulated (regulated), including the transcription, RNA splicing, translation, and post-translational 
modification of a protein. Regulation of gene expression gives control over the timing, location, and 
amount of a given gene product (protein or ncRNA) present in a cell and can have a profound effect on 
the cellular structure and function. Regulation of gene expression is the basis for cellular differentiation, 
development, morphogenesis and the versatility and adaptability of any organism. Gene regulation may 

therefore serve as a substrate for evolutionary change. (www.basic2tech.com/genetics/) 

 

FIGURE 2.2  DNA 
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2.1.2 Genetics 

Genetics is a branch of biology concerned with the study of genes, genetic variation, and heredity in 
organisms. Though heredity had been observed for millennia, Gregor Mendel, Moravian scientist and 
Augustinian friar working in the 19th century in Brno, was the first to study genetics scientifically. 
Mendel studied "trait inheritance", patterns in the way traits are handed down from parents to 
offspring over time. He observed that organisms (pea plants) inherit traits by way of discrete "units of 
inheritance". This term, still used today, is a somewhat ambiguous definition of what is referred to as a 
gene. Trait inheritance and molecular inheritance mechanisms of genes are still primary principles of 
genetics in the 21st century, but modern genetics has expanded beyond inheritance to studying the 
function and behavior of genes. Gene structure and function, variation, and distribution are studied 
within the context of the cell, the organism (e.g., dominance), and within the context of a population. 
Genetics has given rise to several subfields, including molecular genetics, epigenetics and population 
genetics. Organisms studied within the broad field span the domains of life (archaea, bacteria, and 
eukarya). Genetic processes work in combination with an organism's environment and experiences to 
influence development and behavior, often referred to as nature versus nurture. The intracellular or 
extracellular environment of a living cell or organism may switch gene transcription on or off. A classic 
example is two seeds of genetically identical corn, one placed in a temperate climate and one in an arid 
climate (lacking sufficient waterfall or rain). While the average height of the two corn stalks may be 
genetically determined to be equal, the one in the arid climate only grows to half the height of the one in 
the temperate climate due to lack of water and nutrients in its environment. 
(www.basic2tech.com/genetics/) 

2.1.3 DNA Microarray and analysis 

A microarray is a laboratory tool used to detect the expression of thousands of genes at the same time. 
DNA microarrays are microscope slides that are printed with thousands of tiny spots in defined 
positions, with each spot containing a known DNA sequence or gene. Often, these slides are referred to 
as gene chips or DNA chips. The DNA molecules attached to each slide act as probes to detect gene 
expression, which is also known as the transcriptome, or the set of messenger RNA (mRNA) transcripts 
expressed by a group of genes. To perform a microarray analysis, mRNA molecules are typically 
collected from both an experimental sample and a reference sample. For example, the reference sample 
could be collected from a healthy individual, and the experimental sample could be collected from an 
individual with a disease like cancer. The two mRNA samples are then converted into complementary 
DNA (cDNA), and each sample is labeled with a fluorescent probe of a different color. For instance, the 
experimental cDNA sample may be labeled with a red fluorescent dye, whereas the reference cDNA may 
be labeled with a green, fluorescent dye. The two samples are then mixed together and allowed to bind 
to the microarray slide. The process in which the cDNA molecules bind to the DNA probes on the slide is 
called hybridization. Following hybridization, the microarray is scanned to measure the expression of 
each gene printed on the slide. If the expression of a particular gene is higher in the experimental 
sample than in the reference sample, then the corresponding spot on the microarray appears red. In 
contrast, if the expression in the experimental sample is lower than in the reference sample, then the 
spot appears green. Finally, if there is equal expression in the two samples, then the spot appears 
yellow. The data gathered through microarrays can be used to create gene expression profiles, which 
show simultaneous changes in the expression of many genes in response to a particular condition or 
treatment. (www.nature.com/scitable/definition/microarray-202/). 
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FIGURE 2.3  ONE-COLOR VS TWO-COLOR ARRAYS 

 Microarray can be a valuable tool in order to define transcriptional signatures bound to a pathological 
condition, to determine whether the DNA from a particular individual contains a mutation in genes as 
well as to exclude molecular mechanisms tightly bound to transcription.  Microarray analysis frequently 
does not imply a final answer to a biological problem but allows the discovery of new research paths 
which let to explore it by a different perspective. (www.genome.gov) 
 
Today, DNA microarrays are used in clinical diagnostic tests for some diseases. Sometimes they are also 
used to determine which drugs might be best prescribed for certain individuals, because genes 
determine how our bodies handle the chemistry related to those drugs. With the advent of new DNA 
sequencing technologies, some of the tests for which microarrays were used in the past now use RNA 
sequencing instead. But microarray tests still tend to be less expensive than sequencing, so they may be 
used for very large studies, as well as for some clinical tests. (www.genome.gov) 
 
The principal steps of a microarray analysis are [40]: 

Analysis step Caveats 
 

Experimental design and implementation- 
 

 Define the biological question and hypothesis 
clearly  

 Design the microarray experimental scheme 
carefully; include biological replication in 
experimental design 

 Avoid experimental errors 
Data collection and archival  Compliance with microarray information 

collection standards (e.g. MIAME) 
Image acquisition   Try to balance the overall intensities between 

the two dyes 
 Scan image at appropriate resolution  
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Analysis step Caveats 
 

Image analysis  Inspect the gridding result manually; adjust the 
mask and flag poor-quality spots if necessary 

 Choose and apply an appropriate segmentation 
algorithm 

 Apply quality measures to aid decision of spot 
quality 

Data pre-processing  Remove poor-quality spots 
 Remove spots with intensity lower the 

background plus two standard deviations. 
 Log-transform the intensity ratios 

Data normalization  Use diagnostic plots to evaluate the data 
 Consider using LOWESS and its variants for 

normalization 
Identifying differentially expressed genes  Do not use fixed threshold (i.e. two-fold 

increase or decrease) to infer significance 
 Calculate a statistic based on replicate array 

data for ranking genes 
 Select a cut-off value for rejecting the null 

hypothesis that a gene is not differentially 
expressed; remember to adjust for multiple 
hypothesis testing 

Exploratory data analysis  Use different analysis tools with different 
setting to ‘explore’ the data 

 Validate the result by follow-up experiments 

TABLE2.1 SUMMARY OF MICROARRAY ANALYSIS STEPS 

2.2 Machine Learning and Pattern Recognition 

2.2.1 Datasets 

Data 
 
Data completeness and generalizability are other important considerations when developing and 
training Machine Learning (ML) algorithms. The familiar concept of “garbage-in/garbage-out” 
highlights the critical importance of having high-quality data for ML applications, since incomplete 
and/or erroneous values may inappropriately train an algorithm in the wrong direction. Likewise, 
highly controlled data may not represent real-world conditions. “Quality data” for AI/ML training 
applications must include accurate, precise, complete, and generalizable information [43]. Laboratory 
data are often assumed to be sufficiently accurate and precise by both health-care providers and 
researchers.  
 
Unfortunately, it is a truism that not all laboratory tests are created equal, and poor analytical bias and 
imprecision degrade the performance of ML algorithms. Additionally, both providers and researchers 
are often not aware that test methods may lack standardization. The concept of imprecision reported as 
coefficient of variation is also poorly understood by most bedside providers with many assuming any 
change in numerical values reflecting a true biological change without taking into account sources of 
variability. Despite the convenience of collecting real-world information from electronic health records, 
the retrieved medical data are often incomplete. This is attributed to the several inconsistencies in test 
ordering and resulting. Ordered laboratory tests may be cancelled due to patients not showing up for a 
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visit, or samples were found to be not acceptable upon receipt by the laboratory. Incomplete data create 
significant challenges for ML developers, where the predictive power of algorithms may be severely 
diminished. The limitation of real-world evidence has thus prompted investigators to gravitate toward 
more complete and rigorous data derived from clinical trials. However, caution is advised when using 
data that are “too complete” or “too controlled,” since it may not represent the real-world population 
and contribute to overfitting [44]. Ultimately, the best and most balanced approach is to pilot ML 
algorithms using more controlled data during the initial stages and later refining these algorithms using 
real-world data to confirm generalizability.  
 
Here, our data is presented as a set of N samples. Each sample contains the expression value of K genes 
also called predictors. In the dataset, each sample N can be expressed as a vector 𝒙𝒊 ∈ 𝑹𝑲 where i = 1,...., 
N. To each of the samples, a class label y is assigned. The data can also be expressed in array form as X ∈ 
RN,K where each row represents a sample containing the expression values of K genes, while the class 
labels of all samples are expressed as a vector y ∈  RN. 

Pattern recognition  

Pattern recognition [41-42] is classified in the field of machine learning, a scientific area that focuses on 
the recognition of patterns and regularities in vast amount of data. Today, there is clearly a need to 
apply rational and systems-based data science principles for handling the ever-growing body of both 
qualitative and quantitative aspects of medical laboratory information and classification. Faced with the 
limitations of human processing of rapid, accurate, and precise retrieval of data in real time, the 
heuristic provided and amplified by Machine Learning offers an attractive approach to substantially 
improve the delivery of health care. Current health problems that are deemed suitable to ML include, 
but are not limited to, integrating multiple variables to mimic human clinical decision-making skills (eg, 
multiparameter disease diagnosis), automation of testing and treatment algorithms (eg, reflex testing) 
and workflows, pattern recognition using imaging data (eg, radiology, histology slides, and vital sign 
waveforms), and/or test utilization trends. However, although one could use AI/ML, it may not always 
be necessary to apply such tools for every situation since simple statistical approaches may sometimes 
suffice[41]. 

 Supervised learning 

Supervised learning entails learning a mapping between a known dataset called the training dataset, a 
set of input variables X and an output variable Y and applying this mapping to predict the outputs for 
unseen data. If the desired output consists of continuous variables, then the task is called regression 
whereas cases, in which the output falls within discrete values the task is called classification. 
Supervised learning is the most important methodology in machine learning and it also has a central 
importance in the processing of class prediction in DNA microarray data analysis. (ex. linear regression, 
logistic regression, naive Bayes, decision tree, k-nearest neighbor (k-NN), support vector machine 
(SVM), and the ensemble decision tree algorithm random forest (RF)). 

 Unsupervised learning 

 Unsupervised learning is the type of machine learning that is trying to find hidden structure in data 
with unlabeled responses. Due to the fact that the data given are unlabeled, this concludes that there is 
no error or reward signal to evaluate a potential solution. Various unsupervised classification 
techniques can be employed with DNA microarray data in microarray data analysis that affect statistical 
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analysis, in the part of class discovery. (ex. k-means algorithm, principal component analysis (PCA), 
hierarchical clustering). 

 Reinforcement learning 

Reinforcement learning is the type of machine learning where an agent interacts with its environment. 
The agent senses the environment and based on this sensory input choosing an action to perform in it. 
This action changes the environment in some manner and this change is communicated to the agent 
through a scalar reinforcement signal. Reinforcement learning utilizes a positive or negative reward 
signal sent to the agent after an action is complete (ex. International Business Machine (IBM)’s Deep 
Blue (Armonk, New York) and Google’s Go (Alphabet, Mountain View, California)). Currently 
reinforcement learning approaches are rarely employed in pathology.  
 

 
FIGURE 2.4  OVERVIEW DIAGRAM OF MACHINE LEARNING ALGORITHMS 

2.2.2 Patterns –Classes – Features 

Machine learning starts with the design of appropriate data representations. In machine learning and 
pattern recognition the features can be symbolic (e.g. condition) or numerically (e.g. weight). The 
combination of some features is the feature vector. A pattern is a composition of characteristics which 
are divided into specific decision areas called classes. The classes are separated by decision boundaries. 
The n-dimensional space defined by the feature vector space is called feature space. Feature spaces may 
overlap each other, allowing patterns of different classes to share same characteristics. Moreover, each 
pattern can be illustrated in the set of features F. Thus, each feature can be a member not only of 
different patterns but also different classes. The classification model is a pair of variables {x, ω} where x 
is a collection of features, feature vector, and ω is the concept of observation, the label [45-46]. 

2.2.3 Applications and implementation of pattern recognition 

Pattern recognition as a field of study developed significantly in the 1960s. It is an interdisciplinary 
subject, covering developments in the areas of medical, engineering, artificial intelligence, computer 
science, psychology and physiology, among others. Human being has natural intelligence and so can 
recognize patterns [47-48]. As we mentioned above pattern recognition is the study of how machines 
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can observe the environment, learn to distinguish patterns of interest from their background, and make 
sound and reasonable decisions about the patterns [49]. But in spite of almost 50 years of research, 
design of a general-purpose machine pattern recognizer remains an elusive goal. The best pattern 
recognizers in most instances are humans, yet we do not understand how humans recognize patterns.  
Given a pattern, its recognition/classification may consist of one of the following two tasks:  
 
 supervised classification in which the input pattern is identified as a member of a predefined 

class,  
 unsupervised classification (e.g., clustering) in which the pattern is assigned to an unknown class. 

 
The steps that take place in a pattern recognition task are: 
 

1. Data acquisition. Through data acquisition the data are converted from one form (speech, 
character, pictures etc.) into another in order to be acceptable to the computing device.  

2. Preprocessing and Feature extraction. After data acquisition the task of analysis begins. 
Where the learning about the data takes place and information is collected about the different 
events and pattern classes available in the data.  

3. Classification. Its purpose is to decide the category of new data on the basis of knowledge 
received from data analysis process. Classifier is the algorithm that implements classification 
and maps input data to class which performs classification. Finally, it is ought to evaluate the 
decision taken. This involves applying the trained classifier to an independent test set of labeled 
patterns. 

 
System learns from training set and efficiency of system is checked by presenting testing set to it.  

 
FIGURE 2.5  PATTERN RECOGNITION PROCESS 
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FIGURE 2.6  PATTERN RECOGNITION TASKS  

2.3 Processing Features 

2.3.1 Feature pre-processing 

In a typical high throughput experiment, we assay thousands of features (gene transcripts, proteins, 
metabolites) in a certain number of biologically diverse samples (from about 6 to hundreds or 
thousands). In biomedical research, experiments aim at measuring biological variability by comparing 
two or more biological conditions in a controlled setting. To be able to measure any biologically signal 
in the data, the biological variability of interest, i.e., the one produced by the treatment, must be larger 
than the technical variability. However, before analyzing any data, it is necessary to make the samples 
as comparable as possible by removing the unwanted technical variability that should be shared among 
all samples without removing biological variability, that will differentiate the samples biologically. [49-
50] 
 
The steps that can be followed are: 
 

 Data transformation 

The first step in preparing a dataset is to visualize the distribution of the values. Very often dew to the 
skewness of their distribution we see that most of the data are at very low values with some very high 
values. Such data are difficult to visualize and to analyze, therefore we log-transform the data. 
 

 Normalization 

In order to remove as much as technical variability as possible while keeping biological variability of 
the data, it is necessary to further process them through normalization. One of the important 
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requirements of most normalization techniques is that most features aren’t expected to change among 
biological conditions thus normalization expects only a minority of biological features to be 
differentially expressed in the conditions of interest. Normalization techniques are: 
 

1. Centering  

Centering refers to the operation of modifying the mean value of a set of values by subtracting a fixed 
value from each individual value. A typical value is the mean of all the data to be centered. The reasons 
for centering are quite subjective and qualitative. It is possible to formulate rational reasons for 
centering on scientific grounds. Basically, centering should be performed only if there are common 
offsets in the data or if modeling such offsets provides an approximately reasonable model. Thus 
centering is performed to make interval-scale data behave as ratio-scale data, which is the type of data 
assumed in most multivariate models. Said more simply, centering should make a difference. This 
difference can manifest itself as: 

(i) reduced rank of the model 

(ii) increased fit to the data 

(iii) specific removal of offsets 

(iv) avoidance of numerical problems. 
 

2. Scaling 

Scaling refers to the operation of rescaling a set of values to scale in the range of 0 and 1 (or -1 and 1). 
Scaling is a subject often treated in conjunction with centering. Scaling is used for several reasons. Some 
important ones are: 

(i) to adjust scale differences. 

(ii) to accommodate for heteroscedasticity. 

(iii) to allow for different sizes of subsets of data (block scaling) 

However, the purpose of scaling is very different from that of centering. Scaling is a way of introducing a 
loss function other than the least squares loss function normally used, therefore scaling does not change 
the interpretation of the model and its parameters. As for centering, scaling must be performed in a 
specific way in order not to introduce artificial structure that needs to be modeled. This becomes even 
more apparent when going to three-way models.[50] 
 

3. Quantile normalization 

Quantile normalization is a non-parametric normalization method. The goal of the quantile method is to 
make the distribution of probe intensities for each array in a set of arrays the same. The method is 
motivated by the idea that a quantile–quantile plot shows that the distribution of two data vectors is the 
same if the plot is a straight diagonal line and not the same if it is other than a diagonal line. This 
concept is extended to n dimensions so that if all n data vectors have the same distribution, then 

plotting the quantiles in n dimensions gives a straight line along the line given by the unit vector (
ଵ

√௡
 …. 

ଵ

√௡
). This suggests we could make a set of data have the same distribution if we project the points of our 

n dimensional quantile plot onto the diagonal. 
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Let 𝑞௞ = (𝑞௞ଵ,..., 𝑞௞௡) for k = 1,..., p be the vector of the kth quantiles for all n arrays 𝑞௞ = (𝑞௞ଵ,..., 𝑞௞௡) and 

d= (
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) be the unit diagonal. To transform from the quantiles so that they all lie along the diagonal, 

consider the projection of q onto d 
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This implies that we can give each array the same distribution by taking the mean quantile and 
substituting it as the value of the data item in the original dataset. This 

motivates the following algorithm for normalizing a set ofdata vectors by giving them the same 
distribution: 

1. given n arrays of length p, form X of dimension p × n where each array is a column; 

2. sort each column of X to give 𝑋௦௢௥௧; 

3. take the means across rows of 𝑋௦௢௥௧  and assign this mean to each element in the row to get 
𝑋′௦௢௥௧; 

4. get 𝑋௡௢௥௠௔௟௜௭௘ௗ by rearranging each column of 𝑋′௦௢௥௧to have the same ordering as original X 

The quantile normalization method is a specific case of the transformation 𝑥′௜ = 𝐹ିଵ(𝐺(𝑥௜)) , where we 
estimate G by the empirical distribution of each array and 𝐹  using the empirical distribution of the 
averaged sample quantiles. Extensions of the method could be implemented where 𝐹ିଵand G are more 
smoothly estimated. One possible problem with this method is that it forces the values of quantiles to 
be equal. This would be most problematic in the tails where it is possible that a probe could have the 
same value across all the arrays. However, in practice, since probeset expression measures are typically 
computed using the value of multiple probes, we have not found this to be a problem [50]. 

2.3.2 Feature extraction 

Feature extraction addresses the problem of finding the most compact and informative set of features, 
to improve the efficiency or data storage and processing. Defining feature vectors remains the most 
common and convenient means of data representation for classification and regression problems. Data 
can then be stored in simple tables (lines representing “entries”, “data points, “samples”, or “patterns”, 
and columns representing “features”). Each feature results from a quantitative or qualitative 
measurement, it is an “attribute” or a “variable”. Modern feature extraction methodology is driven by 
the size of the data tables, which is ever increasing as data storage becomes more and more efficient 
[51]. 

Dimensionality reduction is an important approach in machine learning. To identify the set of 
significant features and to reduce the dimension of the dataset, there are three popular dimensionality 
reduction techniques that are used.  
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 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is the main linear approach for dimensionality reduction. It 
performs a linear mapping of the data from a higher-dimensional space to a lower-dimensional space in 
such a manner that the variance of the data in the low-dimensional representation is maximized. 

 Kernel PCA (KPCA) 

Kernel Principal Component Analysis (KPCA) is an extension of PCA that is applied in non-linear 
applications by means of the kernel trick. It is capable of constructing nonlinear mappings that 
maximize the variance in the data. 

2.3.3 Feature Subset Selection (FSS) 

When building a machine learning model in real-life, it’s almost rare that all the variables in the dataset 
are useful to build a model. Adding redundant variables reduces the generalization capability of the 
model and may also reduce the overall accuracy of a classifier. Furthermore, adding more and more 
variables to a model increases the overall complexity of the model. The goal of feature selection in 
machine learning is to find the best set of features that allows one to build useful models of studied 
phenomena. 
 
There are three important reasons why we choose Feature Selection and not just give all the features to 
the ML algorithm and let it decide which feature is important. The first reason is the Curse of 
dimensionality — Overfitting. As the dimensionality of the feature space increases, the number 
configurations can grow exponentially and thus the number of configurations covered by an 
observation decreases. The second reason is that we want our models to be simple and explainable. We 
lose ability to explain our models properties when we have a lot of features. Finally, most of the times, 
we will have many non-informative features. For example, Name or ID variables. Poor-quality input will 
produce Poor-Quality output. Also, a large number of features make a model bulky, time-taking, and 
harder to implement in production.  
 
In supervised learning, feature selection is often viewed as a search problem in a space of feature 
subsets. To carry out this search we must specify a starting point, a strategy to traverse the space of 
subsets, an evaluation function and a stopping criterion. Depending on how and when the utility of 
selected characteristics is evaluated, different methods may be adopted which are divided into the 
following categories: [52-53] 

1. Filter methods 
2. Wrapper methods 
3. Embedded methods 

Filter methods 

 Filter approaches [52, 53] remove irrelevant features according to general characteristics of the data. 
Filter algorithms provide fast execution, since they do not include repetitions and they are not based on 
a specific classifier. They have a simple construction, which typically uses a simple search strategy and 
characteristics evaluation criterion is planned based on a specific criterion, the feature/feature subset 
relevance.  In this method for every possible characteristics combination, we choose a criterion (e.g. 
Bhattacharya distance, Divergence, Scatter Matrices) and select the best combination of features vector. 
We must note that filter algorithms are relatively robust against overfitting and may fail to select the 
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most “useful” features. The primary advantage of filter methods is their speed and ability to scale, to 
large datasets. 
 
Filter methods are divided into multivariate and univariate methods. Multivariate methods are able to 
find relationships among the features, while univariate methods consider each feature separately. 
Univariate filter techniques can be divided into two categories: parametric and model-free methods. In 
parametric methods the data is drawn from a given probability distribution while in model-free 
methods, or non-parametric, the data may not follow a normal distribution. In microarray studies the 
most widely used techniques are t-test and ANOVA. 
 
A typical feature selection process involves two phases:  

 Selection of characteristics and  
 Fitting the model to evaluate performance.  

 
It consists of three steps: 
1. The first step is the creation of a candidate set which contains a subset of the original features 

through certain research strategies. Some of the feature selection techniques are:  
 

 Chi-square Test: 
The Chi-square test is used for categorical features in a dataset. We calculate Chi-square between each 
feature and the target and select the desired number of features with the best Chi-square scores. In 
order to correctly apply the chi-squared in order to test the relation between various features in the 
dataset and the target variable, the following conditions have to be met: the variables have to be 
categorical, sampled independently and values should have an expected frequency greater than 5. 
 

 Control cases: t-test 
The basic idea in the t-test is to check if the mean value of the attribute of each class differs significantly 
from another. T-test is the most popular option when the data follow a normal distribution. 
 
The aim is to check which of the following two cases applies: 
H1: The feature has a different average value in each class 
H0: The feature has the same average in each class 
If H0 (null hypothesis) is applied, then feature is discarded because it is difficult on this basis to 
distinguish data into categories. On the contrary if H1 (alternative hypothesis) is applicable, the 
attribute values differ considerably between categories and can be distinguished easily. This feature is 
selected. 
 

 The Receiver Operating Characteristic (ROC) curve 
If when applying the previous method, the respective average values are close, the information may not 
be sufficient to guarantee good properties classification. The ROC technique gives information on the 
overlap between categories after quantifying an area defined by two curves. 
 

 Fisher Discrimination Ratio 
In order to quantify the resolution of a feature Fisher Discrimination Ratio is used. The ratio is 
independent of the distribution followed by the class and defined as: 
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These criteria do not take into consideration the correlations between features and also do not exploit 
the cross- correlation coefficient between them. In the scalar selection of characteristics, after choosing 
a criterion is needed to prioritize features in descending order and calculate the cross-correlation of the 
first in hierarchy, with all the rest. The cross-correlation process may affect significantly the hierarchy 
of features. 
 
Additionally, in feature selection a high-dimensional generalization scheme which maximizes the 
mutual information between the joint distribution and other target variables is found to be useful. 
 
The mutual information (MI) of two discrete random variables X and Y is defined as: 
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, where 𝑝(𝑥, 𝑦) is the joint probability distribution function of X and Y, and p(x) and p(y) are 
the marginal probability distribution functions of X and Y respectively. In the case of continuous 
random variables, the summation is replaced by a definite double integral 
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, where 𝑝(𝑥, 𝑦) is now the joint probability density function of X and Y, and are the marginal probability 
density functions of X and Y respectively. 
 
Mutual information measures the information that X and Y share. Thus, this can be translated as a 
measurement of the “knowledge” one of these variables gives us, to reduce uncertainty about the other. 
In the case that X and Y are independent, then knowing X does not give any information about Y and 
vice versa, so their mutual information is zero. On the other hand, if X is a deterministic function 
of Y and Y is a deterministic function of X then all information conveyed by X is shared with Y: 
Knowing X determines the value of Y and vice versa. As a result, in this case the mutual information is 
the same as the uncertainty contained in Y (or X) alone, namely the entropy of Y (or X). Moreover, this 
mutual information is the same as the entropy of X and as the entropy of Y, with a very special case of 
this is when X and Y are the same random variable. 
 
Mutual information is a measure of the inherent dependence expressed in the joint 
distribution of X and Y relative to the joint distribution of X and Y under the assumption of 
independence. Mutual information therefore measures dependence in the following sense: 

(X; Y) = 0 if and only if X and Y are independent random variables. this is easy to see in one 
direction: if X and Y are independent, then 𝑝(𝑥, 𝑦)  =  𝑝(𝑥) 𝑝(𝑦), and therefore:  

 

log ቆ
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
ቇ = log 1 = 0 

 
Moreover, mutual information is nonnegative I(X; Y) ≥ 0 and symmetric 𝐼(𝑋; 𝑌) =  𝐼(𝑌; 𝑋). 
 

 Correlation Coefficient 
Correlation is a measure of the linear relationship of 2 or more variables. Through correlation, we can 
predict one variable from the other. The logic behind using correlation for feature selection is that the 
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good variables are highly correlated with the target. Furthermore, variables should be correlated with 
the target but should be uncorrelated among themselves. If two variables are correlated, we can predict 
one from the other. Therefore, if two features are correlated, the model only really needs one of them, 
as the second one does not add additional information.  
 

 Variance Threshold 
The variance threshold is a simple baseline approach to feature selection. It removes all features which 
variance doesn’t meet some threshold. By default, it removes all zero-variance features, i.e., features 
that have the same value in all samples. We assume that features with a higher variance may contain 
more useful information but note that we are not taking the relationship between feature variables or 
feature and target variables into account, which is one of the drawbacks of filter methods. 
 
Continuing on, with the steps needed to create a candidate set of features the second step is the 
evaluation of the candidate set and assess the usefulness of characteristics in the set. Based on the 
assessment, some features in the candidate set may be rejected or added to selected set of features. 
 
Finally, the last step is to determine whether the current set of selected features is quite good after 
applying certain switching criteria. If the set meets the prerequisites, a selection algorithm 
characteristics will return all the selected features, otherwise, it will be repeated until the stop criterion 
is satisfied. [53] 

Significance Analysis of Microarrays (SAM) 

Significance Analysis of Microarrays (SAM) [54-55] is a filter, univariate, statistical technique for finding 
significant genes in a set of microarray data. It was proposed by Tusher, Tibshirani and Chu and the 
software was written by Michael Seo, Balasubramanian Narasimhan and Robert Tibshirani. SAM 
identifies genes with statistically significant changes in expression by assimilating a set of gene-
specific tests. Each gene is assigned a score on the basis of its change in gene expression relative to the 
standard deviation of repeated measurements for that gene. Genes with scores greater than a threshold 
are chosen as potentially significant. The percentage of such genes identified by chance is the false 
discovery rate (FDR). To estimate the FDR, nonsense genes are identified by analyzing permutations of 
the measurements. The threshold can be adjusted to identify smaller or larger sets of genes, and FDRs 
are calculated for each set. The cutoff for significance is determined by a tuning parameter delta, chosen 
by the user based on the false positive rate. One can also choose a fold change parameter, to ensure that 
called genes change at least a pre-specified. 

 
FIGURE 2.7  FILTER PROCESS 
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Wrapper methods 

Wrapper approaches [51] apply machine learning algorithms to feature subsets and use cross-
validation to evaluate the score  of  feature  subsets. Wrapper methodology provides a way to resolve 
the problem of choice characteristics independent of the learning engine that we have chosen. For each 
combination of feature vectors to estimate the possibility of false classification is estimated and choose 
based on the lower smallest error. Wrapper feature selection methods create many models with 
different subsets of input features and select those features that result in the best performing model 
according to a performance metric. These methods are unconcerned with the variable types, although 
they can be computationally expensive. In this method the criterion that is used is the feature subset 
“usefulness” measurement. Finally, we must mention that wrapper methods, in principle, result in the 
most “useful” features, contrary to filter methods which are prone to overfitting. The main disadvantage 
of wrapper approaches is that during the feature selection process, the classifier must be repeatedly 
called to evaluate a subset. 
 
Some of the wrapper selection techniques are:  

 
 Forward Feature Selection 

This is an iterative method wherein we start with the best performing variable against the target. Next, 
we select another variable that gives the best performance in combination with the first selected 
variable. This process continues until the preset criterion is achieved. 
 

 Backward Feature Elimination 
This method works exactly opposite to the Forward Feature Selection method. Here, we start with all 
the features available and build a model. Next, the variable from the model which gives the best 
evaluation measure value is chosen. This process is continued until the preset criterion is achieved. 
 

 Exhaustive Feature Selection 
This is the most robust feature selection method covered so far. This is a brute-force evaluation of each 
feature subset. This means that it tries every possible combination of the variables and returns the best 
performing subset. 

 
FIGURE 2.8  WRAPPER PROCESS 
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Embedded methods 

The embedded model algorithms [51-53] incorporate the feature selection as part of the training/ load 
process model, and the utility of the characteristics is obtained by optimizing the function of the 
learning model.  This method does not separate the training data in the training dataset and in a set of 
validation data. Embedded methods are similar to wrappers, they use the same criterion features 
subset usefulness. Their advantage is that they are less computationally expensive and less prone to 
overfitting. Some of the embedded selection techniques are:  
 

 Recursive Feature Elimination (RFE) 
 

Recursive feature elimination is an embedded feature selection approach based on the idea to 
repeatedly construct a model, for example an SVM or a regression model, and choose the best or worst 
performing feature, for example based on coefficients, setting the feature aside and then repeating the 
process with the rest of the features. This process is applied until all features in the dataset are 
exhausted. Features are ranked according to when they were eliminated. As such, it is a greedy 
optimization for finding the best performing subset of features. The least significant feature is 
determined through a feature weighting scheme which can be the weight given to each feature by a 
linear classifier or by non-linear feature weighting methods.  

 LASSO Regularization (L1) 
 

Regularization consists of adding a penalty to the different parameters of the machine learning model to 
reduce the freedom of the model, i.e., to avoid over-fitting. In linear model regularization, the penalty is 
applied over the coefficients that multiply each of the predictors. From the different types of 
regularization, Lasso or L1 has the property that is able to shrink some of the coefficients to zero. 
Therefore, that feature can be removed from the model. 

 Random Forest Importance 
 

Random Forests is a kind of a Bagging Algorithm that aggregates a specified number of decision trees. 
The tree-based strategies used by random forests naturally rank by how well they improve the purity of 
the node, or in other words a decrease in the impurity (Gini impurity) over all trees. Nodes with the 
greatest decrease in impurity happen at the start of the trees, while notes with the least decrease in 
impurity occur at the end of trees. Thus, by pruning trees below a particular node, we can create a 
subset of the most important features. 
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FIGURE 2.9  EMBEDDED METHOD PROCESS 

 

FIGURE 2.10 FEATURE SUBSET SELECTION METHODS 

2.4 Clustering 

2.4.1 Clustering analysis and methods 

Clustering analysis is a type of unsupervised learning which aims to find the most natural way of 
grouping a dataset. This is achieved by organizing a set of observations based on a similarity criterion, 
such that observations in the same group are more alike than observations in different groups [56-57]. 
Many gene clustering methods have been proposed and applied in the literature. Hierarchical clustering 
[57], K-means [58], partitioning around medoids (PAM; a.k.a. K-memoids) [59], self-organizing maps 
(SOM) [60] are traditional algorithms and are among the most popular ones in microarray analysis. 

Hierarchical clustering 

Hierarchical clustering is the first method used to cluster genes and samples in microarray data. It 
starts by considering the n data points as n nodes. Instead of partitioning into several clusters, at each 
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iterative stage, a pair of nodes with the shortest distance between them are agglomerated to form a new 
node (agglomerative method) or the n nodes are successively separated into finer groups (divisive 
method). Thus, a hierarchical tree is constructed after n-1 steps. In this paper we only consider 
agglomerative hierarchical clustering. To define distance between two nodes, different linkages 
including single linkage (shortest pair-wise distance), complete linkage (largest distance), or average 
linkage (average distance) may be chosen in the method. Hierarchical clustering has been widely used 
in clustering microarray data and is especially successful in ordering genes to visualize the global 
patterns. The method, however, suffers from some intrinsic difficulties. At each iterative stage, the 
merge of two nodes is based on pair-wise distances of all nodes at that stage instead of any global 
criterion. When n is large, accumulation of mistakes is pronounced, and the method lacks robustness. 
The method by nature forms a hierarchical tree and does not require estimation of the number of 
clusters. It is, however, possible to generate clusters by cutting the tree at a pre-determined level of 
branch.[57] 

K-means 

This is a classical clustering method [58] also widely used in microarray data. The algorithm aims to 
split the data into K clusters by minimizing the within cluster dispersion ∑ ∑ ห𝑥௜ − 𝑥ି(௝)ห ଶ௫೔∈஼ೕ

௄
௝ୀଵ where 

𝑥ି(௝)is the centre of cluster j and ||.|| denotes Euclidian distance. The optimization is usually 
implemented by a classification EM-type algorithm that very often falls into a local minimum in a 
complex data. As a result, the clustering may differ using different initial values in the optimization. One 
common way to avoid such local minimum problem is to run K-means algorithm multiple times with 
random initial cluster centers and select the cluster solution with smallest within cluster sum of 
squares. As an algorithm of global criterion, K-means usually produces good clustering results if K 
correctly. chosen. The method is, however, unstable and highly affected by the presence of scattered 
genes in the complex microarray data. In addition, since K-means calculates the cluster centers in the 
criterion, it requires the data be in the Euclidean space with Euclidean distance as the dissimilarity 
measure.  

SOM 

Self-organizing maps (SOM) [60] has been applied in many microarray analysis. It first maps K nodes in 
a low-dimensional (usually two-dimensional) grid space from the d-dimensional space that the data set 
is situated and then the nodes are adjusted iteratively. Each time, a point from the data is randomly 
chosen. The movement of the nodes in d-dimensional space depends on their distance to the chosen 
point and the two-dimensional geometry of the nodes. The magnitude of movement decreases as 
iterations goes on. Usually, the process continues more than 20,000 iterations for the nodes to converge 
and serve as cluster centers to form clustering. Essentially SOM can be viewed as a K-means criterion 
restricted on the two-dimensional grid geometry. Thus, clusters generated from nodes close to each 
other in the two-dimensional grid geometry will have similar expression patterns. We not only can 
visualize expression patterns within each cluster but also can observe relation and connections 
between clusters on the two-dimensional node space. On the other hand, SOM (compared to K-means) 
is a sub-optimal algorithm because the optimization is restricted on the two-dimensional node space. 
Similar to K-means, SOM is very sensitive to the choice of the number of nodes and the presence of 
scattered genes. 
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2.5 Classification  

2.5.1 Classification analysis and Classifiers 

As we already mentioned the aim of classification is to find a rule, which, based on external 
observations, assigns a sample to one of several classes, which implements training a classifier to 
accurately recognize patterns from given training samples and to classify test samples with the trained 
classifier.  Binary classification is the simplest case where the classifier categorizes the samples of given 
set into two different classes based on that rule. 
Classifier is the algorithm that implements classification and maps input data to class which performs 
classification. Classifiers are divided to linear and nonlinear (Linear and nonlinear classifiers” Online. 
Available: http://cs.brown.edu/courses/cs1955/fall2009/docs/lecture_10-27.pdf) 
 

Linear and non-Linear Classifier 
 
A linear classifier can separate two classes only, when they are linearly separable, i.e. there exists a 
hyperplane, in two-dimensional case just a straight line, that separates the data points in both classes. 
An opposite case is that classes are linearly inseparable. In this case it is still possible that only few data 
points are in the wrong side of a hyperplane, and thus the error in assuming a linear boundary is small. 
Depending on the degree of error, linear classifier can still be preferable, because the resulting model is 
simpler and thus less sensitive for overfitting (poor generalization ability to new data points). However, 
some classes can be separated only by a non-linear boundary and we need a nonlinear classifier.  
More precisely: Let's have numeric attributes 𝑥ଵ,……… , 𝑥௞ whose values are denoted by 𝑑𝑜𝑚(𝑥௜). For 
example if 𝑥ଵcan have values between 0 ≤ 𝑥 ≤ 1, then 𝑑𝑜𝑚(𝑥௜) = [0,1]. These compose attribute 
space: 𝑑𝑜𝑚(𝑥ଵ)  ×  𝑑𝑜𝑚(𝑥ଶ)  × . . .× 𝑑𝑜𝑚(𝑥௞).  
All data points lie somewhere in this space. If the points fall into two classes, there is some boundary 
which separates them. If the classes are linearly separable, then in two-dimensional case we can 
describe the boundary by a line, for 3-dimensional data we need a plane and for higher dimensional 
data a hyperplane. One way to define this hyperplane is a discriminant function𝑓(𝑥ଵ, … . . , 𝑥௞) , which is 
0 on the plane, positive, when (𝑥ଵ, … . . , 𝑥௞) belongs to class 1, and negative otherwise. The discriminant 
function is linear i.e.  
 

𝑓 = 𝑎ଵ𝑥ଵ + 𝑎ଶ𝑥ଶ+. . . +𝑎௞𝑥௞ + 𝑏 
 
The simplest example of non-linear boundary is exclusive-or function of two attributes: 𝑋𝑂𝑅(𝑥ଵ, 𝑥ଶ) =

1, if 𝑥ଵ is true or 𝑥ଶ is true, but not both.  
However, if we map the datapoints to higher dimensional attribute space, it becomes possible to 
separate the classes by a hyperplane. 
In this study, the linear classifier that is implemented is linear Support Vector Machine (SVM). Other 
examples of linear classifiers are RLS methods like RR and the LASSO, as well as RVM. An example of 
a nonlinear classifier is K Nearest Neighbor (K-NN) Classifier which classifies new samples depending 
on a set of samples closest to them, which are called their “nearest neighbors”. 
(www.en.wikipedia.org/wiki/K-nearest_neighbors_algorithm) 
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(i) (ii) 

 
FIGURE 2.11 LINEAR (I)  AND NON-LINEAR (II)  PROBLEMS  

Support Vector Machines (SVM) 

Support Vector Machines [61] are supervised learning methods used for classification and regression 
tasks that originated from statistical theory. SVM is a suitable algorithm to deal with interaction among 
features and redundant features. The advantage of Support Vector Machines is that they can make use 
of certain kernels to transform the problem, such that we can apply linear classification techniques to 
non-linear data. Applying the kernel equations arranges the data instances in such a way within the 
multi-dimensional space, that there is a hyper-plane that separates data instances of one kind from 
those of another. The kernel equations may be any function that transforms the linearly non-separable 
data in one domain into another domain where the instances become linearly separable. Kernel 
equations may be linear, quadratic, Gaussian, or anything else that achieves this particular 
purpose. Once the data is divided into two distinct categories, our aim is to get the best hyper-plane to 
separate the two types of instances. This hyper-plane is important because it decides the target variable 
value for future predictions.  
The learnt hyperplane is optimal in the sense that it maximizes the margin while minimizing some 
measure of loss on the training data. Support vectors are those instances that are either on the 
separating planes on each side, or a little on the wrong side. SVMs have been shown to work well for 
high dimensional microarray datasets. One important thing to note is that the data to be separated 
needs to be binary. Even if the data is not binary, Support Vector Machines handles it as though it is, and 
completes the analysis through a series of binary assessments on the data. 
 
Linear SVM  

In this part of section 2.5.1, we further explain the case of the simple linear SVM algorithm [61],[62] in 
order to be more clearly the concept of support vectors. Linear SVMs are particular linear discriminant 
classifiers.  
Given a training set X of N samples of the form: 
 

𝑋 =  ൛(𝑥௜, 𝑦௜)| 𝑥௜  ∈  𝑅௠ , 𝑦௜ ∈  {−1, +1}ൟ , 𝑖 = 1, … , 𝑁 
 
where xi the samples and yi the class labels, the support vector method approach aims at constructing 
the maximum - margin hyperplane of dimension R(m-1) that separate the samples having 𝑦௜ =  +1 from 
those having 𝑦௜ =  −1. Any hyperplane can be expressed as the set of samples x satisfying: 
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𝐻 ∶ 𝑤 ∙ 𝑥 − 𝑏 = 0 

 
, where b a real constant and w the normal vector to the hyperplane. The offset of the hyperplane from 

the origin along the normal vector w can be expressed by the parameter  
௕

‖௪‖
. If the data are linearly 

separable, there are two hyperlplanes which can be described by the equations : 
 

𝐻ଵ: 𝑤 ∙ 𝑥 − 𝑏 = 1 
𝐻ଶ: 𝑤 ∙ 𝑥 − 𝑏 = −1 

 
that fully separate the two classeses without any samples between of them. The region bounded by 

these hyperplanes is called “the margin” and is equal to  
ଶ

‖௪‖
. The aim is to maximize the margin, so ‖𝑤‖ 

need to be minimized. Given the fact that ‖𝑤‖ is minimized, samples of either class may fall into the 
margin, so in order to avoid it, extra constraints need to be applied:  
 
𝑤 ∙ 𝑥௜ − 𝑏 ≥  1 , for samples of class 𝑦௜ =  +1 
𝑤 ∙ 𝑥௜ − 𝑏 ≤ − 1, for samples of class 𝑦௜ =  −1 
 
The above equations can be expressed in one as: 
 
𝑦௜(𝑤 ∙ 𝑥௜ − 𝑏) ≥  1, for  𝑖 = 1, … , 𝑁 
 
Moreover, the previous constrained equation can be expressed as an optimization problem:  
 
Minimize in w, b 
 

‖𝑤‖ 
 
Subject to 
 
𝑦௜(𝑤 ∙ 𝑥௜ − 𝑏) ≥  1, for  𝑖 = 1, … , 𝑁 
 
This optimization problem is difficult to solve because it is necessary to calculate the norm of w, which 

involve a square root. Without changing the solution, it is possible to substitute  ‖𝑤‖ with  
ଵ

ଶ
‖𝑤‖ଶ. So 

the optimization problem can be also expressed as:  
 
Minimize in w, b 
 

1

2
‖𝑤‖ଶ 

 
 Subject to   
 
𝑦௜(𝑤 ∙ 𝑥௜ − 𝑏) ≥  1, for  𝑖 = 1, … , 𝑁 
 
By using the Lagrange multipliers  𝜶 , the previous problem can be expressed as a problem of quadratic 
programming: 
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𝑎𝑟𝑔 min
௪,௕

max
௔ஹ଴

൝
1

2
ห|𝑤|ห

ଶ
− ෍ 𝑎௜[𝑦௜(𝑤 ∙ 𝑥௜ − 𝑏) − 1]

௡

௜ୀଵ

ൡ

 

 

 
Then, conforming to the stationary Katush – Kuhn – Turkey condition, the solution can be expressed as 
a linear combination of the training input vectors: 
 

𝑤 =  ෍ 𝑎௜

ே

௜ୀଵ

𝑦௜𝑥௜  

 
 
Only a few of the Lagrange multipliers  𝜶 will be greater than zero. These corresponding  𝑥௜ are the 
support vectors and lie on the margin, satisfying: 
 

𝑦௜(𝑤 ∙ 𝑥௜ − 𝑏) =  1 
 
Solving the above equation for b can derive that the support vectors also satisfy: 
 

𝑤 ∙ 𝑥௜ –  𝑏 =  
1

𝑦௜
 ⟹    𝑏 = 𝑤 ∙ 𝑥௜ – 𝑦௜   

 
The 𝔟 depends on 𝑥௜ , 𝑦௜, so it will vary among the samples. In that manner, a more stable approach for b 
is to average over all support vectors:  
 

𝑏 =  
1

𝑁ௌ௏
 ෍(𝑤 ∙ 𝑥௜ − 𝑦௜)

ேೄೇ

௜ୀଵ

 

 
The optimization problem can also be expressed in its dual form, using the fact that  ‖𝑤‖ଶ = 𝑤 ∙ 𝑤 and  
𝑤 =  ∑ 𝑎௜

ே
௜ୀଵ 𝑦௜𝑥௜ . In dual form the classification task takes into account only a function of the support 

vectors, which are a small subset of the set of the training samples that lie on the margin. Thus, the 
problem expressed in dual form is computationally efficient. 
Maximize in 𝑎௜  

𝐿ෘ (𝑎) =  ෍ 𝑎௜

ே

௜ୀଵ

−  
1

2
෍ 𝑎௜𝑎௝𝑦௜𝑦௝

௜,௝

𝑥௜
்𝑥௝ = 

෍ 𝑎௜

ே

௜ୀଵ

−  
1

2
෍ 𝑎௜𝑎௝𝑦௜𝑦௝

௜,௝

𝑘൫𝑥௜, 𝑥௝൯ 

 
  , subject to  𝑎௜ ≥ 0, ∑ 𝑎௜𝑦௜

ே
௜ୀ଴ = 0  and the kernel function is defined by 𝐾൫𝑥௜, 𝑥௝൯ =  𝑥௜ ∙ 𝑥௝ 
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FIGURE 2.12 THE SVM  LEARNS A HYPERPLANE WHICH BEST SEPARATES TWO CLASSES . RED DOTS HAVE A LABEL YI = +1 WHILE 

BLUE DOTS HAVE A LABEL YI = -1 

Decision Trees 

Decision tree method is a technique in statistical learning that can be applied to both regression and 
classification problems, where the target variable is categorical, and the tree is used to identify the 
"class" within which a target variable would likely fall into. They are used to predict a qualitative 
response. The science and technology behind the review of large and complex datasets to discover 
valuable patterns is very important for modeling and knowledge extraction from the data which are 
available [63]. Researchers in this field have continually made great progress and are still making 
progress in acquiring methods to make the process more efficient, cost effective and accurate. The 
algorithms were originally implemented in decision theory and statistics and are used to extract 
knowledge by making decision rules from the large amount of available information. The benefits of 
decision trees are in its ability to handle a variety of input data such as nominal, numeric, and textual, 
its processing of dataset that containing errors and missing values, and its availability in various 
packages of data mining and number of platforms. A decision tree classifier [64] has a simple form 
which can be compactly stored and that efficiently classifies new data. 

When choosing a decision tree, we start with N labeled “training records” of the form (Χ, Υ) where Χ is 
a 𝑘-dimensional vector of features describing the data we have, and 𝑌 is a label we give this record.  

Each component of Χ is called as “input variable”, Υ is called “dependent variable” or “target variable”, 
and each row in such a table is called a “training example”. Let us consider two input variables, such 
that 𝑿= (𝑋1, 𝑋2). We assume there is a value of 𝑋1 that we can split the dataset around and few values 
of 𝑋2. Then, an example partitioning of our space of (𝑋1, 𝑋2) values is depicted in the left side of Figure 
2.13, and a decision tree corresponding to such a partitioning is shown in the right side of Figure 2.13. 
Given an unlabeled vector 𝑿 = (𝑋1, 𝑋2), we first test whether 𝑋1>𝑎. Then, if that turns out to be true, we 
test whether 𝑋2>𝑑. This allows us to classify 𝑿 into the region 𝑅4 or the region 𝑅5. If we initially had 
that 𝑋1≤𝑎, then we will test 𝑋2 against 𝑐 and then against 𝑏, which allows us to further classify 𝑿 into 
one of the regions 𝑅1,2, or 𝑅3. 
 
Next, let 𝑌 take on a single constant value for each of the regions 𝑅1...,5. Let 𝑌𝑖 be the value chosen for 
the region 𝑅𝑖, and let (𝑿) be an indicator function that equals 1 when 𝑿∈𝑅𝑖. This allows us to obtain a 
model that can predict 𝑌 based on 𝑿: 

𝑌෠(X)=∑ 𝑌௜ × 𝐼௜(𝑋)ହ
௜ୀଵ  
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Obtaining such a model is the ultimate goal of training a decision tree. Same as the model represented in 
Fig. 2.11 as a partition of 2D space and as a decision tree. 
 
The most basic process of training a decision tree on a dataset involves the following elements as, 
1. The selection of attribute 
2. Splits in the tree 
3. Stop splitting a node and mark it terminal 
4. The assignment of a label to each terminal node 
 
Some algorithms add an element called pruning. There are many ways of implementing splitting 
criteria, stopping criteria, and pruning methods. Splitting criteria are algorithmic rules that decide 
which input variable to split the dataset around next. Stopping criteria are rules that determine when to 
stop splitting the dataset and instead output a classification. Stopping criteria are actually optional, but 
in their absence, a trained tree would have a separate region for each training record. As this is 
undesirable, stopping criteria are used as a method of deciding when to stop growing the tree. Lastly, 
pruning methods are ways to reduce the size and complexity of an already trained tree by combining or 
removing rules that do not significantly increase classification accuracy. All three of these things 
directly affect the complexity of a tree, which can be measured according to various metrics such as tree 
height, tree width, and a number of nodes. It is desirable to train trees that are not overly complex 
because of the fact that simpler trees require less storage.[64] 
 

 SPLITTING CRITERIA 

An option of making splits is the classification error rate and this is simply the fraction of the training 
observations in that region that do not belong to the most common class. The classification error is 
given by;  

𝐸 = 1 − max pො ୫୩   (1) 
where 𝑝̂𝑚𝑘 represents the proportion of training observations in the region m that are from class k.  
Other measures for making splits are Cross entropy and Gini index which are preferred since the 
classification error is insufficiently sensitive for tree growth. The Gini Index, is given by  
 

𝐺 = ∑  pො ୫୩(1 −  pො ୫୩)௄
௞ୀଵ  (2) 

 
which is a measure of the total variance across k classes, where 𝑝̂𝑚𝑘 represents the proportion of 
training observations in the region m that are from class k. Gini Index is also called a measure of node 
purity because if all of the values of 𝑝̂𝑚𝑘, the proportion of training observations in the region m that 
are from class k are close to 0 or 1 then the Gini index has a small value which can be verified from (1). 
This implies that a node contains mostly training observations from a single class k. 
 
Cross entropy, is an alternative to the Gini Index and its given by 
 

-∑ pො ୫୩ log(pො ୫୩)௄
௞ୀଵ  

 
 

Since; 

0 ≤ pො ୫୩ ≤ 1 we have 0 ≤ −pො ୫୩ log(pො ୫୩) 

The cross entropy will take a value near 0 if the pො ୫୩ ′𝑠 are all near 0 or 1. 
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In building a classification tree, we use either Cross entropy or Gini index to evaluate the quality of a 
particular split, because these two approaches are more sensitive to node purity than the classification 
error rate. However, when pruning the tree any of the three approaches can be used but the 
classification error rate is preferable if the prediction accuracy of the final pruned tree is the goal. In the 
case of classification trees, the deviance is given by the summary function and it can be calculated by 

-2 ∑ ∑ nො ୫୩
 
௞ log (pො ୫୩) 

௠  

nො ୫୩is the number of observations in the 𝑚௧௛ terminal node that belongs to class k. A tree gives a good 
fit to the training data if the deviance is small. The residual mean deviance is simply the deviance 
divided by 𝑛 − |𝑇0 |. 

In order to improve the accuracy of machine learning algorithms for statistical classification and 
regression, bagging, random forest and boosting are machine learning ensembles that can be used.[66] 
They are most commonly applied to decision tree methods as building blocks in the creation of very 
powerful predictive models. 

 STOPPING CRITERIA 

Stopping criteria are usually not as complicated as splitting criteria. Common stopping criteria include: 

1.       Tree depth exceeds a predetermined threshold 
2.      Goodness-of-split is below a predetermined threshold 
3.      Each terminal node has less than some predetermined number of records 
 
Generally stopping criteria are used as a heuristic to prevent overfitting, when a decision tree begins to 
learn noise in the dataset rather than structural relationships present in the data. An over-fit model still 
performs very well in classifying the dataset it was trained on, but would not generalize well to new 
data, just like the example with credit card numbers or other unique identifiers. If we did not use 
stopping criteria, the algorithm would continue growing the tree until each terminal node would 
correspond to exactly one record.[64] 

 

FIGURE 2.13 DECISION TREE 
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2.6 Validation 

2.6.1 Validation methods 

Holdout Validation  

Holdout Validation is the simplest cross validation method. The dataset is partitioned in two sets, the 
training set and the testing set. Using the training set only, which consists of the majority of available 
samples the model, is trained. Then the function is asked to predict the output values for the data in the 
testing set where the values are unknown. The errors it makes are accumulated to give the mean 
absolute test set error, which is used to evaluate the model. The advantage of this method is that it is 
usually preferable to the residual method and takes no longer to compute. However, the drawback of 
the method is that its evaluation can have a high variance. The evaluation may depend heavily on which 
data points end up in the training set and which end up in the test set, and thus the evaluation may be 
significantly different depending on how the division is made. These limitations of this holdout method 
can be overcome with other validation methods at the expense of higher computational cost. 
(www.towardsdatascience.com) 

 
Total samples 

 
Training Set 

 
Test  Set 

 

FIGURE 2.14 HOLDOUT VALIDATION METHOD  

K-Fold Cross Validation (K-Fold CV) 

As we mention before we can use other cross validation methods to improve over the holdout method. 
K-fold cross validation is one of them. Here, the data set is divided into k subsets, and the holdout 
method is repeated k times. Each time, one of the k subsets is used as the test set and the other k-
1 subsets are put together to form a training set. Then the average error across all k trials is computed. 
The advantage of this method is that it matters less how the data gets divided. Every data point gets to 
be in a test set exactly once and gets to be in a training set k-1 times. The variance of the resulting 
estimate is reduced as k is increased. The disadvantage of this method is that the training algorithm has 
to be rerun from scratch k times, which means it takes k times as much computation to make an 
evaluation. A variant of this method is to randomly divide the data into a test and training set k different 
times. The advantage of doing this is that you can independently choose how large each test set is and 
how many trials you average over. (www.towardsdatascience.com) 
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FIGURE 2.15 K-FOLD CROSS VALIDATION METHOD 

Leave One Out Cross Validation (LOOC) 

 Leave-one-out cross validation is K-fold cross validation taken to its logical extreme, with K equal to N, 
the number of data points in the set. This means that for each fold use N-1 samples for training and the 
remaining sample for testing. As before the average error is computed and used to evaluate the model. 
The evaluation given by leave-one-out cross validation error is good, but at first it seems very expensive 
to compute. Fortunately, locally weighted learners can make LOO predictions just as easily as they make 
regular predictions. That means computing the LOO validation error takes no more time than 
computing the residual error and it is a much better way to evaluate models.  

 

FIGURE 2.16 LEAVE ONE OUT VALIDATION METHOD 

Repeated Random Sub-Sampling Validation 

In Repeated random sub-sampling validation [56] the dataset splits K times. Each data split randomly 
selects a fixed number of samples without replacement. For each such iteration, the model is fit to the 
training data, and predictive accuracy is assessed using the validation data. The results are then 
averaged over all iterations. In this method unlike k-fold cross validation, the proportion of the training 
split is not dependent on the number of folds. But the disadvantage using repeated random sub-
sampling is that some observations may never be selected in the validation subsample, whereas others 
may be selected more than once. 
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FIGURE 2.17 REPEATED RANDOM SUB-SAMPLING VALIDATION METHOD 

2.7 Biological Networks  

The term Biological Networks is assigned on biological systems which are represented as networks. 
Biological networks are the interpretation of the interaction between molecules such as DNA, RNA, 
proteins and metabolites. There are different types of biological networks such as Gene co-expression 
network (GCN), Protein-protein interaction networks (PPI), Metabolic networks, Transcriptional 
regulation networks, Boolean Networks, Bayesian Networks. Those examined in our study are: 

Gene co-expression network (GCN) 

A gene co-expression network (GCN) is an undirected graph, where each node corresponds to a gene, 
and a pair of nodes is connected with an edge if there is a significant co-expression relationship 
between them [66]. Having gene expression profiles of a number of genes for several samples or 
experimental conditions, a gene co-expression network can be constructed by looking for pairs of genes 
which show a similar expression pattern across samples, since the transcript levels of two co-expressed 
genes rise and fall together across samples. Gene co-expression networks are of biological interest since 
co-expressed genes are controlled by the same transcriptional regulatory program, functionally related, 
or members of the same pathway or protein complex. 
The direction and type of co-expression relationships are not determined in gene co-expression 
networks like in a gene regulatory network (GRN). Compared to a GRN, a GCN does not attempt to infer 
the causality relationships between genes and in a GCN the edges represent only a correlation or 
dependency relationship among genes. Modules or the highly connected sub graphs in gene co-
expression networks correspond to clusters of genes that have a similar function or involve in a 
common biological process which causes many interactions among themselves. 
Gene co-expression networks are usually constructed using datasets generated by high-throughput 

gene expression profiling technologies such as Microarray or RNA-Sequencing. (www.illumina.com) 

Protein-protein interaction networks (PPI) 

Protein-protein interaction networks (PPIs) can be associations of proteins such as functional 
interactions and their role is highly important for the structure and the function of a cell. These 
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interactions participate in signal transduction and play an important role in many diseases (e.g., 
cancer). We can encounter stable interactions that form a protein complex (a form of a quaternary 
protein structure, set of proteins which bind to do a particular function (e.g., ribosome), or transient 
interactions, which form the dynamic part of PPI networks, are brief interactions that modify a protein 
that can further change PPIs –(e.g., protein kineases, add a phosphate group to a target protein). It is 
estimated that about 70% of interactions are stable and 30% are dynamic in a PPI network thus they 
are essential to almost every process in a cell. Understanding PPIs is crucial for understanding life, 
disease, as well as the development of new drugs.[27] 

Boolean Networks 

Boolean Networks [66] are a class of graphical deterministic models represented as a graph 𝐺(𝑉, 𝐸), 
annotated with a set of states 𝑋 = {𝑥௜ | 𝑖 = 1, … , 𝑛}, together with a set of Boolean functions 𝐵 =

{𝑏௜ | 𝑖 = 1, … , 𝑘 },𝑏௜ :{0,1} ௞ → {0,1}. Each node 𝑣௜  has associated to it a function, with inputs the states of 
the nodes connected to 𝑣௜.The state of node 𝑣௜ at time t is denoted as 𝑥௜ (𝑡) the state of that node at time 
t+1 is given by ∶  𝑥௜ ( 𝑡 +  1 )  = 𝑏௜ ( 𝑥 ௜ଵ , 𝑥௜ଶ, . . . , 𝑥௜௞  ) where 𝑥௜௝  are the states of the nodes connected 

to 𝑣௜ . This set of functions determines topology connectivity on the set of variables, which then become 
nodes in a network. 
 
In biological Boolean networks each node represents a gene which takes on two possible values, as 
mentioned, 0 and 1 and the way these nodes interact with each other is formulated by standard logic 
functions and genetic interactions and regulations are inextricably linked with the assumption of 
biological determinism. Though, a gene regulatory network is not a closed system and has interactions 
with its environment and other genetic networks, and it is also likely that genetic regulations are 
inherently stochastic; therefore, Boolean networks will have limitations in their modeling power. 
Probabilistic Boolean networks [67] were introduced to address this issue, such that they are composed 
of a family of Boolean networks, each of which is considered a context. At any given time, gene 
regulations are governed by one component Boolean network and network switching is possible such 
that at a later time instant, genes can interact under a different context. In this sense, probabilistic 
Boolean networks are more flexible in modeling and interpreting biological data. Interaction networks 
have proven to be a useful source of information for analyzing genomic data. Using gene expression 
data we attempt to estimate the network structure using gene and protein information. Boolean 
Network models belong to the group of qualitative network models, because they do not yield any 
quantitative predictions of gene expression in the system. 

Bayesian Networks 

Bayesian Networks [68] are a class of graphical probabilistic models that provide a well-ordered 
representation for the expression of joint probability distributions (JPDs) and inference. Their 
application is found in many domains such as the of inference of cellular networks, modeling protein 
signaling pathways, systems biology, data integration, classification and genetic data analysis. They 
combine two very well developed mathematical areas: probability and graph theory. A Bayesian 
network consists of an annotated directed acyclic graph 𝐺(𝑋, 𝐸), where the nodes 𝑥௜ ∈  𝑋, are random 
variables representing gene expressions and the edges indicate the dependencies between the nodes. 
The random variables are drawn from conditional probability distributions 𝑃(𝑥௜|𝑃𝑎(𝑥௜)), where 𝑃𝑎(𝑥௜) 
is the set of parents for each node. A Bayesian network implicitly encodes the Markov Assumption that 
given its parents; each variable is independent of its non-descendants.  
Besides the set of dependencies (children nodes depend on parent nodes) a Bayesian network implies a 
set of independencies too. This probabilistic framework is very appealing for modeling causal 
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relationships because one can query the joint probability distribution for the probabilities of events 
(represented by the nodes) given other events. From the joint distribution one can do inferences and 
choose likely causalities. 
The complexity of such a distribution is exponential in the general case, but it is polynomial if the 
number of parents is bounded by a constant for all nodes. 
 

 
FIGURE 2.18 GENE NETWORK INFERENCE 
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3 METHODOLOGY 

In our study, we aim to provide reliable biomarkers that could be predictive of responder status. By 
using gene expression profiles from untreated and interferon treated patients as well as healthy 
controls, we followed a feature selection strategy by combining differential expression analysis, 
Pigengene methodology, network analysis, and clustering approaches in order to identify key modules, 
and also hub genes as potential biomarkers for early identification of IFNβ responders as well as 
Multiple sclerosis affected patients. Moreover, based on related studies as in [69], we sought to identify 
hub genes, i.e. a limited number of genes - a varying number of 10 to 77 has been recognized in different 
disease contexts - that interact with many other genes in the clustering modules; thus conferring them 
high importance in the biological system under study. Publicly available databases were also used for 
the exploration of drug repurposing relating Multiple sclerosis. The proposed methodology follows. 

 

FIGURE 3.1  PROPOSED METHODOLOGY 

3.1 Microarray Dataset Preprocessing 

Quantile Normalization has been performed on all data and log2 transformation has been performed on 
their expression values. Variance filtering was applied to the dataset as a feature selection method. 
Scaling as a normalization method was also applied on the validation datasets. 
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3.2 Differential expression 

 
FIGURE 3.2  DIFFERENTIAL EXPRESSION ANALYSIS STEP 

Differential expression analysis was performed on the significant genes using the package ‘limma’ [70], 
as well as “Significant analysis of Microarray” (SAM)”. In general, when the list of Differentially 
Expressed Genes (DEGs) is only obtained with the use of one high-level analysis, it should not be 
regarded as reliable and definitive. A possible approach is to use a few methods and acknowledge DEGs 
as only those genes that are within an intersection of sets of DEGs obtained by different methods [71].  

3.2.1 Limma 

LIMMA stands for “linear models for microarray data” and contains functionality for fitting a broad class 
of statistical models called “linear models”. Examples of such models include linear regression and 
analysis of variance. While most of the functionality of limma has been developed for microarray data, 
the model fitting routines of limma are useful for many types of data and is not limited to microarrays. 
The objective of Differential expression analysis is to discover which features (genes) are different 
between groups or stated differently: to discover which genes are differentially expressed between 
cases and controls.  
 
How samples are distributed between groups determines the design of the study. In addition to the 
design, there is one or more question(s) of interest(s) such as the difference between two groups. Such 
questions are usually formalized as contrasts; an example of a contrast is indeed the difference between 
two groups. 
This can be formalized a 

𝑌 = 𝛽଴ + 𝛽ଵ𝛸ଵ + 𝜖 

In this equation of a linear model, Y is the response variable. It must be a continuous variable. In the 
context of DEA, it is a relative measure of mRNA expression level for one gene. 𝛸ଵ is an explanatory 
variable, which can be continuous or discrete, for example, control group versus treatment, or mutant 
versus wild type. 𝛽ଵ quantifies the effect of the explanatory variable on the response variable. 
Furthermore, we can add additional explanatory variables to the equation for more complicated 
experimental designs. Lastly, models the random noise in the measurements. 

3.2.2 Significant analysis of Microarrays (SAM) 

SAM is a statistical method used to determine statistical significance in gene expressions between 
groups. In terms of mode of action, SAM uses a modified t-statistic and permutations of the repeated 
measurements of the data in order to decide if the gene expression is strongly related to the response. 
However, SAM uses non-parametric statistics since microarray data are not normally distributed. The 
input to SAM is gene expression measurements from a set of microarray experiments, as well as a 
response variable from each experiment. The response variable may be a grouping like untreated, 
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treated (either unpaired or paired), a multiclass grouping (like breast cancer, lymphoma, colon cancer), 
a quantitative variable (like blood pressure) or a possibly censored survival time. SAM computes a 
statistic di for each gene i, measuring the strength of the relationship between gene expression and the 
response variable and order the genes according to their d- values. It uses repeated permutations of the 
data to determine if the expression of any genes is significantly related to the response by randomly 
shuffle the values of the genes between groups, such that the reshuffled groups have the same number 
of elements as the original groups and computes the d-value for each randomized gene. These two steps 
are repeated many times. 

Thus, each gene has many randomized d-values corresponding to its rank from the observed 
(unpermitted) d-value (100 or 200 permutations are descent for initial exploratory analysis). Then, 
take the average of the randomized d-values for each gene which is the expected d-value of that gene. 
The observed d-values versus the expected d-values are then plotted and for each permutation of the 
data, the number of positive and negative significant genes for a delta parameter, which is the cutoff for 
significance, chosen by the user based on the false positive rate, is computed. The median number of 
significant genes from these permutations is the median False Discovery Rate (FDR). Thus, any genes 
designated as significant from the randomized data are being picked up purely by chance. Therefore, 
the median number picked up over many randomizations is a descent estimate of FDR. One can also 
choose a fold change parameter, to ensure that called genes change at least a pre-specified amount. 
 
For accessing the Differential expression of the “Untreated MS patients in different disease stages vs 
Healthy Controls” cases, we chose to proceed by performing only SAM. When the sample size is small 
usually leads to unstable test results. In addition, by chance some genes have very small variance, which 

will result in large t-statistics and small p-values even when the difference is small. Finally, sometimes 

data are not normally distributed that can lead to incorrect p-values. For these reasons we proceed with 
the non-parametric approach to obtain p-values. All results are shown in Chapter 4. 
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3.3 Pigengene Methodology 

 
FIGURE 3.3  PIGENGENE STEPS  

Pigengene methodology [72] provides an efficient way to infer biological signatures from gene 
expression profiles. The signatures are independent from the underlying platform, e.g., the input can be 
microarray or RNA Seq data. It can even infer the signatures using data from one platform and evaluate 
them on the other. Pigengene identifies the modules (clusters) of highly co expressed genes using co 
expression network analysis, summarizes the biological information of each module in an eigengene, 
learns a Bayesian network that models the probabilistic dependencies between modules, and builds a 
decision tree based on the expression of eigengenes. The crucial steps of the methodology include the 
identification of gene modules using coexpression network analysis [73] and the summarization of the 
biological information of each module in one eigengene using principal component analysis (PCA) [74]. 
The approach is different from applying PCA directly to the entire expression profile, which can lead to 
a significant loss of information. The eigengenes are used as features of our biological signature to 
identify mechanisms underlying the disease. They are also used to train a Bayesian network that 
models the probabilistic dependencies between all modules. In addition, we infer a decision tree to 
predict the state based on eigengenes. 

The Pigengene methodology is presented in detail, in the following sections. 

3.3.1 Weighted correlation network analysis (WGCNA) 

 Weighted correlation network analysis (WGCNA) [75] can be used for finding 
clusters (modules) of highly correlated genes, for summarizing such clusters using the module 
eigengene or an intramodular hub gene, for relating modules to one another and to external sample 
traits (using eigengene network methodology), and for calculating module membership measures. 
Correlation networks as mentioned in Chapter 2, facilitate network-based gene screening methods that 
can be used to identify candidate biomarkers or therapeutic targets. These methods have been 
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successfully applied in various biological contexts, e.g., cancer, mouse genetics, yeast genetics, analysis 
of brain imaging data and in our study, for the first time, Pigengene methodology is applied in the 
context of Multiple Sclerosis. 

 

FIGURE 3.4  WEIGHTED CORRELATION NETWORK ANALYSIS (WGCNA)  OUTLINE 

1. Network construction 

The first step of the WGCNA analysis is the creation of a similarity matrix, which is done by Pearson 
correlation of all gene pairs. The similarity matrix is then transformed into an adjacency Matrix. 

From the input n × m matrix X = [𝑥௜௝] where the row indices (i = 1, . . ., n) correspond to network nodes 

(such as genes) and the column indices (l = 1, . . ., m) correspond to sample measurements, similarities 
in expression profiles are calculated by Pearson correlation, 

Cor (𝑥௜𝑥௝)  

creating a correlation matrix. The adjacency matrix A = [𝑎௜௝], is then calculated from the correlation 

matrix 𝑠௜௝ = |Cor (𝑥௜𝑥௝)|, by raising the correlation to a soft threshold power β: 

[𝑎௜௝] = 𝑠௜௝
ఉ, for 𝑠௜௝∈ [0,1] 

𝑥௜ and 𝑥௝ are vectors of expression value for gene i and j, 𝑠௜௝  represented the Pearson's correlation 

coefficient of gene i and gene j, 𝑎௜௝  encoded the network connection strength between gene i and gene j. 

An adjacency function transforms the correlation matrix containing co-expression similarities into the 
adjacency matrix containing connection strengths. The choice of adjacency function is determined by 
the weight properties of the network. The term weight properties references whether a network is 
weighted or unweighted. Unweighted networks apply hard thresholding using the signum function  

𝑠௜௝ = 𝑠𝑖𝑔𝑛𝑢𝑚(𝑠௜௝ , 𝜏)=ቊ
1 𝑖𝑓 𝑠௜௝  ≥ 𝜏

0 𝑖𝑓 𝑠௜௝  < 𝜏
 

 

which presents intuitive networks (i.e. the number of direct neighbors equals the node connectivity). 
However, this can present a problem. For example, if the threshold τ is 0.75 and the similarity is 0.74, 
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the connection does not occur and consequently information is lost. Additionally, node connectivity 
using hard thresholding is sensitive to the choice of the threshold. 

The basis of choice of the power β is the assumption of scale free topology of the gene expression 
network. The node degree distribution p(k) follows a power law in a scale free network. To calculate 
the scale free model fit for each soft threshold power β, log(p(k)) is plotted against log(k). The R2 value 
(model fitting index) is close to 1 if the network is scale free. The scale free topology criterion [76] 
proposes only to consider β that leads to a network that satisfies scale free topology approximately, 
with R2 > 0.8. 

From the adjacency matrix, topological overlap matrix (TOM) Ω = [𝜔௜௝]  is constructed, which describes 

how well connected the genes are, in respect of how many neighbors they share. All entries in the TOM 
have a connection value to each other between 0 and 1, where a value of 1 meaning that all connections 
between two nodes and other nodes are the shared and 0 meaning that no connections to other nodes 
are shared. (TOM) Ω = [𝜔௜௝] provides a similarity measure, which has been found useful in biological 

networks (Ravasz et al., 2002; Ye and Godzik,2004).  For unweighted networks (i.e., 𝑎௜௝= 1 or 𝑎௜௝= 0), 

Ravasz and colleagues report the following topological o v e r l a p matrix in the methods supplement of 
their paper 

𝜔௜௝ = 𝑙௜௝ + 𝑎௜௝/min{𝑘௜, 𝑘௝} +  1 − 𝑎௜௝  

Where 𝑙௜௝=∑ 𝑎௜௨𝑎௨௝௨ , and 𝑘௜=∑ 𝑎௜௨ ௨ is the node connectivity. Τhen  

𝜔௜ = ෍ 𝜔௜௝

௡

௝ୀଵ

 

a TOM-based measure of connectivity 𝜔௜ is superior to the standard 𝑘௜ measure. The topological 
overlap matrix Ω = [𝜔௜] is transformed into a dissimilarity matrix defined by 𝑑௜௝ = 1 − 𝜔௜௝  , which is 

subsequently used for clustering gene expression profiles. 

2. Gene Module Identification 

The following step is the identification of gene modules through unsupervised hierarchical clustering 
using a TOM-based dissimilarity. Specifically, average linkage hierarchical clustering is performed, and 
modules are depicted as dendrogram branches. Cutting is performed using the dynamic hybrid tree cut 
algorithm. 

A TOM plot is a color-coded matrix representation of a summary of the co-expression network, which 
depicts the values of the dissimilarity matrix. Rows and columns are sorted by the hierarchical 
clustering dendrogram. Red and yellow indicate low and high dissimilarity respectively . Modules are 
described as red squares along the diagonal. Note that TOM plots are symmetric along the diagonal 
because they are graphical representations of the topological overlap matrix which is also symmetric. 
Modules, i.e., groups of genes that are highly co-expressed in most samples are then created from the 
clusters given from the topological overlap matrix. 

3. Module eigengenes 

After the construction of the modules, for each module, an eigengene is computed as a weighted 
average of the expression of all genes in that module. This is a representative gene, defined as the 1st 
principal component for the co-expression module. The biological information of each module is 
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summarized in one eigengene. By clustering the eigengenes, modules that are very similar are joined 
together. These steps produced a final set of modules, grouped together based to similarity in gene 
expression pattern and connectivity. 

The modules can then be compared to an external trait or another group, to find the most significant 
modules to work with.  We investigate gene significance (correlation between gene and sample trait) 
for the trait for each gene in the chosen module, as well as a quantitative measure of module 
membership (based on the correlation between each gene to the module eigengene). The module 
membership should be closely correlated to intramodular connectivity and can therefore be used as a 
measure for this. By investigating the module membership for the genes in the module, it is possible to 
detect hub genes, which are likely to be biologically important for the pathways or processes 
represented by that module.[75] 

 

FIGURE 3.5  WEIGHTED GENE COEXPRESSION NETWORK ANALYSIS (WGCNA).  (A)  WGCNA  STEPS.  (B)  DETERMINATION OF THE SOFT 

THRESHOLD.  ANALYSIS OF THE SCALE-FREE TOPOLOGY FITTING INDEX R  2  (LEFT)  AND MEAN CONNECTIVITY (RIGHT)  FOR VARIOUS SOFT 

THRESHOLD POWERS.  (C)  CLUSTERING DIAGRAM SHOWING MODULES REPRESENTED BY DIFFERENT COLORS.  (D)  CLUSTERING TREE OF 

MODULE EIGENGENES AND THE HEATMAP OF THE CORRELATION BETWEEN ANY TWO MODULE EIGENGENES.  

3.3.2 Bayesian network 

 A Bayesian network is a statistical model that represents a set of random variables using a 
directed acyclic graph. Nodes of the network correspond to random variables and the edges (arcs) 
model their conditional dependencies. An important property of Bayesian networks is that each node 
conditioned on its parent variables is independent of its non-descendants. In particular, if two nodes 
are not connected by a directed path, they are conditionally independent. We trained a Bayesian 
network to model the probabilistic dependencies between the modules. Each module eigengene was 
represented by a node (observed random variable). To model the state of the disease we added 
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“Disease” as an observed random variable to the network taking values 0 and 1 accordingly. No 
eigengene was allowed to be a parent of Disease node. 
 
We used bnlearn package to infer the edges and fit the above Bayesian network to the eigengenes. 
Specifically, we discretized the values of eigengenes into three levels using Hartemink’s method. We 
used the bn.boot() function from the bnlean package to fit 1000 networks to the discretized data. This 
function used hill climbing strategy to optimize Bayesian Dirichlet equivalent (BDe) score. Consistent 
with the approach taken by other scholars, we averaged one-third of the networks with the highest 
scores to obtain the consensus network. 

3.3.3 Inferring the decision tree 

Module eigengenes are used as features to infer a decision tree as described in Chapter 2. To achieve 
optimal performance and select the best set of features, when too many features are provided, the 
Bayesian network is used to determine the relationships of the modules with each other and with the 
type of sample state in each case of our study. In addition, the parameters of the algorithm, were 
adjusted, enforcing the number of samples in each node to be at least 10%. We fitted a decision tree to 
the children of the Disease node in our Bayesian network. We used our data to infer the topology of the 
tree and the corresponding parameters. Module eigengenes are used to build a classifier that 
distinguishes two or more classes. Each eigengene is a weighted average of the expression of all genes 
in the module, where the weight of each gene corresponds to its membership in the module. Each 
module might contain dozens to hundreds of genes, and hence the final classifier might depend on the 
expression of many genes. In practice, it is desirable to reduce the number of necessary genes by a 
decision tree. 

3.4 Comparison of resulted significant genes 

 

 
FIGURE 3.6  RESULTED SIGNIFICANT GENES &  PPI INPUT STEPS  

We have decided to combine the Differentially expressed genes and the significant genes resulted from 
each Pigengene module. The intersection of the resulted signature in most cases, is then used to explore 
the protein-protein interaction network and investigate the potential to identify biomarkers related to 
the study. 
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3.5 Protein-Protein Interaction Network 

The STRING App [77] in the Cytoscape software [78] was used to analyze the significant genes resulted 
from the two methods mentioned above. The STRING database is one of several online resources 
dedicated to organism-wide protein association networks. STRING aims to place its focus on coverage 
(applying to thousands of genome-sequenced organisms), on completeness of evidence sources (e.g. 
including automated text mining) and on usability features (such as customization, enrichment 
detection and programmatic access). It allows users to log on and make their searches persistent, and it 
offers online-viewers to facilitate the inspection of the underlying evidence supporting each protein–
protein association. The criteria for constructing the network are based on text-mining, co-expression 
and databases as well as minimum required interaction score with highest confidence ≥ 0.8. 

3.6 Critical Subnetworks and Hub Genes 

 

 
FIGURE 3.7  FINDING HUB GENES  

We used the STRING database to analyze the up-regulated and down-regulated DEGs and analyzed the 
protein protein interaction (PPI). Cytoscape is a software for visualizing interaction networks and 
biological pathways. The MCODE plugin was used to find clusters in PPI networks with the degree 
cutoff, node score cutoff, k-core and max depth as 2, 0.2, 0.2, and 100 as threshold. Moreover, the 
cytoHubba plugin was used to identify hub genes of the network we imported by calculating the node 
scores. To get a more reliable result, we analyzed the top 20 nodes with highest degree with all the 11 
methods. Then we ordered the number of occurrences of these genes, and the genes with the highest 
occurrence were the most significant hub genes. 

3.6.1 CYTOHUBBA 

Based on the PPI network, hub genes were screened according to network topology. Cytoscape 
software (version 3.9.1) and the cytoHubba plugin [79] was used for ranking nodes in a network by 
their network features. CytoHubba provides 11 topological analysis methods including Degree, Edge 
Percolated Component, Maximum Neighborhood Component, Density of Maximum Neighborhood 
Component, Maximal Clique Centrality and six centralities (Bottleneck, EcCentricity, Closeness, 
Radiality, Betweenness, and Stress) based on shortest paths.  
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CytoHubba provides a simple interface to analyze a network with eleven scoring methods. First, scores 
from all eleven methods are granted to each node of the loaded PPI network by executing "compute 
hubba result" function in the cytoHubba options in cytoscape menu bar [plugins]. Next, top-ranked 
nodes of a particular scoring method are retrieved from the cytoHubba tab in Cytoscape control panel, 
listed in the result panel, and the sub-graph of these selected nodes are shown in the main window with 
a color scheme from highly essential (red) to essential (yellow). The sub-graph of essential nodes is 
extendable to include nodes that directly interact with these top-ranked nodes by the option of "check 
first stage node" in the control panel. Network topological features of nodes are retrievable in the data 
panel as options of node attributes.  

The algorithms 

A. Local-based Methods 

We assume that a biological network G = (V, E) is an undirected network, where V is the collection of 
nodes within the network and E is the edge set. We can use another notation G = (V(G), E(G)) to 
represent a network, where V(G) is the collection of nodes in a network G, and E(G) is the collection of 
edges in a network G. For a set S, we use |S| to denote its cardinality (i.e. the number of elements in the 
set). 

Local based method only considers the direct neighborhood of a vertex. Given a node v, N(v) denotes 
the collections of its neighbors. There are four local based methods shown as follows: 

i. Degree method (Deg) 
Deg(v)=|N(v)|. 

ii. Maximum Neighborhood Component (MNC) 

MNC(v) = |V(MC(v)) |, 

where MC(v) is a maximum connected component of the G[N(v)] and G[N(v)] is the induced subgraph 
of G by N(v). 
iii. Density of Maximum Neighborhood Component (DMNC) 

Based on MNC, Lin et. al. proposed DMNC(v) = |E(MC(v)) | / |V(MC(v))ఌ|, where ε = 1.7 [80]. 

iv. Maximal Clique Centrality (MCC) 

To increase the sensitivity and specificity, MCC is proposed, to discover featured nodes. Given a node v, 
the MCC of v is defined as MCC(v) = ∑ (|C|  −  1)!େ∈ୗ(୴) , where S(v) is the collection of maximal cliques 

which contain v, and (|C|-1)! is the product of all positive integers less than |C|. If there is no edge 
between the neighbors of the node v, then MCC(v) is equal to its degree. 

B. Global-based methods 

In CytoHubba six node ranking methods are implemented, based on shortest paths and one method 
based percolated connectivity. The length of a shortest path between nodes u and v is denoted as dist(u, 
v). Let C(v) be the component which contains node v. The dist (u, v) is equal to infinite if C(v) ≠ C(w), 
and it makes methods of this category cannot be applied to networks with disconnected components. 
To overcome this problem the score of a node in a connected network computed by enhanced method is 
the same as that computed by original one. 
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1. Closeness (Clo) 

Clo(v)=∑
ଵ

ௗ௜௦௧(௩,௪)௪∈௏  

2. EcCentricity (EC) 
 

EC(v)=
|୚(େ(୴))|

|୚|
 x 

ଵ

୫ୟ୶{ୢ୧ୱ୲(୴,୵):୵∈େ(୴)}
 

3. Radiality (Rad) 

Rad(v)= 
|୚(େ(୴))|

|୚|
 x 

∑ (౭∈ి(౬) ௱಴(ೡ)ାଵିୢ୧ୱ୲(୴,୵)) 

୫ୟ୶{ୢ୧ୱ୲(୴,୵):୵∈େ(୴)},
  

where 𝛥஼(௩)is the maximum distance between any two vertices of the component C(v). 

 
4. BottleNeck (BN) 

Let 𝑇ௌ be a shortest path tree rooted at node s. BN(v) = ∑  ୱ∈୚ 𝑝௦(௩) where 𝑝௦(௩) = 1 if more than 

|V(Ts)|/4 paths from node s to other nodes in 𝑇ௌ meet at the vertex v; otherwise 𝑝௦(௩)  = 0. 

5. Stress (Str) 
 

Str (v) = ∑ 𝜎௦௧(𝑣)௦ஷ௧ஷ௩∈஼(௩)  

where 𝜎௦௧(𝑣) is the number of shortest paths from node s to node t which use the node v. 

6. Betweenness (BC) 
 

BC (υ) = ∑
ఙೞ೟(జ)

ఙೞ೟
௦ஷ௧ஷ௩∈஼(జ)  

where 𝜎௦௧ is the number of shortest paths from node s to node t. 

7. Edge Percolated Component (EPC) 
 

Given a threshold (0 ≤ the threshold≤ 1), we create 1000 reduced networks by assigning a random 
number between 0 and 1 to every edge and remove edges if their associated random numbers are less 
than the threshold. 

Let the 𝐺௞ be the reduced network generated at the kth time reduced process. If nodes u and v are 
connected in 𝐺௞, set 𝛿௨௧

௞ to be 1; otherwise 𝛿௨௧
௞ =0. For a node v in G, EPC(v) is defined as 

EPC(υ)=
ଵ

|୚|
∑ ∑ 𝛿௨௧

௞
௧∈୚

ଵ଴଴଴
௞ୀଵ  

3.6.2 MCODE 

"Molecular Complex Detection" (MCODE) [81], is an algorithm that detects densely connected regions in 
large protein-protein interaction networks that may represent molecular complexes. It is a graph 
theoretic clustering algorithm, and it is based on vertex weighting by local neighborhood density and 
outward traversal from a locally dense seed protein to isolate the dense regions according to given 
parameters. The algorithm has the advantage of having a directed mode that allows fine-tuning of 
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clusters of interest without considering the rest of the network and allows examination of cluster 
interconnectivity, which is relevant for protein networks.  

The algorithm  

The MCODE algorithm may be run in an undirected or a directed mode. Typically, when analyzing 
complexes in a given network, one would find all complexes present (undirected mode) and then switch 
to the directed mode for the complexes of interest.  The algorithm operates in three stages: 

1. vertex weighting 

2.  complex prediction 

3. optionally post-processing to filter or add proteins in the resulting complexes by certain 
connectivity criteria. 

A network of interacting molecules can be intuitively modeled as a graph, where vertices are molecules 
and edges are molecular interactions. If temporal pathway or cell signalling information is known, it is 
possible to create a directed graph with arcs representing direction of chemical action or direction of 
information flow, otherwise an undirected graph is used. Using this graph representation of a biological 
system allows graph theoretic methods to be applied to aid in analysis and solve biological problems. 
This graph theory approach has been used by other biomolecular interaction database projects such as 
DIP [82], CSNDB [83] and is discussed by Wagner and Fell [84]. 

Algorithms for finding clusters, or locally dense regions, of a graph are an ongoing research topic in 
computer science and are often based on network flow/minimum cut theory [85] and spectral 
clustering [86]. To find locally dense regions of a graph, MCODE instead uses a vertex-weighting scheme 
based on the clustering coefficient, 𝐶௜, which measures 'cliquishness' of the neighborhood of a vertex.  

𝐶௜ = 2n/𝑘௜ (𝑘௜-1) 

where 𝑘௜ is the vertex size of the neighborhood of vertex i and n is the number of edges in the 
immediate neighborhood density of v not including v. A clique is defined as a maximally connected 
graph. We can define the density of a graph, G = (V, E), with number of vertices, |V|, and number of 
edges, |E|, as |E|; divided by the theoretical maximum number of edges possible for the graph, |E|୫ୟ୶. 
For a graph with loops, |E|୫ୟ୶= |V| (|V|+1)/2 and for a graph with no loops, |E|max = |V| (|V|-1)/2.  

So, density of G, DG = |E|/|E|୫ୟ୶ and is thus a real number ranging from 0.0 to 1.0. 

Undirected Mode 

1. Vertex weighting 

Vertex weighting, weights all vertices based on their local network density using the highest k-core of 
the vertex neighborhood. A k-core is a graph of minimal degree k (graph G, for all v in G, deg(v) >= k). 
The highest k-core of a graph is the central most densely connected subgraph. We define here the term 
core-clustering coefficient of a vertex, v, to be the density of the highest k-core of the immediate 
neighborhood of v (vertices connected directly to v) including v (note that Ci does not include v). The 
core-clustering coefficient amplifies the weighting of heavily interconnected graph regions while 
removing the many less connected vertices that are usually part of a biomolecular interaction network, 
known to be scale-free [76]. A given highly connected vertex, v, in a dense region of a graph may be 
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connected to many vertices of degree one (singly linked vertex). These low degree vertices do not 
interconnect within the neighborhood of v and thus would reduce the clustering coefficient, but not the 
core-clustering coefficient. The final weight given to a vertex is the product of the vertex core-clustering 
coefficient and the highest k-core level, k max, of the immediate neighborhood of the vertex. This 
weighting scheme further boosts the weight of densely connected vertices. This specific weighting 
function is based on local network density.  

2. Complex prediction 

Molecular complex prediction, takes as input the vertex weighted graph, seeds a complex with the 
highest weighted vertex and recursively moves outward from the seed vertex, including vertices in the 
complex whose weight is above a given threshold, which is a given percentage away from the weight of 
the seed vertex. This is the vertex weight percentage (VWP) parameter. If a vertex is included, its 
neighbors are recursively checked in the same manner to see if they are part of the complex and the 
process stops once no more vertices can be added to the complex based on the given threshold which 
defines the density of the resulting complex. If the threshold is closer to the weight of the seed vertex a 
smaller, denser network region around the seed vertex is identified. A vertex is not checked more than 
once since complexes cannot overlap in this stage of the algorithm. The process is repeated for the next 
highest unseen weighted vertex in the network in order to identify the densest regions of the network.  

3. Post-processing 

Complexes are filtered if they do not contain at least a graph of minimum degree=2. 
Post-processing can be achieved with two options: 

i. 'fluff' option, which increases the size of the complex according to a given parameter 
between 0.0 and 1.0. For every vertex in the complex, v, its neighbors are added to the 
complex if they have not yet been seen and if the neighborhood density (including v) is 
higher than the given parameter. Vertices that are added by the fluff parameter are not 
marked as seen, so there can be overlap among predicted complexes with the fluff 
parameter set.  

ii. The 'haircut' option where the resulting complexes are 2-cored, thereby removing the 
vertices that are singly connected to the core complex.  

If both options are specified, fluff is run first, then haircut. 

Resulting complexes from the algorithm are scored and ranked. The complex score is defined as the 
product of the complex subgraph, C = (V,E), density and the number of vertices in the complex subgraph 
(DC × |V|). Thus larger and more dense complexes are ranked higher in the results.  

Directed mode 

A seed vertex is specified as a parameter. When directed mode is chosen, MCODE only runs once to 
predict the single complex that the specified seed is a part of. The directed mode allows one to 
experiment with MCODE parameters to fine tune the size of the resulting complex according to existing 
biological knowledge of the system. In directed mode, MCODE will first pre-process the input network 
to ignore all vertices with higher vertex weight than the seed vertex. If this were not done, MCODE 
would preferentially branch out to denser regions of the graph, if they exist, which could belong to 
separate, but denser complexes. Thus, a seed vertex for directed mode should always be the highest 
density vertex among the suspected complex.  
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The time complexity of the entire algorithm is polynomial O(nmh3) where n is the number of vertices, 
m is the number of edges and h is the vertex size of the average vertex neighborhood in the input graph, 
G.  

Finally, we have to mention the advantages of MCODE: 

 weighting is done once and comprises most of the time complexity, many algorithm parameters 
can be tried, in O(n), once weighting is complete which is useful when evaluating many different 
parameters.  

 relatively easy to implement  

 since it is local density based, has the advantage of a directed mode and a complex connectivity 
mode. These two modes are generally not useful in typical clustering applications but are useful 
for examining molecular interaction networks. Additionally, only those proteins above a given 
local density threshold are assigned to complexes. This is in contrast to many clustering 
applications that force all data points to be part of clusters, whether they truly should be part of 
a cluster or not.[81] 

3.7 Statistical Evaluation-Generalization 

In microarray and data analysis evaluation methods are used to estimate the generalization ability of 
genome signature, that is to discover predictive relationships of the results in independent data. 
Evaluation methods can be performed in a portion of the existing dataset as well as in an 
independent/new dataset, called the training set while a test set is used for evaluating whether the 
discovered relationships are accurate. A test set is a set of data used to assess the strength and utility of 
a predictive relationship. Cross-validation, explained in section 2.7 is a well-known and used strategy 
because of its simplicity and its universality. The k – fold cross validation approach, implemented in this 
study, can also be used to assess how the results of a statistical analysis will generalize to an 
independent data set. In this context, a new independent dataset is used and the procedure of 10 – fold 
cross validation is repeated. 

3.8 Biological Evaluation 

Apart from the important step of the statistical evaluation of our results and their prediction ability, a 
fundamental role in the process of evaluation is the biological significance of the resulted genes. In 
combination, these two methods can help us uncover known as well as new relationships between 
genes/proteins which if applying either one or the other separately, our conclusion would be 
incomplete and would lack in terms of statistical as well as biological significance.  

A commonly used step to understand biological data is to evaluate the functional properties of gene sets 
of interest. For this purpose, functional enrichment tests are widely applied in biomedicine field to 
uncover trends in large scale biological datasets, and to identify disease and drug mechanisms. Here, we 
performed an over-representation analysis to explore the functional information (biological processes, 
pathways) of our gene sets, the differentially expressed gene (DEG) signatures and the hub-gene 
signatures, in order to identify clear trends for each case study. The over-representation analysis of the 
gene signatures was performed in WebGestalt (2019) (http://www.webgestalt.org/) using Gene 
Ontology-Biological Process categories and Pathway categories and the entire genome as a reference 
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set.  Enrichment p values were adjusted using Benjamini-Hochberg correction and a false discovery rate 
(FDR) threshold of 5% was used as significance cut-off. In the case that no significant results were 
found under threshold FDR 0.05, the top 10 enrichment terms were selected to present the general 
trends. In section 4 the results from the biological evaluation of our resulted gene signature are 
presented. 

3.9 Drugs and Gene signature interaction 

The final step of our methodology is the exploration of the ability to repurpose drugs based on oyr 
resulted gene signature. The resulted hub genes are screened and used for searching drugs-genes 
associations through the DGIdb database [87] towards drug repurposing in Multiple Sclerosis. This 
database has drug–gene interaction data from 30 disparate sources such as ChEMBL, DrugBank, 
Ensembl, NCBI Entrez, PharmGKB, and literature in NCBI PubMed. Drugs supported by no less than 2 
databases or PubMed references are validated as the candidate drugs. The final list only contains the 
drugs that have been approved by the Food and Drug Administration. Additionally, the identified target 
gene network is constructed through the STITCH database, a software that also incorporates drug–gene 
relationships [88]. 
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4 RESULTS AND DISCUSSION 

In this Chapter, we present the results deriving from the application of our proposed methodology after 
examining two cases: A) MS untreated patients vs MS interferon treated patients, B) MS untreated 
patients vs Healthy controls and C) MS untreated patients in different stages of the disease vs Healthy 
controls. In section 4.1 we introduce the datasets that we have used, followed by section 4.2, 4.3 where 
each case is presented separately. Furthermore, in section 4.4 the statistical significance as well as the 
resulted genome signature significance of our approach and our implementation results is assessed. In 
section 4.5 we examine the drug repurpose ability based on the genomic signature deriving from each 
examined case and finally in section 4.6 we present our conclusions, remarks and future work goals. 

4.1 Datasets  

In this study the datasets that were examined were acquired from Gene Expression Omnibus [89]. We 
have selected the raw data in order to process them, as mentioned in the following sections. 
 
For the overall design, the following cases were examined:  

A. Untreated MS vs Interferon treated MS (discovery and replication), dataset GSE41850 

B. Untreated MS vs Controls (discovery and replication), dataset GSE41850 

C. Untreated MS in different disease stages vs Controls, dataset GSE136411 

4.1.1 Dataset GSE41850  

Our first raw dataset was acquired from Gene Expression Omnibus, accession number GSE41850 [35]. 
Gene expression values derived from whole blood RNA from a cohort of 195 MS patients treated with 
interferon β and untreated and 66 healthy controls. We examined samples from 120 MS patients (at 
three consecutive years) and 41 healthy controls (at two time points) as discovery data set and another 
set of 75 MS patients (at three consecutive years) and 25 healthy controls (at two time points) that 
were selected at random as the replication data set. In total, 626 Affymetrix exon arrays were analyzed 
arrays split into discovery and replication data sets.  (Figure 4.1A, B) 
 For each comparison, respective arrays were processed, background corrected and normalized 
together but separate from other comparisons. The two time points for controls were averaged 
(baseline + 1 year). Our data were processed in R. 
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Α) Untreated MS vs Interferon treated MS samples Β) Untreated MS vs Healthy Controls samples 

FIGURE 4.1  A)  UNTREATED MS  VS  INTERFERON TREATED MS  (DISCOVERY AND REPLICATION), B)  UNTREATED MS  VS 

INTERFERON TREATED MS  (DISCOVERY AND REPLICATION) 

4.1.2 Dataset GSE136411 

The second dataset that was examined was also from Gene Expression Omnibus, accession number 
GSE136411 [90]. The dataset includes a total of 313 individuals (172 females and 141 males, with a 
mean age of 41.7 y.), comprising of 60 healthy controls (HC), 57 subjects with Clinically isolated 
syndrome (CIS), 169 clinically defined MS cases. The MS cohort contained 108 relapsing-remitting MS 
(RRMS), 26 secondary progressive MS (SPMS) and 35 primary progressive MS (PPMS) cases. 176 
subjects (39 HC, 46 CIS, 23 PPMS, 47 RRMS, 21 SPMS) out of 313 were included in a previously 
published study, 115 subjects were sampled twice to evaluate biological variability. Additional 137 
subjects (21 HC, 11 CIS, 12 PPMS, 61 RRMS, 5 SPMS, 27 OND) were recruited for this study. The 
datasets raw intensities were background subtracted and filtered according to detection p values 
(p<0.05 in at least 20% of samples) and then normalized using quantile normalization. Pre-processed 
data were log2 transformed. 

4.1.3 Dataset GSE73608 

Dataset GSE73608 [91] was the validation dataset in the “untreated MS vs Interferon treated MS 
patients” Case study. The dataset had two group of samples, first group (N = 35, RRMS-untreated n = 25, 
RRMS_IFN responders n=10) and second group (N = 50, SPMS_untreated n=30, SPMS_IFN treated 
n=20). Peripheral blood mononuclear cells (PBMC) were collected from RRMS and SPMS patients. All 
patients were diagnosed according to McDonald's 2010 diagnostic criteria. The raw dataset was 
processed based on the pre-processing steps of GSE41850 dataset. 

4.1.4 Dataset E-MTAB-5151 

We have acquired Dataset E-MTAB-5151 [92] from the ArrayExpress database. This dataset was used 
as validation in the “untreated MS vs Healthy Controls” case. It was established on the platform of A-
AFFY-44-Affymetrix Gene Chip Human Genome U133 Plus 2.0 [HG-U133_Plus_2]. Dataset E-MTAB-5151 
contains 76 peripheral blood mononuclear cell samples, including 15 PPMS, 21 RRMS, 13 SPMS, in total 
49 MS diagnosed patients and 27 healthy control samples. The patients with MS were diagnosed 
according to McDonald criteria6 and were not suffering from any other acute or chronic inflammatory 
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diseases or other autoimmune disorders. Furthermore, they had not started any immunomodulatory 
therapy for MS yet. The raw gene expression data of the three MS stages were considered one group of 
MS untreated patients and were processed following the pre-processing steps of the GSE41850 dataset. 

4.1.5 Dataset E-MTAB-4890 

Dataset E-MTAB-4890[93] was downloaded from the ArrayExpress database and was used for the 
validation and the examination of the generalization ability of the results from case “Untreated MS 
patients in different disease stages vs Healthy Controls”. E-MTAB-4890 includes a total of 182 
individuals and global mRNA expression from peripheral blood mononuclear cells (PBMC) was 
measured, comprising of 142 multiple sclerosis (MS) patients affected with distinct MS clinical forms 
(PPMS=23, RRMS=52, SPMS=21) and 40 healthy controls. The raw gene expression data of the three MS 
stages were processed following the pre-processing steps of the GSE136411 dataset. 

4.2 Case untreated MS vs Interferon treated MS patients 

The commonly used disease-modifying treatment (DMT) interferon (IFN) beta is believed to modulate 
the immune response, reduce new inflammatory lesions in the CNS and partially protect against 
progression of disability. However, patients vary considerably in their responsiveness to these 
therapies, and for any individual patient, the natural history of MS is extremely heterogeneous, varying 
from a benign condition to a devastating and rapidly incapacitating disease. For these reasons, a better 
characterization of patients is much needed to ultimately understand the diversity of disease 
presentation. 

4.2.1 Datasets preprocessing and Differential expression 

The first step was Filtering our dataset. We have created a new file with all discovery samples with 
18.726 genes x 318 samples. In the discovery data set, a variance filter, difference between the 10% and 
90% quantiles > 0.7, yielding 6.924 genes (329 > than original paper) was applied to normalized gene 
expression values in order to decrease the number of tested genes. Then group 1 (untreated patients) 
was compared to group 2 (IFN treated patients) at any of the three measured time points. The union of 
genes at all three time points passing the FDR cutoff of 0.0001 were considered to be differentially 
expressed and assessed for differential expression in the replication data set. 

In the replication dataset the procedure was repeated: group 1 (untreated patients) was compared to 
group 2 (IFN treated patients) at all three measured time points, and the union of genes reaching a 
nominal p-value of 0.05 or smaller at any of these time points was considered to be replicated. 

We report differentially expressed genes at the FDR cutoff was 0.0001. The respective genes were 
validated in the replication data set when they passed a nominal p-value cutoff of 0.05 at any of the 
three tested time points. In the discovery data set, differentially expressed genes were identified by 
applying stringent FDR-corrected P-value filters; these genes were then tested for validation in the 
replication data set. ( R limma : Linear Models for Microarray Data ) 

After applying gene filtering and differential analysis in each time point we have concluded in 6.924 
genes from discovery dataset (FDR < 10-4) and their union yielded 313 significant genes. The 
replication dataset was tested based on these 6.924 genes and 531 genes were selected with p-value< 
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0.05. Based on the discovery and replication set, 274 genes were common and were considered 
significant from our “Ms_Untreated- INF_treated” case. 

 

FIGURE 4.2  DATASET PREPROCESSING AND DIFFERENTIAL EXPRESSION:  UNTREATED MS  VS INTERFERON TREATED MS  

(DISCOVERY AND REPLICATION) 

4.2.2 Significance Analysis of Microarrays (SAM) 

To further evaluate the results, we conducted a Significance Analysis of Microarrays (SAM) on our 
filtered datasets for both cases, in order to find differentially expressed genes based on T-statists. The 
cutoff for significance is determined by a tuning parameter delta, chosen by the user based on the false 
positive rate. One can also choose a fold change parameter, to ensure that called genes change at least a 
pre-specified amount. 

LIMMA 
and SAM 

MS Untreated vs INF treated at three-time points  
FINAL COMMON 

GENES 
Discovery 

dataset 
(DEGs) 

Replication dataset 
(DEGs) 

Common genes 

LIMMA 
SAM 

313 
777 

531 
936 

274 
614 

 
213 

TABLE4.1  DIFFERENTIALLY EXPRESSED GENES MS  UNTREATED VS  INF  TREATED  

After the analysis with SAM, we compared the SAM results to our Limma analysis in R and we 
concluded in 213 genes considering the case MS Untreated- INF treated. 

4.2.3 Clustering  

Hierarchical clustering using maximum distance and ward clustering was performed on the 
discriminant 213 signature genes from untreated subjects and Interferon treated (Fig. 2). Two distinct 
clusters are observed. A subset of patients in both data sets shows a strong IFN response (high IFN gene 
expression). 182 genes out of 213 were found also in our reference paper [35]. 
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FIGURE 4.3  UNSUPERVISED HIERARCHICAL CLUSTERING OF MS  UNTREATED AND IFN  TREATED PATIENTS ACCORDING TO THE 

EXPRESSION OF IFN  SIGNATURE GENES IN THE DISCOVERY (A)  AND THE REPLICATION (B)  DATA SETS. THE ROWS ARE DIFFERENT 

GENES;  THE COLUMNS REFLECT DIFFERENT SAMPLES.  THE COLORED BAR ABOVE THE HEATMAP VISUALIZES WHETHER THE 

PATIENT WAS UNTREATED (PINK)  OR IFN  TREATED (GREY). DARK BLUE DEPICTS LOW , RED HIGH EXPRESSION. 

We observe the discriminatory power of the resulted 213 gene signature in unsupervised hierarchical 
clustering (Figure 4.3). The heatmap shows a uniform cluster of MS INF treated  patients (grey) with several 
smaller uniform clusters,  an observation that stands in the replication set.MS untreated cases also clustere in a 
distinct cluster (pink), indicating that gene expression changes evoked by the INF treatement are noticable.  

4.2.4 Pigengene Methodology 

The proposed methodology aims to find a minimum set of significant genes that will be able to predict 
the state of a new sample as well as provide meaningful biological information through the correlation 
and combination of genes in pathways and smaller groups/networks. We apply the Pigengene 
methodology streps on the 6.924 genes that derived from the preprocessing step. 

i. Weighted correlation network: Weighted Coexpression network analysis (WGCNA) was applied to 
group related genes into gene modules (clusters) based on their coexpression patterns in MS. 
WGCNA uses the average linkage hierarchical algorithm to cluster the genes. (Figure4.4 A). For each 
gene module, WGCNA computes one eigengene, which summarizes the biological information in 
that module into one value per sample. We used these eigengenes to train a Bayesian network (BN) 
in which nodes (random variables) represent gene modules, and the directed edges (arcs) represent 
the conditional dependencies between the eigengenes. 

ii. Eigengenes: We computed an eigengene for each module as a weighted average of the expression of 
all genes in that module. Eigengenes are important biological signatures that can predict disease 
types solely based on gene expression (Figure4.4 B). Module 5 is negatively associated with the 
Interferon treatment, whereas Module 6 is positively associated with Interferon treatment. To 
validate this, we modeled the probabilistic dependencies between the eigengenes using a BN 
(Figure 4.5). We used Bayesian networks as probabilistic predictive models to determine the state. 
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A B 

  
FIGURE 4.4  A)  MODULES DENDROGRAM B)  THE TWO (2)  EIGENGENES THAT ARE DIFFERENTIALLY EXPRESSED ME5, ME6. THE 

INTENSITY OF THE COLORS IN EACH HEATMAP CORRESPONDS TO THE NORMALIZED AVERAGE EXPRESSION. EACH COLUMN 

CORRESPONDS TO AN EIGENGENE . EACH ROW SHOWS THE EXPRESSION OF A CASE FROM THE MS  VS MS_INF DATASET. 

iii. Bayesian network: We fitted a Bayesian network to the eigengenes to determine the relationships of 
the modules with each other and with the state of the samples. Descendants of the “Disease” node, 
the variable that models the state, show high dependency between these eigengenes and the state 
type and suggest that they have useful biological information that can explain the differences 
between the two states. We trained a Bayesian network to model the probabilistic dependencies 
between the modules. Several individual networks from random staring networks were built 
(no.1000) by optimizing their score. Then, we inferred a consensus network from the ones with 
relatively "higher" scores. The default hyper-parameters and arguments are then selected. Each 
module eigengene is represented by a node (observed random variable). To model the condition, 
we added “Disease” as an observed random variable to the network. 

 

FIGURE 4.5  THE BAYESIAN NETWORK FITTED TO THE EIGENGENES. EACH NODE REPRESENTS AN EIGENGENE OF A MODULE . THE 

ARCS MODEL THE PROBABILISTIC DEPENDENCIES BETWEEN THE MODULES . THE “DISEASE”  NODE IS SET TO 1 FOR MS  AND 0 FOR 

MS_INF, AND ITS CHILDREN ARE HIGHLIGHTED IN PINK . 
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iv. Decision tree: A decision tree is fitted to the two children of the Disease node in our Bayesian 
network (R package C50 version 0.1.0-24). We used the data to infer the topology of the tree and the 
corresponding parameters. The algorithm automatically selected the ME5 and ME6 eigengenes 
(modules 5 and 6). Module eigengenes are used to build a classifier that distinguishes two or more 
classes. Each eigengene is a weighted average of the expression of all genes in the module, where 
the weight of each gene corresponds to its membership in the module. Each module might contain 
dozens to hundreds of genes, and hence the final classifier might depend on the expression of a 
large number of genes. In practice, it is desirable to reduce the number of necessary genes by a 
decision tree. The inferred decision tree had a relatively high predictive accuracy (Figure 4.6).  

 

FIGURE 4.6  THE DECISION TREE FOR DISTINGUISHING MS  FROM MS_INF CASES. IF THE NORMALIZED EIGENGENE OF A CASE IS 

GREATER THAN -0.002,  IT IS CLASSIFIED AS MS_INF. IF IT IS LESS THAN -0.002  AND LESS THAN -0.01, IT IS CLASSIFIED AS MS.  

OTHERWISE, THE ME6 EIGENGENE DETERMINES WHETHER THE CASE IS MS  (>0.01)  OR MS_INF (≤−0.01). AT THE FIXED 

THRESHOLDS SHOWN ABOVE, THIS TREE CORRECTLY CLASSIFIED 267  CASES (84%)  IN THE DATASET. 

4.2.5 Construction of PPI Network of Common DEGs for MS and MS_INF Treated 
Patients from two Approaches 

We compared the resulted genes from Modules 5 and Module 6 to our 213 differentially expressed 
genes from SAM and Limma. 190 genes were common between the two methodological approaches, so 
we choose to keep the 213 DEGs and proceed by taking into account the extra 23 genes to construct the 
PPI network and examine for hub genes. The STRING App in the Cytoscape software was used to 
analyze 213 DEGs that had been entered into the STRING database. A total of 208 genes/nodes with 312 
edges were enriched in the construction of the PPI network. (Figure 4.7) 
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FIGURE 4.7  PPI NETWORK FROM 213  DIFFERENTIALLY EXPRESSED GENES  

4.2.6 Critical Subnetworks and Identification of Hub Genes for MS and MS_INF 
Treated Patients 

Hub genes were identified by 11 topological analysis methods from the CytoHubba, a Cytoscape plugin, 
where the top 20 genes were selected for each method. The 32 resulted genes (Table4.2) were found in 
the intersection of all methods and were selected as MS_INF related hub genes. We also obtained the 
clustering module with the highest score from PPI network of all DEGs (Figure 4.8 A) by MCODE 
algorithm. It was found that 21 genes from 32 hub genes were contained in this module (Figure 4.8 B) 
providing a minimal gene set toward potential clinical testing.  

CytoHubba & MCODE: Hub genes by 11 topological analysis methods or Hub genes by CytoHubba 
and MCODE algorithm* 

OAS3|RSAD2|IFIT3| IRF5|IFIT1|IFI6|IFIT5|OAS2|MX2|IFIT2|STAT2| 
IRF7|BST2|IFITM3|STAT1|ADAR|SAMHD1XAF1|IFI35|IFI27|OASL 

|IFIH1|UBE2L6|IFI44|CCR1|NT5C3A| HERC5|CASP1| CMPK2|CXCL10| PARP9|DDX58 

TABLE4.2  IDENTIFICATION OF HUB GENES *21 HUB GENES CYTOHUBBA &  MCODE (IN BOLD);32 GENES CYTOHUBBA  
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A B 

 
 

FIGURE 4.8  A)  THE HIGHEST SCORE CLUSTERING MODULE WAS GENERATED BY MCODE,  WITH 21  GENES.B)  UNSUPERVISED 

HIERARCHICAL CLUSTERING OF MS  UNTREATED AND IFN  TREATED PATIENTS ACCORDING TO THE EXPRESSION OF 21  FINAL  IFN  

SIGNATURE GENES. THE ROWS ARE DIFFERENT GENES;  THE COLUMNS REFLECT DIFFERENT SAMPLES. THE COLORED BAR ABOVE 

THE HEATMAP VISUALIZES WHETHER THE PATIENT WAS UNTREATED (PINK)  OR IFN  TREATED (GREY). DARK BLUE DEPICTS LOW,  

RED HIGH EXPRESSION. 

4.2.7 Statistical Evaluation-Generalization 
 
The resulting genomic signature of 21 hub genes is used to assess the classification and generalization 
ability of the model. The final gene signature arrived from GSE41850 dataset which was used as a 
training dataset (N = 224, MS_Utreated= 130, MS_INF Treated = 94) and testing dataset (N = 94, 
MS_Utreated= 55, MS_INF Treated = 39). The validation dataset GSE73608 as we mentioned in section 
4.1 had two group of samples. Both groups were examined as independent validation sets. Twenty-one 
(21) hub genes served as features in training data set, and their corresponding gene expression profiles 
were obtained. Then, the classification model was established by support vector machine (SVM).  
 
By applying 10fold cross-validation in the model, 76 out of the 94 samples were correctly classified, 
with a classification accuracy of 80%, model sensitivity to INF of 77%, specificity of 85%, and area 
under the ROC curve (AUC) was 0.86 (Figure 4.9 a). Furthermore, the established model was used to 
predict the samples in the validation data sets to test the prediction ability of the model. 
 In the first validation group, (N = 35, RRMS-untreated n = 25, RRMS_IFN responders n=10) the samples 
were classified, with a classification accuracy of 80%, moreover, the sensitivity was 100 % and 
specificity of the model was 64%, and the area under the receiver operating characteristic (ROC) curve 
was 0.92 (Figure 4.9 b).  In the second validation group, (N = 50, SPMS_untreated n=30, SPMS_IFN 
treated n=20) the samples were classified, with a classification accuracy of 70%, the sensitivity was 90 
% and specificity of the model was 57%, the area under the receiver operating characteristic (ROC) 
curve was 0.88 (Figure 4.9 c).  
 
We merged the two groups and applied the model to the merged dataset with a classification accuracy 
of 75%, moreover, the sensitivity was 94 % and specificity of the model was 64%, the area under the 
receiver operating characteristic (ROC) curve was 0.90 (Figure 4.9 d).  Compared to other studies and 
published results [18] the methodology performs very well and these results indicated that the 
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diagnostic prediction model constructed in this study can effectively distinguish patients with MS from 
Interferon treated patients, and that the twenty one hub genes can be used as reliable biomarkers for 
MS diagnosis. 
a b 

GSE41850 Real INF Real MS  

Predict INF 42 6  

Predict MS 13 33 Totals 

Totals 55 39 94 

Correct 42 33 75 

Sensitivity (%) 77   

Specificity (%)  85  

AUC 0.86 

 

GSE73608 Real INF Real RRMS  

Predict INF 10 8  

Predict RRMS 0 17 Totals 

Totals 10 25 35 

Correct 10 17 27 

Sensitivity (%) 100   

Specificity (%)  64  

AUC 0.92 

 

    c      d 

GSE73608 Real INF Real SPMS  

Predict INF 18 13  

Predict SPMS 2 17 Totals 

Totals 20 30 50 
Correct 18 17 35 

Sensitivity (%) 90   

Specificity (%)  57  

 
AUC 0.88 

 

GSE73608 
(Merged) 

Real INF Real 
SPMS+RRMS 

 

Predict INF 28 20  

Predict SPMS+ 
RRMS 

2 35 Totals 

Totals 30 55 85 

Correct 28 35 63 

Sensitivity (%) 94   

Specificity (%)  64  

 
AUC 0.90 

 

 
FIGURE 4.9  CONSTRUCTION OF DIAGNOSTIC MODEL AND VALIDATION OF MODEL.  A)  CLASSIFICATION RESULTS AND ROC CURVES OF 

SAMPLES BY DIAGNOSTIC MODEL IN TRAINING DATA SET. B)  CLASSIFICATION RESULTS AND ROC CURVES OF SAMPLES BY 

DIAGNOSTIC MODEL IN GSE73608 1ST GROUP. C)  CLASSIFICATION RESULTS AND ROC CURVES OF SAMPLES BY DIAGNOSTIC MODEL 

IN GSE73608  2ND GROUP. D)  CLASSIFICATION RESULTS AND ROC CURVES OF SAMPLES BY DIAGNOSTIC MODEL IN GSE73608 (1ST 

GROUP + 2ND GROUP .) 

4.2.8 Biological interpretation 

Each selected Affymetrix probe set was mapped to an annotation of Entrez Gene ID and Gene Symbol 
using the online tool WebGestalt (2013) (http://www.webgestalt.org/2013/). Considering the case 
untreated MS and INF treated, an over-representation analysis of the resulted 213-DEG-gene signature 
was performed in WebGestalt (2019). The enriched biological process categories are presented in Table 
4.3A, whereas the enriched pathway categories are presented in Figure 4.10A.  

Gene Set Description P Value FDR 
GO:0098542 defense response to other organism <2.2e-16 <2.2e-16 
GO:0009615 response to virus <2.2e-16 <2.2e-16 
GO:0034340 response to type I interferon <2.2e-16 <2.2e-16 
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GO:0043900 regulation of multi-organism 
process 

6.6613E-
16 

1.42E-13 

GO:0035456 response to interferon-beta 9.08E-14 1.54E-11 
GO:0019058 viral life cycle 5.61E-13 7.95E-11 
GO:0034341 response to interferon-gamma 1.81E-12 2.20E-10 
GO:0035455 response to interferon-alpha 4.34E-11 4.61E-09 
GO:0002831 regulation of response to biotic 

stimulus 
5.81E-09 5.49E-07 

GO:0032606 type I interferon production 1.15E-08 9.78E-07 
GO:0060759 regulation of response to cytokine 

stimulus 
8.85E-08 6.8406E-06 

GO:0045088 regulation of innate immune 
response 

1.10E-07 7.8222E-06 

GO:0007249 I-kappaB kinase/NF-kappaB 
signaling 

5.89E-07 0.000038516 

GO:0001818 negative regulation of cytokine 
production 

2.8E-06 0.00016929 

GO:0002697 regulation of immune effector 
process 

3.8E-06 0.0002148 

GO:0000209 protein polyubiquitination 1.4E-05 0.00072239 
GO:0001819 positive regulation of cytokine 

production 
4.8E-05 0.0024223 

GO:0061025 membrane fusion 7.8E-05 0.0036921 
GO:0016050 vesicle organization 0.00011 0.0050468 
GO:0002237 response to molecule of bacterial 

origin 
0.00019 0.0080888 

GO:0051701 interaction with host 0.0002 0.0086105 
GO:0044764 multi-organism cellular process 0.0002 0.0086492 
GO:0002764 immune response-regulating 

signaling pathway 
0.0003 0.0099609 

GO:0031349 positive regulation of defense 
response 

0.0007 0.0246 

Note: Common GO-biological processes between DEG-signatures and hub-gene-signatures are 
highlighted in blue. 

TABLE 4.3A GO-BIOLOGICAL PROCESSES ANALYSIS OF 213  DEGS IN THE  
CASE  OF UNTREATED MS  VS  INF TREATED  

 
FIGURE 4.10A REACTOME PATHWAY ANALYSIS OF 213  DEGS IN THE CASE  OF UNTREATED MS  VS  INF TREATED. 

As demonstrated in Table 4.3A and Figure 4.10A, the enrichment analysis of the 213-DEG-gene 
signature revealed an overwhelming representation of immune processes and pathways, which are 
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known to play a role in MS [35].As interferons are known to take part in regulating innate and adaptive 
immune responses, the excessive presentation of interferon signaling is rather expected [94].   

Of note, in accordance with the original study, four out of 213 genes (OAS3, RSAD2, EPSTI1, IFI44L) 
were found among the most significantly and strongly differentially expressed genes between untreated 
MS and INF-treated patients [35]. 

Moreover, we also performed an over-representation analysis to further explore the functional 
information (biological processes, pathways) of the 21-hub-gene signature, which may be linked with 
MS interferon treatment. The analysis of the gene signature was performed using the online tool 
WebGestalt (2019).  

Gene Set Description P Value FDR 
GO:0098542 defense response to other 

organism 
<2.2e-16 <2.2e-16 

GO:0009615 response to virus <2.2e-16 <2.2e-16 
GO:0034340 response to type I interferon <2.2e-16 <2.2e-16 
GO:0035455 response to interferon-alpha 1.42E-13 3.02E-11 
GO:0035456 response to interferon-beta 4.01E-12 6.82E-10 

GO:0043900 regulation of multi-organism 
process 

2.14E-11 3.03E-09 

GO:0019058 viral life cycle 7.67E-11 9.31E-09 
GO:0034341 response to interferon-gamma 1.22E-10 1.29E-08 
GO:0032069 regulation of nuclease activity 3.72E-06 0.0003513 
GO:0032606 type I interferon production 0.0005205 0.044243 
Note: Common GO-biological processes between DEG-signatures and hub-gene-signatures are 
highlighted in blue. 

TABLE 4.3B GO-BIOLOGICAL PROCESSES ANALYSIS OF THE 21-HUB-GENE SIGNATURE IN THE  
CASE  OF UNTREATED MS  VS  INF TREATED  

 
FIGURE 4.10B  REACTOME PATHWAY ANALYSIS OF THE 21-HUB-GENE SIGNATURE IN THE  

CASE  OF UNTREATED MS  VS  INF  TREATED. 

 

As presented in Figure 4.8A, our approach resulted in a clustering module (subnetwork) with 21 highly 
interconnected hub genes. After performing enrichment analysis, significant (P<0.01, FDR<0.001) GO 
biological processes (Table 4.3B), KEGG, Wikipathways, and Reactome (Figure 4.10B) pathways were 
obtained. The GO functional enrichment analysis indicated that the 21 MS_INF-associated genes were 
enriched in biological processes, such as response to type I interferon, defense response to other 
organism, response to virus, and response to interferon-alpha/beta/gamma. Furthermore, the pathway 
enrichment analysis (KEGG/Wikipathways/Reactome) showed that these genes were significantly 
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enriched in signaling pathways, such as NOD-like receptor signaling, Toll-like receptor signaling, 
Cytokine Signaling in Immune system, Interferon Signaling, Interferon alpha/beta signaling, Type 
II/Type III interferon signaling, IL-10 Anti-inflammatory Signaling, but also Non-genomic actions of 
1,25 dihydroxyvitamin D3 [95]. These findings highlight the affected processes and pathways in MS that 
are linked with a response to INF treatment and are in accordance with current knowledge [35, 96, 97, 
98, 99, 100]. Moreover, eight out of 21 hub genes (OAS2, IRF5, MX2, OASL, IFIT1, IRF7, IFI35 implicated 
in Interferon inducible and interferon pathway; STAT1 implicated in Cell signaling) were found to be 
up-regulated in MS patients following IFNβ therapy [100] whereas two out of 21 genes (OAS3, RSAD2) 
were found, as 77forementioned, among the most significant differentially expressed genes between 
untreated MS and INF-treated patients, reported in the original study [35]. As depicted in Figure 4.8B, 
there is a variance in the expression pattern of some cases illustrating both the heterogeneity of the 
clinical course of MS and the partial response to IFNβ therapy. Thus, we suggest that the derived hub 
genes provide a reliable 21-hub-gene signature that could predict the response of IFNβ therapy in 
patients with MS [95]. 

4.2.9 Candidate drugs targeting hub genes 

Using the DGIdb database we explore drug-gene interactions of the 21 hub genes that derived from the 
MCODE analysis. 21 genes were found common between CYTOHUBBA and MCODE. The drugs for 
possibly addressing patients in MS when they do not respond to INFb, are shown in Table4.4. We used 
the STITCH database, in order to construct downstream networks of the genes that have a drug 
relationship, to investigate the additional effects caused by inhibitors of these genes. All networks are 
also included in Table4.4. The network setting were “Experiments”,” Databases”,”Coexpression” and 
confidence was set to high=0,9. 

GENE SYMBOL DRUGS NETWORK 
Protein-protein interactions: Grey,  
Chemical-protein interactions: Green  
Interactions between chemicals: red. 

SAMHD1  

 
OASL  RIBAVIRIN 
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STAT1  GARCINOL 
 GUTTIFERONE K 
 PICOPLATIN 
 CISPLATIN 
 CHEMBL85826 
 IPRIFLAVONE 

 
TABLE 4.4  GENES THAT HAVE DRUG INTERACTIONS AND INHIBITOR NETWORKS OF THE GENES THAT HAVE A DRUG RELATIONSHIP  

4.3 Case untreated MS vs Healthy Controls 

4.3.1 Dataset preprocessing and Differential expression 

We have created a new file with all discovery samples, and we have 18.726 genes x 174 samples. Gene 
expression patterns were relatively stable across the three time points, so we adopted a cross-sectional 
analysis strategy. 

In the discovery data set, a variance filter, difference between the 10% and 90% quantiles > 0.6, 
yielding 8.979 genes (104 > than original paper) was applied to normalized gene expression values in 
order to decrease the number of tested genes. Then group 1 (untreated patients) was compared to 
group 2 (averaged controls) at any of the three measured time points. The union of genes at all three 
time points passing the FDR cutoff of 0.01 were considered to be differentially expressed and assessed 
for differential expression in the replication data set. In the replication dataset the procedure was 
repeated: group 1 (untreated patients) was compared to group 2 (averaged controls) at all three 
measured time points, and the union of genes reaching a nominal p-value of 0.05 or smaller at any of 
these time points was considered to be replicated. Differentially expressed genes were identified in the 
discovery data set and then validated in the replication data set. In the discovery data set, differentially 
expressed genes were identified by applying stringent FDR-corrected P-value filters; these genes were 
then tested for validation in the replication data set.( R limma) 
After applying gene filtering and differential analysis in each time point we have concluded in 8.979 
genes from discovery dataset (FDR < 10-4) and their union yielded 76 significant genes. For controls, 
the two available time points were considered biological replicates and were averaged; these averaged 
expression profiles were then used for comparison with untreated MS patients for all three time points. 

The replication dataset was tested based on these 8.979 genes and 2.270 genes were selected with p-
value< 0.05. Based on the discovery and replication set, 76 genes were common and were considered 
significant from our “MS Untreated- Control” case. 
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FIGURE 4.11 DATASET PREPROCESSING AND DIFFERENTIAL EXPRESSION:  B)  UNTREATED MS  VS HEALTHY CONTROLS 

(DISCOVERY AND REPLICATION)  

4.3.2 Significance Analysis of Microarrays (SAM) 

As previously stated, in order to further evaluate the results, we conducted a Significance Analysis of 
Microarrays (SAM) on our filtered dataset so as to find differentially expressed genes based on T-
statists. The cutoff for significance is determined by a tuning parameter delta, chosen by the user based 
on the false positive rate. One can also choose a fold change parameter, to ensure that called genes 
change at least a pre-specified amount. 

LIMMA 
and SAM 

MS Untreated vs Control   
FINAL COMMON GENES Discovery 

dataset 
(DEGs) 

Replication dataset 
(DEGs) 

Common genes 

LIMMA 
SAM 

221 
284 

2270 
1440 

76 
238 

 
31 

TABLE4.5  DIFFERENTIALLY EXPRESSED GENES MS  UNTREATED VS CONTROL  

After the analysis with SAM, we compared the SAM results to our Limma analysis in R and we 
concluded in 31 genes considering the case Ms Untreated- Control. 

We proceed with hierarchical clustering and k means clustering of our datasets to visualize and 
evaluate our results.  

4.3.3 Clustering 

In contrast with the transcriptional responses observed for IFN treatment, gene expression differences 
between untreated cases and controls were much more subtle. Despite modest differences in 
expression levels, the identified MS signature is discriminatory in unsupervised hierarchical clustering 
(Figure 4.11). The heatmap shows a uniform cluster of MS patients (group A) as well as several smaller 
uniform clusters of controls, an observation that stands in the replication set. MS cases who do not 
belong to group A, rather clustered with the controls (group B), indicating that gene expression changes 
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evoked by the disease are much more heterogeneous and complex than those induced by IFN. 
Hierarchical clustering was performed using Euclidean distance and average clustering. 

 

 
FIGURE 4.12  UNSUPERVISED HIERARCHICAL CLUSTERING OF MS  PATIENTS AND HEALTHY CONTROLS ACCORDING TO THE 

EXPRESSION OF MS  SIGNATURE GENES IN THE DISCOVERY (A)  AND THE REPLICATION (B)  DATA SETS. THE ROWS ARE DIFFERENT 

GENES, THE COLUMNS REFLECT DIFFERENT EXPERIMENTS.  THE COLORED BAR ABOVE THE HEATMAP IDENTIFIES PATIENTS (PINK)  

AND CONTROLS (GREY). TWO SUBGROUPS OF MS  PATIENTS, GROUP A  WITH A STRONGER SIGNATURE AND GROUP B, EMERGE.  

BLUE DEPICTS LOW EXPRESSION AND RED HIGH EXPRESSION. 
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4.3.4 Statistical Evaluation 

The resulting genomic signature of 31 hub genes derived from GSE41850 dataset and we proceed to 
examine the classification and generalization ability of it in an independent dataset. We have acquired 
Dataset E-MTAB-5151 [92] downloaded from the ArrayExpress database. This dataset was established 
on the platform of A-AFFY-44-Affymetrix Gene Chip Human Genome U133 Plus 2.0 [HG-U133_Plus_2]. 
The final gene signature from GSE41850 dataset was used as a training dataset (N = 150, 
MS_Utreated= 94, Healthy controls = 56) and testing dataset (N = 62, MS_Utreated= 39, MS_INF Treated 
= 23). Thirty-one (31) genes served as features in training data set, and their corresponding gene 
expression profiles were obtained. Then, the classification model was established by support vector 
machine (SVM).  
 
By applying 10fold cross-validation in the model, 38 out of the 62 samples were correctly classified, 
with a classification accuracy of 63%, model sensitivity to CTR of 65%, specificity of 80%, and area 
under the ROC curve (AUC) was 0.78 (Figure 4.13 a). Furthermore, the established model was used to 
predict the samples in the validation data sets to test the prediction ability of the model. 
 In the validation group, (N = 76, MS-untreated n = 49, Healthy controls n=27) the samples were 
classified, with a classification accuracy of 79%, moreover, the sensitivity was 55 % and specificity of 
the model was 98%, and the area under the receiver operating characteristic (ROC) curve was 0.69 
(Figure 4.13 b).   
 

                        a b 
GSE41850 Real CTR Real MS  

Predict CTR 8 8  

Predict MS 15 31 Totals 

Totals 23 39 62 

Correct 8 31 39 

Sensitivity (%) 65   

Specificity (%)  80  

AUC 0.78 

 

E-MTAB-5151 Real CTR Real MS  

Predict CTR 12 1  

Predict MS 15 48 Totals 

Totals 27 49 76 

Correct 12 48 60 

Sensitivity (%) 55   
Specificity (%)  98  

AUC 0.69 

 

FIGURE 4.13 CONSTRUCTION OF DIAGNOSTIC MODEL AND VALIDATION OF MODEL. A)  CLASSIFICATION RESULTS AND ROC CURVES 

OF SAMPLES BY DIAGNOSTIC MODEL IN TRAINING DATA SET. B)  CLASSIFICATION RESULTS AND ROC  CURVES OF SAMPLES BY 

DIAGNOSTIC MODEL IN E-MTAB-5151. 

As we can see from the results, the algorithm performs well when classifying MS patients based on the 

expression values of the datasets. As we have already mentioned gene expression changes evoked by 
the disease are much more heterogeneous and complex and thus, we choose to examine each MS stage 
versus Healthy control samples in order to identify candidate genes that could be indicative of the 
disease progression as well as the prediction of new samples. In section 4.4 we present the application 
of our methodology in a new data set with MS cases in different stages and Healthy control samples. 

4.3.5 Biological Interpretation 

Each selected Affymetrix probe set was mapped to an annotation of Entrez Gene ID and Gene Symbol 
using the online tool WebGestalt (2013) (http://www.webgestalt.org/2013/). Considering the case 
untreated MS and controls, an over-representation analysis of the resulted 31-DEG-gene signature was 



Results and Discussion 

 

82 
 

performed in WebGestalt (2019). The results of the enrichment analysis of the 31-DEG-gene signature 
are presented in Table 4.6 and Figure 4.14.  

Gene Set Description P 
Value 

FDR 

GO:0002446 Neutrophil mediated 
immunity 

1.29E-
05 

0.0058 

GO:0036230 granulocyte activation 1.36E-
05 

0.0058 

TABLE 4.6  GO-BIOLOGICAL PROCESSES ANALYSIS OF 31  DEGS IN THE CASE  OF UNTREATED MS  VS  CONTROLS 

 

 
FIGURE 4.14  REACTOME PATHWAY ANALYSIS OF 31  DEGS IN THE CASE  OF UNTREATED MS  VS  CONTROLS. 

 

The depicted pathway and biological processes become more important as our knowledge about 
neutrophils, first-responding innate myeloid cells, and their effector functions as contributing 
components in the pathogenesis of MS is increasing. Naegele et al [??] showed that neutrophils in MS 
patients are more numerous and exhibit a primed state that is based, among others, on enhanced 
degranulation and oxidative burst. [paper in preparation] 

In order to reveal more information about MS, we sought to identify the DEGs among the distinct stages 
of MS versus healthy controls, as aforementioned.  

4.4 Cases Untreated MS patients in different disease stages vs Healthy 
Controls 

In this section we will present the application of our pipeline on a new dataset, GSE136411. There are 
three clinical courses of MS. The most frequent is the relapsing-remitting form (RRMS), which accounts 
for approximately 85% of MS cases. RRMS is characterized by relapse followed by remission, where 
symptoms may vary from mild to severe, and relapses and remissions may last for days or months. 
After a variable time, most individuals with RRMS advance to a secondary progressive phase (SPMS), 
where neurologic worsening occurs without periods of remission. In contrast, 15% of individuals with 
MS experience a progressive course, called primary progressive MS (PPMS), which is characterized by a 
steady worsening of neurologic functioning, without any distinct relapses or periods of remission. For 
PPMS, the rate of progression may vary over time, with occasional plateaus or temporary 
improvements, but the progression is continuous. [90] 

The cases that we have examined are: 
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i. Relapsing-Remitting MS (RRMS) vs Healthy Controls 
ii. Primary Progressive MS (PPMS) vs Healthy Controls 

iii. Secondary progressive MS (SPMS) vs Healthy Controls 

4.4.1 Case Relapsing-Remitting MS (RRMS) vs Healthy Controls 

After normalization, our dataset consists of 188 samples (RRMS N=121 and HC N=67) and 10.160 gene 
with their expression values. 

4.4.1.1 Significance Analysis of Microarrays (SAM) 

We conducted a Significance Analysis of Microarrays (SAM) on our filtered dataset, so as to find 
differentially expressed genes based on T-statists. The cutoff for significance is determined by a tuning 
parameter delta, chosen by the user based on the false positive rate. One can also choose a fold change 
parameter, to ensure that called genes change at least a pre-specified amount. 

SAM 

RRMS Untreated vs Control  
upregulated downregulated FINAL GENES 

35 95 130 

TABLE4.7  DIFFERENTIALLY EXPRESSED GENES RRMS  UNTREATED VS  CONTROL  

After the analysis with SAM, we concluded in 130 Differentially expressed genes considering the case 
RRMS Untreated-Control. We proceed with the Pigengene methodology 

4.4.1.2 Pigengene Methodology 

Our goal is to find a minimum set of significant genes that will be able to predict the state of a new 
sample as well as provide meaningful biological information through the correlation and combination 
of genes in pathways and smaller groups/networks. We apply the Pigengene methodology streps on the 
10.160 genes that derived from the preprocessed dataset. 

i. Weighted correlation network: Weighted Coexpression network analysis (WGCNA) was applied 
to group related genes into gene modules (clusters) based on their coexpression patterns in MS.  

ii. Eigengenes: We computed an eigengene for each module as a weighted average of the 
expression of all genes in that module. (Figure 4.15 B). To validate the association of the 
modules to each state, we modeled the probabilistic dependencies between the eigengenes 
using a BN (Figure 4.16). We used Bayesian networks as probabilistic predictive models to 
determine the state. 

 

 

A  B 
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FIGURE 4.15 A)  MODULES DENDROGRAM B)  THE EIGENGENES HEATMAP. WE COMPUTED AN EIGENGENE FOR EACH MODULE AS A 

WEIGHTED AVERAGE OF THE EXPRESSION OF ALL GENES IN THAT MODULE . THE INTENSITY OF THE COLORS IN EACH HEATMAP 

CORRESPONDS TO THE NORMALIZED AVERAGE EXPRESSION.  EACH COLUMN CORRESPONDS TO AN EIGENGENE . EACH ROW SHOWS 

THE EXPRESSION OF A CASE FROM THE MICROARRAY DATASET. THE EIGENGENE THAT IS DIFFERENTIALLY EXPRESSED IS ME13. 

iii. Bayesian network: We fitted a Bayesian network to the eigengenes to determine the 
relationships of the modules with each other and with the state of the samples. Descendants of 
the “Disease” node, the variable that models the state, show high dependency between these 
eigengenes and the state type and suggest that they have useful biological information that can 
explain the differences between the two states. We trained a Bayesian network to model the 
probabilistic dependencies between the modules. Several individual networks from random 
staring networks were built (no.1000) by optimizing their score. Then, we inferred a consensus 
network from the ones with relatively “higher” scores. The default hyper-parameters and 
arguments are then selected. Each module eigengene is represented by a node (observed 
random variable). To model the condition, we added “Disease” as an observed random variable 
to the network. 
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FIGURE 4.16 THE BAYESIAN NETWORK FITTED TO THE EIGENGENES. EACH NODE REPRESENTS AN EIGENGENE OF A MODULE . THE 

ARCS MODEL THE PROBABILISTIC DEPENDENCIES BETWEEN THE MODULES . THE “DISEASE”  NODE IS SET TO 1 FOR RRMS  AND 0 

FOR HEALTHY CONTROLS, AND ITS CHILDREN ARE HIGHLIGHTED IN PINK 

iv. Decision tree: A decision tree was not fitted to the model due to the Bayesian network results; 
we investigated the gene signature of Module 13. 

 4.4.1.3 Construction of PPI Network of Common DEGs for RRMS and 
Healthy Controls from two Approaches 

We compared the resulted 185 genes from Modules 13 to the 130 differentially expressed genes from 
SAM. All 130 genes were common between the two methodological approaches, so we choose to keep 
the additional 55 genes and we proceed to construct the PPI network genes, using the STRING App in 
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the Cytoscape software, with the 185 DEGs and examine for hub. (Figure 4.17) A total of 179 
genes/nodes with 43 edges were enriched in the construction of the PPI network.  

 

FIGURE 4.17 PPI  NETWORK FROM 185  DIFFERENTIALLY EXPRESSED GENES 

4.4.1.4 Critical Subnetworks and Identification of Hub Genes for Primary 
Progressive MS (RRMS) vs Healthy Controls Patients 

Hub genes were identified by 11 topological analysis methods from the CytoHubba, a Cytoscape plugin, 
where the top 20 genes were selected for each method. The 44 resulted genes (Table4.8) were found in 
the intersection of all methods and were selected as RRMS related hub genes, providing a minimal gene 
set toward potential clinical testing. We also obtained one clustering module of 16 genes with the 
highest score from the PPI network of all DEGs (Figure 4.18) by MCODE algorithm. It was found that 8 
genes from 16 were included in 44 hub genes contained in this module (Table4.8)  
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CytoHubba & MCODE: Hub genes by 11 topological analysis methods or Hub genes by CytoHubba 
and MCODE algorithm* 

IL1RN|C1QC|CSTA|CTNNA1|CTSG|CTSH|CXCL8|CXCR1|ELANE|IL1R2|LY96|MMP9|MOSPD2|
MPO|OSBPL1A|PAK1|PTAFR|S100A|TIMP2|WDR33|FBLN5|ARL11|ATP8B2|BACH2|C10orf11|
CAMP|CEACAM3|CYP4F3|DUSP14|DYSF|HNM|PCED1B|PINK1|SLC22A16|TNFSF13|TRNP1|ZN
F789|LPAR1|S100A12|TNFAIP6|ZYX|CD14|CXCL1|MMP25 

TABLE4.8  IDENTIFICATION OF HUB GENES *8 HUB GENES CYTOHUBBA &  MCODE  (IN BOLD);44 GENES CYTOHUBBA  

 
FIGURE 4.18 THE HIGHEST SCORE CLUSTERING MODULE WAS GENERATED BY MCODE, WITH 16  GENES. 

4.4.1.5 Statistical Evaluation 

The resulting genomic signature of 44 hub genes is used to assess the classification and generalization 
ability of the model. The final gene signature arrived from GSE136411 dataset which was used as a 
training dataset (N = 132, RRMS n= 85, CTR n=47) and testing dataset (N = 56, RRMS n= 36, CTR n=20). 
Dataset E-MTAB-4890 was used to access the generalization ability of the resulted gene signature as an 
independent dataset. It consists of (N = 92, RRMS n = 52, CTR n=40). Then, the classification model was 
established by support vector machine (SVM).  
 
By applying 10fold cross-validation in the model, 46 out of the 56 samples were correctly classified, 
with a classification accuracy of 83%, model sensitivity to CTR of 0.60%, specificity of 94%, and area 
under the ROC curve (AUC) was 0.83 (Figure 4.19 a). Furthermore, the established model was used to 
predict the samples in the validation data sets to test the prediction ability of the model. 
In the validation group the samples were classified, with a classification accuracy of 78%, moreover, the 
sensitivity was 65 % and specificity of the model was 94%, and the area under the receiver operating 
characteristic (ROC) curve was 0.84 (Figure 4.19 b).  
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       a b 

 

GSE136411 Real CTR Real RRMS  

Predict CTR 12 2  

Predict MS 8 32 Totals 

Totals 20 34 54 

Correct 12 32 44 

Sensitivity (%) 60   

Specificity (%)  94  

AUC 0.83 

E-MTAB-4890 Real CTR Real RRMS  

Predict CTR 22 3  

Predict MS 18 49 Totals 

Totals 30 52 82 

Correct 22 49 71 

Sensitivity (%) 65   

Specificity (%)  94  

AUC 0.84 

 

FIGURE 4.19 CONSTRUCTION OF DIAGNOSTIC MODEL AND VALIDATION OF MODEL. A)  CLASSIFICATION RESULTS AND ROC CURVES 

OF SAMPLES BY DIAGNOSTIC MODEL IN TRAINING DATA SET. B)  CLASSIFICATION RESULTS AND ROC  CURVES OF SAMPLES BY 

DIAGNOSTIC MODEL IN E-MTAB-4890 

The diagnostic prediction model constructed in this study can effectively distinguish patients in 
relapsing remitting stage of the disease and that the 33 out of 44 hub genes can be used as reliable 
biomarkers for RRMS diagnosis. 

4.4.1.6 Biological interpretation 

Each selected Illumina probe set was mapped to an annotation of Entrez Gene ID and Gene Symbol 
using the online tool WebGestalt (2013) (http://www.webgestalt.org/2013/). Considering the case 
RRMS versus controls, an over-representation analysis of the resulted 130-DEG-gene signature was 
performed in WebGestalt (2019). The enriched biological process categories are presented in Table 
4.9A, where the enriched pathway categories are presented in Figure 4.20A 

Gene Set Description P Value FDR 
GO:0036230 granulocyte activation <2.2e-

16 
<2.2e-16 

GO:0002446 neutrophil mediated immunity <2.2e-
16 

<2.2e-16 

GO:0002237 response to molecule of bacterial origin 4.15E-
07 

0.00012 

GO:0006959 humoral immune response 8.51E-
07 

0.00017 

GO:0001819 positive regulation of cytokine production 1E-06 0.00017 
GO:0009620 response to fungus 1.9E-05 0.00269 

GO:0006766 vitamin metabolic process 3.3E-05 0.00403 
GO:0050727 regulation of inflammatory response 3.8E-05 0.00404 
GO:0071706 tumor necrosis factor superfamily 

cytokine production 
4.8E-05 0.00458 

GO:0042107 cytokine metabolic process 9E-05 0.00755 
GO:0098542 defense response to other organism 9.8E-05 0.00755 
GO:0050900 leukocyte migration 0.00014 0.00962 
GO:0071216 cellular response to biotic stimulus 0.00015 0.00962 
GO:0031348 negative regulation of defense response 0.00031 0.01868 
GO:0007249 I-kappaB kinase/NF-kappaB signaling 0.00042 0.02287 
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GO:0043062 extracellular structure organization 0.00043 0.02287 
GO:0060191 regulation of lipase activity 0.00047 0.02287 
GO:0051047 positive regulation of secretion 0.00048 0.02287 
GO:0050663 cytokine secretion 0.00063 0.0284 
GO:0006732 coenzyme metabolic process 0.00075 0.03043 
GO:0001906 cell killing 0.00075 0.03043 
GO:0060326 cell chemotaxis 0.00086 0.03314 
Note: Common GO-biological processes between DEG-signatures and hub-gene-signatures are 
highlighted in blue. 

TABLE 4.9A GO-BIOLOGICAL PROCESSES ANALYSIS OF 130  DEGS IN THE  
CASE  OF RRMS VS  CONTROLS 

 
FIGURE 4.20A. REACTOME PATHWAY ANALYSIS OF 130  DEGS IN THE CASE  OF RRMS  VS  CONTROLS 

 

Moreover, we also performed an over-representation analysis to further explore the functional 
information (biological processes, pathways) of the 16-hub-gene signature, which may be more specific 
to RRMS stage. The analysis of the gene signature was performed using the online tool WebGestalt 
(2019).  

Gene Set Description P Value FDR 
GO:0036230 granulocyte activation <2.2e-

16 
<2.2e-16 

GO:0002446 neutrophil mediated immunity <2.2e-
16 

<2.2e-16 

GO:0006959 humoral immune response 2.64E-
11 

7.49E-09 

GO:0098542 defense response to other organism 5.40E-
09 

1.1E-06 

GO:0009620 response to fungus 1.29E-
07 

2.2E-05 

GO:0035821 modification of morphology or 
physiology of other organism 

3.25E-
07 

4.2E-05 

GO:0001906 cell killing 3.46E-
07 

4.2E-05 

GO:0002237 response to molecule of bacterial origin 4.94E-
07 

5.3E-05 

GO:0043900 regulation of multi-organism process 9.21E-
07 

8.7E-05 

GO:0050900 leukocyte migration 2E-06 0.00017 
GO:0051702 interaction with symbiont 5.2E-05 0.00403 
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GO:0071216 cellular response to biotic stimulus 5.9E-05 0.00417 
GO:0045926 negative regulation of growth 9.3E-05 0.00611 
GO:0042107 cytokine metabolic process 0.00015 0.00925 
GO:0050727 regulation of inflammatory response 0.00038 0.02171 
GO:0045730 respiratory burst 0.00041 0.02177 
GO:0043062 extracellular structure organization 0.00056 0.02825 
Note: Common GO-biological processes between DEG-signatures and hub-gene-signatures are highlighted 
in blue. 

TABLE 4.9B GO-BIOLOGICAL PROCESSES ANALYSIS OF THE 16-HUB-GENE SIGNATURE IN THE  
CASE  OF RRMS VS  CONTROLS 

 
FIGURE 4.20B REACTOME PATHWAY ANALYSIS OF THE 16-HUB-GENE SIGNATURE IN THE CASE  OF RRMS  VS  CONTROLS 

 

As illustrated in above tables (Table 4.9A, 4.9B) and figures (Figures 4.20A, 4.20B), both the 130-gene 
signature and the 16-hub-gene signature provide overlapped processes and pathways related to 
immune system processes. This is an expected finding, since MS is characterized by immune 
dysregulation, which results in the infiltration of the CNS by immune cells, triggering demyelination, 
axonal damage, and neurodegeneration [101]. Interestingly, these GO biological processes have greater 
statistical significance in the 16-hub-gene signature, while the opposite happens with the Reactome 
pathways. In addition, the unique pathway (antimicrobial peptides) and GO biological processes (eight) 
of the 16-hub-gene signature provide a narrower range of immune system components and 
mechanisms. [paper in preparation] 

4.4.1.7 Candidate drugs targeting hub genes 

Using the DGIdb database we explore drug-gene interactions of the 16 hub genes that derived from the 
MCODE analysis. 8 genes out of 16, were found common between CYTOHUBBA and MCODE. The drugs 
for possibly addressing patients in the Relapsing Remitting stage of MS are shown in Table4.10. We 
used the STITCH database, in order to construct downstream networks of the genes that have a drug 
relationship, to investigate the additional effects caused by inhibitors of these genes. All networks are 
also included in Table4.10. The network setting were “Experiments”,” Databases”,” Coexpression” and 
confidence was set to high=0,9. 

GENE 
SYMBOL 

DRUGS NETWORK 
Protein-protein interactions: Grey 

Chemical-protein interactions: Green 
Interactions between chemicals: Red 
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GENE 
SYMBOL 

DRUGS NETWORK 
Protein-protein interactions: Grey 

Chemical-protein interactions: Green 
Interactions between chemicals: Red 

CTSG  MANNITOL 
 CHEMBL374027 

 
MPO  DIMETHYL SULFOXIDE 

 PSORALEN 
 TOLMETIN 
 DICLOFENAC 
 DOXYCYCLINE 
 ASULACRINE 
 NIMESULIDE 
 PYRAZINAMIDE 
 PROPYLTHIOURACIL 
 FLUDARABINE 
 LORATADINE 
 OCTREOTIDE 
 TRIMETHOPRIM 
 THEOPHYLLINE 
 LITHIUM 
 LIDOCAINE 
 TENECTEPLASE 
 FLUTAMIDE 
 FENTANYL 

 

FCGR3B  PREDNISOLONE 
 ALDESLEUKIN 
 METHIMAZOLE 
 THALIDOMIDE 
 FENTANYL 
 SODIUM CHLORIDE 
 PUROMYCIN 
 EPOETIN ALFA 
 CYCLOSPORINE 
 INDOMETHACIN 
 MAFOSFAMIDE 
 PROGESTERONE 
 CHOLECALCIFEROL 
 METHOTREXATE 
 PENICILLIN G POTASSIUM 
 DOXORUBICIN 
 HEPARIN 
 LACTULOSE 
 GELDANAMYCIN 
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GENE 
SYMBOL 

DRUGS NETWORK 
Protein-protein interactions: Grey 

Chemical-protein interactions: Green 
Interactions between chemicals: Red 

CXCL8/IL8  ABX-IL8 
 HUMAX-IL8 
 LEFLUNOMIDE 
 YANGONIN 
 E319 
 FOSCARNET 
 NAPROXEN 
 ALDRIN 
 COLCHICINE 
 MIDAZOLAM 
 FENTANYL 
 ACETAMINOPHEN 
 CORONOPILIN 
 DIPYRIDAMOLE 
 IBUPROFEN 
 IONOMYCIN 
 CHLORDANE 
 DANAZOL 
 CHEMBL1902074 
 OMEPRAZOLE 
 DINITRO CRESOL 
 QUESTIOMYCIN B 
 FENRETINIDE 
 HEPTACHLOR 
 PYROGALLOL 
 CANERTINIB 
 HYDROQUINONE 
 ENDOSULFAN 
 EMODIN 
 LANSOPRAZOLE 
 RETINAL 
 HARMINE HYDROCHLORIDE 
 PACLITAXEL 
 BEVACIZUMAB 
 PAMIDRONIC ACID 
 TALC 
 TRETINOIN 
 SUNITINIB 
 CETUXIMAB 
 CHEMBL1579130 
 ALPRAZOLAM 
 METHIMAZOLE 
 RETINOL 
 RIBAVIRIN 
 TERFENADINE 
 DICYCLOHEXYLCARBODIIMIDE 
 CEFTRIAXONE 
 ASPIRIN 
 CLARITHROMYCIN 
 DACARBAZINE 
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GENE 
SYMBOL 

DRUGS NETWORK 
Protein-protein interactions: Grey 

Chemical-protein interactions: Green 
Interactions between chemicals: Red 

 PENTOXIFYLLINE 
 CIDOFOVIR 
 BROXURIDINE 
 TROGLITAZONE 
 DICHLORVOS 
 VERAPAMIL 

MME  CANDOXATRIL 
 LCZ696 
 PEPINEMAB 
 SAMPATRILAT 
 SLV-334 
 GALLOPAMIL 
 ILEPATRIL 

 SACUBITRIL 

 
MMP9  MARIMASTAT 

 PRINOMASTAT 
 ANDECALIXIMAB 
 S-3304 
 CURCUMIN PYRAZOLE 
 TOZULERISTIDE 
 CURCUMIN 
 INCYCLINIDE 
 BEVACIZUMAB 
 CARBOXYLATED GLUCOSAMINE 
 DEMETHYLWEDELOLACTONE 
 CELECOXIB 

 
ELANE  SIVELESTAT 

 DEPELESTAT 
 SYMPLOSTATIN 5 
 CHEMBL310871 
 NICOTINE 
 TIPRELESTAT 
 ERDOSTEINE 
 NIFEDIPINE 
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 TABLE4.10  GENES THAT HAVE DRUG INTERACTIONS AND INHIBITOR NETWORKS OF THE GENES THAT HAVE A DRUG RELATIONSHIP 

CASE OF RRMS VS CONTROLS  

4.4.2 Case Secondary progressive MS (SPMS) vs Healthy Controls 

After normalization, our dataset consists of 93 samples (SPMS N=26 and HC N=67) and 10.160 gene 
with their expression values. 

4.4.2.1 Significance Analysis of Microarrays (SAM) 

We conducted a Significance Analysis of Microarrays (SAM) on our filtered dataset so as to find 
differentially expressed genes based on T-statists. The cutoff for significance is determined by a tuning 
parameter delta, chosen by the user based on the false positive rate. One can also choose a fold change 
parameter, to ensure that called genes change at least a pre-specified amount. 

SAM 

SPMS Untreated vs Control  
upregulated downregulated FINAL GENES 

37 8 45 

TABLE4.11 DIFFERENTIALLY EXPRESSED GENES SPMS  UNTREATED VS CONTROL  

After the analysis with SAM, we concluded in 45 Differentially expressed genes considering the case 
SPMS Untreated-Control. We proceed with the Pigengene methodology. 

GENE 
SYMBOL 

DRUGS NETWORK 
Protein-protein interactions: Grey 

Chemical-protein interactions: Green 
Interactions between chemicals: Red 

CYBB  APIGENIN 
 CHRYSIN 

 LUTEOLIN 

 
S100A12  ATOGEPANT 

 RIMEGEPANT 
 METHOTREXATE 
 EPTINEZUMAB 

 UBROGEPANT 
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4.4.2.2 Pigengene Methodology 

We apply the Pigengene methodology streps on the 10.160 genes that derived from the preprocessed 
dataset for the case Primary Progressive MS (SPMS) vs Healthy Controls: 

i. Weighted correlation network: Weighted Coexpression network analysis (WGCNA) was applied 
to group related genes into gene modules (clusters) based on their coexpression patterns in MS.  

ii. Eigengenes: We computed an eigengene for each module as a weighted average of the 
expression of all genes in that module. (Figure 4.28 B). Module 5 is negatively associated with 
the Interferon treatment, whereas Module 6 is positively associated with Interferon treatment. 
To validate this, we modeled the probabilistic dependencies between the eigengenes using a BN 
(Figure 4.29). We used Bayesian networks as probabilistic predictive models to determine the 
state. 

A  B 

 

 

 
FIGURE 4.21 A)  MODULES DENDROGRAM B)  THE TWO (2)  EIGENGENES THAT ARE DIFFERENTIALLY EXPRESSED ME5, ME16,  

ME33, ME35, ME39, ME38,  ME58, THE INTENSITY OF THE COLORS IN EACH HEATMAP CORRESPONDS TO THE NORMALIZED 

AVERAGE EXPRESSION. EACH COLUMN CORRESPONDS TO AN EIGENGENE . EACH ROW SHOWS THE EXPRESSION OF A CASE FROM THE 

SPMS  VS HC  DATASET. 

iii. Bayesian network: We fitted a Bayesian network to the eigengenes to determine the 
relationships of the modules with each other and with the state of the samples. Descendants of 
the “Disease” node, the variable that models the state, show high dependency between these 
eigengenes and the state type and suggest that they have useful biological information that can 
explain the differences between the two states. We trained a Bayesian network to model the 
probabilistic dependencies between the modules. Several individual networks from random 
staring networks were built (no.1000) by optimizing their score. Then, we inferred a consensus 
network from the ones with relatively “higher” scores. The default hyper-parameters and 
arguments are then selected. Each module eigengene is represented by a node (observed 
random variable). To model the condition, we added “Disease” as an observed random variable 
to the network. 
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FIGURE 4.22 THE BAYESIAN NETWORK FITTED TO THE EIGENGENES. EACH NODE REPRESENTS AN EIGENGENE OF A MODULE . THE 

ARCS MODEL THE PROBABILISTIC DEPENDENCIES BETWEEN THE MODULES. THE “DISEASE”  NODE IS SET TO 1  FOR SPMS  AND 0  

FOR HC,  AND ITS CHILDREN ARE HIGHLIGHTED IN PINK . 

iv. Decision tree: A decision tree is fitted to the two children of the Disease node in our Bayesian 
network (R package C50 version 0.1.0-24). We used the data to infer the topology of the tree 
and the corresponding parameters. The algorithm automatically selected the ME58 eigengene 
(modules 58). Module eigengenes are used to build a classifier that distinguishes two or more 
classes. Each eigengene is a weighted average of the expression of all genes in the module, 
where the weight of each gene corresponds to its membership in the module. Each module 
might contain dozens to hundreds of genes, and hence the final classifier might depend on the 
expression of a large number of genes. In practice, it is desirable to reduce the number of 
necessary genes by a decision tree. The inferred decision tree had a relatively high predictive 
accuracy (Figure 4.30).  
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FIGURE 4.23 THE DECISION TREE FOR DISTINGUISHING SPMS  FROM HC  CASES . IF THE NORMALIZED EIGENGENE OF A CASE IS 

GREATER OR EQUAL THAN -0.013, IT IS CLASSIFIED AS SPMS. IF IT IS LESS THAN -0.013, IT IS CLASSIFIED AS HC.  AT THE FIXED 

THRESHOLDS SHOWN ABOVE , THIS TREE CORRECTLY CLASSIFIED 760CASES (82%)  IN THE DATASET. (MISCLASSIFIED 9 HC  AND 

8 SPMS) 

4.4.2.3 Construction of PPI Network of Common DEGs for SPMS and Healthy Controls from two 
Approaches 

We compared the resulted 79 genes from Modules 58 to the 45 differentially expressed genes from 
SAM. All 45 genes were common between the two methodological approaches, so we choose to include 
the additional 32 genes and proceed to construct the PPI network using the STRING App in the 
Cytoscape software. A total of 79 genes/nodes with 6 edges were enriched in the construction of the PPI 
network. (Figure 4.31). 
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FIGURE 4.24 PPI  NETWORK FROM 79 DIFFERENTIALLY EXPRESSED GENES 

4.4.2.4 Critical Subnetworks and Identification of Hub Genes for SPMS and Healthy Controls 
Patients 

Hub genes were identified by 11 topological analysis methods from the CytoHubba, a Cytoscape plugin, 
where the top 20 genes were selected for each method. The 24 resulted genes (Table4.16) were found 
in the intersection of all methods and were selected as SPMS related hub genes, providing a minimal 
gene set toward potential clinical testing. We also obtained one clustering module with the highest 
score from the PPI network of all DEGs (Figure 4.32) by MCODE algorithm. (Table4.16)  

CytoHubba & MCODE: Hub genes by 11 topological analysis methods or Hub genes by CytoHubba 
and MCODE algorithm* 

GPRASP2|AXIN2|BACH2|BZW2|CEP41|CYP2J2|DNAJC30|EDAR|EPHX2|FAM102A|KIAA0355|LE
F1|MYH10|NBEA|NPAS2|PDK4|TBC1D4|TCEA3|TCF7|XK|CNN3|AL3ST4|SALL2|ZBP1 

TABLE4.12 IDENTIFICATION OF HUB GENES *3 HUB GENES CYTOHUBBA &  MCODE (IN BOLD);24  GENES CYTOHUBBA  

 

 

FIGURE 4.25 THE HIGHEST SCORE CLUSTERING MODULES WERE GENERATED BY MCODE, WITH 3 GENES 
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4.4.2.5 Statistical Evaluation  

The resulting genomic signature of 24 hub genes is used to assess the classification and generalization 
ability of the model. The final gene signature arrived from GSE136411 dataset which was used as a 
training dataset (N =75 , SPMS n= 21, CTR n=54) and testing dataset (N = 18, SPMS n= 5, CTR n=13). 
Dataset E-MTAB-4890 was used to access the generalization ability of the resulted gene signature as an 
independent dataset. It consists of (N = 61, SPMS n = 21, CTR n=40). Then, the classification model was 
established by support vector machine (SVM).  
 
By applying 10fold cross-validation in the model, 13 out of the 18 samples were correctly classified, 
with a classification accuracy of 72%, model sensitivity to CTR of 84%, specificity of 40%, and area 
under the ROC curve (AUC) was 0.57 (Figure 4.26 a). Furthermore, the established model was used to 
predict the samples in the validation data sets to test the prediction ability of the model. 
In the validation group the samples were classified, with a classification accuracy of 82%, moreover, the 
sensitivity was 98 % and specificity of the model was 52%, and the area under the receiver operating 
characteristic (ROC) curve was 0.81 (Figure 4.26 b).  
 

         a b 
GSE136411 Real CTR Real SPMS  

Predict CTR 11 3  
Predict MS 2 2 Totals 

Totals 13 5 18 
Correct 11 2 13 

Sensitivity (%) 84   

Specificity (%)  40  

AUC 0.57 
 

E-MTAB-4890 Real CTR Real SPMS  

Predict CTR 37 10  
Predict MS 3 11 Totals 

Totals 40 22 63 
Correct 39 11 51 

Sensitivity (%) 98   
Specificity (%)  52  

AUC 0.81 
 

FIGURE 4.26 CONSTRUCTION OF DIAGNOSTIC MODEL AND VALIDATION OF MODEL. A)  CLASSIFICATION RESULTS AND ROC CURVES 

OF SAMPLES BY DIAGNOSTIC MODEL IN TRAINING DATA SET. B)  CLASSIFICATION RESULTS AND ROC  CURVES OF SAMPLES BY 

DIAGNOSTIC MODEL IN E-MTAB-4890. 

Our   diagnostic model does not perform well as we can see from the Results in Figure. After inspecting 
our data, we noticed that the density plots showed the feature's distribution for all features over the 
two classes, and there is really not much discriminative power between conditions. The extracted 
features are overlapping between the two classes, and we might have a "garbage in, garbage out" issue, 
more than a "this is not enough data" issue. The imbalance between the majority class Controls and 
Secondary Progressive shows that building the classifier using the data as it is, would in most cases give 
us a prediction model that always returns the majority class. The classifier would be biased. 

We performed oversampling. It makes no sense to create instances based on our current minority class 
and then exclude an instance for validation, pretending we didn’t generate it using data that is still in 
the training set.  We balance the dataset by oversampling the minority class. First, we start cross-
validating. This means that at each iteration we first exclude the sample to use as test set, and then 
oversample the remaining of the minority class. We are not using the same data for training and testing. 
Therefore, we will obtain more representative results. The same holds even if we use other cross-
validation methods, such as leave one out cross-validation. By applying 10fold cross-validation in the 
model and up-sampling the resulted model is shown in Figure 4. 
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         a b 
GSE136411 Real CTR Real SPMS  

Predict CTR 10 1  

Predict MS 3 4 Totals 

Totals 13 5 18 

Correct 10 4 14 

Sensitivity (%) 76   

Specificity (%)  80  

AUC 0.75 

 

E-MTAB-4890 Real CTR Real SPMS  

Predict CTR 31 8  

Predict MS 9 13 Totals 

Totals 40 21 61 

Correct 31 13 44 

Sensitivity (%) 76   

Specificity (%)  62  

AUC 78 

 

FIGURE 4.27 CONSTRUCTION OF DIAGNOSTIC MODEL AND VALIDATION OF MODEL. A)  CLASSIFICATION RESULTS AND ROC CURVES 

OF SAMPLES BY DIAGNOSTIC MODEL IN TRAINING DATA SET. B)  CLASSIFICATION RESULTS AND ROC  CURVES OF SAMPLES BY 

DIAGNOSTIC MODEL IN E-MTAB-4890 

There were 14 out of the 18 samples correctly classified, with a classification accuracy of 70%, model 
sensitivity to CTR of 76%, specificity of 80%, and area under the ROC curve (AUC) was 0.75. (Figure 
4.27 a). In the validation group the samples were classified, with a classification accuracy of 72%, 
moreover, the sensitivity was 76 % and specificity of the model was 62%, and the area under the 
receiver operating characteristic (ROC) curve was 0.78 (Figure 4.27 b).  

4.4.2.6 Biological interpretation 

Each selected Illumina probe set was mapped to an annotation of Entrez Gene ID and Gene Symbol 
using the online tool WebGestalt (2013) (http://www.webgestalt.org/2013/). Considering the case 
SPMS versus controls, an over-representation analysis of the resulted 45-DEG-gene signature was 
performed in WebGestalt (2019). The enriched biological process categories are presented in Table 
4.13A, where the enriched pathway categories are illustrated in Figure 4.28A. 

Gene Set Description P 
Value 

FDR 

GO:0060326 cell chemotaxis 5E-05 0.0449 
GO:0017145 stem cell division 0.0001 0.0478 

TABLE 13.A GO-BIOLOGICAL PROCESSES ANALYSIS OF 45 DEGS IN THE  
CASE OF SPMS  VS  CONTROLS  

 
FIGURE 4.28A. REACTOME PATHWAY ANALYSIS OF 45  DEGS IN THE CASE  OF SPMS  VS CONTROLS 

Furthermore, we also performed an over-representation analysis to explore the functional properties 
(GO biological processes, pathways) of the 3-hub-gene signature, which may be more specific to SPMS 
stage. The analysis of the gene signature was performed using the online tool WebGestalt (2019).  
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Gene Set Description P Value FDR 
GO:1904837 beta-catenin-TCF complex assembly 7.50E-

09 
6.4E-06 

GO:0070670 response to interleukin-4 1.6E-05 0.00691 
GO:0198738 cell-cell signaling by wnt 3E-05 0.00844 
GO:0002200 somatic diversification of immune 

receptors 
5.9E-05 0.01244 

GO:0061053 somite development 0.00011 0.01939 
GO:0042476 odontogenesis 0.00021 0.03035 

TABLE 4.13B GO-BIOLOGICAL PROCESSES ANALYSIS OF THE 3-HUB-GENE SIGNATURE IN THE  
CASE OF SPMS  VS  CONTROLS  

 
FIGURE 4.28B REACTOME PATHWAY ANALYSIS OF THE 3-HUB-GENE SIGNATURE IN THE CASE  OF SPMS  VS  CONTROLS. 

 

As depicted in above tables (Table 4.13A, 4.13B) and figures (Figures 4.28A, 4.28B), five out of ten 
enriched pathways provided by the 3-hub-gene signature are also enriched in the 45-DEG-gene 
signature, but without statistical significance. Regarding the enriched GO biological processes provided 
by both gene signatures, no overlap exists between these enriched processes. Figure 4.28B illustrates 
the dominance of the WNT signaling pathways, but also the non-canonical WNT Ca2+ signaling, which 
are implicated in inflammatory response [103,104]. Lengfeld et al [105] report that Wnt signaling 
pharmacologic enhancement may be helpful to restrain blood–brain barrier (BBB) damage and central 
nervous system (CNS) immune cell infiltration in multiple sclerosis. Disruption of the BBB, that 
sometimes results from a dysregulated Wnt/β-catenin signaling pathway under various 
pathophysiological conditions, is also a determing and early feature of MS that directly damages the 
CNS, promotes immune cell infiltration, and influences clinical outcomes [106] [paper in preparation] 

4.4.2.7 Candidate drugs targeting hub genes 

Using the DGIdb database we explore drug-gene interactions of the 10 hub genes that derived from the 
CYTOHUBBA analysis. The 3 genes cluster given from MCODE did not produce any results, so we chose 
to examine the hub genes resulted from CYTOHUBBA. The drugs for possibly addressing patients in the 
Secondary Progressive stage of MS are shown in Table4.14. We used the STITCH database, in order to 
construct downstream networks of the genes that have a drug relationship, to investigate the additional 
effects caused by inhibitors of these genes. All networks are also included in Table4.14 The network 
setting were “Experiments”,” Databases”,” Coexpression” and confidence was set to high=0,9. 
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GENE SYMBOL DRUGS NETWORK 
Protein-protein interactions: Grey,  
Chemical-protein interactions: Green  
Interactions between chemicals: red. 

CYP2J2  TERFENADINE 
 THIORIDAZINE 
 TACROLIMUS 
 DICLOFENAC 
 AMIODARONE 
 NABUMETONE 
 ASTEMIZOLE 
 ALBENDAZOLE 
 MESORIDAZINE 
 DANAZOL 

 
EPHX2  FULVESTRANT 

 6BIO 
 AR9281 
 LITHIUM 
 ALOE-EMODIN 
 ALOIN 

 
NBEA  METFORMIN 

 

 
XKRX  ENSITUXIMAB 

 
 

TABLE4.14  GENES THAT HAVE DRUG INTERACTIONS AND INHIBITOR NETWORKS OF THE GENES THAT HAVE A DRUG RELATIONSHIP 

CASE OF SPMS  VS CONTROLS. 

4.4.3 Case Primary Progressive MS (PPMS) vs Healthy Controls 

After normalization, our dataset consists of 102 samples (PPMS N=35 and HC N=67) and 10.160 gene 
with their expression values. 

4.4.3.1 Significance Analysis of Microarrays (SAM) 

We conducted a Significance Analysis of Microarrays (SAM) on our filtered dataset so as to find 
differentially expressed genes based on T-statists. The cutoff for significance is determined by a tuning 
parameter delta, chosen by the user based on the false positive rate. One can also choose a fold change 
parameter, to ensure that called genes change at least a pre-specified amount. 
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SAM 

PPMS Untreated vs Control  

upregulated downregulated FINAL GENES 
13 38 51 

TABLE4.15 DIFFERENTIALLY EXPRESSED GENES PPMS  UNTREATED VS  CONTROL  

After the analysis with SAM, we concluded in 51 Differentially expressed genes considering the case 
PPMS Untreated- Control. We proceed with the Pigengene methodology. 

4.4.3.2 Pigengene Methodology 

We apply the Pigengene methodology streps on the 10.160 genes that derived from the preprocessed 
dataset for the case Primary Progressive MS (PPMS) vs Healthy Controls: 
 
i. Weighted correlation network: Weighted Coexpression network analysis (WGCNA) was applied 

to group related genes into gene modules (clusters) based on their coexpression patterns in MS.  
ii. Eigengenes: We computed an eigengene for each module as a weighted average of the 

expression of all genes in that module. (Figure 4.29 B). Module 64 is associated with the disease. 
To validate this, we modeled the probabilistic dependencies between the eigengenes using a BN 
(Figure 4.30). We used Bayesian networks as probabilistic predictive models to determine the 
state. 

 

 

 

 

 

 

 
 

 

 

 

 

 

FIGURE 4.29 A)  MODULES DENDROGRAM B)  THE EIGENGENES THAT IS DIFFERENTIALLY EXPRESSED ME2, ME41, ME43,  

ME45, ME64, ME73, M74 THE INTENSITY OF THE COLORS IN EACH HEATMAP CORRESPONDS TO THE NORMALIZED AVERAGE 

EXPRESSION. EACH COLUMN CORRESPONDS TO AN EIGENGENE. EACH ROW SHOWS THE EXPRESSION OF A CASE FROM THE PPMS  VS 

HC  DATASET. 

A  B 

 

 

 



Results and Discussion 

 

104 
 

iii. Bayesian network: We fitted a Bayesian network to the eigengenes to determine the 
relationships of the modules with each other and with the state of the samples. Descendants of 
the “Disease” node, the variable that models the state, show high dependency between these 
eigengenes and the state type and suggest that they have useful biological information that can 
explain the differences between the two states. We trained a Bayesian network to model the 
probabilistic dependencies between the modules. Several individual networks from random 
staring networks were built (no.1000) by optimizing their score. Then, we inferred a consensus 
network from the ones with relatively “higher” scores. The default hyper-parameters and 
arguments are then selected. Each module eigengene is represented by a node (observed 
random variable). To model the condition, we added “Disease” as an observed random variable 
to the network. 
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FIGURE 4.30 THE BAYESIAN NETWORK FITTED TO THE EIGENGENES. EACH NODE REPRESENTS AN EIGENGENE OF A MODULE . THE 

ARCS MODEL THE PROBABILISTIC DEPENDENCIES BETWEEN THE MODULES . THE “DISEASE”  NODE IS SET TO 1 FOR PPMS  AND 0 

FOR HC,  AND ITS CHILDREN ARE HIGHLIGHTED IN PINK . 

iv. Decision tree: A decision tree is fitted to the two children of the Disease node in our Bayesian 
network (R package C50 version 0.1.0-24). We used the data to infer the topology of the tree 
and the corresponding parameters. The algorithm automatically selected the ME64 eigengene 
(modules 64). Module eigengenes are used to build a classifier that distinguishes two or more 
classes. Each eigengene is a weighted average of the expression of all genes in the module, 
where the weight of each gene corresponds to its membership in the module. Each module 
might contain dozens to hundreds of genes, and hence the final classifier might depend on the 
expression of a large number of genes. In practice, it is desirable to reduce the number of 
necessary genes by a decision tree. The inferred decision tree had a relatively high predictive 
accuracy (Figure 4.31).  
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FIGURE 4.31  THE DECISION TREE FOR DISTINGUISHING PPMS  FROM HC CASES . IF THE NORMALIZED EIGENGENE OF A CASE IS 

GREATER OR EQUAL THAN -0.003, IT IS CLASSIFIED AS HC.  IF IT IS LESS THAN -0.003, IT IS CLASSIFIED AS PPMS.  AT THE FIXED 

THRESHOLDS SHOWN ABOVE, THIS TREE CORRECTLY CLASSIFIED 86 CASES (84%)  IN THE DATASET. (MISCLASSIFIED 3 HC  AND 

13 PPMS) 

4.4.3.3 Construction of PPI Network of Common DEGs for PPMS and Healthy 
Controls from two Approaches 

We compared the resulted 73 genes from Modules 64 to the 51 differentially expressed genes from 
SAM. All 51 genes were common between the two methodological approaches, so we choose to keep the 
additional 22 genes and proceed to construct the PPI network with 73 significant genes using the 
STRING App in the Cytoscape software. A total of 72 genes/nodes with 31 edges were enriched in the 
construction of the PPI network. (Figure 4.32) 
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FIGURE 4.32 PPI  NETWORK FROM 73 DIFFERENTIALLY EXPRESSED GENES 

4.4.3.4 Critical Subnetworks and Identification of Hub Genes for PPMS and 
Healthy Controls Patients 

Hub genes were identified by 11 topological analysis methods from the CytoHubba, a Cytoscape plugin, 
where the top 20 genes were selected for each method. The 32 resulted genes (Table4.12) were found 
in the intersection of all methods and were selected as PPMS related hub genes. We also obtained one 
clustering module with the highest score from the PPI network of all DEGs (Figure 4.25) by MCODE 
algorithm. It was found that 8 genes from 10 were included in 32 hub genes were contained in this 
module (Table4.12). 

CytoHubba & MCODE: Hub genes by 11 topological analysis methods or Hub genes by CytoHubba 
and MCODE algorithm* 

AHSP|DERL2|EPB42|FECH|HBD|MRPL27|MRPL4|MYL4|HBA1|HBG1|HBQ1|MRPL15|MRPL32|
MRPL40|PFDN1|PFDN6|SLC25A37|SLC4A1|UBB|YOD1|ADIPOR1|BCR|CA1|CNTNAP2|DCANP1\
FBXO7|IGF2BP2|IKZF4|KISS1R|MAP7|TRIM10|YBX3 

TABLE4.16 IDENTIFICATION OF HUB GENES *8 HUB GENES CYTOHUBBA &  MCODE (IN BOLD);32  GENES CYTOHUBBA  
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FIGURE 4.33 THE HIGHEST SCORE CLUSTERING MODULES WERE GENERATED BY MCODE, WITH 10 GENES 

4.4.3.5 Statistical Evaluation 

The resulting genomic signature of 32 hub genes is used to assess the classification and generalization 
ability of the model. The final gene signature arrived from GSE136411 dataset which was used as a 
training dataset (N = 72, PPMS n= 25, CTR n=47) and testing dataset (N = 30, PPMS n= 10, CTR n=20 ). 
Dataset E-MTAB-4890 was used to access the generalization ability of the resulted gene signature as an 
independent dataset. It consists of (N = 63, PPMS n = 23, CTR n=40). Then, the classification model was 
established by support vector machine (SVM).  
 
By applying 10fold cross-validation in the model, 25 out of the 30 samples were correctly classified, 
with a classification accuracy of 83%, model sensitivity to CTR of 100%, specificity of 50%, and area 
under the ROC curve (AUC) was 0.9 (Figure 4.34 a). Furthermore, the established model was used to 
predict the samples in the validation data sets to test the prediction ability of the model. 
In the validation group the samples were classified, with a classification accuracy of 79%, moreover, the 
sensitivity was 100% and specificity of the model was 43%, and the area under the receiver operating 
characteristic (ROC) curve was 0.9 (Figure 4.34 b).  
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         a b 
GSE136411 Real CTR Real PPMS  

Predict CTR 20 5  

Predict MS 0 5 Totals 

Totals 20 10 30 

Correct 20 5 25 

Sensitivity (%) 100   

Specificity (%)  50  

AUC 0.9 

 

E-MTAB-4890 Real CTR Real PPMS  

Predict CTR 40 13  

Predict MS 0 10 Totals 

Totals 40 23 63 

Correct 40 10 50 

Sensitivity (%) 100   

Specificity (%)  43  

AUC 0.9 

 

FIGURE 4.34 CONSTRUCTION OF DIAGNOSTIC MODEL AND VALIDATION OF MODEL. A)  CLASSIFICATION RESULTS AND ROC CURVES 

OF SAMPLES BY DIAGNOSTIC MODEL IN TRAINING DATA SET. B)  CLASSIFICATION RESULTS AND ROC  CURVES OF SAMPLES BY 

DIAGNOSTIC MODEL IN E-MTAB-4890 

As we can see our diagnostic model performs purely talking into account the specificity percentage. 
After inspecting our data, we noticed that the density plots showed the feature's distribution for all 
features over the two classes, and there is really not much discriminative power between conditions. 
The extracted features are overlapping between the two classes, and we might have a "garbage in, 
garbage out" issue, more than a "this is not enough data" issue. The control cases are twice the size of 
Primary Progressive so we can say that building the classifier using the data as it is, would in most cases 
give us a prediction model that always returns the majority class. The classifier would be biased. 

We performed Under-sampling that balances the dataset by reducing the size of the abundant class. 
This method is used when quantity of data is sufficient. By keeping all samples in the rare class and 
randomly selecting an equal number of samples in the abundant class, a balanced new dataset can be 
retrieved for further modelling. By applying 10fold cross-validation in the model and under sampling 
the resulted model is shown in Figure 4.35 

         a b 
GSE136411 Real CTR Real PPMS  

Predict CTR 14 0  

Predict MS 6 10 Totals 

Totals 20 10 30 

Correct 14 10 24 

Sensitivity (%) 70   

Specificity (%)  100  

AUC 0.845 

 

E-MTAB-4890 Real CTR Real PPMS  

Predict CTR 27 4  

Predict MS 13 19 Totals 

Totals 40 23 63 

Correct 27 19 46 

Sensitivity (%) 67   

Specificity (%)  82  

AUC 0.90 

 

FIGURE 4.35 CONSTRUCTION OF DIAGNOSTIC MODEL AND VALIDATION OF MODEL. A)  CLASSIFICATION RESULTS AND ROC CURVES 

OF SAMPLES BY DIAGNOSTIC MODEL IN TRAINING DATA SET. B)  CLASSIFICATION RESULTS AND ROC  CURVES OF SAMPLES BY 

DIAGNOSTIC MODEL IN E-MTAB-4890 

There were 24 out of the 30 samples correctly classified, with a classification accuracy of 80%, model 
sensitivity to CTR of 70%, specificity of 100%, and area under the ROC curve (AUC) was 0.90.(Figure 
4.35 a). In the validation group the samples were classified, with a classification accuracy of 73%, 
moreover, the sensitivity was 67% and specificity of the model was 82%, and the area under the 
receiver operating characteristic (ROC) curve was 0.90 (Figure 4.35 b). 
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4.4.3.6 Biological interpretation 

Each selected Illumina probe set was mapped to an annotation of Entrez Gene ID and Gene Symbol 
using the online tool WebGestalt (2013) (http://www.webgestalt.org/2013/). Considering the case 
PPMS versus controls, an over-representation analysis of the resulted 51-DEG-gene signature was 
performed in WebGestalt (2019). The enriched biological process categories are presented in Table 
4.17A, where the enriched pathway categories are illustrated in Figure 4.36A. 

Gene Set Description P Value FDR 
GO:0051291 protein heterooligomerization 0.00032213 0.27381 
GO:0051187 cofactor catabolic process 0.00085814 0.36471 
GO:1903513 endoplasmic reticulum to cytosol 

transport 
0.0031050 0.87976 

GO:0042737 drug catabolic process 0.0076230 1 
GO:0032527 protein exit from endoplasmic 

reticulum 
0.0085681 1 

GO:0016999 antibiotic metabolic process 0.0090822 1 
GO:0051705 multi-organism behavior 0.017844 1 
GO:0015893 drug transport 0.026145 1 
GO:0048872 homeostasis of number of cells 0.036027 1 
GO:0072593 reactive oxygen species metabolic 

process 
0.040215 1 

Note: Common GO-biological processes between DEG-signatures and hub-gene-signatures are highlighted 
in blue. 

TABLE 4.17A GO-BIOLOGICAL PROCESSES ANALYSIS OF 51 DEGS IN THE  
CASE  OF PPMS  VS CONTROLS 

 
FIGURE 4.36A. REACTOME PATHWAY ANALYSIS OF 51  DEGS IN THE CASE  OF PPMS VS  CONTROLS. 

 

Moreover, we also performed an over-representation analysis to further explore the functional 
information (pathways, GO biological processes) of the 10-hub-gene signature, which may be more 
indicative to PPMS stage. The analysis of the gene signature was performed using the online tool 
WebGestalt (2019).  

Gene Set Description P Value FDR 
GO:0051187 cofactor catabolic process 4E-06 0.00344 
GO:0051291 protein heterooligomerization 2.2E-05 0.00949 
GO:0042737 drug catabolic process 4.1E-05 0.01056 
GO:0016999 antibiotic metabolic process 5E-05 0.01056 
GO:0015893 drug transport 0.00016 0.0276 
GO:0048872 homeostasis of number of cells 0.00024 0.03256 



Results and Discussion 

 

111 
 

GO:0072593 reactive oxygen species metabolic 
process 

0.00027 0.03256 

Note: Common GO-biological processes between DEG-signatures and hub-gene-signatures are 
highlighted in blue. 

TABLE 4.17B GO-BIOLOGICAL PROCESSES ANALYSIS OF THE 10-HUB-GENE SIGNATURE IN THE  
CASE  OF PPMS  VS CONTROLS  

 
FIGURE 4.36B. REACTOME PATHWAY ANALYSIS OF THE 10-HUB-GENE SIGNATURE IN THE CASE  OF PPMS  VS CONTROLS. 

 

As shown in above tables (Table 4.17A and 4.173B) and figures (Figures 4.36A and 4.36B), all the 
enriched processes and pathways provided by the 10-hub-gene signature are also enriched in the 51-
DEG-gene signature and related to metabolic processes and O2/CO2 exchange in erythrocytes. 
Interestingly, these GO biological processes become statistical significance (<0.05) or the pathways 
have greater statistical significance (10-6) in the 10-hub-gene signature. More recently, Geiger et al 
[102] point out to the potential role of erythrocyte (red blood cells) in the mechanisms and treatment of 
MS, given that release key molecules (adenosine triphosphate (ATP), nitric oxide (NO)), which are 
determinants in immune response, and reports suggest that release levels of these signaling molecules 
are often abnormal in autoimmune disease. [paper in preparation] 

4.4.3.7 Candidate drugs targeting hub genes 

Using the DGIdb database we explore drug-gene interactions of the 10 hub genes that derived from the 
MCODE analysis. 8 genes out of 10, were found common between CYTOHUBBA and MCODE. The drugs 
for possibly addressing patients in the Primary Progressive stage of MS are shown in Table4.18. We 
used the STITCH database, in order to construct downstream networks of the genes that have a drug 
relationship, to investigate the additional effects caused by inhibitors of these genes. All networks are 
also included in Table4.14. The network setting were “Experiments”,”Databases”,”Coexpression” and 
confidence was set to high=0,9. 
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TABLE4.18  GENES THAT HAVE DRUG INTERACTIONS AND INHIBITOR NETWORKS OF THE GENES THAT HAVE A DRUG RELATIONSHIP 

CASE OF PPMS  VS CONTROLS. 

 

GENE SYMBOL DRUGS NETWORK 
Protein-protein interactions: Grey, 
Chemical-protein interactions: Green 
Interactions between chemicals: red. 

SLC4A1  METOPROLOL 
 ATENOLOL 

 

 
CA1  ACETAZOLAMIDE SODIUM 

 POLMACOXIB 
 ZONISAMIDE 
 METHAZOLAMIDE 
 ETHOXZOLAMIDE 
 ACETAZOLAMIDE 
 DICHLORPHENAMIDE 
 TRICHLORMETHIAZIDE 
 METHOCARBAMOL 
 CHLOROTHIAZIDE 
 RESORCINOL 
 MEDRONIC ACID 
 PHENOL 
 CURCUMIN 
 CATECHOL 
 SULFAMIDE 
 PARABEN 
 LEVETIRACETAM 
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5 CONCLUSIONS 

The aim of this thesis was to identify biomarkers that aid in early identification of Multiple Sclerosis 
disease as well as of IFNβ responders. A second aim of our study was to identify biomarkers that aid in 
early identification of MS stages, i.e. the relapsing-remitting form (RRMS), the secondary progressive 
phase (SPMS) and the primary progressive MS (PPMS). The methodological approach that we chose to 
implement was a combination of statistical and biological analysis. The steps that we followed was 
firstly accessing the Differential expression of our datasets through two different statistical methods, 
Significant Analysis of Microarrays (SAM) a non-parametric approach as well as “linear models for 
microarray data” (Limma). Then, we compared and combined our results with the PIGENGENE 
Methodology. Pigengene methodology enabled us to create gene coexpression networks through the 
identification of significant gene co expressed modules and examine the cases under study by gathering 
all the biological information of each module into eigengenes. In addition, Bayesian networks inference 
was implemented based on the eigengenes of each module, in order to elucidate the significant genes 
that can classify our samples under study. From the resulted gene signature, a Protein-Protein 
Interaction Network was created, demonstrating the relationships between genes and different 
topological clustering algorithms were performed (CytoHubba, MCODE) in order to conclude in a 
minimum set of pathways and hub-genes, that play an important role in the identification of IFNβ 
responders and give a chance to predict or prognose Multiple sclerosis patients outcome. Moreover, the 
generalization ability of the observed results was examined. The ability of how the results of a statistical 
analysis will generalize to an independent data set was evaluated as well as their biological significance. 
Finally, a good generalization performance is achieved when a gene signature is able to predict the label 
of unseen samples correctly. That said, every case that we examined, a new independent dataset is used 
and the procedure of 10 – fold cross validation is repeated. The resulted gene signature in every case, 
was examined for its generalization performance when it comes to the classification of unknown 
samples through the classification method SVM. Our approach resulted in highly connected hub genes 
generating four highly reliable hub-gene-signatures with high classification performance: a) 21-hub-
gene signature that could predict the response of interferon beta (IFNβ) therapy in patients with MS 
(Accuracy = 91,49%, Sensitivity = 94.55%, Specificity = 87.15%), b) a 44-hub-gene signature that is 
linked to RRMS  (Accuracy =83%, Sensitivity 60%, Specificity=94%,), c) a 32-hub-gene signature that is 
related to PPMS stage (Accuracy = 80% , Sensitivity =70% , Specificity = 100%) and d) a 24-hub-gene 
signature  that is connected with SPMS stage (Accuracy =72% , Sensitivity =76% , Specificity =62% ), 
demonstrating potential clinical benefit. Finally, we approached the topic of drug repurposing by 
examining the drug-gene relationships through different databases. 

We used functional analysis to test for enrichment of both DGE-signatures and hub-gene-signatures in 
INF treated versus untreated MS, untreated MS versus controls, RRMS versus controls, PPMS versus 
controls, and SPMS versus controls. Our biological findings indicate that our methodological approach 
identifies structured (non-random) selections of genes involved in MS disease pathogenesis. 
Furthermore, the analysis of all examined cases provides specific aspects of immune system processes 
and related pathways, and also significant determinants of immune response, which highlight their 
importance in the design of laboratory experiments for the elucidation of disease mechanisms and also 
for drug discovery in MS. Moreover, our methodological approach creates highly interconnected hub-
genes that are more informative than the DEGs and can be more easily validated as novel therapeutic 
targets or diagnostic/prognostic biomarkers in MS. Finally, our results point out that the proposed 
combined framework is effective in discovering of potentially causal pathways, gene networks and hub-
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genes. Finally, we investigated the drug repurposing by examining the drug-hub gene relationships 
through different databases. 

We can safely say that we managed to examine relationships of transcriptomic signatures and deduce 
submodules of greater significance in relation to Multiple Sclerosis, the progression of the disease and 
future therapy. In addition, we determine how gene molecules influence each other, to improve the 
means of predicting “DISEASE triggering” relations/pathways and we introduced a methodology 
generic enough to be applied to several complex genetic diseases. 
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APPENDIX 
 

DGIdb database drug-gene interaction results. 

GENE DRUG INTERACTION_TYPES SOURCES PMIDS 

STAT1 GARCINOL   DTC   

  GUTTIFERONE K   DTC   

  PICOPLATIN   CIViC 15726096 

  CISPLATIN   CIViC 15726096 

  CHEMBL85826   DTC   

  IPRIFLAVONE   DTC   

OASL RIBAVIRIN   PharmGKB 21993426 

CCR1 AZD4818 antagonist ChemblInteractions   

  BMS-817399 antagonist TTD   

  CCX354 antagonist TdgClinicalTrial|ChemblInteractions|TTD   

  TERPYRIDINE   DTC 22957890 

  CHEMBL2205805   DTC 22957890 

CASP1 NIVOCASAN inhibitor ChemblInteractions|TTD   
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GENE DRUG INTERACTION_TYPES SOURCES PMIDS 

  EMRICASAN inhibitor ChemblInteractions   

  PRALNACASAN inhibitor TTD 17845807 

  BERKELEYAMIDE C   DTC 18330993 

  CHEMBL337173   DTC   

  4-CHLOROMERCURIBENZOIC ACID   DTC   

  BERKELEYDIONE   DTC 17970594 

  GOSSYPOL   DTC   

  MESALAMINE   DTC   

  BERKELEYACETAL A   DTC 17970594 

  DIACEREIN   TTD   

  VERMISTATIN   DTC 22295871 

  BERKELEYACETAL B   DTC 17970594 

  BELNACASAN   TdgClinicalTrial|TTD   

  CHEMBL578512   DTC   

  CHEMBL429095   DTC   

  JUGLONE   DTC   

  ISOBOLDINE   DTC   
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GENE DRUG INTERACTION_TYPES SOURCES PMIDS 

  CHEMBL415893   DTC 10386941 

  BERKELEYAMIDE B   DTC 18330993 

  BERKELEYACETAL C   DTC 17970594 

  CHEMBL580421   DTC   

  BERKELEYTRIONE   DTC 17970594 

CXCL10 NI-0801 inhibitor ChemblInteractions|TTD   

  REGRAMOSTIM   NCI 11591765 

  METHYLPREDNISOLONE   NCI 17220550 

  ANTIBIOTIC   NCI 10634213 

  RITONAVIR   NCI 11141242 

  STAVUDINE   NCI 11141242 

  ATORVASTATIN   NCI 10559511 

  ATROPINE   NCI 15315164 

  TESTOSTERONE   NCI 9681518 

  OXALIPLATIN   NCI 16101140 

  ELDELUMAB   TdgClinicalTrial|TTD   

  ZIDOVUDINE   NCI 11141242 
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TABLE4.19  GENES THAT HAVE DRUG INTERACTIONS CASE FOR THE CASE “UNTREATED MS  VS INTERFERON TREATED MS  PATIENTS” 

GENE DRUG INTERACTION_TYPES SOURCES PMIDS 

PEMT CANTUZUMAB MERTANSINE 
 

ChemblInteractions 
 

 
HUHMFG1 

 
ChemblInteractions 

 

 
CANTUZUMAB RAVTANSINE 

 
ChemblInteractions 

 

 
SONTUZUMAB 

 
ChemblInteractions 

 

 
PEMTUMOMAB 

 
ChemblInteractions 

 

 
AR-20.5 

 
ChemblInteractions 

 

LST1 ABACAVIR 
 

PharmGKB 
 

B2M PEMBROLIZUMAB 
 

CIViC 27433843 
 

THYROGLOBULIN 
 

NCI 9609129 
 

AMIKACIN 
 

NCI 7672871 

GENE DRUG INTERACTION_TYPES SOURCES PMIDS 

NT5C3A CYTARABINE   PharmGKB 25000516 

  IDARUBICIN   PharmGKB 25000516 

  GEMCITABINE   PharmGKB 22838949 
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GENE DRUG INTERACTION_TYPES SOURCES PMIDS 

CDA CYTARABINE 
 

NCI|PharmGKB 21325291|21521023 

|12008078|22304580| 

22379997|25003625| 

19458626|23651026| 

23230131|18473752 
 

GEMCITABINE 
 

NCI 12477049 
 

DEOXYCYTIDINE 
 

NCI 12008078 
 

TETRAHYDROURIDINE 
 

NCI|TTD 2932216 
 

CAPECITABINE 
 

PharmGKB 21325291|24167597| 

28347776| 

18473752|23736036 
 

AZACITIDINE 
 

PharmGKB 25850965 

S100A9 TASQUINIMOD 
 

TTD 24162378 
 

PAQUINIMOD 
 

TTD 
 

TABLE4.20  GENES THAT HAVE DRUG INTERACTIONS FOR THE CASE “UNTREATED MS PATIENTS VS HEALTHY CONTROLS” 

 

GENE DRUG INTERACTION_TYPES SOURCES PMIDS 
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IL1RN METHOTREXATE   NCI 8877917 

  HALOPERIDOL   PharmGKB 27023437 

  DIACEREIN   TdgClinicalTrial   

CTSG MANNITOL   NCI 3142269 

  CHEMBL374027   TTD   

CXCL8 ABX-IL8 inhibitor ChemblInteractions|TTD   

  HUMAX-IL8 inhibitor ChemblInteractions   

  LEFLUNOMIDE   NCI 10902750 

  YANGONIN   DTC   

  E319   DTC   

  FOSCARNET   NCI 10630964 

  NAPROXEN   NCI 11852880 

  ALDRIN   DTC   

  COLCHICINE   DTC   

  MIDAZOLAM   NCI 9620522 

  FENTANYL   NCI 9527747 

  ACETAMINOPHEN   NCI 15878691 

  CORONOPILIN   DTC   



 

129 
 

  DIPYRIDAMOLE   NCI 10660968 

  IBUPROFEN   TTD   

  IONOMYCIN   NCI 7510691 

  CHLORDANE   DTC   

  DANAZOL   NCI 16161451 

  CHEMBL1902074   DTC   

  OMEPRAZOLE   NCI 17122965 

  DINITRO CRESOL   DTC   

  QUESTIOMYCIN B   DTC   

  FENRETINIDE   NCI 16979119 

  HEPTACHLOR   DTC   

  PYROGALLOL   DTC   

  CANERTINIB   NCI 15956251 

  HYDROQUINONE   DTC|NCI 17118622 

  ENDOSULFAN   DTC   

  EMODIN   DTC   

  LANSOPRAZOLE   NCI 17122965 

  RETINAL   DTC   
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  HARMINE 
HYDROCHLORIDE 

  DTC   

  PACLITAXEL   NCI 9271387 

  BEVACIZUMAB   PharmGKB 23584701 

  PAMIDRONIC ACID   NCI 12006522 

  TALC   NCI 17000556 

  TRETINOIN   NCI 8900181 

  SUNITINIB   PharmGKB 26387812 

  CETUXIMAB   NCI 10614716|15908664 

|10037173 

  CHEMBL1579130   DTC   

  ALPRAZOLAM   NCI 12218154 

  METHIMAZOLE   NCI 11453524 

  RETINOL   DTC   

  RIBAVIRIN   DTC   

  TERFENADINE   NCI 8919641 

  DICYCLOHEXYLCARBODII
MIDE 

  DTC   

  CEFTRIAXONE   NCI 8011012 
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  ASPIRIN   NCI 12576442 

  CLARITHROMYCIN   NCI 12003967 

  DACARBAZINE   DTC   

  PENTOXIFYLLINE   NCI 12576442 

  CIDOFOVIR   NCI 10630964 

  BROXURIDINE   DTC   

  TROGLITAZONE   NCI 12364456 

  DICHLORVOS   DTC   

  VERAPAMIL   NCI 2686646 

CXCR1 LADARIXIN modulator ChemblInteractions   

  REPARIXIN allosteric 
modulator|modulator 

ChemblInteractions|TTD   

  NAVARIXIN antagonist TdgClinicalTrial|TTD   

  NAVARIXIN antagonist ChemblInteractions   

  IBUPROFEN   TTD   

ELANE SIVELESTAT inhibitor DTC|TdgClinicalTrial|TTD 23350733 

  DEPELESTAT   TTD   

  SYMPLOSTATIN 5   DTC 23350733 

  CHEMBL310871   DTC 17535802 
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  NICOTINE   NCI 8912774 

  TIPRELESTAT   TTD   

  ERDOSTEINE   TdgClinicalTrial   

  NIFEDIPINE   NCI 9796781|8833599 

IL1R2 ANAKINRA   TEND   

LY96 ERITORAN TETRASODIUM antagonist ChemblInteractions   

MMP9 MARIMASTAT inhibitor TdgClinicalTrial|TEND 17234180|12763661 

|11752352 

  PRINOMASTAT vaccine TALC   

  ANDECALIXIMAB inhibitor|antibody ChemblInteractions|TTD   

  S-3304 vaccine TALC   

  CURCUMIN PYRAZOLE   DTC 19128977 

  TOZULERISTIDE   TTD   

  CURCUMIN   TTD   

  INCYCLINIDE   TdgClinicalTrial   

  BEVACIZUMAB   CIViC 26921265 

  CARBOXYLATED 
GLUCOSAMINE 

  DTC 16616490 
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  DEMETHYLWEDELOLACT
ONE 

  DTC 22926226 

  CELECOXIB   PharmGKB 22336956 

MPO DIMETHYL SULFOXIDE   NCI 1845843 

  PSORALEN   NCI 15865234 

  TOLMETIN   NCI 6266970 

  DICLOFENAC   NCI 2173589 

  DOXYCYCLINE   NCI 14564835 

  ASULACRINE   NCI 1333205 

  NIMESULIDE   NCI 17176264 

  PYRAZINAMIDE   NCI 2832129 

  PROPYLTHIOURACIL   DTC 26509551 

  FLUDARABINE   NCI 15608444 

  LORATADINE   NCI 17159802 

  OCTREOTIDE   NCI 15003363 

  TRIMETHOPRIM   NCI 7425598 

  THEOPHYLLINE   NCI 8630596 

  LITHIUM   NCI 8224362 

  LIDOCAINE   NCI 8973808 
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  TENECTEPLASE   NCI 16650886 

  FLUTAMIDE   NCI 16330533 

  FENTANYL   NCI 8391745 

PAK1 CENISERTIB   DTC   

  TAE-684   DTC   

  AZD-1152-HQPA   DTC   

  TOZASERTIB   DTC   

  RG-1530   DTC   

  ILORASERTIB   DTC   

  LAUROGUADINE   DTC   

  PF-00562271   DTC   

  MLN-8054   DTC   

  R-406   DTC   

PTAFR RUPATADINE antagonist TTD 8996188 

  ISRAPAFANT antagonist TTD   

  MINOPAFANT antagonist ChemblInteractions   

  LEXIPAFANT   TTD   

  DERSALAZINE   TTD 21790535 
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  TICLOPIDINE   TTD   

S100A8 METHOTREXATE   NCI 14722212 

CEACAM3 ARCITUMOMAB   TTD   

HNMT AMODIAQUINE inhibitor TTD 6789797|1203620|17222819|117
52352 

  ASPIRIN   PharmGKB 19178400 

  METOPRINE   TTD 10592235 

  DABIGATRAN   DTC 22494098 

  DIPHENHYDRAMINE   TTD   

SLC22A16 FLUOROURACIL   PharmGKB   

  CYCLOPHOSPHAMIDE   PharmGKB 28036387|20179710 

  DOXORUBICIN   PharmGKB 28036387|17559346|20179710 

TNFSF13 ATACICEPT inhibitor TdgClinicalTrial|ChemblInteraction
s|TTD 

  

LPAR1 BMS-986020 antagonist TTD   

S100A12 ATOGEPANT   TTD   

  RIMEGEPANT   TTD   

  METHOTREXATE   NCI 15077313 

  EPTINEZUMAB   TTD   
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  UBROGEPANT   TTD   

CD14 IC14 inhibitor TdgClinicalTrial|ChemblInteraction
s|TTD 

  

  LOVASTATIN   NCI 7506029 

TABLE4.21  GENES THAT HAVE DRUG INTERACTIONS FOR THE CASE “UNTREATED PPMS PATIENTS VS HEALTHY CONTROLS” 

GENE DRUG INTERACTION_TYPES SOURCES PMIDS 

CYP2J2 TERFENADINE inhibitor PharmGKB 15861034 

  THIORIDAZINE   PharmGKB 19923256 

  TACROLIMUS   PharmGKB 28316087 

  DICLOFENAC   PharmGKB 15861034 

  AMIODARONE   PharmGKB 19923256 

  NABUMETONE   PharmGKB 19923256 

  ASTEMIZOLE   PharmGKB 15861034 

  ALBENDAZOLE   PharmGKB 19923256 

  MESORIDAZINE   PharmGKB 19923256 

  DANAZOL   PharmGKB 19923256 

EPHX2 FULVESTRANT   DTC 23684894 

  6BIO   DTC 24697244 

  AR9281   TdgClinicalTrial|TTD 10592235 
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GENE DRUG INTERACTION_TYPES SOURCES PMIDS 

  LITHIUM   PharmGKB 29121268 

  ALOE-EMODIN   DTC 26372074 

  ALOIN   DTC 26372074 

NBEA METFORMIN   PharmGKB 29650774 

XK ENSITUXIMAB   TTD   

TABLE4.22  GENES THAT HAVE DRUG INTERACTIONS FOR THE CASE “UNTREATED SPMS PATIENTS VS HEALTHY CONTROLS” 

GENE DRUG INTERACTION_TYPES SOURCES PMIDS 

SLC4A1 ATENOLOL   PharmGKB   

  METOPROLOL   PharmGKB   

BCR IMATINIB inhibitor TALC|DTC|PharmGKB|FDA 15206509|22148584|12600228|232
26582|20072827|24681986 

  DASATINIB inhibitor TALC|PharmGKB|FDA 15256671 

  PONATINIB 
HYDROCHLORIDE 

inhibitor ChemblInteractions   

  PONATINIB inhibitor TALC|PharmGKB|FDA 23409026 

  BOSUTINIB inhibitor PharmGKB|FDA   

  SARACATINIB inhibitor TALC   

  VINCRISTINE   PharmGKB|FDA   
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GENE DRUG INTERACTION_TYPES SOURCES PMIDS 

  BUSULFAN   PharmGKB|FDA   

  OMACETAXINE 
MEPESUCCINATE 

  PharmGKB   

  BLINATUMOMAB   PharmGKB|FDA   

  NILOTINIB   PharmGKB|FDA   

  CHEMBL483847   DTC 16415863 

CA1 ACETAZOLAMIDE SODIUM inhibitor ChemblInteractions   

  POLMACOXIB inhibitor TdgClinicalTrial|ChemblInteractio
ns|TTD 

  

  ZONISAMIDE inhibitor TEND 15837316|17762320|18537527|183
43915|18782051|17582922|849457
0|18162396 

  METHAZOLAMIDE inhibitor TdgClinicalTrial|ChemblInteractio
ns|TEND|TTD 

10533697|15110853|9336012|1468
4332|10649985 

  ETHOXZOLAMIDE inhibitor TdgClinicalTrial|ChemblInteractio
ns|TEND|TTD 

12956733|10649985|7929150|1952
0577|6816217|10995826 

  ACETAZOLAMIDE inhibitor TdgClinicalTrial|ChemblInteractio
ns|TEND|TTD 

10713865|12956733|18336310|866
7211|10651143|11430635 

  DICHLORPHENAMIDE inhibitor TdgClinicalTrial|ChemblInteractio
ns|TEND|TTD 

19019313|9336012|14684332|1964
8295|17228881 

  TRICHLORMETHIAZIDE inhibitor TdgClinicalTrial|TEND 19119014|17139284|17016423 
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GENE DRUG INTERACTION_TYPES SOURCES PMIDS 

  METHOCARBAMOL inhibitor ChemblInteractions 1460006 

  CHLOROTHIAZIDE inhibitor TdgClinicalTrial|TEND 10713865|10954127 

  RESORCINOL   DTC 26073005 

  MEDRONIC ACID   DTC 24813742 

  PHENOL   DTC|TTD 26073005 

  CURCUMIN   TTD   

  CATECHOL   DTC 26073005 

  SULFAMIDE   TTD   

  PARABEN   TTD   

  LEVETIRACETAM   TEND   

IGF2BP2 REPAGLINIDE   PharmGKB   

KISS1R BENZETHONIUM 
CHLORIDE 

  DTC 17266198 

TABLE4.23  GENES THAT HAVE DRUG INTERACTIONS FOR THE CASE “UNTREATED PPMS PATIENTS VS HEALTHY CONTROLS” 

 


