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Abstract

In this thesis, we consider deep neural networks for Machine Learning. We
depict neural networks as weighted directed graphs and we represent them
as parametric functions that receive an input and compute an output, or
prediction, given some fixed parameters, the weights and the biases. The
quintessence of a neural network is the feed-forward model, in which the
underlying graph does not contain cycles (acyclic graph) and the parametric
function is defined in a compositional, or hierarchical, way.

Throughout our presentation, we focus on a supervised learning setting,
where our neural network model, or learner, has access to a training set that
contains examples of how pairs of input-output data are related. In other
words, supervised learning amounts to learning from examples.

Given a training set, depending whether the outputs have real or categor-
ical values, we consider regression and logistic regression. For each setting,
we provide the basic statistical framework and construct a loss function
known as the empirical risk. We train our neural network by minimizing
the empirical risk w.r.t. its parameters by using gradient-based optimiza-
tion methods. The gradient of the loss function is computed via the back-
propagation algorithm.

We showcase the convergence and generalization properties of different
algorithms (deep neural network models and optimization methods) using
real-world data.
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Chapter 1

Introduction

Artificial neural networks have demonstrated dominating performance over
the last few decades in various fields. On a theoretical side, a long line of
work has been focusing on training artificial neural networks with two layers,
showing theoretical results of significant importance.

The theory of artificial neural networks with more than two layers re-
mains still largely unsettled. However, they are used in practice to solve
large-scale machine learning problems, due to their expressive power and
generalization capabilities.

Chapter [1] is a brief introduction to artificial neural networks provid-
ing a notation section, in which we describe our conventions. Chapter [2]
defines artificial neural networks as structures that can be represented by di-
rected graphs. Additionally, it provides a basic optimization and statistical
framework for machine learning. Chapter [3], presents the back-propagation
algorithm, which computes the gradient of the loss function. Chapter [4]
presents some of the state-of-the-art optimization methods that are used for
the training procedure. Finally, Chapter [5] provides experimental results
over different machine learning problems.

1.1 Notation

Throughout our presentation, we adopt standard mathematical notation.
In this section, we describe our conventions and provide Table [1.1], which
summarizes our notation.

We denote scalars with lowercase letters (e.g., x, α) and vectors by using
boldface lowercase letters (e.g., x, α). The jth coordinate of a vector x is
denoted by xj = [x]j . We use boldface uppercase letters (e.g., X, A) to
denote matrices. The (j,m) element of a matrix A is denoted by Aj,m =
[A]j,m. Additionally, we denote sets and graphs by calligraphic uppercase
letters (e.g., S,G).
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Table 1.1: Summary of notation

symbol meaning

R the set of real numbers
R+ the set of non-negative real numbers
Rd the set of d-dimensional real vectors
N the set of natural numbers
I[expression] equals 1 if expression is true and 0 o.w.
x, x a scalar and a (column) vector, respectively
xj the jth element of vector x
sign(x) equals 1 if x > 0, 0 if x = 0 and -1 o.w.

∥x∥2 =
(∑d

j=1 x
2
j

)1/2
, if x ∈ Rd

∥x∥1 =
∑d

j=1 |xj |, if x ∈ Rd

A ∈ Rm×n m× n matrix over R
A⊤ transpose matrix of A
[A]j,m or Aj,m the (j,m) element of A
[A]:,j or A:,j the jth column of A
[A]j,: or Aj,: the jth row of A
Im ∈ Rm×m the m×m identity matrix
X input or feature domain (set)
Y output or label domain (set)
S = {(xi,yi)}ni=1 the training set of n samples
G = (V, E) a graph with |V| nodes and |E| edges
NL a neural network architecture with L layers
Vℓ the neurons (nodes) at layer ℓ

v
(ℓ)
j ∈ Vℓ the jth neuron (node) at layer ℓ

(v
(ℓ−1)
m , v

(ℓ)
j ) ∈ E a directed edge between neurons v

(ℓ−1)
m and v

(ℓ)
j

kℓ =

{
|Vℓ| − 1, ℓ < L

|Vℓ|, ℓ = L
, the number of neurons

at layer ℓ excluding biases

W(ℓ) ∈ Rkℓ×kℓ−1 the weight parameter matrix at layer ℓ

b(ℓ) ∈ Rkℓ the bias parameter vector at layer ℓ

θ ∈ R|E| the parameter vector including all weight and
bias parameters with |E| =∑L

ℓ=1 kℓ(kℓ−1 + 1)

{θ(t)}Tt=0 a sequence (set) of parameter vectors returned
by a training algorithm after T <∞ iterations

θ∗ ∈ R|E| (sub-)optimal parameter vector
HNL

a hypothesis class of a neural network
hNL,θ ∈ HNL

a hypothesis for a fixed neural network NL and
parameter vector θ

ŷθ(x) = hNL,θ(x), denotes the prediction of a fixed
neural network when it is fed by an input x ∈ X

L : hNL,θ(X )× Y → R a loss function, for hNL,θ ∈ HNL

g′(x) = dg(x)
dx is the derivative of g : R→ R

∂g(x)
∂xj

the partial derivative of g : Rd → R w.r.t. xj ,
j ∈ [d]

∇g(x) = [∂g(x)∂x1
· · · ∂g(x)∂xd

]⊤ the gradient of g : Rd → R
∂g(x) the subdifferential (set) of g : Rd → R
⊙ element-wise multiplication operator
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Scalar functions of several variables are denoted by lowercase letters (e.g.,
f(x)), while vector functions of several variables are denoted by boldface
lowercase letters (e.g., f(x)).

In the context of machine learning, a common approach is to define the
input or feature domain set as X and the output or label domain set as Y.
We adopt this notation and, in our analysis, we omit, unless it is stated
otherwise, that X ⊆ Rd and Y ⊆ Rd′ if the output domain set consists of
d′-dimensional real value vectors over R or Y = {1, . . . , c}, for some positive
integer c > 0, which corresponds to the number of classes in a classification
problem.

Of course, the input domain set X can also represent more complicated
inputs. For example, for grey-scale images, if X ⊆ Rd1×d2 , and for RGB
images where X ⊆ R3×d1×d2 , with the first dimension denoting the red-
green-blue channel of the image.
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Chapter 2

Artificial Neural Networks
and Machine Learning

2.1 Feed-Forward Neural Networks

An artificial neural network is a computational model inspired by the struc-
ture of the biological neural networks of the human brain. A neural network
can be represented as a directed graph G = (V, E) [1, ch. 20, p. 268], with
|V| nodes and |E| edges. The nodes correspond to the neurons and each
(directed) edge of the graph is associated with a weight value, which deter-
mines the strength of the communication link between the connected nodes.
Generally, each neuron computes a scalar function.

In this thesis, we focus on feed-forward neural networks, in which the
underlying graph does not contain cycles. Furthermore, we assume that the
feed-forward network is organized in layers. In fact, any directed acyclic
graph can be arranged topologically in order to have a layered structure [2,
ch. 22.4, p. 612]. In particular, we partition the set of nodes V into a union
of nonempty subsets, V =

⋃L
ℓ=0 Vℓ, with Vℓ ̸= ∅, ∀ℓ ∈ [L], such that every

edge in E connects some node of Vℓ−1 with some node in Vℓ, for all ℓ ∈ [L].

The first layer, V0, is called the input layer. It contains d + 1 neurons,
where d ∈ N is the dimensionality of the input space. Let us feed the neural
network with the input vector x ∈ X ⊆ Rd, d ∈ N. For every j ∈ [d], the
output of the jth neuron is simply xj , the jth coordinate of the input vector.
The output of the (d+ 1)th neuron in V0 is always the constant 1.

Next, we compute the output for each neuron in the graph. Fix the jth

neuron at layer ℓ, v
(ℓ)
j ∈ Vℓ, for some j ∈ {1, . . . , |Vℓ|}. Let z(ℓ)j (x) and a

(ℓ)
j (x)

denote the input and the output of neuron v
(ℓ)
j , respectively, when the neural

network is fed with the input vector x ∈ X . Then, for j ∈ {1, . . . , |Vℓ|} and
∀ℓ ∈ [L], we have

z
(ℓ)
j (x) =

|Vℓ−1|∑
k=1

W
(ℓ)
j,k a

(ℓ−1)
k (x), (2.1)

a
(ℓ)
j (x) = σℓ

(
z
(ℓ)
j (x)

)
, ℓ ̸= L, (2.2)

where W
(ℓ)
j,m ∈ R denotes the weight value of the edge (v

(ℓ−1)
m , v

(ℓ)
j ) ∈ E
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Layer
(Vℓ−1)

Layer
(Vℓ)

v
(ℓ−1)
1

v
(ℓ−1)
2

...

v
(ℓ−1)
|Vℓ−1|

v
(ℓ)
1

v
(ℓ)
2

...

v
(ℓ)
j

...

v
(ℓ)
|Vℓ|

W
(ℓ)
j,1

W
(ℓ)
j,2

W
(ℓ)
j,|Vℓ−1| = b

(ℓ)
j

z
(ℓ−1)
1 (x)

z
(ℓ−1)
2 (x)

z
(ℓ−1)
|Vℓ−1|(x) = 1

z
(ℓ−1)
|Vℓ| (x) = 1

a
(ℓ)
1 (x)

a
(ℓ)
2 (x)

a
(ℓ)
j (x)

a
(ℓ)
|Vℓ|(x) = 1

Figure 2.1: The input and output for each neuron v
(ℓ−1)
k are given by

z
(ℓ−1)
k (x) and a

(ℓ−1)
k (x), respectively, for all k ∈ {1, . . . , |Vℓ−1|}. The in-

put of the neuron v
(ℓ)
j is a weighted sum over all the outputs of the neurons

of the previous layer and is given by z
(ℓ)
j (x) and its output is a

(ℓ)
j (x).

that connects the neurons v
(ℓ−1)
m and v

(ℓ)
j and σℓ : R → R is the activation

function1 at the ℓth layer. We use the ℓ symbol for the activation function
to denote that different layers may compute different activation functions.

Each neuron v
(ℓ)
|Vℓ|, ℓ ∈ [L], outputs the constant 1 as it is shown in Fig

[2.1]. To better understand the use of the bottom neuron for each ℓ ∈ [L],
we consider kℓ = |Vℓ|−1, ∀ℓ ∈ [L−1] and kL = |VL|. Then, expression (2.1)
can be equivalently written as

z
(ℓ)
j (x) =

kℓ−1∑
k=1

W
(ℓ)
j,k a

(ℓ−1)
k (x) +W

(ℓ)
j,|Vℓ−1|a

(ℓ−1)
|Vℓ−1|(x)

=

kℓ−1∑
k=1

W
(ℓ)
j,k a

(ℓ−1)
k (x) + b

(ℓ)
j ,

(2.3)

for all ℓ ∈ [L], where b
(ℓ)
j = W

(ℓ)
j,|Vℓ−1| and a

(ℓ−1)
|Vℓ−1|(x) = 1. The use of the

last neuron is to simply add the term b
(ℓ)
j ∈ R, called bias, to the weighted

sum of the outputs of the neurons {v(ℓ−1)
m }kℓ−1

m=1, which are connected to the

neuron v
(ℓ)
j via the weighted edge (v

(ℓ−1)
m , v

(ℓ)
j ), ∀m ∈ [kℓ−1] and j ∈ [kℓ].

1We assume that each node at layer ℓ computes the same activation function σℓ(·).
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v
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x3

1

1 1
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Figure 2.2: Illustration of a neural network with three layers (excluding V0)
with size 16, width 5, and depth 3. The network is fed with an input vector
x ∈ R|V0|−1 = R3 and outputs a two-dimensional vector in R|V3| = R2. Note
that, for each layer, except the output layer V3, the last neuron with no
incoming edges is fed with a constant 1 and it transmits it to the output.

Henceforth, expressions (2.1) and (2.2) are reformulated as

z
(ℓ)
j (x) =

kℓ−1∑
k=1

W
(ℓ)
j,k a

(ℓ−1)
k (x) + b

(ℓ)
j , (2.4)

a
(ℓ)
j (x) = σℓ

(
z
(ℓ)
j (x)

)
, ℓ ̸= L, (2.5)

for j ∈ [kℓ] and ℓ ∈ [L].

In Fig[2.1], we depict the computation of the output of any neuron at
the ℓth layer by using the expressions (2.4) and (2.5).

The layers V1, . . . ,VL−1 are called hidden layers, while the last layer VL
is called the output layer. Depending on the problem, the output layer
may contain one or more neurons, whose output is the output of the neural
network. The number of layers, L, is also known as the depth, or capacity,
of the neural network, while the width of the network is defined as maxℓ|Vℓ|.

Of course, the analysis of feed-forward neural networks can be extended
to convolutional neural networks. Further details regarding convolutional
neural networks, convolutional layers and, generally, convolutional arith-
metic in the context of deep learning can be found in [3, ch. 6.3, p. 124], [4,
ch. 14.2.1, p. 464] and [5].
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2.2 Neural Networks as Parametric Functions

From a general perspective, we define the architecture of a neural network

with L ∈ N layers as the triplet NL =
(
V, E , {σℓ}L−1

ℓ=1

)
, where V =

⋃L
ℓ=0 Vℓ

[1, ch. 20.2, p. 270]. Generally, once an architecture is specified, we can treat
the neural network as a parametric function hNL,θ : Rk0 → RkL , where θ
serves the role of a parameter vector to the function hNL,θ(·). In particular,
vector θ collects the weights and biases of the neural network in a single
vector, such as

θ =
[
θ⊤
1 θ⊤

2 · · · θ⊤
L

]⊤ ∈ R|E|, (2.6)

where θℓ =
[
vec
(
W(ℓ)

)⊤ (
b(ℓ)

)⊤]⊤ ∈ Rkℓ(kℓ−1+1), [W(ℓ)]j,m = W
(ℓ)
j,m and

[b(ℓ)]j = b
(ℓ)
j , for j ∈ [kℓ] and m ∈ [kℓ−1], for each ℓ ∈ [L].

Note that the number of parameters, or the number of edges of the
underlying graph corresponding to the architecture NL, can be computed
as |E| =∑L

ℓ=1 kℓ(kℓ−1 + 1).

Now, let us feed the network NL with an input vector x ∈ X ⊆ Rd, with
k0 = |V0| − 1 = d. The output of the neural network is defined as

hNL,θ (x) :=
[
z
(L)
1 (x) z

(L)
2 (x) · · · z

(L)
kL

(x)
]⊤
∈ RkL . (2.7)

Depending on the problem, the number of neurons of the last layer, kL, can
be selected accordingly in order to represent scalar or vector mappings. The
intermediate number of neurons {kℓ}L−1

ℓ=1 corresponding to the hidden layers

{Vℓ}L−1
ℓ=1 determine the expressiveness of the parametric function hNL,θ (x).

In machine learning, the parametric function hNL,θ(·) is known as a
hypothesis [1, ch. 20.2, p. 270]. Generally, by changing the parameter vector
θ, we obtain a different hypothesis. The class of all possible hypotheses for a
fixed neural network architecture is called the hypothesis class and is given
by

HNL
= {hNL,θ : Rk0 → RkL | θ ∈ R|E|}2. (2.8)

2A more abstract way to describe the hypothesis class of a fixed neural network that
can be also fed by images is: HNL = {hNL,θ : X → hNL,θ(X ) ⊆ RkL | θ ∈ R|E|}, where
X ⊆ Rd×d, if the input domain set consists of gray-scale images or X ⊆ R3×d×d for RGB
images, having red, green and blue channels.
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2.3 Basic Machine Learning and Optimization
Framework

In supervised machine learning, we have access to training data that contain
examples of how input3 vectors x ∈ X relate to outputs 4 y ∈ Y. In
particular, we assume that our model, or learner, has access to a training
dataset S = {(xi,yi)}ni=1, n ∈ N, where (xi,yi) ∈ X × Y, with X ⊆ Rd and
Y ⊂ Rd′ , for d′ ∈ N, if outputs are numerical, or Y = {1, . . . , c}, for c > 1
classes, if outputs are categorical.

Furthermore, we assume that each pair (xi,yi) ∈ X × Y is drawn in-
dependently from the joint probability distribution p : X × Y → P ⊆ R+,
representing the true relationship between inputs and outputs. Of course,
the distribution p(·, ·) is not known to the learner.

2.3.1 Risk Minimization

Ideally, for a fixed neural network architecture NL, we aim to choose a hy-
pothesis hNL,θ ∈ HNL

parameterized by the vector θ ∈ R|E| that minimizes
the expected risk, R : R|E| → R, defined as

R(θ) := E(x,y)∼p [L (hNL,θ(x),y)]

=

∫
X×Y

L (hNL,θ(x),y) dp(x,y),
(2.9)

where L : hNL,θ(X )× Y → R is a loss function.

While our primal goal is to minimize expression (2.9), this is impossi-
ble since the distribution p(·, ·) is not known to the learner. However, the
learner has access to the training set S, whose pairs are drawn independently
according to the distribution p(·, ·).

Next, we define the empirical risk function RS : R|E| → R as

RS(θ) :=
1

|S|

|S|∑
i=1

L (hNL,θ(xi),yi) . (2.10)

In machine learning, a common approach is to employ the empirical risk
(2.10), instead of the expected risk (2.9), as the objective function, which
we minimize w.r.t. the parameter vector θ, hoping that the solutions of the
empirical and the expected risk are sufficiently close.

3The input is also called feature, attribute, predictor, regressor, covariate, explanatory
variable, controlled variable or independent variable.

4The output is also called response, regressand, label, explained variable or dependent
variable.
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2.3.2 Regularized Risk Minimization

Instead of minimizing the empirical risk, we can use a regularized empirical
risk as an objective function. We define the regularized empirical risk as

R̃S(θ) := RS(θ) + λΩ(θ), (2.11)

where Ω : R|E| → R+ is a regularization penalty term and λ > 0 controls
the importance of the regularization. For Ω(θ) = 1

2∥θ∥22 the regularization
is known as ℓ2-regularization, while for Ω(θ) = ∥θ∥1 the regularization is
known as ℓ1-regularization. Further details regarding to regularization can
be found in [3, ch. 5.3, p. 93] and [6, ch. 3.1.4, p. 145].

2.3.3 Simplified Notation

Expressions (2.9) and (2.10) show explicitly how the expected and empirical
risks depend on the loss function. In particular, the loss function depends on
the neural network architecture NL, the parameter vector θ and the input-
output training pair (x,y) ∈ X × Y. However, when discussing certain
algorithmic ideas (i.e., back-propagation, optimization methods), a simpli-
fied notation is preferable, since it leads to straightforward and simplified
expressions.

First, we define

ŷθ(x) := hNL,θ(x) (2.12)

as the output vector of a fixed neural network NL parameterized by θ, when
it is fed with the input vector x ∈ X . Combining expressions (2.7) and (2.12)

we get that ŷθ(x) = z(L)(x), where [z(L)(x)]j = z
(L)
j (x), ∀j ∈ [kL].

Additionally, we define the loss w.r.t. parameters θ as

f(θ) := L (ŷθ(x),y) , (2.13)

over an arbitrary input-output training pair (x,y) ∈ X × Y. In a similar
manner, we define the sample loss incurred by the parameter vector θ w.r.t.
the ith sample as

fi(θ) := L (ŷθ(xi),yi) , (2.14)

where (xi,yi) ∈ S, for some i ∈ [n]. We can write the empirical risk as the
arithmetic mean of the sample losses:

RS(θ) =
1

n

n∑
i=1

fi(θ). (2.15)
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NLx softmax(·) argmax(·) ŷθ(x)
ŷθ(x) g (ŷθ(x))

Figure 2.3: A graphical representation for the logistic regression setting.
We feed the neural network with an input x and the network predicts
ŷθ(x). Then, the prediction passes through a softmax operation and com-
putes g (ŷθ(x)), where [g (ŷθ(x))]i = gi (ŷθ(x)) , i ∈ [c]. Last, the network
predicts the class ŷθ(x), by using the argmax operation over the softmax
function.

2.4 Parametric Modelling with Neural Networks

In this section, we introduce two basic parametric models for learning: re-
gression and logistic regression. The key point of parametric modelling is
that it contains some parameters θ, which are learned from the training
data S.

In the context of neural networks, changing the weight parameters θ
leads to selecting a different hypothesis ŷθ(x) from the hypothesis class
HNL

.

2.4.1 Regression

In this setting, we wish to find a “pattern” in the data structure —a func-
tional relationship between inputs x ∈ X and numerical outputs y ∈ Y ⊆
Rd′ . A common approach is to use the squared-loss [6, ch. 5.2, p. 234] as
an error metric between the prediction of the neural network ŷθ(x) and the
true label y, given by

f(θ) =
1

2
∥ŷθ(x)− y∥22

=
1

2
∥z(L)(x)− y∥22.

(2.16)

Intuitively, the squared loss is zero if ŷθ(x) = y and grows quadratically as
the Euclidean distance between ŷθ(x) and y increases.

Since the squared-loss function is selected for the regression setting, the
empirical risk is formulated as

RS(θ) =
1

n

n∑
i=1

∥ŷθ(xi)− yi∥22. (2.17)

2.4.2 Logistic Regression

Logistic regression is used for classification problems. In this setting, we
wish to find a functional relationship between input x ∈ X and categorical
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outputs y ∈ Y ⊆ {1, . . . , c}, for c > 1. In order to formalize this setting, we
use the so-called softmax function [3, ch. 3.2, p. 49], [3, ch. 6, p. 117].

The idea behind using the softmax function is that we wish to interpret
the outputs of the neural network as probabilities. Therefore, the output
vectors should be non-negative and sum to one. For that, we define the
softmax function as:

g(u) :=
1∑s

k=1 e
uk

[
eu1 eu2 · · · eus

]⊤
, (2.18)

where u ∈ Rs, s > 0. Furthermore, we define

ŷθ(x) := argmax
i∈[c]

gi (ŷθ(x)) ∈ Y, (2.19)

as the prediction of the class of the neural network, where each function
gi(u) = [g(u)]i denotes the ith coordinate of the softmax function evaluated
at u ∈ Rs, s > 0, for i ∈ [s] (see Fig [2.3]).

The loss function for the training pair (x, y) is given by

f(θ) = − ln gy(ŷθ(x))

= − ln

(
ez

(L)
y (x)∑c

k=1 e
z
(L)
k (x)

)

= −z(L)y (x) + ln
c∑

k=1

ez
(L)
k (x),

(2.20)

which is known as the cross-entropy loss function [3, ch. 6.2, p. 119], while
the empirical risk is reformulated as

RS(θ) = −
1

n

n∑
i=1

ln gyi(ŷθ(xi)). (2.21)

2.5 Statistical Perspective of Learning

In order to derive a principled way of selecting an appropriate loss function
w.r.t. a given supervised machine learning setting (e.g., regression, logistic
regression), we present a statistical interpretation of learning. Additional
information can be found in [6, ch. 5.2, p. 233] and [6, ch. 5.7, p. 277], [6,
ch. 5.7, p. 278], [4, ch. 10.2.3, p. 338]. See also [7, ch. 14, p. 569], [7, ch. 16,
p. 623].

2.5.1 Probabilistic Interpretation of Neural Networks

So far, we have viewed neural networks as a general class of parametric func-
tions. However, it is possible to provide another view of neural networks by
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giving a probabilistic interpretation [6, ch. 5.2, p. 233]. We denote the prob-
ability distribution function (pdf) for regression problems, or probability
mass function (pmf) for logistic regression, respectively, over possible vector
outputs y ∈ Y, given an input vector x ∈ X , parameterized by the vector
θ ∈ R|E| as

q(y | x;θ) ∈ Q ⊆ R+. (2.22)

The distribution in (2.22) is known as the likelihood function. We dis-
tinguish between the likelihood according to the model (neural network),
q(y | x;θ), and the likelihood w.r.t. the true data distribution p(y | x)5.
We assume that the probabilistic model, parameterized by θ, is “proper”
(flexible enough), meaning that, ∃θ∗ ∈ R|E| such that q(y | x;θ∗) = p(y | x).

2.5.2 Maximum Likelihood Estimation

In the Maximum Likelihood (ML) setting, we treat θ as a deterministic
unknown parameter and we formulate the ML estimation by solving the
optimization problem

θML = argmaxθ q(Y | X;θ)

= argmaxθ ln q(Y | X;θ).
(2.23)

Here, q(Y | X;θ) is the joint likelihood distribution6 function of all observed
outputs yi ∈ Y given all inputs xi ∈ X , parameterized by θ, where each

pair (xi,yi) ∈ S, ∀i ∈ [n], Y =
[
y⊤
1 . . . y⊤

n

]⊤
and X =

[
x⊤
1 . . . x⊤

n

]⊤
.

Assuming that the n points are statistically independent, the joint likelihood
factorizes as

q(Y | X;θ) =
n∏

i=1

q(yi | xi;θ)

⇐⇒ ln q(Y | X;θ) =
n∑

i=1

ln q(yi | xi;θ)

(2.24)

Therefore, the maximization problem (2.23) can be equivalently reformu-
lated as:

θML = argmaxθ

n∑
i=1

ln q(yi | xi;θ)

= argmaxθ
1

n

n∑
i=1

ln q(yi | xi;θ).

(2.25)

5Theoretically, if p(x,y) is known, we can compute p(x) and p(y) and apply the Bayes’
rule to compute p(y | x).

6Pdf for regression problems or pmf for logistic regression problems.
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For the regression setting, we treat y as a continuous random variable. We
assume that the conditional distribution of each output yi given the input
xi and parameterized by θ is

q(yi | xi;θ) = N
(
yi; ŷθ(xi), β

2I
)
, (2.26)

for each i ∈ [n], where

N (y;µ,C) :=
1

(2π)m/2|C|1/2 exp
(
−1

2
(y − µ)⊤C−1(y − µ)

)
(2.27)

is the pdf of an m-dimensional Gaussian vector y parameterized with mean
µ ∈ Rm and covariance matrix C = C⊤ ∈ Rm×m. In our case, the mean
for each term is ŷθ(xi) ∈ Rd′ and the covariance matrix is β2I ∈ Rd′×d′ .
Substituting (2.26) in (2.25), leads to minimizing the squared-loss, which
we have selected as a loss function for the regression setting in (2.17).

In logistic regression (classification), we treat y ∈ {1 . . . , c} as a discrete
random variable. In this setting, expression (2.25) simplifies to

argmaxθ
1

n

n∑
i=1

ln q(yi | xi;θ), (2.28)

since each yi is a scalar [3, ch. 3.2, p. 45]. Furthermore, we assume that the
conditional distribution of each output yi, given the input xi and parameter
θ, is

q(yi | xi;θ) = Cat (yi;g (ŷθ(xi))) , (2.29)

for each i ∈ [n], where

Cat(y; r) :=
c∏

j=1

r
I[y=j]
j (2.30)

is the c-dimensional categorical distribution over c different events [4, ch.

10.3, p. 346]. The vector r =
[
r1 · · · rc

]⊤
, where 0 ≤ ri ≤ 1, ∀i ∈ [c]

and
∑c

i=1 ri = 1, specifies the probabilities for each outcome over c possible
events. Substituting (2.29) in (2.28) leads to minimizing the cross-entropy
loss, which we have selected as a loss function for the logistic regression
setting in (2.21). Additional information can be found in [6, ch. 5.2, p. 233],
[4, ch. 4.1, p. 105].

2.5.3 Maximum A-Posteriori Estimation

In the Maximum A-Posteriori (MAP) setting, the parameter θ is treated
as a random variable. Given the observations X and Y, the most probable
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parameter θ is given by the MAP estimation, by solving the optimization
problem

θMAP = argmaxθq(θ | X,Y)

= argmaxθ ln q(θ | X,Y).
(2.31)

Applying the Bayes’ rule, we obtain

q(θ | X,Y) =
q(Y | X,θ)q(θ | X)

q(Y | X)

⇐⇒ ln q(θ | X,Y) = ln q(Y | X,θ) + ln q(θ) + ln q(Y | X)−1,

(2.32)

since random vectors7 X and θ are independent, that is, q(θ | X) = q(θ).
Additionally, we note that q(Y | X)−1 is not a function of θ8. Hence, after
disregarding the term ln q(X,Y)−1, the maximization problem (2.31) can
be equivalently expressed as

θMAP = argmaxθ ln q(Y | X,θ) + ln q(θ). (2.33)

The first term ln q(Y | X,θ) is the logarithmic joint-likelihood, which has
been discussed in (2.23).

We note that MAP estimation leads to adding an extra term ln q(θ),
known as the log-prior of the parameters. For q(θ) = N (θ;0, β2I), the log-
prior term corresponds to ℓ2-regularization [4, ch. 11.3, p. 382], while, for

q(θ) =
∏|E|

i=1 Laplace(θi; 0,
1
β ), the log-prior corresponds to ℓ1-regularization

[4, ch. 11.4, p. 377], where

Laplace(x;µ, β) :=
1

2β
exp

(
−|x− µ|

β

)
, (2.34)

is the Laplace pdf. Last, if we assume q(θ) =
∏|E|

i=1 U(θi;α, β), where

U(x;α, β) :=
{

1
β−α , x ∈ [α, β],

0, o.w.
(2.35)

is the uniform pdf, then MAP reduces to ML estimation. Additional details
can be found in [4, ch. 4.5.1, p. 119], [6, ch. 5.7, p. 278].

7In fact, X is a random matrix, however, it can be viewed as a random vector by
defining the following mapping: X 7→ vec(X). Similarly, we can define Y 7→ vec(Y), for
the Y random matrix.

8The denominator of expression (2.32) is known as the marginal likelihood, since
q(Y | X) =

∫
R|E| q(Y | X,θ)dq(θ).
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Chapter 3

The Back-Propagation
Algorithm

Back-propagation is a very important algorithm for training feed-forward
neural networks [8]. In this chapter, we focus on computing the gradient of
the empirical risk w.r.t. the neural network parameters, that is, ∇RS(θ),
for some fixed neural network NL parameterized by θ and a training set S.

We present the back-propagation for a certain class of feed-forward neu-
ral networks. Of course, this formula can be extended to any feed-forward
architecture. Additional information for the back-propagation algorithm
can be found in [1, ch. 20.6, p. 277], [6, ch. 5.3, p. 141], [9, ch. 6.5, p. 204],
[3, ch. 6.2, p. 142], [10, ch. 4.8, p. 140] and [4, ch. 13.3, p. 434].

3.1 Overview of Back-Propagation

Let us fix a neural network architecture NL, for some 0 < L <∞, parame-
terized by the vector θ and let (x,y) ∈ X ×Y be an arbitrary input-output
training pair. We feed the neural network with the input x and evaluate the
inputs and outputs for each layer as follows:

a(0)(x) = x,{
z(ℓ)(x) = W(ℓ)a(ℓ−1)(x) + b(ℓ),

a(ℓ)(x) = σℓ(a
(ℓ) (x)) ,

}
, for ℓ ∈ [L− 1],

z(L)(x) = W(L)a(L−1)(x) + b(L),

(3.1)

where σℓ(u) =
[
σℓ(u1) · · · σℓ(us)

]⊤
, for some vector u ∈ Rs, s > 0, and

σℓ(·) is the activation that each neuron computes at hidden layer Vℓ. We
define the procedure described in expression (3.1) as the forward-phase of
the back-propagation.

Recall that the loss for regression problems is the squared-error, given
by

f(θ) =
1

2
∥z(L)(x)− y∥22. (3.2)

Also, recall for the logistic regression, the input-output training pair reduces
to (x, y), because the outputs are categorical and we select the cross-entropy-
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error, which is given by

f(θ) = −z(L)y (x) + ln

c∑
k=1

ez
(L)
k (x), (3.3)

since ŷθ(x) = z(L)(x), the output of the neural network, is the output of
the last layer.

Next, we denote the gradients of the errors w.r.t. each layer ℓ ∈ [L] as

dfz
(ℓ)(x) := ∇z(ℓ)(x)f(θ),

dfa
(ℓ)(x) := ∇a(ℓ)(x)f(θ),

(3.4)

where

∇z(ℓ)(x)f(θ) =

[
∂f(θ)

∂z
(ℓ)
1 (x)

· · · ∂f(θ)

∂z
(ℓ)
kℓ

(x)

]⊤
,

∇a(ℓ)(x)f(θ) =

[
∂f(θ)

∂a
(ℓ)
1 (x)

· · · ∂f(θ)

∂a
(ℓ)
kℓ

(x)

]⊤
.

(3.5)

Once we define the errors w.r.t. the layers, we begin the backward phase.
In this phase, each dfz

(ℓ)(x) and dfa
(ℓ)(x) is computed recursively, in the

opposite direction that we did in the forward phase. To start the recursions,
we first compute dfz

(L)(x), the gradient of the error w.r.t. the last layer L,
which depends on the choice we made for f(θ). For regression problems, we
get

dfz
(L)(x) = z(L)(x)− y, (3.6)

while, for logistic regression, we obtain

dfz
(L)
j (x) =

∂

∂z
(L)
j (x)

(
−z(L)y (x) + ln

c∑
k=1

ez
(L)
k (x)

)

= −I[j = y] +
ez

(L)
j (x)∑c

k=1 e
z
(L)
k (x)

= −I[j = y] + gj

(
z(L)(x)

)
,

(3.7)

since gj(·) = [g(·)]j , j ∈ [c] is the jth coordinate of the softmax function.
Next, we present the backward phase of the back-propagation algorithm.
The backward phase proceeds with the following recursions

dfz
(ℓ)(x) = dfa

(ℓ)(x)⊙ σ′
ℓ

(
z(ℓ)(x)

)
, ℓ ̸= L, (3.8)

dfa
(ℓ−1)(x) =

(
W(ℓ)

)⊤
dfz

(ℓ)(x), (3.9)
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Figure 3.1: A computational graph of the back-propagation algorithm, given
a training pair (x,y). We start with the input in the upper left corner and
propagate forward and evaluate the cost (error) function. We also cache the
values z(ℓ)(x) and a(ℓ)(x) for all ℓ ∈ [L]. Once we compute the error function,
we propagate the errors dfz

(ℓ)(x) backward and compute the gradients w.r.t.
the network parameters W(ℓ), b(ℓ) for all ℓ ∈ [L]. The equations behind the
computational graph are given in (3.10) and (3.11).

for ℓ ∈ [L] where σ′
ℓ(u) =

[
σ′
ℓ(u1) · · · σ′

ℓ(us)
]⊤

, for some vector u ∈
Rs, s > 0, where ⊙ denotes the element-wise multiplication operator. Ex-
pressions (3.8) and (3.9) will be proved in section [3.2] (see expressions (3.18)
and (3.19), respectively). After each term dfz

(ℓ)(x) has been computed, we
are able to compute the gradients w.r.t. the weights and the biases. The
gradients, for each layer ℓ ∈ [L], can be computed as

dfW
(ℓ) = dfz

(ℓ)(x)
(
a(ℓ−1)(x)

)⊤
, (3.10)

dfb
(ℓ) = dfz

(ℓ)(x), (3.11)

where

dfW
(ℓ) :=


∂f(θ)

∂W
(ℓ)
1,1

· · · ∂f(θ)

∂W
(ℓ)
1,kℓ−1

...
. . .

...
∂f(θ)

∂W
(ℓ)
kℓ,1

· · · ∂f(θ)

∂W
(ℓ)
kℓ,kℓ−1

 , (3.12)

and

dfb
(ℓ) :=

[
∂f(θ)

∂b
(ℓ)
1

· · · ∂f(θ)

∂b
(ℓ)
kℓ

]⊤
. (3.13)

Similarly, expressions (3.10) and (3.11) will be proved in section [3.2] (see
expressions (3.16) and (3.17), respectively).

So far, we considered the back-propagation for a single input-output
training pair (x,y). In Fig [3.1], we outline the back-propagation for a
single input-output training pair. However, we want to compute the gradient
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w.r.t. the empirical risk RS(θ), where, in this case, S denotes a full-batch
or a mini-batch. We observe that

∇RS(θ) =
1

n

n∑
i=1

∇fi(θ), (3.14)

where fi(·) denotes the error for the training pair (xi,yi) ∈ S, for i ∈ [n].
Therefore, one way to compute ∇RS(θ) is to run the equations (3.1), (3.6)
for regression or (3.7) for logistic regression, (3.8) and (3.9) for each training
pair that belongs in the training set S and average their results dW(ℓ) and
db(ℓ). In Algorithm 1, we provide a simple implementation of the back-
propagation.

Algorithm 1 Back-Propagation

Require: training set: S = {(xi,yi)}ni=1, neural network NL

for i = 1, . . . , n do
feed the neural network with xi and perform the forward-phase (3.1)
if regression problem then
compute dfiz

(L)(xi) according to (3.6), where y = yi

else if logistic regression problem then
compute dfiz

(L)(xi) according to (3.7), where y = yi
end if
for ℓ = L− 1, . . . , 0 do
compute dfia

(ℓ)(xi), dfiz
(ℓ)(xi) by (3.9) and (3.8), respectively

compute dfiW
(ℓ+1), dfib

(ℓ+1) by (3.10) and (3.11), respectively
end for
store ∇fi(θ) =

[
vec
(
dfiW

(1)
)
; dfib

(1); · · · ; vec
(
dfiW

(ℓ)
)
; dfib

(ℓ)
]

end for
compute ∇RS(θ) by using (3.14)
return ∇RS(θ)

The back-propagation algorithm can be generalized to any feed-forward1

neural network architecture [4, ch. 13.3.4, p. 441].

3.2 Derivation of Back-Propagation Equations

In this section, we derive the equations of the back-propagation. To do that,
we write the forward-phase expressions (3.1) in element-wise fashion as

z
(ℓ)
j (x) =

kℓ−1∑
k=1

W
(ℓ)
j,k a

(ℓ−1)
k (x) + b

(ℓ)
j ,

a
(ℓ)
j (x) = σℓ

(
z
(ℓ)
j (x)

)
,

(3.15)

1Recall that the underlying graph of a feed-forward neural network is directed and
acyclic.
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with a
(0)
j (x) = xj , for each j ∈ [kℓ] and ℓ ∈ [L − 1]. We want to compute

the derivatives of the error function f(θ) w.r.t. W
(ℓ)
j,k and b

(ℓ)
j . Applying the

chain rule of calculus, we obtain

∂f(θ)

∂W
(ℓ)
j,m

=

kℓ∑
k=1

∂f(θ)

∂z
(ℓ)
k (x)

∂z
(ℓ)
k (x)

∂W
(ℓ)
j,m

=
∂f(θ)

∂z
(ℓ)
j (x)

∂z
(ℓ)
j (x)

∂W
(ℓ)
j,m

=
∂f(θ)

∂z
(ℓ)
j (x)

a(ℓ−1)
m (x),

(3.16)

for each j ∈ [kℓ], m ∈ [kℓ−1], since z
(ℓ)
k (x) depends on W

(ℓ)
j,m only if k = j

(other terms reduce to zero) and the term
∂z

(ℓ)
j (x)

∂W
(ℓ)
j,m

= a
(ℓ−1)
m (x). Similarly, for

the biases, we have

∂f(θ)

∂b
(ℓ)
j

=
∂f(θ)

∂z
(ℓ)
j (x)

∂z
(ℓ)
j (x)

∂b
(ℓ)
j

=
∂f(θ)

∂z
(ℓ)
j (x)

,

(3.17)

for each j ∈ [kℓ], since
∂z

(ℓ)
j (x)

∂b
(ℓ)
j

= 1.

Again, we apply the chain rule to express the derivatives of the error

function w.r.t. the pre-activations z
(ℓ)
j (x) and the activations a

(ℓ)
j (x), such

as

∂f(θ)

∂z
(ℓ)
j (x)

=

kℓ∑
k=1

∂f(θ)

∂a
(ℓ)
k (x)

∂a
(ℓ)
k (x)

∂z
(ℓ)
j (x)

=
∂f(θ)

∂a
(ℓ)
j (x)

∂a
(ℓ)
j (x)

∂z
(ℓ)
j (x)

=
∂f(θ)

∂a
(ℓ)
j (x)

σ′
ℓ

(
z
(ℓ)
j (x)

)
,

(3.18)

for each ℓ ∈ [L− 1] and

∂f(θ)

∂a
(ℓ−1)
j (x)

=

kℓ∑
k=1

∂f(θ)

∂z
(ℓ)
k (x)

∂z
(ℓ)
k (x)

∂a
(ℓ−1)
j (x)

=

kℓ∑
k=1

∂f(θ)

∂z
(ℓ)
k (x)

W
(ℓ)
k,j ,

(3.19)
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for each ℓ ∈ [L], since

∂z
(ℓ)
k (x)

∂a
(ℓ−1)
j (x)

=
∂

∂a
(ℓ−1)
j (x)

(
kℓ∑
u=1

W
(ℓ)
k,ua

(ℓ−1)
u (x) + b

(ℓ)
k

)
= W

(ℓ)
k,j .

(3.20)

Using the notation dfW
(ℓ), dfb

(ℓ), dfz
(ℓ)(x) and dfa

(ℓ)(x) as we defined
earlier, expressions (3.16), (3.17) become (3.10) and (3.11), while expressions
(3.18) and (3.19) become (3.8) and (3.9), respectively.

3.3 Computational Complexity of
Back-Propagation

One of the most important aspects of back-propagation is its computa-
tional complexity [6, ch. 5.3.3, p. 246]. The computational cost of the
back-propagation is dominated by the cost of the matrix multiplications.
During the forward-phase of the algorithm, we perform O(|E|) scalar mul-
tiplications, O(|E| + |V|) additions and O(|V|) element-wise evaluations of
the activation. Typically, the number of edges |E| of the underlying graph
G is much larger than the number of nodes |V|, therefore the overall bulk
of computation of the forward-phase of the algorithm is dominated2 by the
matrix multiplication cost O(|E|).

During the backward-phase, we multiply by the transpose of each weight
matrix, which has computational cost O(|E|). Next, we perform element-
wise operations of cost O(|V|) Therefore, since |E| is much larger than |V|,
the computational cost for the backward-phase of also O(|E|), hence, the
computational cost of the back-propagation algorithm is O(|E|).

2We assume that each addition and scalar multiplication has (approximately) the same
computational cost of O(1) operations. Additionally, we assume, for simplification, that
each activation is linear (σℓ(x) = x, ∀ℓ ∈ [L − 1]). Therefore, the computational cost for
the activation is insignificant.
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Chapter 4

Training Deep Neural
Networks

The problem of minimizing continuous and differentiable functions of several
variables has been widely studied [11, 12, 13] and many of the conventional
minimization algorithms are directly applicable to the training of (deep)
neural networks. All these algorithms require to specify a starting point
θ(0), which corresponds to the initialization of the parameters of an arbitrary
feed-forward neural network NL. Let A(NL) denote an iterative algorithm
that updates the network parameters by using the following formula:

θ(t+1) = θ(t) +∆θ(t), (4.1)

where t ≥ 0 denotes the current iteration, while vector ∆θ(t) is some incre-
mental term, which could likely decrease the value of the objective function
in the next iteration. We denote the trajectories of an iterative algorithm
A(NL) as Θ = {θ(t)}Tt=0, where 0 < T < ∞ denotes the iteration when the
algorithm is terminated. We denote by θ∗ a (sub)-optimal solution of the
minimization problem. If θ∗ ∈ Θ, we say that the training algorithm A(·)
found a (sub)-optimal solution. If limt→∞ θ(t) = θ∗, we say that algorithm
A(·) converged to (sub)-optimal solution θ∗.

4.1 First-Order Optimization Methods

In this section, we consider iterative optimization methods that use only the
first-order derivatives of the objective function. Additional information for
first-order optimization methods can be found in [9, ch. 8.3, p. 294], [4, ch.
8.4, p. 288], [3, ch. 5.5, p. 104], [7, ch. 6.3, p. 265] and [14] .

4.1.1 Gradient Descent

The gradient descent, sometimes referred to as steepest descent, updates
iteratively the parameters of a neural network by using the formula (4.1),
such that, at step t, we move a short distance in the direction of the greatest
rate of decrease of the objective function. This direction is the negative
gradient evaluated at iteration θ(t):

∆θ(t) = −αt∇RS(θ(t)), (4.2)
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where αt > 0 is known as step size or learning rate. In practice, a constant
step size αt = α is used to simplify the training procedure, however, there
is a serious difficulty with this approach. For example, if the step size α
is too large, then the algorithm may not converge. Conversely, if α is too
small, the algorithm will lead to painfully slow convergence, hence, very long
computation time.

4.1.2 Stochastic and Batch Optimization

Optimization methods for machine learning fall into two broad categories.
We refer to them as stochastic and batch. The prototypical stochastic op-
timization method is the stochastic gradient [15], which, in the context of
minimizing the empirical risk, is given by

θ(t+1) = θ(t) − αt∇fi(θ(t)), (4.3)

where fi(θ) is the sample loss over the training pair (xi,yi) ∈ X × Y, for
some random i ∈ {1, . . . , n}, and αt > 0 is the step size at iteration t ≥ 0.
Obviously, the stochastic step −αt∇fi(θ(t)), for some random i ∈ [n], is
computationally less expensive that the full gradient step −αt∇RS(θ).

In practice, it is most common to do something in between. Instead of
computing the full gradient, or a stochastic step, we compute the gradient
over a mini-batch [3, ch. 5.5, p. 106]. We decompose the training set S
into n

nb
mini-batches, denoted by Sm = {(xi,yi)}i∈Im , where the indexes

are given by Im = {(m− 1)nb+1, . . . ,mnb}, ∀m ∈ [ nnb
], and nb > 0 denotes

the batch-size1. One complete pass over the training data is called an epoch
(obviously, an epoch requires n

nb
iterations). The objective function over the

mth batch is the empirical risk over Sm, that is,

RSm(θ) =
1

|Sm|
∑
i∈Im

fi(θ). (4.4)

The iterative formula for the batch-version of the gradient descent method
is given by

θ(t+1) = θ(t) − αt∇RSm(θ
(t))

= θ(t) − αt

|Sm|
∑
i∈Im

∇fi(θ(t)). (4.5)

Next, we implement a generalized gradient-based training procedure for
training a feed-forward neural network NL. For each epoch, we randomly
shuffle the training data, and thereafter we divide it into mini-batches in an
ordered manner, as we explained earlier.

1Note that |Sm| = |Im| = nb, ∀m ∈ [ n
nb

].
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Algorithm 2 Generalized (batched) Stochastic Gradient Training Method

Require: training set: S = {(xi,yi)}ni=1, numEpochs > 0 , nb > 0
t = 0
initialize θ(0)

for epoch = 0, . . . ,numEpochs do
randomly shuffle the training data set S and generate Sm, ∀m ∈ [ nnb

]
for m = 1, . . . , n

nb
do

Compute ∇RSm(θ
(t)) via back-propagation

θ(t+1) = iteration step(θ(t), αt, ∇RSm(θ
(t)), · · · )

t = t+ 1
end for

end for

The generality of Algorithm 2 can be seen in various ways. First, any
gradient-based training algorithm can be implemented by defining an appro-
priate iteration step procedure. Different iteration step procedures generally
have different hyperparameters. Second, ∇RSm(θ

(t)) can either represent a
stochastic gradient if each Sm has exactly one training pair or a batch gradi-
ent (or full gradient) according to the mechanism that splits the training data
S into batches Sm. For the batch-version of the gradient descent formula,
the iteration step procedure can be implemented by using the expression
(4.5).

4.1.3 Line Search

The algorithms which we already presented in the previous sections involve
a sequence of step-sizes {αt}Tt=1 for some T > 0. The process of finding
a step αt is called line search, since it is a minimization procedure on the
one-dimensional s(α) = g(θ(t)+α∆θ(t)), where g : R|E| → R is any objective
function we wish to minimize. Next, we describe the most popular step-size
selection rules:

• Constant step. We choose αt = α > 0 for any t ∈ [T ].

• Exact line search. We solve the minimization problem

αt ∈ argmin α>0 g
(
θ(t) + α∆θ(t)

)
. (4.6)

• Backtracking. The choice of αt is done by the following procedure.
Fist, we initialize αt to some initial guess α0. Then, while the condition

g
(
θ(t)
)
− g

(
θ(t) + αt∆θ(t)

)
< −cαt∇g

(
θ(t)
)⊤

∆θ(t), for some c > 0,
holds true, we set αt ← βαt. In other words, the step size αt is chosen
such that the condition

g
(
θ(t)
)
− g

(
θ(t) + αt∆θ(t)

)
≥ −cαt∇g

(
θ(t)
)⊤

∆θ(t) (4.7)
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is satisfied.

For sufficiently small αt, we can approximate s(αt) by using first order
Taylor (linear extrapolation). Therefore, we can write

s(αt) = g
(
θ(t) + αt∆θ(t)

)
≈ g

(
θ(t)
)
+ αt∇g

(
θ(t)
)⊤

∆θ(t)

≤ g
(
θ(t)
)
+ cαt∇g

(
θ(t)
)⊤

∆θ(t),

(4.8)

since c ∈ (0, 12) and ∇g
(
θ(t)
)⊤

∆θ(t) < 0, because, ∆θ(t) is a descent
direction. Expression (4.8) states that the condition (4.7) eventually
terminates, if at is sufficiently small (β ∈ (0, 1)). See [12, ch. 9, p. 464]
for further details.

We have already discussed the limitations of the constant step option. Its
main advantage is its simplicity, but it is unclear how to choose the ap-
propriate non-negative a. The exact line search option may seem at first
sight attractive, however, it is not always possible to solve the problem
(4.6), therefore, it is not a suitable option. The backtracking option can be
seen as a compromise. We neither choose a constant step size nor we solve
the exact line search minimization problem, but we find a sufficiently good
step-size, satisfying the condition (4.7).

4.1.3.1 Armijo line search

By using the empirical risk, RSm(θ), over the mini-batch Sm ⊆ S as the
objective function and ∆θ = −∇RSm(θ), expression (4.7) becomes

RSm

(
θ(t)
)
−RSm

(
θ(t) − αt∇RSm

(
θ(t)
))
≥ cαt∥∇RSm

(
θ(t)
)
∥22. (4.9)

The Armijo line-search selects a step-size, such that condition (4.9) is sat-
isfied [16, ch. 3.1, p. 3]. We note that Armijo condition makes use only on
additional function (and not gradient) evaluations, which, in the context of
neural networks, corresponds to additional forward passes, involving only
the current batch Sm, for some m ∈ [ nnb

].

4.1.4 Accelerated Methods

In this section, we use the gradient information in a more clever way to
potentially achieve faster convergence rates. One simple technique is to add
a momentum term in the gradient descent formula.

4.1.4.1 The Heavy-Ball Method

One of the most elementary accelerated methods is the heavy-ball method
of Polyak [17]. The iterative formula of this method has the form

θ(t+1) = θ(t) − αt∇g
(
θ(t)
)
+ µt

(
θ(t) − θ(t−1)

)
, (4.10)
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where g(·) is any objective function we wish to minimize w.r.t. θ, αt is the
step-size and µt is known as the momentum term. To better understand the
effect of the momentum, we rewrite equation (4.10) as

θ(t+1) = θ(t) +∆θ(t), (4.11)

∆θ(t) = −αt∇g
(
θ(t)
)
+∆µ(t), (4.12)

∆µ(t) = µt

(
θ(t) − θ(t−1)

)
. (4.13)

4.1.4.2 Nesterov Accelerated Gradient

We now describe Nesterov’s method for accelerating the gradient iterative
formula [18]. Each iteration of this method has the form

θ(t+1) = θ(t)−αt∇g
(
θ(t) + µt

(
θ(t) − θ(t−1)

))
+µt

(
θ(t) − θ(t−1)

)
, (4.14)

where αt and µt are the hyperparameters that should be defined. Note the
similarity to the heavy ball formula (4.10). The only difference is that in
(4.10) the gradient of the objective function is evaluated at θ(t) , whereas, in
(4.14), the gradient is evaluated at θ(t) + µt

(
θ(t) − θ(t−1)

)
. For implemen-

tation purposes, it is more convenient to introduce an auxiliary sequence
{y(t)} and rewrite the formula (4.14) as follows

θ(t+1) = y(t) − αt∇g
(
y(t)
)
, (4.15)

y(t+1) = θ(t+1) + µt

(
θ(t+1) − θ(t)

)
, (4.16)

where y(0) is randomly initialized (random guess) and αt and µt are the
hyperparameters. We set θ(0) = y(0). At iteration t, we can select an
appropriate αt via line search (backtracking). Furthermore, for the choice
of µt, we can use the variant of Nesterov’s acceleration for the (weaken)
convex or the strongly convex case. For the (weaken) convex case, we define
µt with reference to another scalar sequence λt in the following manner:

λt+1 =
1

2

(
1 +

√
1 + 4λ2

t

)
,

µt =
λt − 1

λt+1
,

(4.17)

with λ0 = 0. Additional information for accelerated gradient methods can
be found at [19, ch. 6, p. 31]. In the context of neural networks, we can
use Nesterov acceleration without additional hyper-parameters by using line
search and expressions (4.17). According to [16, ch. 6.2, p. 7], we can use, for
example, Armijo line search and expressions (4.17) to train a neural network
by using Nesterov acceleration.
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4.2 Difficulties on Training Deep Neural
Networks

4.2.1 Generalization: Underfitting and Overfitting

Once a neural network NL is trained, it will return a model that predicts an
output for any new input we feed to it. Of course, the model depends on the
training set S, since if we train the same neural network using a different
training dataset, this would typically result in a different model with prob-
ably different predictions. The central challenge is that our methods must
perform well on unseen data, not just those on which our model was trained.
This ability is called generalization. To test the generalization ability of our
model, we split the dataset into a training set and a (hold-out) validation
set.

Typically, we estimate the generalization error by measuring the perfor-
mance of a neural network over the validation set, in which the learner, or
the neural network, has access only for evaluation2. One interesting ques-
tion that arises is how we can affect the generalization performance on the
validation set when the learner is trained by using the training set. See [3,
ch. 4.2, p. 59] for further details.

The two factors that determine how well a training algorithm perform
are the ability to:

• Make the training error sufficiently small.

• Make the gap between training error and the validation error small
(generalization gap).

These two factors correspond to the two challenges we encounter in training
neural networks: underfitting and overfitting. We experience underfitting
when the neural network is not able to obtain a sufficiently low error value
on the training set and overfitting when the generalization gap is too large.

Next, we focus on ways that prevent overfitting. This is crucial, since a
deep neural network may contain millions of parameters.

4.2.1.1 Early Stopping

Perhaps, the simplest way to prevent overfitting is to use a heuristic early-
stopping mechanism that terminates the training procedure when the gen-
eralization error starts to increase, hence, the gap between the training error
and the generalization error begins to increase.

2We compute the empirical risk over the validation set and we track the errors as the
training of the neural network proceeds.
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4.2.1.2 Regularization

One popular way to reduce overfitting is to use a regularization term in the
objective. The regularized objective function is the regularized empirical
risk, which is given by

R̃S(θ) = RS(θ) + λΩ(θ), (4.18)

where λ > 0 is the penalty term that controls the strength of the regular-
ization Ω(θ). Two common regularizations are the ℓ1 and ℓ2 regularization.

The gradient of ℓ2-regularization is given by

∇R̃S(θ) = ∇RS(θ) + λθ. (4.19)

Note that the gradient ∇RS(θ) can be computed via the back-propagation.
The iterative update of the parameters can be expressed as

θ(t+1) = θ(t) − αt

(
∇RS(θ(t)) + λθ(t)

)
= (1− αtλ)θ

(t) − αt∇RS(θ(t)).
(4.20)

We can see that the regularized empirical risk has modified the update rule
of the parameters.

Another common regularization strategy is the ℓ1-regularization. In this
case, the subdifferential of the regularized empirical risk is given by

∂R̃S(θ) = ∇RS(θ) + λ∂∥θ∥1. (4.21)

The iterative steps of the parameters are given by

θ(t+1) = θ(t) − αt

(
∇RS(θ(t)) + λsign(θ(t))

)
, (4.22)

where sign(θ) ∈ ∂∥θ∥1.

4.2.2 Parameter Initialization

Since the objective function for the (deep) neural network is non-convex,
parameters initialization plays a significant role on how effectively the op-
timization algorithm can train the neural network, as well as what kind of
solutions it ends up with. Therefore, parameter initialization strategies may
affect both the training and the generalization. The understanding of how
the initial points affect the generalization is quite primitive and there is not
much guidance on how to select initial points from the viewpoint of gener-
alization. Hence, most modern initialization strategies are heuristics. Next,
we present some common heuristic strategies that are used for parameter
initialization.



38 Chapter 4. Training Deep Neural Networks

One heuristic strategy is to sample weights independently from a uniform

distribution, W
(ℓ)
i,j ∼ U(−αℓ, αℓ) for i ∈ [kℓ], j ∈ [kℓ−1] and ℓ ∈ [L], where

αℓ =

√
6

kℓ−1 + kℓ
, (4.23)

with mean 0 and variance3 α2
ℓ/3. This is known as Xavier-initialization,

and has been proposed in [20]. If we use αℓ =
√

3
kℓ−1

, the initialization

method is called Kaiming-initialization, and has been proposed in [21]. We
note that it is not necessary to use a Uniform distribution for the weight
initialization. Gaussian distribution is also a common choice for weight ini-
tialization. For example, we can sample weights with Gaussian distribution,

W
(ℓ)
i,j ∼ N (0, β2

ℓ ), where β2
ℓ = 2

kℓ−1+kℓ
, for Xavier-initialization or β2

ℓ = 2
kℓ−1

for Kaiming-initialization.
Although the above derivations assume that neurons compute linear ac-

tivations, it has been empirically observed than these initialization tech-
niques can work well even when neurons compute non-linear activations [4,
ch. 13.4.5, p. 449].

4.2.3 Other Difficulties

To complete this section, we briefly report some other difficulties that may
occur, while training deep neural networks.

The training of a deep neural network can be extremely difficult, since the
distribution of each input layer changes during the training, as the parameter
vector θ changes. In the context of neural networks, we refer to the change
of the distribution of the internal nodes of a deep neural network, during the
training phase, as Internal Covariate Shift. The use of Batch Normalization
layers reduces the Internal Covariate Shift and accelerates the training of a
deep neural network [22].

When training deep neural networks, the gradient of the objective func-
tion tends to become either very small (vanishing-gradient) or very large
(exploding-gradient) [4, ch. 13.4.2, p. 443]. We can reduce the exploding
gradient problem by using gradient clipping. The vanishing gradient prob-
lem is more difficult and depends on the initialization and the architecture
of the neural network. One solution for the vanishing gradient problem is
to use residual neural networks or ResNets [23, 24, 25].

3If X ∼ U(α, β), then E[X] = β+α
2

and V[X] = (β−α)2

12
.
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Chapter 5

Experiments

In this chapter, we present our experimental results. In Section [5.1], we
describe the experimental setup. In Section [5.2], we showcase the con-
vergence and generalization properties of several (simple) neural network
architectures with different size and depth, over real-world datasets, which
can be found in the following page1. Last, in Section [5.3], we report our
observations.

5.1 Experimental Setup

5.1.1 Datasets

We focus on tabular datasets for multi-classification, where X ∈ Rn×d and
y ∈ {1, . . . , c}n, with n < 15K. We estimate the performance of several neu-
ral network architectures by using k-fold cross-validation as it is presented
in [3, ch. 4.2, p. 61]. Unless it it stated otherwise, we select k = 5 (five
splits).

5.1.2 Architectures

The configuration of the neural network architecture is denoted by N relu
L =

(V, E , {σℓ}L−1
ℓ=1 ), where k0 = d and kL = c, therefore, |V0| = d + 1 and

|VL| = c, are the input and output layer dimensions. For simplicity, each
hidden layer consists of a fixed number of neurons. Let m > 0 denote the
number of neurons for each hidden layer, therefore |Vℓ| = m+1, ∀ℓ ∈ [L−1].
Furthermore, each hidden layer computes ReLU activations, hence, σℓ(x) =
ReLU(x), ∀ℓ ∈ [L− 1].

For each experiment, we generate N relu
1 , N relu

2 , N relu
3 , N relu

4 , N relu
8 and

N relu
16 , which, for simplicity, are denoted by “NNet1”, “NNet2”, “NNet3”,

“NNet4”, “NNet8” and “NNet16”, respectively. For a given classification
experiment, we observe that k0 and kL are fixed and m is a hyperparameter
w.r.t. an architecture, which determines the width and the size of the neu-
ral network. The width of the architecture N relu

L is m, and the size of the
underlying graph is |E| = m(k0+kL+1)+kL+(L−2)m(m+1)2. The hyper-
parameter m is appropriately selected via trial-and-error (“baby-sitting”).

1https://archive.ics.uci.edu/.
2Note that |E| =

∑L
ℓ=1 kℓ(kℓ−1 +1) =

∑
ℓ∈{1,L} kℓ(kℓ−1 +1)+

∑
ℓ∈{2,...L−1} m(m+1).

https://archive.ics.uci.edu/
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We consider the uniform (Kaiming) initialization strategy for sampling θ(0)

(initial guess).

5.1.3 Objective Functions and Metrics

From an optimization perspective, we consider the weighted3 empirical risk
as the objective function, which is defined as

RS,w(θ) := −
1

n

n∑
i=1

wyi ln gyi(ŷθ(xi)), (5.1)

where w =
[
w1 . . . wc

]⊤ ∈ Rc is a non-trainable weight vector, which
tries to “balance”4 the objective function to the minority classes, gj(u) =
[g(u)]j ,u ∈ Rs, s > 0, for j ∈ [c], and S = {(xi, yi)}ni=1 can be either a
training set or a validation set of size n > 0. Note that RS,1(θ) = RS(θ),
results to the non-weighted empirical risk, which we presented in Section
[2.4.2]. We also consider the regularized objective (ℓ2-regularization), which
is given by

R̃S,w(θ) := RS,w(θ) +
λ

2
∥θ∥22. (5.2)

In order to benchmark the performance for both the non-regularized and
the regularized case, over unseen data (generalization), we define the “Train
Loss” and the “Validation Loss” as the value of the objective function with-
out regularization (5.1), over the training set and the validation set, re-
spectively. In a similar manner, we define the “Train Accuracy” and the
“Validation Accuracy”. The accuracy metric is defined as

accuracyS(θ) :=
1

n

n∑
i=1

I[yi = ŷθ(xi)], (5.3)

where S = {(xi, yi)}ni=1, can be either a training set or a validation set of
size n > 0. The accuracy metric measures the performance of a model based
on the true predictions on a given dataset S ≠ ∅.

5.1.4 Training Procedure

We consider two cases: full-batch and (stochastic) mini-batch optimiza-
tion. In the full-batch case, we train the neural networks using Gradi-
ent Descent with Armijo line-search and Nesterov acceleration, denoted by
GD(Armijo+Nesterov). In the mini-batch case, we train the neural networks

3https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html.
4Inspired by [26, ch. 4.2, p. 8], we “balance” the objective function according to the

proposed heuristic: For a dataset S = {(xi, yi)}ni=1, n > 0, and yi ∈ [c], the weight
corresponding to the jth class is given by wj = n

c
∑n

i=1 I[yi=j]
.

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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using Stochastic Gradient Descent with Armijo line-search, without accel-
eration, denoted by SGD(Armijo). We also consider nb = 50 (batch-size).
The training procedure is summarized in Algorithm 2.

5.2 Experimental results

We showcase our experimental results amongst three multi-classification
datasets. In Fig [5.1], we present the population (per class) for each dataset.

We consider the dataset “Gas Sensor Array Drift Dataset at Different
Concentrations” [27], denoted by GSAD, which consists of 128 attributes
(d = 128) and has six classes (c = 6). The task is to detect one of the six dif-
ferent gases, namely Ammonia, Acetaldehyde, Acetone, Ethylene, Ethanol,
and Toluene. This dataset consists of n = 13910 samples.

Next, we consider the dataset “A Thyroid database suited for training
ANNs” [28], denoted by Thyroid Disease, which consists of 21 attributes
(d = 21) and has three classes (c = 3). The task is to determine from
the data, whether a person suffers from the thyroid disease (Hypothyroid,
Hyperthyroid) or not (Normal). The dataset is in-balanced (only 8% of our
population are patients), therefore, a good classifier must be better than
92%. This dataset consists of n = 7200 samples.

Last, we consider the dataset “Cardiotocography” [29], denoted by CTG,
which consists of 23 attributes (d = 23) and has three classes (c = 3).
The task here is to determine the fetal state of a fetus as Normal, Suspect
or Pathological (this dataset is also in-balanced). This dataset consists of
n = 2126 samples.
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(a) GSAD dataset, totally n = 13910 samples

(b) Thyroid Disease dataset, totally n = 7200 samples

(c) CTG dataset, totally n = 2126 samples

Figure 5.1: Per class population for each dataset.
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(a) GD(Armijo+Nesterov) without regularization.

(b) GD(Armijo+Nesterov) with regularization (λ = 10−3).

(c) GD(Armijo+Nesterov) with normalized regularization (λ = 0.8
|E| ).

Figure 5.2: Training over the GSAD Dataset using full-batch optimization
and evaluating, for each epoch, the “Train Loss” and the “Validation Loss”.
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(a) GD(Armijo+Nesterov) without regularization.

(b) GD(Armijo+Nesterov) with regularization (λ = 10−3).

(c) GD(Armijo+Nesterov) with normalized regularization (λ = 0.8
|E| ).

Figure 5.3: Training over the GSAD Dataset using full-batch optimization
and evaluating, for each epoch, the “Train Accuracy” and the “Validation
Accuracy”.
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(a) SGD(Armijo) without regularization.

(b) SGD(Armijo) with regularization (λ = 10−3).

(c) SGD(Armijo) with normalized regularization (λ = 0.8
|E| ).

Figure 5.4: Training over the GSAD Dataset using mini-batch optimization
and evaluating, for each epoch, the “Train Loss” and the “Validation Loss”.
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(a) SGD(Armijo) without regularization.

(b) SGD(Armijo) with regularization (λ = 10−3).

(c) SGD(Armijo) with normalized regularization (λ = 0.8
|E| ).

Figure 5.5: Training over the GSAD Dataset using mini-batch optimization
and evaluating, for each epoch, the “Train Accuracy” and the “Validation
Accuracy”.
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(a) GD(Armijo+Nesterov) without regularization.

(b) GD(Armijo+Nesterov) with regularization (λ = 10−3).

(c) GD(Armijo+Nesterov) with normalized regularization (λ = 0.8
|E| ).

Figure 5.6: Training over the Thyroid Disease Dataset using full-batch op-
timization and evaluating, for each epoch, the “Train Loss” and the “Vali-
dation Loss”.
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(a) GD(Armijo+Nesterov) without regularization.

(b) GD(Armijo+Nesterov) with regularization (λ = 10−3).

(c) GD(Armijo+Nesterov) with normalized regularization (λ = 0.8
|E| ).

Figure 5.7: Training over the Thyroid Disease Dataset using full-batch op-
timization and evaluating, for each epoch, the “Train Accuracy” and the
“Validation Accuracy”.
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(a) SGD(Armijo) without regularization.

(b) SGD(Armijo) with regularization (λ = 10−3).

(c) SGD(Armijo) with normalized regularization (λ = 0.8
|E| ).

Figure 5.8: Training over the Thyroid Disease Dataset using mini-batch
optimization and evaluating, for each epoch, the “Train Loss” and the “Val-
idation Loss”.
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(a) SGD(Armijo) without regularization.

(b) SGD(Armijo) with regularization (λ = 10−3).

(c) SGD(Armijo) with normalized regularization (λ = 0.8
|E| ).

Figure 5.9: Training over the Thyroid Disease Dataset using mini-batch
optimization and evaluating, for each epoch, the “Train Accuracy” and the
“Validation Accuracy”.
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(a) GD(Armijo+Nesterov) without regularization.

(b) GD(Armijo+Nesterov) with regularization (λ = 10−3).

(c) GD(Armijo+Nesterov) with normalized regularization (λ = 0.8
|E| ).

Figure 5.10: Training over the CTG Dataset using full-batch optimization
and evaluating, for each epoch, the “Train Loss” and the “Validation Loss”.



52 Chapter 5. Experiments

(a) GD(Armijo+Nesterov) without regularization.

(b) GD(Armijo+Nesterov) with regularization (λ = 10−3).(λ = 10−3).

(c) GD(Armijo+Nesterov) with normalized regularization (λ = 0.8
|E| ).

Figure 5.11: Training over the CTG Dataset using full-batch optimization
and evaluating, for each epoch, the “Train Accuracy” and the “Validation
Accuracy”.
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(a) SGD(Armijo) without regularization.

(b) SGD(Armijo) with regularization (λ = 10−3).

(c) SGD(Armijo) with normalized regularization (λ = 0.8
|E| ).

Figure 5.12: Training over the CTG Dataset using mini-batch optimization
and evaluating, for each epoch, the “Train Loss” and the “Validation Loss”.
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(a) SGD(Armijo) without regularization.

(b) SGD(Armijo) with regularization (λ = 10−3).

(c) SGD(Armijo) with normalized regularization (λ = 0.8
|E| ).

Figure 5.13: Training over the CTG Dataset using mini-batch optimization
and evaluating, for each epoch, the “Train Accuracy” and the “Validation
Accuracy”.
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5.3 Observations

We make the following observations:

• Line-search techniques can be used for training deep neural networks.
The main advantage is that we can train our models without the need
of tuning hyperparameters (i.e., step-size), which reduces the complex-
ity of the training process.

• Model complexity leads to a trade-off between training and generaliza-
tion, that is, the “Train Loss” and the “Validation Loss”, respectively.
Typically, more complex models tend to better adapt to the training
data, that is, to lead to small “Train loss”. However, they usually lead
to large “Validation loss” and thus, large generalization gap, indicat-
ing that we are possibly overfitting the data (see Figs [5.2a], [5.4a],
[5.6a], [5.8a], [5.10a] and [5.12a]). On the other hand, if the model is
not sufficiently complex, it leads to relatively large “Train Loss” (and
“Validation Loss”), hence, we are possibly underfitting the data (see
the performance of “NNet1” architecture, in Figs [5.2a], [5.4a], [5.6a],
[5.8a], [5.10a] and [5.12a]).

• Typically, with full-batch optimization, our algorithm converges closer
to a global optimal solution (smaller “Train Loss”), however, our model
is less resilient to overfitting (the gap between “Train Loss” and “Vali-
dation Loss” is big, especially if the model is flexible). On the contrary,
with (stochastic) mini-batch optimization, the gap becomes smaller
(compare Figs [5.2a], [5.4a] and [5.6a], [5.8a] and [5.10a], [5.12a]).

• Regularization prevents the model from overfitting. Of course, depend-
ing on the flexibility of a given model, an appropriate regularization
penalty must be selected. Typically, the more flexible the model is,
the smaller the regularization penalty (ℓ2-regularization) must be (see
Figs [5.2b], [5.4b], [5.6b], [5.8b], [5.10b] [5.12b] and [5.2c], [5.4c], [5.6c],
[5.8c], [5.10c] [5.12c]). Therefore, regularization is another mechanism
for reducing the flexibility, by tightening the regularization penalty λ.
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Chapter 6

Conclusions

6.1 Conclusion

The presented stochastic line-search algorithms have demonstrated high per-
formance, even compared to conventional algorithms, for training deep neu-
ral networks. This highlights that stochastic line-search algorithms can be
used in deep learning, offering a “painless” optimization, since the number
of forward passes are comparable to the number of forward passes for a
conventional training algorithm. Surprisingly, Nesterov acceleration, con-
sidering the (weaken) convex variant and full-batch optimization, is able to
train a (simple) deep neural network, even if the objective function is highly
non-convex.

6.2 Future Work

The future plan is to use stochastic line-search algorithms, and its variants,
in modern neural network architectures to test their performance over vari-
ous tasks. Of course, stochastic line-search algorithms can also be applicable
to any parametric model (i.e., SVMs).
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