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Abstract

This dissertation presents a comprehensive exploration of radio frequency identifi-
cation (RFID) technology merged with robotics, shedding light on their transformative
potential and inherent challenges. At the heart of our research lies the meticulous study of
monostatic localization using novel techniques that do not necessarily imitate a synthetic
aperture radar (SAR), in sharp contrast to prior art; instead, the adopted approach ex-
ploits sparse and low-bandwidth phase measurements with appropriate particle filtering
weights, so that robustness to indoor multipath is achieved. As a result, state-of-the-art
performance in 3D localization utilizing commercial Gen2 RFID tags is achieved with a
mean absolute error of 24 cm.

Building upon this foundational work, the research delves into the intricacies of multi-
path effects, particularly the distortions introduced by environmental reflections. Notably,
the investigation in this realm resulted in a technique that jointly estimates the location
of the tag as well as its reflector with a reflector localization accuracy of 5 cm; such (per-
haps) pioneering endeavor adheres to low bandwidth limitations of existing, commercial
RFID systems.

Furthermore, study of bistatic/multistatic localization is performed, offering elliptical
direction-of-arrival (DoA) estimation and 2D/3D localization techniques, with unique ge-
ometrical considerations and their implications on RFID systems. These techniques offer
estimations with as low as 5◦ and 9 cm mean absolute error for DoA and 2D localization
respectively.

Transitioning next into the realm of wireless sensor networks (WSNs), the disserta-
tion elucidates the symbiotic relationship between RFIDs and WSNs, emphasizing key
considerations surrounding interrogation architectures and their real-world ramifications.
Experiments include both unmanned aerial vehicles (UAV), as well as ground-based pedes-
trian interrogation systems, using bistatic and monostatic architectures.

A paramount feature of this research is the seamless integration of theoretical studies
with tangible applications, resulting in real-world systems primed for diverse applications.
This is exemplified in our development of a mobile interrogation and localization system,
integrated with the Robot Operating System (ROS), capable of pinpointing RFID tags
in complex environments, like warehouses, libraries, and offices. Further, the synergy of
UAV-based interrogation with backscatter technology emerges as a beacon of innovation,
signaling new horizons in precision agriculture.
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Περίληψη

Η παρούσα διατριβή παρουσιάζει μια ολοκληρωμένη διερεύνηση της τεχνολογίας αναγ-

νώρισης μέσω ραδιοσυχνοτήτων (RFID) σε συνδυασμό με τη ρομποτική, προβάλλοντας τις
μετασχηματιστικές της δυνατότητες και τις εγγενείς της προκλήσεις. Στο επίκεντρο της

έρευνάς μας βρίσκεται η αναλυτική μελέτη του μονοστατικού εντοπισμού με τη χρήση νέων

τεχνικών που δεν αποτελούν αναγκαστικά μίμηση ενός ραντάρ συνθετικού διαφράγματος

(SAR), σε έντονη αντίθεση με τις προϋπάρχουσες τεχνικές- αντ’ αυτού, η προσέγγιση
που υιοθετήθηκε αξιοποιεί αραιές και χαμηλού εύρους ζώνης μετρήσεις φάσης με φίλ-

τρα σωματιδίων κατάλληλα ζυγισμένα, έτσι ώστε να επιτυγχάνεται ανθεκτικότητα στην

ανακλαστικότητα εσωτερικών χώρων. Ως αποτέλεσμα, επιτυγχάνεται κορυφαία επίδοση

στον τριδιάστατο εντοπισμό θέσης χρησιμοποιώντας εμπορικές ετικέτες RFID Gen2 με
μέσο απόλυτο σφάλμα 24 εκ.

Βασιζόμενη σε αυτή τη θεμελιώδη εργασία, η έρευνα εμβαθύνει στις ιδιαιτερότητες

του φαινομένου πολλαπλών διαδρομών διάδοσης λόγω ανακλάσεων, και συγκεκριμένα

στις παραμορφώσεις που προκαλούνται από αυτές τις ανακλάσεις. Αξίζει να σημειωθεί

ότι η διερεύνηση σε αυτό το πεδίο οδήγησε σε μια τεχνική που εκτιμά από κοινού τη

θέση της ετικέτας, καθώς και του ανακλαστήρα της, με 5 εκ. ακρίβεια στον εντοπισμού

του ανακλαστήρα- αυτή η (ίσως) πρωτοποριακή προσπάθεια ακολουθεί τους περιορισμούς

χαμηλού εύρους ζώνης των υφιστάμενων, εμπορικών συστημάτων RFID.
Επιπλέον, πραγματοποιήθηκε μελέτη του διστατικού/πολυστατικού εντοπισμού θέσης,

προσφέροντας μια «ελλειπτική» εκτίμηση της κατεύθυνσης άφιξης (DoA), τεχνικές 2D/3D
εντοπισμού βασιζόμενες σε ιδιαίτερες γεωμετρικές ιδιότητες και τις ιδιαιτερότητες της

εφαρμογής τους σε συστήματα RFID. Οι τεχνικές αυτές προσφέρουν εκτιμήσεις με μέσο
απόλυτο σφάλμα μόλις 5° και 9 εκ. για DoA και 2D εντοπισμό, αντίστοιχα.
Μεταβαίνοντας στη συνέχεια στον τομέα των ασύρματων δικτύων αισθητήρων (WSN), η

διατριβή μελετά τη συμβιωτική σχέση μεταξύ των RFID και των WSN, δίνοντας έμφαση σε
βασικά ζητήματα σχετικά με τις αρχιτεκτονικές ανάγνωσης και τις επιπτώσεις τους σε πραγ-

ματικές εφαρμογές. Τα πειράματα περιλαμβάνουν τόσο μη επανδρωμένα εναέρια οχήματα

(UAV), όσο και επίγεια συστήματα ανάγνωσης με πεζούς, χρησιμοποιώντας διστατικές και
μονοστατικές αρχιτεκτονικές.

Πρωταρχικό χαρακτηριστικό αυτής της έρευνας είναι η άρτια ενσωμάτωση των θεω-

ρητικών μελετών σε απτές εφαρμογές, καταλήγοντας σε πραγματικά συστήματα έτοιμα

για διάφορες εφαρμογές. Αυτό αποδεικνύεται από την ανάπτυξη ενός κινητού συστήματος

ανάγνωσης και εντοπισμού ετικετών, ενοποιημένο με το ρομποτικό λειτουργικό σύστημα

(ROS), το οποίο είναι ικανό να εντοπίζει ετικέτες RFID σε πολύπλοκα περιβάλλοντα όπως
αποθήκες, βιβλιοθήκες και γραφεία. Περαιτέρω, η συνέργεια της ανάγνωσης μέσω UAV σε
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συνδυασμό με την τεχνολογία οπισθοσκέδασης αναδεικνύεται ως παράδειγμα καινοτομίας,

σηματοδοτώντας νέους ορίζοντες στη γεωργία ακριβείας.
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Chapter 1

Introduction

In recent decades, Radio Frequency Identification (RFID) technology, leveraging the prin-
ciples of reflection radio, is becoming an increasingly pivotal domain in the wireless re-
search community, especially in the context of localization. The ubiquity of Radio Fre-
quency Identification technology has been on a dramatic rise, not merely due to its in-
herent utility, but also fueled by various technological advancements that have expanded
its scope and improved its efficiency. This research delves deep into the nuances of RFID
technology, with particular emphasis on RFID localization methods, and the broad spec-
trum of its applications, from agriculture to indoor tracking and beyond.

At the heart of RFID technology is the concept of backscatter radio [1–3]. At its
basic form a reader communicates wirelessly with a single RFID tag. While the reader
is an actively transmitting device, the RFID tag can be a passive, RF-powered unit,
consisting of an antenna and a simple chip that controls the termination load of the
antenna. The illuminating signal provided by the reader does not only provide an RF
harvesting source for the tag’s power needs, but also serves as a medium for the tag
to “piggyback” its payload. By switching between the different antenna termination
loads, the tag can effectively alter the characteristics of the signal reflected back to the
environment by its antenna similarly to how a flashlight and a mirror can be used to
convey messages. This reflected signal can be then captured by the reader and through
analyzing its characteristics the tag’s information can be obtained. The most prevalent
standard defining the reader-tag communication is currently the EPC Gen2 (short for
EPCglobal UHF Class 1 Generation 2) protocol [4].

The system architecture described above, where the device acts as both the illuminator
and the receiver of the backscattered signal, is termed monostatic. In contrast to this
monolithic approach, the bistatic and multistatic architecture are now introduced. Here,
the roles of illumination and signal reception are being distributed among two or multiple

1



2 Introduction

devices. Such decentralized system structures can provide certain advantages in signal
clarity and range, but are also paired with their unique challenges. These architectures
have attracted significant interest comparing and analyzing their potential [5, 6].

RFID’s ingenious approach of utilizing backscatter radio, significantly minimizes power
consumption, rendering RFID particularly well-suited for environments that demand
ultra-low-power operations, such as Wireless Sensor Networks (WSNs) [7, 8]. Over time,
this principle has been employed in a plethora of scenarios, be it digital, FSK-based
backscatter communication [9–11] or even analog backscatter radio-based WSNs [12–14].
Innovatively, pre-existing signals have even been used for RF illumination in backscatter
radio-based WSN nodes, as documented in studies like [15,16].

In the realm of RFID localization, one witnesses a surging interest, especially given
the substantial improvements in tag sensitivity and range, as well as the affordability
and availability of commodity readers. Multiple techniques that have emerged over the
years are based on the Received Signal Strength Indicator (RSSI) [17–19], but phase-
based [20–22] or hybrid phase-RSSI methods [23] stand out due to their precision. These
techniques, predominantly aligned with monostatic architectures -where the transmitting
and receiving antennas of the reader coincide- are associated with inherent distance am-
biguities, which can be addressed using strategies involving varied wavelengths, increased
bandwidth [24], or even reader mobility [20, 25]. However, challenges, such as estimat-
ing the reader’s location or the complexities induced by wireless multipath environments,
remain [26].

While a plethora of projects has focused on static or stationary interrogation setups,
quite recent developments have incorporated dynamic entities, like drones or UAVs. For
instance, investigations into the use of unmanned vehicles for interrogating backscatter
radio-based sensors/tags have surfaced, mostly leaning towards system-level optimization
[27, 28]. Diverse applications, such as using UAVs to track other UAVs indoors via RSSI
variations [29] or leveraging a differential Global Navigation Satellite System for outdoor
RFID tag localization [30,31], have been explored. The optimization of UAV operational
parameters has also been a topic of keen interest [32,33].

This dissertation embarks on an experimental exploration of UAV-based interrogation
within a backscatter environmental WSN, specifically emphasizing its application in agri-
culture. By measuring various attributes across different points in a field using backscatter
technology, we present a method that facilitates smarter agricultural decisions, optimizing
resource distribution and thus promoting more sustainable farming practices.

However, the focus doesn’t rest merely on exploring and enhancing existing methods.
This work presents novel techniques that challenge traditional notions, such as the com-
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bination of phase and RSSI in a narrowband reader setup to counter multipath effects.
Innovative applications, from robotic platforms employing SLAM for RFID reader mea-
surements to particle filtering techniques for robust tag localization, have been explored
in depth. The broader vision remains - to advance RFID technology, making it more
versatile, accurate, and applicable in diverse scenarios.

In summary, this research journey traverses the rich tapestry of RFID technology,
from its foundational principles to state-of-the-art applications, fostering a comprehensive
understanding of its potential and paving the way for future innovations. The references
and studies cited herein provide a testament to the vast body of knowledge that has been
built over the years, yet the field remains ripe with opportunities for groundbreaking
discoveries and transformative applications.

1.1 Applications of RFIDs

In this era of rapidly advancing digital connectivity, Radio Frequency Identification
(RFID) has established itself as an innovative technology. At its core, RFID’s ability to
wirelessly identify, sense, localize, and track objects has transformed a myriad of sectors.

For instance, consider a sprawling retail warehouse [34–36]. In the past, inventory
checks were labor-intensive, time-consuming, and prone to human error. With RFID,
each item can be tagged, found and tracked in real-time, ensuring instantaneous inventory
updates and facilitating swift restocking processes.

In healthcare settings [37–39], the implications are even more profound. Imagine a
busy hospital where hundreds of critical equipment pieces, from heart rate monitors to
syringe pumps, need to be tracked. RFID ensures that a nurse or doctor can instantly
locate vital equipment, enhancing patient care and potentially saving lives. Moreover,
RFID tags on medication bottles can ensure the right patient receives the correct dose at
the necessary time.

Agriculture, too, has reaped the benefits of RFID [14, 40, 41]. On a vast farm, RFID
tags on livestock can track an animal’s health, location, and feeding patterns, ensuring
optimal care. Additionally, RFID sensors in the soil can monitor moisture levels, helping
farmers irrigate with precision and conserve water.

However, the journey of RFID adoption is not without its hurdles. The intricate
environments in which RFID operates can introduce challenges. For example, in a packed
supermarket, reflections from metal shelves or liquid products can distort RFID signals.
Yet, understanding these effects can lead to refining RFID systems, making them even
more resilient and accurate.



4 Introduction

The fusion of RFID with other technologies unlocks additional potential for innovation.
When combined with Wireless Sensor Networks (WSNs), the possibilities expand expo-
nentially. For instance, in a vineyard, an RFID-backed WSN can monitor soil nutrients,
ensuring each grapevine gets tailored care, leading to better wine quality.

The technical challenges posed by such integrations are manifold. Deploying an RFID
system in a bustling library, where thousands of books need tracking, or in a multi-
tiered warehouse demands a blend of software and hardware expertise. This dissertation’s
exploration of the synergy between RFIDs, robotics and WSNs aims to navigate these
complexities, offering robust real-world solutions for diverse problems and applications.

As we journey further into this dissertation, we will traverse the intricate and promising
landscape of RFID, unveiling its transformative potential in detail.

1.2 Motivation

The allure of RFID’s such promising capabilities, while significant, is juxtaposed with a
labyrinth of technical intricacies. The drive behind this work is to study, understand and
solve such problems in order to achieve accurate and reliable systems equipped to over-
come challenges arising from these real-world applications. As it was already mentioned,
reflections from environmental objects, known as multipath effects, emerge as formidable
adversaries, warping the electromagnetic fields upon which RFID hinges. Yet, the horizon
of challenges extends further. As we intertwine RFID with other avant-garde technolo-
gies, such as robotics and Wireless Sensor Networks (WSNs), we not only amplify its
capabilities, but also inherit unique challenges from each domain. This fusion of potential
and pitfalls has been the catalyst driving our deep dive into the RFID universe.

Specifically, we wanted to engineer a system capable of pinpointing objects with pre-
cision within expansive environments, like warehouses or libraries. Recognizing the value
of high-resolution 3D localization for tasks, like inventory management or locating mis-
placed items, we envisioned a system that marries accuracy with economic efficiency.
Since covering such a large area with multiple readers would be economically inefficient
and unfeasible, we wanted to explore the concept of a singular, mobile monostatic reader
that is able to move along the corridors of the area of interest. To satisfy the mobil-
ity requirement we decided to employ a robotic platform on which the reader would be
integrated. The mobility factor was not merely a solution, but an opportunity in dis-
guise. The localization techniques devised for the moving reader leverage the motion
of the reader/antenna over a target region to provide finer estimates than conventional
stationary systems. The distance the device travels creates a larger synthetic antenna
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aperture. Typically, the larger the aperture, the higher the accuracy will be. An added
benefit of the RFID versus the traditional optical systems is that the targeted objects can
be hidden behind other obstacles and can be localized even when the direct line of sight
path is obscured.

During the development of this system, we analyzed and identified the main cause of
error to be the multipath propagation effect, where the usually dominant and of interest
line of sight signal component is perturbed by signals originating from environmental
reflectors. While we managed to limit its influence on our system, we wanted to study the
nature of these reflections, as well as model their effects and even estimate their origins,
so we can improve the localization ability of our system.

Another area of interest for our research was the bistatic/multistatic architecture
and its inherent advantages and challenges. Instead of scattering multiple stationary
monostatic readers, we explored the potential of the multistatic architecture, capitalizing
on its extended coverage range and intrinsic geometric advantages. The goal was to
devise a stationary system for localizing RFID tags, alleviating the complexities of having
a physically moving platform.

We also wanted to explore the synergy of backscatter radios with WSNs, particularly
spotlighting their potential in precision agriculture. To harness the cost-effectiveness and
energy efficiency of these sensors, we integrated a UAV drone with a single-board computer
and a light-weight software-defined radio. This approach was our answer to the limited
communication range of these sensors in relation to the large-scale deployments studied.
We sought to understand how such a UAV-backed system would stack up against a tradi-
tional, pedestrian reader-equipped counterpart, both designed for tasks, like monitoring
soil moisture, in expansive agricultural setups.

1.3 Technical Preliminaries - ROS, Robotic Platform
and Drone

Before we delve deeper in the algorithms and techniques developed during this work, let
us first examine the equipment used, the technical challenges involved with it, as well as
the engineering solutions that were devised to solve them.

1.3.1 ROS

In the realm of robotics, systems are inherently intricate, comprising a multitude of inter-
connected subsystems that need to operate in harmony to achieve specified tasks. These
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subsystems must not only communicate efficiently for real-time data exchange and ac-
tion planning, but also facilitate the seamless integration of new modules. The challenge
of orchestrating this complex interplay is elegantly met by the Robot Operating System
(ROS) [42], a middleware framework that has become the de facto standard in the robotics
community.

ROS employs a modular architecture, where the code is organized into discrete entities,
known as Nodes. Each Node functions as an independent process and is designed to
perform a specific task. For example, one such Node is explicitly programmed to interact
with Hokuyo’s Light Detection and Ranging (LiDAR) system, whose responsibility is to
collect laser scan data and publish it to a pre-defined Topic within the ROS ecosystem.
Nodes communicate among themselves through two primary mechanisms: Topics and
Services.

Topics serve as communication channels for message passing, allowing Nodes to publish
or subscribe to them. Importantly, the architecture supports a many-to-many relation-
ship; a single Node can publish or subscribe to multiple topics, and conversely, multiple
Nodes can publish or subscribe to the same topic. Messages encapsulate structured data
that is being exchanged, conforming to predefined message types that ensure consistency
and interoperability.

Services, on the other hand, enable a Node to invoke functions or routines in another
Node. This provides a synchronous form of communication and allows for more complex
interactions beyond simple data passing. Services enable Nodes to request specific actions
from other Nodes, essentially acting as function calls across the network.

One of the compelling advantages of ROS is its broad-based industry support. Man-
ufacturers of a wide range of devices designed for robotic applications routinely provide
ROS-compatible packages, thus eliminating the need for developers to create bespoke
drivers for each new piece of hardware. This consolidation under a single Application
Programming Interface (API) dramatically simplifies the development process, accelerat-
ing both deployment and subsequent iterations.

Moreover, ROS offers a suite of powerful utilities and tools aimed at enhancing various
aspects of the robotic software development lifecycle. This includes capabilities for data
visualization, logging, and playback, as well as robust simulators for testing and debugging
in a virtual environment. Originating from Stanford University and first released in
2007, ROS has continued to evolve, offering a versatile and rich set of features that have
contributed to its widespread adoption as the middleware framework of choice for robotics
software development.
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1.3.2 Robot Setup Description - The Turtlebot2 Platform

Figure 1.1: The default configuration of the Turtlebot2 platform.

The Turtlebot platform is an accessible, cost-effective solution tailored for educational
and research initiatives in cutting-edge robotics. Conceived by Melonee Wise and Tully
Foote at Willow Garage in November 2010, Turtlebot offers a comprehensive kit that
includes a mobile base, a 3D sensor, a computing unit, and a modular stackable structure
to which additional components can be attached. Its software is open-source, and the
platform is deeply integrated with the Robotic Operating System (ROS), with numer-
ous pre-configured ROS packages readily available to expedite development and research
activities.

The inaugural version of Turtlebot utilized the iRobot Create as its mobile base, which
itself was an enhanced derivative of the iconic Roomba robotic vacuum cleaner. The sec-
ond generation of Turtlebot (Turtlebot2) which is used in this work (Fig. 1.1, transitioned
to a Kobuki Base manufactured by Yujin Robot. The updated base represented a qual-
itative leap, featuring additional capabilities, such as analog input options, an increased
number of power connectors, touch-sensitive buttons, indicator LEDs, and an improved
battery life, thereby expanding the range and flexibility of experiments and applications
that could be undertaken.

At the core of our robotic system lies the Kobuki Mobile Base, which serves dual
functionalities: it governs the locomotion of the robot, while also functioning as a power
hub for the supplementary modules integrated into the system. The Kobuki base is
energized by a 4S2P Lithium-Ion battery pack, with a nominal voltage of 14.8 V and
a capacity of 4400 mAh. According to the manufacturer’s specifications, this battery is
capable of sustaining the robot’s operations for an impressive duration of up to 7 hours.
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Our empirical experience with the system corroborates this claim, confirming its efficacy
and reliability.

To facilitate the seamless integration and operation of auxiliary modules, the Kobuki
base is equipped with an array of specialized power connectors designed for various sub-
systems:

• 19 V / 2 A: Intended for laptop power supply. This connector is active only when
the base is plugged in for charging and is hence unavailable during autonomous
operation.

• 12 V / 5 A: Allocated for powering high-consumption peripherals, like a robotic
arm. In our system, we employ this port to energize all of our 12 V modules via a
custom-designed power distribution board.

• 12 V / 1.5 A: Initially intended for the Microsoft Kinect power supply. In our
configuration, as we do not use Kinect as our 3D sensor, this port is repurposed to
accommodate DC-to-DC converters, enabling us to derive diverse voltage levels to
meet our specific requirements.

• 5 V / 1 A: Serves as a general-purpose power supply port.

From a mechanical standpoint, the Kobuki base employs a differential drive system,
consisting of one wheel on each lateral side. Each wheel is propelled by a geared motor and
incorporates a built-in encoder. This setup allows for a maximum translational velocity
of 70 cm/s and a rotational velocity ceiling of 180 deg/s. Additionally, the base can
comfortably support payloads weighing up to 5 kg.

Moreover, the Kobuki base is furnished with a suite of sensing elements to enhance its
autonomous navigation and interaction capabilities. These include a factory-calibrated
single-axis gyroscope for orientation tracking, three bump sensors strategically positioned
for collision avoidance, a trio of cliff sensors for drop-off detection, and a wheel drop sensor
in each wheel to monitor the integrity of wheel movements.

Furthermore, the base provides a range of programmable Input/Output (I/O) inter-
faces to extend its capabilities. These include four analog inputs, four digital inputs, and
four digital outputs. For enhanced user interaction and debugging, the base also includes
two bi-color LEDs and three touch-sensitive buttons. Data communication with external
computing platforms is facilitated through a USB port.

The orchestration of these myriad functionalities is controlled by an STM 32-bit mi-
crocontroller, which serves as the computational brain of the Kobuki base. Overall, the
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Kobuki Mobile Base offers an intricate yet highly integrated platform, adept at providing
both mobility and power distribution functionalities, thereby serving as an ideal corner-
stone for versatile robotic systems.

1.3.3 Robot Setup Description - Added Components

2D LiDAR Sensor

Figure 1.2: Hokuyo UST-20LX mounted on Turtlebot.

For distance measurement and environmental mapping, our robotic system employs a
Hokuyo UST-20LX, a sensor that operates based on Light Detection and Ranging (Li-
DAR) technology. It is a 2D laser scanner, capable of performing these measurements
across multiple angles within a 270◦ field of view. The angular resolution of the device
is 0.25◦, and it offers a detection range spanning from as close as 0.06 m up to 20 m,
with an accuracy of ±40 mm. Its specifications allow the device to be powered directly
by the Kobuki Base without requiring any adaptors. For data communication with the
computing system, the Hokuyo UST-20LX comes equipped with an Ethernet interface
and a ROS node responsible for its management.
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Figure 1.3: Ground floor mapping of TUC’s School of ECE building using SLAM.

This sensor is intended to be positioned on the top mounting surface of the Turtlebot
platform, but the pre-existing hole grid pattern on this surface (Fig. 1.4b) was not
congruent with the mounting holes on the Hokuyo UST-20LX LiDAR (Fig. 1.4a). To
reconcile this discrepancy without modifying either the Turtlebot platform or the LiDAR,
a custom base was designed (Fig. 1.4c) to accommodate both the specific dimensions of
the LiDAR device and the grid pattern of the Turtlebot’s mounting surface, ensuring a
stable and secure installation. The base was materialized using a 3D printer, so it was
designed with these limitation in mind.

(a) LiDAR’s Dimensions (b) Top Plate Blueprint (c) 3D Design

Figure 1.4: LiDAR’s base design and schematics.
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3D Depth Camera

Figure 1.5: The Orbbec Astra camera module.

In our efforts to extend the robot’s depth perception capabilities to the 3D space, we
integrated an Orbbec Astra Camera. Beyond its depth-sensing prowess, the Orbbec Astra
Camera is equipped with an RGB image sensor, thereby offering the dual capability of
capturing colorized images alongside depth maps. Both the depth and RGB images
furnished by the Astra Camera boast a resolution of 640 × 480 pixels. Additionally, the
camera offers a comprehensive Field of View measuring 60°H × 49.5°V × 73°D, ensuring
expansive coverage of the environment. When it comes to the range of object detection,
the camera can detect objects situated between 0.6 m and 8 m. Lastly, in terms of its
power requirements and communication, the Astra Camera operates using a USB 2.0
connection, ensuring easy integration.

In essence, the incorporation of the Orbbec Astra Camera within our robot not only
enhances its perceptual capabilities, but also enables a more nuanced understanding of
its environment, aiding in tasks ranging from navigation to object recognition and inter-
action. Namely, its depth sensing capabilities were used in order to avoid collisions with
unexpected objects in the 3D space (not present in the LiDAR’s 2D plane of sensing),
human avoidance, while also providing information of the status (open, closed) of doors
that the robot is required to navigate through.
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RFID Tag Reader

Figure 1.6: The Impinj Speedway R420 RFID reader.

The RFID reader that was mainly used in this work is an Impinj Speedway R420 mono-
static 4-port reader. Its maximum transmission power is limited by the EU1 regulations
at 31.5 dBm, while it is operating in the UHF 868 MHz band. It requires though a 24 V
DC power supply, which was achieved using the 12 V rail of the Kobuki base along with
a DC/DC converter.

In terms of establishing a communication link with the device, our decision tilted
towards the Ethernet connection. This choice was driven by the Ethernet’s inherent
benefits of simplicity combined with rapid data transfer capabilities. On the software
communication front, however, challenges arose. At the time of our implementation,
the accessible firmware, the predominant resource available, was an LKT C++ library.
Unfortunately, this posed compatibility issues with our ROS environment.

To address this issue, we developed a parameterised C++ code using a gcc version
compatible with the library and compiled an executable. In order to incorporate this
executable to our ROS environment, we introduced a python-based ROS node that served
as a communication wrapper. Its function was to efficiently manage the aforementioned
executable. By doing so, it ensured that data from the R420 reader was constantly
available and easily accessible to other ROS nodes integral to our work, notably the
localization node.

In the process of enhancing the data integrity and accuracy of our system, a pivotal step
involved fine-tuning the synchronization between the measurement’s timestamp and the
corresponding position at which it was taken. Given the intricacies involved in ensuring
precise time synchronization between multiple devices in a networked environment, the
Network Time Protocol (NTP) emerged as an indispensable tool.
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The NTP configuration was set up on the RFID reader. This protocol was used
to ensure that the reader’s internal clock was aligned accurately with a reference time
source. In order for the reader to access the NTP server, the on-board computer’s internet
connection was shared with the reader. By doing so, we were not only able to provide
the reader with access to reliable time servers, but also ensured a consistent internet
environment for both the on-board computer and the reader.

With both units accessing the same time reference, the resultant effect was a marked
improvement in the synchronization, effectively minimizing any potential discrepancies
that could arise from misaligned time data. While this optimization greatly improves the
performance and reliability of our system, it is important to note that alternative methods
for synchronization can be implemented without the need of an internet connection.

Ethernet Switch

Figure 1.7: The Cisco SG110D-08 Ethernet switch.

Typically, devices like our computing unit come equipped with a singular Ethernet port.
While this is adequate for most standalone applications, our setup necessitated the inte-
gration of multiple Ethernet-enabled devices. The easiest solution to this problem was the
inclusion of an Ethernet switch, which would expand the number of available Ethernet
connections, thus accommodating multiple devices.

In our case, we used the Cisco SG110D-08 Ethernet switch, an 8-port switch which
provided the capacity to connect up to seven additional devices (besides our computing
unit). This flexibility not only catered to our present needs, but also left room for potential
future expansions or integrations.

The Cisco SG110D-08 switch has a power specification of 12 V DC, which matches our
Kobuki base’s 12 V rail, making it a perfect power source for the switch. By connecting
the switch directly to the Kobuki’s 12 V rail, we ensured a seamless and efficient power
supply, minimizing the need for additional external power sources or adapters.

Incorporating the Ethernet switch into our platform, thus, effectively streamlined the
communication pathways between our computing unit and other networked devices. This
also allows easy access to the computing unit for programming and debugging purposes
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by connecting an external computer to the system using one of the available Ethernet
ports. The end result was a robust, interconnected system with enhanced communication
capabilities, prepared to handle the challenges of our intricate networking needs.

Antennas and Mounts

In our series of experiments involving the robotic platform, the antenna of choice was con-
sistently the FlexiRay SF-2110 model. This antenna has a gain of 5 dBi, while being really
compact and lightweight, making it especially suitable for mobile robotic applications.

Given the experimental nature of this work and the need for flexibility, the mounting
mechanism of the antennas on the robot was crucial. We employed wooden poles of either
one or two meters in length, which were attached to the robot. These poles were anchored
securely using specially designed 3D printed sockets (Fig. 1.8). These sockets were de-
signed for easy installation and removal, enabling quick modifications and adjustments to
the setup as needed.

Figure 1.8: The 3D printed pole mounting adapter (red).

To fix the FlexiRay SF-2110 antenna onto the wooden poles, a bespoke 3D printed
holder was conceived. This holder, combined with crafted adapters and mounts, ensured
that the antenna remained firmly in place, even when the robot was in motion. While the
design of the mounts was pretty sturdy, due to the new increased height to width ratio of
the robot, the chassis of the robot started flexing. This flexing resulted in a oscillation of
the wooden pole (especially the 2 meter one) that inevitably introduced some extra error
to the antennas’ location estimate.

But beyond just stability, we prioritized adaptability in our design approach. Our
mounting mechanism was designed to be modular. This feature proved invaluable as it
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permitted the orientation of the antennas to be easily changed. With the incorporation
of a 90-degree adapter (leftmost bottom component of Fig. 1.9a), the antennas could be
quickly repositioned to suit specific experimental conditions or objectives. Furthermore,
this modular design is well-prepared to accommodate such potential future additions,
ensuring that our robotic platform remains flexible and adaptable.

(a) Antenna holder, adapter and mounting
bracket.

(b) The whole assembly mounted on the
robot.

Figure 1.9: The pole/antenna mounting system.

Computing Unit

In order to communicate with the array of peripheral devices and the Kobuki base’s
control unit, while also processing sensor data, executing SLAM, and running localization
algorithms, a central computing unit is required. This unit, functioning as the brain of
the system, should be capable of running Linux OS, which is require to setup the ROS
environment and could be a single-board computer, a mini PC, or a laptop.

At the beginning, a small laptop was employed as this central computing unit. How-
ever, recognizing the potential for enhanced efficiency and compactness, we transitioned
to the Intel NUC7i5BNH mini PC. This computer is equipped with a 2.2 GHz Intel i5
processor, 8 GB of RAM, and a 120 GB Solid State Drive, ensuring rapid data access and
storage.
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Figure 1.10: The Intel NUC7i5BNH mini PC.

Considering power requirements, the NUC demands a voltage in the range of 12-19 V
DC. It peaks at a power consumption of 50 W, but a 20-30 W consumption is required
under normal operational conditions. While the Kobuki’s 12 V 5 A power rail could
theoretically sustain such a load, real-world application proved otherwise. The concurrent
connection of multiple devices to the same rail, combined with sudden power surges from
the robot’s motors, dipped the voltage low enough to crash the PC and rendered this
power source inadequate.

Our remedy to this problem involved the repurposing of a compromised 6s2p LiPo
battery, which was reconfigured into a 4s2p after the removal of the defective cells. This
rejigged battery setup can consistently deliver voltages between 16.8 V (maximum) and
14.8 V (15% threshold below which the battery might sustain irreversible damage). Such
voltage parameters comfortably fall within the NUC’s operational requirements. Extrap-
olating from a power scenario where the PC operates at its maximum performance, the
current draw is approximately:

I = P

V
= 50 W

15.8 V ≈ 3.1646 A. (1.1)

Drawing upon the battery’s nominal 17,000 mAh capacity (considering a 15% reduc-
tion for longevity), the prospective battery runtime can be estimated:

Battery Runtime (hours) = 17 · 0.85 A
3.1646 A ≈ 4.57 hours. (1.2)

These calculations reflect our empirical observations. In real-world scenarios, where
the PC seldom harnessed its full potential, the battery consistently exceeded an 8-hour
runtime. To further achieve battery longevity and efficiency, a Battery Management
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System (BMS) was integrated. This ensures load distribution across the cells and offers
over-discharge rate protection. Additionally, to preempt any inadvertent power depletions,
a typical Remote-Control (RC) low battery beeper system was installed, sounding an
alarm upon detecting a specified low voltage level.

The addition of this battery system, besides providing a extended and reliable power
source for the computing unit, also increased the overall runtime of the platform as a
whole, since less systems have to rely on the base’s batteries.

To facilitate interactions with the computing unit, a dual-method communication
approach was employed. Primarily, Secure Socket Shell (SSH) was utilized, serving as a
robust and secure means of command-line-based interaction. This mode was particularly
efficient for direct, pre-programmed tasks and allowed quick access without the need for
a comprehensive graphical interface.

However, in scenarios demanding a visual interface – be it for intricate software ad-
justments, real-time data visualization, or troubleshooting – a remote desktop application
was preferred. An intriguing quirk associated with this application necessitated the use of
an HDMI dummy plug. This plug, when inserted into the computer’s HDMI slot, mimics
the presence of a physical monitor. Without this, the remote desktop application faced
challenges in rendering the desired visual environment.

To complement these remote access methodologies and enhance onsite responsiveness,
a wireless mini keyboard was integrated into the setup. This device gave operators the
ability to manually control the robot’s movements with precision when necessary. More
crucially, it acted as a safeguard, ensuring that in unforeseen circumstances or system hic-
cups, there was always a direct means to regain control or halting the robot’s movements.

Augmenting the platform’s range of feedback capabilities, an audio system was intro-
duced in the form of a speaker. Through this speaker, the platform could provide users
with real-time audio feedback, while also enabling it to solicit assistance for tasks beyond
its capability, like requesting someone to open a door. This addition enhanced the robot’s
ability to operate in human-centric environments, while avoiding expensive and complex
requirements like a robotic arm.
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1.3.4 Drone Setup Description - The Drone Platform

Figure 1.11: The drone platform along with the added components on the ground (left)
and during flight (right).

The primary drone utilized throughout our research is the Italdron EVO4HSE (Fig. 1.11).
This drone stands out for its advanced features and adaptability to a diverse range of
experimental settings. The Italdron EVO4HSE operates using the Pixhawk 4 flight con-
troller, which is powered by the versatile Ardupilot software.

It was powered by a high-capacity 377 Watt-hours LiPo battery that ensures prolonged
flight times and reliable performance, while also providing a power source for additional
components essential for our research activities.

Designed with adaptability and user-convenience in mind, the Italdron EVO4HSE
boasts a highly transportable system. Its arms fold quickly, making it efficient for trans-
portation and deployment. Furthermore, this drone is crafted to withstand environmental
challenges; its design is resistant to both dust and humidity, enhancing its durability in
varied field conditions.

Another impressive attribute of the Italdron EVO4HSE is its payload capacity. It can
comfortably carry and transport up to 2.5 kilograms, making it versatile for a plethora of
applications. Whether it is research tools or sensors, the drone can be easily adapted to
cater to different experimental needs.

In environments known for high electromagnetic densities, the robustness of a drone’s
datalink is crucial. The Italdron EVO4HSE excels in this regard with a resilient datalink
that ensures safe and uninterrupted operations, even in challenging electromagnetic sce-
narios.

The drone’s motor-propulsive units are notable for their efficiency and reactivity. En-
suring optimal performance and longevity, these units undergo rigorous quality checks.
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The drone is also replete with features designed to maximize safety and mitigate risks.
Some of these integral safety measures include the return-to-land function, geofencing,
proximity sensors, and many more. These features provide operators with peace of mind,
knowing that the drone is equipped to handle unforeseen circumstances.

One of the best features of the Italdron EVO4HSE is its modular design. This design
philosophy facilitates easy integration with both pre-market and after-market technolo-
gies and accessories. This adaptability was particularly beneficial for our research, as it
permitted the seamless installation of various additional modules on the drone’s body,
tailored to our specific experimental requirements.

1.3.5 Drone Setup Description - Added Components

Single-Board Computer

Figure 1.12: The Odroid-XU4 single-board computer.

The Odroid-XU4 single-board computer was selected to serve as the processing unit for
our system (Fig. 1.12). While the Pixhawk 4 controller exclusively managed the drone’s
navigation, the Odroid-XU4 undertook a broader array of responsibilities.

The Odroid-XU4 is a new generation of computing device with powerful, energy-
efficient hardware and a minimalistic form factor. Offering open source support, the
board can run various flavors of Linux, including the latest Ubuntu 20.04 and Android
7.1 Nougat. By implementing the eMMC 5.0, USB 3.0 and Gigabit Ethernet interfaces,
the ODROID-XU4 boasts amazing data transfer speeds, a feature that is required for the
needs of our application.

To physically integrate the Odroid-XU4 with our drone, a custom 3D printed mount
was designed and crafted to position the computer on the drone’s underside. This mount-
ing solution allowed easy access to the Odroid’s ports for programming and debugging.
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Furthermore, it was designed with the ability to accommodate a full-sized LimeSDR. For
instances requiring the LimeSDR mini, a bespoke adaptor was crafted to ensure compat-
ibility. A significant attribute of this case was its design consideration for the LimeSDR’s
relatively delicate ports. By integrating a dedicated bracket, it firmly anchored the con-
nected cables, ensuring they remained securely affixed and reducing undue strain on the
ports.

Figure 1.13: The underside of the drone with collapsed wing-arms featuring the mounting
system, the Odroid, the LimeSRD mini, the amplifier and the antennas with their brackets.

The Linux-powered Odroid-XU4 unveiled a plethora of operational capabilities. Key
among these was the capability to run GNU Radio, an essential tool for overseeing the
software-defined radio (SDR) and subsequently processing the received data. Beyond this
primary role, the single-board computer had an auxiliary function — facilitating commu-
nication. It was entrusted with the task of dispatching the processed data back to our
base station, achieved through a custom ad-hoc WiFi link. Although this communication
link was not imperative for the system’s core functionality, it enabled real-time feedback
giving operators live updates. Additionally, it empowered users with the capability to
dynamically control the Odroid, truly exemplifying the term “on-the-fly” adjustments.

Software-Defined Radio

In order to fulfill our on-board radio requirements the aforementioned LimeSDR was
utilized. The LimeSDR is a low-cost, open-source software-defined radio (SDR) platform
that can be used to support just about any type of wireless communication standard.
LimeSDR can send and receive UMTS, LTE, GSM, LoRa, Bluetooth, Zigbee, RFID,
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and Digital Broadcasting. The LimeSDR Mini is a smaller, less expensive version of the
original LimeSDR. However, it still packs a punch – at its core, the LimeSDR Mini uses
the same LMS7002M radio transceiver as its big sibling. The Mini has two channels
instead of four, SMA connectors instead of micro U.FL connectors and features Intel’s
MAX 10 FPGA.

The full-scale LimeSDR served as the foundation upon which our system was designed
and subsequently tested. Since the requirements of the system can be fulfilled by the SDR
mini, the adaptor and the mini were used, since it reduces the cost of the overall system,
as well as its lower power consumption increases battery lifetime.

Figure 1.14: The full-scale LimeSDR (left) and its smaller counterpart LimeSDR Mini
(right).

RF Components

For the RF components required in this setup, two Flexiray SF-2110 antennas were used
along with a Mini-Circuits ZRL-1200+ amplifier for the illumination chain. It was powered
using a DC step-down converter directly connected to the drone’s battery, while for the
rest of the components, a 5 V rail provided by the drones board was used.

The antennas were mounted using the previously created 3D printed holders and where
attached on the drone’s lower part of the legs using custom-designed 3D printed brackets.
Leveraging the drone’s ability to retract its legs in a horizontal position, the antennas,
while having a horizontal orientation when the drone is on the ground, point to the ground
when the legs are retracted. The increased distance of this position also helps with the
decoupling of the antennas that is beneficial in the monostatic interrogation architecture
used.
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1.4 Roadmap

This dissertation embarks on a comprehensive exploration of the vast landscape of RFID
technology. Our journey commences in Chapter 2, where we delve into the nuances
of monostatic localization, leveraging a moving platform approach that harnesses phase
measurements from diverse positions.

Building upon the insights garnered, we probe deeper into the constraints that limit
localization precision within RFID systems. Notably, multipath propagation—arising
from environmental reflectors—stands out as a predominant factor and is further studied
in Chapter 3. While foundational research in other domains laid the groundwork for this
part of our research, our application to commercial RFID systems and their subsequent
limitations, marks a pioneering endeavor in the field.

Transitioning to Chapter 4, we shift our focus from the monostatic interrogation ar-
chitecture to the bistatic-multistatic architecture. Leveraging its unique geometric prop-
erties, we explored an alternative method of tag localization without the need of antenna
movement.

In Chapter 5, our narrative follows the intersection of RFIDs and Wireless Sensor
Networks, studying the role and considerations surrounding interrogation architectures
based on specific implementation parameters and needs.

A hallmark of our dissertation is the tangible, avant-garde experimental studies ac-
companying each chapter, resulting in near-market-ready systems primed for real-world
deployments. A standout application manifests in the realm of robotics, where the Robotic
Operating System (ROS) is employed to form a mobile interrogation and localization sys-
tem. This system boasts the capability to pinpoint RFID tags with remarkable precision
in complex environments, be it an office, library, or warehouse setting. Conversely, our
bistatic architecture, devoid of movement, assures accurate tag localization under specific
proven conditions, while its multistatic extension can augment area coverage. Complet-
ing our exploration, the UAV-based interrogation seamlessly merges with WSNs in an
agricultural context, emerging as a valuable tool for monitored precision agriculture.

1.5 Thesis Contributions

Our research is a harmonious blend of theoretical exploration and practical realization.
At its foundation, our work was steered by a theoretical study of signal characteristics,
encompassing both monostatic and multistatic architectures. Additionally for the mono-
static case, we studied the influence of a reflective surface by adopting and expanding
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on compressive sensing formulation typically used for wideband through-the-wall-radar-
imaging.

Transitioning from theory to practice, we undertook the formidable task of implement-
ing our theoretical findings. This transition reinforced the real-world utility of our work,
but was marked by a series of engineering challenges, each demanding a unique mixture of
technical expertise and innovative problem-solving. Additionally, we managed to couple
RFID with WSNs to provide valuable tools for precision agriculture and monitoring.

From optimizing the UAV-based interrogation of backscatter WSNs to ensuring seam-
less integration of RFID with robotic platforms, every challenge was met with a robust
solution, underscoring our commitment to pushing the boundaries of what’s possible with
low-cost, narrowband, commodity-level equipment.

• Our exploration of the monostatic architecture led to the integration of a mobile
reader with a robotic platform, capable of autonomously navigating the area of
interest to localize tags. This market-ready system boasts an impressive real-time
localization performance, registering a mean absolute error of merely 2 cm in 2D line-
of-sight scenarios and an impressive 24 cm in 3D-search within cluttered domains.

• Our deep dive into reflections yielded an innovative methodology for the joint esti-
mation of both tag and reflector locations, sans any prior knowledge. This innovative
approach can pinpoint a reflector’s position with remarkable accuracy, on the order
of 5 cm.

• For the multistatic architecture, using a stationary reader setup, we offered a novel
direction of arrival estimation technique, whose performance is on par with state-
of-the-art techniques. Furthermore, our alternative localization method can offer an
accuracy of 9 cm in 2D localization scenarios.

• Merging RFID and WSNs, our experimental system emerged as an example of
cost-effectiveness, simplicity, and efficiency. This system effortlessly monitors a
backscatter-based environmental WSN, effectively measuring the status of any
capacitance-based sensor.

In summary, our work stands as a testament of the symbiotic relationship between the-
oretical mastery and hands-on engineering. Not only did we illuminate the lesser-known
facets of the RFID paradigm through our theoretical explorations, but also manifested
these insights into tangible, real-world applications. This harmonious confluence of theory
and practice, interwoven with the myriad of engineering challenges we surmounted, sets
our research apart, marking a significant milestone in the RFID arena.



Chapter 2

Monostatic Localization with a
Robotic Platform

Radio-frequency identification (RFID) technology carries the potential to alter a myriad
of sectors, from supply chain management to healthcare, and from agriculture to envi-
ronmental monitoring. At the heart of this transformative potential lies the capability of
RFID systems to enable identification, localization, and tracking of objects in real-time
using wireless communication. Localization, in particular, plays a crucial role in applica-
tions, such as inventory management, indoor navigation, and asset tracking. However, in
complex environments where signal interference is prevalent, the reliability and accuracy
of RFID-based localization face significant hurdles.

Multipath propagation epitomizes these challenges. As radio signals from an RFID
tag bounce off surfaces, such as walls and furniture, they forge numerous paths to reach
the RFID reader. This scattering can cause significant phase alterations, wreaking havoc
with tag localization. This issue urgently calls for an innovative, effective solution.

Most traditional RFID localization techniques rely on Received Signal Strength In-
dicator (RSSI) measurements to estimate the tag’s location. However, the RSSI is of-
ten greatly affected by environmental factors, such as obstacles and signal attenuation,
which makes it less reliable in complex environments. To overcome these challenges,
phase measurement-based localization has proven to be the dominant approach in RFID
systems. Phase measurements provide information with greater granularity than signal
strength, allowing for more precise and robust localization in all sorts of environments.
By analyzing the phase of the received RFID signals, it becomes possible to estimate the
distances between the RFID tags and the reader, enabling precise location determination.

It is important to acknowledge that phase measurement-based localization also has its
own disadvantages and challenges that need to be addressed. Phase measurements exhibit

24
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Figure 2.1: Single Reader Architecture

a periodic nature due to the sinusoidal properties of RF signals. This periodicity can lead
to ambiguities, where a single phase value corresponds to multiple physical distances.
Additionally, phase measurements can be sensitive to factors, such as tag orientation,
environmental changes and electronic components, which can introduce errors and affect
the accuracy of localization. Therefore, careful calibration and advanced signal processing
techniques are required to mitigate these challenges and achieve reliable and accurate
localization results. By addressing these concerns, the potential of phase measurement-
based localization can be fully harnessed, leading to significant advancements in RFID
localization capabilities.

Particle filters are a powerful computational tool for estimating the state of a system,
especially when dealing with nonlinearities and non-Gaussian noise, attributes commonly
associated with multipath propagation in RFID systems. By coupling these phase-based
particle filters with the mobility and adaptability of a robotic system, we aim to create a
dynamic system capable of handling the uncertainties inherent in multipath environments.

In the sections that follow, we will delve into the specifics of our approach, starting
with a detailed examination of the phase model used in multipath environments. We
will then explore the intricacies of phase-based particle filtering and discuss the role a
mobile robot plays in the localization process. Through this focused approach, our goal
is to significantly enhance the accuracy and reliability of RFID localization systems in
multipath environments.

2.1 RFID Systems: Monostatic Architecture, and
Phase-Based Distance Estimation

RFID systems constitute a significant technology in the realm of object localization and
tracking. A typical RFID system consists of two main components: an RFID tag attached
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to the object of interest, and an RFID reader which communicates with the tag via radio
waves. The tag modulates its data on to these radio waves and reflects them back to the
reader, providing information about the tag’s identity and potentially sensor data.

There are two primary architectures for RFID systems: monostatic and bistatic. In a
monostatic system, a single antenna/device is used for both transmission and reception of
signals. In contrast, a bistatic RFID system utilizes separate antennas/devices for signal
transmission and reception.

This chapter specifically adopts a monostatic architecture for its RFID system. In a
monostatic system, the same direct signal path is used for both transmission and reception.
This means that the Line of Sight (LoS) component, which refers to the signal that
travels directly from the tag to the reader, is easier to isolate and analyze. This becomes
particularly beneficial, when adopting a phase-based approach to RFID localization.

While conventional RFID localization techniques often rely on Received Signal
Strength Indicator (RSSI) measurements, we focus on the phase of the signal. The phase,
unlike the signal strength, is typically less affected by environmental factors and, with
appropriate analysis and considerations, can offer improved accuracy in localization.

In this research, we concentrate on developing a joint phase-based model for the LoS
component and all the indirect components of the RFID signal as well as the other fac-
tors that contribute to the phase measurements. In the following sections, we delve into
the details of phase-based particle filtering, elaborating on its application in RFID local-
ization. We also discuss the role of a mobile robot in enhancing the acquired data and
expanding the capabilities of our system. By focusing on the phase of the received signal
and collecting measurements from different locations, we aim to provide an accurate and
robust RFID localization system.

2.1.1 Phase model

To understand the value of the phase-based approach, it is important to discuss how
phase measurements relate to distance. Essentially, the phase of a signal correlates to
the distance the signal has travelled, subject to the frequency of the signal. As the signal
moves from the reader to the tag and backwards, it oscillates at a certain frequency. The
phase of the signal at any given point can be thought of as the position in the oscillation
cycle at that moment. Therefore, by measuring the phase of the signal at the reader,
we can estimate the distance the signal has travelled, which provides key information for
localization.

In order to model this phase, let us assume that an RFID tag location is denoted as
xT ≜ [xtag ytag ztag] and similarly, reader location as xR ≜ [xreader yreader zreader]. Focusing
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Figure 2.2: Propagation model with a single reflection off the ground.

on the direct path only, reader transmits a signal with carrier frequency fc and phase
ϕR, the signal propagates through the environment to be received by the tag with a time
delay of τ = d0/c = d0/ (λfc), where d0 ≜ ||xR − xT||2 is the reader to tag Euclidean
distance, c is the speed of light and λ is the carrier’s wavelength. For such a delay, the
received signal at the tag has a phase of:

ϕR − 2πfcτ = ϕR − 2πd0/λ = ϕR − kd0, (2.1)

where k = 2π/λ is the angular wavenumber. So, the (one-way) flat-fading wireless LoS
channel induces a phase of −kd0. In real-world scenarios, beyond the direct Line of Sight
(LoS) propagation path, the signal can traverse multiple indirect paths from the receiver
to the tag and back through the environment’s reflectors. These indirect propagation
paths contribute to a phenomenon known as multipath effect. The entirety of the channel
can be written as follows:

h = a0e
−jkd0︸ ︷︷ ︸

direct path

+
Nm∑
i=1

aie
−jkdi

︸ ︷︷ ︸
multipath

= a0e
−jkd0︸ ︷︷ ︸
h0

(
1 +

Nm∑
i=1

ai

a0
e−jk(di−d0)

)
︸ ︷︷ ︸

hm

= h0hm,

where di is the length of the i-th propagation path (out of Nm), that depends on the
location of the reflectors, as well as the locations of the reader and tag, while complex
coefficients ai, i ∈ {1, . . . , Nm} depend on space geometry, reflector’s dielectric constants
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and antenna gains. Thus, the induced phase of the roundtrip (two-way propagation
channel h2 (i.e., from reader-to-tag and back) can be written as follows:

ϕprop ≡ ∠h2 = 2(∠h0 + ∠hm) = −2kd0 + 2∠hm. (2.2)

What is measured though is not the compound channel’s phase ϕprop, but there are
also several factors that contribute and affect the measured phase ϕout, such as the tag
and its electrical components that induce a term ϕtag, the location of the reader and tag,
delays due to cabling ϕ̂0 and phase noise ϕ̂n at the reader’s receive chain. So what we
would expect as a measurement at the reader can be written as:

ϕout = ϕR + ϕprop + ϕ̂0 + ϕtag + ϕ̂n

= −2kd0 + ϕR + ϕ̂0︸ ︷︷ ︸
θ

+ 2∠hm + ϕtag + ϕ̂n︸ ︷︷ ︸
ϕn

= −4πd0

λ
+ θ + ϕn. (2.3)

Consequently, the received phase can be accurately represented by Eq. (2.3). In this
model, the term of primary interest - which correlates to the tag-reader distance d0 - is
accompanied by an unknown constant phase term θ and a variable unknown term ϕn.

It is important to note that the readers typically reports a phase value within one of
two ranges: either [−π, π) or [0, 2π). In the context of this work, the readers employed
adhere to the latter range. Thus, the measured phase is the outcome of applying the
modulo operation to ϕout, specifically:

ϕmeas = ϕout mod2π (2.4)
1
=
[
−4πd0

λ
mod2π + θ mod2π + ϕn mod2π

]
mod2π (2.5)

=
[
−4πd0

λ
mod2π + θ̂ + ϕ̂n

]
mod2π. (2.6)

This operation ensures that the measured phase remains within the defined interval,
while also introducing an additional level of complexity to the analysis due to the resultant
“wrap-around” effect. If we temporarily ignore the noise terms in Eq. (2.6) we get:

1using the property (α + β) modγ = [(α modγ) + (β modγ)] modγ
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ϕmeas =
(

−4πd0

λ
mod2π

)
mod2π (2.7)

ϕmeas = −4πd0

λ
mod2π (2.8)

At this point, it should be mentioned that it is common in the literature to find
expressions of the measured phased, as in Eq. (2.3), omitting the minus sign, i.e,

ϕout = +4πd0

λ
+ θ + ϕn. (2.9)

That is also valid, since the sign of the channel-dependent term 4πd0
λ

informs whether
phase is added or subtracted to the phase of the reader, while also providing a more
intuitive understanding of the behaviour of the phase, since when the distance increases
so does the phase and vice versa. So, the transformation from phase measurement ϕ to
distance d0, should explicitly state which formula is used, since ϕ− ̸= ϕ+:

ϕ− =
(

−4πd0

λ

)
mod2π, (2.10)

ϕ+ =
(

+4πd0

λ

)
mod2π. (2.11)

Solving Eq. (2.8) for distance results in:

(2.8) ⇒ −4πd0

λ
= ϕmeas + κ2π (2.12)

⇒ d0 = ϕmeas
λ

4π
+ κ

2πλ

4π
(2.13)

⇒ d0 = ϕmeas

2π
λ/2︸ ︷︷ ︸

δρ

+κλ/2 (2.14)

⇒ d0 = δρ + κλ/2, (2.15)

where δρ = d0 modλ/2 and κ ∈ N.
Upon examining Eq. (2.15), it becomes evident that when tags are positioned at

distances that differ by an integer multiple of λ/2 away from the reader, the measured
phase is the same. This phenomenon is attributed to the periodic nature of the phase and
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inherently induces ambiguity to the distance estimation and, consequently, the localization
of tags.

Another interesting aspect that led to one of the significant contributions of this study
relates to the phenomenon that occurs when the tag’s position results in a phase mea-
surement close to zero (and 2π). A neighboring position - though physically proximate -
could potentially result in a phase measurement nearing 2π (and zero respectively).

The crux of this phenomenon lies in the “wrap-around” effect inherent to the phase
measurement. When the phase reaches its maximum value of 2π, it resets to zero, creating
a discontinuity. As a result, two spatially close positions may correspond to vastly different
phase readings near the “wrap-around” point. This unconventional phenomenon, where
a small spatial difference leads to a large phase difference is further enhanced when also
considering the noise and can complicate the task of RFID localization.

Understanding and appropriately addressing these issues formed a central part of our
research, and the strategies we adopted to handle this challenge will be discussed in the
subsequent sections.

2.2 Particle Filtering for Phase-Based RFID Local-
ization

2.2.1 Introduction to Particle Filtering

Particle filtering, also known as sequential Monte Carlo sampling, represents a state-of-
the-art technique in the realm of probabilistic inference for systems that exhibit nonlinear
dynamics or non-Gaussian noise. The technique is rooted in Bayesian filtering, offering a
robust framework for estimating the posterior distribution of the system states.

Particle filters, through their sequential nature, permit the online processing of incom-
ing data, making them particularly suitable for real-time applications. They provide an
approximation of the desired posterior distribution using a set of particles, each repre-
senting a potential state of the system. These particles are then propagated over time,
guided by the system’s dynamics and the incoming observations.

One of the distinct advantages of particle filtering is its ability to handle complex,
multimodal distributions, which is often a challenge for other filtering techniques. Fur-
thermore, they excel at estimating the state of systems with non-linear relationships
between variables or where the noise isn’t Gaussian.

In the context of phase-based RFID localization, these characteristics are particularly
beneficial. Given the phase’s periodic nature and the presence of phase ambiguities, the
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problem involves dealing with a multimodal distribution - a situation where particle filter-
ing can be leveraged. Furthermore, the inherent non-linearity in the relationship between
phase and location, as well as potential non-Gaussian noise in real-world environments,
makes particle filtering a fitting choice for tackling this problem.

In the following sections, we will delve into the details of how particle filtering is applied
to resolve phase ambiguities and aid in robust distance estimation, thereby enhancing the
accuracy of RFID localization.

2.2.2 Phase Based Particle Filtering

Within the sphere of phase-based RFID localization, one of the primary challenges is phase
ambiguity. The ’wrap-around’ effect means that varying distances between the known
antenna locations and the stationary RFID tag can result in identical phase measurements,
adding complexity to direct distance estimation.

Our strategy employs particle filtering, a technique well-regarded for handling multi-
modal distributions. In our application, each particle represents a potential position of
the RFID tag within a 3-dimensional space. For a known antenna location, we can use the
phase model described in the previous sections to assign a phase value to each particle.
The weight of each particle is determined by the difference between the observed phase
and the phase dictated by our model for the potential tag position represented by that
particle.

A critical advantage of our particle filtering approach is the lack of requirement for
continuity in the measurement data. This stands in contrast to a plethora of methods
like phase-unwrapping, which demand continuous data and therefore struggle to adapt to
real-world scenarios where measurements may be irregular or sporadic.

As measurements from different antenna locations are provided, the particle weights
updated. Through resampling, particles associated with less likely tag positions (those
with larger phase discrepancies and, therefore, lower weights) are progressively eliminated.
This strategy allows the particle filter to converge on the actual position of the RFID tag,
effectively resolving phase ambiguities.

In the subsequent section, we will delve into the specifics of how our particle filtering
approach enables robust distance estimation, even in the presence of strong multipath
interference.
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2.2.3 Robust Distance-based Particle Filtering (RDPF)

In order to illustrate the weighting process for the particle filter, consider Fig. 2.3. Here,
we have a phase measurement, denoted as ϕmeas, which is collected at the reader position
xR ≜ [xR, yR, zR]. Each particle in the filter, representing a potential tag position, is
denoted as x∗

T ≜
[
x∗

tag, y∗
tag, z∗

tag

]
.

T B
1

2

Figure 2.3: Particle weight visualization. The bright yellow concentric circles around the
reader position correspond to a high particle weigh assignment based on the measured
phase.

The weight assigned to each particle is determined by evaluating the conditional likeli-
hood function p(·|·), which essentially quantifies the probability of observing the measured
phase given the phase that our model predicts for that specific reader-tag distance:

w∗ = p(ϕmeas|ϕmodel) (2.16)

⇒ w∗ = p(ϕmeas|x∗
T, xR) (2.17)

It is evident that knowledge of the conditional likelihood function is required to calcu-
late the weights. Prior art techniques convert the reader-tag distance dRT = ||xR − xT||2
to expected (noiseless) phase ϕ∗

model using a model like Eq. (2.8) and utilize the phase
difference δϕ = |ϕ∗ − ϕmeas| as a metric passing it through a Gaussian Kernel:

w∗ ∝ e−δϕ2/(2σ2
ϕ) (2.18)
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As we have previously discussed, phase discontinuities due to the “wrap-around” effect
can lead to a peculiar scenario where spatially close points in a 3-dimensional space
correspond to vastly different phase values. This results in a substantial phase difference,
δϕ, which is close to the maximum of 2π, and consequently, a smaller weight is assigned
to a particle that is close to the actual location of the tag that we are trying to locate.

A key contribution of this work lies in our method of circumventing this issue. In-
stead of relying on the phase difference metric, which can be problematic due to phase
discontinuities, we propose a novel distance-based metric for determining the particle
weights.

To understand this approach, consider Eq. (2.15), which illustrates the relationship
between phase and distance. Here, the reader-tag distance can be divided into a “remain-
der” distance factor, δρ ∈ [0, λ/2), given by:

δρ =

 λϕmeas
4π

, for ϕ defined as ϕ+,
λ
2

(
1 − ϕmeas

2π

)
, for ϕ defined as ϕ−

(2.19)

and an unknown multiple of λ/2. Under this formulation, the measured phase, ϕmeas,
can be translated into a locus of points. In the 2-dimensional case, these points form
concentric circles, while in a 3-dimensional case, they form concentric spheres.

These circles or spheres are centered at the reader’s location, xR, with radii defined
by r = δρ, δρ + λ/2, δρ + λ, . . . . The closest distance between these circles or spheres
and the location of the tag x∗

T defines the utilized metric ∆ of this work.
As can be seen in Fig. 2.3, in order to calculate the value of the metric ∆ we just need

to calculate the distances of the particle’s location to the two closest circles, δ1 and δ2,
and keep the smallest distance. Using Eq. (2.15) and Eq. (2.19), the “remainder” distance
for the reader-particle locations and the “remainder” distance for the measured phase can
be expressed as:

dp = δρ1 + kλ/2 (2.20)

⇒ δρ1 = dp modλ/2, (2.21)

where dp is the reader particle distance and:

δρ2 = λ
ϕmeas

4π
, (2.22)



34 Monostatic Localization with a Robotic Platform

where both δρ1, δρ2 ∈ [0, λ/2). While it is not required to identify which of the two above
equations corresponds to phase measurement or reader-particle distance, it is necessary
to assign δρ1 the greater value. With the help of Fig. 2.3 and simple calculation it is easy
to see that δ1 and δ2 can be expressed as:

δ1 = RT − RA (2.23)

= (δρ1 − k1λ/2) − (δρ2 − k2λ/2) (2.24)

= δρ1 − δρ2 + (k1 − k2)λ/2, (2.25)

δ2 = RB − RT (2.26)

= (δρ2 − k3λ/2) − (δρ1 − k4λ/2) (2.27)

= δρ2 − δρ1 + (k3 − k4)λ/2, (2.28)

where k1, k2, k3, k4 ∈ N. Since δ1, δ2, δρ1, δρ2 ≤ λ/2 and δρ1 ≥ δρ2 we conclude that:

δ1 = δρ1 − δρ2 (2.29)

δ2 = λ/2 − (δρ1 − δρ2) . (2.30)

Thus, the metric ∆ can be calculated as follows:

∆ = min(δ1, δ2) (2.31)

= min (δρ1 − δρ2, λ/2 − (δρ1 − δρ2)) (2.32)

Notice that for the case of a pair of phases where one is close to 0 (rad) and another
close to 2π (rad), the δρ’s corresponding to that pair are close to λ/2 (m) and 0 (m) and
thus the above formula will offer a small distance metric ∆.

While the above derivation of the ∆ metric provides an intuitive understanding, in
practice the steps required reduce the performance of the algorithm. So in practice, a
simpler but equivalent expression was devised and used in practice:

∆ =
∣∣∣∣∣λ4 −

(
dp −

(
δρ − λ

4

))
modλ

2

∣∣∣∣∣ , (2.33)
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where δρ is calculated from Eq. (2.19) using the measured phase and dp is the distance
between the known antenna location and the position of the particle.

Another noteworthy contribution of this work is the explicit consideration of the con-
stant phase offset, θ. While previous studies have overlooked this offset, failing to incor-
porate it into the particle filter parameters or devise any strategies to mitigate its effects,
our research actively accounts for this offset. We assign an additional variable, θ∗, to each
particle, significantly improving the robustness of our approach.

Although this addition provides a more accurate localization estimate, the addition
of an extra dimension in the search space (if the number of particles remains unchanged)
can lower the performance of the algorithm.

The modifications required to calculate the particle weights under this new consider-
ation are as follows:

ϕ∗ = (ϕmeas − θ∗) mod2π, (2.34)

δρϕ = λϕ∗/(4π), (2.35)

δρd = ||xR − xT||2 mod2π, (2.36)

δρ1 = max(δρϕ, δρd), (2.37)

δρ2 = min(δρϕ, δρd). (2.38)

These values, δρ1 and δρ2, are subsequently fed into Eq. (2.32) to compute the metric
∆. Then, to calculate the weights of the particles, we use the following equation:

w∗ ∝ e−∆2/(2σ2), (2.39)

where σ has units of distance and σ2 is dependent on the power of the phase measurement
noise, encapsulating all sources including multipath. The value of σ essentially determines
how strictly the reader-particle distance should correspond to the phase-translated dis-
tance based on our model.

In scenarios where the Line of Sight (LoS) is the dominant contributor and the number
of available measurements is relatively sparse, we employ smaller values of σ. This facili-
tates sufficient iterations in the particle distribution to pinpoint the actual tag location.
Conversely, in environments characterized by strong multipath and denser measurements,
it proves advantageous to tolerate a larger discrepancy between the model and actual
distance.
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Through extensive experimentation, we found that in low multipath conditions, σ

values around 0.1λ yielded the best results. On the contrary, under strong multipath
conditions, values around λ proved to be more suitable.

Our methodology aims to provide a localization solution that does not impose any kind
of continuity (spatial or temporal) of the measurements to perform, which is often the case
in real-world scenarios. Thus, the multiple measurements acquired for each specific tag
are considered independent data points and each particle is assigned a number of weights
equivalent to the total number of measurements. Each particle is initiated with a weight
of 1, which is then dynamically updated for each successive measurement. The updated
weight is determined by multiplying the current weight with the newly calculated weight,
derived from Eq. (2.39). Subsequently, the weight for each particle is normalized relative
to the cumulative weight of all particles.

This allows for a great flexibility in the algorithm since in order to accommodate mul-
tiple antennas, the only requirement is the measurements pair (line 11 of the algorithm)
ϕmeas, xA, where xA is the position of the antenna, effectively treating the measurements
from different antennas simply as unique measurements.

One of the key steps in particle filtering is the resampling of particles. Resampling
schemes, such as low-variance resampling, can be applied, with the option to replace
particles or not. This stage is crucial in dynamically changing environments where the
target is in motion. It provides a more accurate representation of the probable states of
a target by emphasizing particles with higher weights (i.e., particles that better explain
the observations) and discarding those with lower weights.

In our case, the RFID tags that we aim to locate in our experiments remain stationary.
While small performance improvements can be achieved with resampling, our investiga-
tions revealed that this process would require extensive fine-tuning of the parameters to
yield reliable results. Due to the static nature of our target objects and the added com-
plexity of fine-tuning, we decided to omit the resampling step from the final iterations
of our algorithm. The exclusion of this step simplifies our method without significant
compromise on the accuracy of our results in the context of locating stationary tags.

The final iteration of our algorithm, titled RDPF1 (Robust Distance-based Particle
Filter 1), is summarized as follows: Particles are initialized based on a uniform distribution
for each dimension bounded by the search area parameters provided. The dimensionality
of the search area is defined by the number of parameters that are to be estimated. In
2D localization, the search space is three-dimensional, whereas in 3D localization, it is
four-dimensional due to the addition of the offset parameter θ. If prior information about
the position is available, it can be easily incorporated into the initialization process to
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fine-tune the distribution of the particles. This flexible framework allows the algorithm
to adapt to varying conditions and prior knowledge, making it robust and versatile in a
range of applications.
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RDPF Algorithm: RDPF1

1: Initialization of Variables:
2: Set M (number of Particles), N (number of Epochs)
3: Set Xa

min, Xa
max, Y a

min, Y a
max, Za

min, Za
max, θmin, θmax (search area dimensions)

4: Set T (time window of collected phase measurements)
5: for n = 1 : N do
6: Initialization of All Particles: ∀ m = 1 : M

7: x[m] ∼ U [Xa
min, Xa

max], y[m] ∼ U [Y a
min, Y a

max],
8: z[m] ∼ U [Za

min, Za
max]

9: θ[m] ∼ U [θa
min, θa

max]
10: χ[m] =

[
x[m] y[m] z[m] θ[m]

]T
11: Select T measurement pairs

{
ϕ[t]

meas, x
[t]
R

}
12: Initialize all particle weights: w[m] = 1, ∀ m = 1 : M

13: for t = 1 : T do { measurement index}
14: for m = 1 : M do { particle index }
15: Set x∗

T =
[
x[m] y[m] z[m]

]T
from χ[m]

16: Set θ∗ = θ[m] from χ[m]

17: Calculate δρ1, δρ2 (in m) from Eqs. (2.34)-(2.38)
18: Calculate ∆ (in m) from Eq. (2.32)
19: w[m] = w[m] p

(
∆|χ[m]

)
≡ w[m] N (∆; 0, σ2)

20: end for
21: Weight Normalization:
22: w[m] = w[m]/

∑M
m=1 w[m], ∀ m = 1 : M

23: % Optional: Low Variance Particle Resampling
24: end for
25: x̂

[n]
T = ∑M

m=1 w[m] χ[m] =
[
x̂

[n]
tag ŷ

[n]
tag ẑ

[n]
tag θ̂[n]

]T
26: end for
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Modifications for Accelerated Execution: RDPF2

To accelerate execution time while keeping the offset θ as an unknown, the algorithm
described above can be further refined. In the modified algorithm, each particle represents
only the tag coordinates, excluding θ. Meanwhile, an external loop (line 5) can be used
to iterate through a predefined set of potential θ values, each of which is applied globally
across all particles. This approach effectively reduces the search space for a given number
of particles, M. Alternatively, this means that a smaller number of particles can be utilized
to adequately probe the modified search space. In order to obtain the final estimate of the
tag position, a mean is calculated over the estimated positions for all the θ values tested.
The benefit is a significant reduction in computational overhead without sacrificing the
robustness of the solution.

In this alternative version, titled RDPF2, the following simple modifications are re-
quired:

• Line 9 is omitted and the initialization is modified to use a set of values for θ with a
resolution of δθ = (θmax −θmin)/N , where N is the number of repetitions to perform.

• Line 10: χ[m] =
[
x[m] y[m] z[m]

]T
• Line 16: Set θ∗ = θmin + (n − 1)δθ

• Line 25: x̂
[n]
T = ∑M

m=1 w[m] χ[m] =
[
x̂

[n]
tag ŷ

[n]
tag ẑ

[n]
tag

]T
• Finally line 27 was added to report the final location estimate:

x̂T = 1
N

∑N
n=1 x̂

[n]
T =

[
x̂

[n]
tag ŷ

[n]
tag ẑ

[n]
tag

]T
Experimental results have demonstrated that RDPF2 operates an order of magnitude

faster than RDPF1, while maintaining similar performance levels. Furthermore, it was
found through experimentation that in environments with light multipath interference,
the estimated tag location changes almost continuously across different values of θ. This
behavior is contrasted in environments with rich multipath interference. Consequently,
the behavior of RDPF2 could potentially be used as a classifier to evaluate the degree of
multipath richness in an environment.

Additionally, by selecting a single random value θ, the modified algorithm can gen-
erate satisfactory results in a significantly shorter span of time. This finding presents
opportunities for quick, efficient, and relatively accurate localization in scenarios where
time is of the essence or computational resources are limited.
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Calibration Process

In addition to these modifications, another key aspect of this work is the implementation
of a calibration process that efficiently manages the phase offset disparities across an array
of antennas and reader chains. This process, used in conjunction with data preprocessing,
effectively reduces the discrepancies caused by these phase offset differences.

This calibration process begins by positioning a tag at a fixed location, with an antenna
mount firmly secured at an arbitrary distance, typically around 1 meter, facing the tag.
Each antenna, along with its associated cabling used in the experiments, is then connected
to its corresponding receiver chain.

Each antenna, in turn, is placed on the mount, and measurements are gathered for
that specific chain for a duration of ten seconds. Once the measurements for one antenna
are collected, the next antenna is placed on the mount, and the process is replicated
for all antennas in use. This procedure is designed to maintain an identical topology
and environment for the reader-tag channel across all antennas, effectively isolating the
constant phase offset differences.

Once the data are collected, a “wrap-around” phase mean is calculated for each an-
tenna. In scenarios where measurements are recorded close to both boundary values of the
interval [0, 2π), indicating a phase “wrap-around”, a traditional mean calculation would
result in skewed results. To circumvent this, in such cases the interval is divided into two
halves, [0, π) and [π, 2π), and 2π is added to the measurements belonging to the lower
half. The traditional mean is then calculated; if its value surpasses the [0, 2π) interval, a
mod 2π operation is applied to it, resulting in the final “wrap-around” mean.

The ten-second duration and the mean operation are utilized to ensure optimal av-
eraging out of the variable phase noise terms. After this, the constant phase offset for
each antenna is calculated relative to the first antenna, and it is corrected during the data
preprocessing phase using the following equation:

ϕ[i]
corr =

(
ϕ[i]

meas − ϕ
[i]
offset

)
mod2π, (2.40)

where, i serves as an indicator for the i-th antenna. This detailed calibration process
further increases the accuracy and reliability of our localization process.
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Figure 2.4: Our robotic platform

2.2.4 Experimental Results and Analysis

We conducted four indoor experimental campaigns using an Impinj Speedway R420 RFID
reader. To effectively control the reader’s parameters, we developed software utilizing
Impinj’s LTK API. Our setup involved an MTI MT-242032 7 dBic reader antenna and
up to three FlexiRay SF-2110 5 dBi antennas. The reader’s transmission (Tx) power was
configured within the range of 20 dBm to 30 dBm.1 Across all campaigns, we observed
that an increase in the reader’s Tx power correspondingly increased the number of tag
measurements.

During the first campaign (Fig. 2.5), the tag was successfully interrogated at 56 and
20 positions, at Tx powers of 30 and 20 dBm, respectively. In the second and third
campaigns (Fig. 2.7), each tag was interrogated approximately 900 times at 30 dBm and
about 400 times at 20 dBm. In the fourth and final campaign, each tag was interrogated
about 300 times at 30 dBm and approximately 100 times at 20 dBm. However, at these
respective Tx powers, 4 and 51 tags could not be interrogated. Due to the low success

1Cable losses, as well as the reader’s output power, were measured using a Vector Network Analyzer
(VNA) and a spectrum analyzer, respectively.
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rate of unique tags being interrogated at 20 dBm, measurements at this power level were
not included in this campaign.

For the purpose of comparison, we also implemented two state-of-the-art RFID phase-
based localization methods: BackPos [43] and Relock [21]. The performance metrics used
were the Mean Absolute Localization Error (MAE) E[|e|] and the Root Mean Squared
Localization Error (RMSE)

√
E[|e|2]. Here, e △= ||x̂T − xT||2 represents the estimation

error metric.

Campaign 1 - Light Multipath

During the first experimental campaign (Fig. 2.5), an Impinj Speedway R420 RFID reader
equipped with a single MTI MT-242032 antenna was used. This antenna was connected
to the reader via a 0.9 dB loss coaxial cable, and an Alien ALN-9540 (Higgs-2) RFID tag
was placed in a fixed position within an unobstructed indoor setting. The experiment
involved manually moving the antenna along a three-meter-long line in increments of five
centimeters. The tag was placed on the bisector of the antenna’s trajectory at a distance
of one meter away. Both the antenna and the tag were placed at a height of 1.52 meters
to reduce multipath interference.

Figure 2.5: Campaign I
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Once the setup was established, we carried out tag interrogation measurements at
every antenna position for four seconds per transmission power level. Upon the completion
of the measurement acquisition process, we calculated a “wrap-around” mean phase for
every position and power level. This modified mean was utilized once again (as described
in Section 2.2.3) to average out the phase noise and deal with the discontinuities caused
by the phase fluctuations near the interval boundaries.

The results of the first campaign are shown in Fig.2.6. All methods tested produced
satisfactory results, achieving a mean absolute error (MAE) below 2 cm at higher transmis-
sion power. In relative terms, this absolute error represents less than 2% of the one-meter
tag-to-reader range set for this campaign. However, a distinct trend was observed: Re-
Lock’s performance appeared to improve with an increase in the number of measurements,
while both RDPF1 and RDPF2 showed consistent performance irrespective of the mea-
surement count. Meanwhile, BackPos demonstrated notable sensitivity to the availability
of measurements, and its error margin appeared to increase with greater transmission
power, possibly due to amplified multipath interference.
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Figure 2.6: Campaign I: localization error vs Tx power

Regarding the implementation of RDPF methods, we set a search area of 1m × 1m for
particle initialization. The particle count was set at M = 105 for RDPF1 and M = 104

for RDPF2, the latter requiring fewer particles due to its distinct approach of employing
a common θ across all particles instead of individual randomization. It is worth noting
that, given the height of the tag and the reader antenna, the tag localization problem has
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two unknown parameters to estimate, [xtag, ytag], allowing for a comparison with BackPos,
which is a 2D tag localization method by design. Due to the relatively low number of
measurement locations, all execution times remained well below one second.

Campaign 2 - Rich Multipath

The second campaign replicated the manual reader movement setup of the first exper-
iment, but with alterations to introduce a multipath-rich environment. Two scenarios
were set up: Scenario A) involved placing 15 tags on books, neatly placed on a bookshelf,
each approximately 5.5 cm apart, and Scenario B) had tags only on the two books at
opposite ends of the bookshelf (see right part of Fig. 2.7). The same reader, antenna, and
cables from the previous campaign were used and measurements were taken every 5 cm
as before.

The aim of this campaign was to stress test the algorithms in an environment laden
with additional reflections and multipath effects among the tags. Scenario A, in particular,
was designed to challenge the operational limits of the tags due to the close proximity
that causes coupling. Alien ALN-9740 (Higgs-4) tags were used in this campaign. The
results for Scenario A are presented in Table 2.1.

Figure 2.7: Campaigns II & III: Robotic platform and bookshelf tag placement for cases
A (top-right) and B (bottom-right).

Despite the clustering of tags, the performance of the algorithms did not appear to be
significantly affected, rendering the results of Scenario B unnecessary. Notably, BackPos



2.2. Particle Filtering for Phase-Based RFID Localization 45

produced excessive errors in some instances, likely due to stronger multipath effects, and
was subsequently excluded from future campaigns.

In both the second and third campaigns, the RDPF1 and RDPF2 methods consistently
outperformed ReLock and BackPos at the lower transmission power of 20 dBm. Given that
the number of measurements was dictated by the transmission power, it can be deduced
that RDPF1 and RDPF2 provide robust estimates when the measurement quantities
fluctuate. Table 2.1 illustrates the absolute error e, and ex

△= |x̂tag−xtag|, which represents
the error along the x axis, parallel to the bookshelf, for three different tags. The minimum
error value for each scenario among the compared methods is highlighted in bold.

Campaign 3 - Rich Multipath with a Robot

In the third campaign (Fig. 2.7), a custom robotic setup was employed using a Turtlebot2
equipped with a Kobuki mobile base for movement and a Hokuyo UST-20LX LIDAR
sensor for Simultaneous Localization and Mapping (SLAM) operations. The antenna and
cables were replaced with more compact counterparts; a 0.74 dB loss coaxial cable and a
FlexiRay SF-2110 5 dBi antenna. The height of the antenna and tags was also reduced
to 1.1 m, further intensifying the multipath effects.
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Figure 2.8: Campaign III (moving robot) average absolute error between 2 standard
deviations across all 15 bookshelf tags.

The robot’s position was accurately estimated using Google’s Cartographer [44] for
mapping the environment and the Adaptive Monte Carlo Localization (AMCL) [45, 46]
during experiments. The robot moved at a steady speed of 10 cm/sec, with measurements
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taken continuously at an average interval of 0.5 cm. The results of this campaign are
presented in Table 2.1 and Fig. 2.8.

The RDPF methods maintained the same search area and particle numbers as in the
previous campaigns. The execution time for RDPF1, in the worst-case scenario (i.e.,
the largest number of measurements), was 2.5 sec per repetition per RFID tag, while
RDPF2 required 0.25 sec per value of θ per tag. For ReLock, a pre-filtering algorithm
was implemented to identify the largest window of consecutive measurements, ensuring
that every measurement location is within 5 cm of the next. This was necessary, as
ReLock requires that the phase between two consecutive measurements does not change
drastically, so phase unwrapping can work reliably. ReLock’s execution time per tag at
the same processing unit for the largest number of measurements was 0.25 seconds. Given
that the robot moves at a rate of 10 cm/sec, covering a trajectory of 3 meters required
30 sec. Thus, all the methods were considered “real-time” for the given scenarios.

Table 2.1: Experimental results of the bookshelf campaigns with all 15 tags placed for
Campaigns III & IV (case A).

Tag ID

#20 leftmost tag #12 center tag #6 rightmost tag

E[|e|] (m) E[|ex|] (m) E[|e|] (m) E[|ex|] (m) E[|e|] (m) E[|ex|] (m)

C
am

pa
ig

n
2

-M
an

ua
l

ReLock
20dBm 0.225 0.033 0.755 0.104 0.112 0.013

30dBm 0.016 0.012 0.032 0.025 0.048 0.012

RDPF1
20dBm 0.063 0.006 0.102 0.036 0.029 0.013

30dBm 0.103 0.012 0.087 0.017 0.018 0.014

RDPF2
20dBm 0.067 0.006 0.109 0.036 0.050 0.013

30dBm 0.106 0.012 0.079 0.018 0.051 0.013

BackPos
20dBm 0.223 0.043 0.361 0.041 0.194 0.001

30dBm 0.186 0.165 0.091 0.075 0.294 0.293

C
am

pa
ig

n
3

-R
ob

ot ReLock
20dBm 0.630 0.211 0.411 0.066 0.621 0.197

30dBm 0.363 0.090 0.172 0.036 0.251 0.058

RDPF1
20dBm 0.182 0.099 0.132 0.021 0.104 0.008

30dBm 0.254 0.068 0.158 0.046 0.138 0.051

RDPF2
20dBm 0.181 0.099 0.132 0.021 0.102 0.009

30dBm 0.251 0.067 0.158 0.046 0.137 0.051

Fig. 2.8 illustrates the third campaign’s average value of e and ex (red squares) across
all 15 tags, within two standard deviations (the vertical lines span 2 standard deviations).
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At 30 dBm, the methods performed adequately with error ex below 5 cm, which corre-
sponds to relative (to tag-reader distance) error below 5%; however, the RDPF methods
presented smaller variance, with a standard deviation of the order of 2 cm at 30 dBm Tx
power. For 20 dBm Tx power, RDPF1 and RDPF2 outperform Relock, probably due to
the sensitivity of the latter to the available number of measurements.

Campaign 4 - Rich Multipath 3D

The fourth and final campaign reemployed the robotic setup in a distinct, multipath-rich
environment. This time the objective was to assess the algorithms’ effectiveness across
varied environments and their capability to execute 3D localization.

There were 70 tags in this campaign, attached to either the backs or to the insides
of books. These books, which had different orientations relative to the robot-antenna’s
movement, were positioned on metallic shelves, thereby enhancing reflections. The books
were set at various heights, ranging from 0.15 to 2.3 m. The overall topology can be
observed in Fig.2.9. The actual trajectory of the robot, as computed by Cartographer, is
presented in Fig.2.10.

Figure 2.9: Campaign IV: Library topology.

In terms of the robotic platform, a longer pole was attached to accommodate more
antennas at greater heights. The number of FlexiRay SF-2110 antennas was increased to
three, located at heights of 1.06, 1.46, and 1.86 m. This setup expanded the area within
which tags could be effectively interrogated and resolved the localization ambiguity on
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the vertical z-axis. For this campaign, the search space was broadened to a 2.5 m × 1
m × 2.5 m space, while the number of particles remained at 105.

Table 2.2: 3D Experimental Results Across 70 Tags for different number of available
measurements per tag.

E[|e|] (m)
√

E[|e|2] (m)
Measurements per tag > 50 0.31 0.38
Measurements per tag > 100 0.29 0.36
Measurements per tag > 200 0.24 0.26

To the best of our knowledge, ReLock does not utilize multiple antennas simultane-
ously, so it was excluded from this campaign. The results of the campaign, which can be
found in Table 2.2, demonstrate that RDPF1 can accurately locate the tags in 3D space.
This accuracy increases with the number of available measurements. Specifically, in cases
where the number of measurements exceeds 200 (with an average number of measure-
ments being 300), our method locates the tags with a Mean Absolute Error (MAE) of 24
cm. This error equates to 9.6% of the maximum search space dimension (i.e., 2.5 m in
this case). The longest execution time for RDPF1 in the 3D scenario was 5 seconds, a
result of the increased number of measurements.

Figure 2.10: Campaign IV: Real map of the library produced by the Cartographer algo-
rithm, including the robot’s estimated trajectory and the actual location of the tags.
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Figure 2.11: Visualization of ŷtag with respect to θ for two different environments: LoS/lig
multipath (campaign I) vs strong multipath (campaign III). This behavior could be ex-
ploited for classification of the environment as multipath-rich or not.

2.3 Conclusion

Our proposed phase-based localization technique has demonstrated robust performance
amidst the challenges presented by complex and multipath-rich environments. The
method has proven to be resilient even in situations where the number of phase mea-
surements from the RFID tags is inconsistent and sporadic. Uniquely, this method can
smoothly adapt to varying numbers of reader antennas and efficiently capitalizes on the
mobility of the reader, as well as the autonomous self-localization ability of robot-readers.

In settings such as a library, the method has shown a remarkable capability to achieve
decimeter-level localization accuracy for 3D RFID tag localization. This level of precision
has been achieved without the need for excessive bandwidth usage or the presence of
any reference tags. The results and the testing environment effectively mimic realistic
settings where such technologies might be deployed, enhancing the applicability and real-
world relevance of our findings.

Moreover, our research has unveiled a potentially invaluable classification method.
This method can assist in characterizing an environment based on its multipath charac-
teristics, enabling a more tailored and efficient deployment of localization methods. By
determining whether an environment is multipath-rich or not, systems can be adjusted
and optimized accordingly to achieve the best performance.
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During the design and execution of these algorithms, special attention was paid to exe-
cution speed. The aim was to match the algorithm’s processing time with the operational
speed of the robot, ensuring real-time operation. This consideration is particularly crucial
in applications where swift and real-time localization is necessary, making our method a
promising solution for a variety of real-world scenarios.



Chapter 3

Reflection and Tag Joint
Localization

3.1 Introduction

Radio frequency identification (RFID) technology has shown promise in various applica-
tions, including logistics, healthcare, and smart cities, among others. While the preceding
chapter of this dissertation has explored various factors of RFID-based localization, yet
one issue remains conspicuously underexamined: the complex interference caused by re-
flections from nearby objects, often termed as "multipath effects."

Reflections from walls, furniture, and other objects in the environment can introduce
complexities that are often overlooked in conventional localization schemes. These reflec-
tions do not merely act as noise; they can significantly distort the electromagnetic field
in a nonconcise way and, consequently, the phase and received signal strength indicators
(RSSIs) used in localization algorithms. If not carefully taken into account, it can lead
to compromised system accuracy that can be misleading and unreliable, particularly in
cluttered or dynamically changing environments.

The presence of these reflections introduces a multifaceted challenge. First, the sheer
number of variables introduced by reflections complicates the mathematical modeling of
signal propagation, making conventional algorithms less effective. Second, reflections can
create "ghost" locations—spurious positions that appear valid to localization algorithms
but do not correspond to the actual position of the RFID tags. Finally, the unpredictable
nature of these reflections, influenced by various factors such as the material of reflecting
surfaces and their relative position to both the RFID tags and readers, adds an additional
layer of complexity to the problem.

51
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Ignoring this nuanced issue has real-world implications. Whether it is the inaccurate
localization of assets in an industrial setting or the risk of misidentification in tracking
systems, the consequences can be both a deterring factor for the use of RFID based
systems. As RFID technologies find applications in increasingly intricate environments,
understanding and mitigating the impact of reflections becomes a pressing, real-world
challenge.

In light of these challenges, this chapter aims to examine the specific issue of reflections
in RFID-based localization. We will delve into an innovative approach that provides a
method for the joint estimation of both RFID tags and reflectors’ locations. By doing so,
this methodology offers a robust solution that significantly mitigates the adverse impact of
reflections on localization accuracy. Furthermore, we will examine the theoretical under-
pinnings of this approach, discuss its implementation nuances, and explore its potential
applications in real-world scenarios 1.

Through this focused exploration, our aim is to contribute to a more nuanced un-
derstanding of the challenges and solutions surrounding reflections in RFID localization
and provide practical, reliable applications in increasingly complex real-world settings,
while also paving the way for future research in this often overlooked yet crucial aspect
of RFID-based localization.

3.2 Reflection and Measurement Modeling

Again in this study, we consider a monostatic RFID reader configured with M distinct
carrier frequencies, specified by an index m ∈ {0, 1, . . . , M − 1}. The reader is mo-
bile, potentially integrated within a robotic platform, thereby allowing it to gather N

measurements at distinct locations. These locations are numerically indexed by n ∈
{0, 1, . . . , N − 1}. The spatial coordinates of the reader during the n-th measurement
are denoted as x

(n)
T =

[
x

(n)
T y

(n)
T

]⊤
, while the coordinates of the RFID tag in question are

represented as x = [xtag ytag]⊤.
For the purpose of modeling large-scale path loss, we introduce the following equation:

LX =
(

λm

4πdX
0

)2 (
dX

0
dX

)uX

, (3.1)

1In the development of this methodology, substantial insights were derived in the extended work of
Spyridon Peppas in their diploma work [47].
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where dX
0 is denotes reference distance, and dX the distance specific to link X. The types of

links considered in this setup include point-to-reader (PT), point-to-wall (PW), wall-to-
reader (WT), and reader-to-virtual point (TV). These links are relevant when the reader
is located at a position designated T, a point of interest is at P, and its virtual image with
respect to a given reflector or wall is at V. The variable λm denotes the carrier wavelength
corresponding to the m-th frequency, and uX is the path-loss exponent.

When the path-loss exponent uX = 2, the large-scale path loss model simplifies to:

LX =
(

λm

4πdX
0

)2 (
dX

0
dX

)2

=
(

λm

4πdX

)2

. (3.2)

3.2.1 Modeling 1st and 2nd Order Reflections

As already mentioned, the signal reflections from the environment can cause significant
variations in the expected phase and RSSI measurements. Modeling the behavior of line-
of-sight (LoS) as well as the effect of reflected multipath signals is crucial for achieving
reliable and accurate localization. The focus of this subsection is to provide an extensive
model that accounts for both 1st and 2nd order reflections along with LoS signals. The
geometrical considerations can be found in Figure 3.1.

Modeling of Line-of-Sight (LoS) Signal

We commence by describing the model for the LoS signal. Here, we consider an RFID
tag located at a specific point P (as illustrated in Fig. 3.1). The mathematical expression
that represents the LoS signal received from the tag at the reader location n and carrier
frequency m is:

x0[m, n] =
√

2Pc η LPT, LPT exp
−j2π

d
(n)
PT + d

(n)
PT

λm

 (3.3)

=
√

2Pc η LPT︸ ︷︷ ︸
µ0

exp
−j4π

d
(n)
0

λm

 . (3.4)

Here, Pc refers to the carrier transmission power at passband, and η stands for the
backscattering efficiency of the tag. d

(n)
0 is the direct path distance between the RFID

reader and the tag for the n-th measurement. Importantly, Eq. (3.4) incorporates the
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Figure 3.1: Reflections with a wall. T is the transmitter, P is a grid point and V is the
image point of P

notion of a round-trip path—meaning the signal travels from the reader to the point of
interest and then returns.

Exploration of First and Second Order Reflections/Multipath

Alongside the LoS propagation, this study also delves into the impacts of first and second-
order reflections, also known as multipath effects. These effects are critical in environ-
ments where there are multiple reflective surfaces such as walls or metallic objects.

• 1st Order Multipath: In this case, the signal path from the reader to the point
of interest (tag) differs from the return path to the reader.

• 2nd Order Multipath: Here, the signal that travels on the round-trip path is
reflected twice, typically against a wall or some other reflector.

These reflections create interference patterns that can either amplify or diminish the
resultant signal at the reader and change the measured phase, thereby affecting the ac-
curacy of localization methods.

Understanding these first and second-order reflections is pivotal for the design and op-
timization of RFID systems, especially in complex environments with numerous reflective
surfaces. It helps improve the robustness of the system against localization errors due to
multipath phenomena.
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It is worth mentioning that while higher-order multipath effects do exist, they are
generally considered negligible for practical applications. The rationale behind this is
the exponentially diminishing power of these higher-order reflections. Each successive
reflection causes the signal to lose energy, rendering the effects of higher orders increasingly
trivial compared to the 1st and 2nd order effects. Therefore, this study mainly focuses
on understanding and modeling the 1st and 2nd order multipath phenomena, as they are
the most impactful in terms of both power and potential to cause localization errors.

First Order Reflection

The inclusion of first order reflections can significantly improve the accuracy of the re-
ceived signal model. Illustrated in Fig. 3.1, these reflections emerge when the RFID reader
captures signals that have encountered a single reflective surface before arriving at the
reader. The reflective surface can often be a wall, partition, or any other object with
reflective properties.

The expression for the reflected signal component received at the reader’s n-th location,
on the m-th carrier frequency, can be described by the following mathematical model2:

x1[m, n] =
√

γw 2Pc η LPT LTV exp
−j2π

d
(n)
PT + d

(n)
PW + d

(n)
WT

λm

 (3.5)

=
√

γw 2Pc η LPT LTV︸ ︷︷ ︸
µ1

exp
−j2π

d
(n)
0 + d(n)

r

λm

 . (3.6)

Here, γw ∈ (0, 1) represents the reflection coefficient, specifying the fraction of the
incident signal that is reflected upon striking the wall. The direct Point-to-Tag distance is
denoted by d0 ≡ dPT. The parameter d(n)

r represents the distance of the indirect/reflected
path, calculated based on image theory and the concept of a virtual point (or image point)
generated by the reflection.

Assuming a reflector or wall located at a position x = xw, parallel to the y-axis
(Fig. 3.1), the reflected path’s distance d(n)

r is equal to the distance between its virtual or
image point and the reader at its n-th location:

2The term LTV is evaluated according to Eq. (3.2) where dTV = dTW + dWV = dTW + dWP ≜ dr.
This follows the assumption of specular reflection, which is aligned with ray-based geometry models, for
example, the two-ray model. Alternative scattering models that employ LTV = LTW × LWV were also
examined but yielded significantly attenuated reflections. It is critical to have sufficiently “large” reflected
power for the algorithm to function effectively, as will be elaborated further.
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d(n)
r =

√(
2xw − xtag − x

(n)
T

)2
+
(
ytag − y

(n)
T

)2
. (3.7)

Second Order Reflection

Similarly, the second-order reflection can plays a crucial role in complex environments
with multiple reflective surfaces and certain geometric conditions. This is modeled as
follows:

x2[m, n] =
√

γwγw 2Pc η LTVLTV exp
−j2π

d
(n)
PW + d

(n)
WT + d

(n)
PW + d

(n)
WT

λm

 (3.8)

= γw

√
2Pc η LTV︸ ︷︷ ︸

µ2

exp
(

−j4π
d(n)

r

λm

)
(3.9)

Here, γw is the reflection coefficient for the wall, assumed to be the same for both
reflections. The product γwγw indicates that the signal undergoes two reflections. LTV

denotes the path loss between the Transmitter and the Virtual point of reflection. The
exponential term accounts for the phase shift experienced due to the traveled distance.
Notably, d(n)

r is the one way distance of the reflection path.

Compound Signal Model

In a practical setup, the received signal y[m, n] is a combination of various components:
the LoS signal x0[m, n], multipath signals xi[m, n], and noise w[m, n]:

In the general case, the compound received signal with all the possible multipath
effects can be modeled as the superposition of the individual signals as follows:

y[m, n] = x0[m, n]︸ ︷︷ ︸
LoS

+
∞∑

i=1
xi[m, n]︸ ︷︷ ︸

multipath

+ w[m, n]︸ ︷︷ ︸
white noise

. (3.10)

Here, the noise w[m, n] ∼ CN (0, σ2) is assumed to be white, circularly symmetric
complex Gaussian noise with zero mean and variance σ2.

Due to computational and practical considerations, such as signal attenuation, we
limit our focus to first and second-order reflections. Hence, from Eq. (3.10) the simplified
model becomes:
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y[m, n] = x0[m, n]︸ ︷︷ ︸
LoS

+ x1[m, n]︸ ︷︷ ︸
1st order

+ x2[m, n]︸ ︷︷ ︸
2nd order

+ CN
(
0, σ2

)
︸ ︷︷ ︸

white noise

. (3.11)

Signal-to-noise-ratio is calculated considering the reflected signals as useful signals as
is defined as:

SNR =
E
[
|x0[m, n] + x1[m, n] + x2[m, n]|2

]
σ2 , (3.12)

where E[·] denotes the expected value.

3.2.2 Adopted Signal Model

LoS Formulation

The region of interest is divided into a regular square grid of Nx × Ny points with dx, dy

resolution, representing the number of points in x and y-axis, respectively. Let σp be
the complex reflectivity of the p-th spatial grid point of interest (or equivalently the p-th
target), where p = 0, 1, . . . , NxNy − 1. Note that the absence of a traget at a particular
grid point is simply represented by a zero value for the corresponding target reflectivity:

σp =

 0, absence of a target
a, presence of a target {a ∈ C | a ̸= 0}.

(3.13)

For monostatic reader operation the target response can be expressed as follows:

y[m, n] =
NxNy−1∑

p=0
σp exp (−j2πfmτp,n) , (3.14)

Here τp,n denotes the round-trip propagation delay between the p-th target/point of
interest and reader antenna at the n-th location and is equal to:

τp,n = 2dp,n

c
= 2λmdp,n

fm

. (3.15)
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where dp,n is the one-way trip distance between the p-th target/point of interest and
reader antenna at the n-th location and c the speed of light.

The measured data vector y ∈ CMN×1 is obtained by stacking the measurements
y[m, n] into a single column vector:

y =



y[0, 0]
...

y[M − 1, 0]
y[0, 1]

...
y[M − 1, N − 1]


. (3.16)

The complex reflectivities σp can also be vectorized in s ∈ CNxNy×1 as follows:

s =


σ0

σ1
...

σNxNy−1

 . (3.17)

Finally the matrix A ∈ CMN×NxNy contains the phase terms of the target model and
can be modelled as:

A = exp



−j2π



f0τ0,0 f0τ1,0 . . . f0τNxNy−1,0

f1τ0,0 f1τ1,0 . . . f1τNxNy−1,0
... ... . . . ...

fM−1τ0,0 fM−1τ1,0 . . . fM−1τNxNy−1,0

f0τ0,1 f0τ1,1 . . . f0τNxNy−1,1

f1τ0,1 f1τ1,1 . . . f1τNxNy−1,1
... ... . . . ...

fM−1τ0,N−1 fM−1τ1,N−1 . . . fM−1τNxNy−1,N−1





, (3.18)

or expressed like this:



3.2. Reflection and Measurement Modeling 59

{A}ip = exp (−j2πfmτpn) , m = i(modM), n = ⌊i/M⌋, (3.19)

i = 0, 1, . . . , MN − 1. (3.20)

Using the above, the following linear system is formed, utilizing M ×N measurements
from RFID tags that could potentially be at Nx × Ny points:

y = As. (3.21)

Extended Reflections Formulation

In practical scenarios, the received signal is influenced by multiple propagation paths due
to obstacles and reflectors in the environment. To accurately represent this phenomenon,
we can expand on the LoS formulation described above by introducing a new complex
reflectivity vector, denoted as s̃, which consolidates all the different propagation paths.
Formally, the vector s̃ is defined as:

s̃ =
[(

s(0)
)⊤ (

s(1)
)⊤

. . .
(
s(K−1)

)⊤
]⊤

, s̃ ∈ CNxNyK×1. (3.22)

In this expression, s(0) represents the complex reflectivity of the LoS path, whereas s(k)

represents the complex reflectivity for the k-th propagation path. The subscript K − 1
indicates that a total of K paths are being considered, including the LoS and various
reflection paths.

To accommodate the multiple propagation paths, we also define an augmented matrix
Ã(w). This matrix contains the phase terms corresponding to each of the K propagation
paths:

Ã (w) =
[
A(0) A(1) (w) . . . A(K−1) (w)

]
, Ã ∈ CMN×NxNyK . (3.23)

In this matrix, A(0) refers to the phase terms associated with the LoS path. All other
matrices, A(k) (w) for k ≥ 1, represent the phase terms for the k-th reflected propagation
path and depend non-linearly on a parameter vector w. This vector encapsulates the
characteristics of the various walls or reflectors in the environment.
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With these new definitions, we can now represent the entire system using a linear,
with respect to y, Ã and s̃, equation that incorporates all the propagation paths:

y = Ã (w) s̃. (3.24)

It is crucial to note that while the system appears linear, the dependency on the wall
parameters encapsulated in w is inherently non-linear. Therefore, despite the linearized
representation, the complexity of real-world environments and their non-linear interac-
tions are accounted for in this formulation.

Solving for Known Walls

When the locations of walls and reflectors are known a priori, the reflection model ex-
pressed in Equation (3.24) can be treated as a linear system. Previous research on this
subject has been conducted, such as the work presented in [48]. However, it is impor-
tant to note that their study differs from the current work in several aspects. Notably,
they employed wideband transceivers operating in the frequency range of 1 to 3 GHz.
Moreover, their model does not take into account the propagation losses that arise in the
vector y.

It is important to note that each vector s(k) is sparse and all vectors have the same
support. This attribute enables us to frame the problem as an optimization task focused
on minimizing the mean squared error while promoting group sparsity. Mathematically,
the optimization problem can be formulated as follows:

ˆ̃s = arg min
s̃

1
2
∥∥∥y − Ãs̃

∥∥∥2

2
+ τ ∥s̃∥2,1 . (3.25)

Here, || · ||2,1 refers to the l2,1-norm, which promotes group sparsity, and τ is the
regularization parameter controlling the trade-off between fidelity to the data and sparsity.
The l2,1-norm is defined as:

∥s̃∥2,1
△=

NxNy−1∑
p=0

∥∥∥∥[s(0)
p , s(1)

p , . . . , s(K−1)
p

]⊤∥∥∥∥
2

. (3.26)

To solve this optimization problem of Eq. (3.25), specialized numerical tools are of-
ten required. In this context, we utilize the SpaRSA toolbox [49] to find the solution.
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The toolbox provides efficient algorithms for sparse reconstruction and has been proven
effective for problems of similar nature.

By solving this optimization problem, we can effectively estimate the complex reflec-
tivity vector s̃, which enables us to localize the target.

3.3 Joint Wall and Tag Localization

In the general case of real-world applications, the environment is seldom as predictable
as one would hope; any object could serve as a reflector, and thus, its precise location
remains uncertain. Consequently, the wall parameter vector, denoted as w, is also not
definitively known. To tackle this issue, we introduce an optimization problem that aims
for the joint estimation of both the wall parameter vector w and the complex reflectivity
vector s̃. The optimization problem can be formally expressed as:

min
w

min
s̃

1
2
∥∥∥y − Ã (w) s̃

∥∥∥2

2
+ τ ∥s̃∥2,1 . (3.27)

The overall optimization problem is non-convex, but it can be dissected into two
components. Specifically, the inner minimization problem involving s̃ is convex, while the
outer minimization with respect to w is non-convex. This dual-structured optimization
scheme can be solved in an alternate optimization manner and has precedents in literature;
for example, a similar approach was employed in [50] for wall error correction. That study
utilized Particle Swarm Optimization (PSO) and Quasi-Newton methods (QN) to solve
the outer minimization problem, leveraging prior knowledge of wall locations obtained
through building layout estimation techniques.

However, in the context of our study, we opt for a different path. Only narrowband
measurements are used and no prior knowledge of wall locations is assumed. The estima-
tion of wall positions is achieved through the use of a parameter search grid. While this
grid-based approach increases the accuracy of the estimation, it simultaneously increases
computational demands. To manage this heightened complexity, our strategy employs
a coarsely-discretized grid initially. Once a candidate parameter, represented by ŵ, is
identified, we then refine this approximation by introducing random perturbations in its
vicinity. The purpose of these perturbations is to fine-tune the estimate, thus offering a
balance between computational efficiency and estimation accuracy.
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3.4 Experimental Evaluation

Outdoor experiments were conducted in order to further examine and verify the behaviour
of the proposed method. An Impinj Speedway R420 RFID reader was utilized which is
able to report both the phase and the RSSI of the received signal. Due to the modeling
described in the previous sections, it is possible to exploit both phase and RSSI measure-
ments. In particular, if µRS is the RSSI measurement vector, which is converted from
the reader-reported power units (dBm) to amplitude units (V) and ϕreader is the phase
measurement vector in the interval [0, 2π), then the measurements that will be included
in the SpaRSA algorithm are:

y = µRS ⊙ exp (−jϕreader). (3.28)

Two antennas were tested, namely FlexiRay SF-2110 (circularly polarized, directional)
and VERT 900 (linearly polarized, omni-directional), assuming far field conditions (2.8
m distance from reader-to-tag). Reader’s transmission power was set to 30 dBm and
the carrier frequency used was 866.9 MHz. A single location estimate was obtained,
from about 40 phase/RSSI pairs, one from each location of the reader. Two Alien ALN-
9740 (Higgs-4) RFID tags were used and IDs 1 and 2 were assigned to them. Tags 1
and 2 were placed 0.84 m and 2.35 m away from the wall, respectively. The tags and
the reader were at the same height (1.52 m for FlexiRay and 1.8 m for VERT) above
ground (Fig. 3.2). Aluminum foil was placed on the wall to ensure a strongly reflective
surface. Intuitively, it is expected for the reflector/wall to have a stronger impact on the
measurements associated with tag 1, due to its wall proximity.

Joint tag-wall localization and known wall location methods assuming 2 reflection
modes (1st order or 2nd order reflection), were examined. Methods that assume only LoS
were compared, namely SpaRSA with the direct path only (K = 1) by solving a complex
LASSO problem, Weighted Cosine Likelihood Algorithm (WCLA) [51], which exploits
phase measurement differences and the RDPF particle filtering method.

An exhaustive search method was also used which utilized a 1 m wall grid with a
resolution of dw = 5 cm (containing the wall’s true location). The alternating optimization
utilized 1 m wall grid with a resolution of dw = 20 cm which does not coincide with the
true location of the wall. The tag grid for all the methods was a 2m × 2m square, with a
resolution of 3 cm. The tags’ grid also did not coincide with the tags’ true locations.

The tag and wall localization errors are offered in Tables 3.1, 3.2, respectively. It
is observed that the experiments with the directional FlexiRay, fully enjoy the benefits
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Figure 3.2: Experimental setup using aluminum foil to imitate and reinforce reflections

offered by considering a first order reflection model; it can be seen that while tag 1 is
successfully localized, the localization for tag 2 fails (in the case of tag 2 larger errors are
observed). That is an expected behaviour, since tag 1 suffers from a strong reflection from
the side wall (due to its proximity to the wall). This consideration is also corroborated
from the high error offered by the LoS methods. In the case of tag 2, which is far away
from the wall, the modeling is unable to capture the reflector, because the amplitude of the
reflected signal is significantly attenuated. In addition, it is important to mention that
second order reflection modeling, given the radiation pattern of the FlexiRay antenna,
does not fit well enough with the errors considering joint search of the tag and wall
position.

For the experiments utilizing the VERT 900, the joint algorithms are failing to give the
exact location of the wall. Additionally, 2nd order reflection offers smaller tag localization
error for the closer-to-the-wall tag 1 (as opposed to the FlexiRay case, where 1st order
performs better). In the VERT 900 case, while the localization error for the tag’s location
is small, the error in finding the wall’s location is relatively high. These interesting
findings are under investigation and it is conjectured that the utilization of the specific
VERT antenna, which is omnidirectional in the horizontal plane, introduces more modes
of reflection/propagation, compared to the directional FlexiRay, not taken into modelling
account.
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Table 3.1: Tag localization error (near wall: Tag 1, far from wall: Tag 2).

e = ∥x − x̂∥2 (cm)

FlexiRay Vert 900

Tag 1 Tag 2 Tag 1 Tag 2

SpaRSA (K = 1/LoS) 79 32 82 8

WCLA 79 35 73 23

RDPF (σ = 0.03) 52 27 79 12

RDPF (σ = 0.06) 19 31 50 49

SpaRSA (K = 2, 1st Order) 5 20 8 11

SpaRSA (K = 2, 2nd Order) 5 17 8 11

Exh. Search (1st Order) 5 29 22 11

Exh. Search (2nd Order) 14 32 2 201

Alt. Opt. (1st Order) 14 29 85 11

Alt. Opt. (2nd Order) 14 201 14 201

Table 3.2: Wall localization error.

e = |xw − x̂w| (cm)

FlexiRay Vert 900

Tag 1 Tag 2 Tag 1 Tag 2

Exh. Search (1st Order) 0 10 20 5

Exh. Search (2nd Order) 45 50 50 50

Alt. Opt. (1st Order) 5 14 24 3

Alt. Opt. (2nd Order) 45 51 45 48

3.5 Conclusion

What this work clearly demonstrated is that overlooking the presence of a strong reflector
while solely relying on a Line-of-Sight (LoS) model can severely compromise the accuracy
and reliability of RFID-based localization systems. This oversight can result in significant
performance degradation, as the model will fail to capture the complex signal interactions
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in the environment. Conversely, efforts to eliminate multipath effects may be counter-
productive when the reflections are considerably weak and have a minimal impact on the
received signal. Such misguided attempts to mitigate non-impactful multipath reflections
could inadvertently introduce new errors into the system.

The research presented here not only introduces novel algorithms for the simultaneous
localization of both reflectors and tags but also underscores the critical importance of
properly accounting for the various environmental conditions that can influence system
performance. We have empirically demonstrated the potential pitfalls of neglecting these
factors, offering a robust, real-world validation of theoretical predictions.

One promising avenue for future research involves the creation of adaptive algorithms
capable of classifying environmental conditions as either LoS or non-LoS. Such algorithms
should also determine the order of reflections, whether first or second order, in non-LoS
settings. This type of intelligent classification can enable more accurate localization by
dynamically adjusting the algorithm’s assumptions based on the specific characteristics
of the environment in which it operates.

Additionally, the challenges posed by limited bandwidth can be mitigated through
clever experimental design, such as by increasing the spacing between measurements.
This approach could make the system more robust to bandwidth limitations and possibly
pave the way for the deployment of mobile readers, adding another layer of flexibility to
RFID localization efforts.

In summary, this work serves as both a demonstration of the effects of undermodeling
and proof of concept for future research in the realm of RFID localization. It underscores
the nuanced interplay between various types of reflections and their impact on system
performance, while also laying the groundwork for the development of more adaptive and
intelligent localization schemes.



Chapter 4

Bistatic - Multistatic Localization

4.1 Introduction

This chapter introduces a novel approach to address estimation of Direction of Arrival
(DoA) and localization by employing phase-based, narrow-band measurements and inter-
sections of ellipses derived from the bistatic architecture model.

The research presented herein explores a unique multistatic architecture. In this setup,
both the illuminating and the receiving antennas are strategically aligned in a straight
line. While this arrangement might appear unconventional when compared to traditional
configurations, it unlocks a suite of advantages, particularly in addressing and leveraging
the inherent ambiguities of phase measurements. As we journey through this chapter, we
will analyze how these ambiguities, which are typically viewed as challenges, are innova-
tively transformed into tools for enhanced DoA estimation.

By the end of this chapter, a comprehensive understanding of this innovative method
and its comparison to the revered MUSIC algorithm will be provided. In the case of 2D
localization accuracy, this approach surpasses existing state-of-the-art algorithms. Lastly,
the potential of extending this method to cater to 3D scenarios will also be touched upon,
offering a glimpse into future possibilities of RFID localization.

The interrogation architecture plays a pivotal role in the performance and capabilities
of RFID systems. While the monostatic architecture and its applications were discussed
in the previous chapters, this section focuses on the bistatic/multistatic architecture,
discussing its inherent advantages, drawbacks, and its implications on DoA estimation.

In contrast with the monostatic approach, the bistatic architecture utilizes two sepa-
rate antennas to handle transmission and reception, while the multistatic architecture (as
a bistatic extension) can utilize multiple antennas for transmission and reception. This
separation can offer enhanced flexibility in antenna placement and orientation, potentially

66
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leading to improved coverage and signal quality. The architecture’s design can help miti-
gate some of the challenges inherent in phase measurements, particularly the ambiguities
in distance. However, the increased hardware complexity might pose challenges in terms
of system cost and integration.

When it comes to the realm of DoA estimation, the choice of architecture can pro-
foundly influence the results. The research encapsulated in this chapter leans towards
a multistatic approach, which, while sharing similarities with bistatic configurations, in-
troduces its unique advantages, especially in the elliptical DoA estimation method being
presented 1.

4.2 Problem Formulation and Phase Model

One of the fundamental challenges in RFID systems is the accurate and reliable estimation
of the Direction of Arrival (DoA). Traditional methodologies often encounter challenges
due to the inherent ambiguities associated with phase measurements. These ambiguities,
which are a consequence of the periodic nature of phase, introduce uncertainties in distance
estimations. Let’s formulate this more explicitly.

Within the domain of RFID localization, multistatic setups offer a unique advantage
due to their diverse observational viewpoints. In the configuration posited in this work,
a single transmitter (Tx) antenna works in tandem with a set of M > 1 receiver (Rx)
antennas, all of which are precisely aligned along the same line, unless specified otherwise.

For this co-linear arrangement, the Tx and Rx antennas, in conjunction with the
RFID tag, define a distinct plane. The RFID tag’s position on this plane is denoted as
xT ≜ [xtag ytag]T . Similarly, the positions of the Tx and Rx antennas on this plane are
denoted as xTx ≜ [xTx yTx]T and xRx,i ≜ [xRx,i yRx,i]T , with i spanning from 1 to M

representing the ith receiving antenna, respectively. It is also noted that the Tx and Rx
antennas are facing towards the same direction, effectively covering the same half-plane.

The end-2-end complex channel gain for path i is denoted as follows:

hi = hCT hTR,i = |hCT hTR,i| e−jϕi ∈ C, (4.1)

where hCT and hTR,i denote the baseband complex channel coefficients for the TX (Carrier
emitter) antenna-to-tag and tag-to-ith Receiver antenna, respectively. Furthermore, hi ∈
C, |hCT hTR,i| ∈ R+ and ϕi ∈ [0, 2π). Thus, the induced phase of the propagation ith path
can be expressed as follows:

1A more extensive version of this work has been conducted by Konstantinos Skyvalakis and is presented
as a part of his master’s thesis [52].
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ϕprop,i ≡ ϕi = ∠hi = 2π

λ
(dCT + dTR,i) + ϕmult

i , (4.2)

where dCT ≜ ||xTx − xT||2 denotes the Euclidean distance between the Tx antenna and
the RFID tag, dTR,i ≜ ||xRx,i − xT||2 denotes the Euclidean distance between the tag
and the ith Rx antenna, λ represents the carrier wavelength and the ϕmult

i accounts for
phase shifts induced by the multipath effect during transmission from the Tx antenna and
reception from the ith Rx antenna.

In multistatic configurations, it is common to have each Tx and Rx antenna belonging
to separate devices. Given that every individual device operates with its unique internal
oscillator, there is an inherent risk of slight discrepancies causing carrier frequency offsets
(CFO) and carrier phase offsets (CPO) between the devices.

In this work, these offsets were mitigated by utilizing an external function generator,
effectively synchronizing the different software-defined radios (SDR) used.

Similarly to what was described in the previous chapters, the phase measured at the
reader is influenced by a number of factors aside from the spatial configuration and the
direct transmission channel. The tag’s type and its reflection coefficient induce a phase
variation represented by the term ϕtag. In addition, the constant phase offset ϕ̂0 from
cabling delays as well as the variable phase noise ϕ̂n

i , must be considered.
Taking into account all these determinants, the comprehensive phase model at Rx i

can be delineated as follows:

ϕout,i = ϕprop,i + ϕ̂0 + ϕtag + ϕ̂n
i

= 2π

λ
(dCT + dT R,i) + ϕmult

i + ϕ̂0 + ϕtag + ϕ̂n
i︸ ︷︷ ︸

ϕn
i

= 2π

λ
(dCT + dT R,i) + ϕn

i

Since the phase measured by typical RFID readers is periodic in the range [0, 2π), a
modulo operator has to be applied to ϕout,i to obtain the measured phase:
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ϕRx,i = ϕout,i mod 2π

=
[2π

λ
(dCT + dT R,i) + ϕn

i

]
mod2π

(∗)=

2π

λ
(dCT + dTR,i) mod 2π + ϕn

i mod 2π︸ ︷︷ ︸
ϕ̃n

i

 mod 2π

=
[2π

λ
(dCT + dTR,i) mod 2π + ϕ̃n

i

]
mod 2π, (4.3)

where at (∗)=, the property (α + β) mod γ = [(α mod γ) + (β mod γ)] mod γ was ex-
ploited and ϕ̃n

i the phase noise term with support in [0, 2π).
Temporarily ignoring the phase noise term ϕ̃n

i and solving the above equation for the
sum of distances:

dCT + dT R,i = λ
ϕRx,i

2π
+ kiλ, ki ∈ N, (4.4)

we can clearly observe the source of the distance ambiguity inherent in the conversion of
phase measurement to distance since the same phase measurement ϕRx,i corresponds to
an infinite number of sum of distances that differ by λ.

4.3 Ellipses based Method and Ambiguity Resolu-
tion

Addressing the intricacies of distance ambiguity and phase noise stands as the cardinal
challenge of this research. The approach described in the chapter is based on leveraging the
geometric properties derived by the phase model described above. This work introduces
a novel technique for estimating the direction of arrival and localizing tags. Central to
this technique are the ellipses derived from the phase model. This distinctive utilization
of ellipses lends the method its distinctive moniker: Elliptical DoA (EllDoA).

As can be seen in Eq. (4.4), given a receiving antenna i and its phase measurement, a
set of compound distance values (dCT +dTR,i), can be calculated for a number of ki values
in the {0, 1, . . . , K} set. Each of those compound distances defines a concentric ellipse on
the plane with foci the locations of the Tx and ith Rx antennas. For a clearer visualization
of this intricate geometric arrangement, one may refer to Fig. 4.1, which showcases the
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scenario with M = 2 Rx antennas and a total of K = 5 concentric ellipses for each Tx-Rx
pair.

According to the model described above, Eq. (4.4) provides the major axis 2ai (longest
diameter) of the ellipse:

2ai[ki] = (dCT + dT R,i) = λ
ϕRx,i

2π
+ kiλ. (4.5)

The linear eccentricity ci (and the semi-minor axis bi[ki], assuming bi[ki] ≤ ai[ki]) can
be easily found using the known coordinates of the foci; ci is independent of ki:

ci = ||xTx − xRx,i||2/2, (4.6)

bi[ki] =
√

a2
i [ki] − c2

i . (4.7)

To estimate the Direction of Arrival (DoA) of a tag’s signal, a configuration with only
two receiving antennas is required. Specifically, we focus on cases where the number of
antennas M is set to 2, corresponding to the indices i ∈ 1, 2.

By convention, it is assumed that all antennas, whether transmitting or receiving, are
positioned along the x-axis. Thus, the coordinate vector for the transmitting antenna
is denoted as xTx ≜ [xTx 0]T and for the ith receiving antenna, it is represented by
xRx, i ≜ [xi

Rx 0]T . Given this configuration, the central points of the ellipses generated
from each receiving antenna’s measurement are also located on the x-axis2.

An essential parameter in this setup is δx, which denotes the distance between the
two receiving antennas. It is defined as δx ≜ |x1

Rx − x2
Rx|.

Building on the above framework, the ellipses associated with the measurements from
the two receiving antennas (for i ∈ 1, 2) can be mathematically characterized by the
equation:

(x − xi)2

a2
i [ki]

+ y2

b2
i [ki]

= 1, ki ∈ 0, . . . , K, (4.8)

2It is worth noting that this convention is not necessary. Even if the entire setup was mobile and could
be rotated, we could always translate and remap our coordinate system so that the antennas retain their
position on the x-axis. This ensures notational simplicity and consistency regardless of the actual physical
orientation of the equipment. This aspect of the design is particularly advantageous when considering
real-world scenarios in which antenna configurations might need to be adjusted or moved.
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Figure 4.1: EllDoA method; with (left), without (right) ambiguity; δx > λ/2, δx < λ/2,
respectively.

where the coordinates (x1, 0) and (x2, 0) denote the centers of the ellipses derived from the
first and second receiving antennas, respectively. These centers can be straightforwardly
determined given the known positions of the antennas.

One of the most compelling features of this setup is its ability to pinpoint the DoA
of a signal based on the intersection points of the ellipses produced by the two receiving
antennas. An illustration of this can be found in Fig. 4.1-left. However, a challenge
arises in the form of ambiguity: the two ellipses might intersect at two distinct points,
suggesting two potential DoA directions. While one way to resolve this ambiguity involves
dynamically steering the antenna axis (using mechanisms such as a robotic platform), this
might be operationally complex and not always feasible.

Remarkably, this is where the theorem provides a pivotal insight. If the inter-antenna
spacing δx is constrained such that δx < λ/2 (with λ representing the wavelength of
the signal), the ambiguity is naturally eradicated. The unambiguous DoA estimation
when adhering to this constraint can be visualized in Fig. 4.1-right. With a reduced
inter-antenna spacing, the ellipses’ intersections are limited, alleviating the challenge of
multiple DoA estimations.

Lemma 4.1. Assuming one Tx and two Rx antennas are located on the same line, if
the distance δx between the two receiving antennas is δx < λ/2, then a unique direction
of arrival (DoA) θ of the tag signal can be found, irrespective of the location of the Tx
antenna.

The lemma is a direct consequence of the following theorem, which offers such unique
DoA in closed form, when δx < λ/2.
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Theorem 4.1. Assume one Tx and two Rx antennas located at the same line, ϕA ≡ ϕRx,1,
ϕB ≡ ϕRx,2 denote the phase at the receiving antennas, respectively and α

△= ||xT−xRx,1||2,
β

△= ||xT − xRx,2||2.

A B

Tag

(a) α < β

A B

Tag

(b) α > β

Figure 4.2: Direction of Arrival (DoA) angle θ.

If the distance δx between two receiving antennas satisfies δx < λ/2, then direction of
arrival (DoA) θ ∈ (0, π/2) of the tag signal (Fig. 4.2) i.e., the angle between the direction
of arrival and the perpendicular to the line of the antennas, passing from one of the Rx
antennas (from receiving antenna that offers ϕA if α > β, or from receiving antenna that
offers ϕB if β > α), shown in Fig. 4.2, is given by:

For α > β,

θ ≈

 sin−1
(

λ (ϕA−ϕB)
2 π δx

)
, if ϕA > ϕB,

sin−1
(

λ (ϕA−ϕB+2 π)
2 π δx

)
, if ϕA < ϕB.

and for α < β,

θ ≈

 sin−1
(
−λ (ϕA−ϕB−2 π)

2 π δx

)
, if ϕA > ϕB,

sin−1
(
−λ (ϕA−ϕB)

2 π δx

)
, if ϕA < ϕB.

Theorem 4.1 assumes far-field propagation, i.e., tag is located at least 10 λ away from
the antennas, so that according to Fig. 4.2, sin θ ≈ (α − β)/δx for α > β (and a similar
approximation for β > α). The theorems proof follows:
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A B O

Tag

Figure 4.3: Topology of one Tx (point O), two Rx antennas (points A and B) and a tag.

Proof of Theorem

Proof. Lets assume that one Tx and two Rx antennas are placed at collinear points O, A
and B respectively. A tag is placed on a random location as depicted in Fig. 4.3.

According to this topology and using Eq. (4.3) ignoring the noise term ϕ̃n
i , the phase

measured by the two antennas can be expressed as:

ϕB = β + x0

λ
· 2π mod 2π (4.9)

and taking into account that (x + y) mod 2π = (x mod 2π + y mod 2π) mod 2π,

ϕA = α + x0

λ
· 2π mod 2π

= α + x0 + β − β

λ
· 2π mod 2π

=
(

x0 + β

λ
· 2π + α − β

λ
· 2π

)
mod 2π

=
(

x0 + β

λ
· 2π mod 2π + α − β

λ
· 2π mod 2π

)
mod 2π

=
(

ϕB +
(

α − β

λ
· 2π

)
mod 2π

)
mod 2π. (4.10)

Assuming that δx < λ/2, from the triangular inequality it holds that:

|α − β| < δx

⇒|α − β| < λ/2 (4.11)
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Lets suppose now that α > β, Eq. (4.11) can be written as:

0 < α − β < λ/2

0 <
α − β

λ
· 2π < π. (4.12)

Thus, from Eqs. (4.10), (4.12) we obtain:

ϕA =
(

ϕB + α − β

λ
· 2π

)
mod 2π

⇒ϕB + α − β

λ
· 2π = ϕA + k2π

⇒ϕA − ϕB = α − β

λ
· 2π − k2π. (4.13)

Assuming that ϕA > ϕB and since ϕA, ϕB ∈ [0, 2π),

0 < ϕA − ϕB < 2π

(4.13)⇒ 0 <
α − β

λ
· 2π − k2π < 2π

(4.12)⇒ k = 0, (4.14)

while if ϕA < ϕB,

− 2π < ϕA − ϕB < 0
(4.13)⇒ − 2π <

α − β

λ
· 2π − k2π < 0

(4.12)⇒ k = 1. (4.15)

Thus for α > β,

ϕA − ϕB = α − β

λ
· 2π, if ϕA > ϕB, (4.16)

and

ϕA − ϕB = α − β

λ
· 2π − 2π, if ϕA < ϕB. (4.17)
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In the far field of the antennas and for α > β, it is safe to claim the following, stemming
from Fig. 4.2-right:

α − β ≈ δx sin θ

⇒ sin θ ≈ α − β

δx

⇒ sin θ ≈


λ·(ϕA−ϕB)

δx·2π
, if ϕA > ϕB

λ·(ϕA−ϕB+2π)
δx·2π

, if ϕA < ϕB

, (4.18)

and θ ∈ (0, π/2). Solving for θ, offers the first part of the theorem.
Similarly, for α < β the following hold:

0 < −(α − β) < δx < λ/2

⇒0 < −α − β

λ
· 2π < π

⇒ − π <
α − β

λ
· 2π < 0 (4.19)

Then from Eqs. (4.10), (4.19), the following holds:
(

ϕB + 2π + α − β

λ
· 2π

)
mod 2π = ϕA

⇒ϕB + 2π + α − β

λ
· 2π = k2π + ϕA

⇒ϕA − ϕB = 2π + α − β

λ
· 2π − k2π (4.20)

Assuming that ϕA > ϕB and ϕA, ϕB ∈ [0, 2π),

0 < ϕA − ϕB < 2π

(4.20)⇒ 2π + α − β

λ
· 2π − k2π < 2π

(4.19)⇒ k = 0, (4.21)

while if ϕA < ϕB,

− 2π < ϕA − ϕB < 0
(4.20)⇒ − 2π < 2π + α − β

λ
· 2π − k2π < 0

(4.19)⇒ k = 1. (4.22)
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Thus, for α < β,

ϕA − ϕB = α − β

λ
· 2π + 2π, if ϕA > ϕB, (4.23)

and

ϕA − ϕB = α − β

λ
· 2π, if ϕA < ϕB. (4.24)

In the far field of the antennas and for α < β, it is safe to claim the following, stemming
from Fig. 4.2-left:

β − α ≈ δx sin θ

⇒ sin θ ≈ −α − β

δx

⇒ sin θ ≈

−λ·(ϕA−ϕB−2π)
δx·2π

, if ϕA > ϕB

−λ·(ϕA−ϕB)
δx·2π

, if ϕA < ϕB

, (4.25)

and θ ∈ (0, π/2). Solving for θ, offers the second part of the theorem, concluding the
proof.

4.4 Elliptical DoA Estimation and Localization

4.4.1 Multistatic Elliptical DoA Estimation (EllDoA)

To achieve an accurate estimation of a tag’s signal Direction of Arrival (DoA), two trivial
conditions must be met:

• First, the spacing between adjacent receiving antennas should be less than half the
wavelength of the signal, mathematically denoted as δx < λ/2. This condition helps
mitigate directional ambiguities, as was elucidated earlier.

• Second, any intersection points that occur behind the receiver antennas must be
completely ignored. This is critical because these points do not contribute to a
valid DoA estimation and correspond to a complementary angle.

Upon meeting these conditions, one can proceed to estimate the DoA using any of
the intersection points that satisfy the second condition. The coordinates of such an
intersection point are represented as p = [p[1] p[2]].
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The DoA estimate is then computationally derived using the formula:

θ̂0 = 90◦ − tan−1
(

p[2]
p[1] − xs

)
· 180◦

π
. (4.26)

In this equation, xs = x1
Rx+x2

Rx
2 represents the x-axis coordinate of the midpoint between

the two receiving antennas. This is particularly useful if the antennas are not positioned
at the origin of the coordinate system. The arctangent function tan−1(·) returns an angle
in the closed interval [−π, π], and the final DoA estimate θ̂0 ranges within the [−90◦, 90◦]
interval.

For enhanced robustness and to account for potential variations, one can improve the
DoA estimate by averaging over K intersection points pk. The refined estimate is given
by:

θ̂0 = 90◦ − 1
K

K∑
k=1

tan−1
(

pk[2]
pk[1] − xs

)
· 180◦

π
, (4.27)

By incorporating multiple intersection points into the estimation process, this ap-
proach yields a more reliable and robust DoA estimate, thereby enhancing the system’s
overall performance.

4.4.2 Multistatic 2D Localization

Extending the multistatic setup to include a third receiver antenna dramatically improves
the system’s capability to uniquely identify a target’s location. Specifically, within the
constraints and assumptions of this work—such as all antennas being positioned along the
same line—the incorporation of a third receiver ensures that there exists a single, unique
point on the half-plane where all three ellipses intersect. This crucial insight is illustrated
in Fig. 4.4.

There are multiple methodologies to ascertain these unique intersection points, each
with its own merits:

1. Conic Section Intersection: The first method employs the geometric intersection
rules for conic sections as delineated in the work by [53]. This approach mathemat-
ically solves for the points where the ellipses intersect.

2. Double DoA Intersection: A second approach calculates two separate DoA esti-
mates using the receiver pairs Rx1 - Rx2 and Rx2 - Rx3. Lines passing through the
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Figure 4.4: 2D localization requires a third antenna in the same line.

midpoints (medians) of these two antenna pairs are drawn, and their intersection
point is computed. This method capitalizes on simplicity of the intersection of two
lines, minimizing the computational effort required.

3. Equation Equating Method: The third method involves directly equating the
left-hand sides of Eq. (4.9) for all possible pairs of i = 1, 2, 3. This generates a set
of equations that can be solved to find the common intersection point of all three
pairs. Given the special condition that all ellipse foci lie on the same line, these
equations turn out to be relatively simple to solve.

Each of these methodologies offers its own set of advantages and disadvantages, in-
cluding computational efficiency, ease of implementation, and robustness against noise or
errors. However, what remains consistent across all three is the ability to uniquely pin-
point the target’s location when a third receiver antenna is incorporated into the setup.

4.4.3 Multistatic 3D Localization

Extending the system to a three-dimensional (3D) environment involves a few additional
complexities but is highly feasible within the framework of this study. Specifically, the
methodology allows for an easy transition to 3D localization with the introduction of a
fourth receiver antenna.

In a scenario where a tag may not necessarily be at the same height as the reader’s
antennas, the 2D localization method—utilizing three co-linear receiver antennas — pro-
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Rx
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2Rx
1Tx

Figure 4.5: The possible tag locations in 3D form a half-circle pivoted around the axis
that the receiving antennas lay.

vides an initial estimate. This method, outlined in Sec. 4.4.2, assumes that the tag exists
in the same plane as that of the reader’s antennas, resulting in an estimated 2D location.
However, this location may not be accurate since it rests on the assumption that the tag
is at the same height as the antennas, an assumption which does not hold true when
localizing a tag in 3D space.

To generalize this to 3D, imagine the ellipses “pitching up and down" akin to a door
swinging on its hinge. This swinging action reveals that the tag can essentially be located
anywhere along a half-circle in the 3D space. The half-circle essentially represents all the
possible locations where the tag could be, assuming it’s not restricted to the height of the
antennas. This is visually represented in Fig. 4.5.

To accurately pinpoint a single location for the tag in this 3D half-circle, the inclusion
of a fourth receiver antenna becomes nescessary. This additional antenna should be
positioned not in line or at the same height as the other three antennas. In our specific
example, the fourth receiver antenna is placed above the first Rx antenna but at a different
elevation, thereby introducing a new set of K ellipses.

It can be shown that there exists a unique intersection point between this new set of
ellipses generated by the fourth Rx antenna and the aforementioned 3D half-circle. This
single intersection point explicitly identifies the true location of the tag in 3D space. The
entire concept and proof of uniqueness of this intersection point falls out of the context
of this primal 3D localization technique, but a visualization can be seen in Fig. 4.6.
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Figure 4.6: 3D localization can be achieved utilizing a fourth antenna at a different height.

Therefore, the addition of a fourth, non-collinear receiver antenna effectively resolves
the inherent ambiguity in 3D tag localization, enhancing the system’s capabilities and
ensuring a unique solution for the tag’s spatial coordinates.

4.5 Experimental Evaluation

In this section, performance evaluation of the proposed algorithms for Direction of Ar-
rival (DoA) estimation as well as 2D and 3D localization is conducted. The evaluation
is executed through two distinct methodologies: 1) computer-based simulations using
MATLAB and 2) empirical testing utilizing actual experimental data. These two ap-
proaches enable us to comprehensively assess the efficacy and robustness of our proposed
algorithms, under both idealized and real-world conditions.

In all experiments, a Gen2 UHF RFID tag of type ZEBRA 4"×2" Z-PERFORM 1500T
was affixed to an empty box. The box was strategically placed at varying distances ranging
from 0.6 m to 1.7 m away from the antennas. The specifics of the experimental setup are
illustrated in Fig. 4.7. The hardware included two USRP N200 Software Defined Radio
(SDR) devices, each fitted with an SBX-40 daughterboard, facilitating the implementation
of a Gen2 RFID reader operating at a frequency of 868 MHz [54].

For the receiving end, two circularly-polarized MTI MT-242032 antennas were used,
each boasting a gain of 7 dBic. On the transmitting side, a single FlexiRay SF-2110
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Figure 4.7: Experimental setup for Elliptical DoA and 2D localization.

antenna with a 5 dBi gain was utilized. For the DoA and 2D localization experiments,
all antennas and the RFID tag were aligned at the same height, and three different
heights—0.9 m, 1.2 m, and 1.5 m—were tested out. In these configurations, the orientation
of the tag was designed to be parallel to the face of the antennas.

To ensure precise synchronization, a function generator provided a common 10 MHz
reference clock and a 1 Pulse Per Second (PPS) input to both USRPs. This was achieved
using cables of equal length. UHD Timed commands were employed to synchronize the
two SDRs, adhering to the manufacturer’s guidelines. Although during the experiments,
it was observed that the two SDRs demonstrated four constant and randomly repeating
phase offsets.

To compensate for these phase offsets, an RF signal generator was utilized. This
generator was placed 1 m away from the median of the receiver antennas at a Direction of
Arrival (DoA) of 0◦ and equidistant from both receiving antennas. Prior to initiating the
reader’s interrogation process, this RF signal generator emitted a 868 MHz tone, which
was essential for ensuring synchronization and compensating the random constant phase
offset.

An angle finder tool was utilized to measure the true DoA of the backscattered signal,
necessary for comparison to the estimated DoA and for the placement of the RF signal
generator.
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Figure 4.8: MUSIC vs EllDoA mean absolute error estimation with ±1 standard deviation.

Finally, a 24 dB amplifier was incorporated into the setup on the transmitting chain,
and a network switch was used to facilitate the connection between the two USRPs and
the laptop computer that was controlling the experiment.

The above setup allowed for rigorous testing of the proposed DoA estimation and 2D
localization algorithms under real-world conditions, providing valuable insights into their
performance and limitations.

4.5.1 Experimental Evaluation of EllDoA vs MUSIC

A total of Ne = 20 experiments were conducted for each of the antenna heights tested,
yielding a robust set of data for analysis. The transmission power of the reader was set at
25 dBm. Additionally, an angle finder tool was employed to measure the true Direction of
Arrival (DoA) of the backscattered signal. This true DoA served as a reference point for
assessing the accuracy of the estimated DoA obtained through the proposed algorithms.
Various angles were tested during the experiments, while the RFID tag was randomly
placed from 1 m, up to 1.7 m away from the antenna array. The Mean Absolute Error
was measured as follows:

MAE =
∑Nexp

i=1 |θi
0 − θ̂i

0|
Nexp

, (4.28)

where θi
0 and θ̂i

0 are the true and estimated DoA of the ith experiment, respectively.
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The comparative results of the MUSIC and EllDoA algorithms is depicted in Fig. 4.8.
The data clearly indicate that both algorithms exhibited comparable performance, as
reflected by the mean absolute error (MAE) values which ranged approximately between
4◦ and 5◦. Moreover, it is shown that the estimation error is reduced for higher elevations
since the impact of the ground reflection is weakened.

These results not only validate the effectiveness of the proposed EllDoA algorithm
but also demonstrate its competitive performance and simplicity when juxtaposed with
the established MUSIC algorithm. Hence, the experimental evaluations corroborate the
feasibility and reliability of the proposed DoA estimation.

4.5.2 Experimental Evaluation of 2D Localization Algorithms

The same experimental setup with the DoA experiments was also used for the 2D local-
ization evaluation. However, due to hardware constraints it was not possible to utilize
a third synchronized antenna. In order to bypass this limitation, it was decided to em-
ulate the presence of the third receiver antenna. This was achieved by relocating the
second antenna to a predefined position, denoted as (x3

Rx, y3
Rx), after the desired 500 in-

terrogation rounds were completed. This relocation was performed without interrupting
the reader’s ongoing processes, thus mitigating the need for another calibration step. By
strategically averaging over specific time intervals—essentially, periods when the antennas
were static—we effectively gathered phase measurements from three distinct Rx antenna
positions.

Two transmission power levels were assessed: 20 dBm and 25 dBm at the amplifier’s
output. For each power level and methodology, Ne = 10 experiments were performed at
each of the antenna heights while the tags were placed randomly at a distance of 0.6 m to
1.7 m from the antenna array. To ascertain the true position of the tags, (xT, yT), a laser
distance meter was employed. This data was critical for quantifying the error in the tags’
localization estimate. The algorithms executed swiftly, with all completion times falling
under 1 second. This efficiency is attributable to the relatively low number of ellipses,
K = 15, used for each bistatic pair which can theoretically cover a distance of up to 2.5
m.

Benchmarking was also performed against existing the particle filtering algorithm
RDPF described in Chapter 2, ReLock [21], and a variant of BackPos [43]. RDPF and
ReLock were tested using phase measurements from a monostatic RFID reader mounted
on a mobile robot in our laboratory. For BackPos, which employs phase difference and
hyperbolic intersections, measurements were manually collected by moving an antenna
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Table 4.1: Experimental MAE/RMSE localization results.

Height Loc.
Method

Tx Power E[|e|] (cm)
√
E[|e|2] (cm)

0.9 m

Multistatic
20 dBm 12.85 13.29

25 dBm 12.39 13.21

RDPF
20 dBm 15.24 15.74
25 dBm 15.77 16.14

ReLock
20 dBm 23.26 24.23
25 dBm 17.19 17.57

BackPos
20 dBm 47.79 62.18
25 dBm 26.4 27.64

1.2 m

Multistatic
20 dBm 10.27 10.64

25 dBm 10.91 11.73

RDPF
20 dBm 14.98 15.21
25 dBm 15.58 16.32

ReLock
20 dBm 19.54 20.67
25 dBm 17.12 17.39

BackPos
20 dBm 37.28 46.75
25 dBm 40.16 45.53

1.5 m

Multistatic
20 dBm 9.18 9.98

25 dBm 9.55 10.06

RDPF
20 dBm 15.83 16.25
25 dBm 15.68 15.89

ReLock
20 dBm 17.89 18.96
25 dBm 17.38 17.68

BackPos
20 dBm 34.97 38.34
25 dBm 51.06 62.95

pole along a 3-meter linear path in increments of 5 cm. This manual approach was
implemented to eliminate any ambiguities regarding the antenna locations.
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Performance comparisons between the various methodologies are tabulated in Ta-
ble 4.1, focusing on key performance indicators like Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE).

The performance evaluation clearly indicates the superiority of the proposed method
over the other algorithms under consideration. Notably, the error associated with the
proposed method diminished with increasing antenna height, registering as low as about
9 cm. This improvement is attributed to the reduced impact of ground reflection and the
resulting multi-path effects at greater heights.

In comparison, ReLock’s performance was sensitive to the number of measurements,
showing improvement with higher Tx power but still lagging behind the proposed method
for this transmission power level. RDPF, on the other hand, produced robust and con-
cise estimates but was outperformed by the results achieved by the proposed multistatic
approach.

As for BackPos, the methodology was noticeably impacted by an increase in phase
noise variance. This limitation arises from the method’s reliance on the difference of
phase measurements, which inherently boosts the phase noise and, in turn, the error.
Given these results, it is evident that the proposed method offers an accurate and reliable
means for DoA estimation and 2D localization in RFID systems.

4.5.3 Simulated 3D Localization Results

The evaluation of the proposed 3D localization method, although only conducted via
MATLAB simulations due to hardware and equipment constraints, shows promise in
terms of accuracy. The use of MAE and RMSE as performance metrics, coupled with
assumptions on phase noise, offers a comprehensive preliminary assessment of the algo-
rithm’s effectiveness. It is encouraging that the 3D method exhibits similar accuracy
metrics to the 2D algorithm under comparable conditions, which suggests robustness and
scalability in the design.

Table 4.2: Simulation results of multistatic 3D localization.

E[|e|] (cm)
√

E[|e|2] (cm)

ϕn
i ∼ N (0, 1◦) 6.93 11.93

ϕn
i ∼ N (0, 25◦) 17.87 24.78

However, the significant computational time, estimated around one minute per po-
sition, could limit the algorithm’s applicability in real-time scenarios. This is a critical
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bottleneck and represents an area where further optimization is essential, especially if the
algorithm is to be used in time-sensitive applications.

4.5.4 Conclusion

In this study, we introduced two novel approaches to the field of RFID-based localization
and Direction of Arrival (DoA) estimation: EllDoA and a multistatic 2D/3D localization
algorithm. Each contributes unique methodologies and offers new possibilities for both
theoretical exploration and practical application.

Starting with EllDoA, it brings a novel paradigm to the table by leveraging the geom-
etry of ellipses in a bistatic or multistatic RFID setup. Unlike conventional methods that
often depend on complex mathematical models or extensive computational resources, Ell-
DoA utilizes the inherent properties of ellipse formations to deliver robust DoA estimates.
Impressively, the performance of EllDoA was found to be comparable to state-of-the-art
methods, such as MUSIC, which has been a go-to solution for DoA estimation. This
positions EllDoA as a viable alternative or even a complementary approach in systems
where bistatic or multistatic configurations can be implemented.

Our second major contribution, the multistatic 2D localization algorithm, is
equally groundbreaking. It demonstrated remarkable resilience and accuracy, achieving
centimeter-level 2D localization errors as low as 9 cm. What makes this accomplishment
particularly noteworthy is the absence of typical facilitators for high accuracy, such as
anchor tags and additional bandwidth, which means that the system can deliver highly
accurate results within real-world constraints.

Finally, the promise shown by our 3D localization method should not be overlooked.
Although the technique is currently in the simulation stage, preliminary results indicate
a solid level of accuracy. Although further research and hardware-based validation are
required, initial simulations suggest that this 3D localization approach has a high potential
to deliver centimeter-level accuracy.



Chapter 5

Wireless Sensor Network
Interrogation and Path Planning

In this chapter, we delve into the realm of backscatter technology, a field where reflection
radio principles can be extensively applied. RFID tags, instead of actively transmitting
a signal, leverage the principle of backscatter radio. They modulate their information on
an illuminating RF signal, thus minimizing their power consumption.

The ultra-low-power and low-complexity nature of backscatter radio technology has
made it an appealing choice for use in wireless sensor networks (WSNs). It has been
employed in a variety of applications, demonstrating the capabilities of digital, frequency
shift keying (FSK)-based, backscatter radio communication and deployments of backscat-
ter radio-based WSNs. Other research has explored the use of analog, backscatter radio-
based WSNs, as well as the utilization of pre-existing signals for RF illumination in
backscatter radio-based WSN nodes.

Traditionally, the assumption has been an immobile interrogation setup, i.e., the re-
ceiver of backscattered signals and the RF illuminator are stationed at fixed locations. Al-
though there have been studies involving unmanned aerial or ground vehicles (UAV/UGV)
for the interrogation of backscatter radio-based sensors/tags, these have generally focused
on system-level optimization.

In this work, we present an experimental study on UAV-based interrogation of a
backscatter agricultural WSN. We have implemented a system capable of measuring hu-
midity (and other attributes) at various points in a field, leveraging wireless backscatter
technology. The gathered data can then be analyzed to infer the overall condition of the
field. Such information allows farmers to monitor their crops more effectively and manage
the resources distributed to the field accordingly, leading to more sustainable and efficient
agricultural practices.

87
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Our research primarily focuses on comparing different backscatter radio architectures
in terms of interrogation speed and efficiency. The backscatter radio architectures em-
ployed require a carrier-wave to illuminate the sensor’s antenna and can be categorized
into two types:

• Monostatic: A single software-defined radio (SDR) is used to illuminate the sensors
and receive and decode the backscattered signal.

• Bistatic: Two discrete devices are used - a carrier-wave emitter to illuminate the
sensors and a remote SDR to receive and decode the signal. For the bistatic ar-
chitecture, we considered two scenarios - a pedestrian versus a drone carrying the
illuminator.

Experiments were conducted in both small and large scale deployments, across two
distinctly different fields.

5.1 Backscatter Wireless Sensor Networks

5.1.1 WSN Deployments

Two separate deployments were conducted in the course of this research, each involving
a different physical environment and distribution of RF soil moisture tags.

The first deployment consisted of a flat field with no obstructions, facilitating direct,
line-of-sight paths between the tags and the receiver. A total of 10 RF tags were dispersed
over an area of 307 m2. The arrangement of this relatively small-scale deployment permit-
ted an easy comparison between the efficiency of a pedestrian carrying an RF transmitter
and a drone in interrogating the tags.

The second deployment was of a larger scale, involving a total of 15 RF tags scattered
across a rocky, non-flat field of more than 4000 m2 with olive trees. The tags were placed
on top of the trees, at heights ranging from 2 to 4 meters. The substantial difference in the
physical characteristics of the terrain, along with the higher distance between neighboring
tags, was intended to provide a more challenging scenario, testing the efficiency of the
different interrogation techniques under more demanding conditions.

The paths followed by the pedestrian and the drone in both deployments were deter-
mined by the Traveling Salesman Problem (TSP) algorithm, optimizing the sequence of
tags to be interrogated. The planned paths, along with the deployment setup, are shown
in Fig.5.5 for the first deployment and Fig.5.7 for the second one.
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In both deployments, the drone’s take-off and landing position, denoted by a star sym-
bol in the figures, were kept constant to ensure consistent conditions for each interrogation
technique under test.

Next, we provide a detailed description of the hardware and tools used in these de-
ployments, followed by an analysis of the different interrogation techniques employed.

5.1.2 Components

This research made use of several key hardware components in order to carry out the
experiments.

A drone equipped with an SDR was one of the primary hardware tools. The SDR of
the drone used in this work has the ability to simultaneously transmit and receive RF
signals, which is crucial for both bistatic and monostatic interrogations. The SDR on
the drone acted as a reader, providing both the illuminating signal and the receiver for
processing and decoding the tag-backscattered signal during monostatic interrogation.
For bistatic interrogation, only the transmit chain of the drone’s SDR was utilized to
provide RF illumination.

For bistatic interrogation cases, a secondary SDR (USRP N200) was used as a receiver.
This receiver was placed in a fixed position, separate from the transmitter, and was
responsible for decoding the signal backscattered by the tags.

RF soil moisture tags were the targets of the interrogation in our experiments. These
passive devices, when illuminated by RF signals, backscatter a modulated signal contain-
ing their measurement information, which can be decoded by the receiver.

Furthermore, an RF transmitter (Silicon Laboratories Si1064) was utilized in the
pedestrian case. The transmitter was carried by a pedestrian who would walk the path
dictated by the TSP algorithm’s solution, illuminating the tags as they proceeded.

The frequency and transmission power of the RF illumination in all cases was set
to 868 MHz and 13 dBm, respectively. This ensured that the tags could be efficiently
interrogated and operated within the regulated parameters for each scenario, allowing for
a direct comparison of the results.

5.1.3 Interrogation Techniques

Three distinct methods of tag interrogation were employed in this work: a) bistatic in-
terrogation by a pedestrian carrying an RF transmitter, b) bistatic interrogation with
illumination provided by a drone, and c) monostatic interrogation using the drone, which
both illuminates the tag and receives the backscattered signal.
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In the bistatic pedestrian scenario (a), the person followed a path, holding an RF trans-
mitter (Silicon Laboratories Si1064) to illuminate the tags. This scenario is illustrated in
Figure 5.4 (left).

In the bistatic drone scenario (b), the drone followed a similar path, providing the RF
illumination, while the backscattered signal was processed by a stationary SDR receiver.
The illustration of this scenario can be seen in Figure 5.4 (right).

The monostatic drone scenario (c) saw the drone carrying out a dual role: providing RF
illumination and processing the backscattered signals. The drone carried an SDR capable
of simultaneous transmission and reception of RF signals, thus acting as a complete reader,
emitting the illuminating signal, and receiving and decoding the tag-backscattered signal.
Figure 5.4 (middle) visualizes this process.

5.2 Path Planning Algorithms

In order to interrogate all tags while traveling the minimum distance, different path
planning approaches were explored. These strategies aim to optimize the drone’s and
pedestrian’s route, either by navigating directly to each tag location or by covering the
entire area defined by the tags’ positions. The two approaches that were employed include:
the Travelling Salesman Problem (TSP) solution and the Min-Waypoint approach.

5.2.1 Travelling Salesman Problem (TSP) Solution

The Travelling Salesman Problem (TSP) approach is one of the most widely studied
problems in combinatorial optimization. It is named after a theoretical scenario where a
salesman must travel between cities to sell their goods, with the goal of finding the shortest
possible route that allows them to visit each city only once and return to their starting
city. In the context of this project, each sensor/tag is treated as a city and the "distances"
between the cities are the Euclidean distances between the tags. The interrogator’s task
is to find the shortest route that allows it to visit each tag location once and return to its
starting point. This not only saves time, but in the case of the drone, it also conserves
battery power.

The TSP problem is NP-hard, meaning that it is computationally intensive to solve
exactly, especially as the number of cities (or tags) increases. Two different MATLAB
tools were used to solve the TSP problem: MATLAB’s binary integer programming solver
and J. Kirk’s “Traveling Salesman Problem - Genetic Algorithm,” a genetic algorithm-
based solver available on MATLAB Central File Exchange.
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Binary integer programming is a category of integer programming where the goal is to
discover the values of decision variables that minimize or maximize an objective function.
In this context, the objective function is the total travel distance.

The Genetic Algorithm (GA) is a search heuristic that is inspired by Charles Darwin’s
theory of natural evolution. The algorithm reflects the process of natural selection where
the fittest individuals are selected for reproduction in order to produce offspring of the
next generation. It is used to find exact or approximate solutions to optimization and
search problems.

Both methods performed optimally for the two deployment scenarios of 10 and 15 tags.
For a theoretical case of 100 tags, they provided sub-optimal but satisfactory solutions.
This is crucial for large-scale tag deployments, as the computation time of an exact TSP
solver increases exponentially with the number of tags. Hence, an efficient TSP solver,
such as the ones used, enables scalable deployment and efficient interrogation of soil
moisture tags.

Fig. 5.1 shows the paths calculated by these TSP solvers for the first deployment
scenario with 10 tags, and for the second deployment scenario with 15 tags. For each
deployment, the paths were computed with the drone’s take-off and landing position set
as the TSP path’s origin and ending points. It is important to note that these TSP paths
determined the minimum path that had to be followed for the successful interrogation of
all tags.

The steps of the TSP approach applied to the project can be elaborated as follows:

1. Input Points: The process begins by recording the coordinates of the tags/sensors
using a GPS-enabled device (such as a mobile phone). These points represent the
set of locations that the interrogator needs to visit.

2. TSP Solving: These points are then inputted into the TSP solver. The TSP solver
utilizes one of techniques mentioned above to find the shortest possible route that
visits each point once and returns to the starting point.

3. Obtain Sequence: Once the TSP solver has processed the input points, it provides an
optimal sequence that represents the shortest possible route. This sequence forms
the basis for the path of the interrogator.

4. Waypoints Setting: With the optimal sequence of tag locations, these points are
then set as waypoints for the interrogator to visit. The drone can navigate from one
waypoint to the next following straight paths, while the pedestrian has also to take
into account possible geological obstacles present.
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In addition, it is worth noting that the TSP approach can be adapted to accommodate
real-world constraints and considerations. For instance, if there are areas that the drone
or pedestrian cannot traverse through due to obstacles or no-fly zones, these areas can be
incorporated into the TSP model as additional constraints, allowing for more practical
and feasible routes.

Despite the high computational complexity of the TSP, it was found that the TSP
approach was suitable for the purposes of this project, providing efficient and optimized
paths for the interrogators to read all tags.
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Figure 5.1: Travelling Salesman Problem approach path planning solution for 10 and
15 nodes. The total length of the solution path was 77.8 m and 314.5 m for the first
deployment (left, small scale) and the second deployment (right, large scale), respectively.

5.2.2 Min-Waypoint Approach

The Min-Waypoint approach is a different strategy for the interrogator’s path planning
that aims to cover the whole area (convex hull) defined by the locations of the tags. Unlike
the TSP approach, which is solely focused on visiting each tag once, the Min-Waypoint
approach also collects data from intermediate points between tags. This can be especially
useful when the exact locations of the tags are not available or when the drone is equipped
with a camera or other sensors that can collect additional data as it flies between tags.

The core concept of the Min-Waypoint approach is to minimize the number of way-
points required to define the route, thus reducing the interrogator’s travel time. Especially
for the drone, since it has to gradually decrease its speed each time it reaches a waypoint,
fewer waypoints result in a smoother and more efficient flight. The steps of the Min-
Waypoint approach are as follows:

1. The convex hull of the tags’ locations is constructed.
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Figure 5.2: Comparison between binary integer programming (left) and genetic algorithm
(right) TSP solution for 100 nodes, randomly placed

2. The perpendicular distance from each vertex of the hull to its antipodal edge is
calculated. In case of an even number of edges, the distances to both antipodal
edges are calculated.

3. The minimum of the distances computed in the previous step is found, and the
direction of the parallel paths is determined by the edged corresponding to the
minimum distance.

4. The interrogator moves in parallel lines and crosses the convex hull from one side to
another. The direction of motion is determined in the previous step. The distance
dp between two adjacent lines depends on the flight altitude, the camera’s/antenna’s
field of view, and the percentage of area overlap between two consecutive passes of
the hull.

5. The distance between the edge determined at step 3 and its nearest of the parallel
lines is set to be half the distance between two adjacent lines dp/2. The path lines
are drawn and the intersection points with the convex hull are set as the waypoints.

6. The waypoints are ordered to create the path of the drone in a way that shapes the
desired parallel path lines. Four waypoints are candidates as the start of the route,
with the closest to the drone’s take-off location set as the beginning of the path.
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A few modifications were made to the original algorithm to adapt it to the needs of
this project.

• First, in the case of a convex hull with an even number of edges, two distances are
computed instead of one to determine the direction of the path lines.

• Second, the starting waypoint is chosen considering the coordinates of the drone’s
take-off location.

The results of the Min-Waypoint approach were highly dependent on the flight altitude.
Figs. 5.3 (left and right) show the paths produced by the Min-Waypoint algorithm for
three different flight altitudes and for the tag locations used in Fig. 5.1. The antenna’s
angle of view was set to 120 degrees, and a 50% overlap was assumed for each crossing
of the convex hull. As altitude decreased, more passes were required to cover the area
of the tags, resulting in longer overall path lengths. Despite the increased path lengths,
the Min-Waypoint approach was found to be an effective way to cover a larger area and
collect more comprehensive data.

The same algorithm was also implemented for the tag locations that were used in
Fig. 5.1 (right), and the results are shown in Fig. 5.3 (right). Three different routes were
produced for 3 different flight altitudes, while sharing the same parameters as with the
small scale setup (antenna’s angle of view was set to 120◦ and an overlap of 50% was
assumed at each crossing). The area of the convex hull in this deployment is significantly
greater than previously, thus the routes occur to be longer too. For an altitude of 10 meters
4 passes are required, for 5 meters 8 passes, while for 1.8 meters 22 passes. Finally, the
overall path length for altitude of 10, 5 and 1.8 meters is 332.9, 578.3 and 1415.4 meters,
respectively.
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Figure 5.3: Min-Waypoint approach path planning solution for 10 and 15 nodes.
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5.3 Implementation and Results

In this study, tag interrogation was performed using three techniques: bistatic interroga-
tion by a pedestrian carrying an RF transmitter (Silicon Laboratories Si1064) illuminat-
ing the tags (Fig. 5.4 left), bistatic interrogation with illumination provided by the drone
(Fig. 5.4 right), and monostatic interrogation using the same drone, where the drone il-
luminates a tag and receives the backscattered signal (Fig. 5.4 middle). For the second
deployment, only cases a) and c) were considered. The frequency and transmission power
of the RF illumination was set to 868 MHz and 13 dBm, respectively, for all cases.

The drone is equipped with an SDR with the capability to simultaneously transmit
and receive RF signals. For bistatic interrogation, only the transmit chain of the SDR was
used for providing RF illumination, while for monostatic interrogation, the drone’s SDR
acted as a reader, providing both the illuminating signal and the receiver for processing
and decoding the tag-backscattered signal. In the bistatic cases (pedestrian and drone) a
secondary SDR (USRP N200) was used as the receiver (Figs. 5.4 left and middle).

Backscattered

Signal

Illuminating

Signal

Drone-Interrogator

Receiver

Figure 5.4: The three experimental scenarios studied: bistatic pedestrian (left), bistatic
drone (middle) and monostatic drone (right).

The paths followed by the pedestrian and the drone were generated by the TSP al-
gorithm described in Sec. 5.2.1. These paths are demonstrated in Fig. 5.5 for the first
deployment and in Fig. 5.7 for the second, as recorded by GPS. Notably, the drone’s
take-off and landing positions are denoted by a star symbol.

Each soil moisture sensor/tag was considered to be successfully interrogated by evalu-
ating the measurements of a (known) voltage reference reported back by the tag. Energy,
time, and altitude data were acquired from the drone’s flight logs, while the pedestrian
time was recorded using a stopwatch.
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Garden Deployment

The initial deployment of the tags was carried out in a flat field with no obstructions,
offering direct line-of-sight paths between the tags and the receiver, as shown in Fig. 5.5.
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Figure 5.5: Garden deployment of 10 nodes (covering a area of 307m2) along with the
respective paths that were followed during interrogation.

The time and energy spent for the tags’ interrogations are demonstrated in Fig. 5.6. It
is evident from the figure that for a relatively small-scale deployment of tags (10 tags over
307 m2), walking while holding an RF transmitter for illuminating the tags (pedestrian
case) was more efficient than using a drone.

Fig. 5.6 also indicates that the resources consumed, in terms of energy (Watt-hours)
or time spent (seconds), roughly doubled from pedestrian bistatic to drone bistatic and
then to drone monostatic interrogation for this relatively small-scale deployment. Inter-
estingly, the bistatic drone interrogation proved to be more efficient than the monostatic
interrogation.
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Figure 5.6: Drone altitude variations and time spent comparison for the different archi-
tectures.
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The less efficient performance of the monostatic drone interrogation can be attributed
to its geometry, leading to a worst-case scenario with respect to the power of the backscat-
tered signal [55]. Given the limited scattering efficiency of the tags and their proximity
to the ground, the drone had to hover at an “appropriate” location near each tag during
monostatic interrogation until a successful read was recorded. This caused significant
variations in the drone’s altitude and consequently incurred a significant time and energy
overhead. In contrast, during the bistatic interrogation, the drone simply flew over the
tags to provide RF illumination and the reception was handled by a remote SDR receiver
(Fig.5.4 right), without intentional altitude variations. This is clearly illustrated by the
intense altitude variations during monostatic interrogations as shown in Fig.5.8 (left).

It is also important to note that both drone experiments (bistatic and monostatic) were
conducted under the same environmental conditions on a windy day. In the monostatic
case, flying at low altitudes proved to be an additional disadvantage compared to the
bistatic case where the drone flew at a higher altitude with the sole purpose of providing
the RF illumination signal.

Field Deployment

In the second, larger deployment, 15 tags were scattered over a field of over 4000 m2

as shown in Fig. 5.7. This deployment took place in a rocky, non-flat terrain populated
by olive trees. The tags were positioned at the top of these trees, with heights ranging
between 2 and 4 meters.
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Figure 5.7: Field deployment of 15 nodes (covering and area > 4000m2) along with the
respective paths that were followed during interrogation.
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The time and energy resources required to interrogate the tags in this deployment
are depicted in Fig. 5.8. These results demonstrate that, under the conditions of this
particular terrain, the performance in terms of the time required for the interrogation was
practically identical for all approaches.

Similarly to the first deployment, these experiments were conducted on a windy day
and required the drone to fly at relatively low altitudes above the ground. However, the
rough terrain also posed challenges for the pedestrian, resulting in additional delays in
reaching each tag or tree. These factors contributed to the similar performance observed
among all types of interrogation in this deployment.

255.7 Wh

1047 sec

~16.5 min

992 sec

~17 min

Figure 5.8: Indicative image of the tricky environment the drone had to operate in and
time spent comparison for the different architectures.

These results, combined with those of the first deployment, underline the fact that
there is no one-size-fits-all strategy in choosing the type of tag interrogation. The choice
must be made considering the specific conditions of the terrain and other environmental
factors.



Chapter 6

Conclusion

6.1 Recapitulation

This dissertation has been a profound journey through the intricate domain of RFID tech-
nology. From theoretical revelations to practical realizations, each chapter has unfolded a
unique facet of RFID, illuminating its transformative capabilities and inherent challenges.

6.2 Major Findings and Achievements

A cornerstone of our exploration was the rigorous study presented in Chapter 2, where
we delved into the intricacies of monostatic localization. The theoretical study and prac-
tical experiments conducted produced a narrowband phase-based localization method
that offers robust performance in the presence of multipath, even when the tag phase
measurements are sparse. By leveraging reader mobility, adaptable antenna counts, and
robot-reader self-localization, our system showcased 24 cm mean average 3D localization
error for RFID tags within a cluttered library setting. Remarkably, this was achieved
without resorting to excessive bandwidth or reference tags. A classification method was
also found that could assist in characterising the environment as multipath-rich or not.
The findings from this chapter laid a strong foundation, guiding our subsequent investi-
gations and shaping our understanding of the constraints and potentialities inherent to
RFID systems.

As our journey progressed, we confronted the challenges posed by the multipath effect,
specifically reflections originating from a wall. Our work in Chapter 3 set a precedent,
marking the first, to our knowledge, application of such research on commercial RFID
systems. We demonstrated that relying solely on a Line-of-Sight model, while ignoring
potent reflectors can significantly hinder the performance of RFID localization. Moreover,
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attempting to counteract multipath effects in scenarios where reflections are substantially
attenuated could also inadvertently degrade system performance. While offering a unique
algorithm for joint reflector and tag localization, this work provided a reflector localization
accuracy of 5 cm and an insight on reflection order considerations.

Transitioning to the bistatic/multistatic architecture in Chapter 4 our study of-
fered EllDoA and a multistatic 2D/3D localization method. EllDoA is an innovative
Direction-of-Arrival (DoA) estimation method inspired by elliptical formations inherent
to bistatic/multistatic RFID configurations. EllDoA’s performance, benchmarked against
established DoA techniques, showcased similar performance with a mean absolute error
of 5◦. Additionally, our proposed multistatic 2D localization technique provided robust 9
cm localization accuracy.

Lastly, in Chapter 5 we combined RFID and WSNs to create system—both pedestrian
and UAV-backed—capable of interrogating backscatter sensors across agricultural areas
using the monostatic or multistatic architecture. Our findings emphasized the context-
dependent nature of interrogation type selection, underscoring the variability in perfor-
mance across diverse deployment scales and terrains.

In summary, our research stands out for combining theoretical studies with their prac-
tical applications through our engineering prowess. From the integration of RFID with the
Robotic Operating System (ROS) to the UAV-based interrogation of backscatter WSNs,
our work has ushered in tangible, real-world systems primed for deployment in diverse
scenarios, like warehouses, libraries, and agricultural landscapes.

6.3 Future Directions

While this dissertation has charted significant milestones in the realm of the ever evolv-
ing RFID technology, the horizon still presents numerous avenues for exploration. The
complexities inherent to 3D localization, suggest potential refinements and advancements
to enhance accuracy and robustness. As the environment and scenarios become more
intricate, so does the challenge of maintaining precise localization estimates. Moreover,
with the continued evolution of technology, there exists potential for deeper integration
of RFID with other emergent systems, possibly creating hybrid solutions that draw upon
the strengths of multiple domains. The continuous adaptation to and optimization for
real-world scenarios, especially in dynamic environments, beckons further research.

Some promising directions for future research, though not exhaustive, include:

• Leveraging Robotic Mobility: The agility and mobility inherent to the robotic
platform can be further exploited to diversify measurements. By altering the navi-
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gation path and angles, we can potentially enhance localization accuracy, providing
a richer data composition for analysis.

• Trajectory Tracking: Building upon our localization groundwork, there is poten-
tial to evolve these methodologies for real-time trajectory tracking.

• Multi-Entity Estimation: The joint tag-reflector estimation technique showcases
promise for scalability. Extending this approach to concurrently estimate multiple
tags and reflectors could significantly boost robustness and applicability.

• Environment Characterization: Devising algorithms capable of discerning be-
tween LoS and Non-LoS conditions, coupled with the ability to determine the dom-
inant order of reflection (e.g., 1st or 2nd order).

• Machine Learning Integration: The vast data generated by RFID systems cou-
pled with the mobility of our platforms presents an ideal playground for machine
learning. Applying neural network techniques could not only help denoise measure-
ments, but also offer precise localization estimates.

• Harnessing SDR Capabilities: Software-Defined Radio (SDR) devices, with
their flexibility and adaptability, beckon further exploration. Delving deeper into
their capabilities could elevate system practicality and performance, ensuring RFID
systems that are both agile and efficient.

6.4 Closing Remarks

In conclusion, our research stands as a testament to the power of rigorous academic
exploration coupled with hands-on problem solving. As we reflect on the milestones
achieved, we remain optimistic about the transformative impact of RFID technology and
eagerly anticipate the innovations that the future holds.
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