
TECHNICAL UNIVERSITY OF CRETE

DIPLOMA THESIS

Development of LZ4
Decompression Algorithm in
Reconfigurable Computing

Author:
Georgios Galatianos

Thesis Committee:
Sotirios IOANNIDIS

Dionisios PNEVMATIKATOS

Vasilis SAMOLADAS

A thesis submitted in fulfillment of the requirements
for the diploma of Electrical and Computer Engineer

in the

School of Electrical and Computer Engineering

Microprocessor and Hardware Laboratory

https://www.tuc.gr/
https://www.linkedin.com/in/george-galatianos-13b191180/
https://www.ece.tuc.gr/
https://www.mhl.tuc.gr/

ii

March 14, 2024

iii

TECHNICAL UNIVERSITY OF CRETE

Abstract
School of Electrical and Computer Engineering

Electrical and Computer Engineer

Development of LZ4 Decompression Algorithm in Reconfigurable
Computing

by Georgios GALATIANOS

As we move on to the age of information the need for data compression tends
to be vital and pivotal. Not only from the perspective of storage but equally
important from the perspective of data transfers and transactions. As we
enter a period marked by steadily climbing energy prices, a serious issue
emerges on how we can lower the cost of our power consumption but also
how to lower our power consumption regarding the needs for green tran-
sition due to the climate change. In today’s fast-paced world, where both
accuracy and speed are essential, the importance of doing things in parallel
has never been greater. All these matters can be emerged and resolved in this
project. We tried to use a state-of-the-art lossless compression algorithm such
as LZ4 and combine it with the speed and the power benefits that the FPGAs
can give us. Our goal is to reach the point of a fast decompression with zero
losses while in the meantime using the minimum physical resources we can.

HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/

v

Acknowledgements
I would like to thank my mentor Dimitris Theodoropoulos who guided me
through the whole process and trusted me. Also a huge thank you to the
CEO of Cast Inc. Nikos Zervas who offered his help and guidance through
the whole process, who trusted me and counted on me in this difficult tim-
ing. Furthermore I am thankful for my friends Stefanos, Ilias, Spyros that
we shared some amazing memories and pushed ourselves and helped each
other, they played a significant role in today’s result. Finally the most im-
portant thank you is to my parents that without them nothing from all that
would be possible. They offered me everything and a lot of trust and freedom
throughout this journey.

vii

Contents

Acknowledgements v

Contents vii

List of Figures xi

List of Tables xiii

List of Algorithms xiii

List of Abbreviations xv

1 Introduction 1
1.1 Motivation . 1
1.2 Scientific Contributions and Goals 2
1.3 Thesis Outline . 3

2 Theoretical Background 5
2.1 LZ4 algorithm . 5

2.1.1 Principles and Architecture 5
2.1.2 Compression Process . 6
2.1.3 Decompression Process 6

2.2 LZ4 File Format . 7
2.2.1 Frame Format . 9

Frame Descriptor . 10
FLG byte . 10
BD byte . 13

2.2.2 Block Format . 13
2.2.3 End of block conditions 16

3 Related Work 19
3.1 CPU . 19

3.1.1 Hardware . 19

viii

3.1.2 Timing . 20
3.2 GPU . 21

3.2.1 Hardware . 21
Analysis of NVIDIA GPUs: A100, A30, A10, and H100

PCIe . 21
Specifications . 21
Performance . 21
Intended Applications 22
Cost-Effectiveness . 22
Conclusion . 23

3.2.2 Timing . 23
3.3 FPGA . 24

3.3.1 Hardware . 24
Xilinx Alveo U200 . 24

3.3.2 Timing . 25
3.3.3 Resources . 26

4 System Architecture 27

5 FPGA Implementation and Architecture Design 29
5.1 Datapath . 29

5.1.1 Memory . 30
Overview of Memory Functionality 30
Memory vs. FIFO (First In, First Out queues) 30
Memory Structure and Data Storage 30
Memory Size Configuration 30

5.1.2 FIFO . 31
Role and Function of Input and Output FIFOs 31
Interaction with Finite State Machine and Memory . . 31
Importance in the Decompression Process 31

5.1.3 Multiplexers . 32
Function and Roles of Multiplexers 32
Multiplexers Associated with the Output FIFO 32
Multiplexer Associated with the Memory 32

5.2 Stall Conditions . 33
5.2.1 Input FIFO stall conditions 33

Stall Conditions in the Input FIFO 33
Impact and Management of Stall in Input FIFO 33
Non-affected Processes 33

ix

5.2.2 Output FIFO stall conditions 33
Stall Conditions Arising from Output FIFO 33
Impact of a Full Output FIFO 34
Solution: Register and Multiplexer Integration 34

5.3 Finite State Machine . 34
5.3.1 Initial . 36
5.3.2 Magic Number . 37
5.3.3 Frame bytes . 37
5.3.4 Checksum Check . 37
5.3.5 Block Size . 38
5.3.6 Read token . 38
5.3.7 Keep reading literals . 38
5.3.8 Copy literals . 39
5.3.9 Read offset . 39
5.3.10 Keep reading match-length 40
5.3.11 Copy past . 40
5.3.12 Final State . 40
5.3.13 Error State . 40

5.4 Address Handling . 41

6 Results 43
6.1 Tools Used . 43

6.1.1 Vivado IDE . 43
6.1.2 JetBrains CLion . 43

6.2 Validation . 44
6.2.1 Compression . 44
6.2.2 Decompression . 45

Testbench . 46
6.2.3 Benchmark . 47
6.2.4 Validation . 48

6.3 Resource and timing . 49
6.3.1 Resource Utilization . 49
6.3.2 Throughput and Latency 49

Latency . 49
Throughput . 50

6.4 Comparison . 52

7 Conclusions and Future Work 55
7.1 Conclusions . 55

x

7.2 Future Work . 56

References 59

xi

List of Figures

2.1 LZ4 compression algorithm . 6
2.2 LZ4 decompression algorithm 6

5.1 Datapath . 29
5.2 FSM . 36
5.3 Address - Offset . 42

6.1 Validation Flowchart . 44

xiii

List of Tables

2.1 General Structure of LZ4 Frame format 9
2.2 Frame Descriptor . 10
2.3 FLG byte . 10
2.4 BD byte . 13
2.5 Data Blocks . 13
2.6 Data sequence . 13

3.1 Silesia archive Performance[3] 20
3.2 Comparison of NVIDIA GPU Specifications 21
3.3 Timing Performance[4] . 23
3.4 U200 Card Specifications . 24
3.5 Hardware Performance Metrics Silesia Benchmark 25
3.6 Resource Utilization . 26

6.2 Timing Setup . 49
6.3 Resource Utilization . 49
6.4 Power . 49
6.5 Throughput Results . 50
6.6 Work Comparison . 52

xv

List of Abbreviations

ALU Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
BRAM Block Random Access Memory
CPR Compatible Public Results
CPU Central Processor Unit
CS Computer Science
DDR4 Double Data Rate type texbf4 memory
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
FF Flip Flops
FPGA Field Programmable Gate Array
GDDR6 Graphics Double Data Rate type 6 memory
GPU Graphic Processor Unit
HBM High Bandwidth Memory
HDL Hardware Description Language
HPC Hight Performance Computing
LUT Look Up Table
MPSoC Multi Processor System on Chip
PL Programmable Logic
PR Percentile Rank
PS Processing System
RAM Random Access Memory
SDK Software Development Kit
SIMD Single Instruction Multiple Data
SSD Solid State Drive
TDP Thermal Design Power
URAM Ultra Random Access Memory

xvii

Dedicated to my family and friends. . .

1

Chapter 1

Introduction

1.1 Motivation

Data compression, a pivotal technique in managing the exponential growth
of digital information, has become increasingly critical in the digital era. It
involves reducing the size of data files, enabling more efficient storage, faster
transmission, and cost-effective processing. The evolution of hardware de-
velopment plays a crucial role in advancing data compression techniques,
offering the computational power and specialized capabilities required to
implement sophisticated algorithms effectively.

As hardware technology progresses, new architectures and processing units
are designed to handle the complexities of modern compression algorithms
with greater efficiency. These advancements facilitate not only the compres-
sion of large datasets but also ensure minimal loss of information, maintain-
ing data integrity. The development of specialized processors and accelera-
tors, such as GPUs and FPGAs, has been instrumental in this context, offer-
ing parallel processing capabilities that significantly speed up compression
tasks.

Moreover, hardware innovations have expanded the applicability of com-
pression techniques across various fields, including telecommunications, where
they enhance bandwidth utilization; in cloud computing, by optimizing re-
source allocation and reducing storage costs; and in multimedia streaming,
improving the user experience through faster loading times and lower buffer-
ing incidences.

In summary, the symbiosis between data compression and hardware devel-
opment is reshaping the landscape of digital information management. As

2 Chapter 1. Introduction

hardware technology continues to evolve, it promises to unlock new poten-
tials in data compression, driving efficiencies and innovation across multiple
domains of the digital world.

This work focused on the design and implementation of a hardware IP for
data decompression using the LZ4 algorithm.

1.2 Scientific Contributions and Goals

The objective of this project is to develop an LZ4 decompressor optimized for
Field-Programmable Gate Arrays (FPGAs), leveraging the unique capabili-
ties of these devices to enhance data decompression processes. The motiva-
tion behind this endeavor stems from the critical role of data compression in
contemporary technology landscapes, where the efficient storage and trans-
mission of data are paramount. Understanding the fundamentals of data
compression—and specifically the mechanisms of the LZ4 algorithm—is es-
sential for the successful implementation of a decompressor. This foundation
not only informs the technical approach but also aligns with the broader ne-
cessity for advanced compression techniques in the digital era.

FPGAs offer a versatile platform for hardware acceleration, providing the
flexibility to implement specialized algorithms with optimized performance
characteristics. The decision to utilize FPGAs in this project is driven by their
ability to execute parallel processing tasks, a feature that is particularly ben-
eficial for the decompression of data. By designing a decompressor on an
FPGA, the project aims to achieve high throughput and low latency in de-
compression operations, qualities that are increasingly demanded as data
volumes continue to expand.

The project’s methodology involved translating the principles of LZ4 decom-
pression into a hardware description language (HDL), with VHDL selected
for its robustness and widespread support in the field of digital circuit de-
sign. This translation required a deep dive into the algorithm’s logic to en-
sure that the resulting hardware implementation would faithfully reproduce
the decompression process while maximizing the performance benefits of-
fered by FPGAs.

1.3. Thesis Outline 3

Some contributions that this work targets:

• Architecture design for data decompression based on LZ4 algorithm

• Implementation of the architecture in reconfigurable computing

• Full test and validation of the implementation

Through this work, the project seeks to bridge the gap between the theo-
retical aspects of data compression and the practical advantages of hardware
accelerators like FPGAs. By doing so, it contributes to the evolving landscape
of digital technology, where the ability to efficiently manage data is not just
beneficial but necessary. This implementation of an LZ4 decompressor on an
FPGA stands as a testament to the synergy between compression algorithms
and hardware innovation, aiming to meet the demands of an increasingly
data-driven world.

1.3 Thesis Outline

• Chapter 2 - Theoretical Background: In this chapter all the theoretical
background needed to understand this project will be explained. From
the base of the LZ4 algorithm, to the details of an LZ4 file and how it is
created. Finally a general idea of how this work can be utilized will be
described.

• Chapter 3 - Related Work: In this chapter various works from many
areas will be collected and introduced.

• Chapter 4 - System Architecture: In this chapter the architecture of the
project is being discussed in a more abstract way and in a higher level.

• Chapter 5 - FPGA Implementation and architecture design: In this
chapter all the steps of the work will be analyzed. Both the hardware
selection and the parts that will be used and the way that the data will
be interpreted.

• Chapter 6 - Results: In this chapter the final results of the project will
be presented. Also the procedure that was followed to validate the cor-
rectnes of the work.

• Chapter 7 - Conclusions and Related Work: In this chapter there will
be a conclusion and the final view of the work also with our ideas of
the next steps of this work and how it can be further developed.

5

Chapter 2

Theoretical Background

In this chapter the theoretical background and the LZ4 algorithm will be ex-
plained and analyzed. Additionally, the LZ4 file will be detailed with all the
parts that will provide the necessary base for the project. Finally, the abstract
design and the components that will be used are described and why this se-
lection is made.

2.1 LZ4 algorithm

The LZ4 compression algorithm stands as a significant advancement in the
field of data compression, noted for its exceptional speed while providing a
respectable compression ratio. Developed by Yann Collet[1], LZ4 is designed
for fast compression and decompression speeds, making it particularly suit-
able for real-time applications where processing time is critical. This analysis
delves into the principles, architecture, and operational mechanisms of the
LZ4 algorithm, providing a comprehensive understanding of its functional-
ity within the realm of compression and decompression processes.

2.1.1 Principles and Architecture

LZ4 operates on the principle of finding short matches, called sequences, be-
tween the current data segment being compressed and the previously pro-
cessed data. It employs a sliding window technique, which allows it to ref-
erence back to data that has already been compressed within a certain dis-
tance. This approach is instrumental in achieving compression by replacing
repeated occurrences of data with references to their first occurrence. The
core of LZ4’s architecture is its efficient encoding of literals (unmatched data)
and match sequences. The algorithm uses a token mechanism to represent

6 Chapter 2. Theoretical Background

the length of literals and sequences, optimizing the space required to store
this information.

2.1.2 Compression Process

FIGURE 2.1: LZ4 compression algorithm

During compression, LZ4 scans the input data for sequences that have pre-
viously appeared within the sliding window. When a match is found, it is
encoded as a reference to the position of its first occurrence rather than du-
plicating the actual data. This reference comprises two main components: the
distance to the previous occurrence (offset) and the length of the match. Lit-
erals, or data segments without matches, are copied directly into the output
stream. LZ4’s efficiency is largely due to its ability to perform these opera-
tions quickly, with minimal overhead, enabling high-speed compression that
is particularly beneficial in real-time systems.

2.1.3 Decompression Process

FIGURE 2.2: LZ4 decompression algorithm

2.2. LZ4 File Format 7

The decompression process in LZ4 is straightforward and even faster than
compression. Given that the format of the compressed data contains ex-
plicit lengths for literals and match sequences, the decompressor can rapidly
reconstruct the original data by copying literals directly and replicating se-
quences based on their offsets and lengths. This simplicity and speed are crit-
ical advantages of LZ4, ensuring minimal delay in accessing decompressed
data.

2.2 LZ4 File Format

LZ4 employs a lossless compression technique, ensuring that the original
data can be perfectly reconstructed from the compressed data. This aspect is
crucial for applications where data integrity is paramount. The file structure
of LZ4 is designed to optimize speed, leveraging a stream of blocks that con-
tain the compressed data. Each block within the LZ4 file can be compressed
independently, allowing for parallel decompression and enhancing the algo-
rithm’s performance in multi-core systems.

The LZ4 file structure comprises two primary components: the frame and
the block. The frame acts as the container for the compressed data, encapsu-
lating the blocks and including important metadata such as the content size
and checksums for data integrity verification. This metadata is essential for
validating the integrity of the decompressed data, ensuring it matches the
original input precisely.

Within the frame, the blocks are the core units of compression. LZ4 allows
for varying block sizes, which can be adjusted based on the specific require-
ments of the application. This flexibility enables a balance between com-
pression ratio and speed, as larger blocks generally offer better compression
at the cost of increased processing time. Each block contains a sequence of
bytes where literal bytes and sequences of repeated bytes are encoded. The
encoding leverages the principle of back-references for sequences that have
occurred previously within the stream, significantly reducing the file size for
data with repetitive patterns.

A distinctive feature of the LZ4 file structure is its support for two modes of
operation: block mode and stream mode. Block mode is tailored for scenarios
where the entire data set is available at the time of compression, facilitating
the use of larger blocks for improved compression ratios. Conversely, stream
mode is designed for real-time applications, where data is compressed in

8 Chapter 2. Theoretical Background

smaller chunks as it becomes available. This mode is particularly advanta-
geous for streaming applications, where latency and throughput are critical
factors.

The LZ4 file structure also incorporates mechanisms for error detection and
correction, underscoring the algorithm’s robustness in diverse application
scenarios. Checksums are used to ensure the integrity of both the compressed
blocks and the overall frame, providing a safeguard against data corruption
during transmission or storage.

2.2. LZ4 File Format 9

2.2.1 Frame Format

Magic Frame Data (...) EndMark Content
Number Descriptor Block Checksum
4 bytes 3-15 bytes 4 bytes 0-4 bytes

TABLE 2.1: General Structure of LZ4 Frame format

• Magic Number

4 Bytes, Little endian format. Value: 0x184D2204

• Frame Descriptor

3 to 15 Bytes, to be detailed in chapter 1.2.2, as it is the most important
part of the spec. The combined Magic Number and Frame Descriptor
fields are sometimes called LZ4 Frame Header. Its size varies between
7 and 19 bytes.

• Data Blocks

To be detailed in its own chapter.

• EndMark

The sequence of data blocks concludes with the occurrence of a 32-bit
value, specifically 0x00000000, which signifies the termination of the
data stream.

• Content Checksum

The "Content Checksum" plays a crucial role in validating the integrity
of the data after decoding. This checksum is computed using the xxHash-
32 algorithm on the original (decoded) data, with the seed value set to
zero. Its application is optional and is only employed when the corre-
sponding flag within the frame descriptor is set. This mechanism veri-
fies that the data blocks are received accurately, in the correct order, and
free of errors. Furthermore, it guarantees that the processes of encoding
and decoding have not resulted in any discrepancies. The reliability of
this checksum makes it a recommended tool for ensuring data integrity.

In addition, the discussion includes the "EndMark" and "Content Check-
sum" fields, which are components of what is occasionally referred to

10 Chapter 2. Theoretical Background

as the LZ4 Frame Footer. These fields have a variable size, ranging be-
tween 4 and 8 bytes. This detail underscores the flexibility and adapt-
ability of the LZ4 framing format in accommodating different require-
ments for data integrity verification.

• Frame Concatenation

In certain scenarios, it may be advantageous to concatenate multiple
frames, for instance, when augmenting an existing compressed file with
new data without restructuring the entire file. Under these circum-
stances, each frame is endowed with a unique set of descriptor flags,
considering each frame as an independent. The sole connection among
the frames is the order in which they appear sequentially.

Frame Descriptor

FLG BD (Content Size) Dictionary ID Header checksum
1 byte 1 byte 0-8 bytes 0-4 bytes 1 byte

TABLE 2.2: Frame Descriptor

FLG byte

Bit 7-6 5 4 3 2 1 0
Field Version Block Block C. C. Reserved Dict.
Name Independ. Checksum Size Checksum ID

TABLE 2.3: FLG byte

• Version Number

In the outlined specification, a 2-bit field designated as the version num-
ber is crucial, necessitating its configuration to ’01’. This is impera-
tive as alternative values are incompatible with the current specifica-
tion iteration, necessitating distinct flag configurations for other version
numbers.

• Block Independence flag

Regarding block independence, a pivotal flag determines the relation-
ship between data blocks. A setting of ’1’ denotes block independence,
ensuring that each block can be decoded without reference to others.
Conversely, a ’0’ setting indicates a dependency on preceding blocks

2.2. LZ4 File Format 11

within the LZ4 window size limit of 64 KB, necessitating sequential de-
coding. This dependency notably enhances the compression efficiency
for smaller data blocks but precludes the feasibility of random access
or the application of multi-threaded decoding techniques.

• Block checksum flag

The specification also introduces a block checksum flag, enabling the
association of a 4-byte checksum with each data block. This checksum,
derived from the xxHash-32 algorithm applied to compressed data,
aims to facilitate the immediate identification of data corruption issues,
whether from storage or transmission errors. The implementation of
block checksums remains optional.

• Content Size flag

Further, the Content Size flag, when activated, signifies the inclusion of
the uncompressed data size, represented as an 8-byte unsigned little-
endian value after the flags, offering an optional utility for specifying
data volume.

• Content checksum

Additionally, the presence of a content checksum flag indicates the ap-
pending of a 32-bit checksum following the EndMark, serving as an
integrity verification measure for the data content.

• Dictionary ID flag

Lastly, the Dictionary ID flag, upon being set, mandates the inclusion of
a 4-byte Dictionary ID field following the descriptor flags and the Con-
tent Size, further contributing to the specification’s flexibility in data
compression and integrity assurance mechanisms.

• Reserved Bits

The specification mandates that the value of reserved bits must be set to
zero. These bits are earmarked for potential future use, possibly for the
introduction of new features. Should the specification evolve to include
these new features, decoders that comply with the existing version will
not support decoding frames that utilize these reserved bits.

• Content Size

12 Chapter 2. Theoretical Background

The content size refers to the size of the data before it undergoes com-
pression. Including this piece of information is optional and is contin-
gent upon a specific flag being activated. When present, the content
size is articulated using an unsigned 8-byte format, accommodating a
maximum of 16 Exabytes and adopting a Little-endian byte order. This
value serves an informational purpose, aiding in either the display of
data or the allocation of memory. Decoders can choose to either over-
look this information or use it to verify the accuracy of the content.

• Dictionary ID

Utilizing a dictionary can significantly enhance the compression effi-
ciency of short data sequences. In this context, the dictionary acts as a
pre-established "known prefix," enabling the compressor to encode the
data more compactly. Depending on the configuration specified by the
frame descriptor, each block within a frame may be initialized with the
dictionary independently, in the case of independent blocks, or collec-
tively at the frame’s commencement for linked blocks. It is imperative
for both the compression and decompression processes to utilize the
identical dictionary to ensure the data remains decodable.

The introduction of the Dict-ID field serves as a mechanism to aid de-
coders in identifying the appropriate dictionary required for the accu-
rate decompression of a frame. This field, an unsigned 32-bit value
stored in little-endian format, is included only when its corresponding
flag is activated. It is important to note that within a frame, only a single
instance of the Dict-ID field is permissible.

Moreover, the Dict-ID field is not mandatory. The selection of the dic-
tionary can be communicated through alternative means, such as being
inferred from the application’s context.

• Header Checksum

Regarding the header checksum, it encompasses a one-byte checksum
that validates the integrity of the frame descriptor and any optional
fields it may contain. This checksum is derived from the second byte of
the xxh32() hash function, calculated as (xxh32()»8) & 0xFF, using a zero
seed and the entire Frame Descriptor, including any present optional
fields, as input. An incorrect checksum is indicative of a discrepancy
within the descriptor.

2.2. LZ4 File Format 13

BD byte

Bit 7 6-5-4 3-2-1-0
Field Name Reserved Block Max Size Reserved

TABLE 2.4: BD byte

• Block Maximum Size

In the realm of data decoding, understanding the maximum size of
blocks is crucial for memory allocation purposes. The term "size" per-
tains to the size of the data prior to compression. The specification
outlines several predetermined sizes for blocks, which are essential for
decoders to know in order to allocate appropriate memory. It is im-
portant to note that decoders have the discretion to reject block sizes
that exceed any system-specific thresholds. Furthermore, certain val-
ues are presently not in use but may find application in subsequent re-
visions of the specification. Decoders that adhere to the current version
of the specification are equipped to handle only the block sizes explic-
itly mentioned within it. Block Maximum Size is one value among the
following:

1. 4 or 100

2. 5 or 101

3. 6 or 110

4. 7 or 111

2.2.2 Block Format

Block Size data sequence (Block Checksum)
4 bytes 0 - 4 bytes

TABLE 2.5: Data Blocks

Token Literal length(optional) Literals Offset Match length(optional)
1-byte 0-n bytes 0-L bytes 2-bytes 0-n bytes

TABLE 2.6: Data sequence

An LZ4 compressed block is intricately structured to optimize data compres-
sion through a series of sequences, each sequence being a combination of
literals and a match copy operation, thus facilitating effective data encoding.

14 Chapter 2. Theoretical Background

This detailed architecture is pivotal in achieving LZ4’s renowned compres-
sion efficiency and speed.

The foundation of each sequence is marked by the initiation of a token, a one-
byte entity that bifurcates into two distinct 4-bit fields. This binary division
allows each field to span a range from 0 to 15, encapsulating the sequence’s
initial parameters. The upper 4 bits of the token delineate the length of the
subsequent literals, serving as a prelude to the data compression process.
This length quantification is direct for values less than 15, indicating the exact
number of literals incorporated within the sequence, with the possibility of
zero indicating the absence of literals.

However, the architecture introduces a complexity when this value reaches
the threshold of 15. In such instances, the format necessitates additional bytes
to accurately convey the total length of literals, with each byte capable of rep-
resenting a value from 0 to 255. This incremental mechanism ensures a flexi-
ble and dynamic representation of literal lengths, accommodating sequences
of varied sizes. The continuation of reading and adding bytes persists as long
as a byte value of 255 is encountered, symbolizing the sequence’s capacity for
indefinite expansion within the constraints of practical implementation lim-
its. This system underscores the absence of a predefined "size limit" within
the LZ4 block format, although practical constraints are acknowledged in
application-specific contexts, as further elaborated in sections dedicated to
implementation notes.

Example 1: A literal length of 48 will be represented as:

• 15: value for the 4-bits High field

• 33: (=48-15) remaining length to reach 48

Example 2: A literal length of 280 will be represented as:

• 15: value for the 4-bits High field

• 255: following byte is maxed, since 280-15 >= 255

• 10: (=280 - 15 - 255) remaining length to reach 280

Example 3: A literal length of 15 will be represented as:

• 15: value for the 4-bits High field

• 0: (=15-15) yes, the zero must be output

Note: These examples are taken from [2]

2.2. LZ4 File Format 15

In the LZ4 compression algorithm, the process of data compression within a
block follows a structured format, beginning with the interpretation of a to-
ken followed by optional length bytes, which precede the actual data literals.
These literals, the uncompressed data segments, are quantified precisely by
the length decoded from the preceding token and length bytes. It is crucial to
understand that the number of literals can vary, extending to the possibility
of there being none. This variability underscores the flexibility and efficiency
of the LZ4 algorithm in adapting to the data it compresses.

After the literals, the block format transitions into a match copy operation,
a pivotal component in the compression mechanism. This operation is initi-
ated by deciphering an offset value, encoded as a 2-byte entity utilizing little-
endian formatting. This means the first byte represents the lower significant
value, and the second byte, the higher. The offset is essential in identifying
the location within the previously processed data from which a match can
be copied. This operation underlines the dictionary-based approach of LZ4,
where earlier data segments are reused to compress repeating patterns effi-
ciently. The offset’s value is directly proportional to the distance backward
from the current position, with 1 indicating one byte behind the current po-
sition. The design of LZ4 caps the maximum offset at 65535, acknowledging
the limitations of a 2-byte representation. Values beyond 65535 are beyond
the encoding capability of the format, emphasizing the balance between com-
pression efficiency and complexity. An offset value of 0 is deemed invalid,
signifying a corrupted block. This safeguards against data integrity issues,
ensuring that each block adheres to the protocol for valid compression.

The LZ4 file’s block format employs a nuanced method for encoding match
lengths, which is critical for understanding its compression mechanism. This
process hinges on the utilization of the second token field, specifically the
lower 4 bits. This segment, with its range from 0 to 15, plays a pivotal role
in determining the length of a match. Notably, a 0 value in this context does
not signify an absence but rather the minimum operational length for a copy
action, which is established at 4 bytes. This baseline is referred to as the
minmatch. Thus, any value within this field directly translates to a match
length that must incorporate an additional 4 bytes, spanning a range from 4
to 18 bytes.

The encoding takes a special turn when the value reaches 15, indicating that
the match length extends beyond 18 bytes. In such instances, the format ne-
cessitates the sequential reading of extra bytes, each with a potential value

16 Chapter 2. Theoretical Background

between 0 and 255, to cumulatively ascertain the final match length. The
presence of a 255 value amongst these bytes signals the requirement to read
and integrate yet another byte into the total length. This mechanism allows
for an indefinite extension of the match length, constrained only by practical
implementation limits rather than theoretical ones. This flexible yet system-
atic approach underscores the LZ4 algorithm’s capacity for adaptability and
efficiency in data compression.

Upon concluding the decoding of a match length, the algorithm proceeds to
the next sequence within the LZ4 block. This transition is marked by the
initiation of a new token, signifying the start of a distinct sequence. It is
essential to recognize that this sequential flow facilitates the LZ4 algorithm’s
dynamic handling of data, enabling the efficient compression of diverse data
types while maintaining high throughput rates.

In summary, the LZ4 block format’s method for encoding match lengths ex-
emplifies the algorithm’s sophisticated approach to data compression. By
employing a flexible yet precise mechanism for determining match lengths,
coupled with a structured sequence processing system, LZ4 stands out as a
robust solution for fast and effective data compression. This detailed explo-
ration not only underscores the technical intricacies of the LZ4 algorithm but
also highlights its practical applicability across various computing environ-
ments.

2.2.3 End of block conditions

In the LZ4 compression, the termination of a block is governed by a set of
specific criteria designed to ensure data integrity and compatibility with ex-
isting decompression algorithms. These end-of-block conditions are crucial
for maintaining the efficiency and reliability of the LZ4 compression algo-
rithm, particularly in scenarios involving data streams of varying lengths.

The termination of an LZ4 block is uniquely defined to ensure that decom-
pression processes can accurately and efficiently reconstruct the original data.
One fundamental rule dictates that the final sequence within a block consists
solely of literal bytes, with the block concluding immediately subsequent to
these literals, omitting the need for an offset field. This ensures that the de-
coder precisely identifies the end of the compressed data stream. Addition-
ally, the protocol mandates that the last five bytes of the input must be liter-
als. This requirement guarantees that the final sequence contains a minimum

2.2. LZ4 File Format 17

of five literal bytes, thereby facilitating a consistent decompression process
across diverse data sizes.

A noteworthy specification addresses inputs smaller than five bytes. In such
instances, the LZ4 algorithm treats the entire input as a single sequence of
literals. This approach allows for the compression of even the smallest data
sizes, including an empty input, which is represented by a zero byte. This
zero byte is interpreted as a final token that contains neither literals nor
a match, showcasing the algorithm’s flexibility in handling various input
lengths.

The rules concerning the placement of the last match within a block further
underscore the algorithm’s precision. The last match is required to com-
mence at least 12 bytes prior to the block’s conclusion and is considered
a component of the penultimate sequence. This sequence is succeeded by
the final sequence, which, as previously mentioned, is comprised exclusively
of literals. This stipulation prevents the possibility of compressing blocks
shorter than 12 bytes, as such blocks do not provide sufficient space for the
required sequence of literals and match. This limitation extends to indepen-
dent blocks shorter than 13 bytes, which necessitate the initiation of the block
with at least one literal byte, thereby enabling subsequent matches to repli-
cate the literal.

These meticulously designed end conditions are not arbitrary but are instead
implemented to assure backward compatibility and optimal performance
with a broad spectrum of decoders, many of which are engineered for high-
speed operations. The adherence to these rules enables the LZ4 algorithm
to deliver fast, reliable compression across a wide array of data types and
sizes, ensuring that even when a block does not conform to these conditions,
it can be identified and potentially rejected by a compliant decoder as in-
correct. This rigorous framework underscores the algorithm’s commitment
to data integrity and efficiency, essential traits for modern data compression
techniques.

19

Chapter 3

Related Work

In this chapter there will be analysed various works regarding LZ4 decom-
pression in many platforms. Platforms such as CPUs, GPUs and FPGAs.
This will give us a good idea of what is happening in the area of data de-
compressing in the field and also have a benchmark on what our work can
accomplish.

3.1 CPU

3.1.1 Hardware

The benchmarking process will commence with CPUs as the reference point,
acknowledging their position as the least efficient hardware category in the
context of our study. This is not to undermine the CPU’s versatility and criti-
cal role in general-purpose computing but to contextualize its performance in
specialized tasks such as compression and decompression. For the purpose
of this analysis, we will employ Level 1 compression, recognized as the de-
fault setting, alongside corresponding decompression performance metrics.
This level has been selected for its widespread adoption and relevance to a
broad spectrum of applications.

The hardware under scrutiny will encompass commercial CPUs that repre-
sent the pinnacle of current technology. This selection criteria ensure that the
data derived from the benchmarks reflects the capabilities of state-of-the-art
hardware, thereby providing insights into the upper limits of performance
achievable with contemporary CPU architectures.

The compilation of performance data will draw from OpenBenchmarking.org[3],
a reputable source that aggregates user-contributed benchmark results. This
study will consider a dataset consisting of 267 public submissions, recorded

20 Chapter 3. Related Work

between 19 January 2024 and the latest entry on 28 February 2024. This
dataset offers a robust foundation for analysis, ensuring that the conclusions
drawn are based on a significant volume of data points.

It is crucial to recognize the inherent variability in performance outcomes, es-
pecially within the Linux and open-source ecosystem. The diversity in oper-
ating system configurations can introduce a wide range of performance vari-
ances. Therefore, the forthcoming analysis is designed to provide general-
ized insights into hardware performance, rather than definitive benchmarks
applicable to all conceivable system setups. This approach acknowledges
the complex interplay between hardware capabilities and software config-
urations, emphasizing the importance of considering a broad spectrum of
operating environments.

The levels in the dropdown menu represent different compression settings
for LZ4, affecting the balance between compression speed and ratio. Higher
levels typically provide better compression at the cost of speed, while lower
levels are faster but less efficient in reducing file size. Each level is tailored
for specific use cases, ranging from real-time applications needing quick data
transfer to scenarios where maximum compression is desired despite longer
processing times.

3.1.2 Timing

COMPONENT PR # CPR MB/s (AVG)

AMD Ryzen 9 7950X 16-Core 97th 9 6473
AMD Ryzen 7 7700 8-Core 96th 4 6435
AMD Ryzen 7 7700X 8-Core 94th 7 6411
AMD Ryzen Threadripper 7980X 64-Core 93rd 8 6395
AMD Ryzen 5 7600X 6-Core 93rd 6 6395
AMD Ryzen 9 7900X 12-Core 88th 4 6320
AMD Ryzen 9 7900X3D 12-Core 82nd 4 6187
AMD Ryzen 9 7950X3D 16-Core 82nd 4 6171
AMD Ryzen 7 8700G 81st 15 6113
Intel Core i9-14900K 80th 9 6092
AMD Ryzen 5 8600G 76th 11 6078

TABLE 3.1: Silesia archive Performance[3]

3.2. GPU 21

3.2 GPU

3.2.1 Hardware

Analysis of NVIDIA GPUs: A100, A30, A10, and H100 PCIe

This analysis presents a detailed comparison of NVIDIA’s GPUs: A100, A30,
A10, and H100 PCIe, focusing on their specifications, performance, intended
applications, and cost-effectiveness. Each of these GPUs targets specific mar-
ket segments and applications, making them suitable for various computing
tasks.

Specifications

GPU Model CUDA Cores Performance(TFLOPs) Memory Type Memory Size
A100 6912 312 HBM2 40GB / 80GB
A30 4096 165 HBM2 24GB
A10 6912 130 GDDR6 24GB
H100 PCIe 16896 1000 HBM3 80GB

TABLE 3.2: Comparison of NVIDIA GPU Specifications

Here’s a breakdown of the table:

• GPU Model: This is the model name of the GPU.

• CUDA Cores: The number of CUDA cores in the GPU, which are par-
allel processors that can handle computing tasks.

• Performance: The peak performance capability of the GPU, measured
in teraflops (TFLOPs).

• Memory Type: The type of memory used in the GPU, with HBM (High
Bandwidth Memory) being faster than GDDR (Graphics Double Data
Rate).

• Memory Size: The total amount of memory available on the GPU.

Performance

In terms of performance, the A100 and H100 stand out as the powerhouses
among the four, designed to tackle the most demanding AI and HPC tasks.
The A100’s architecture is optimized for deep learning and scientific comput-
ing, offering unmatched computational capabilities. The H100 takes this a

22 Chapter 3. Related Work

step further, incorporating NVIDIA’s latest advancements to deliver ground-
breaking performance in AI model training and simulation.

The A30 and A10, while not as powerful as their counterparts, offer signifi-
cant capabilities for their intended use cases. The A30 excels in AI inference
and light training tasks, providing a balance of performance and efficiency.
The A10, with its focus on mixed workloads, delivers competent AI perfor-
mance and excellent capabilities for graphics-intensive applications.

Intended Applications

Each GPU is designed with specific applications in mind:

The A100 is best suited for deep learning training and inference, scientific
computing, and data analytics, where its computational power can signifi-
cantly reduce processing times. The A30 targets enterprises and cloud service
providers needing a versatile GPU for a mix of AI, HPC, and inference tasks.
The A10 is ideal for creative and design professionals requiring a blend of
AI computational capabilities and graphics performance. The H100 is aimed
at cutting-edge AI research and large-scale HPC environments, where its ad-
vanced AI and computing capabilities can accelerate the most complex tasks.

Cost-Effectiveness

When evaluating cost-effectiveness, it’s essential to consider the total cost of
ownership, which includes not just the initial purchase price but also power
consumption and cooling requirements. The A100 and H100, while offering
superior performance, come with a higher price tag, making them best suited
for environments where computational speed and efficiency are paramount.
The A30 and A10 offer a more balanced approach, providing good perfor-
mance at a lower cost, making them suitable for a wider range of applications
and budgets.

The A100 and H100’s advanced features and performance justify their higher
cost for organizations that require the utmost in computational capabilities.
For those with more moderate needs or budget constraints, the A30 and A10
provide capable alternatives that can deliver excellent performance in a vari-
ety of tasks without the same level of investment.

3.2. GPU 23

Conclusion

In conclusion, NVIDIA’s A100, A30, A10, and H100 PCIe GPUs cater to a
broad spectrum of computing needs, from AI and deep learning to graphics
and visualization. The A100 and H100 are unparalleled in their performance
and are suited for tasks that demand the highest computational capabilities.
In contrast, the A30 and A10 offer versatility and cost-effectiveness for a wide
range of applications. The choice among these GPUs should be guided by the
specific requirements of the tasks at hand, including the necessary computa-
tional power, budget constraints, and energy efficiency considerations.

3.2.2 Timing

Benchmark HW technology Results

Data analytics: INT columns H100 PCIe 472.28 GB/s
Data analytics: INT columns A100 369.79 GB/s
Data analytics: INT columns A30 224.72 GB/s
Data analytics: INT columns A10 228.71 GB/s

Graphics: Textures Data H100 PCIe 114.57 GB/s
Graphics: Textures Data A100 81.61 GB/s
Graphics: Textures Data A30 39.24 GB/s
Graphics: Textures Data A10 50.27 GB/s

Graphics: Geometry Data H100 PCIe 51.77 GB/s
Graphics: Geometry Data A100 39.08 GB/s
Graphics: Geometry Data A30 21.86 GB/s
Graphics: Geometry Data A10 27.09 GB/s

Silesia H100 PCIe 43.79 GB/s
Silesia A100 34.13 GB/s
Silesia A30 22.07 GB/s
Silesia A10 26.59 GB/s

TABLE 3.3: Timing Performance[4]

24 Chapter 3. Related Work

3.3 FPGA

3.3.1 Hardware

Xilinx Alveo U200

Card Specifications

Compute
INT8 TOPs (peak) 18.6

Dimensions
Height Full
Length ¾
Width Dual Slot

Memory
Off-chip Memory Capacity 64 GB
Off-chip Total Bandwidth 77 GB/s
Internal SRAM Capacity 35 MB
Internal SRAM Total Bandwidth 31 TB/s

Interfaces
PCI Express Gen3x16
Network Interfaces 2x QSFP28 (100GbE)

Logic Resources
Look-up Tables (LUTs) 892,000

Power and Thermal
Maximum Total Power 225W
Thermal Cooling Passive

TABLE 3.4: U200 Card Specifications

The Xilinx Alveo U200 is a highly capable accelerator card designed to sig-
nificantly boost the performance of a wide range of applications, including
data analytics, machine learning, and video processing. As part of Xilinx’s
Alveo series, the U200 card is engineered for both cloud and on-premises ap-
plications, offering a flexible solution for accelerating computing workloads.

• Key Features

– High Performance

Equipped with Xilinx UltraScale+ FPGA, it delivers exceptional
speed and efficiency for various compute-intensive applications.

– Adaptable Acceleration

3.3. FPGA 25

Offers customizable acceleration capabilities, allowing users to op-
timize their applications for performance or power efficiency.

– Concurrent Computing

Enables the execution of multiple tasks simultaneously, increasing
throughput and efficiency.

– Accelerated Computing

It is designed to accelerate a wide range of applications, from ma-
chine learning models and data analytics to video processing, pro-
viding significant speedups compared to traditional computing
solutions.

• Benefits

– Efficiency

By offloading specific computational tasks to the Alveo U200, sys-
tems can achieve higher throughput and lower latency, leading to
more efficient data processing and analysis.

– Cost-Effective

Utilizing the U200 can lead to lower total cost of ownership by re-
ducing the need for additional computing resources and lowering
power consumption.

– Scalability

The ability to customize and reconfigure the FPGA for different
tasks makes the U200 a scalable solution that can evolve with chang-
ing computing needs.

3.3.2 Timing

Source HW technology Results

Xilinx[5] Xilinx Alveo U200 1.1 GB/s
Xilinx Stream Xilinx Alveo U200 293 MB/s
AMD[6] Xilinx Alveo U200 443 MB/s
AMD Stream Xilinx Alveo U200 368 MB/s

TABLE 3.5: Hardware Performance Metrics Silesia Benchmark

26 Chapter 3. Related Work

3.3.3 Resources

Source LUT LUTMem REG BRAM URAM Fmax (MHz)

Xilinx 8.8K 692 6.7 K 2 4 262
Xilinx Stream 802 32 1K 16 0 300
AMD 7.3K 1.1K 7 K 2 4 262
AMD Strean 6K 370 5K 0 4 300

TABLE 3.6: Resource Utilization

27

Chapter 4

System Architecture

The development of an LZ4 decompressor necessitates a comprehensive un-
derstanding of the algorithm’s theoretical underpinnings, especially focusing
on the essential components required for its efficient operation. At the core
of LZ4 compression lies the strategic encoding of sequences, which serves as
the primary mechanism for reducing data size. This encoding process un-
derscores the need for a robust memory system capable of reconstructing the
original file from the compressed data. Such a system must facilitate easy
access to previously decompressed sequences, thereby necessitating the inte-
gration of Random Access Memory (RAM). RAM plays a pivotal role in not
only storing the decompressed sequences for subsequent retrieval but also in
ensuring the seamless reconstruction of the original file.

To manage the flow of compressed and decompressed data efficiently, the de-
compressor architecture incorporates temporary storage mechanisms. These
mechanisms are essential for holding incoming compressed bytes and the
corresponding decoded bytes destined for the output file. Given the lin-
ear nature of the compression and decompression processes, wherein data
is processed in a sequential manner without random access, a First In First
Out (FIFO) queue emerges as an optimal solution. The FIFO queue facili-
tates a streamlined process by ensuring that bytes are decoded and written
out in the exact order they are received, thereby eliminating any potential
bottlenecks or inefficiencies in the data flow.

The quintessence of the LZ4 decompressor’s design lies in its interpreter or
parser, colloquially referred to as the "mind" of the system. This critical com-
ponent is embodied by a Finite State Machine (FSM), which orchestrates and
fine-tunes the entire decompression process. The FSM meticulously controls
the input data flow, making real-time decisions on the placement of literals,
and managing the sequence of operations required to reconstruct the original

28 Chapter 4. System Architecture

data accurately. Furthermore, the FSM is adept at navigating complex scenar-
ios, including stall conditions and error states, ensuring the decompressor’s
resilience and robustness.

Error detection and management form an integral part of the decompressor’s
control unit, bolstered by the FSM’s capabilities. The FSM’s role extends to
addressing corner cases and stall conditions, which may arise due to anoma-
lies in the compressed data or unexpected operational scenarios. To effec-
tively resolve these challenges, the system’s design incorporates multiplexers
(muxes). These muxes play a pivotal role in selecting between different data
paths or operational modes based on the FSM’s directives, thereby enabling
the system to adapt to various conditions seamlessly.

In essence, the LZ4 decompressor’s architecture is a harmonious blend of
memory systems, data management mechanisms, and intelligent control logic.
The use of RAM ensures that decompressed sequences are readily accessi-
ble, facilitating efficient data reconstruction. The FIFO queue, in tandem
with RAM, streamlines the flow of data through the decompressor, main-
taining the integrity and order of the decompressed output. At the helm, the
FSM orchestrates the decompression process with precision, managing lit-
erals, sequences, and addressing any operational anomalies that may arise.
This comprehensive approach ensures that the LZ4 decompressor not only
achieves high efficiency and speed but also maintains the highest standards
of data fidelity and reliability.

In conclusion, the theoretical design of an LZ4 decompressor is a testament to
the intricate balance between efficient data management, sophisticated con-
trol logic, and the need for flexible, error-resilient operation. By delving into
the principles that underpin each component of the decompressor, we gain
a deeper understanding of the algorithm’s capabilities and the technological
ingenuity required to implement it effectively. This expanded exploration
provides a solid foundation for further research and development in the field
of data compression, highlighting the critical role of hardware engineering in
advancing digital storage and transmission technologies.

29

Chapter 5

FPGA Implementation and
Architecture Design

In this chapter the implementation of the whole project will be described.
Every detail that creates the decompressor will be analyzed.

5.1 Datapath

FIGURE 5.1: The Datapath[7]

30 Chapter 5. FPGA Implementation and Architecture Design

5.1.1 Memory

Overview of Memory Functionality

The memory unit in the LZ4 decompression datapath plays a pivotal role.
It serves the dual purpose of storing the decompressed data and facilitating
the retrieval of previously decompressed bytes, which are crucial for the al-
gorithm’s operation. The LZ4 algorithm, as we have analyzed, heavily relies
on referencing past decompressed data to effectively decompress new data.

Memory vs. FIFO (First In, First Out queues)

A critical design choice in this system is the use of a memory unit instead of
a FIFO (First-In, First-Out queue). This decision stems from the algorithm’s
need to access decompressed data non-sequentially. In a FIFO, the reading
address is automatically set and follows a strict order, which is incompatible
with the LZ4’s requirement for random access. The decompressor needs the
flexibility to set the reading address based on the specific data block being
processed. Each data block in LZ4 contains a unique sequence of literals and
a distinct offset for data retrieval. This offset, combined with the current
write address, determines the required reading address in the memory.

Memory Structure and Data Storage

The memory is structured to store literals from the second part of the data
section. These literals are not only fed to the output for decompression but
are also stored within the memory for potential future reference. This dual
role emphasizes the importance of the memory unit in ensuring the continu-
ity and integrity of the decompression process.

Memory Size Configuration

The size of the memory is a user-configurable parameter, defined in the source
code. It is recommended to size the memory based on the maximum window
size of the LZ4 algorithm, which is 64 KB. This recommendation is guided by
the need to balance memory resource utilization with the requirement to ac-
commodate the largest possible data window that the LZ4 algorithm might
reference. By aligning the memory size with the LZ4 window size, the system
ensures that it has adequate capacity to store and retrieve any data sequence
that the decompression process might require.

5.1. Datapath 31

5.1.2 FIFO

Role and Function of Input and Output FIFOs

The datapath of the LZ4 decompression algorithm incorporates two essential
components: the input FIFO and the output FIFO. These First-In, First-Out
queues serve as critical interfaces for data flow within the system. The in-
put FIFO is responsible for receiving and temporarily storing bytes from the
compressed file, acting as the primary feed for the decompression system.
Conversely, the output FIFO holds the decompressed data, ready for exter-
nal retrieval and use.

Interaction with Finite State Machine and Memory

Each clock cycle, a byte from the compressed file is fed from the input FIFO
into the system. This byte plays a pivotal role in the decompression process.
It is first interpreted by the finite state machine, a component responsible for
determining the nature of the data (whether it is literal data or a reference to
previous data). The finite state machine’s interpretation of this byte guides
the subsequent decompression steps.

Simultaneously, the input byte is directed to two destinations: the output
FIFO and the memory unit. The byte’s transmission to the output FIFO is
part of the process of reconstructing the original, uncompressed data. On
the other hand, its delivery to the memory unit is crucial for future decom-
pression tasks, particularly when the algorithm needs to reference previously
decompressed data.

Importance in the Decompression Process

The input and output FIFOs are fundamental in maintaining a smooth and
efficient flow of data through the LZ4 decompression system. They ensure
that the finite state machine and memory unit are continuously supplied with
the necessary data at the required pace. This coordination is vital for the real-
time processing capabilities of the LZ4 decompression algorithm.

32 Chapter 5. FPGA Implementation and Architecture Design

5.1.3 Multiplexers

Function and Roles of Multiplexers

The LZ4 decompression datapath utilizes three multiplexers, each playing a
distinct role in managing data flow and controlling signals. These multiplex-
ers are strategically placed: two are situated behind the output FIFO input,
and one is behind the memory unit.

Multiplexers Associated with the Output FIFO

Output FIFO Input Selection Multiplexer: The first multiplexer near the out-
put FIFO is tasked with selecting the source of data for the output FIFO. It
chooses between the input FIFO and the memory unit. This selection is crit-
ical because the output FIFO can receive data directly from the input FIFO
(representing uncompressed literals) or from the memory (representing pre-
viously decompressed data). The finite state machine (FSM) drives the con-
trol signal for this multiplexer, ensuring the correct source is selected based
on the current state and requirements of the decompression process.

Stall State Handling Multiplexer: The second multiplexer near the output
FIFO addresses stall conditions in the system. A stall occurs when either of
the FIFOs becomes empty or full, disrupting the normal flow of data. This
multiplexer, with a register, manages these stall conditions by ensuring the
correct literal is written to the output FIFO. When the system enters a stall
state, read, and write signals are set to zero, necessitating the need to main-
tain data integrity. The multiplexer achieves this by drawing data from the
register’s debounced exit during stall states, thus avoiding any loss of data.

Multiplexer Associated with the Memory

Memory Data Selection Multiplexer: The multiplexer behind the memory is
responsible for determining what data is written into the memory unit. The
data written can either be a literal from the input FIFO or a repeated literal
from previously decompressed data. This selection is crucial because it en-
sures that the memory contains a comprehensive record of decompressed
data, facilitating accurate and efficient decompression. The finite state ma-
chine also controls the select signal for this multiplexer, aligning the data
written to memory with the current operational phase of the LZ4 algorithm.

5.2. Stall Conditions 33

5.2 Stall Conditions

5.2.1 Input FIFO stall conditions

Stall conditions in the LZ4 decompression datapath represent scenarios where
the normal flow of data through the FIFOs (First-In, First-Out queues) is in-
terrupted, necessitating a temporary pause in operations. These conditions
are specific to each FIFO and are triggered by distinct situations.

Stall Conditions in the Input FIFO

Trigger for Stall in Input FIFO: The stall condition in the input FIFO is initi-
ated when this FIFO is empty. An empty input FIFO indicates that the ex-
ternal data source has not supplied sufficient data for processing. This lack
of data halts the decompression process since there is nothing available to
interpret or decompress.

Impact and Management of Stall in Input FIFO

During a stall caused by an empty input FIFO, all activities related to data
interpretation must be paused. This pause remains in effect until at least one
byte of data is stored in the input FIFO. The impact of an empty input FIFO
is primarily observed in specific stages of the decompression process. These
stages include token processing, handling of literals, offset calculations, and
the initial frame processing at the start of the file.

Non-affected Processes

It is important to note that not all stages of the decompression process are
impacted by the input FIFO’s stall condition. For instance, when the decom-
pression procedure involves copying already decrypted bytes from the mem-
ory, the state of the input FIFO is irrelevant. In such cases, the decompression
process can continue unaffected, as it relies on previously decompressed data
stored in memory rather than new data from the input FIFO.

5.2.2 Output FIFO stall conditions

Stall Conditions Arising from Output FIFO

In the LZ4 decompression datapath, stall conditions can also occur in relation
to the output FIFO, particularly when it becomes full. This situation presents

34 Chapter 5. FPGA Implementation and Architecture Design

a critical challenge as it risks data loss if not effectively managed.

Impact of a Full Output FIFO

Risks of a Full Output FIFO: When the output FIFO is full, there is a risk of
overwriting data that has not yet been transferred to the final decompressed
file. This situation necessitates a system stall to prevent data loss. The pri-
mary concern here is ensuring that data, especially that extracted from the
memory, is not lost, or corrupted during this stall period.

Memory Reliability Concerns: While memory units are generally reliable,
there is a non-zero risk that data held for multiple cycles could degrade or
turn into ’garbage’. This risk is particularly pertinent in scenarios where the
system experiences prolonged stalls or operates under sub-optimal condi-
tions.

Solution: Register and Multiplexer Integration

Implementation of a Register: To mitigate the risk associated with memory
reliability during stall conditions, a register is placed at the output of the
memory. This register serves as a temporary holding area for the data in-
tended for the output FIFO. Its purpose is to maintain the integrity of this
data, especially during stall conditions when writing to the output FIFO is
not immediately possible.

Role of the Multiplexer: A multiplexer is employed to facilitate the correct
routing of data under these circumstances. It plays a crucial role in selecting
the appropriate data source for the output FIFO. During the initial cycle fol-
lowing a stall condition, the multiplexer selects data from the register. This
ensures that the accurate and uncorrupted data is written to the output FIFO.
Subsequently, the multiplexer switches back to selecting data directly from
the memory output.

5.3 Finite State Machine

The finite state machine (FSM) serves as the core control unit within the LZ4
decompression system, directing the flow and manipulation of data through
precise signal management. This FSM is meticulously designed to handle
various operational signals critical for the datapath’s functionality, including

5.3. Finite State Machine 35

the write and read addresses of the memory, write and read enables for both
the memory and FIFOs, and the selection and stall control for multiplexers.

With thirteen distinct states, the FSM orchestrates the decompression pro-
cess starting from the initial system reset, through the parsing of frame head-
ers, managing block sizes and tokens, to the handling of literals and match
lengths, and concluding with the final state or transitioning to an error state if
anomalies are detected. Each state is uniquely responsible for managing data
flow and ensuring the integrity and efficiency of the decompression process,
reflecting the algorithm’s complexity and the necessity for precise control
mechanisms.

This FSM is not only a testament to the sophistication of the LZ4 decompres-
sion algorithm but also highlights the importance of a well-structured con-
trol system in managing complex data operations. It emphasizes the critical
role of FSMs in hardware design, particularly in applications requiring high-
speed data processing and accuracy. The parser of the input that controls all
the signals. Specifically, the FSM controls these signals:

1. Write address of the memory

2. Read address of the memory

3. Write enable of the memory

4. Read enable of the memory

5. Write enable of the input FIFO

6. Read enable of the output FIFO

7. Stall choice in mux no 1

8. Write select in mux no 2 and 3

The FSM has thirteen states that describe the part of the data block we are or
the process that is now occurring. The thirteen states are the following:

1. Initial

2. Magic Number

3. Frame bytes

4. Checksum Check

5. Block Size

36 Chapter 5. FPGA Implementation and Architecture Design

6. Read token

7. Keep reading literals

8. Copy literals

9. Read offset

10. Keep reading match-length

11. Copy past

12. Final State

13. Error State

FIGURE 5.2: Finite State Machine[8]

5.3.1 Initial

In this initial state, the primary activity involves monitoring the input FIFO
to ensure it contains data before commencing operations. This state is crucial

5.3. Finite State Machine 37

as it establishes the system’s readiness to begin processing compressed data
by enabling the read signal. The transition from this state is contingent upon
the presence of data in the input FIFO, signifying the FSM’s move to actively
handle compressed data. This phase underscores the FSM’s role in managing
data flow effectively, marking the transition from a state of readiness to active
data processing.

5.3.2 Magic Number

In the "Magic Number" state of the finite state machine for LZ4 decompres-
sion, the system validates the presence of a specific predefined sequence of
bytes at the beginning of the compressed file, known as the magic number.
This step is crucial as it confirms the file format and ensures that the data
being processed is indeed LZ4 compressed. The magic number is a con-
stant value predefined in the LZ4 specification, serving as an identifier that
unequivocally marks the file as compatible with LZ4 decompression algo-
rithms. Successfully identifying the magic number allows the finite state ma-
chine to proceed confidently to the next stage, knowing that the file adheres
to the expected LZ4 format. This validation step is foundational, setting the
stage for the decompression process by verifying file integrity and format
compliance.

5.3.3 Frame bytes

In the "Frame Bytes" state of the LZ4 decompression finite state machine,
the system processes metadata that provides context about the compression
procedure used on the data block. This state is executed twice to ensure thor-
ough analysis of critical information, such as whether the data blocks are
independent of one another or if a dictionary was used during compression.
These details are instrumental in determining the decompression strategy
and are essential for correctly interpreting the subsequent data. This stage
lays the groundwork for the decompression process by establishing parame-
ters that affect how data blocks are handled.

5.3.4 Checksum Check

In the "Checksum Check" state of the LZ4 decompression finite state ma-
chine, the focus is on the integrity verification of the decompressed data. The
checksum, generated during the initial compression process and embedded

38 Chapter 5. FPGA Implementation and Architecture Design

within the compressed file, is stored and later compared against a computed
checksum of the decompressed data. This step is crucial for ensuring data
integrity, as it verifies that the decompressed data matches the original pre-
compression data without any corruption or loss.

5.3.5 Block Size

In the "Block Size" state of the LZ4 decompression finite state machine, the
system identifies the size of the forthcoming compressed data block. This
information is crucial for the system to allocate resources and prepare for the
decompression process. Additionally, this state incorporates a mechanism
to detect the end of the compressed file, characterized by four consecutive
zero bytes. Upon detecting this pattern, the FSM transitions to the final state,
indicating the completion of the decompression process. If the end-of-file
condition is not met, the FSM proceeds to the "Read Token" state. This block
size detection is repeated across four cycles to accurately capture the four-
byte length of the block size, ensuring precise preparation for handling the
incoming data block.

5.3.6 Read token

In the "Read Token" state of the LZ4 decompression FSM, critical information
is decoded to determine the next steps in the decompression process. This
state interprets the token byte to extract the length of literals and the sequence
of literals to be copied. Based on the decoded lengths, the FSM transitions to
one of three possible states:

1. "Copy Literals" if the number of literals is less than 15.

2. "Keep Reading Literals" if exactly 15 (indicating the potential for addi-
tional literals)

3. "Read Offset" if no literals are present.

5.3.7 Keep reading literals

In the "Keep Reading Literals" state, the finite state machine focuses on gath-
ering all necessary bytes that represent the literals to be decompressed. This
accumulation process continues until a byte value less than 255 is encoun-
tered, signaling the completion of the literal gathering phase. Upon reaching

5.3. Finite State Machine 39

this condition, the state transitions to "Copy Literals," where the actual de-
compression of these accumulated literals takes place. This state is essential
for ensuring that all literals are correctly prepared for decompression, facili-
tating accurate reconstruction of the original data.

5.3.8 Copy literals

In the state where literals are copied, the finite state machine ensures that
these literals are accurately transferred to the output FIFO and simultane-
ously written into the system memory. This stage requires meticulous con-
trol over the write address to ensure data integrity, especially as addresses
approach their limits and must cycle back to the beginning. This cyclical
address management is vital to prevent overwrites and maintain the contin-
uous flow of decompressed data, highlighting the precision needed in han-
dling memory operations during decompression. In this phase of the LZ4 de-
compression process, the finite state machine evaluates the progress within
the current block, determining the appropriate next step based on two po-
tential scenarios:

1. If the cumulative number of bytes read and decompressed matches the
block size, indicating the end of the current block, the FSM transitions
back to the "Block Size" state to prepare for processing a new block.

2. Alternatively, if the process has extracted all literals but has not reached
the end of the block, indicating more data is to be decompressed, the
FSM moves to the "Read Offset" state. This step involves interpreting
the offset to continue decompressing data from memory, signifying the
ongoing processing within the current block.

5.3.9 Read offset

In the "Read Offset" state, the finite state machine dedicates two clock cy-
cles to interpret the offset value, which is presented in little endian format
as per the LZ4 specification. This necessitates a specific handling approach
to accurately interpret the byte order, ensuring the decompression algorithm
correctly calculates the distance to reference previously decompressed data.
This step is fundamental for enabling the algorithm to access and replicate se-
quences from the history buffer based on the offset information. After read-
ing the offset, the finite state machine assesses the next steps based on the
token’s low 4 bits. If these bits equal 15, indicating incomplete match length,

40 Chapter 5. FPGA Implementation and Architecture Design

the state transitions to "Keep Reading Matchlength" for further bytes. Oth-
erwise, with less than 15, it suggests the next action involves copying from
memory, pausing input FIFO data feed to accommodate the memory copy
process.

5.3.10 Keep reading match-length

In the "Keep Reading Matchlength" state, the finite state machine accumu-
lates bytes to determine the total length of data to be repeated from the de-
compressed content. This process continues until a byte value below 255 is
encountered, signaling that the full match length has been gathered. Follow-
ing this, the FSM transitions to the "Copy Past" state to replicate the specified
sequence from the previously decompressed data, ensuring accurate recon-
struction of the original dataset.

5.3.11 Copy past

During the "Copy Past" state in the LZ4 decompression finite state machine,
previously decrypted bytes are replicated to both the output file and mem-
ory at a new address for later access. This state intricately manages both
the reading and writing addresses. This dual handling of reading and writ-
ing addresses ensures efficient data management. Additionally, this state
addresses stall conditions related to the output FIFO, maintaining uninter-
rupted data flow. Following the completion of this state, the FSM transitions
to "Read Token," preparing to interpret the token for the next sequence, thus
seamlessly continuing the decompression process.

5.3.12 Final State

In the "Final State" of the LZ4 decompression finite state machine, the com-
pletion of the decompression process is signified. This state is reached once
the entire compressed file has been successfully decompressed, indicating
that all data has been processed and the output is now fully available.

5.3.13 Error State

In the "Error State" of the finite state machine (FSM) for LZ4 decompression,
the FSM transitions to this state to manage any errors that occur during the
decompression process. Activities such as reading and writing are typically

5.4. Address Handling 41

halted to address the error. However, detailed error handling mechanisms
are not developed within the scope of this project, indicating a potential area
for future enhancement to improve system robustness and reliability.

5.4 Address Handling

In the context of LZ4 compression, managing memory addresses is critical.
The LZ4 algorithm, known for its high-performance lossless compression,
operates by encoding sequences that have previously appeared in the data
stream. It leverages a dictionary-like approach where sequences are stored
and referenced by their position in the output stream, allowing for efficient
encoding of repeating patterns. A key component in this approach is the
concept of ’offsets’, which denote the distance between the current sequence
and the location of its match within the previously encoded data.

The offset is a numerical value that points to a location in the past of the data
stream where a matching sequence can be found. In typical scenarios, calcu-
lating the read address from the write address using the offset is straightfor-
ward. However, a unique situation arises when the memory is treated in a
cyclical manner, also known as ’flipped’ memory. This occurs when the end
of the available memory space is reached, and the writing continues from the
beginning, effectively wrapping around.

In the case where the offset is greater than the write address as indicated in
5.3, a conventional subtraction operation is not sufficient to determine the
correct read address. The diagram accompanying this explanation visualizes
this peculiar condition. To address this, the LZ4 algorithm implements a
specialized calculation that correctly identifies the location from which to
copy the data.

42 Chapter 5. FPGA Implementation and Architecture Design

FIGURE 5.3: Offset handling

The formula for determining the read address in this scenario is as follows:

read_address = sizeo f (RAM)− o f f set + write_address + 1

This equation takes into account the cyclical nature of the memory usage. By
subtracting the offset from the total size of the RAM, we effectively move
backwards through the memory space to locate the start of the desired se-
quence. Adding the write address then relocates this point relative to the
current write position. Finally, the addition of 1 resolves the zero-based in-
dexing used in computer memory addressing, which means that the first po-
sition is indexed as 0 rather than 1.

It is crucial to comprehend that the wrap-around memory model introduces
complexity in address calculation, as it defies the linear progression of ad-
dresses. The LZ4 algorithm’s ability to handle such complexities without
error is a testament to its robustness and efficiency. The described method
ensures that even when sequences are found at the very end of the memory,
they can be accurately referenced and used for compression, thereby main-
taining the LZ4 algorithm’s high compression ratios and speed.

43

Chapter 6

Results

In this chapter the procedure will be explained and detailed, also the results
regarding the resource utilization and the speed of the decompression. In this
implementation, the results are defined from the decompression’s ability to
reconstruct the original file the same. In the figure below, the flowchart of the
whole procedure is described.

6.1 Tools Used

6.1.1 Vivado IDE

Xilinx Vivado Integrated Design Environment (IDE), released in 2012, is the
basis for all Xilinx tools. It serves as a GUI front-end for the Vivado Design
Suite. All Vivado Design Suite tools integrate a native TCL interface, which
can be accessed from IDE’s GUI and the TCL console. Vivado IDE can com-
pile, synthesize, implement, place and route FPGA hardware designs written
in high-level languages such as C/C++, and HDLs such as VHDL and Ver-
ilog.

6.1.2 JetBrains CLion

CLion is an IDE for C and C++ available on Linux, macOS, and Windows,
incorporating the CMake build system. It initially supports compilers like
GCC and Clang, along with the GDB debugger, LLDB, and Google Test.

The CLion was used for the original compression algorithm already devel-
oped in C language[2] to understand both compression and decompression
procedures. Also in was used to compress the test files in order to have a file
to compare that is for sure correctly compressed.

44 Chapter 6. Results

6.2 Validation

FIGURE 6.1: Validation Flowchart

6.2.1 Compression

The compression process utilized in the validation process uses the official
LZ4 software, which can be found in its GitHub repository[2]. This reposi-
tory is known for hosting the LZ4 compression algorithm.

Initially, a thorough examination of the file structure was undertaken to gain
insights into the components that make up a compressed file. This foun-
dational understanding is essential for effectively applying the compression
technique.

Following this preliminary step, the project leveraged existing code samples
available within the same LZ4 repository, specifically the frameCompress.c
[9] file located in the examples section. This piece of code demonstrates
the complete process of both compressing and decompressing an input file.
Notably, it not only carries out the compression to produce a smaller file
size but also decompresses the file to verify the integrity of the data post-
compression. It is through this method that the compressed file, which is

6.2. Validation 45

integral to this project, was generated. The compression setup for the final
form of the compressed file is this:

• Max block size: 64KB

• Block dependency: Independent

• Content Checksum: OFF

• Frame type: LZ4 Frame

• Content Size: OFF

• Dictionary: OFF

• Block Checksum: OFF

• Compression level: Default

6.2.2 Decompression

The decompression process, integral to this study, was executed within the
Vivado Xilinx Integrated Development Environment (IDE). This environment
was chosen for its robust capabilities in handling complex digital logic de-
signs, making it an ideal choice for implementing and testing compression
and decompression algorithms.

In the specific context of this project, a compressed file undergoes decompres-
sion through a meticulously analyzed architecture. This architecture was pre-
viously studied and designed to closely replicate the original LZ4 algorithm’s
functionality, albeit tailored for hardware implementation. The objective of
this process is to regenerate a file identical to the original source, thereby
validating the integrity and efficacy of the decompression mechanism.

To assess the success of the decompression process, the project utilized two
primary methods of verification. Firstly, the output file was scrutinized to
confirm its byte-for-byte equivalence with the original file. This direct com-
parison serves as the most tangible measure of success, demonstrating the
algorithm’s capability to accurately restore the original data from its com-
pressed form.

Secondly, and equally important, was the utilization of simulation tools avail-
able within the Vivado Xilinx IDE. These tools allow for a detailed examina-
tion of the decompression process on a cycle-by-cycle basis. By monitor-
ing the signals and data flow within the architecture during simulation, the

46 Chapter 6. Results

project could identify and rectify any discrepancies or errors. This granu-
lar level of analysis is crucial for understanding the dynamic behavior of the
decompression algorithm in a hardware environment. It enables the iden-
tification of specific operational issues that might not be apparent from the
output file alone.

Testbench

In the development of a comprehensive testbench, the primary objective was
to facilitate the analysis and evaluation of the decompression system by in-
putting a compressed file and observing the reconstruction of the original
file. This testbench is meticulously designed to simulate the real-world op-
eration of the decompression algorithm, allowing for a detailed examination
of its performance and reliability.

The process within the testbench begins with the sequential feeding of the
compressed file into the system, byte by byte. This methodical input is cru-
cial for mimicking the actual conditions under which the decompression al-
gorithm operates, ensuring that the evaluation is both realistic and thorough.
At this stage, the decompression mechanism itself is treated as a black box,
focusing solely on its input and output behavior without delving into the
internal workings of the algorithm.

To manage the input of the compressed file effectively, the testbench employs
a controlled approach. It initiates the process by activating the write enable
signal, signaling the system to start accepting the compressed data. Once the
entirety of the compressed file has been fed into the system, the write enable
signal is deactivated, marking the end of the input phase.

Parallel to the input process, the system commences the output phase as soon
as the first bytes of decompressed data are ready. This phase is characterized
by a continuous output of decompressed data, culminating in the reconstruc-
tion of the original file. The system’s ability to start producing output while
still receiving input exemplifies the efficiency and effectiveness of the decom-
pression process, highlighting its potential for real-time applications.

The culmination of the testbench’s operation is signified by the detection of
the EndMark, a predefined marker indicating the end of the compressed data
stream. This marker is essential for determining the completion of the de-
compression process, ensuring that the system has successfully processed
the entire input and produced a faithful reconstruction of the original file.

6.2. Validation 47

6.2.3 Benchmark

Benchmarking plays a pivotal role in evaluating the efficacy of compression
algorithms. The Canterbury Corpus[10], utilized in this project, stands as a
cornerstone for such benchmark assessments. Established in 1997 as an evo-
lution of the Calgary Corpus, the Canterbury Corpus offers a meticulously
curated collection of files specifically selected for their representativeness of
typical data encountered in compression scenarios. This assortment of files
is instrumental in gauging the performance of both existing and novel com-
pression methods.

The Canterbury Corpus encompasses a diverse range of data sets, includ-
ing the historically significant Calgary collection and the Large Corpus. The
latter is particularly advantageous for testing compression algorithms that
require substantial data volumes to reach optimal performance levels. Ad-
ditionally, the corpus includes specialized collections tailored to various file
types, thereby offering a comprehensive framework for comparative analysis
across a broad spectrum of data compression techniques.

The selection process of the files within the Canterbury Corpus was under-
pinned by the objective to mirror the average results yielded by prevalent
compression algorithms. This approach was predicated on the premise that
files producing "typical" outcomes with established algorithms would likely
elicit similar results with emerging methods. The rationale and methodol-
ogy behind the compilation of the Canterbury Corpus are detailed in a paper
presented at the Data Compression Conference (DCC) in 1997. This publica-
tion elucidates the challenges inherent in identifying "typical" files for such
a corpus, underscoring the meticulous consideration and effort invested in
assembling this benchmarking tool.

A distinguishing feature of the Canterbury Corpus is its permanence; the
collection is designed to remain unchanged to ensure its utility as a reliable
benchmark for future compression algorithm evaluations. This constancy
allows for the consistent comparison of compression techniques over time,
facilitating an objective assessment of progress and innovation in the field of
data compression.

48 Chapter 6. Results

There are 11 files in this corpus:

File Abbrev Category Size (bytes)

alice29.txt text English text 152089
asyoulik.txt play Shakespeare 125179
cp.html html HTML source 24603
fields.c Csrc C source 11150
grammar.lsp list LISP source 3721
kennedy.xls Excl Excel Spreadsheet 1029744
lcet10.txt tech Technical writing 426754
plrabn12.txt poem Poetry 481861
ptt5 fax CCITT test set 513216
sum SPRC SPARC Executable 38240
xargs.1 man GNU manual page 4227

6.2.4 Validation

The validation process involves a meticulous comparison between the orig-
inal file prior to compression and the resultant file after decompression. To
accomplish this, the WinMerge software [11] is used, a tool renowned for
its capability to conduct line-by-line comparisons between two or more files.
This software facilitates the identification of any discrepancies that may exist
between the original and decompressed files, thereby ensuring data integrity.

The comparison process extends beyond a simple textual examination; it also
includes a verification of the file sizes. This step is imperative as it serves as
a preliminary check of data consistency. Files that have undergone success-
ful compression and subsequent decompression should exhibit identical file
sizes, indicating that no data loss occurred during the process. This criterion
is fundamental to the validation phase, as any variation in size could signify
potential issues with the compression or decompression algorithms.

Upon confirming that both files are indeed identical in content and size, the
project can be considered complete and successful. This outcome not only
validates the effectiveness of the compression technique but also underscores
the reliability of the implementation. Such a rigorous approach to testing and
validation is crucial in the field of data compression, where the fidelity of the
compressed data is paramount.

6.3. Resource and timing 49

6.3 Resource and timing

6.3.1 Resource Utilization

The device that was used for the simulation was from the Zynq7000 product
family. The product part is xc7z020iclg400 1L[12].

Clock Frequency

8 ns 125 MHz

TABLE 6.2: Timing Setup

Resource Utilization Available Utilization %

LUT 609 53200 1.14
FF 369 106400 0.35
BRAM 64 140 45.71
IO 22 125 17.60
BUFG 1 32 3.13

TABLE 6.3: Resource Utilization

Total On-chip power Junction Temperature Thermal Margin

0.205 W 27.4 °C 72.6 °C

TABLE 6.4: Power

6.3.2 Throughput and Latency

Latency

In the evaluation of system performance, particularly in compression and
decompression algorithms, latency represents a critical metric. This mea-
surement was conducted using a relatively small original file, specifically 39
bytes in size, to assess the system’s responsiveness. The observed latency for
this file size was recorded at 14 cycles. This figure can be attributed to the se-
quence of operations required to process the file through the decompression
mechanism.

The decomposition of this latency reveals the system’s operational intrica-
cies. Initially, the process involves the handling of 4 bytes designated as the
magic number, which serves as a file format identifier. This is followed by

50 Chapter 6. Results

the processing of 4 frame bytes and an additional 3 frame bytes, culminating
in the handling of 1 token byte. Beyond this sequence, there are 2 additional
cycles needed before the first byte emerges from the input FIFO (First In, First
Out) queue. This detailed breakdown elucidates the steps involved from the
moment the first byte is introduced to the system to the point where the de-
compressed data is available for output.

It is noteworthy that the latency could vary with larger files. This variance
is primarily due to the increased number of bytes required to describe the
number of literals in the first sequence of the file. While a precise upper
limit for latency in larger files cannot be definitively established due to the
variability in file contents and structure, the latency remains exceptionally
low across different file sizes. This characteristic underscores the efficiency of
the implementation, which maintains minimal delay even as file complexity
increases.

Throughput

File Compress Rate Throughput (MB/s) Throughput (byte/cycle)

ptt5 83% 18.87 0.151
kennedy 63.5% 30.7 0.245

alice 42.7% 48.1 0.385
plrabn12 32.4% 55.67 0.445

TABLE 6.5: Throughput Results

The throughput was calculated based on four files that have different com-
press ratio. The throughput was calculated using this formula:

Throughput =
Compressed file size

Total decompress time

The analysis derived from Table 6.5 of the LZ4 decompression testing indi-
cates a nuanced relationship between the speed of decompression and the
compression rate. Initially, one might infer that the throughput of the de-
compressor directly correlates with the rate of compression. However, fur-
ther examination reveals that this interpretation does not fully capture the
dynamics at play.

When exploring the varying speeds at which data decompresses, several key
factors come into play, each influencing the process in unique ways. One

6.3. Resource and timing 51

crucial element is the data structure and its repetitiveness. For instance, text
data that exhibits high levels of repetitiveness, such as in the case of the ptt5
dataset, generally compresses efficiently. However, the process of decom-
pressing such data might not be as swift as it is for data structured in more
natural language forms. This slowdown is attributed to the additional effort
required to unravel the complex patterns of highly repetitive data.

The size of the files in question also plays a significant role in decompression
speeds. Smaller files are typically expected to decompress quicker due to the
lesser volume of data needing processing. Nonetheless, this isn’t a hard and
fast rule, as demonstrated by the ’plrabn12’ poem. Despite its larger size, it
showcases superior decompression speed. This anomaly suggests that the
content and structural characteristics of data can have a more pronounced
impact on decompression speed than the file size alone.

Moreover, the compression rate is another vital aspect to consider. A higher
compression rate usually indicates that the decompression algorithm must
execute a greater number of operations to fully restore the original data,
potentially leading to slower decompression speeds. Yet, the ptt5 dataset,
which boasts the highest compression rate among the examples, does not
exhibit the slowest decompression speed. This observation hints at the pres-
ence of other influential factors beyond just the compression rate.

The inherent complexity of the data being decompressed further affects the
speed of the process. For example, the binary data found in the ’kennedy’
Excel file might pose more challenges during decompression compared to
the straightforward plain text of the ’alice’ dataset. Interestingly, ’alice’ de-
compresses more rapidly, suggesting that the LZ4 algorithm, known for its
speed optimization, processes plain text more efficiently than binary data.

The efficiency of the decompression algorithm, particularly LZ4’s adeptness
with plain text, sheds light on why datasets like ’alice’ and ’plrabn12’ expe-
rience faster decompression times. These datasets, primarily consisting of
text, are decompressed more swiftly than ’ptt5’, which contains potentially
artificial patterns, and ’kennedy’, which includes a mix of binary data and
formatting. This efficiency underscores LZ4’s capability to adeptly handle
varied data types, allowing for quick decompression of even complex files
like the ’kennedy’ Excel file. The file’s size and compression rate notwith-
standing, LZ4’s proficiency in managing a blend of binary and text data en-
sures its decompression speed surpasses expectations.

52 Chapter 6. Results

6.4 Comparison

Hardware Speed Benchmark

H100 PCIe 43.79 GB/s Silesia Archive
A100 34.13 GB/s Silesia Archive
A30 22.07 GB/s Silesia Archive
A10 26.59 GB/s Silesia Archive
Xilinx 1.1 GB/s Silesia Archive
AMD 443 MB/s Silesia Archive
CPU (average) 62.79 GB/s Silesia Archive
This Work 41.67 MB/s Canterbury Corpus

TABLE 6.6: Work Comparison

In the above figure 6.6, we observe a comparison of data compression speeds
across a variety of hardware platforms, juxtaposed with the results from this
work. An initial examination indicates that the compression speed of this
project trails behind the industry benchmarks. However, this outcome is
not unforeseen given several key factors that influenced the project’s per-
formance.

This project was conducted within the academic scope of a diploma thesis,
which inherently entails certain limitations. Notably, the project was not fur-
nished with the sophisticated optimizations typically employed in industry-
level hardware designed for data compression tasks. Optimizations, such as
algorithmic refinement and system tuning, are crucial for enhancing perfor-
mance and were not within the scope of this thesis due to its educational and
demonstrative nature.

Furthermore, the absence of parallel computing techniques in this project is
a significant factor contributing to the observed speed discrepancy. Parallel
computing is a potent strategy to amplify throughput, allowing simultane-
ous data processing that drastically accelerates performance. This technique
is a staple in industrial contexts where speed is paramount, but its imple-
mentation can be complex and resource-intensive, often beyond the practical
constraints of an academic project.

The benchmarks utilized for comparison in the industry derive from the use
of the Silesia Archive, a common data set known for its challenging compres-
sion characteristics due to the diversity of its content. This corpus is widely
adopted in the industry to stress-test and evaluate the performance of com-
pression algorithms. Conversely, the benchmarks for this project employed

6.4. Comparison 53

the Canterbury Corpus, a different set of data with its own unique character-
istics and challenges. The dissimilarity in data sets must be acknowledged
as it can lead to variance in compression speed due to factors such as data
redundancy and complexity.

55

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In the development of this project, the primary objective was to construct
a decompression system from the ground up, capable of accurately recon-
structing the original file while optimizing both speed and energy efficiency.
The endeavor was rooted in the challenge of balancing high-speed decom-
pression with minimal energy consumption, a pivotal concern in the realm
of data processing and hardware design.

The architecture of the decompression system was meticulously designed to
ensure that it operates with exceptionally low latency, thereby facilitating the
rapid reconstruction of the original data from its compressed state. This at-
tribute is critical in applications where time efficiency is paramount, such
as real-time data analysis and high-speed communication systems. The sys-
tem’s ability to deliver decompressed data promptly without compromising
on the accuracy of the output underscores the effectiveness of the underlying
algorithm and the precision of its implementation.

Furthermore, the project placed a significant emphasis on energy efficiency,
a crucial factor in the sustainability and cost-effectiveness of hardware sys-
tems. By achieving low energy consumption, the decompression system not
only addresses the environmental impact of technology but also reduces the
operational costs associated with energy usage. This aspect of the design is
especially relevant in the context of large-scale data centers and embedded
systems, where energy efficiency directly correlates to operational sustain-
ability and financial viability.

The outcome of this project was remarkable, yielding a decompression sys-
tem that not only reproduces various files with fidelity to their original state

56 Chapter 7. Conclusions and Future Work

but does so with minimal latency. The system demonstrated a commend-
able capacity to maintain low overheads, thereby ensuring that the addi-
tional computational resources required for decompression do not detract
from the overall performance and efficiency of the system. This balance be-
tween speed, energy consumption, and accuracy in the decompression pro-
cess represents a significant achievement in the field of data compression and
decompression technologies.

By adhering to rigorous design principles and leveraging advanced algorith-
mic strategies, this project contributes valuable insights into the optimization
of decompression systems. It exemplifies how targeted engineering efforts
can overcome the inherent challenges associated with high-speed data re-
construction while adhering to stringent energy efficiency standards, thus
paving the way for future innovations in hardware design and data process-
ing methodologies.

7.2 Future Work

• Checksum development

A crucial part of the LZ4 decompression is the checksum which in many
stages ensures the integrity of the file that is being recreated. The check-
sum is generated in the compress process, is encapsulated in the com-
pressed file and is used in the decompression process for data integrity.
This security level is pivotal in ensuring that nothing was missed out,
or a portion of the information was lost during the procedure.

• Error handling

Many situations can be met where the procedure will have to be stopped
and handled. This situations are errors that might appear during the in-
terpretation of the compressed file. Some examples of these scenarios
are the offset to be equal to zero or the total number of literals to be
less than the number that was just received. Another problem could
occur if for any reason bytes where missed during any moment of the
procedure. This would drive the system in potential never ending situ-
ations or a mistaken creation of the file. As long as these problems can
be perceivable during the decompression there is a need of real time
handling of these errors. This error handling could highly increase the
system integrity.

7.2. Future Work 57

• Download and run in FPGA

Another future situation that could add to the results could be the down-
load of the code to a FPGA and run on the spot. This could offer a real
size of the resources that a decompressor would need. Always a real
time use of a project can give many results that the simulation is not
offering.

59

References

[1] “LZ4 - Extremely fast compression”. In: (). URL: https://lz4.org/.
[2] “LZ4 GitHub repository”. In: (). URL: https://github.com/lz4/lz4.
[3] “OpenBenchMark.org”. In: (). URL: https://openbenchmarking.org/

test/pts/compress-lz4&eval=7d09b74acec40f5dd2415b5af7d64c344d0a882b#

metrics.
[4] “nvCOMP”. In: (). URL: https://developer.nvidia.com/nvcomp.
[5] “Xilinx Vitis library”. In: (). URL: https://xilinx.github.io/Vitis_

Libraries/data_compression/2020.1/source/L2/lz4.html.
[6] “AMD Vitis library”. In: (). URL: https://docs.xilinx.com/r/en-

US/Vitis_Libraries/data_compression/source/L2/lz4.html.
[7] “The Datapath”. In: (). URL: https://tucgr-my.sharepoint.com/:u:

/g/personal/ggalatianos_tuc_gr/EcEgSnxQ4CVBio9SLLDSOFoBJd9aAMhu6UpqJZgTjS-

gjw.
[8] “Finite State Machine”. In: (). URL: https://tucgr-my.sharepoint.

com/:u:/g/personal/ggalatianos_tuc_gr/EWcyZEeRkXhHqDH6ZiIhHSABanTxeRG5KSz9utIi0xSFzQ.
[9] “LZ4 compress example”. In: (). URL: https://github.com/lz4/lz4/

blob/dev/examples/frameCompress.c.
[10] “The Canterbury Corpus”. In: (). URL: https://corpus.canterbury.

ac.nz/descriptions/.
[11] “WinMerge software”. In: (). URL: https://winmerge.org/?lang=en.
[12] “Zynq”. In: (). URL: https://docs.xilinx.com/v/u/en-US/ds190-

Zynq-7000-Overview.

https://lz4.org/
https://github.com/lz4/lz4
https://openbenchmarking.org/test/pts/compress-lz4&eval=7d09b74acec40f5dd2415b5af7d64c344d0a882b#metrics
https://openbenchmarking.org/test/pts/compress-lz4&eval=7d09b74acec40f5dd2415b5af7d64c344d0a882b#metrics
https://openbenchmarking.org/test/pts/compress-lz4&eval=7d09b74acec40f5dd2415b5af7d64c344d0a882b#metrics
https://developer.nvidia.com/nvcomp
https://xilinx.github.io/Vitis_Libraries/data_compression/2020.1/source/L2/lz4.html
https://xilinx.github.io/Vitis_Libraries/data_compression/2020.1/source/L2/lz4.html
https://docs.xilinx.com/r/en-US/Vitis_Libraries/data_compression/source/L2/lz4.html
https://docs.xilinx.com/r/en-US/Vitis_Libraries/data_compression/source/L2/lz4.html
https://tucgr-my.sharepoint.com/:u:/g/personal/ggalatianos_tuc_gr/EcEgSnxQ4CVBio9SLLDSOFoBJd9aAMhu6UpqJZgTjS-gjw
https://tucgr-my.sharepoint.com/:u:/g/personal/ggalatianos_tuc_gr/EcEgSnxQ4CVBio9SLLDSOFoBJd9aAMhu6UpqJZgTjS-gjw
https://tucgr-my.sharepoint.com/:u:/g/personal/ggalatianos_tuc_gr/EcEgSnxQ4CVBio9SLLDSOFoBJd9aAMhu6UpqJZgTjS-gjw
https://tucgr-my.sharepoint.com/:u:/g/personal/ggalatianos_tuc_gr/EWcyZEeRkXhHqDH6ZiIhHSABanTxeRG5KSz9utIi0xSFzQ
https://tucgr-my.sharepoint.com/:u:/g/personal/ggalatianos_tuc_gr/EWcyZEeRkXhHqDH6ZiIhHSABanTxeRG5KSz9utIi0xSFzQ
https://github.com/lz4/lz4/blob/dev/examples/frameCompress.c
https://github.com/lz4/lz4/blob/dev/examples/frameCompress.c
https://corpus.canterbury.ac.nz/descriptions/
https://corpus.canterbury.ac.nz/descriptions/
https://winmerge.org/?lang=en
https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview
https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	Motivation
	Scientific Contributions and Goals
	Thesis Outline

	Theoretical Background
	LZ4 algorithm
	Principles and Architecture
	Compression Process
	Decompression Process

	LZ4 File Format
	Frame Format
	Frame Descriptor
	FLG byte
	BD byte

	Block Format
	End of block conditions

	Related Work
	CPU
	Hardware
	Timing

	GPU
	Hardware
	Analysis of NVIDIA GPUs: A100, A30, A10, and H100 PCIe
	Specifications
	Performance
	Intended Applications
	Cost-Effectiveness
	Conclusion

	Timing

	FPGA
	Hardware
	Xilinx Alveo U200

	Timing
	Resources

	System Architecture
	FPGA Implementation and Architecture Design
	Datapath
	Memory
	Overview of Memory Functionality
	Memory vs. FIFO (First In, First Out queues)
	Memory Structure and Data Storage
	Memory Size Configuration

	FIFO
	Role and Function of Input and Output FIFOs
	Interaction with Finite State Machine and Memory
	Importance in the Decompression Process

	Multiplexers
	Function and Roles of Multiplexers
	Multiplexers Associated with the Output FIFO
	Multiplexer Associated with the Memory

	Stall Conditions
	Input FIFO stall conditions
	Stall Conditions in the Input FIFO
	Impact and Management of Stall in Input FIFO
	Non-affected Processes

	Output FIFO stall conditions
	Stall Conditions Arising from Output FIFO
	Impact of a Full Output FIFO
	Solution: Register and Multiplexer Integration

	Finite State Machine
	Initial
	Magic Number
	Frame bytes
	Checksum Check
	Block Size
	Read token
	Keep reading literals
	Copy literals
	Read offset
	Keep reading match-length
	Copy past
	Final State
	Error State

	Address Handling

	Results
	Tools Used
	Vivado IDE
	JetBrains CLion

	Validation
	Compression
	Decompression
	Testbench

	Benchmark
	Validation

	Resource and timing
	Resource Utilization
	Throughput and Latency
	Latency
	Throughput

	Comparison

	Conclusions and Future Work
	Conclusions
	Future Work

	References

