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Abstract 

 

Purpose: The main purpose of the current work is to calculate the Data Shapley value of specific 

data sets by leveraging the mechanisms of differential privacy algorithms to ensure some guarantee 

of privacy. To fulfil this objective, the current thesis first studies and presents the theoretical 

foundation of the Shapley value calculations. Calculation methods, such as the Truncated Monte 

Carlo - Shapley, Gradient - Shapley and Group - Shapley are studied and analyzed, while at the 

same time this thesis proposes how new approaches guarantee the correctness and accuracy of 

calculations without any information leakage. 

Design / methodology / approach: This study first presents the theoretical foundation of both the 

Shapley valuation and the differential privacy scientific domains, including mathematical analysis 

and the relative practical research evidence. On top, a case study, i.e. a classification problem with 

logistic regression has been designed, implemented, analyzed and presented. The code of the 

problem includes set up activities, data set creation, execution of three data Shapley algorithms 

with and without embedded differential data privacy noise and graphical presentation of the results 

obtained. Convergence of the applied algorithms is proved, while at the same time the performance 

of the studied algorithms is also evaluated for both non-differential private and noisy versions of 

the implemented algorithms. 

Findings: Both TMC-Shapley and G-Shapley methods outperform the LOO method, since the 

accuracy is reduced faster when bigger fractions of trained data are being removed. For the 

differential private TMC-Shapley and G-Shapley methods, a number of graphs with all marginals 

is being created which proves the convergence of the algorithms. The performance of the studied 

noisy data Shapley methods is also demonstrated. Both Noisy TMC-Shapley and G-Shapley 

methods outperform the Noisy LOO and Random versions. 

Originality / value: The value added by the current work is coming from the following areas: (1) 

Provision of an efficient formulation of the important problem of calculating the fair value of data 

sets, known as Data Shapley valuation problem, by taking advantage of machine learning 

techniques, (2) Review of existing empirical studies that prove the efficiencies and all desirable 

properties of the Data Shapley valuation method, (3) Introduction of a Data Shapley calculation 

algorithm variations that are suitable to address the problem under study, (4) Application of 



 v 

sensitivity and noise to ensure data privacy mechanism as well as to measure and analyze data 

Shapley value in the context of differential privacy, and (5) Experimental implementation 

developed using Python programming language. 

Keywords: Data Shapley, Differential Privacy (DP), Truncated Monte Carlo Shapley (TMC-

Shapley), Gradient Shapley (G-Shapley). 



 vi 

Table of Contents 

Acknowledgements ...................................................................................................................... iii 

Abstract ......................................................................................................................................... iv  

List of Figures ............................................................................................................................. viii 

List of Tables ................................................................................................................................. x 

Abbreviations ............................................................................................................................... xi  

1 INTRODUCTION ............................................................................................................... 12  

1.1 Problem statement and importance ................................................................................ 12 

1.2 Aims and objectives ....................................................................................................... 12 

1.3 Contribution ................................................................................................................... 13 

1.4 Main Terminology.......................................................................................................... 14 

1.5 Dissertation Structure ..................................................................................................... 15 

2 CURRENT RESEARCH – LITERATURE REVIEW .................................................... 16 

2.1 Introduction .................................................................................................................... 16 

2.2 Background and fundamentals ....................................................................................... 16 

2.2.1 Definition and mathematical formulation of the Data Shapley problem ................ 16 

2.3 Shapley value calculation methods ................................................................................ 20 

2.3.1 Truncated Monte Carlo Shapley Algorithm ........................................................... 20 

2.3.2 Gradient Shapley Algorithm ................................................................................... 22 

2.3.3 Variations ................................................................................................................ 22 

2.4 Differential privacy ........................................................................................................ 23 

2.4.1 Differential Privacy noise ....................................................................................... 27 

2.4.2 Data processing models and data release strategies ................................................ 30 

2.4.3 Data Release Types ................................................................................................. 33 

2.5 Calculation of Shapley value with differential privacy .................................................. 53 

2.5.1 Sensitivity and noise ............................................................................................... 53 

2.5.2 Loss function and boundaries ................................................................................. 53 

2.6 Discussion, challenges and areas of optimization .......................................................... 54 

3 IMPLEMENTATION ......................................................................................................... 56 

3.1 Introduction .................................................................................................................... 56 



 vii 

3.2 Proposed Design ............................................................................................................. 56 

3.2.1 Overall solution ....................................................................................................... 56 

3.2.2 Programming with Python ...................................................................................... 57 

3.3 Implementation of Differential Privacy with Laplacian Noise ...................................... 60 

3.4 Core Data Shapley Implementation ............................................................................... 64 

3.5 Core Implementation Results and Discussion ................................................................ 67 

3.5.1 Results and Discussion for non-Differential Private Data Shapley Methods ......... 67 

3.5.2 Results and Discussion for NoisyData Shapley Methods ....................................... 70 

4 CONCLUSIONS .................................................................................................................. 89 

4.1 Summary and conclusion ............................................................................................... 89 

4.2 Dissertation limitations .................................................................................................. 91 

4.3 Future work .................................................................................................................... 92 

References .................................................................................................................................... 94  

 



 viii 

List of Figures 

 

Figure 2.1: Information from a Differential Privacy perspective. ................................................ 23 
Figure 2.2: Probability distributions for the outputs of the function (or algorithm) K for datasets D 
and D′. ........................................................................................................................................... 25  
Figure 2.3: Visualization of the probability density function for different calls of b. .................. 29 
Figure 2.4: Interactive or on-line query model. ............................................................................ 31 
Figure 2.5: Non-Interactive model or offline query model........................................................... 32 
Figure 2.6: DP using the histogram data release type. .................................................................. 35 
Figure 2.7: Grouping of buckets in the histogram data release type. ........................................... 35 
Figure 2.8: A private kd-tree. ........................................................................................................ 39 
Figure 2.9: An example of the Quad-opt method. ........................................................................ 40 
Figure 2.10: An example of the Graph release method (dK series). ............................................. 46 
Figure 2.11: An example of HRG model. ..................................................................................... 48 
Figure 3.1: Main features of programming language Python. ...................................................... 57 
Figure 3.2: Popular applications of programming language Python. ........................................... 59 
Figure 3.3: Typical Laplace Distribution. ..................................................................................... 61 
Figure 3.4: Laplace Distribution with different values of m and b. .............................................. 62 
Figure 3.5: Two different ε-Differential Private Laplace Distributions vs the original output value.
....................................................................................................................................................... 63  
Figure 3.6: Convergence of marginals for the Truncated Monte Carlo method. .......................... 68 
Figure 3.7: Convergence of marginals for the G-Shapley method. .............................................. 69 
Figure 3.8: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and 
Random. ........................................................................................................................................ 70  
Figure 3.9: Convergence of marginals for the Noisy Truncated Monte Carlo method. ............... 71 
Figure 3.10: Convergence of marginals for the Noisy G-Shapley method. .................................. 72 
Figure 3.11: Data Shapley performance plots for the Noisy methods TMC-Shapley, G-Shapley, 
LOO and Random. ........................................................................................................................ 73  
Figure 3.12: Convergence of marginals for the Noisy TMC-Shapley method (i=1/4). ................ 74 
Figure 3.13: Convergence of marginals for the Noisy G-Shapley method(i=1/4). ...................... 75 
Figure 3.14: Convergence of marginals for the Noisy TMC-Shapley method (i=1/2). ................ 76 
Figure 3.15: Convergence of marginals for the Noisy G-Shapley method(i=1/2). ...................... 77 
Figure 3.16: Convergence of marginals for the Noisy TMC-Shapley method (i=2). ................... 78 
Figure 3.17: Convergence of marginals for the Noisy G-Shapley method (i=2).......................... 79 
Figure 3.18: Convergence of marginals for the Noisy TMC-Shapley method (i=4). ................... 80 
Figure 3.19: Convergence of marginals for the Noisy G-Shapley method (i=4).......................... 81 
Figure 3.20: Convergence of marginals for the Noisy TMC-Shapley method (i=8). ................... 82 
Figure 3.21: Convergence of marginals for the Noisy G-Shapley method (i=8).......................... 83 
Figure 3.22: Convergence of marginals for the Noisy TMC-Shapley method (i=16). ................. 84 
Figure 3.23: Convergence of marginals for the Noisy G-Shapley method (i=16)........................ 85 
Figure 3.24: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and 
Random (i=1/4). ............................................................................................................................ 86  
Figure 3.25: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and 
Random (i=1/2). ............................................................................................................................ 86  



 ix 

Figure 3.26: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and 
Random (i=2). ............................................................................................................................... 87  
Figure 3.27: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and 
Random (i=4). ............................................................................................................................... 87  
Figure 3.28: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and 
Random (i=8). ............................................................................................................................... 88  
Figure 3.29: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and 
Random (i=16). ............................................................................................................................. 88  



 x 

List of Tables 
 

Table 2.1: Main types of DP data release methods. ...................................................................... 34 
Table 2.2: Histogram data release methods. ................................................................................. 37 
Table 2.3: Tree structure data release methods. ............................................................................ 42 
Table 2.4: Time series data release methods. ............................................................................... 45 
Table 2.5: Graph data release methods. ........................................................................................ 49 
Table 2.6: Pattern mining data release methods. .......................................................................... 52  

  



 xi 

Abbreviations 

 

CA Calculation Algorithm 

DP Differential Privacy 

LOO Leave One Out 

SEA Spatial Estimation Algorithm 

TEA Temporal Estimation Algorithm 

 

 

 



 12 

1 INTRODUCTION 

 

1.1 Problem statement and importance 

In recent days, data has become a significant driver of technological and economic growth, 

triggering among others the fundamental challenge of how to materialize and measure its value in 

the context of algorithmic forecasts and decision making. As part of the discussions that have come 

up, researchers and practitioners propose that individuals that share their data in industries such as 

healthcare and retail markets, should be compensated; still, it is unclear what should be the fair 

price of this data. 

A quite popular framework developed to address the data valuation challenge, in the 

context of supervised machine learning, is based on the data Shapley metrics. Given a number of 

data points used to produce a prediction value, the data Shapley metric quantifies the contribution 

of each individual datum to the overall prediction performance. Data Shapley metrics are suitable 

for data pricing purposes since they satisfy important properties of a fair data valuation approach. 

A large number of practical experiments have also proven that data Shapley methods present 

additional benefits; specifically, they are more effective compared to traditional “leave one out” 

or scoring methods, while they also produce outliers and insights on the type and nature of 

additional data that might be candidate to improve the produced predictions. 

On the other hand, differential privacy could be defined as a set of methods and tools 

capable for quantifying and solving practical data privacy problems. Differential privacy practices 

could be applied in the context of various applications, including Machine and Deep Learning 

applications when private data are used. Combination of those practices with the Data Shapley 

approach applied to quantify the fair data value for individuals, is an interesting research topic that 

will be studied in the framework of the current work. 

 

1.2 Aims and objectives 

The main objective of the current work is to calculate the Data Shapley value of specific data sets 

by leveraging one of the mechanisms of differential privacy algorithms (i.e. Laplacian, Gaussian, 
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Exponential) and providing some guarantee of privacy, as defined in the differential privacy 

domain. To fulfil this objective, the current thesis first studies and presents the theoretical 

foundation of the Shapley value calculations, including mathematical analysis and relative 

practical research evidence. Calculation methods, such as the Truncated Monte Carlo (TMC) 

Shapley algorithm, as well as the Gradient (G) Shapley and the Group Shapley algorithms are 

studied and analyzed, while there is special focus on studying and demonstrating how Data 

Shapley values could be calculated with already existing algorithms. At the same time, sensitivity 

and noise of the applied data privacy mechanism are measured and analyzed in the context of Data 

Shapley metrics. This thesis proposes how new approaches guarantee the correctness and accuracy 

of calculations without any information leakage from the data set under consideration. 

Summarizing, in the context of the current work, the following main topics are studied: 

 Definition of a measure suitable to track the fair value of each (𝑥௜, 𝑦௜) of a calculation 

algorithm (CA) in respect to a defined performance metric V. 

 Efficient calculation of the above fair data value. 

 Study of sensitivity and noise of applied data privacy mechanisms and how those could be 

applied in the context of Data Shapley metrics, by guaranteeing the correctness and 

accuracy of calculations without any information leakage. 

 

1.3 Contribution 

This work aims to contribute to the following areas: 

 Provision of an efficient formulation of the important problem of calculating the fair value 

of data sets, known as Data Shapley valuation problem, by taking advantage of machine 

learning techniques. 

 Review of existing empirical studies that prove the efficiencies and all desirable properties 

of the Data Shapley valuation method. 

 Introduction of a Data Shapley calculation algorithm variations that are suitable to address 

the problem under study. 
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 Application of sensitivity and noise to ensure data privacy mechanism as well as to measure 

and analyze data Shapley value in the context of differential privacy. 

 Implementation of a representative use case where data Shapley value calculations, 

combined with differential privacy guarantees are applied in selected data sets. 

 

1.4 Main Terminology 

As already stated, in this thesis the Data Shapley valuation problem and the differential privacy 

topic are studied and tested in a combined way. The Shapley value was defined by Shapley (1953) 

and can be simply defined as the level of importance, or fair value of a given data set. The main 

components of a data valuation process are: (1) the underlying training data set, i.e. a set of n 

points, each one of which is also known as datum; (2) the calculation algorithm (CA), i.e. a 

procedure which takes as input an arbitrary training data set and produces a calculated predictor 

as an output; (3) a metric that defines performance, i.e. a metric that tests the performance of the 

CA on a specific metric (Ghorbani & Zou, 2019). One of the most popular methods to calculate 

the importance of a data point, is the Leave One Out (LOO) method (Cook, 1977), which is used 

in this thesis for comparing and evaluating the efficiency of some of the latest and best performing 

valuation methods, such as the Truncated Monte Carlo Shapley (TMC-S) and the Gradient Shapley 

(G-S) (Ghorbani & Zou, 2019). 

Differential Privacy (DP) could be defined as the change in private information that can be 

derived from a data set, when a point that corresponds to an entity (e.g. individual) is removed 

from the particular data set. The following two important metrics are of particular importance in 

any DP algorithm (Dwork & Roth, 2014): (1) the privacy loss or privacy budget (denoted by ε), 

which counts the amount of privacy loss when a differential change takes place in data, e.g. when 

one entry is added to, or removed from, the original data set, and (2) the accuracy, which defines 

the level of closeness of a DP algorithm’s output to the actual output and is used as a metric for 

evaluating a DP algorithm. Introduction of noise is of key importance in the DP algorithms and 

the way it is introduced defines significantly how the DP mechanism works; there are three main 

noise types usually applied in DP algorithms, namely the Laplace, the exponential, and the 

Gaussian noise types. Additionally, the local sensitivity metric is important for the performance of 

DP algorithms; it is a mechanism to reduce the noise, with the trade-off of increasing the risk of 
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reducing the protection of the information included in the dataset. Last, but equally important, the 

sequence of processing applied to transform a data set into a differential private data set before 

releasing it for access and use, is often known data release strategy (Zhang & Meng, 2014; Wang 

et al., 2015). 

 

1.5 Dissertation Structure 

This dissertation is organized as follows. The current Chapter states the research problem and its 

importance, outlines the dissertation aims and objectives, the contribution of the current research 

and the main terminology used. In Chapter 2, an extensive literature review is presented. 

Specifically, section 2.1 introduction the problem under research, section 2.2 provides the needed 

background and fundamentals, including definition and mathematical formulation of the Data 

Shapley problem, while in section 2.3 the Shapley value calculation methods under research are 

presented. Section 2.4 introduces Differential Privacy (DP) and the DP noise, while it also 

describes data processing models, data release strategies and data release types. Section 2.5 

provides some necessary background on the combination of Shapley value calculations with 

differential privacy, introducing concepts such as sensitivity, noise, loss function and boundaries. 

In section 2.6, the topic is summarized, while challenges and areas of optimization are discussed. 

Chapter 3 proposes the implementation of a use case to demonstrate the results of the 

current research. Specifically, section 3.1 introduces the Chapter, and section 3.2 presents the 

proposed design, including a description of the overall solution along with the used programming 

platform (Python). Section 3.3 describes the implementation of Differential Privacy with Laplacian 

noise, while in section 3.4 the core Data Shapley implementation is presented. The Chapter closes 

with the core implementation results and discussion (section 3.5). Finally, Chapter 4 includes the 

conclusions of the current research. In more detail, section 4.1 contains a summary and the main 

conclusions of the dissertation, section 4.2 outlines some of the dissertation limitations, and section 

4.3 proposes a path of important future work. 
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2 CURRENT RESEARCH – LITERATURE REVIEW 

 

2.1 Introduction 

The current thesis studies and presents the theoretical foundation of the Shapley value calculations, 

including mathematical analysis and relative practical research evidence. Calculation methods, 

such as the Truncated Monte Carlo Shapley algorithm, as well as the gradient Shapley and the 

group Shapley algorithms are studied and analyzed. Specifically, the current work focuses on 

studying and demonstrating how Sharpley values could be calculated with already existing 

algorithms. It proposes how new approaches that combine Shapley value calculation algorithms 

with differential privacy algorithms could be applied. The proposed new approaches guarantee the 

correctness and accuracy of calculations without any information leakage from the data set under 

consideration. Sensitivity and noise of the applied data privacy mechanism are also measured and 

analyzed. 

 

2.2 Background and fundamentals 

2.2.1 Definition and mathematical formulation of the Data Shapley problem 

The data generated by individuals is increasingly becoming a significant factor of the marketplace, 

as labor or capital factors (Posner & Weyl, 2018). Even regulatory directives such as GDPR 

consider individual data as personal property and state that individuals should be compensated for 

the provision of this data (GDPR, 2018). In this context, a fundamental question that should be 

responded is, how the fair value of individual data can be calculated. Various methods have been 

proposed to calculate this fair value; the current work focuses on exploitation of supervised 

machine learning methods. 

The main components of a data valuation process are the training data set, the calculation 

algorithm itself, and a metric that defines performance (Ghorbani & Zou, 2019). The three 

components are mathematically described in detail below: 

1. Training Data Set: a set of n points, 𝑥௜, 𝑦௜, where 𝑖 = 1, … , 𝑛. 
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2. Calculation Algorithm (CA): a procedure which takes as input an arbitrary training data 

set and produces a calculated predictor as an output. An example of a CA is a risk 

minimization algorithm that calculates 𝜃∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛ఏ ∑ 𝑙(𝑓(𝑥௜; 𝜃), 𝑦௜), where l is the 

loss function, θ is a parameter that defines a family of models and 𝑓(; 𝜃∗) is the predictor 

function. 

3. Performance Metric: For any prediction function f, a performance metric 𝑉(𝑓) can be 

defined to test the performance of f on a specific metric. 

In the context of the current work, two main topics related to fair data valuation are studied: 

 The definition of a measure that is suitable to track the fair value of each (𝑥௜, 𝑦௜) for a 

Calculation Algorithm (CA) in respect to a defined performance metric V. 

 The efficient calculation of the above fair data point value. 

An indicative CA could be a machine learning model, that is capable to classify for example 

customers or patients based on a relevant data set, using prediction accuracy as a performance 

metric for the algorithm effectiveness. As already mentioned, quantification of the value that each 

customer’s or patient’s data contributes to the model performance, is the main objective of the 

current work. It is important to state that no universal definition of the value for the overall data 

set is provided; on the contrary, for every data point (datum), a separate value is provided 

depending on the CA, the performance metric, and the overall data set used. This happens because 

there are data points which are more significant than others in many cases, depending on the 

calculation algorithm used, e.g. logistic regression, neural networks, or similar. 

The Shapley value was defined by Shapley (1953) in game theory related content; since then, 

it has been widely adopted and used in theoretical and applied research across various research 

fields (Shapley et al., 1988). Many problem types use Data Shapley as a basis for their foundation 

and analysis. Examples are resource allocation related problems, and voting application studies 

(Milnor & Shapley, 1978; Gul, 1989). A big family of Data Shapley value models have been 

proposed in recent years, focusing on feature scoring in predictive algorithms. In those studies, the 

main objective is quantification of features in order to decide which ones have the highest impact 

on the outputs of a model (Cohen et al., 2007; Strumbelj & Kononenko, 2010; Datta et al., 2016; 

Lundberg & Lee, 2017; Lundberg et al., 2018; Chen et al., 2018). Other very important studies 
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related to the Data Shapley value calculation takes advantage of Monte Carlo simulation methods 

or similar network algorithms, linear regression methods, or in some specific cases analytical 

solutions (Cook, 1977; Fatima et al., 2008; Castro et al., 2009; Maleki et al., 2013; Michalak et al., 

2013). Lately, Ghorbani & Zou (2019) have proposed use of Data Shapley value in the framework 

of machine learning methods. 

In similar directions Cook and Weisberg (1982) and Koh and Liang (2017) studied the 

leverage or influence that perturbations of data points have to algorithm’s parameters and outputs. 

However, for those studies it has been shown that the proposed algorithms are not always efficient 

and might present stability issues, while they do not present some of the desirable properties that 

Data Shaplay valuation methods should have (Ghorbani et al., 2017). Other studies, focus on the 

financial aspects, from an angle that is of particular interest for policy makers and economists; in 

those studies, it is assessed how individuals or citizens should be compensated for the data they 

provide, while at the same time it is discussed how individuals should be incentivized to generate 

valuable data (Arrieta Ibarra et al., 2017; Posner & Weyl, 2018). 

One of the most popular methods to calculate the importance of a data point, is the Leave 

One Out (LOO) method. The core functionality of LOO is based on performing a comparison 

between predictor’s performance when the model is trained with the full data set, versus 

performance when it is trained with a subset of the full set which is smaller by just one point (Cook, 

1977). The level of degradation of model’s performance when it is applied to the subset of the 

original training set, is a measure of the value of the removed data point. Variations of the LOO, 

use the notion of a leverage or influence score, which tracks the change of predictor’s level of 

performance when the weight of a data point slightly changes (Cook & Weisberg, 1982). As shown 

by Ghorbani and Zou (2019), the LOO method does not satisfy important desirable properties for 

implementing fair data calculation algorithms. 

In what follows, application of Machine Learning techniques to calculate the fair value of 

data is extensively studied from both a theoretical and a practical perspective. Given a fixed 

training data set 𝐷 = {(𝑥௜ , 𝑦௜)}ଵ
௡, where each 𝑦௜ is the categorical or actual value that corresponds 

to 𝑥௜, and a machine learning algorithm 𝒜 that uses D as an input to produce prediction, it is of 

particular interest to calculate the predictor when training is applied on particular subsets S of D, 

i.e. 𝑆 ⊆ 𝐷. If 𝑉(𝑆; 𝒜), or for simplicity 𝑉(𝑆), denotes the performance score for an algorithm 𝒜 
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and a predictor based on the data set S, then the main objective is to calculate the fair value of the 

data point i, which is denoted as 𝜙௜(𝐷, 𝒜, 𝑉) ∈ ℝ, or symbolized as 𝜙௜(𝑉), or 𝜙௜ for simplicity. 

According to Ghorbani and Zou (2019), a well-defined fair value function 𝜙 should posses the 

following important properties: 

(1) If for every 𝑆 ⊆ 𝐷 − {𝑖}, 𝑉(𝑆) = 𝑉(𝑆 ∪ {𝑖}) holds, then 𝜙௜=0, which means that the 

value of any (𝑥௜ , 𝑦௜) that does not have any impact on the performance when added to 

any training subset, should be equal to zero. 

(2) If for the data points i and j and any 𝑆 ⊆ 𝐷 − {𝑖, 𝑗}, 𝑉(𝑆 ∪ {𝑖}) = 𝑉(𝑆 ∪ {𝑗}) holds, then 

𝜙௜ = 𝜙௝. This practically means that if the addition of data points i and j to any subset of 

the training set produces the same variation in the score of the predictor then they must 

be given the same value. 

(3) Let 𝑉 = − ∑ 𝑙௞௞ , where 𝑘 ∈ 𝑡𝑒𝑠𝑡 𝑠𝑒𝑡 and 𝑙௞ is the loss function of the predictor on the 

k-th data point of the test set. Also, let 𝑉௞ = −𝑙௞ be the performance of the predictor on 

the k-th data point of the test set, and 𝜙௜(𝑉௞) be the value of the i-th point to the k-th data 

point of the train set. If the data point i contributes to the predictors of test points 1 and 

2 respectively values 𝜙௜(𝑉ଵ) and 𝜙௜(𝑉ଶ), then the value of i in the predictions of both 

test points is equal to 𝜙௜(𝑉ଵ) + 𝜙௜(𝑉ଶ). This practically means that, when the overall 

prediction is the sum of K separate predictions, then the value of a data point equals the 

sum of its value for each prediction, i.e. for performance scores V and W, 𝜙௜(𝑉 + 𝑊) =

𝜙௜(𝑉) + 𝜙௜(𝑊). 

Ghorbani and Zou (2019) have proven that any calculated fair value 𝜙(𝐷, 𝒜, 𝑉) for which 

the above properties (1)-(3) hold, can be mathematically described in the following form: 

𝜙௜ = 𝐶 ∑
௏(ௌ∪{௜})ି௏(ௌ)

ቀ೙షభ
|ೄ| ቁ

ௌ⊆஽ି{௜}     (eq. 2.1) 

where C is a constant and the above sum aggregates all subsets of D that do not contain i. 

The value 𝜙௜ calculated with the above relation is known as the data Shapley value of point 

i. The above equation practically aggregates the weighted contributions of i, with the weight being 

the inverse of the number of subsets with size |𝑆| in the 𝐷 − {𝑖} universe. This formulation is very 

close to the LOO formula where every point’s contribution to the fair value is based on a random 
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subset of the training set, instead of the whole training set. In other words, Shapley equation 

captures all scenarios of potential subsets instead of random selections. 

Equation (2.1) calculates and assigns to all data points a fair value. However, the 

computational effort required to calculate every marginal contribution is very high and heavily 

impacted by the size of the training data set, while for every 𝑆 ⊆ 𝐷 the calculation of 𝑉(𝑆) also 

implies that a predictor on S should be computed with the aid of algorithm 𝒜. Consequently, 

calculation of the accurate Data Shapley value is not realistic for actual use cases that include large 

data sets. For this reason, approximations are used in practice. 

 

 

2.3 Shapley value calculation methods 

In this section, popular approximation methods commonly used to calculate the Data Shapley 

value are presented and discussed. Specifically, the Truncated Monte Carlo Shapley algorithm and 

the Gradient Shapley algorithm. The above methods will be used as a basis for the implementation 

proposed in this study. 

2.3.1 Truncated Monte Carlo Shapley Algorithm 

According to Ghorbani and Zou (2019), equation (2.1) can be reformulated if C is set equal to 
ଵ

௡!
. 

Specifically, if Π is a uniform distribution function in the universe of all n! data point permutations, 

then the following equation holds: 

 𝜙௜ = Εగ≈௽ൣ𝑉൫𝑆గ
௜ ∪ {𝑖}൯ − 𝑉(𝑆గ

௜ )൧   (eq. 2.2) 

with 𝑆గ
௜  being the data set that includes only the data points that are positioned before data point i 

in permutation π. Obviously, 𝑆గ
௜ = ∅ when i denotes the first data point of the data set. The above 

notation implies that equation (2.2) in fact formulates and represents an expectation computation 

problem. 

Variations of the Monte-Carlo method have been introduced and studied in the framework 

of the Data Shapley Value problem (Mann & Shapley, 1962; Castro et al., 2009; Maleki et al., 

2013). In principle the steps followed in those variations are the below: 
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1. A sample of random permutations of the data points is selected. 

2. For each permutation the marginal contribution of each additional data point is calculated. 

3. The overall estimation is calculated by averaging all the marginal contributions produced by 

step (2). 

 

The above steps conclude to an estimation of the Data Shapley value which is generally unbiased. 

Following such an approach, the Monte Carlo calculations are iteratively repeated until the 

algorithm converges. According to Maleki et al. (2013), convergence is achieved by generating 3n 

samples, which simply means that the computational complexity is 𝑂(𝑛). 

To reduce computational complexity and optimize algorithm performance, Ghorbani and 

Zou (2019) introduced the idea of truncation in the above Monte Carlo iterative approach. The 

method the concluded with, was named Truncated Monte Carlo Shapley (TMC-Shapley). The idea 

behind what they proposed is that when a sample permutation is processed to compute its marginal 

contributions, calculations can be truncated as soon as V(S) reaches a point with an acceptable 

performance tolerance V(D). Calculations on remaining data points for the specific permutation 

could be then ignored (i.e., marginal contribution can be set equal to zero for those points), without 

any significant impact on the produced outcomes. Applying the idea of truncation in Data Shapley 

Monte Carlo saves significant computational effort and at the same time does introduce only 

immaterial bias into the estimation produced. 

The above calculation is feasible to implement in the framework of Machine Learning 

methods. Validity of the idea can be explained by the fact that, since the data set used for testing 

is finite, V(S) is in fact just an estimation of the actual performance of the trained model. It is thus 

adequate to approximate the Data Shapley value by taking into consideration a tolerance that 

equals the intrinsic noise; this noise could be measured by quantifying the performance variations 

for the same predictor across the samples of the testing data set (Hastie et al., 2001). At the same 

time, Mahajan et al. (2018) and Beleites et al. (2013) have proven that when S becomes larger, 

further addition of training points gradually has smaller impact on the performance of the 

calculation. 
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2.3.2 Gradient Shapley Algorithm 

Even by applying the efficiencies stated in the previous section, Data Shapley calculations remain 

still expensive, especially when big data sets are considered, or high complexity predictive models 

such as deep learning models are used. For this reason, the Gradient Shapley Algorithm has been 

proposed by Ghorbani and Zou (2019). In most of the cases, predictive models require that 

algorithm A performs random iterations on batches of D to appropriately adjust the model 

parameters. These iterations are the basis of the stochastic Gradient Shapley, or G-Shapley 

algorithm. In this case, the model is gradually trained, by iteratively considering simple 

approximations of the model produced by a single parse of the training data. Obviously, this 

approach is quite close to the one followed in the Monte Carlo Shapley algorithm. The main 

difference is that, in each sample permutation, the model is updated by applying a gradient descent 

on each data point for every time step. The marginal contribution can then be calculated as the 

change that takes place in the model performance in every iteration. Additionally, to produce the 

best approximation, Ghorbani and Zou (2019) applied a hyper-parameter search during the 

learning process, which resulted into the best performing model when this is trained with only one 

parse of the data. 

2.3.3 Variations 

In some cases, especially when very large data sets are used as an input, calculation of the Data 

Shapley values become extremely demanding in terms of computational resources, and 

algorithm’s performance significantly declines. An approach usually proposed in such cases is the 

grouping of data points and application of the Data Shapley algorithms on those groups instead of 

individual datums. Representative examples that take advantage of the data grouping approach can 

be found in the health industry applications such as the prediction of heart diseases, breast cancer, 

skin cancer etc., where patients could be grouped into separate bins using as grouping criteria 

features like gender, age, etc. Other examples could be found in relative research efforts (Ghorbani 

& Zou, 2019). 
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2.4 Differential privacy 

During the last two decades, emblematic data breaches have led private and public Organizations 

to put high in their priority agendas, data privacy initiatives. In exactly the opposite direction, the 

increasing usage of Machine Learning algorithms has generated strong demand on large volumes 

of data sets to get trained and be executed to produce valuable information insights. Important 

portions of the required data may contain personal, sensitive and in any case private information; 

potential disclosure of such data could generate unpredictable and possibly unmanageable 

consequences for the organizations that are responsible to collect, store and manage it. 

Differential Privacy (DP) is a relatively new research field, that aims to respond to information 

privacy challenges and enable Organizations and Companies to effectively manage private and 

sensitive information included in the managed data, as can be seen in Figure 2.1. DP was 

established as a research domain in 2006 by the seminal work of Dwork (2006), but has become 

popular during the last years, among others because it provides the so-called privacy guarantees 

as part of security frameworks and their implementation. 

 

 

Figure 2.1: Information from a Differential Privacy perspective. 
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Information in data
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DP could be viewed as an approach to mathematically define information privacy in the 

context of machine learning and statistical analysis techniques (Nissim et al., 2018). It can be 

simply defined as the change in private information that can be derived from a data set, when a 

point that corresponds to an entity (e.g individual) is removed from the particular data set. DP 

carries the unique property of guaranteeing that the outcome of a calculation will remain essentially 

unchanged when a particular entity’s private information, contained in the original input is 

removed (Nissim et al., 2018). This unique property can guarantee information privacy protection 

against a variety of privacy attacks such as differencing, linkage and reconstruction attacks 

(Dwork & Roth, 2014). 

The following two important metrics are of particular importance in any DP algorithm 

(Dwork & Roth, 2014): 

 Privacy loss or privacy budget (denoted by ε): This is a metric of privacy loss when a 

differential change takes place in data, e.g. when one entry is added to, or removed from, 

the original data set. Information privacy protection is inversely propotional to the size of 

ε. 

 Accuracy: Given a data set, accuracy refers to the level of closeness of a DP algorithm’s 

output to the actual output and is used as a metric for evaluating a DP algorithm. 

From a mathematical perspective, the DP problem can be formulated as follows. A calculation 

function (or algorithm) K provides ε-differential privacy when for any data sets D and D′ that vary 

by one row at most (i.e 𝑑(𝐷, 𝐷′)=1), and for any 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝐾), the following relation holds: 

𝑃𝑟[𝐾(𝐷) ∈ 𝑆] ≤ 𝑒ఌ𝑃𝑟[𝐾(𝐷ᇱ) ∈ 𝑆]    (eq. 2.3) 

It is important to note that decreasing ε leads to declining accuracy. Moreover, an algorithm that 

is of 0-differential privacy, even if it protects the information privacy adequately, it will be of 

limited usage if it has very low accuracy, since it would produce only noise as an output. From 

another angle, having an ε which is equal to 0, makes the DP algorithm being independent of the 

data set used as an input, and consequently protects information privacy in a perfectly. Typical 

values for ε are thus small but non-zero, e.g 0.5, 0.1, 0.001. 

Based on eq. (2.3) and the above discussion, it can easily be understood that the stronger the 

privacy guarantee provided the greater the noise added to the outcome of a DP algorithm. To 
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mathematically justify the trade off between privacy guarantee and noise, the (𝜀, 𝛿)-differential 

privacy scheme was introduced in Dwork et al. (2006) and Dwork (2011a). Given two data sets D 

and D′ that vary by one row at most (i.e 𝑑(𝐷, 𝐷′)=1), and a calculation function (or algorithm) 𝐾, 

𝑅𝑎𝑛𝑔𝑒(𝐾) being the set of all possible output alternatives of 𝐾, then for any 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝐾), the 

(𝜀, 𝛿)-differential privacy could be defined as follows: 

 

𝑃𝑟[𝐾(𝐷) ∈ 𝑆] ≤ 𝑒ఌ𝑃𝑟[𝐾(𝐷ᇱ) ∈ 𝑆] + 𝛿    (eq. 2.4) 

There is not any hard requirement to select any specific values for ε or δ, which practically means 

that they could be selected based on the requirements or specific properties of the problem that 

needs to be tackled each time. In general, appropriate values for δ are usually smaller than 10-4, 

while (ε, δ)-differential privacy degenerates to ε-differential privacy if δ is equal to zero. 

 

 

Figure 2.2: Probability distributions for the outputs of the function (or algorithm) K for datasets 
D and D′. 

(Source: Wang et al., 2015) 
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According to Dwork and Roth (2014), DP has the following four (4) important properties 

that make it feasible to analyze personal or sensitive information taking into consideration 

protection of information privacy: 

1. Ability to quantify information privacy loss. DP makes it feasible to measure information 

privacy loss and produce meaningful comparisons in the context of machine learning 

techniques. 

2. Information privacy loss composition. Quantification of information privacy loss, makes it 

feasible to analyze and control cumulative impact of privacy loss when multiple 

computations are gradually applied. This quantification facilitates the proper design and 

analysis of DP algorithms when they are composed from smaller building blocks. 

3. Immunity on post-processing. DP is not affected by any type of post-processing. This 

practically means that outputs of differential privacy algorithms cannot be used to “re-

create” the relevant inputs, by using any type of computation. 

4. Information privacy loss on groups of individuals. DP makes it feasible to analyze privacy 

loss incurred in groups of individuals e.g. families, when data are provided at individual 

level. 

Especially for property (2) above, there are two separate types of composition that could be 

met, sequential and parallel. Both play a significant role in providing evidence on whether a 

specific algorithm satisfies DP or not. On top, they could also be used to quantify the differential 

privacy loss amount, providing thus significant input on the budgeting strategy effectiveness. The 

sequential composition variation shows that both the differential privacy budget and the error are 

evolving in a cumulative linearly manner when multiple differential privacy approach is used to 

release data for a given dataset. The parallel composition variation shows that the level of 

differential privacy guarantee is decreasing (or in other words the security is decreasing) when 

εi grows (Li et al., 2012; McSherry, 2010). To balance the required budget with the realized 

security, a number of methods have been developed based on the calculation of optimal values for 

the absolute or the relative error (Qardaji et al., 2013), the variance or the standard deviation 

(Cormode et al., 2012; Xiao et al., 2014; Qardaji et al., 2013), and the false negatives (Lee & 

Clifton, 2014). 
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In the rest of the section, the most important differential privacy concepts are studied and 

critically analyzed, starting with the definition and detailed presentation and mathematical 

formulation of the DP noise. 

2.4.1 Differential Privacy noise 

As already explained, introduction of noise is of key importance in the DP algorithms and the way 

it is introduced defines significantly how the DP mechanism works. There are three main noise 

types usually applied in DP algorithms, namely the Laplace, the exponential, and the Gaussian 

noise types. To better understand how the noise mechanism works, the global sensitivity metric 

should be introduced. For a function 𝑓: 𝐷 → 𝑅ௗ, the global sensitivity is defined as (Dwork, 2006): 

 

𝛥𝑓 = max
஽,஽ᇲ

‖𝑓(𝐷) − 𝑓(𝐷′)‖ଵ.    (eq. 2.6) 

where 𝐷 and 𝐷ᇱ are two adjustment data sets, d is the data set dimension and ‖𝑓(𝐷) − 𝑓(𝐷′)‖ଵ 

the first order norm of the distance between 𝑓(𝐷) and 𝑓(𝐷′). 

Depending on the set of operations performed by function f, the global sensitivity metric 

could take different values, e.g, if f represents a simple count function, then 𝛥𝑓 = 1, while 

𝛥𝑓 normally takes larger values for other, more complex, operations. Nissim et al. (2007), 

proposed a mechanism to better manage outputs when the noise increases. Specifically, they 

introduced the metric of local sensitivity defined as follows. For a function 𝑓: 𝐷 → 𝑅ௗ, the local 

sensitivity is defined as: 

𝐿𝑆௙ = max
 ஽ᇲ

‖𝑓(𝐷) − 𝑓(𝐷′)‖ଵ    (eq. 2.7) 

where 𝐷 and 𝐷ᇱ are two adjustment data sets, d is the data set dimension and ‖𝑓(𝐷) − 𝑓(𝐷′)‖ଵ 

the first order norm of the distance between 𝑓(𝐷) and 𝑓(𝐷′). 

The local sensitivity metric normally reduces the noise, but this comes with an increasing 

risk of reducing the protection of the information included in the specific dataset. For this reason, 

Nissim et al. introduced the β-smooth sensitivity metric, that makes it feasible to add noise 

proportionally to a smooth upper boundary of the local sensitivity. The β-smooth sensitivity is 

defined as follows (Nissim et al., 2007). For a function 𝑓: 𝐷 → 𝑅ௗ and a β > 0, the β-smooth 

sensitivity is given by: 
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𝑆௙,ఉ(𝐷) = max
 ஽ᇲ

൫𝐿𝑆௙(𝐷′)𝑒ିఉௗ൫஽,஽ᇲ൯൯    (eq. 2.8) 

where 𝐷 and 𝐷ᇱ are two adjustment data sets, d is the data set dimension and 𝐿𝑆௙ the local 

sensitivity of f. 

In what follows the variations of DP noise are presented in detail. 

2.4.1.1 Laplacian DP noise 

The Laplacian DP noise has been proposed by Dwork et al. (2006b) as a proper mechanism for 

achieving differential privacy. The way this mechanism works is that it adds noise to the DP 

algorithm outputs, which follows Laplacian distribution. Using mathematical formulation, for a 

data set D, a function 𝑓: 𝐷 → 𝑅ௗ with global sensitivity 𝛥𝑓, and a calculation algorithm 𝐾(𝐷) =

𝑓(𝐷) + 𝑛 that satisfies ε-differential privacy, the noise n follows the Laplacian distribution, i.e 

𝑛 ∼ 𝐿𝑎𝑝 (
௱௙

ఌ
) with location and scale parameters respectively equal to 0 and 

௱௙

ఌ
. Let 𝐿𝑎𝑝 (𝑏) 

denote the Laplacian distribution with location and scale parameters respectively equal to 0 and 𝑏, 

and 𝑝(𝑥) =
௘

ష
|ೣ|
್

ଶ௕
 denote its probability density function. If 𝜎(𝑥) is the standard deviation and 𝐷(𝑥) 

the variance, and 𝑏 =
௱௙

ఌ
, then: 

𝐷(𝑥) = 2𝑏ଶ = 2
(௱௙)మ

ఌమ
      (eq. 2.9a) 

𝜎(𝑥) = ඥ𝐷(𝑥) = √2
௱௙

ఌ
     (eq. 2.9b) 

As it is depicted in Figure 2.3, for larger values of noise, the larger the value of b and the value of 

ε (Wang et al., 2015). 
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Figure 2.3: Visualization of the probability density function for different calls of b. 

(Source: Wang et al., 2015) 

2.4.1.2 Exponential DP noise 

The exponential DP noise has been proposed by McSherry & Talwar (2007) as another mechanism 

for achieving differential privacy. In similarity with the Laplacian DP noise, the way this 

mechanism works is that it adds noise to the DP algorithm outputs, which follows exponential 

distribution. Their main differentiation point is that the Laplacian mechanism is usually being 

applied when the DP problem outputs are numerical, while the exponential mechanism is applied 

when the outputs are not numerical. Using mathematical formulation, for an input data set denoted 

as D, an output denoted as 𝑟 ∈ 𝑅, and a score function 𝑣: 𝐷 × 𝑅 → 𝑅, if a calculation algorithm 

𝐾(𝐷, 𝑣) decides a potential answer based on the following exponential probability defined in (eq. 

2.10), then algorithm 𝐾 satisfies ε-differential privacy: 

𝐾(𝐷, 𝑣) = ൜𝑟: 𝑃𝑟[ 𝑟 ∈ 𝑅] ∝ 𝑒
ഄ ೡ(ವ,ೝ)

మ೩ೡ ൠ   (eq. 2.10) 

where 𝛥𝑣 denotes the sensitivity of the score function 𝑣, defined as follows: 



 30 

𝛥𝑣 = max
 ௥∈ோ

 max
 ‖஽௱஽ᇲ‖ୀଵ

|𝑣(𝐷, 𝑟) − 𝑣(𝐷ᇱ, 𝑟)|  (eq. 2.11) 

As already mentioned, the exponential DP noise mechanism can be used for non-numerical 

results, using values produced by the score function. The highest the score of an output, the higher 

probability to be outputted when ε is larger. Additionally, when the difference between the output 

probabilities increases, the produced security decreases; for smaller values of ε, the produced 

security increases. 

2.4.1.3 Gaussian DP noise 

The Gaussian DP noise is another mechanism for achieving differential privacy. The way this 

mechanism works is that it adds noise to the DP algorithm outputs, which follows Gaussian 

distribution. However, this mechanism requires a slightly different notion of sensitivity. For a 

function 𝑓: 𝐷 → 𝑅ௗ, the 𝑙ଶ sensitivity is defined as:  

𝛥𝑓ଶ = max
஽,஽ᇲ

‖𝑓(𝐷) − 𝑓(𝐷′)‖ଶ    (eq. 2.12) 

where 𝐷 and 𝐷ᇱ are two adjustment data sets. 

The 𝑙ଶ sensitivity and 𝑙ଵ norms enjoy the following relationship: 

               ‖𝐷‖ଶ ≤ ‖𝐷‖ଵ ≤ √𝑑‖𝐷‖ଶ    (eq. 2.13) 

for a vector 𝐷 ∈ 𝑅ௗ. Thus, the 𝑙ଶ sensitivity might be greater by a factor of √𝑑  than 𝑙ଵ sensitivity. 

The univariate Gaussian distribution 𝑁 (𝜇, 𝜎ଶ) with mean and variance parameters respectively 

equal to 𝜇 and 𝜎ଶ has probability density function which is the following: 

𝑝(𝑥) =
ଵ 

√ଶగఙమ 
 𝑒

ି
(ೣషഋ)మ

మ഑మ     (eq. 2.14) 

2.4.2 Data processing models and data release strategies 

Two different data processing models exist in the framework of differential privacy, i.e the 

interactive or on-line query model (see Figure 2.4) in which the data requester can access the data 

through an interface provided by the owner of the data, and the non-interactive model or offline 

query model (see Figure 2.5) in which the data requester can directly access only sanitized data 

sets as they are released by the data owner (Dwork et al., 2006; Xiong et al., 2014). 
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In the interactive model (see Figure 2.4) the data owner provides a DP-based query 

algorithm to the data requester, while the data requester requests the needed data using a query. 

Upon receipt of the query request, the algorithm brings the requested raw data from the original 

data source and performs sanitization before returning it to the requester. In this case, the number 

of performed queries is inversely proportional to the privacy budget ε, which means that the bigger 

the number of queries the smaller the budget for each query and the larger the noise added to the 

query result. Consequently, in this type of model, it is of key importance to design the query 

algorithm in such a way, so that it provides the largest number of queries that could be applied 

under the restriction of the budget ε (Wang et al., 2015). 

 

 

Figure 2.4: Interactive or on-line query model. 

(Source: Wang et al., 2015) 

 

In the non-interactive model (see Figure 2.5) the data owner releases a sanitized data set 

since he/she is considered a trusted curator. Upon receipt of a query request from the data requester, 

the sanitized data set is used to formulate and return the noisy result. In this type of model, it is of 

key importance to design the query algorithm in such a way, so that it is capable to enhance the 

accuracy and efficiency of the query; even if a high number of queries are required this is not 

prohibitive, since the number of queries are not related to the privacy budget ε (Wang et al., 2015). 
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Figure 2.5: Non-Interactive model or offline query model. 

(Source: Wang et al., 2015) 

 

Based on the above models, three different data release strategies can be applied (Zhang & 

Meng, 2014; Wang et al., 2015): 

1. Data Release Strategy 1: In this alternative, ε represents a uniform privacy budget and the 

noise that follows Laplace distribution 𝐿𝑎𝑝 (
௱௙

ఌ
) is added to the original raw data 𝐷 =

{𝑥ଵ, 𝑥ଶ, … , 𝑥௡}, giving a noisy transformation 𝐷௡௢௜௦௬. Post-processing can be applied to the 

noisy transformation 𝐷௡௢௜௦௬ to improve query accuracy, with a method such as least square, 

and finally release the transformed post-processed data set 𝐷௥௘௟௘௔௦௘ௗ. 

2. Data Release Strategy 2: In this alternative, ε represents again a uniform privacy budget. First 

a processing is applied to the original raw data 𝐷 = {𝑥ଵ, 𝑥ଶ, … , 𝑥௡}, incuding transformation 

(e.g a graph structure is converted to a tree structure) and compression, to reduce the sensitivity 

of function f, Δf. The outcome is a synthetic data set 𝐷௦௬௡௧௛௘௧௜௖ in which then noise that follows 

Laplace distribution 𝐿𝑎𝑝 (
௱௙

ఌ
) is added, to finally release the data set 𝐷௥௘௟௘௔௦௘ௗ. 

3. Data Release Strategy 3: In this alternative, ε represents a non-uniform privacy budget, i.e 

𝜀ఐ ≠ 𝜀௝ and the noise that follows Laplace distribution 𝐿𝑎𝑝 (
௱௙

ఌ
) is added to the original raw 

data 𝐷 = {𝑥ଵ, 𝑥ଶ, … , 𝑥௡}, giving a noisy transformation 𝐷௡௢௜௦௬. Finally, reasonable budgeting 

strategy techniques are used on the noisy transformation 𝐷௡௢௜௦௬ to improve query accuracy and 

release the data set 𝐷௥௘௟௘௔௦௘ௗ. 
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The above data release strategies can be applied either autonomously or in combination. For 

example, Data Release Strategy 3 could be initially used to allocate a reasonable budget and then 

post-processing of Data Release Strategy 1 could be applied to improve the query accuracy. 

2.4.3 Data Release Types 

Ensuring high levels of privacy guarantee and at the same time providing highly usable released 

data, is apparently the main objective of any differential privacy approach. For this reason, a 

significant number of data release methods have been proposed, defining different types of 

differential privacy. Although the research in the DP domain is still at the beginning, the data 

release methods applied using the strategies mentioned above, lead to different DP approaches. A 

classification of these approaches in five (5) separate types, namely Histograms, Tree structures, 

Time series, Graphs, and Pattern mining, has been proposed by Wang et al. (2015). The advantages 

and defects of each one of those types, along with the most important representative methods and 

some typical applications are summarized in Table 2.1. 
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Table 2.1: Main types of DP data release methods. 

Classification Advantage Defect 
Representative 

methods 
Typical Applications 

Histogram Supports any range query The noise is large in 
high-dimensional 

data 

DPCube 
NoiseFirst  

Structure First 

Statistical analysis of 
disease and search history 

Tree structure Supports multiple- 
dimensional data and 

data-dependent or data-
independent query 

The noise is large in 
high-dimensional 

data 

Quad-opt 
AG 
SEA 

Location query of user 
and device, transport 

planning 

Time series Supports time series query It is hard to balance 
the utility and 

security in high-
dimensional data 

TEA 
FAST 
U-KF 

Real time traffic, disease 
surveillance 

Graph Supports the analysis and 
query of graph data 

Sensitivity is high, 
and node-differential 
privacy is difficult to 

achieve 

DP2K(ε) 
LNPP 

hrg-ε1-e-ε2 

Relationship analysis of 
user in health social 

network 

Pattern 
mining 

Supports differential 
privacy pattern mining, 
and original data can be 
constructed by frequent 

patterns 

Long pattern leads to 
large noise 

PrivBasis 
NoiseCut  
Diff-FPM 

User behavior, DNA 
sequences, trajectory and 

disease trend analysis, 
recommended system 

 

In the following sections, each one of the above five (5) classifications, is described in detail and 

analyzed. 

2.4.3.1 Histogram release type 

The histogram release type is based on histograms created from the input data set by splitting it 

into disjoint data subsets, which are known as “buckets” or “bins”. Bucketing is based on a given 

set of rules or attributes. To access the raw data, a DP interface is commonly used, through which 

users send queries on the data and the histograms are used to formulate responses. The process 

workflow is depicted in Figure 2.6 (Xiao et al., 2010). 
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Figure 2.6: DP using the histogram data release type. 

(Source: Xiao et al., 2015) 

 

One of the most common methods to implement the histogram approach, is by adding 

Laplace noise equal to 𝐿𝑎𝑝 (
ଵ

ఌ
) (function sensitivity 𝛥𝑓 = 1) to all histogram bins. This selection is 

appropriate when the requests are based on short range queries, since for larger ones the error 

increases significantly (error is proportional to 
ଶ௡

ఌమ
). To reduce the error, a grouping of the buckets 

can be applied; an example with grouping of age bins is demonstrated in Figure 2.7 below (Xiao 

et al., 2010). In this example, by merging the seven (7) buckets into three (3), the total noise is 

reduced in 3/7=0.43 of the initial noise. The side effect of this noise improvement is that an 

approximation error is introduced which implies that to keep the DP approach effective, the 

number of bucket mergers should be limited. Since the finer the partitioning is, the smaller the 

approximation error will be, but at the same time the larger the noise will be, it is of key importance 

to find the proper balance between introduced noise and approximation error (Xiao et al., 2010).  

 

Figure 2.7: Grouping of buckets in the histogram data release type. 

(Source: Xiao et al., 2015) 
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One of the most popular partitioning strategies was proposed by Xiao et al. (2010, 2012) 

and is based on the notion of the kd-tree. Specifically, the kd-tree histogram data release process 

is consisted of the following five (5) steps: 

1. The histogram structure is constructed based on the k-th different attributes of the original 

raw data. 

2. A noisy k-dimensional data set is generated, by adding noise to the original histogram using 

half of the privacy budget (i.e. ε/2). 

3. Partitioning of the noisy k-dimensional data set is conducted with the use of the kd-tree 

algorithm. 

4. Noise is added to each one of the partitions using the other half of the privacy budget (ε/2).  

5. The generated noisy histogram is released.  

A number of algorithms have been based on the kd-tree histogram data release method. 

Xiao et al. (2010) proposed DPCube which follows Data Release Strategy 1, i.e. the kd-tree is 

applied for post-processing purposes after addition of noise. The DPCube algorithm can handle 

long-range query and multidimensional data, while the query error can be optimized with the 

proper parameter value selection. 

Xu et al. (2013) proposed the idea of using the notion of Sum of Squared Error (SSE) to 

appropriately balance the partitioning and noise error. Based on this notion, two important methods 

have been proposed, namely methods NoiseFirst and StructureFirst. NoiseFirst follows Data 

Release Strategy 1, i.e. first adds noise and then uses dynamic programming to construct the 

optimal histogram; NoiseFirst is suitable for short-range queries. StructureFirst follows Data 

Release Strategy 2, i.e. first generates the optimal histogram and then adds noise. StructureFirst 

uses privacy budget ε1 in the first step as a privacy guarantee mechanism for the sensitive 

information in the histogram. In the second step, noise is added to the different partitions using the 

rest of the privacy budget (ε- ε1). StructureFirst is suitable for long-range queries and is similar to 

en extend with DPCube. Since both NoiseFirst and StructureFirst reconstruct the histogram, large 

numbers of partitions negatively affect performance. 
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Hay et al. (2010) proposed another approach that reduces the error in long-range queries 

by applying a hierarchical tree structure, transforming thus the histogram into a hierarchical tree 

structure. By applying this transformation, all queried intervals can be organized as trees and query 

accuracy is enhanced (Qardaji et al., 2013b). Further work done by Qardaji et al. (2013b), based 

on the hierarchical tree notion, concluded to the Flat method which works well for larger 

dimensions compared to the original hierarchical approach. 

A summary of all histogram data release methods is depicted in Table 2.2. 

 

Table 2.2: Histogram data release methods. 

Method  Strategy Advantage Defect Budgeting 

DPCube Data Release 
Strategy 1 

Supports multidimensional and 
long-range query 

Parameter affects query 
accuracy heavily 

Uniform 
budgeting 

NoiseFirst Data Release 
Strategy 1 

Fit for short-range query Histogram reconstruction is 
expensive 

Uniform 
budgeting 

Structure 
First 

Data Release 
Strategy 2 

Fit for long-range query Histogram reconstruction is 
expensive 

Near-optimal 
budgeting 

Flat Data Release 
Strategy 2 

Fit for multidimensional data Low-dimensional data query 
error is larger 

Uniform 
budgeting 

 

 

  



 38 

 

2.4.3.2 Tree structure release type 

The tree structure methods are targeting to the reduction of query errors and are based on the idea 

of splitting the data into tree structures. They are also met in the relevant literature in another form, 

as private spatial decompositions where the geospatial data are split into sub-regions enabling the 

generation of statistics within each one of them. In case that a partition might disclose sensitive 

information when such a split is performed, the method is called data-dependent decomposition. 

If it might not, it is called data-independent decomposition. In that sense for example, kd-tree splits 

are based on the median value, which implies disclosure of the median value itself; that is why it 

is a data-dependent decomposition (Cormode et al., 2012). 

In what follows the two main types of decomposition are presented in detail. 

(1) Data-dependent decomposition. As depicted in the example of Figure 2.8, the node with 

grid coordinates (5, 4) discloses information of itself during the splitting, leading to noise 

addition in order to protect actual information disclosure. Given a data set 𝐷 =

{𝑥ଵ, 𝑥ଶ, … , 𝑥௡}, 𝑥௜ ∈ [1, 𝑟] with n data points sorted in ascending order and 𝑥௠௘ௗ௜௔௡ being 

the median value, then by adding 𝑛𝑜𝑖𝑠𝑒 ~𝐿𝑎𝑝 (
௱௙

ఌ
) the noise median is obtained, i.e 

𝑀(𝐷) = 𝑥௠௘ௗ௜௔௡ + 𝑛𝑜𝑖𝑠𝑒. Given that 𝑀(𝐷) might take values not belonging to [1, 𝑟] it 

has been proposed by Inan et al. (2012) that the mean value 𝑥௠௘௔௡ could be selected instead 

of the median when numerical data are used; the mean value could be then approximated 

by dividing the sum of the noisy counts to the number of the counts. Xiao et al. (2010, 

2012) used initially half of the privacy budget on the original data and the rest of the budget 

to construct a kd-tree structure and compute the median on noisy data, guaranteeing thus 

the differential privacy of the median. 
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Figure 2.8: A private kd-tree. 

(Source: Wang et al., 2015) 

 

Cormode et al. (2012) proposed a method based on kd-tree structure and EM medians, known 

as kd-standard. This method uses EM (exponential mechanism) to check and validate the 

median by applying an exponential mechanism and calculates differential privacy as 

𝑃𝑟[𝐸𝑀(𝐷) = 𝑥] ∝ 𝑒ିఌ|௥௔௡௞(௫)ି௥௔௡௞(௫೘೐೏೔ೌ೙)| ଶ⁄ . In this way the rank of the returned x is the 

same with the rank of x in D. Since x is almost equal to 𝑥௠௘ௗ௜௔௡, the median is guaranteed. The 

method uses a privacy budget 𝜀௠௘ௗ௜௔௡ for calculating 𝑥௠௘ௗ௜௔௡, and a privacy budget 𝜀௖௢௨௡௧ for 

the computation of the count. Since 𝜀 = 𝜀௠௘ௗ௜௔௡ + 𝜀௖௢௨௡௧, the larger the value of 𝜀௠௘ௗ௜௔௡ the 

more accurate the median and the larger the count error, while the smaller the value of 𝜀௠௘ௗ௜௔௡ 

the more accurate the count computation but the larger the median error. This practically means 

that it is of key importance in the kd-standard method to find the proper balance between the 

budget that should be allocated to the count computation and the budget that should be used 

for the median computation. 

(2) Data-independent decomposition. Method Quad-opt which is based on the notion of quadtree 

was proposed by Cormode et al. (2012). The main mechanism on which this method is based 

is the recursive decomposition of the data set into equal quadrants, that do not disclosure any 

data information. As depicted in the example of Figure 2.9, the data set a is decomposed into 

four quadrants of equal size, i.e. b1, b2, b3 and b4; all b data sets are then decomposed to four 

(4) equal quadrants and this continues until a predefined depth h of the scetched tree is met. 
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Figure 2.9: An example of the Quad-opt method. 

(Source: Wang et al., 2015) 

 

Going beyond the obvious choice of a uniform budget, i.e. 𝜀௜ =
ఌ

௛ାଵ
, Cormode et al. (2012) 

proposed a geometrical strategy, with a factor of √2
య . Based on this strategy, budget 𝜀௜ =

2
೓ష೔

య 𝜀 ቆ
√ଶ

య
ିଵ

ଶ
೓శభ

య ିଵ

ቇ, with 𝑖 = 0, … , ℎ and 𝜀 = ∑ 𝜀௜
௛
௜ୀ଴ . For a query Q, the error accumulated is equal 

to the sum of the errors occurring in each node and for the upper error boundary in query Q, it 

holds that 𝐸𝑟𝑟𝑜𝑟(𝑄) = 𝑉𝑎𝑟(𝑄) ≤
ଶ೓శళ

ఌమ
. Method Quad-opt can further enhance the accuracy of 

the query, by applying post-processing on the noisy data with the aid of the least square 

method. When the entire privacy budget is allocated to the leaf nodes, the method implies 

decomposition of the data set into w×w cells. 

Fan et al. (2013) proposed another data-independent decomposition method, called Spatial 

Estimation Algorithm (SEA), which is merging similar cells into groups, proved to be effective 

especially in cases of sparse data sets. The SEA method starts with modeling the cells, by 

grouping them into different cell types (dense or sparse) that depend on the knowledge of the 

domain before decomposition. Any group of cells is characterized as homogeneous when every 

cell of the group is of the same type (dense or sparse) and no need for further decomposition 

exists. Further decomposition is needed in case that a group is not homogeneous, if the 

predefined depth of the tree has not been reached. In SEA, noise is added in each one of the 

groups after completion of the required decomposition, and the total cell noise is given by the 

formula 
௡௢௜௦௘

௚೔×௦௜௭௘
, where 𝑔௜ × 𝑠𝑖𝑧𝑒 is the number of cells in group 𝑔௜. The main advantage of 
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SEA is that it enhances the accuracy of the query, while at the same time manages to provide 

a high-level privacy guarantee by merging the cells, or in other words by reducing the noise 

added to each cell. 

While the decomposition methods kd-standard and quadtree are suitable for one-dimensional 

or two-dimensional data sets, they are not appropriate for multi-dimensional data sets. Qardaji 

et al. (2013) proposed UG which is based on a uniform grid that simulates an n-tree structure. 

The error generated in the UG method is coming from two separate sources. First, a random 

noise error is introduced following Laplace distribution and second a non-uniformity error is 

added as a result of the assumption that that the data points are uniformly distributed. The non-

uniformity error is mainly driven by the data points that are positioned in the border cells of 

the query rectangle. Since the UG method decomposes the data set into w×w cells, for a query 

Q the error is given by the formula 𝐸𝑟𝑟𝑜𝑟(𝑄) =
√ଶ௥

ఌ
+

√௥ே

௪௖బ
, with N being the number of data 

points, r the ratio of the query area Q to the overall domain area, and 𝑐଴ a constant. It is 

important to notice that the granularity 𝑤 = ට
ேఌ

√ଶ௖బ
 of the decomposed space is the main factor 

that effects the accuracy of the query results. 

The UG method treats similarly dense and sparse cells. The result of this is that, in cases where 

a cell is sparse, the noise error is large, while for dense cells the non-uniformity error gets 

larger. This was the main trigger for Qardaji et al. (2013) to propose the Adaptive Grid (AG) 

method that targets in balancing the above two errors. To achieve this balance, AG initially 

decomposes the data space into winit × winit cells with non-fine granularity. Then, cells that are 

too dense are further decomposed into wgran × wgran more granular cells. After applying the 

decomposition, a count query is created for each cell, using privacy budget a × ε for the initial 

coarse cells and (1 – a) × ε for the more granular cells. Τo optimize the error, Qardaji et al. 

(2013) used the following values: 

𝑤௜௡௜௧ = 𝑚𝑎𝑥 ቆ10, 0.25ට
ேఌ

௖
ቇ    (eq. 2.15) 

𝑤௚௥௔௡ = ට
ଶ௫෤೔(ଵି௔)ఌ

√ଶ௖బ
     (eq. 2.16) 

where 𝑥෤௜ is the noisy count of the cell 𝑐௜. 
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The main drawback of AG is that it still lacks a solid adaptive rule to decide if a cell is dense 

or sparse. Other issues with both UG and AG are that they are both using the assumption that 

the non-uniformity error is driven by the number of data points included in the cells, the 

rectangular shape of the grid, and the heavy dependency of the query results on the selection 

of 𝑐଴. 

Overall, it has become evident from the above analysis that in data-dependent decomposition 

methods, such as kd-tree, a part of the overall privacy budget is required to guarantee the privacy. 

Minimizing the privacy budget to increase the query accuracy is one of the main challenges and 

future research topics. In the case of data-independent decomposition methods there is not privacy 

risk, but the reduction of the noise error is a significant challenge. On top, the level of granularity 

of the performed decomposition, is one of the main challenges and future research topics. A 

summary of all tree structure data release methods is depicted in Table 2.3. 

 

Table 2.3: Tree structure data release methods. 

Method Strategy Advantage Defect Budgeting 

Quad-opt Data Release 
Strategies 2, 3 

Computational efficiency is 
high; support any range query 

Error is large Geometric budgeting 

SEA Data Release 
Strategy 2 

Noise error is small Approximate error is 
large 

Uniform budgeting 

kd-standard Data Release 
Strategy 2 

Query accuracy is high Only fit for low-
dimensional data 

Median and count use 
privacy budget together 

UG Data Release 
Strategy 1 

Support any range query Neglects the balance 
between noise error and 

nonuniformity error 

Uniform budgeting 

AG Data Release 
Strategy 1 

Balance the noise error and the 
nonuniformity error 

Lack of the adaptive 
judging criterion 

Uniform budgeting 
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2.4.3.3 Time series release type 

The time series release type methods are using time series data to reduce the DP error. One 

of the main representatives of this category is the DFTk method, proposed by Rastogi and Nath 

(2010). For time series D, DFTk executes the following steps: 

1. Applies a discrete Fourier transform F=DET(D) from the output of which only the first 

k DET coefficients are kept. 

2. Adds Laplace noise to the k coefficients that have been kept. 

3. Executes inverse Fourier transform on the noisy coefficients 𝐷෩ = 𝐼𝐷𝐸𝑇൫𝐹෨൯. 

4. Releases the perturbed data 𝐷෩. 

Although from a result production point of view DFTk works well, from a performance point of 

view it cannot be used in real time applications since both DET and IDET operations are required 

to be applied on the full time series (Fan et al., 2013). 

To overcome the performance issues of DFTk, Fan et al. (2013) proposed the Temporal 

Estimation Algorithm (TEA). For a space G, this method executes the following steps: 

1. Splits G into smaller w×w cells and discretizes the time span T using a time index k≥0, 

and 𝑘 < 𝑇. With this split, the frequency series 𝐷௖ for cell c can be defined as 

{𝑥௞
௖|0 ≤ 𝑘 < 𝑇}, 𝑥௞

௖ being the frequency series of cell c at time step k and {𝐷௖| 𝑐 ∈ 𝐺} 

being all frequency series 𝐺௖ in G. 

2. Constructs the model to be dependent on the broader domain knowledge, i.e. 

population, network, and locations. Mathematically, this can be formulated in the 

following way: for every cell c, 𝑥௞ାଵ
௖ = 𝑥௞

௖ + 𝜔௖, and 𝑝(𝜔௖)~𝑁(0, 𝑄௖), 𝑄௖ being the 

level of variation between neighbouring time steps, or the noise added to 𝑥௞
௖. This is 

𝑥௞
௖෪~𝑥௞

௖ + 𝑛𝑜𝑖𝑠𝑒, where 𝑛𝑜𝑖𝑠𝑒~𝐿𝑎𝑝 ቀ0,
ଵ

ఌబ
ቁ , 𝜀଴ =

ఌ

ఁ
, ε being a uniform budget for the 

overall time span T. To facilitate calculations, noise can be replaced by white Gaussian 

noise, i.e. 𝑛𝑜𝑖𝑠𝑒~𝑁(0, 𝑅). 

3. Releases the noisy data set 𝐷෪ீ . 
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The main advantage of TEA compared to DFTk is that the computational complexity of TEA is 

lower (𝑂(𝑘𝑤ଶ) with 𝑘 = 𝑂(1)) since it takes advantage of an “educated guess” to extend the 

model accuracy. 

The performance of TEA in real time applications depends heavily on the sampling rate; 

the higher the sampling rate is, the larger amount of noise should be added to achieve differential 

privacy. To appropriately adapt the sampling rate, an adaptive sampling method known as FAST 

was proposed (Fan et al., 2013b; Fan & Xiong, 2014). The main idea on which FAST is based is, 

that the sampling rate F can be adjusted automatically according to the dynamics of the data, i.e. 

the sampling increases when the data changes fast while it decreases when the data changes slow. 

The dynamics of the data speed could be described by the feedback error 𝐸௞೙
=

ห௫ොೖ೙ି௫ොష
ೖ೙ห

୫ୟ୶ ൫௫ොೖ೙ ,ఋ൯
, with 

𝑥ො௞೙
and 𝑥ොି

௞೙
 being respectively the post-state and the pre-state estimates of the nth sampling point 

at the 𝑘௡ time step and δ being a user defined parameter (normally δ=1). To reach the appropriate 

sampling rate, FAST uses a specific algorithm, known as PID, that controls and adjust the rate. 

With the adaptation described above, FAST manages to reduce the order of the noise error from 

O(T) to O(F). 

Fan et al. (2014) proposed an extension of the FAST method, known as U-KF to further 

improve it by utilizing the idea of session-level differential privacy, applicable especially in cases 

of web browsing. U-KF works only for browsing requests in a single server, but still worths 

mentioning since in the single server case is very effective. To release the DP aggregates, U-KF 

uses a real time state-space approach and applies a Kalman filter (Kalman, 1960) in a post-

processing stage. For a data set 𝑥௞
௜ , 𝑖 = 1, … , 𝑚 with 𝑥௞

௜  being the number of sessions that browse 

pagei at time step k the U-KF executes the following steps: 

1. Prediction step: predict a pre-estimate of the current step 𝑥௞
పష෢ ; this estimate is calculated 

by using the previous step’s post-estimate 𝑥௞ିଵ
௜ . 

2. Computation step: Compute the perturbed value 𝑥௞
ప෪ = 𝑥௞

௜ + 𝑛𝑜𝑖𝑠𝑒௞
௜ , and 

𝑛𝑜𝑖𝑠𝑒௞
௜ ~𝐿𝑎𝑝 ቀ0,

௟೘ೌೣ

ఌ
ቁ, with lmax being the sensitivity of the query. 
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3. Correction step: the post-estimate value of 𝑥௞
ప෢ is calculated by using the perturbed value 

𝑥௞
ప෪ and the pre-estimate value 𝑥௞

పష෢ , i.e 𝑥௞
ప෢ = 𝑥௞

పష෢ + 𝐾௞
௜ ൫𝑥௞

ప෪ − 𝑥௞
పష෢ ൯, with 𝐾௞

௜  being the 

Kalman gain. 

4. Release step: The final calculated value ൛𝑥௞
ప෢, 𝑖 = 1, … , 𝑚ൟ is released. 

The main advantage of U-KF is that this method is a univariate time series algorithm with high 

query accuracy and computational effort proportional to the number of web pages, i.e. O(m). 

A summary of all time series data release methods is depicted in Table 2.4. 

 

Table 2.4: Time series data release methods. 

Method Strategy Advantage Defect Budgeting 

DFTk Data Release 
Strategy 2 

Supports long-range query Parameter affects query 
accuracy 

Uniform 
budgeting 

TEA Data Release 
Strategies 1 and 2 

Computing complexity is low, query 
accuracy is high 

Affected by data type Uniform 
budgeting 

FAST Data Release 
Strategies 1 and 2 

Query accuracy is high, adaptive 
data changes 

Add the cost of feedback 
control 

Uniform 
budgeting 

U-KF Data Release 
Strategy 2 

Computing complexity is low, query 
accuracy is high 

Only supports requests 
in signal server 

Uniform 
budgeting 

 

2.4.3.4 Graph release type 

Given the high sensitivity of network data when noise is added, a number of specialized 

data release methods have been proposed to enhance the usability of sanitized data for this 

category. In this context, the edge DP approach for networks was proposed by Hay et al. (2009) 

as follows. Given two neighbouring data sets Gr1 and Gr2 whose difference is (at most) one edge, 

i.e |𝐺𝑟ଵ∆𝐺𝑟ଶ| = 1, and a random function 𝐹: 𝐷 → 𝑅, then 𝑅𝑎𝑛𝑔𝑒(𝐹) can be defined as the data 

set that contains all potential outputs of 𝐹 in 𝐺𝑟ଵ and 𝐺𝑟ଶ; for any 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝐹), 𝐹 is defined as 

the ε-edge DP (or ε-DP) if the following relation holds: 

Pr [𝐹(𝐷) ∈ 𝑆] ≤ 𝑒ఌ Pr [ 𝐹(𝐷ᇱ) ∈ 𝑆]   (eq. 2.17) 
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The above definition can be generalized for neighbouring data sets whose difference is k 

edges, i.e |𝐺𝑟ଵ∆𝐺𝑟ଶ| = 𝑘. In this case the function 𝐹 is defined as ε-k edge DP. Even further, in 

case that neighbouring data sets that differ up to all the edges are linked with a single node (i.e. 

|𝐺𝑟ଵ∆𝐺𝑟ଶ| = ∀𝑘), the function 𝐹 is defined as ε-node DP. Even though achieving an ε-node DP 

looks very desirable, it has the disadvantage that the noise introduced in this case is too high 

resulting into issues in the quality of the data. 

To increase the usability of the graph for a given level of DP, its structure should be 

appropriately captured and then, with the addition of noise, it should be converted to a synthetic 

graph equivalent to the original one. Based on this approach, the Pygmalion method was proposed 

by Sala et al. (2011); in Pygmalion graph capturing is being done by using a dK-series graph model 

(Mahadevan et al., 2006). Figure 2.10, explains the transformation for two different values of d, 

i.e. d =1 and d=2. A synthetic graph is then being generated from the dK-series by using a matching 

generator. As explained in the figure, Pygmalion captures the dK-series from the original graph, 

clusters the dK-series to sets of sub-series and then perturbates the sub-series with a random noise 

and using a local sensitivity; as a final step of the method, the perturbated sub-series are combined 

to create a synthetic graph. The drawback of Pygmalion is that the local sensitivity might cause 

reveal of sensitive information as a price for reducing the magnitude of the noise. 

 

 

Figure 2.10: An example of the Graph release method (dK series). 

(Source: Wang et al., 2015) 

 

To resolve the drawback of Pygmalion method, Wang and Wu (2013) introduced a “smooth 

sensitivity” approach and proposed method DP2K(ε) which satisfies (ε,δ)-DP for 2K-graphs. 

DP2K(ε) is based on the execution of the following steps: 
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1. Use parameter (ε,δ) to calculate (β,α), with 𝑎 =
ఌ

ଶ
, and 𝛽 =

ఌ

ଶ௟௡ቀ
మ

ഃ
ቁ
. 

2. Calculate the β-smooth sensitivity 𝑆௙,ఉ(𝐺) and the sensitivity 𝐿𝑆௙(𝐺). 

3. With the aid of 𝑆௙,ఉ(𝐺) obtain a random noise and add it to the 2K-series graph. 

4. Generate a new graph by perturbating the one created in step (3) above. 

Wang et al. (2103) proposed a different approach, known as LNPP method, which is based 

on the use of a spectral graph for guaranteeing the data. The LNPP method first decomposes the 

matrix A that represents graph G (i.e. the adjacent matrix that encodes the topological structure of 

the graph) and then calculates its eigenvectors and eigenvalues. A Laplace based perturbation is 

applied on the calculated values of eigenvectors which are then post processed by applying vector 

orthogonalization since the previous transformations conclude to non-orthonormal eigenvectors. 

By utilizing the spectral graph and the dK-graph models for privacy guarantee privacy, noise of 

order 𝑂൫√𝑛൯ and sensitivity of order 𝑂(𝑛) is introduced respectively in the calculations, n being 

the number of the vertices of the graph. 

To improve the drawbacks of DP2K(ε) and LNPP methods, Xiao et al. (2014) proposed a 

method based on the Hierarchical Random Graph (HRG) model, known as ℎ𝑟𝑔 − 𝜀ଵ − 𝑒 − 𝜀ଶ. 

Τhe HRG model represents graph G as a hierarchical structure (a binary tree with n leafs that 

represent the n vertices of G), including also the information of connection probabilities; for every 

internal node r, a probability pr applies, while for any two vertices i and j, the connection 

probability is provided by the following formula (eq. 2.18): 

𝑝௜,௝ = 𝑝௥ ,      𝑝௥ =
௘ೝ

௡ಽೝ∗௡ೃೝ

    (eq. 2.18) 

with r being the two-vertices lowest common ancestor in T, 𝐿௥ and 𝑅௥ being respectively the left 

and the right sub-trees of the internal node r, 𝑛௅ೝ
 and 𝑛ோೝ

 being respectively the number of leaves 

of the left and the right sub-trees, and 𝑒௥ being the number of edges for which the end points are 

leaves of the two sub-trees of r in T. With the notation just explained, the HRG can be defined as 

(𝑇, { 𝑝௥}). 
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Figure 2.11: An example of HRG model. 

(Source: Wang et al., 2015) 

 

Figure 2.11 above shows how the original graph G could be represented by treegrams, or 

dendrograms T1 and T2. For a graph G, to select the proper dendrogram, the following formula (eq. 

2.19) has been proposed for the calculation of the likelihood of each dendrogram: 

𝐿(𝑇, { 𝑝௥}) = 𝛱௥ఢ் 𝑝௣ೝ

௘ೝ(1 − 𝑝௥)௡ಽೝ∗௡ೃೝ ି௘ೝ   (eq. 2.19) 

The calculated likelihoods are then compared and the dendrogram with the larger one is selected 

since it better represents the original graph. 

In the ℎ𝑟𝑔 − 𝜀ଵ − 𝑒 − 𝜀ଶ method, the calculation of the DP budget ε is split into two parts. 

For the first part an exponential calculation mechanism is being used; specifically, a Markovian 

Monte Carlo procedure is utilized to select a good candidate dendrogram 𝑇௖௔௡ௗ௜ௗ௔௧௘, for which any 

single edge change might affect only one probability. The DP budget consumed in this part is 𝜀ଵ, 

while the score function is given by the following formula (eq. 2.20): 

𝑙𝑜𝑔𝐿(𝑇, { 𝑝௥}) = −𝛴௥ఢ்  𝑛௅ೝ
∗ 𝑛ோೝ

∗ ℎ(𝑝௥),   (eq. 2.20) 

where 

ℎ(𝑝௥) = −𝑝௥𝑙𝑜𝑔𝑝௥ − 1 − 𝑝௥(1 − 𝑙𝑜𝑔𝑝௥)   (eq. 2.21) 

For the second part, a Laplace calculation mechanism is applied and the  𝑝௥ set of dendrogram 

𝑇௖௔௡ௗ௜ௗ௔௧௘ is perturbed thus using the remaining budget 𝜀ଶ. After completion of the budget split, 

the sanitized graph 𝐺෨ is created using the HRG model. With the above steps, the sensitivity of the 

ℎ𝑟𝑔 − 𝜀ଵ − 𝑒 − 𝜀ଶ method costs 𝑂(log 𝑛) which is significantly better from the previously 

mentioned methods. 

A summary of all graph data release methods is depicted in Table 2.5 below. 
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Table 2.5: Graph data release methods. 

Method  Strategy Advantage Defect Budgeting 

Pygmalion Data Release 
Strategy 2 

Reducing the noise by 
subsection 

Having the risk of privacy 
disclosure using local 

sensitivity 

Uniform budgeting 

DP2K(ε) Data Release 
Strategy 2 

Guaranteeing the privacy 
by smooth sensitivity 

Noise is large Uniform budgeting 

LNPP Data Release 
Strategies 1, 2 

Enhancing the utility by 
postprocessing 

Noise is large Uniform budgeting 

hrg-ε1-e-ε2 Data Release 
Strategy 2 

Utility of the data is high Result affected by different 
budgeting strategies 

Sampling and perturbation 
use privacy budget together 

 

 

2.4.3.5 Pattern mining release type 

A frequent pattern can be defined as a subset of data items which appear frequently in a 

data set and is the basis of data mining techniques such as classification and clustering. Since the 

existence of frequent patterns may reveal privacy of an individual during data mining, the study of 

differential privacy in the framework of data mining has become a significant research topic. There 

are three different pattern mining release methods, measured by the degree of support (Shen & Yu, 

2013; Li et al., 2012; Lee & Clifton, 2014), the occurrence (Luca & Li, 2013), or the stay point 

(Ho & Ruan, 2011; 2013). For a transaction data set 𝐷 = {𝑡𝑟𝑎𝑛ଵ, 𝑡𝑟𝑎𝑛ଶ, … , 𝑡𝑟𝑎𝑛௡, },  𝑡𝑟𝑎𝑛௜ ∈ 𝑇, 

given that every transaction is consisted of items, i.e. 𝑡𝑟𝑎𝑛௜ =

{𝑖𝑡𝑒𝑚ଵ, 𝑖𝑡𝑒𝑚ଶ, … , 𝑖𝑡𝑒𝑚௡, },  𝑖𝑡𝑒𝑚௠ ∈ 𝐼, where I is the space of all items and 𝑖𝑡𝑒𝑚𝑠𝑒𝑡௝ is a subset 

of item space I, if 𝑡𝑟𝑎𝑛௡ includes 𝑖𝑡𝑒𝑚𝑠𝑒𝑡௝ then 𝑡𝑟𝑎𝑛௡ supports 𝑖𝑡𝑒𝑚𝑠𝑒𝑡௝. In this case as support 

degree of 𝑖𝑡𝑒𝑚𝑠𝑒𝑡௝ is defined the ratio of the number of transactions supporting 𝑖𝑡𝑒𝑚𝑠𝑒𝑡௝ to the 

total number of transactions. Obviously, the higher the support degree of 𝑖𝑡𝑒𝑚𝑠𝑒𝑡௝, the more 

frequently it appears in the transaction data set. 

To mine useful patterns for geographic locations of interest, Ho & Ruan (2011) proposed 

the BuildDPQuadTree method which is based on quadtrees and the density-based clustering 

algorithm (DBSCAN), and it takes advantage of the notion of stay point mentioned above. Let the 
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data trajectory vector be defined as 𝑡𝑟𝑎𝑗௜
௞೔ = ൛𝑥ଵ, 𝑥ଶ, … , 𝑥௞೔

ൟ, 𝑥௝ = ൫𝑙𝑎𝑡𝑡௝ , 𝑙𝑜𝑛𝑔௝ , 𝑡௝൯, 𝑡௝ being a 

timestamp, 𝑙𝑎𝑡𝑡௝ the latitude, and 𝑙𝑜𝑛𝑔௝ the longitude of 𝑥௝. In case that for a period equal to ΔT, 

a trajectory stays within a cyclic region with radius ρ, the center of this circle ൫𝑙𝑎𝑡𝑡௝ , 𝑙𝑜𝑛𝑔௝൯ can 

be defined as a stay point. On top, for a given a set of trajectories 𝑇𝐽 = ൛𝑡𝑟𝑎𝑗ଵ
௞భ , 𝑡𝑟𝑎𝑗ଶ

௞మ , … , 𝑡𝑟𝑎𝑗௦
௞ೞൟ, 

the region is known as location of interest, if it includes more than r stay points. 

The BuildDPQuadTree method (Ho & Ruan, 2011) repeatedly splits the data space G into 

subspaces, taking into consideration a stay-point set S, a threshold 𝑇௧௛௥௘௦, and a privacy budget 

𝜀௤೟
. Splitting continues until |𝑆| + 𝐿𝑎𝑝 ൬

ଷ்೟೓ೝ೐ೞ

ఌ೜೟

൰ ≤ 3𝑇௧௛௥௘௦. After this iterative splitting process, a 

set of clusters 𝐺௝ is obtained by applying density-based spatial clustering using the noise clustering 

method (Ester et al., 1996). For a given threshold r, and privacy budgets 𝜀௖௚ and 𝜀௖௧௦, then 𝐺௝ is 

called a region of interest, if the following relation (eq. 2.22) holds (Ho & Ruan, 2011): 

ห𝐺௝ห + 𝐿𝑎𝑝 ቆ
௱௙೎೟ೞ

ೕ

ఌ೎೟ೞ
ቇ ≥ 𝑟    (eq. 2.22a) 

where 

𝛥𝑓௖೟ೞ

௝
= 𝑚𝑎𝑥௜∈஽#൛𝑠 ∈ 𝐺௝|𝑠 𝑖𝑠 𝑎 𝑠𝑡𝑎𝑦 𝑝𝑜𝑖𝑛𝑡 𝑓𝑜𝑟 𝑖ൟ  (eq. 2.22b) 

D being the set of all is with records in cluster 𝐺௝. 

In this case, the center location of the region of interest is given by the following formula (eq. 2.23) 

(Ho & Ruan, 2011): 

∑ (௟௔௧௧ೖ,௟௢௡௚ೖ)
ቚಸೕቚ

ೖసభ

௅௔௣ቌ
೩೑೎೒

ೕ

ഄ೎೟ೞ
ቍ

     (eq. 2.23a) 

with 

𝛥𝑓௖௚
௝

=
௠௔௫௟௘௡௚௧ ൛௣௢௜௡௧ೣ,௣௢௜௡௧೤ൟ

ଶ
,    𝑝𝑜𝑖𝑛𝑡௜ ∈ 𝐺௝    (eq. 2.23b) 

and 

𝜀 = ∑ 𝜀௤௧ + 𝜀௖௚ + 𝜀௖௧௦
௛
ఐୀଵ      (eq. 2.23c) 
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where h is the depth of quad-tree. 

Since in their initial work where the BuildDPQuadTree method was established, the level 

of noise is significantly affected by parameter 𝑇௧௛௥௘௦, in research that followed the original one the 

algorithm DP-ILD was proposed, that utilized the idea of β-smooth sensitivity satisfying (ε,δ)-DP 

(Ho & Ruan, 2013). 

When the Top-k frequent pattern mining approach is applied, the sensitivity of the 

transaction data set depends on the number of dimensions. Thus, to reduce the sensitivity, the 

original data set is usually projected into a dimensional space with lower number of dimensions. 

In this direction, the PrivBasis method was proposed by Li et al. (2012); PrivBasis, as an 

initialization step, targets to the reduction of the original data space by identifying smaller data 

sets IB that contain the top k frequent item sets. As a next step, a binary support counting technique 

is applied (Chen & Xiao, 2010) on the identified data sets that produces the supports of the IB 

subsets. The drawback of the PrivBasis method is the accuracy of the final frequent patterns 

obtained. 

To resolve the accuracy issue of PrivBasis, the method NoiseCut, which was based on the 

notion of the FP-tree and the sparse vector technique, was proposed by Lee & Clifton (2014). The 

NoiseCut in its first step, identifies all frequent data subsets L by applying a sparse vector technique 

that reduce the consumption of the DP budget; for a noisy threshold 𝜏̂ and a count-type query q, 

privacy budget is consumed only in case that 𝑞(𝐷) + 𝐿𝑎𝑝
ଶ௞

ఌ
≥ 𝜏̂, with 𝜏̂ = 𝜎௞ + 𝐿𝑎𝑝(. ), 𝜎௞ being 

the support of the k-th in series most frequent item set. To decide if an item set is frequent, NoiseCut 

compares its noisy support 𝜏 + 𝛼 with 𝜏̂ and if 𝜏 + 𝛼 > 𝜏̂, then this item set it considered to be 

frequent. In its second step, NoiseCut builds the noisy FP-tree utilizing L and can then decide the 

supports of item sets and consequently the Top-k frequent item sets. The false negative of this 

calculation is 𝑒ି
ഀഄ

మ
ቀ

ഀഄ

మ
ାଶቁ

ସ
, and the smaller it is the better frequent patterns are obtained. 

Leveraging the idea of the method they developed for the graph data release type, Shen & 

Yu (2013) proposed a frequent graph pattern mining method based on a Markov chain and a Monte 

Carlo random walk, known as Diff-FPM. This method bases the Top-k frequent sub-graph 

selection on the result of a random walk. If the random walk reaches a steady state, then the actual 

counts of the sub-graphs are perturbed with the aid of a Laplacian random noise and Diff-FPM 
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satisfies ε-DP; if no steady state can be reached, Diff-FPM satisfies (ε,δ)-DP and in this case data 

security issues might appear. 

Luca & Li (2013) highlighted in their research that for sequential data, e.g. DNA data sets, 

frequent mining patterns might fail to be calculated properly. To resolve this issue, the authors 

proposed the notion of occurrence and a two-phase algorithm for mining sequential patterns with 

differential privacy (Luca & Li, 2013b). For a data pattern 𝑝 = 𝑎଴𝑎ଵ … 𝑎௡ିଵ,   𝑎௜ ∈ 𝛴 and a 

character string 𝑥 = 𝑥଴𝑥ଵ … 𝑥௠ିଵ, in case that there is an integer 𝑖 ∈ (0, 𝑚 − 𝑛) for which 𝑥௜ା௝ =

𝑎௝ , 𝑗 = 0, … , 𝑛 − 1, then it is said that the pattern p appears in position i of the character string x 

and 𝑓௫(𝑝) is the number of all occurrences of p in x. The equivalent for a data set 𝐷 =

{𝑥଴, 𝑥ଵ, … , 𝑥ேିଵ}, is the notion of 𝐹஽(𝑝) = ∑ 𝑓௫೔(𝑝)ேିଵ
௜ୀଵ  which denotes the number of occurrences 

of the sequential pattern p in the given data set D; in that case, if 𝐹஽(𝑝) is greater than the value of 

the threshold, then p symbolizes the frequent sequential pattern. 

A summary of all pattern mining data release methods is depicted in Table 2.6. 

 

Table 2.6: Pattern mining data release methods. 
 

Method Strategy Advantage Defect Budgeting 

BuildDPQuadTree Data Release 
Strategy 2 

Identify the 
interesting location 

using stay point 

Noise is large Partition and cluster use the 
privacy budget together 

DP-ILD Data Release 
Strategy 2 

Utility of the data is 
high 

Only supports offline data Uniform budgeting 

PrivBasis Data Release 
Strategy 2 

Mining speed is fast The final frequent patterns 
may be imprecise 

Uniform budgeting 

NoiseCut Data Release 
Strategies 1, 2 

Utility of the data is 
high 

Results are affected by 
different budgeting 

strategies 

Privacy budget is allocated for 
two steps of the algorithm 

Diff-FPM Data Release 
Strategy 2 

Query accuracy is 
high 

The drop in utility with the 
increase of the number of 

outputs 

Sampling and perturbation use 
the privacy budget together 
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2.5 Calculation of Shapley value with differential privacy 

In this section, the way that Shapley calculation algorithms could work when combined with a DP 

mechanism is described. Especially, sensitivity and noise formulation for this case are stated, while 

the impact on the loss function and boundaries are also presented. 

2.5.1 Sensitivity and noise 

In algorithms such as the truncated Monte Carlo Shapley algorithm, the privacy of the data is under 

risk during the Shapley value computations, since to compute the Shapley value for a point i, 

requires all other data points to be processed, putting thus at risk their privacy. By design, DP 

protects data privacy and acts proactively to avoid data leaks. It thus provides a privacy guarantee 

for every data point of the data set, by making sure that the Shapley value is not statistically 

sensitive to the addition or removal of individual data points. Under that perspective, the Shapley 

value is assumed to be a function and its sensitivity (and consequently the noise added by any 

mechanism, e.g. Laplacian) can be calculated. Of course, transforming a Data Shapley calculation 

to differential private, comes always with the challenge to achieve in parallel the highest possible 

Shapley calculation accuracy. 
 

2.5.2 Loss function and boundaries 

Let L represent the loss function of the related logistic regression, i.e.: 

𝐿(𝑤, 𝑥) =
ଵ

௡
∑ 𝑙𝑜𝑔൫1 + 𝑒ି௪೅௫೔௬೔൯   (eq. 2.24) 

where w is the vector of logistic regression parameters, 𝑥௜ is each datum and 𝑦௜ is its label. 

To calculate the above loss function for a test set, other than the train set (used to calculate w), an 

upper boundary M should be assumed, so that: 

|𝐿(𝑤, 𝑥) = 𝐿(𝑤ᇱ, 𝑥)| ≤ 𝑀    (eq. 2.25) 

In the framework of differential privacy, it is interesting to examine what happens to the 

loss function if a datum x is replaced with a datum x' in the trainset. In such a case, calculating the 

loss function for each x that belongs to the test set, will cause change of the vector of the parameters 

w, to w'. The upper boundary M can be calculated based on relative research (Bousquet & Elisseeff, 



 54 

2002). Additionally, a linear regression can be performed for with the loss function providing 

another approximate upper boundary M': 

𝐿(𝑤, 𝑥) =
ଵ

ଶ௡
∑(𝑤்𝑥௜−𝑦௜)

ଶ   (eq. 2.26) 

In any case, identification of an upper boundary for the loss function is instrumental for applying 

any differential privacy strategy and that is why researchers are focusing on identifying such a 

boundary. 

 

2.6 Discussion, challenges and areas of optimization 

The current research proposes the extension of Shapley value calculation with differential privacy 

embedded. Three different data Shapley valuation algorithms have been implemented and tested, 

suitably transformed to preserve differential privacy, namely the TMC-Shapley, G-Shapley and 

for comparison reasons the classic LOO. By executing the implemented algorithms, it has been 

validated that both differentially private and non-differentially private Shapley values calculated 

are meaningful in terms of data set accuracy, which practically means that their outputs could be 

used in the same way. 

Even though the theoretical results studied around the scientific domain of differential 

privacy injected Shapley valuations, it is evident that relevant research is still far from establishing 

widely acceptable and usable results. One of the most significant challenges in the specific domain 

is to connect data sets with actual meaningful use cases, translating thus the scientific results to 

socially valuable values and metrics. 

From a technical perspective, proving that the extension of data Shapley properties to 

Monte Carlo based approximations still needs further research efforts to be investigated. One of 

the reasons why this might be a challenge is that calculation of Shapley value for data points that 

are part of potentially large data sets can prove highly complex and demanding. Another topic of 

interest is the intuition behind the data Shapley calculated values, i.e. if the calculated Shapley 

values is aligned with what humans expect that in some cases might be valid while in others not 

(Kumar et al. 2020; Fryer et al., 2021). 
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Although the current study is contributing to the enrichment of the data Shapley valuation 

approaches with the preservation of privacy, its contribution in the provision of meaningful and 

actionable insights and thus its impact in the social society, remains still ambiguous. The main 

reason is that both Shapley valuation and differential privacy are domains without straightforward 

interpretation of their outcomes, making thus unclear if algorithms or mechanisms that combined 

the two domains could help humans in practice to take better and more accurate decisions, instead 

of just adding complexity, uncertainty and the fear of technology. The following issues that 

differential private data Shapley calculations might create, are indicative (Bagdasaryan & 

Shmatikov, 2019; Ganev et al., 2021): 

 Differential private methods do not provide perfect privacy; instead, they produce 

probabilistic results that might lead to misunderstandings. 

 Differential private transformations might become suspicious for unethical and dangerous 

usage such as cyber-attacks, fraud, or abuse. 

 Unethical parties may intentionally provide fake data points targeting in increasing their 

benefit or reducing the benefits of others. 

 Valuation applications may preserve and propagate fraud and create the need for 

continuous monitoring of the conducted valuations. 

 Possible leakage of data with high value, could become an opportunity for attackers and 

put at risk data holders. 

 Incentivizing the data might become a reason for potential abuse, since depending on the 

circumstances, it could create pressures to data owners to contribute this data or receive a 

penalty for not contributing it. 

 In case that highly valuable data is privacy sensitive, connecting it with incentives might 

be a good reason for someone to act towards loss of data privacy. 
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3 IMPLEMENTATION 

 

3.1 Introduction 

As part of the current work, calculation methods, such as the truncated Monte Carlo Shapley 

algorithm, as well as the Gradient Shapley and the Group Shapley algorithms are studied and 

analyzed. At the same time, sensitivity and noise of the applied data privacy mechanism are 

measured and analyzed in the context of Data Shapley metrics. Specifically, sensitivity and noise 

of applied data privacy mechanisms and how those could be applied in the context of Data Shapley 

metrics, by guaranteeing the correctness and accuracy of calculations without any information 

leakage, have been implemented and are presented in this chapter. 

 

3.2 Proposed Design 

3.2.1 Overall solution 

The proposed implementation has been developed exclusively using Python programming 

language. In particular, two Jupyter notebooks have been developed; the first has been used for 

executing and demonstrating three Data Shapley algorithms (Truncated Monte Carlo Shapley, 

Gradient Shapley, Leave One Out) without differential privacy (named DataShapley_v2.ipynb), 

while the second, named DataShapley_v3.ipynb, has been used to embed differential privacy with 

Laplacian DP noise in the Data Shapley algorithms. 

Additionally, three python files have been developed and contain all the code required to 

calculate the Data Shapley values for a given data set, namely Data_Shapley.py, Shapley_Class.py 

and utilities.py. Finally the Jupyter notebook DP_v1.ipynb has been created and used as an 

independent example to demonstrate how differential privacy with Laplacian DP noise could be 

applied to a data set. In the following sections the detailed code design is presented, explained and 

analyzed. 
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3.2.2 Programming with Python 

Python is a programming language developed by Guido van Rossum, starting in 1989. It is a 

relatively simple and easily understood programming language, which owes its name not to the 

well-known snake (python) but to a comedy TV show (Monty Python's Flying Circus). The key 

features of the Python language are presented in Figure 3.1 and can be summarized as follows: 

 

 

Figure 3.1: Main features of programming language Python. 
 

1) Reliability: This is a truly reliable language with very comprehensive commands, which 

perform the expected functions in a reliable and effective way. 
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2) Easy to learn: Python's structure and operation is relatively simple, while its commands are 

high-level and highly expressive. Therefore, understanding and learning it can be done 

quickly and relatively easily. 

3) Cross Platform: Python can work across all popular operating systems (Mac, Windows, 

Linux, Unix, etc.) without variations and issues. This makes Python a language with a high 

degree of portability. 

4) Open Source: Python is an open source programming language with all the advantages that 

this gives to the developers who use it. 

5) Wide variety of libraries: There is a wide variety of standard libraries with prepared code 

and important pre-implemented functions, which can be deployed and utilized without 

large-scale coding. 

6) Free of cost: Python language is provided for free to download and use, which makes it 

even more attractive. 

7) Exception Handling: This feature increases the tolerance of executable code as it runs even 

when there are errors, which the developer can handle at a later stage of development and 

debugging. 

8) Automatic memory management: Python supports automatic memory management, which 

practically means that memory is automatically cleared and released, without any need for 

developer intervention. 

9) Advanced features: Python supports, among others, generators and list comprehensions 

which are very advanced and useful features. 

There are multiple areas in which programming with Python is applicable. The following 

list is indicative, while Figure 3-2 summarizes those areas: 

1) Web application development: Popular web frameworks such as Django and Flask have 

been developed based on Python. With their help, server-side code can be written for 

operations such as database management, back end logic, etc. 
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2) Machine Learning: There are many machine learning applications written in Python. 

Examples are product recommendations on popular sites like Amazon, eBay, etc. and 

voice-facial recognotion. 

3) Data Analysis: Data analysis and visualization using interactive charts is particularly 

popular in Python. 

4) Scripting: Using small programs (scripts) to automate simple tasks such as sending 

automated emails is very common in Python programming language. 

 

 

Figure 3.2: Popular applications of programming language Python. 
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5) Game Development: This is an area where the use of Python is gradually becoming more 

and more popular. 

6) Embedded Applications: The development of embedded applications using Python is 

rapidly increasing. 

7) Desktop Applications: Office applications using Python have already become popular, 

using libraries such as TKinter and QT. 

As already mentioned, one of the most important advantages of Python is the wide range 

and variety of libraries that contain significant ready-to-use functionality, without requiring the 

developer to write extensive code. For example, Matplotlib which is Python's traditional design 

library has strong functional features and its use is typically given for specialized libraries such as 

NetworkX and Pandas data frames. In areas such as integration and interactivity, Bokeh and Plotly 

are also top, presenting the advantage of being built upon Javascript, which makes the ability to 

convert graphics from Javascript an easy task. 

 

3.3 Implementation of Differential Privacy with Laplacian Noise 

To demonstrate how differential privacy with Laplacian noise is applied to an algorithm, a python 

program based on PyDP python library has been developed. Using that program, the way an ε-

differentially private algorithm works is demonstrated through graphical representations of 

aggregated statistics over a potential numeric data set which might contain sensitive or private 

information. As already explained, to preserve data privacy it is fundamental to add noise, 

transforming in that way the original data set to prevent a potential attacker from realizing the 

actual original data set. The most popular choice of distribution to add noise is the Laplace 

distribution because it works effectively with the differential privacy parameter ε. 

The Laplace distribution is practically consisted of two adjustment exponential distributions, 

that mirror the positive values to their negative equivalents as it is depicted in the chart of Figure 

3 which is produced by use of the following python code: 

def show_laplace(x1): 

    return npy.exp(-npy.abs(x1)) 

x1 = npy.arange(-10, 10, 0.01) 
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pltt.plot(x1, show_laplace(x1)); 

 

If we read this under the prism of differential privacy, the peak in the middle of the graphical 

representation could be read as follows: it is probable that someone would choose a number close 

to zero in which case the result will be close to the actual original result. In case that the selection 

is a number far from zero, a potential attacker can identify the actual result with a smaller 

probability. 

 

 

Figure 3.3: Typical Laplace Distribution. 
 

To achieve better results in terms of differential privacy, the Laplace distribution could be 

adjusted by introducing a scaling parameter, typically defined with the introduction of two 

additional parameters, namely m and b as follows: 

𝑓(𝑥|𝑚, 𝑏) =
ଵ

ଶ௕
𝑒ି

|ೣష೘|

್    (eq. 3.1) 

m being the mean of the distribution and b the scaling parameter. 

From a differential privacy perspective, increasing parameter b results to more privacy, 

since by flattening out the distribution graph, it makes it more probable to choose a higher value 
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for the noise; this practically implies that potential attackers will be less certain for the accuracy 

of the results they obtain. The python code below produces the graph depicted in Figure 3.4. 

def laplace(x1, m, b): 

    return 1 / (2 * b) * npy.exp(-npy.abs(x1 - m) / b) 

def plot_laplace(x1, m, b): 

    pltt.plot(x1, laplace(x1, m, b), label="m={}, b={}".format(m, b)) 

x1 = npy.arange(-20, 20, 0.01) 

plot_laplace(x1, -5, 2) 

plot_laplace(x1, 5, 4) 

pltt.legend(); 
 

 

Figure 3.4: Laplace Distribution with different values of m and b. 
 

As already explained in the previous Chapter, the ε-differential privacy can be defined with 

ε being a parameter that determines the acceptable levels of privacy loss. More accurately, ε-

differential privacy means that the probability to produce the actual result when using this 

distribution should be smaller by 𝑒ఌ times from the probability when using the original 

distribution. By setting parameter b equal to 1/ε in the Laplace distribution the ε-differential 

privacy is being achieved as depicted in Figure 3.5 which is produced by the following python 

code: 
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output_value = 100 

epsilon = 0.5 

x1 = npy.arange(95, 105, 0.1) 

distribution_1 = laplace(x1, output_value, 1 / epsilon) 

distribution_2 = laplace(x1, output_value + 1, 1 / epsilon) 

pltt.plot(x1, distribution_1, label="distribution_1") 

pltt.plot(x1, distribution_2, label="distribution_2") 

pltt.axvline(x=output_value, c="red", dashes=(1, 2), label="output_value") 

pltt.legend() 

probability1 = laplace(output_value, output_value, 1 / epsilon) 

probability2 = laplace(output_value, output_value + 1, 1 / epsilon) 

probability1, probability2 
 

 

Figure 3.5: Two different ε-Differential Private Laplace Distributions vs the original output 
value. 

 

In Figure 3.5, the dotted line shows the output value. As could be easily understood, it is more 

probable that the output value might came from distribution_1 rather than from distribution_2. 
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3.4 Core Data Shapley Implementation 

In the case study proposed in this thesis, a classification problem with logistic regression has been 

designed, implemented, analyzed and presented. The code of the problem includes set up activities, 

data set creation, execution of three data Shapley algorithms with/ without embedded differential 

data privacy noise and graphical presentation of the results obtained. In detail, its design is 

consisted of the following steps: 

1. Create a synthetic data set: A synthetic data set is created based on Bernouli’s formula, i.e 

𝑦 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑖(𝑓(𝑥)), 𝑓(𝑥) being a polynomial of order defined by variable “difficulty” 

and 𝑥 ∈ ℝௗ; variable “important_dims” determines the number of non-null dimensions d 

in x 

2. Execution stage: An instance that takes care of running all algorithms for the specific 

synthetic data set, is created. Following this instance creation, runs are repeated multiple 

times sequentially (in a real-world scenario they should run in parallel). More specifically, 

this step includes the following sub steps: 

a. Initialization and execution of the instance, is supported by the following function: 

def __init__(self, X, y, X_test, y_test, num_test, sources=None, sample_weight = 

None, directory = None, problem = 'classification', model_family = 'logistic', 

metric = 'accuracy', seed = None, overwrite = False, **kwargs) 

The arguments used by the initialization function are: 

 X: represents the data covariates 

 y: stores the data labels 

 X_test: holds the test and held-out covariates 

 y_test: holds the test and held-out labels 

 sources: stores the mapping of each point to its group. If it takes the value 

“None”, then each points gets its individual value 

 samples_weights: contains the weight of the train samples in the loss function 

for algorithms where weighted training method is applicable 
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 num_test: indicates the number of data points used for the calculation of the 

evaluation metric 

 directory: names the directory where results and figures are saved 

 problem: defines the problem type to be solved, i.e. "Classification"  

 model_family: defines the family of the model used for the learning algorithm 

 metric: represents the evaluation metric used 

 seed: holds the “random seed” needed to initialize the Monte-Carlo 

simulations 

 overwrite: facilitates deletion of existing data to re-execute computations 

 **kwargs: the arguments of the model 

b. Calculation the data point values is based on the following function: 

def run(self, save_every, err, tolerance=0.01, g_run=True, loo_run=True) 

The arguments used for the definition of the above function are: 

 save_every: defines the saving frequency of the marginal contributions 

 err: indicates algorithm’s exit criteria 

 tolerance: defines the truncation tolerance used 

 g_run: when this variable takes the value “True”, the function calculates the 

G-Shapley values 

 loo_run: when this variable is “True”, the function calculates the leave-one-

out scores 

c. Execution of the TMC-Shapley algorithm is supported by the following function: 

def _tmc_shap(self, iterations, tolerance=None, sources=None) 

The arguments used for the definition of the above function are: 

 iterations: defines the number of iterations for execution of the TMC-Shapley 

algorithm 
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 tolerance: defines the truncation tolerance ratio of the TMC-Shapley algorithm 

 sources: indicates if the values used are coming from sources of data points 

rather than being individual points 

d. Execution of the G-Shapley algorithm is supported by the following function: 

def _g_shap(self, iterations, err=None, learning_rate=None, sources=None) 

The arguments used for the definition of the above function are: 

 iterations: defines the number of iterations for execution of the G-Shapley 

algorithm 

 err: indicates algorithm’s exit criteria 

 learning_rate: defines the learning rate used for the algorithm; when this 

variable takes the value “None” the algorithm calculates the best learning rate 

 sources: indicates if the values used are coming from sources of data points 

rather than being individual points 

e. Execution of the LOO algorithm is supported by the following function: 

def _calculate_loo_vals(self, sources=None, metric=None) 

The arguments used for the definition of the above function are: 

 metric: defines the metric to be used; when this variable takes the value “None” 

the algorithm uses the default metric 

 sources: indicates if the values used are coming from sources of data points 

rather than being individual points 

The outcome of the algorithm is the calculated “leave-one-out” scores. 

3. Merge results of parallel runs: in this step the results from the different runs are merged. 

The function on which this merge is based is the following: 

def merge_results(self, max_samples=None) 

The outcome of this step is the merged marginals, sample indices and values calculated for 

the algorithm used. 
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4. Convergence plots of the algorithms: in this step the convergence plots produced from the 

different runs, showing the effect of removing points contributing in the overall value, are 

presented. The function on which drawing of those plots is based, is the following: 

def performance_plots(self, vals, name=None, num_plot_markers=20, sources=None) 

The arguments used for the definition of the above function are: 

 vals: provides a list of different valuations of data points 

 name: defines the name of the saved plot 

 num_plot_markers: indicates the number of points used to draw each plot 

 sources: indicates if the values used are coming from sources of data points rather 

than being individual points 

The outcomes of this step are the plots that show the performance variations that when data 

points are removed from the data set, in an order starting from most valuable datum and 

proceeding to the least valuable ones. 

 

3.5 Core Implementation Results and Discussion 

In this section, the results of applying Data Shapley techniques coupled or not with differential 

privacy noise, are presented and discussed. The first part of the section covers presentation and 

analysis of the results produced by Data Shapley algorithms without differential privacy, while in 

the second part the impact of Laplacian noise is also presented and compared to the previous ones. 

3.5.1 Results and Discussion for non-Differential Private Data Shapley Methods 

To prove convergence of the applied algorithms, the proposed implementation takes care of 

plotting the marginals. For the Truncated Monte Carlo method, by making use of the relevant 

python statement convergence_plots(dshap.marginals_tmc), a number of graphs with all 

marginals is being created as depicted in Figure 3.6. It can be easily noted that the marginals 

converge to very small (close to zero) values, which proves the convergence of the TMC method 

for the specific use case. 
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Figure 3.6: Convergence of marginals for the Truncated Monte Carlo method. 
 

For the G-Shapley method, by making use of the relevant python statement 

convergence_plots(dshap.marginals_g), a number of graphs with all marginals is being created as 

depicted in Figure 3.7. Again, it can be easily noted that the marginals converge to very small 

(close to zero) values, which proves the convergence of the G-Shapley method for the specific use 

case. 
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Figure 3.7: Convergence of marginals for the G-Shapley method. 
 

The performance of the studied Data Shapley methods is demonstrated in Figure 3.8 by 

making use of the relevant python statement dshap.performance_plots([dshap.vals_tmc, 

dshap.vals_g, dshap.vals_loo], num_plot_markers=20, sources=dshap.sources). It is evidend that 

both TMC-Shapley and G-Shapley methods outperform the LOO method as well as the Random 

method, since the accuracy is reduced faster when bigger fractions of trained data are being 

removed. 
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Figure 3.8: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and 
Random. 

 

 

3.5.2 Results and Discussion for NoisyData Shapley Methods 

To prove convergence of the applied algorithms, the proposed implementation takes care of 

plotting the marginals. For the Noisy Truncated Monte Carlo method, by making use of the 

relevant python statement convergence_plots(dshap.marginals_tmc), a number of graphs with all 

marginals is being created as depicted in Figure 3.9. It can be easily noted that the marginals 

converge to very small (close to zero) values, which proves the convergence of the Noisy TMC 

method for the specific use case. 
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Figure 3.9: Convergence of marginals for the Noisy Truncated Monte Carlo method. 
 

For the Noisy G-Shapley method, by making use of the relevant python statement 

convergence_plots(dshap.marginals_g), a number of graphs with all marginals is being created as 

depicted in Figure 3.10. Again, it can be easily noted that the marginals converge to very small 

(close to zero) values, which proves the convergence of the Noisy G-Shapley method for the 

specific use case. 
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Figure 3.10: Convergence of marginals for the Noisy G-Shapley method. 
 

The performance of the studied Noisy Data Shapley methods is demonstrated in Figure 3.11 

by making use of the relevant python statement dshap.performance_plots([dshap.vals_tmc, 

dshap.vals_g, dshap.vals_loo], num_plot_markers=20, sources=dshap.sources). It is evident that 

both Noisy TMC-Shapley and G-Shapley methods outperform the Noisy LOO method as well as 

the Noisy Random method, since the accuracy is reduced faster when bigger fractions of trained 

data are being removed. 
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Figure 3.11: Data Shapley performance plots for the Noisy methods TMC-Shapley, G-Shapley, 
LOO and Random. 

 

For the Noisy TMC method as well as the Noisy G-Shapley method, can be noted that all the 

marginals converge to very small (close to zero) values for i=1/4, 1/2, 2, 4, 8 and 16, which proves 

the convergence of these noisy methods. 
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Figure 3.12: Convergence of marginals for the Noisy TMC-Shapley method (i=1/4). 
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Figure 3.13: Convergence of marginals for the Noisy G-Shapley method(i=1/4). 
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Figure 3.14: Convergence of marginals for the Noisy TMC-Shapley method (i=1/2). 
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Figure 3.15: Convergence of marginals for the Noisy G-Shapley method(i=1/2). 
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Figure 3.16: Convergence of marginals for the Noisy TMC-Shapley method (i=2). 
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Figure 3.17: Convergence of marginals for the Noisy G-Shapley method (i=2). 
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Figure 3.18: Convergence of marginals for the Noisy TMC-Shapley method (i=4). 
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Figure 3.19: Convergence of marginals for the Noisy G-Shapley method (i=4). 
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Figure 3.20: Convergence of marginals for the Noisy TMC-Shapley method (i=8). 
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Figure 3.21: Convergence of marginals for the Noisy G-Shapley method (i=8). 
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Figure 3.22: Convergence of marginals for the Noisy TMC-Shapley method (i=16). 
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Figure 3.23: Convergence of marginals for the Noisy G-Shapley method (i=16). 
 

The performance of the studied Noisy Data Shapley methods is demonstrated in Figure 3.24 

through Figure 3.29 i=1/4, 1/2, 2, 4, 8 and 16. It is evident that as Laplacian noise increases the 

Noisy TMC-Shapley and G-Shapley methods as well as the Noisy LOO method have identical 

performance as the Noisy Random method, since the accuracy is reduced even faster when bigger 

fractions of trained data are being removed. 
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Figure 3.24: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and 
Random (i=1/4). 

 

 

Figure 3.25: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and 
Random (i=1/2). 
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Figure 3.26: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and 
Random (i=2). 

 

 

Figure 3.27: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and 
Random (i=4). 
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Figure 3.28: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and 
Random (i=8). 

 

 

Figure 3.29: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and 
Random (i=16). 
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4 CONCLUSIONS 

 

4.1 Summary and conclusion 

This study first presents the theoretical foundation of the Shapley value calculations, including 

mathematical analysis and the relative practical research evidence. Calculation methods, such as the 

TMC-Shapley, the G-Shapley and the Group-Shapley algorithms are studied and analyzed. The main 

components of a data valuation process are the training data set, the calculation algorithm itself, and 

a metric that defines performance (Ghorbani et al., 2019). In the context of the current work, two 

main topics related to fair data valuation are studied, the definition of a measure that is suitable to 

track the fair value of each (𝑥௜, 𝑦௜) for a Calculation Algorithm (CA) in respect to a defined 

performance metric V, and the efficient calculation of the above fair data point value. 

Differential Privacy (DP) is a relatively new research field, that aims to respond to 

information privacy challenges and enable Organizations and Companies to effectively manage 

private and sensitive information included in the managed data. DP was established as a research 

domain in 2006 by the seminal work of Dwork (2006), but has become popular during the last years, 

among others because it provides the so-called privacy guarantees as part of security frameworks 

and their implementation. Introduction of noise is of key importance in the DP algorithms and the 

way it is introduced defines significantly how the DP mechanism works. There are three main noise 

types usually applied in DP algorithms, namely the Laplace, the exponential, and the Gaussian noise 

types. Two different data processing models exist in the framework of differential privacy, namely 

the interactive or on-line query mode in which the data requester can access the data through an 

interface provided by the owner of the data, and the non-interactive model or offline query model in 

which the data requester can directly access only sanitized data sets as they are released by the data 

owner (Dwork et al., 2006; Xiong et al., 2014). To demonstrate how differential privacy with 

Laplacian noise is applied to an algorithm, a python program has been developed. Using that 

program, the way an ε-differentially private algorithm works is demonstrated through graphical 

representations of aggregated statistics over a potential numeric data set which might contain 

sensitive or private information. 
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In algorithms such as the truncated Monte Carlo Shapley algorithm, the privacy of the data 

is under risk during the Shapley value computations, since to compute the Shapley value for a point 

i, requires all other data points to be processed, putting thus at risk their privacy. By design, DP 

protects data privacy and acts proactively to avoid data leaks. It thus provides a privacy guarantee 

for every data point of the data set, by making sure that the Shapley value is not statistically sensitive 

to the addition or removal of individual data points. Under that perspective, the Shapley value is 

assumed to be a function and its sensitivity (and consequently the noise added by any mechanism, 

e.g. Laplacian) can be calculated. Of course, transforming a Data Shapley calculation to differential 

private, comes always with the challenge to achieve in parallel the highest possible Shapley 

calculation accuracy. 

As part of the current study, an experimental implementation has been developed using 

Python programming language. In particular, Jupyter notebooks have been developed for executing 

and demonstrating three Data Shapley algorithms (Truncated Monte Carlo Shapley, Gradient 

Shapley, Leave One Out) without differential privacy, while at the same time a variation of the 

algorithms which embeds differential privacy with Laplacian DP noise in the Data Shapley 

calculations, has been implemented. 

Specifically, in the case study proposed in this thesis, a classification problem with logistic 

regression has been designed, implemented, analyzed and presented. The code of the problem 

includes set up activities, data set creation, execution of three data Shapley algorithms with/ without 

embedded differential data privacy noise and graphical presentation of the results obtained. To prove 

convergence of the applied algorithms, the proposed implementation takes care of plotting the 

marginals. For the Truncated Monte Carlo method, a number of graphs with all marginals is being 

created. It can be easily noted that the marginals converge to very small (close to zero) values, which 

proves the convergence of the Noisy TMC method for the specific use case. For the Noisy G-Shapley 

method, a number of graphs with all marginals is being created. Again, it can be easily noted that 

the marginals converge to very small (close to zero) values, which proves the convergence of the G-

Shapley method for the specific use case. 

The performance of the studied Data Shapley methods is also demonstrated. It is evident that 

both TMC-Shapley and G-Shapley methods outperform the LOO method as well as the Random 

method, since the accuracy is reduced faster when bigger fractions of trained data are being removed. 
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To prove convergence of the applied algorithms, the proposed implementation takes care of plotting 

the marginals. For the Noisy Truncated Monte Carlo method, a number of graphs with all marginals 

is being created. It can be easily noted that the marginals converge to very small (close to zero) 

values, which proves the convergence of the Differential Private TMC method for the specific use 

case. For the Differential Private G-Shapley method, a number of graphs with all marginals is being 

created. Again, it can be easily noted that the marginals converge to very small (close to zero) values, 

which proves the convergence of the Noisy G-Shapley method for the specific use case. The 

performance of the studied Noisy Data Shapley methods is also demonstrated. It is evident that both 

Noisy TMC-Shapley and G-Shapley methods outperform the Noisy LOO method as well as the 

Noisy Random method, since the accuracy is reduced faster when bigger fractions of trained data 

are being removed. 

In summary, this work aims to contribute to the following areas: 

 Provision of an efficient formulation of the important problem of calculating the fair value 

of data sets, known as Data Shapley valuation problem, by taking advantage of machine 

learning techniques. 

 Review of existing empirical studies that prove the efficiencies and all desirable properties 

of the Data Shapley valuation method. 

 Introduction of a Data Shapley calculation algorithm variations that are suitable to address 

the problem under study. 

 Application of sensitivity and noise to ensure data privacy mechanism as well as to measure 

and analyze data Shapley value in the context of differential privacy. 

 Implementation of a representative use case where data Shapley value calculations, 

combined with differential privacy guarantees are applied in selected data sets. 

 

4.2 Dissertation limitations 

This study is primarily addressed to researchers who deal with the important thematic fields of Data 

Shapley valuations and differential privacy. It presents a broad bibliographic analysis of this 

scientific domain, including empirical studies that have been conducted to support and substantiate 
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findings on the application and impact of differential private Shapley calculations. Additionally, the 

current research went beyond the limits of simple literature review and included quantitative 

research and analysis to evaluate how the two scientific domains could be combined, with the aid of 

appropriate programming tools. Overall, therefore, one can easily understand that the limitations set 

in the context of this study are those that may be set by the used tools of literature search, and of 

conducting quantitative study and analysis. 

Especially for the quantitative analysis, it is obvious that the actual conditions of the 

experimentation, i.e. the selected data set, the parameters use for experiments configuration, and the 

tested algorithms themselves, put specific limitations on the breadth and depth of the research as 

well as to the interpretation of the produced results. One of the most significant limitations of the 

current study is the connection of the data sets used for experimentation with actual and meaningful 

use cases, and the ability to translate the scientific results to socially understandable and valuable 

metrics. In other words, although the current study is contributing to the enrichment of the data 

Shapley valuation approaches with the embedded differential privacy, its contribution in the 

provision of meaningful and actionable insights and thus its impact in the social society, remains 

limited. Another significant limitation, which is connected to the previous one, is the computational 

effort and resources required to handle especially large data sets that in practice connect with real 

life applications. Additional work should be done at algorithm level to remove this limitation and 

expand the usage and applicability of the current study. 

 

4.3 Future work 

The current study has captured a number of aspects around the calculation of the Data Shapley value 

and differential privacy, but there are still many open questions for further research. Regarding the 

data Shapley calculations, some of the future work could be the following: 

Data Shapley calculations satisfy three important properties for the fair valuation of data. 

Undoubtedly, there are many different Machine Learning settings where these properties are 

desirable or not, while there are other settings where additional properties might become important. 

Additional work will be needed to identify what are the desirable properties and under what scenarios 

the calculations of Data Shapley value is more effective. 
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 Combinations of fair data value calculation with other important areas such as data privacy, 

and personal association are also candidates for future research directions. 

 Applied learning metrics and functions in the framework of Data Shapley value calculations 

need to also be further studied and are proposed for future work. 

At the same time differential privacy has become the standard approach to guarantee privacy 

and is one of the most popular research topics in domains where the sensitivity of exchanged 

information is high. Important work has been conducted, but research efforts should further evolve 

and could be directed in the following directions: 

 Since differential privacy is a highly sensitive problem, reduction of the sensitivity to further 

enhance useability, require on-going research. 

 Privacy guarantee in cases of online data transfer is another significant question which 

worths additional study. 

 Since computational complexity of differential privacy algorithms remains high in many 

cases, improvement of algorithm efficiency is another area where further research should be 

done. 

 Distributed differential privacy, which means sharing data among multiple parties and at the 

same time guaranteeing privacy, is another research area that deserves additional attention 

(Liu et al., 2013; Friedman et al., 2014). 

 Designing optimal privacy budgeting strategies in structures such as trees, is a great 

challenge that would need significant future work (Cormode et al., 2012).  

 Balancing of the noise and nonuniformity errors, by choosing the optimal partition 

granularity, especially for geospatial data is also a challenge that requires future research 

(Qardaji et al., 2013a). 

No need to explain, that future research efforts on the combined problem, i.e. Data Shapley 

valuations combined with Differential Privacy guarantees, is of great importance to further evolve 

the current research in both directions in a way that adds value in both directions. 
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