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Abstract

Mild Traumatic Brain Injury (mTBI) is a common neurological condition with significant cognitive and
functional implications. This thesis presents a comprehensive investigation into the neural alterations
associated with mTBI by employing advanced neuroimaging techniques and machine learning.
Specifically, we employ Multi-Layer Functional Connectivity (MLFC) analysis, Machine Learning (ML), and
Graph Neural Networks (GNNs) to unravel the intricate patterns of brain network disruption and provide
insights into the underlying neurophysiological mechanisms. Magnetoencephalographic (MEG)
recordings were acquired from mTBI patients and healthy controls during resting states. MLFC captures
multi-layer correlations in different frequency bands, revealing subtle connectivity changes between
brain regions. ML classification demonstrates the potential to discern mTBI patients from controls based
on neural features. GNNs model brain regions as a graph, capturing complex interactions and non-linear
relationships. Integrating GNNs enhances our understanding of mTBI-related disruptions, providing a
more holistic perspective. Our study enhances insights into altered functional connectivity in mTBI
patients. Although GNNs exhibit significantly superior performance compared to traditional machine
learning methods, achieving an accuracy of approximately 97% versus 80-85%, the application of MLFC
presents less definitive outcomes, with results appearing notably ambiguous, ranging between 50% and
65%. The fusion of MLFC, ML, and GNNs unveils nuanced dynamics not captured by traditional methods.
These findings contribute to understanding mTBI pathophysiology and may guide personalized

interventions.

Keywords: Mild Traumatic Brain Injury, Magnetoencephalography, Multi-Layer Functional

Connectivity, Machine Learning, Graph Neural Networks, Neuroimaging, Brain Network Analysis.
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NepiAnn

H nma kpavioeykedaAlky kakwon (mTBI) elval pia ouxvyl veupoloylky mAOnon HE ONUAVTLIKEC
VVWOTIKEG Kol AELTOUPYIKEG emuTtwoel. H mapoloa Satplpy mapouctdlel pla oAOKANPWHEVN
Slepelivnon Twv VEUPWVIKWY HeTOBOAWY TIoU oxetilovtal pe To mTBI pe TN Xprion TPONYUEVWY TEXVIKWY
VEUPOOTTELKOVIONG KOL MNXQAVIKAG HABNONG. JUYKEKPLUEVA, XPNOLUOTOWOUUE TNV avaAluon TNng
Aeltoupykng ouvdeolpuotntag moMamAwv emumédwv (MLFC), T pnxavikn pabnon (ML) kot ta
veupwvika Siktua ypadwv (GNN) ylo va Stoheukavoupe ta Tepimloka potifa tg datapoyng Twv
eVKEDAALKWY SIKTUWV Kal va TIApPAoYOULE TTANPodOpleg Yo TOUC UMOKEILEVOUC VEUPODUGLOAOYLKOUG
pnxaviopous. Ol payvnroeykepoahoypadikéc (MEG) kataypadec amoktiOnkav and acBeveic pe mTBI
KOL UYLEIG papTUPEC Katd TN OLApKeEla KOTOOTAoEwv npepiag. H MLFC kotaypddel moAvemninedeg
ocuoxetioelg oe Sladopeg {WVEC CUXVOTATWY, OMOKAAUTITOVTOG AETTEG aAAAYEC OTn oUVEECLUOTNTA
peTaty Twv Sladopwv meploxwv Tou gykeddlou. H taglvounon pe t xpnon tng ML amodelkviel Tn
Suvatotnta SLakplong Twv acBevwv MmTBI armd Touc uyLeic pe BAon Ta VEUPLKA XapaKTNPELOTKA. Ta GNN
HOVTEAOTIOLOUV TIG TIEPLOXEC TOU gyKeEDAAOU WC ypAddo, amoTunwvovtag TOAUTTAOKEG AAANAETILOPAOELG
KOL UN YPOUULKEG OX€oelG. H evowpadtwon twv GNN evioxUeL TNV Katavonon twv Slatapaywy mou
oxetilovtal pe 1o MTBI, mMapéxovtog pla 1O OALOTIKA TtPooTTiky). Av Kal to GNN moapoucidlouv
ONUOVTLIKA avWTEPEG TLOOCEL O OUYKPLON ME T Mapadoolakég pebddoug pnxavikng padbnong,
gmtuyxavovtag okpipela mepimouv 97% évavtl 80-85%, n edappoyr tng MLFC mapouaotdlel Alyotepo
cadn anoteAéouata, Ue Ta autd va epdavilovral Wilaitepa dipopolpeva, KULALVOUEVO HETOEU 50%
KoL 65%. H peA€Tn pag eVIoXUEL TIG YVWOELG OXETIKA LLE TNV TPOTIOTOLNMEVN AELTOUPYLKH CUVSECLLOTNTA
oe aoBeveic pe mTBI. H cuyxwveuon twv MLFC, ML kat GNN amokaAUTTeL AmMOXpWOELS TNG SUVOLLLKAG
nou &ev kataypddovral and TG mapadoolakeg peBodoug. Ta eupnupata autd cupBdallouv otnv
katavonon tng mnaboducioroyia¢ tou mMTBl KalL pmopouv va KaBodnyrnoouv EEQTOULKEUMEVEG

mapeUPACELC.

Néeic-kAebia: Hmuo Tpavpatikr Eykedaikn Kakwaon, Mayvntoeykedahoypadia, AsltoupyLkn
Tuvbeopodtnta oA anmiwy Erumédwy, Mnyavikry Madnon, Neupwvikd Aiktua ypadnpudatwy,
Nevpoaretkdvion, Avaluon Aiktiou Eykeddiou.
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1.Introduction

The intricate workings of the human brain, its vulnerability in Mild Traumatic Brain Injury (mTBI),
and the revelation of brain dynamics through Magnetoencephalography (MEG) signals form the crux of
this thesis. As we unravel these components, the concept of functional connectivity emerges, offering a
glimpse into the orchestration of neural networks. This introduction lays the groundwork for a journey

into the depths of neuroscience, investigating the complex interplay that shapes our cognitive world.

1.1 Motivation

Mild traumatic head injuries (mTBI) are an understudied area despite their potential long-term
impact on brain function. In recent years, advancements in neuroimaging techniques have provided
unprecedented insights into the brain's intricacies. Among these, Magnetoencephalography (MEG)
emerges as a powerful tool for capturing the dynamic neural activity with high temporal resolution.
However, the analysis of MEG data in the context of mTBI remains relatively unexplored.

This research seeks to address this gap by focusing on the comprehensive analysis of MEG data
from subjects with mild head injuries. The investigation revolves around the utilization of cutting-edge
techniques, particularly multilevel connectivity networks and graph neural networks (GNNs), to unravel
the hidden patterns and disruptions within the brain's functional connectivity. While some studies have
explored functional connectivity alterations in mTBI, few have delved into the specific features that can
optimally represent and handle the brain network as a graph.

The significance of this research lies in its potential to shed light on the intricate dynamics of
brain networks following mTBI, offering insights into the mechanisms of injury and recovery. By
employing multilevel connectivity networks, we aim to uncover nuanced alterations across different

connectivity layers, elucidating the temporal and frequency-specific changes in neural communication.
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Additionally, the integration of GNNs presents an exciting avenue to capture the non-linear relationships
between brain regions, providing a holistic understanding of how these disruptions cascade through the
network.

Existing studies have primarily focused on broad connectivity changes or single-layer analysis,
lacking the granularity that multilevel networks and GNNs can offer. Our research aims to bridge this
gap, unraveling intricate connectivity patterns that could potentially serve as diagnostic and prognostic
markers for mTBIl. Moreover, the exploration of brain network representation and handling as a map
through these advanced techniques opens new avenues for understanding the spatial and temporal
dynamics of brain network alterations.

In conclusion, this research embarks on a journey to explore the uncharted territory of mTBI
using MEG data analysis through multilevel connectivity networks and GNNs. The outcomes have the
potential to revolutionize our understanding of mTBIl-related brain network disruptions, providing
crucial insights for both clinical assessment and potential interventions. This endeavor represents a
pioneering effort in unraveling the complexities of brain connectivity in the aftermath of mild head
injuries, offering a fresh perspective on the representation and handling of brain networks as intricate

maps of neural communication.

1.2 Contribution

The primary thrust of this thesis rests upon the transformative insights gleaned from the novel
perspective of treating the brain's functional connectivity network as a graph. This paradigm shift has
rendered a substantial contribution to the field, imparting a holistic perspective on the intricacies of
functional connectivity. The integration of graph classification methodologies has imbued our research
with a comprehensive understanding of the underlying features embedded within the functional

connectivity map. By delving into detailed timeseries emanating from each Region of Interest (ROI),
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which encompasses quantified connections, temporal and frequency-based features, as well as graph
properties, our approach has demonstrated superior performance in yielding more accurate results.

Moreover, an additional noteworthy contribution stems from the comprehensive comparison
and evaluation of multiple functional connectivity estimators. The exploration of Mutual Information,
imaginary Phase Locking Value, and Amplitude Envelope Correlation in conjunction with the two
distinctive topologies (2D data representation and graph representation) has served as a testament to
the versatility of our research. Such a comprehensive comparison enables a comprehensive assessment
of the strengths and limitations of each estimator within distinct contexts. Further enriching this
comparative analysis, we have meticulously evaluated the performance of six classifiers across these
diverse representations and topologies. This encompassing approach spans three classifiers dedicated to
the 2D data representation and an equivalent number for the graph representation, inclusive of Neural
Networks for both categories.

In conclusion, this thesis stands as a testament to the power of innovative perspectives and
comprehensive evaluations. The pivotal shift in considering the brain's functional connectivity as a graph
has not only expanded our understanding of brain network dynamics but has also opened avenues for
more accurate and nuanced insights. The comprehensive exploration of various functional connectivity
estimators, coupled with the exhaustive comparison of data representations and classifiers, reinforces
the robustness of our findings, and enhances the broader understanding of functional connectivity
analysis techniques. Through these substantial contributions, this research has paved the way for a
more sophisticated and nuanced approach to the study of brain network dynamics and their

implications for various neuroscientific and clinical applications.
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1.3 Structure

Chapter 2 delves into the foundational knowledge necessary for comprehending the subsequent
research. The intricate structure and functioning of the human brain are explored, elucidating the
complexities underlying neural dynamics. An in-depth understanding of Mild Traumatic Brain Injury
(mTBI) is provided, shedding light on the implications of such injuries. Additionally, the principles of
Magnetoencephalography (MEG) are expounded upon, showcasing its relevance as a neuroimaging
technique. The chapter concludes with a thorough exploration of functional connectivity, elucidating its
role in unraveling brain network interactions.

In Chapter 3, the methodology employed in preparing the data for analysis is intricately
detailed. The various steps of data preprocessing applied to MEG data are meticulously explained,
ensuring the integrity of the subsequent analyses. The construction of single-layer functional
connectivity networks is comprehensively discussed, laying the foundation for subsequent network
modeling. The chapter extends the exploration to multi-level functional connectivity networks,
capturing temporal and frequency-specific nuances. The shift from traditional network representations
to the innovative graph-based modeling of the brain is introduced.

The focal point of Chapter 4 is the elucidation of diverse classification methods employed in the
research. A comprehensive introduction to Convolutional Neural Networks (CNNs) is provided, along
with their tailored application in the analysis of brain networks. The discussion further encompasses the
significance of Graph Convolutional Networks (GCNs) in handling graph-based data derived from brain
networks. Moreover, the principles of Support Vector Machines (SVMs) and k Nearest Neighbors (k-NN)
are expounded upon, highlighting their relevance in classification tasks.

Finally, Chapter 5 unveils the empirical outcomes obtained from the implemented classification
methods. The presentation of results is structured to facilitate a comprehensive understanding of

performance across different methods and network representations. The findings are critically
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compared and interpreted in alignment with the research objectives. The chapter further engages in an
insightful discussion, elucidating the implications of the results within the broader context of brain
network analysis. In this Chapter, also, the research extends into future possibilities and potential
avenues for exploration. The chapter identifies areas for further research, addressing unresolved

guestions and limitations encountered during the study.
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2. Fundamentals

2.1 Anatomy and Physiology of the Brain

The nervous system, an intricate network comprising diverse neural tissues, serves the purpose
of transmitting information to regulate bodily activities and functions (Carr and Brown, 2001).
Moreover, it empowers the body to detect and respond to environmental changes while interpreting
ensuing nerve impulses. Based on anatomical and physiological criteria, the nervous system can be
dichotomized into two systems (Carr and Brown, CNS PNS
2001; National Institute on Aging, 2008):

e The Central Nervous System (CNS):

Constituting the largest component of the

nervous system, it resides within the cranial
and spinal cavities, safeguarded by the skull
and spinal structures, respectively.

e The Peripheral Nervous System (PNS):

o ) Figure 2.1 The Peripheral and the Central Nervous System
Comprising nervous tissue that extends from

https://thepartnershipineducation.com/resources/nervou
from or converges toward the cranial and s-system

spinal cavities, the PNS extends throughout the limbs and torso tissues.

The brain, constituting the largest portion of the central nervous system (CNS), encompasses several
distinct structures. The cerebellum, situated atop the brain stem, is one such structure. The cerebrum,
regarded as the most evolved component, is bifurcated into two cerebral hemispheres interconnected
by the corpus callosum. Cloaking these hemispheres is the cortex, a pivotal arena for functions such as

memory, attention, thought, and language, encompassing various cognitive functions. Notably, the


https://thepartnershipineducation.com/resources/nervous-system
https://thepartnershipineducation.com/resources/nervous-system
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cortex's prominent fissures grant each hemisphere division into four lobes, each endowed with
distinctive functions (National Institute on Aging, 2008):
e The frontal lobe, positioned at

Human Brain Anatomy
the brain's forefront, governs executive

Frontal lobe Parietal lobe

functions like planning, problem-

solving, memory, attention, and

movement.
Occipital lobe

e Positioned behind the frontal

Cerebellum
Temporal lobe

lobe, the parietal lobe orchestrates the
Spinal Cord

perception and integration of sensory

Figure 2.2 The Anatomy of the Human Brain from stimuli.
https://www.researchgate.net/fiqure/Four-Lobes-of-Human-
Brain figl 377702102 e Lining the brain's side beneath

the frontal and parietal lobes, the temporal lobe governs the senses of smell, taste, and sound,
alongside memory formation and storage.
e Nestled at the brain's rear, the occipital lobe is responsible for visual processing.

Comprising the CNS are glial and nerve cells, a fact underscored by Sanei and Chambers (2007).
Positioned amidst neurons, glial cells fulfill a supportive role by anchoring and nurturing neurons with
essential nutrients. Moreover, they facilitate the removal of damaged cells and debris while offering
insulation to neurons. In contrast, the pivotal task of information transmission and processing within the
nervous system is exclusively undertaken by neurons (National Institute on Aging, 2008).

A salient point is the EEG and MEG activity's derivation from the culmination of nerve impulse
transmission or action potentials. These action potentials, temporary fluctuations in neuron membrane

potential, travel along axons. Their initiation arises from ion exchanges across neuron membranes,


https://www.researchgate.net/figure/Four-Lobes-of-Human-Brain_fig1_377702102
https://www.researchgate.net/figure/Four-Lobes-of-Human-Brain_fig1_377702102
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triggered by neurotransmitter chemical activity at synapses. The conduction velocity of these action

potentials spans a range from 1 m/s to 100 m/s (Sanei and Chambers, 2007).

2.2 Mild Traumatic Brain Injuries (mTBI)

Mild traumatic brain injury (mTBI) stands as the prevailing cause of cerebral trauma. The
mildest category within traumatic brain injury (TBI), mTBI, while qualifying as an acute cerebral injury,
predominantly engenders short-lived physiological deviations without enduring neurological
ramifications. The absence of lasting neurological deficits has led to the neuropsychological assertion
that any cognitive or behavioral changes post-concussion lack permanent neuropathological
underpinnings (Bigler, 2013). This assertion is predicated on the majority of mTBI sufferers returning to
their pre-injury baseline and resuming normative functions, as corroborated by conventional
neuropsychological metrics (Rohling et al., 2011). This outcome is supported by the notion that transient
disturbances in neuronal physiology plausibly account for the positive outcomes frequently observed in
mTBI investigations (Bigler, 2013).

Invariably, individuals
undergoing mTBI experience a
transient alteration in consciousness
or mental state, followed by post-
concussion symptoms (PCS) (Cassidy
et al, 2004). Such symptoms,

including headaches, fatigue, and

dizziness, typically manifest on the

Figure 2.3 Application of National Emergency X-Radiography
Utilization Study (NEXUS) Head CT decision tool (NEXUS Head CT) to
find roof of mTBI from https://www.acepnow.com/mtbi-resource-

day of injury and endure for several

days thereafter (Boccaletti et al., Ccenter/.


https://www.acepnow.com/mtbi-resource-center/
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2006). For most patients, cognitive function recuperates, and PCS resolve within a three-month span.
However, a subset of patients, up to 25% (Sigurdardottir et al., 2009), grapple with persisting PCS, long-
term impairment, and potentially disability (Levin, 2009), thereby highlighting the crucial necessity of
efficiently identifying mTBI-related alterations. A range of cognitive functions are impacted by mTBI,
spanning attention (De Monte et al., 2006; Vanderploeg et al., 2005), working memory (Vanderploeg et
al., 2005), episodic memory (Tsirka et al., 2011), verbal learning (De Monte et al., 2006; Ruff et al.,
1989), and visual memory (Levin et al., 1987; Raskin, 2000; Ruff et al., 1989).

Traditional neuroimaging methods, such as magnetic resonance imaging (MRI) and computed
tomography (CT), possess limited sensitivity to unveil the physiological shifts induced by mTBI (Bigler
and Orrison, 2004; Johnston et al.,, 2001; Kirkwood et al., 2006). Conversely, contemporary
neuroimaging techniques have highlighted that a subset of mTBI patients exhibit more than transient
disruptions in neural function, evidencing identifiable underlying neuropathology (Bigler and Maxwell,
2012; Kasahara et al., 2012; Kim et al., 2013; Lewine et al., 2007; Lipton et al., 2012; Matthews et al.,
2012; Wada et al,, 2012). A distinct approach, magnetoencephalography (MEG), a noninvasive
functional imaging method, directly measures neuronal currents within gray matter, featuring
remarkable temporal resolution (<1 ms) and spatial localization precision (2—3 mm) (Leahy et al., 1998).
Consequently, in recent years, numerous endeavors have sought to develop reliable mTBI biomarkers
grounded in MEG data (explored in reviews by Jeter et al.,, 2013 and Huang et al., 2009, 2014).
Noteworthy is the examination of resting-state MEG activity, either exclusively (Luo et al., 2013;
Zouridakis et al., 2012; Dimitriadis et al., 2015; Li et al., 2015) or coupled with diffusion tensor imaging

(DTI) MRI (Huang et al., 2014).
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2.3 Magnetoencephalography (MEG)

r il | Upon neuronal activation, synaptic currents arise

— within dendrites and propagate through the soma and axon.
This generates a measurable magnetic field via MEG
equipment and a secondary electrical field on the scalp via
. EEG equipment, typically within the frequency range below
70 Hz (Velmurugan, Sinha, and Satishchandra 2014).
. Notably, only when substantial populations of neurons
simultaneously fire does a sufficiently robust signal emerge
for scalp recording (Sanei and Chambers, 2007). The cortex

autonomously generates electromagnetic activity composed

of  superimposed rhythms. Importantly, greater

Figure 2.4 Process of MEG signals collection synchronization among neighboring neurons results in larger
from

https://en.wikipedia.org/wiki/Magnetoencep  amplitude and lower frequency of the ensuing activity.
halography.

Within healthy adults, signal amplitudes and frequencies shift between different human states such as

wakefulness or sleep (Sanei and Chambers, 2007). These wave characteristics also transform with age.
Typically, five major brain waves, each associated with a distinct frequency range, are discerned in brain
activity: 6 (0.5 Hz — 4 Hz), 6 (4 Hz — 8 Hz), a (8 Hz — 13 Hz), B (13 Hz — 30 Hz), and y (over 30 Hz)
(Velmurugan, Sinha, and Satishchandra 2014).

The & activity spans approximately 0.5 Hz to 4 Hz, primarily linked to deep sleep but also
appearing in waking states. Occasionally, this activity might be confounded with artifact signals arising
from neck and jaw muscles (Sanei and Chambers, 2007).

0 waves oscillate between 4 Hz and 8 Hz, associated with unconscious material access, creative

inspiration, and deep meditation. Often co-occurring with other frequencies, 6 waves seem correlated


https://en.wikipedia.org/wiki/Magnetoencephalography
https://en.wikipedia.org/wiki/Magnetoencephalography
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with arousal levels. They play a crucial role in infancy and childhood, while significant 8 activity in awake
adults can signify abnormalities (Sanei and Chambers, 2007). Changes in 8 rhythms are also scrutinized
for emotional and maturational studies (Sanei and Chambers, 2007).

o waves are prominent over the occipital brain region and lie within the 8 Hz to 13 Hz frequency
range. They typically manifest as sinusoidal or rounded signals (Sanei and Chambers, 2007). This rhythm
is associated with both relaxed awareness without focused attention and concentration. Predominantly
occurring when the eyes are closed, it's been theorized to represent a waiting or scanning pattern
stemming from visual brain regions. Opening eyes, encountering unfamiliar sounds, anxiety, or attention
significantly diminish a activity (Sanei and Chambers, 2007).

B rhythm encapsulates brain electromagnetic activity oscillating between 13 Hz and 30 Hz. It
characterizes active thinking, attention, and problem-solving in the waking state (Sanei and Chambers,
2007). Common in the frontal and central regions of normal adults, B activity can also be elevated
around tumor regions (Sanei and Chambers, 2007).

The y range encompasses frequencies beyond 30 Hz, marked by low amplitude and rare
occurrence. Detecting such activity can provide confirmation of specific brain disorders (Sanei and

Chambers, 2007).

2.4 Functional Connectivity

Research indicates that the human cerebral
cortex is comprised of distributed neural
assemblies, intricately linked, and interconnected to

create an extensive cortical circuit, resembling a

"web-like" arrangement (Varela et al. 2001;
Figure 2.5 Functional Connectivity among neural

Boccaletti et al. 2006; Schnitzler and Gross 2005; nodes mabramfrom .
https://computingforpsychologists.wordpress.com/ta

g/eeq/.
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Carter, Shulman, and Corbetta 2012). Within this framework, connections are commonly described as
either structural or functional in nature. In this thesis, we are going to focus on the functional

connections.

2.4.1 Definition

Functional connectivity refers to the statistical dependencies between spatially distinct
neurophysiological events within the brain. Unlike structural connectivity, which delineates the
anatomical pathways between different brain regions, functional connectivity is concerned with the
dynamic interactions that occur over time. It provides a quantitative measure of the co-activation or co-
variation in neural activity between separate areas of the brain, offering a statistical representation of
how these regions are functionally linked. Functional connectivity serves as a cornerstone for
constructing and analyzing brain networks, enabling researchers to understand the complex interplay of
neural circuits and their role in cognitive functions and behavioral outcomes.

Electroencephalography (EEG) and Magnetoencephalography (MEG) are neuroimaging
techniques that offer more direct measures of neural activity compared to other methods like functional
Magnetic Resonance Imaging (fMRI). MEG captures the magnetic fields produced by neural currents.
These techniques are particularly valuable for studying functional connectivity because they provide a
finer temporal resolution, allowing researchers to capture rapid fluctuations in neural activity that are
often missed by other imaging methods (Nunez and Srinivasan, 2006; Hdmaldinen et al., 1993).

Functional connectivity serves as the foundational framework for constructing brain networks.
In this context, brain networks are often represented as graphs, where the nodes correspond to
different brain regions and the edges signify functional connections between these regions. The strength
and directionality of these connections are usually quantified through statistical measures, some of

which are going to mentioned later (Friston, 1994; Bullmore & Sporns, 2009).
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The topological properties of these brain networks can be further analyzed using graph theory.
This mathematical approach provides a set of metrics, such as clustering coefficients, path lengths, and
modularity, that offer insights into the organization, efficiency, and resilience of the brain's functional

architecture (Rubinov & Sporns, 2010; Watts & Strogatz, 1998).

2.4.2 Functional Connectivity Estimators

Understanding the intricate web of functional connections within the brain requires robust and
reliable estimators. These estimators quantify the strength and nature of the interactions between
different neural populations, thereby providing insights into the brain's functional architecture. Among
the plethora of estimators available, three have gained prominence for their efficacy and
interpretability: Imaginary Phase Locking Value (iPLV), Mutual Information (Ml), and Amplitude Envelope

Correlation (AEC).

Imaginary Phase Locking Value. iPLV is a phase-based estimator that quantifies the consistency
of the phase difference between two signals over time. Unlike its predecessor, the Phase Locking Value
(PLV), iPLV mitigates the effects of volume conduction by focusing on the imaginary component of the
cross-spectrum (Nolte et al., 2004; Palva & Palva, 2012). This makes iPLV a more reliable measure for
true interactions between distinct neural sources. This estimator is computed as:

i 1 » _
Ay = T I Im{e iex(t) <Py(t))} ,

where @(t) = arctan (%) is the phase of a MEG signal at time t, whose analytical representation z of

signal xis z(t) = x(t) +i%X(t), where i is the imaginary component and the X(t) is the corresponding

Hilbert transform.
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Mutual Information. Ml is a non-parametric estimator that captures both linear and nonlinear
dependencies between two signals. It quantifies the amount of information that one signal can provide
about another, making it a versatile tool for studying complex neural interactions (Cover & Thomas,

2006; Ince et al., 2017). The adjacency matrix using Ml is calculated as:

Pxy(X.Y)) )
’

A)I\él;' = ZXi,Y]' PXY(Xi’ Y])lo‘g (Px(xi)PY(Yj)

where Pyy, Py and Py are the joint and marginal probability distributions, respectively.

Amplitude Envelope Correlation. AEC measures the correlation between the amplitude
envelopes of two signals, often after filtering them into specific frequency bands. Unlike phase-based
measures, AEC focuses on the amplitude dynamics, making it particularly useful for studying networks
where power fluctuations are of interest (Brookes et al., 2011; Hipp et al., 2012). The adjacency matrix

using AEC is given by:

AAEC — Yi(x(®)—-%) (v ()-y)
Xy VEx®O-02 VT v ©-7)2 |

like Pearson’s Correlation, but the x and y are the amplitudes of the respective signals computed using

amp(t) = Jx2(t) + X2(t). x is the mean value of MEG signal x.
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3. Data Preprocessing and Network Construction

In this chapter, we delve into the critical initial steps of data preprocessing and network
construction, laying the groundwork for subsequent analyses of functional connectivity (FC) in brain

30 MEG signals of a sample networks. We begin by outlining the

preprocessing techniques essential

for ensuring data quality and

reliability. Following this, we

introduce both single and multi-level

layer representations of FC brain

networks, elucidating how these

complex interactions can be

rsula b » pad

:' : : | quantified and understood. Finally,

5 1 15 F 5 k-

Figure 3.1 MEG signals of a random sample generated by MNE python we discuss the transformation of
tool for neuro-signal processing.

these FC networks into graph form, a
representation that enables sophisticated topological analyses. This chapter serves as a comprehensive

guide for constructing and analyzing FC brain networks, setting the stage for further exploration and

interpretation.

3.1 Subjects and Data features

The present research involved 30 right-handed individuals Healthy Controls (HC) (average age
29.25 + 9.1 years) as well as 30 right-handed subjects with mild traumatic brain injuries (mTBI) (average
age 29.33 + 9.2 years). Written consent was obtained from all participants. Qualified clinicians reviewed

and supplied all relevant clinical details, summarized in Table 3.1. The control group, sourced from
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UTHSC-Houston's normative data repository, was specifically chosen to match the age of the mTBI group
and had no history of head injuries, significant dental procedures, substance misuse, neurological or
psychiatric conditions, or incompatible implants for MEG. The study was approved by institutional

review boards and adhered to HIPAA guidelines.

Table 3.1 | Patient Demographics for the mTBI group

Age atinjury Males Auto pedestrian— Auto pedestrian— Auto pedestrian—
(min—max) (females) frontal frontal—type frontal—Ilocation
(# subjects) (# subjects) (# subjects)
(19_25) 7(5) Assault (2), Motor Vebhicle (5), Contusion (4), Bruising (3), Head (10)’
Sports-related (2), Auto Laceration—no sutures (1), Head/F 2
Pedestrian (1), ATV (1), Assault Tenderness (2), Laceration—with ea / ace ( )
(1) sutures (2)
(25_40) 8(2) Fall (1), Auto Pedestrian (2), Fall Abrasion (3), Bruising (1), Head (9)’
Moving Object (1), Assault (1),
Motor Vehicle (1), Fall Raised Tenderness (2), Contusion (3), Head/Face (1)
Surface (2), Assault (1), Blow to
Head (1) Laceration—no sutures (1)
(40_50) 3(5) Motor Vehicle (3), Assault (1), Abrasion (1), Bruising (1), Head (8)
Fall Standing (2), Motorcycle (1), Tenderness (4), Laceration—no
Fall Moving Object (1) sutures (1), Tenderness (1),

Contusion (1), Laceration—with
sutures (1)

The first column shows the age at injury as a range. The second column presents the number of genders separately.
The rest of the columns indicate the type of injury while the number of patients is noticed within the parenthesis.

The mTBI participants were enlisted from three trauma centers in the greater Houston area, as
part of a broader study (Zouridakis et al., 2012). Detailed information is available in previous
publications (Zouridakis et al., 2012; Dimitriadis et al., 2015; Antonakakis et al., 2020). The mTBI patients
were characterized according to the standards set by the American Congress of Rehabilitation Medicine
(Kay et al., 1993) and the Department of Defense (Assistant Secretary, 2007).

Data was collected using a Magnes WH3600 system with 248 axial gradiometers (4D
Neuroimaging Inc., San Diego, CA). The recording lasted for 10 minutes at a sampling rate of 1,017.25Hz,

with an online bandpass filter between 0.1 and 200Hz to minimize noise. No separate eye or heart
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activity was recorded. Participants lay supine with their eyes shut during the data collection. After
removing artifact-contaminated activity (Dimitriadis et al., 2015) and converting the data to planar
gradiometer field approximations using Fieldtrip (Oostenveld et al., 2011), approximately 5 minutes of

clean data were retained for subsequent analysis.

3.2 Preprocessing

In this section, we will delve into the essential preliminary steps of signal preprocessing, a
cornerstone in neuroimaging analysis. We will cover various artifact filtering techniques designed to
improve signal quality and reliability. Source analysis methods for pinpointing neural activity will also be
discussed. Additionally, we will introduce spectrum decomposition, a critical process for isolating
specific frequency bands that are relevant to brain function. The creation of adjacency matrices will be
explored as well, serving as the foundational structure for representing functional brain connectivity.
Finally, edge filtering techniques will be addressed, aimed at refining the network by removing

extraneous connections.

Figure 3.1. Brain and the Regions of Interest from above and side view (picture created with visbrain).
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3.2.1 MEG Preprocessing and Source Analysis

In the thesis under discussion, the preprocessing of MEG signals was adapted from existing
research methodologies (Antonakakis et al., 2020). Artifact minimization was accomplished through
various techniques, including channel interpolation to rectify flawed channel activity, digital filtering to
retain crucial frequency components, and the removal of white noise. Additionally, ocular, and cardiac
artifacts were eliminated using Independent Component Analysis (ICA) algorithms.

For the analysis of neural sources, the study employed atlas-based beamforming to explore
various frequency bands. The MRI anatomical regions were segmented into 90 distinct brain Regions of
Interest (ROIs) using the Automated Anatomical Labeling (AAL) atlas as a reference. A spherical head
model comprising 5,061 sources was utilized to encompass the entire brain tissue. The researchers then
reconstructed MEG source activity using the Linearly Constrained Minimum Norm Variance (LCMV)
algorithm. A representative source signal was determined for each ROI, and correlations between all
possible pairs of source time series were calculated to construct a unified graph representing voxel
temporal associations. Finally, a weighted sum of voxel time series was used to estimate a

representative time series for each ROI.

3.2.2 Spectral Decomposition

Initially, the MEG signals from each participant were segregated into the targeted frequency
bands, resulting in the generation of new signals corresponding to each frequency range—delta (6, 0.5—
4Hz), theta (8, 4-8Hz), alpha (o, 8-13Hz), beta (B, 13—30Hz), and gamma (y, 30-70Hz). A visual
representation of this filtering process is provided in Figure 3.2. The filter used was a Butterworth

passband filter of moving order (3 to 8) to acquire the most useful information on each band.
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Figure 3.2. (a) The power spectrum of a TBI patient’s MEG signal, from the left Precentral gyrus of
his brain. (b)The power spectrum of the same signal, filtered into the frequency bands (6, 8, a, 6,

y).

3.2.3 Adjacency Matrices

Following the filtering process, we advanced to the generation of functional connectivity maps.
The functional connectivity maps, in fact, are represented as adjacency matrices. An adjacency matrix A
= { w;; } can be created to store the connectivity coefficients between each pair of Regions of Interest
(ROIs). In this N x N matrix, N represents the total number of ROIs, and Wi denotes the connectivity
coefficient or the weight of the connection between ROI i and ROI j. These matrices were created for
each frequency band—delta (&), theta (8), alpha (a), beta (B), and gamma (y)—and for each functional
connectivity estimator, namely IPLV, MI, and AEC. This was accomplished by applying the respective

computational formulas of each estimator to the pairs of filtered signals for each participant. To
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illustrate, we constructed the subsequent adjacency matrices, displayed in Figure 3.3.1, Figure 3.3.2 and
Figure 3.3.3. On the maps, each pixel represents the estimation of the connectivity between 2 signals

coming from 2 ROIs. The diagonal elements of each matrix is set to 0, to exclude self-connections and to

focus only on the interactions between different signals.

Functional Connectivity Maps - AEC
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Functional Connectivity Maps - IPLV
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Figure 3.3.3. The adjacency matrices of each frequency band / rhyme, using AEC as FC estimator.

3.3 Edge Filtering

It is easy to assume that in this way links might get created that are spurious and are result of
noise in brain signals. To overcome this problem, we enforced an edge filtering technique called
Orthogonal Minimum Spanning Trees.

Orthogonal Minimum Spanning Trees (OMSTs) are an extension of the Minimum Spanning Tree
(MST) approach, designed to offer a more comprehensive sampling of brain networks. While MSTs
provide an unbiased method for obtaining reliable network metrics (Tewarie et al., 2014), they can be
too sparse for large brain networks, potentially failing to capture the true topology and reducing
discriminative power between groups (Dimitriadis et al., 2015; Antonakakis et al., 2016; Supekar et al.,

2008; Brier et al., 2013; Khazaeea et al., 2017).
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OMSTs address this limitation by constructing multiple MSTs that are orthogonal to each other,
meaning they share no common edges. The process starts with an initial MST that connects all N nodes
using N-1 edges. These edges are then set to zero, and a second MST is constructed that is orthogonal
to the first. This process is repeated, each time creating a new MST that is orthogonal to all previous
MSTs. In general, an m-MST will be orthogonal to the (m-1) previous MSTs and will have exactly

mx(N-1) edges (Song et al., 2015).

A 1st MST B8 2nd OMST ¢ 3rd MST
/ N

F

Figure 3.4. An application of Orthogonal Minimal Spanning Tree (OMSTs) applied to a static functional
connectivity graph (FCG) from & frequency bands during eyes-open condition (A-C) and eyes-closed
condition (D—F) from https.//www.researchgate.net/fiqgure/An-app.

The computational time for this method is O(m x (N + E) x logV). OMSTs maintain the
advantages of MSTs, such as connecting the entire network at a minimal cost without introducing cycles,
while providing a richer, more nuanced representation of the network's topology. The implementation
that was used in this research was like the one that Dimitriadis used in his publication (Dimitriadis, Salis,
Tarnanas and Linden, 2017). The edge filtering was enforced after the creation of the brain networks, to

eliminate as less important information as possible.


https://www.researchgate.net/figure/An-application-of-Orthogonal-Minimal-Spanning-Tree-OMSTs-applied-to-a-static-functional_fig2_315686241
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3.4 Network Topologies

Following the data preprocessing, we employed the adjacency matrices, also known as
functional connectivity maps, to build the specific brain network topologies we aimed to investigate.
These include the Single Layer Network, the Multiplex Network, and the Full Multilayer Network. In
the subsequent sections, we will delve into the intricacies of how each of these networks is constructed

and discuss their respective characteristics.

3.4.1 Single Layer Network

A Single Layer Network serves as a streamlined depiction of the brain's functional interactions,
condensing the network into a single layer that captures statistical dependencies or temporal
correlations among various brain regions. In this framework, nodes symbolize distinct Regions of
Interest (ROIs), while edges represent the functional connections between these regions. In our study,
these connections were quantified using iPLV, MI, and AEC. For instance, one Functional Connectivity
(FC) map from Figure 2 constitutes a Single Layer Network, illustrating the functional connections
occurring within a specific frequency band.

To maximize the utility of the available information, we chose to either aggregate or average
across all frequency bands and estimators. This results in a unified network that offers a comprehensive,
albeit less detailed, perspective on brain connectivity (Bullmore & Sporns, 2009; Rubinov & Sporns,
2010). In Figure 3.5, you can observe the resulted Single Layer Networks using our FC estimators. One
way to achieve the aggregation of single-layer networks is by taking the average of the FC maps across
each frequency band, thereby retaining the most crucial information. If the objective were to scrutinize
the characteristics of individual frequency bands or identify the most influential one, aggregation would
not be the appropriate approach, as it would compromise the integrity of the specific information within

each band.
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Figure 3.5. The aggregated Single Layer Networks using IPLV (left) and AEC (right) and MI (middle).

Upon implementing edge filtering via the Orthogonal Minimum Spanning Tree (OMST), the
resulting adjacency matrices contain fewer details but retain the most robust connections among the
signals. The heatmaps above display these filtered adjacency matrices for the aggregated single-layer
representation, employing the chosen FC estimators. When compared to the matrices shown in Figure
3.6, it's evident that numerous previously calculated connections have been reduced to non-
connections. This is because the OMST filtering method focuses on preserving the strongest links

between the filtered signals, a process that is iteratively repeated (in this case, 15 times).
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Figure 3.6. The aggregated Single Layer Networks using IPLV (left), MI (middle) and AEC
(right) after the edge filtering through OMST.
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3.4.2 Beyond the Single Layer: Multi-level Networks

Networks and complex systems are seldom isolated; they interact with other networks across
various spatial and temporal scales. A case in point is transportation networks, where multiple layers of
human mobility—from subway systems to airports and traditional roadways—can coexist in the same
spatial framework.

Mathematical Representation. The concept of multilayer networks has gained traction
relatively recently, with De Domenico et al. (2013) pioneering its mathematical formulation. Let G =
{G1, G,, ..., Gy} represent the multiplex network, where G; is the graph corresponding to the ith
frequency band. Each graph G; = (V, E;) consists of a set of vertices V (the ROIs) and a set of edges E;
representing functional connections at that frequency. The adjacency matrix A; for each layer G; can be

defined as:

4= {a}vij€1,..N

where as) is the connectivity coefficient between node i and node j in the it" layer, often calculated

using metrics like iPLV, MI, or AEC. In order for us to analyze the multilayer networks, we use a different
representation, called supra-adjacency matrix.

In the realm of neuroscience, the use of multilayer networks is particularly promising due to the
diverse types of brain connectivity networks available for study. A Multilayer Brain network captures the
functional connectivity of the brain across different frequency bands. In this framework, each layer
represents the brain's functional network at a specific frequency band (e.g., delta, theta, alpha, beta,
gamma), and the same set of nodes (brain regions or ROIs) exists across all layers. Researchers
commonly examine the synchronization of brain regions across different frequency bands, resulting in
distinct functional networks. These networks can then be integrated into a multilayer framework, often
referred to as frequency-based decomposition (Brookes et al. 2016; Buldd and Porter 2017; De

Domenico, Sasai, and Arenas 2016).
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Supra-adjacency Matrix. In the context of multilayer networks, a supra-adjacency matrix is a
mathematical construct that encapsulates both intra-layer and inter-layer connections within a single
matrix. This matrix serves as a comprehensive representation of a multilayer network, allowing for the
analysis of complex systems that have multiple types of relationships or interactions across different
layers (De Domenico et al., 2013). The supra-adjacency matrix S is a block matrix where each block Sij
represents the connections between nodes in layer i and layer j. If i =j, Sj; is the adjacency matrix of
the ith layer. If i#j, Sj; contains the inter-layer edges between nodes in layer i and layer j. For a
multilayer network with N nodes and M layers, the supra-adjacency matrix S is of size N X M by N X
M. To construct such data structure, we implement the following:

o Intra-layer Edges: The diagonal blocks of S are filled with the adjacency matrices of each layer.

e Inter-layer Edges: The off-diagonal blocks are filled based on the inter-layer connections
between the same node across different layers. By using the supra-adjacency matrix, one can
apply traditional graph-theoretical methods to multilayer networks, thereby extending the

applicability of such methods to more complex systems.
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Figure 3.7. (a) A multilayer network consists of different networks encoded by layers, each one represented by a
(possibly directed and weighted) adjacency matrix. (b) Common representation of multilayer networks generally
known as supra-adjacency matrix from https.//www.semanticscholar.org/paper/Multilayer-modeling-and-
analysis-of-human-brain-Domenico/d9a584cac9f9958271edc6deba23f11a21804fb0.



https://www.semanticscholar.org/paper/Multilayer-modeling-and-analysis-of-human-brain-Domenico/d9a584cac9f9958271edc6deba23f11a21804fb0
https://www.semanticscholar.org/paper/Multilayer-modeling-and-analysis-of-human-brain-Domenico/d9a584cac9f9958271edc6deba23f11a21804fb0

Thesis 35

Multiplex Network. A Multiplex Network is a specific type of multilayer network where each
layer contains the same set of nodes, but the connections (edges) between the nodes can differ across
layers. In the context of brain networks, each layer could represent functional connectivity at a different
frequency band, and the nodes represent Regions of Interest (ROIs) in the brain. For illustrative
purposes, Figure 3.8.1, Figure 3.8.2 and Figure 3.8.3 present visual representations of multiplex
networks, providing insights into its structural complexity. The diagonal blocks display the adjacency
matrices corresponding to each frequency band. Off-diagonal elements retain only the diagonal entries
from each intra-layer adjacency matrix, indicating that nodes are connected to their corresponding

nodes across different layers. Notably, the supra-adjacency matrix is a symmetric one.
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Figure 3.8.1. The multiplex representation of brain FC networks, using IPLV as FC
estimator.
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Figure 3.8.2. The multiplex representation of brain FC networks, using Ml as FC
estimator.
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Additionally, Figure 3.9.1, Figure 3.9.2, and Figure 3.9.3 showcases the edge-filtered matrix is
depicted, offering a refined view of the networks’ connections. When compared to the matrices in
Figure 3.6, it becomes evident that a significant number of previously established connections have
been reduced to non-connections. The application of the OMST filtering method focuses on retaining
only the strongest links between the filtered signals. The procedure is iteratively repeated, in this
instance, 75 times. Importantly, even after this filtering process, many inter-layer connections remain

intact, suggesting a high level of interaction between different layers.

IPLV 75-MST Results

-1.0

-08

ROIs

Figure 3.9.1. The Multiplex Brain Networks using IPLV, after applying edge filtering through OMST.
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Figure 3.9.2. The Multiplex Brain Networks using MI, after applying edge filtering through OMST.

AEC 75-MST Results

ROIs
R
B

416
432
448

o L D W 0 DOMmO
~RoBRITBERERNRRRREST

Figure 3.9.3. The Multiplex Brain Networks using AEC, after applying edge filtering through
OMST.
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Full Multilayer Network. A full multilayer network is an advanced structure that allows for the
most general form of multilayered interactions among nodes. Unlike simpler forms like multiplex
networks, a full multilayer network can accommodate different types of nodes and edges, multiple kinds
of layers, and complex inter-layer connections. Each layer in a full multilayer network can represent a
different type of relationship, interaction, or attribute, and nodes from one layer can be connected to

nodes in the same or different layers.
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Figure 3.10.1 The Full Multilayer Networks utilizing IPLV.
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Above in Figure 3.10.1, Figure 3.10.2, and Figure 3.10.3, the full multilayer representation of our
network is displayed. The differences between the full multilayer representation and the multiplex
representation are quite clear. Proceeding, when employing the Ml estimator, it becomes evident that
inter-layer connections are more robust than intra-layer ones. A similar trend is noted with the AEC
estimator, albeit to a lesser extent. This suggests that brain ROIs are more influenced by variations
across different frequency bands than within the same band. Additionally, in each matrix, the upper
right and lower left regions (owing to symmetry) appear darker than the rest. This indicates that
connections between lower frequency bands (6-8) and higher frequency bands (B-y) are relatively

weaker.
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Figure 3.11.1. The Full Multilayer Brain Networks using IPLV, after applying edge filtering through OMST.
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Figure 3.11.3. The Full Multilayer Brain Networks using AEC, after applying edge filtering through OMST.
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The depiction of the same Full Multilayer Networks utilizing various FC estimators but with edge filtering
applied agrees with the results observed on the previous figure. Furthermore, it can be observed that

the strongest connections are along the diagonal blocks, though less in quantity.

3.5 Brain as a Graph

The human brain, often considered the most complex organ, can be represented as a network
or graph to simplify the understanding of its intricate structure and functionalities. This graphical
representation is not merely an academic exercise but serves as a foundational framework for various
applications, including the study of neurological disorders, cognitive processes, and even machine
learning algorithms for brain-computer interfaces. The construction of a brain graph from an adjacency

matrix is a critical step in this direction.

3.5.1 Brain Visualization

In the previous section, we defined what an adjacency matrix is. We can use this data
representation to construct a graphical model using software tools or custom algorithms. The elements
of the matrix indicate whether pairs of vertices are adjacent or not in the graph. In the context of a brain
graph, each vertex or node represents a Region of Interest (ROI) in the brain, and the edges between
them signify functional connections.

Before, we defined what an adjacency matrix is. We can use this data representation to
construct a graphical model using software tools or custom algorithms. The elements of the matrix
indicate whether pairs of vertices are adjacent or not in the graph. In the context of a brain graph, each
vertex or node represents a Region of Interest (ROI) in the brain, and the edges between them signify

functional connections.



Thesis 44

Leveraging the capabilities of the Python's matplotlib library, we successfully visualized the
brain network in a graphical format, as depicted in Figure 3.12. In this representation, each node
signifies a Region of Interest (ROI), clearly labeled adjacent to it. These nodes are interconnected by
edges, the colors of which denote the varying strengths of connections as determined by the Functional

Connectivity (FC) estimator.

Figure 3.12. Chord Plots of Brain Networks utilizing IPLV (top-left), Ml (top-right), AEC (bottom).

Upon analysis, the graph elucidates the density and distribution of connections in each case.
Notably, the IPLV appears to facilitate a more balanced distribution of connection strengths compared
to MI and AEC. While MI exhibits a handful of potent connections, AEC demonstrates a plethora of
strong connections. Furthermore, it is evident that there is a significant correlation between one ROl in

one hemisphere and its counterpart in the opposite hemisphere. Interestingly, the graph also unveils
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connections between ROIs that are geographically distant from each other, hinting at the complex and
non-linear nature of brain networks.

However, this graphical representation has its limitations, particularly for individuals unfamiliar
with the anatomical locations of the ROIls within the brain. To mitigate this, we utilized another
visualization tool, visbrain, which offers a more intuitive platform for comprehending our findings,
especially in terms of spatial relationships and connectivity patterns within the brain (Combrisson E et

al., 2019).

Figure 3.13. Depiction of brain
with connections from AEC
(visbrain). Here displayed side,
top, and front view.

The results from the previous analysis are now validated. It is obvious that indeed most
connections are made among close nodes. Notable in the case of AEC is that the strongest connections

are noticed in the frontal lobe, the region responsible for planning, concentration, and speech.
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3.5.2 Graph Features

Constructing a brain graph serves as a strategic approach to streamline the complex
neurological data into a more digestible and interpretable format. Leveraging graph theory, we can
employ a set of straightforward yet potent tools to dissect various facets of the brain network, thereby
facilitating a clearer understanding of brain functionalities and potentially aiding in the identification of
different disorders. This graphical representation not only organizes the intricate data in a more
structured manner but also lays the groundwork for implementing diverse analytical methods that can
yield deep insights into the functioning of the human mind. In this section, we will focus on analyzing
select pivotal features of the graph, which are instrumental in unraveling the complex dynamics of brain

networks.

Nodal Strength (NS) is computed as the sum of the weights of the connections (edges) linked to
a specific node. In the context of an adjacency matrix, it can be calculated by summing the values in a
row corresponding to that node. Mathematically, the node strength (NS;) for node i is given by:

NS; = X1 Ajj

where NS; is the node strength of node j, N the number of nodes and A;; the element of the adjacency
matrix representing the connection weight between nodes i and j. This calculation is performed for each
node in the network, creating a feature vector NS = (NS;, NS, ..., NSy) that encapsulates the node
strengths across the network (Klepl et al., 2022). In a multiplex network, node strength can be calculated
separately for each layer and then combined to get a comprehensive view. The node strength in a
multilayer network would be the sum of the weights of connections a node has in all layers, considering

both intra-layer and inter-layer connections.
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Characteristic Path Length (CPL). The characteristic path length in a brain network is a
significant metric in understanding the functional connectivity and organization of the brain. It is defined
as the average shortest path length between all pairs of nodes in the network, offering insights into the

efficiency of information transfer in the network. The feature is calculated using the following formula:

1 .

i#j
where N is the number of nodes in the network and d(j, j) is the shortest path length between node i
and node j. The summation runs over all pairs of nodes, excluding self-loops (Fraschini et al., 2016;
Guillon, 2018). The characteristic path length in a multilayer network would consider the shortest paths
between nodes that might traverse through different layers. It would be a more complex calculation
involving both intra-layer and inter-layer connections to find the most efficient path across the entire

multilayer structure.

Global Efficiency (GE) is a metric that quantifies the efficiency of information transfer in a
network. It is computed as the average of the inverse shortest path length between all pairs of nodes in

the network. The mathematical representation of global efficiency is given by:

1 1
=N 1);d<i.j>

where N is the number of nodes in the network, and d(j, j) is the shortest path length between nodes i
and j. While the characteristic path length gives an average measure of the shortest distances, global
efficiency considers the reciprocal of these distances, thus emphasizing the efficiency of information
transfer (Pasquale et al., 2016; Guillon, 2018). Global efficiency in a multilayer network would consider
the efficiency of information transfer across all layers. It would involve calculating the reciprocal of the
harmonic mean of the shortest path lengths across layers, integrating the efficiencies of individual layers

into a global metric.
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Nodal Betweenness Centrality (NBC) is a measure that quantifies the influence of a node in a
network, indicating how often a node acts as a bridge along the shortest path between two other nodes.

It can be mathematically represented as:

NBC; = Z Zat(l)

g,
S#i#t st

where NBC; is the betweenness centrality of node i, g, is the total number of shortest paths from node
s to node t, and g (i) is the number of those paths that pass-through node i. In the context of brain
networks, betweenness centrality can help identify regions of the brain that play a critical role in
facilitating communication between other regions. High betweenness centrality values indicate nodes
that are well-placed to influence the network's information flow, potentially serving as hubs in the
network (Banks et al.,, 2016; Guillon, 2018). In a multilayer network, betweenness centrality would
consider the nodes that act as bridges not only within a layer but also between different layers. It would
qguantify the influence of a node in facilitating communication between nodes in different layers, thus

having a more global perspective.

Modularity (Q). In the context of brain networks, modularity refers to the extent to which the
network can be segregated into densely connected groups of regions, or modules, with sparse
connections between them. A high modularity indicates a greater degree of segregation, where
connections are denser within modules and sparser between different modules. This metric can be used
to predict individual responses to interventions such as cognitive training or physical exercise, with
higher baseline modularity often associated with greater improvements in cognitive functions.
Mathematically, the modularity Q of a network is given by:

1 kik;
Q= o Z Aij — o 6091, 95)

ij



Thesis 49

where 4;; is the adjacency matrix representing the network, k; and k; are the degrees of nodes i and j,
m is the total number of edges in the network, g; and g; are the modules to which nodes i and j belong,
S(gi,gj) is the Kronecker delta function, which equals 1 if g; = g; and 0 otherwise. This metric can be
a valuable tool in understanding the functional organization of brain networks, particularly in the
context of rehabilitation and cognitive training interventions (Arnemann et al., 2015; Baniqued et al.,
2018; Guillon, 2018). Modularity in a multilayer network would consider the community structure across
layers. It would involve identifying modules that are consistent across layers, indicating a hierarchical

and multi-resolution community structure in the network.

Participation Coefficient (P). The participation coefficient in a brain network is a metric that
guantifies the extent to which a node (or brain region) connects to multiple modules or communities
within the network. It serves as an indicator of the node's role in facilitating integration between
different functional groups in the brain. A node with a high-participation coefficient acts as a connector
hub, linking different communities and thus playing a crucial role in the network's global integration
(Pedersen et al., 2017; Guillon, 2018). To calculate the participation coefficient (P) of a node i, the

following formula is used:

Where:

e kg is the number of links of node i to nodes in module s

e k; is the total degree of node i (sum of all connections)

e Nis the number of modules in the network
In a multilayer network, the participation coefficient would quantify the extent to which a node
connects to multiple communities across different layers. It would indicate nodes that have a significant

role in integrating information across different functional groups in the network.
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Assortativity (r) in a brain network is a measure that indicates the preference of a node to
connect with other nodes that have a similar degree of connections. In other words, it quantifies the
correlation of the degrees of connected nodes within the network. A positive assortativity coefficient
indicates that nodes tend to connect with others of similar degree, fostering a resilient and cohesive
network structure. Conversely, a negative coefficient suggests a tendency for nodes to connect with
others of dissimilar degree, which might indicate a hierarchical or centralized network structure

(Bahrami et al., 2015). The assortativity coefficient (r) can be calculated using the following formula:

o Yk — k)(k; — k)
Yk — k)?

Where k; and k; are the degrees of nodes i and j, respectively and k is the average degree of the nodes
in the network. The sums run over all edges of the network. Assortativity in a multilayer network would
consider the degree correlations across layers. It would involve calculating the tendency of nodes to
connect with others of similar degree within and across layers, indicating the mixing patterns in the

multilayer structure.

3.5.3 Signal Features

Apart from the graph features that are used to feed the Machine Learning Classifiers, we also need to
extract meaningful features from the original signals to give as input to the GCN. So, a diverse array of
signal features is employed, providing a comprehensive understanding of the underlying neurological
processes. These features play a crucial role in characterizing the intricate dynamics within the brain and
pave the way for subsequent analyses. In this section, we delve into several key signal features,

shedding light on their significance in unraveling the complexities of brain activity.
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Mean Value (n): The mean value is a fundamental statistical feature that quantifies the central
tendency of a signal. It is computed as the arithmetic average of the signal samples within a defined

time window. Mathematically, the mean value (y;) for a signal i is given by:

1 N
Hi= N ijlxij

Where u;represents the mean value of signal i, N is the number of samples in the time window, and x;;
represents the j-th sample of signal i. The mean value provides valuable information about the signal's
baseline and overall distribution, aiding in the characterization of signal stability and average activity

levels.

Root Mean Square (RMS) Value: The RMS value serves as a fundamental feature, encapsulating
the amplitude-related information of the signals. It is calculated by taking the square root of the mean
of the squared values of the signal samples over a specific time window. Mathematically, the RMS value

(RMS;) for a signal i is defined as:

Here, RMS; represents the RMS value of signal i, N denotes the number of samples in the time window,
and x;; represents the j-th sample of signal i. The RMS value provides valuable insights into the overall

intensity of neural activity, aiding in the assessment of signal magnitude and variations over time.

Curve Length (CL): Curve length is a significant feature that measures the overall trajectory or
path length of a signal in its waveform. It quantifies the extent to which a signal deviates from a straight
line within a specified time window, providing insights into the signal's complexity and waveform

irregularities. Mathematically, the curve length (CL;) for a signal i is computed as:

N
CL; = Z |xij = Xigj-n)
Jj=2
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Here, CL; represents the curve length of signal i, N is the number of samples in the time window, and x;;
represents the j-th sample of signal i. Curve length analysis enables the characterization of signal
intricacies, including oscillatory patterns, rapid changes, and variations in amplitude, making it a

valuable feature for assessing signal complexity.

Zero Crossings (ZC): Zero crossings represent a fundamental feature in signal analysis, denoting
the points in a signal where it changes polarity, crossing the zero-amplitude threshold. Counting the
number of zero crossings within a signal provides insights into its frequency content and rapid changes.

Mathematically, the zero crossings (ZC;) for a signal i are calculated as:

7C; = {1' if xij* Xi(j-1) <0

0, otherwise

M=

j=2
Here, ZC; represents the zero crossings of signal i, N is the number of samples in the signal, and x;;
represents the j-th sample of signal i. Zero crossings offer valuable insights into the temporal dynamics

and frequency characteristics of the signal.

Intensity Weighted Mean Frequency (IWMF): The intensity-weighted mean frequency is a
feature that provides information about the central frequency of a signal while considering the
amplitude or intensity of each frequency component. It allows for a weighted assessment of the
dominant frequency content in a signal. Mathematically, the intensity-weighted mean frequency

(IWME;) for a signal i is calculated as:

K
k=1 fk © A

IWMEF; =
' k=14

Here, IWMF, represents the intensity-weighted mean frequency of signal i, K is the number of

frequency components, f; represents the frequency of the k-th component, and A;; represents the
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amplitude or intensity of the k-th component in signal i. This feature provides a weighted measure of

the central frequency based on the relative importance of different frequency components.

Intensity Weighted Bandwidth (IWB): The intensity-weighted bandwidth is a feature that
characterizes the spread or width of the frequency spectrum in a signal while considering the amplitude
or intensity of each frequency component. It offers insights into the distribution of frequency
components around the central frequency. Mathematically, the intensity-weighted bandwidth (IWB;)
for a signal i is calculated as:

Kealfie = IWMF; | - Ay
K A
k=1 ik

IWB; =

Here, IWB; represents the intensity-weighted bandwidth of signal i, K is the number of frequency
components, f; represents the frequency of the k-th component, IWMF; is the intensity-weighted
mean frequency of signal i (calculated as described earlier), and A;, represents the amplitude or
intensity of the k-th component in signal i. This feature provides a weighted measure of the frequency

spectrum's width based on the relative importance of different frequency components.

Spectral Entropy (SE): Spectral entropy is a feature that quantifies the randomness or
complexity of the frequency distribution within a signal's spectrum. It assesses the degree of spectral
diversity and can reveal the presence of distinct frequency components or irregularities.

Mathematically, the spectral entropy (SE;) for a signal i is calculated as:

K
SE; = — Z Py - log,(Pi)
k=1

Here, SE; represents the spectral entropy of signal i, K is the number of frequency components, Pj;

represents the normalized power or probability of the k-th component in signal i. Spectral entropy
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provides insights into the signal's frequency complexity, with higher values indicating greater spectral

diversity.

Absolute Area (AA): The absolute area is a feature that quantifies the total area under the
signal's waveform, disregarding its polarity. It provides a measure of the overall magnitude or energy of
the signal, regardless of its direction. Mathematically, the absolute area (44;) for a signal i is calculated

as:

N
Ad; = Elxu = Xi(j-1)]
j=2

Here, AA; represents the absolute area of signal i, N is the number of samples in the signal, and x;;
represents the j-th sample of signal i. Absolute area analysis captures the total magnitude of signal

fluctuations, offering insights into its energy content.

Additional features, including Peak-to-peak voltage, cross-correlation, and various graph-
theoretical measures, were evaluated but ultimately not included in the feature selection. The chosen
features, as previously delineated, provide significant discriminative power in differentiating healthy
controls from mTBI patients. The efficacy of these selected features is further evidenced by the boxplots
presented below, which visually reinforce their distinction between the two groups. The robustness of
these features is supported by their ability to capture essential patterns and differences in the brain's

functional connectivity that are indicative of mTBI.
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Figure 3.14 Boxplots indicating the mean value and the deviation of each feature for HC and
mTRI
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The subsequent chapter will delve into the classification of these brain graphs and matrices.
Understanding the types and characteristics of different brain graphs is essential for their effective
utilization in both clinical and research settings. The classification will provide a more refined lens
through which we can interpret the complexities of brain functionality and structure and understand

what makes a brain mildly traumatically injured or not.
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4. Classification Methods

Building upon the foundations laid in the previous chapter, where we meticulously analyzed
data preprocessing and scrutinized brain networks, we now venture into the critical phase of applying
this knowledge to develop robust classification methods. The objective at this juncture is clear: to craft a
sophisticated framework capable of distinguishing between healthy controls and individuals suffering
from mild traumatic brain injuries (mTBI), utilizing the rich data encapsulated in graphs.

In this chapter, we will explore a selection of classification methodologies, each harboring the
potential to accurately segregate individuals based on the intricate patterns and characteristics
unearthed in their brain networks. Our goal is to forge a classification model that not only withstands
scientific scrutiny but also serves as a beacon for future research in this domain.

As we delve deeper, we aim to seamlessly integrate the insights garnered from our previous
analyses, fostering a classification system that epitomizes the synergy of interdisciplinary research. Let
us now embark on this pivotal journey, where theory meets application, steering us closer to unraveling

the complex narratives woven within healthy and mTBI affected brain networks.

4.1 Support Vector Machines (SVM)

Support Vector Machines (SVMs) are a set of powerful supervised learning methods used for
classification, regression, and outliers detection. They are particularly effective in high-dimensional
spaces, which makes them a suitable tool for brain network analysis, where the complexity and

dimensionality of the data are often high. (Kepl et al., 2022)
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Mathematical Foundation. The core principle of SVM is to map the data into a higher-
dimensional space and find the optimal hyperplane that distinctly categorizes different classes in this
space. The mathematical formulation of SVM can be described as follows:

Given a training set of instance-label pairs (x;, y;), where x; € R™ and y; € {—1,1}, the SVM

seeks to find the optimal separating hyperplane by solving the following optimization problem:
n
ST ST
minimize 2 [lwl|* + CZ &
i=1
subjectto y;(w-x;+b)=>1—-¢&,¢é =20,i=1,..,n

Here, w is the normal vector to the hyperplane, b is the bias term, C is a regularization parameter, and
&; are slack variables that allow for misclassification of data points but penalize them in the objective
function. The decision function that classifies new instances is given by:
f(x) =sign(w- x +b)
Kernel methods can be employed to handle non-linearly separable data, where the dot product

in the feature space is replaced by a kernel function.

Application in Brain Network Analysis. In the realm of brain network analysis, SVMs can be
instrumental in classifying different states or conditions, such as distinguishing between healthy controls
and mTBI patients. The features used for classification are derived from graph theoretical metrics
computed from the adjacency matrices representing the brain networks.

The SVM will be trained on features such as nodal strength, global efficiency, characteristic path
length, modularity, rich club coefficient, assortativity, and betweenness centrality, which were discussed
in the previous chapter. These features encapsulate vital information about the structural and functional
aspects of brain networks, offering a rich dataset for SVM analysis.

SVMs stand out for their ability to handle high-dimensional data effectively and their robustness

against overfitting, especially when the number of training samples is limited.
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4.2 K Nearest Neighbors (k-NN)

The K-Nearest Neighbors (k-NN) algorithm is a type of instance-based learning, where the
algorithm doesn't explicitly learn a model. Instead, it opts to memorize the training instances which are
subsequently used as “knowledge” for the prediction phase. This method is particularly useful in cases

where the data patterns are hard to describe with a mathematical model.

Mathematical Foundation. The k-NN algorithm operates on a very simple principle. Given a
new, unknown observation, it searches the training set for the k-training examples that are closest to
the observation and returns the most common output value among them. The distance between
observations can be measured using various metrics such as Euclidean, Manhattan, or Minkowski
distance. Mathematically, the Euclidean distance, which is used in this research, between two points x

and y in a n-dimensional space is calculated as:

d(x,y) =

Application in Brain Network Analysis. In the context of brain network analysis, k-NN can be
employed to classify different groups, such as distinguishing between healthy controls and mTBI
patients, based on the features extracted from brain networks. These features, including nodal strength,
global efficiency, and modularity, among others, encapsulate vital information about the structural and
functional aspects of brain networks. The k-NN algorithm can be particularly adept at identifying subtle
patterns in this high-dimensional feature space, which might be overlooked by other algorithms.

While SVMs are known for their efficacy in high-dimensional spaces and their ability to find
complex decision boundaries, k-NN offers simplicity and the ability to adapt quickly to changes.
However, it might suffer from the curse of dimensionality, and the choice of an appropriate value for k

and the right distance metric is crucial for its performance. Moreover, unlike SVMs, k-NN is more
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computationally intensive during the testing phase, as it requires the computation of distances between

the test instance and all training instances.

4.3 Convolutional Neural Network (CNN)

In the evolving landscape of brain network analysis, the application of advanced machine
learning techniques, particularly Convolutional Neural Networks (CNNs), has emerged as a promising
approach. CNNs, a category of deep learning algorithms, have demonstrated remarkable efficacy in
image and video recognition, among other tasks. When applied to brain network analysis, CNNs can
classify adjacency matrices derived from MEG data as images, thereby potentially automating the

diagnosis and study of mTBI.
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Figure 4.1 The architecture of the CNN used.

Structure and Functioning of CNNs. CNNs are structured to learn spatial hierarchies
automatically and adaptively from data, making them highly suitable for image classification tasks. A
standard CNN architecture consists of three primary layers: the convolutional layer, the pooling layer,
and the fully connected layer.

e The convolutional layer applies various filters to the input data, creating feature maps

that highlight different aspects of the data.
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o The pooling layer reduces the dimensionality of each feature map while retaining the
most essential information.

o The fully connected layer utilizes this information to classify the input data into various
categories.

In the context of brain network analysis, the adjacency matrices, which encapsulate the
statistical dependencies between different brain regions, can be treated as images, on which our CNN
can be trained. These matrices serve as the input data for the CNN, providing a rich source of data for
the CNN to analyze and learn from. The architecture of the CNN’s model we used in our research
consists of two convolutional blocks followed by a final classifier, as shown in Figure 4.1. The chosen
architecture is a suggestion made in the publication of Klepl et al. (2022), since it was the most efficient
one in their study, and it was a result of hyperparameter tuning.

Each block houses a pair of convolutional layers with a stride of 3, succeeded by layers for
maximum pooling and dropout. The final classifier is formulated with a duo of linear layers, separated by
a dropout layer. The initial block is equipped with 128 convolutional filters, escalating to 64 in the
subsequent block. Concurrently, the linear layers maintain a hidden size of 32. A dropout rate of 0.1 was
selected for neuron elimination during the process.

The ReLU function was the preferred choice for activation, owing to its computational agility and
efficacy in steering the training of deep networks, thereby alleviating potential issues of vanishing
gradients commonly associated with sigmoid or tanh functions in extensive networks. Contrarily, the
terminal layer adopted the sigmoid function as the activation medium, a strategy renowned for its

success in binary classification endeavors, hence its prevalent utilization in such contexts.
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Besides the activation function and the number of convolutional filters in each layer, there are

other hyperparameters, too, that are used as configurations of the network, aiming to structure and

tune its performance. They play a critical role in the behavior of the CNN and can significantly impact the

effectiveness and efficiency of the learning process. The hyperparameters chosen for use were:

Learning Rate: The learning rate is a hyperparameter that controls how much the model's weights
should be updated during training. A higher learning rate might lead to rapid learning but can
overshoot the optimal solutions, while a too-low learning rate can cause the learning process to be
slow and potentially get stuck in local minima. Finding an appropriate learning rate is essential for
efficient and effective model training.

Batch Size: Batch size refers to the number of training samples used in one iteration of the model
training, that is, the number of samples after which the model's weights are updated. A smaller
batch size can lead to a more stable convergence by providing more frequent weight updates, but it
can also result in a noisy gradient. Conversely, a larger batch size offers a more accurate estimate of
the gradient but requires more memory and can result in slower convergence.

Weight Decay: Weight decay, often associated with regularization, is a technique to prevent
overfitting by penalizing large weights. It works by adding a term to the loss function that involves
the L2 norm of the weights, effectively shrinking them during training. This can lead to a simpler and
more generalizable model that performs better on new, unseen data.

Gamma Rate: Gamma rate is typically associated with learning rate schedulers, particularly in
methods such as exponential decay, where the learning rate is multiplied by a factor (gamma) at
regular intervals. The gamma rate determines how quickly the learning rate decreases over time.
Adjusting the gamma rate helps in controlling the learning process, allowing for a fast initial learning

phase and then a gradual slowing down to fine-tune the model parameters.
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Selecting the appropriate hyperparameters is often a crucial step in designing a CNN model that
can learn generalized patterns effectively.

The classification process entailed dividing the data into three distinct subsets: 60% for training,
20% for validation, and the remaining 20% for testing. The training and validation sets were utilized
during the model's training phase, with the testing set reserved for the final evaluation phase. During
training, the model received the training dataset and adjusted its parameters, such as the weights in the
convolutional layers, based on the comparison between its predictions and the actual targets.
Subsequently, the model was evaluated using the validation dataset, which had not been previously
seen by the model. The accuracy achieved on the validation dataset provided a measure of confidence
in the model's ability to generalize well. Upon the completion of the training phase, the model was
subjected to the test dataset to assess its performance on entirely new data.

Additionally, to enhance the training process, the technique of early stopping was implemented.
Specifically, training would cease if the validation loss did not improve for 15 consecutive epochs,
thereby mitigating the risk of overfitting. The upper limit for the number of epochs was set at 300,
ensuring the model had ample opportunity to learn from the data without the detriment of excessive

training.

4.3.1 Hyperparameters Tuning

The selection of the remaining hyperparameters was facilitated automatically through the
Hyperopt Python library (Bergstra et al., 2013). Hyperopt is a meta-modeling approach to support
automated hyperparameter optimization, thus providing practical tools that are too random such as
Random Search, or too exhaustive, such as Grid Search, with a reproducible and unbiased optimization

process. It uses a Bayesian approach to find the best values for the hyperparameters.
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To use it, 4 key things for our model need to be specified:

e The Objective function, which is the value needed to be minimized during the computation. In
this thesis, this is the minus average validation accuracy score, that results from a k-fold cross
validation.

e The Search scope, which is the range of values a given hyperparameter can take.

e The Tuning algorithm. Hyperopt supports two main algorithms, Random Search and Tree of
Parzen Estimators (Bayesian) (Bergstra et al.,, 2011). In the thesis, the latter is used, as it is
known to produce the best results.

e The Evaluations, which refers to the number of different hyperparameters instances to train the
model over. It is suggested to be 10-30 times the number of hyperparameters defined in the

search space, to optimize for performance and computation time.

The Tree of Parzen Estimators (TPE) algorithm as already mentioned, is a method for
hyperparameter optimization that belongs to the family of Bayesian optimization algorithms. TPE
models the probability distribution of hyperparameters given the likelihood of those hyperparameters
to yield good performance measures. It constructs a probabilistic model that places higher probability
on hyperparameters that improve the model's performance and lower probability on those that perform
poorly. The algorithm iteratively selects new hyperparameter sets to evaluate by choosing values that
maximize the expected improvement over the current best result.

The application of CNNs in this context is expected to unveil intricate patterns and connections
that might be less apparent or overlooked in traditional analysis methods. Moreover, the CNN approach
aligns with the broader trend of leveraging machine learning algorithms to enhance the accuracy and

efficiency of medical diagnoses and research.
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4.4 Graph Convolutional Network (GCN)

In the rapidly advancing field of brain network analysis, the integration of Graph Neural
Networks (GNNs) and Graph Convolutional Networks (GCNs), a sophisticated machine learning
technique, stands as a beacon of innovation. GNNs, a subset of deep learning algorithms, have
showcased significant prowess in tasks such as social network representation and molecular structure
analysis. In the realm of neuroscience, these networks offer a promising avenue for the analysis of brain

networks, particularly in distinguishing between different states of brain health.

Mathematical Background. The GCN, a variant of GNN, operates based on a message-passing
framework, which fundamentally assumes that neighboring nodes in a graph should have similar

features. Mathematically, the operation of a GCN layer can be represented as:
1 1
HHD =g (D‘EAD‘EH(DW(D)

where:
e H® is the matrix of node features at layer /,
e Aisthe adjacency matrix representing the graph structure,
e Disthe diagonal degree matrix,
o WO is the weight matrix at layer /,

e (0is anon-linear activation function.
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Figure 4.2 The architecture of the GCN used.
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Structure and Functioning of GCN. GNNs are designed to automatically and adaptively learn the
topological patterns present in graph data, making them an ideal choice for the classification of brain
networks represented as graphs. In our study, we are going to build a GCN, a specialized type of neural
network designed to work directly with graphs. The network takes two inputs: a weighted adjacency
matrix representing the connections between nodes, and a node feature matrix representing the
characteristics of each node. Bellow, the architecture of this GCN is described:

1. Input Preparation: Initially, the node feature matrix undergoes a normalization process to make
the data more manageable for the network.

2. Drop-Edge Layer: Before entering the main layers of the network, the adjacency matrix goes
through a "Drop-Edge" layer, where some connections (edges) between nodes are randomly
removed. This step helps in making the model more robust by preventing overfitting.

3. Hidden Layers: The core of the network consists of two hidden layers, where the actual
computation happens. These layers can capture the complex patterns in the data. After each of
these layers, a normalization process is applied again to stabilize the activations.

4. Max Readout Layer: After the hidden layers, a "Max Readout" layer is applied, which essentially
picks the most significant information from the nodes, helping in reducing the dimensionality of
the data.

5. Fully Connected Layers: Following the max readout, the data is passed through a series of linear
layers where further computation happens. These layers are interspersed with dropout layers
(to prevent overfitting) and activation functions to introduce non-linearity into the model.

6. Output Layer: Finally, the data reaches the output layer where it is passed through a sigmoid
function. This function squishes the output values between 0 and 1, providing us with the

probabilities which are used for classification.
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The structure of the GCN is shown in Figure 4.2. The chosen architecture is a suggestion made in the
publication of Klepl et al. (2022), since it was the most efficient one in their study, and it was a result of
hyperparameter tuning. The hidden layers incorporated in the architecture of the GCN model consist of
512 convolutional filters. The same number of filters is applied to the linear layers. The Drop-Edge layer,
implemented prior to the hidden layers, randomly discards graph edges with a 20% probability, whereas
the dropout mechanism within the Fully Connected layer is set to a high rate of 0.9. Alongside these
hyperparameters, the GCN configuration also includes the following parameters:

e Learning Rate
e Weight Decay
e Gamma Rate

Notably, the Batch Size for the GCN is fixed at 1, due to the limitation that the GCN cannot process
multiple graphs simultaneously. An alternative approach, involving the construction of a shared
adjacency matrix with variable node features, would be impractical and computationally inefficient for
our dataset. Once again, the HyperOpt tool helped refining the hyperparameter values.

The application of GNN/GCN in the analysis of brain networks represents a significant advancement
in neuroscience research. By leveraging the rich information encapsulated in brain graphs, these
networks can potentially uncover intricate patterns and associations that are indicative of specific brain
states or conditions. In the context of MTBI, this approach holds promise in identifying subtle alterations
in brain network dynamics, which traditional methods might overlook. Moreover, the utilization of
graph metrics as features provides a multi-faceted view of brain networks, potentially leading to more

accurate and robust classifications.
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5. Results and Discussion

In this final chapter of this thesis, we delve into a comprehensive analysis and discussion of the
results obtained from our research. The primary focus of this discussion revolves around the
classification methods utilized, namely Support Vector Machines (SVM), k-Nearest Neighbors (kNN),
Convolutional Neural Networks (CNN), and Graph Convolutional Networks (GCN). These methods were
employed to assess the performance of our brain network classification model, which incorporated
various network topologies and training strategies.

Notably, SVM, kNN, and CNN exhibited remarkably consistent results, hovering around 86%
accuracy when trained on both the aggregated single layer and the multilayer topology. However,
intriguingly, the utilization of the full multilayer topology led to more variable outcomes, ranging from
50% to 70%. The most notable achievement in the research came from the implementation of GCNs,
where classification results reaching an impressive 97% were witnessed. This remarkable performance
underscores the potential of GCN in brain network analysis and classification tasks.

In the pages that follow, we will discuss the intricacies of our training methodologies, parameter
selections, and result extraction techniques. Our aim is to offer a comprehensive understanding of the
factors influencing classification outcomes and provide insights that may inform future research

endeavors in the field of brain network analysis.



Thesis 69

Results

As already mentioned, the results of the classification methods’ application obtained were at
most cases good, even achieving near-perfect classification (GCN — 97%). In this section, the procedure

followed to receive these results will be described.

Support Vector Machine

The Support Vector Machine (SVM) Classifier in our study underwent training using three distinct
sets of features. Initially, it was trained on a comprehensive set of graph features, as detailed in Chapter
3.5.2, encompassing mean nodal strength, characteristic path length, global efficiency, betweenness
centrality, modularity, mean participation coefficient, and assortativity. Subsequently, a separate
classifier was trained solely on the node strengths of each node's signal, representing nodes with the
strongest connections and their associated connections. Lastly, another classifier was trained using the
betweenness centralities of each node, indicating the importance of a node in terms of its connections
within the network.

The training process was carried out using a cross-validation technique, a statistical method
employed to evaluate a predictive model's performance and generalizability. To ensure robustness, this
process was repeated multiple times, following a 5-fold cross-validation strategy. This rigorous approach
prevented overfitting and provided a reliable assessment of the model's accuracy and ability to perform
effectively on unseen data.

In our study, this cross-validation procedure was executed 300 times for each combination of
estimator, topology, and features. The ensuing results of this extensive procedure are presented below:

Table 5.1 | Accuracies achieved by the SVM models

Aggregated Topology All Features Nodal Strength Centralities
IPLV 0.6916 + 0.1096 0.8488 + 0.0765 0.8043 + 0.0937
mi 0.5948 + 0.1126 0.8887 + 0.0823 0.7468 + 0.1075

AEC 0.5500 + 0.0852 0.8694 £ 0.0796 0.7778 £ 0.1030



Multiplex Topology All Features Nodal Strength Centralities
IPLV 0.7384 +0.1057 0.8450 + 0.0914 0.5429 +£0.1040
mi 0.6108 £ 0.1161 0.8724 + 0.0809 0.5960 +£0.1076
AEC 0.4716 +0.0429 0.8081 + 0.0901 0.6197 +0.1069

Full Multilayer Topology All Features Nodal Strength Centralities

IPLV 0.5723 + 0.1237 0.5309 £+ 0.1109 0.5409 + 0.0920
mi 0.4956 £ 0.0956 0.5749 £ 0.1074 0.5136 £0.0334
AEC 0.4738 £ 0.0509 0.5027 £0.1164 0.5033 £ 0.0128
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It is easy to observe that in most cases the classification achieved a high accuracy (>80%) when the
SVM was trained on the Nodal Strength of the nodes, with the highest being extracted from the Mutual
Information (MI) adjacency matrix when the single aggregated layer topology was enforced.

Also worth mentioning is the fact that when the Full Multilayer Topology was applied, the
classification wasn’t accurate achieving at most a 57,49%. This result might be expected, as the features
derived from the Full Multilayer FC matrix may not be as discriminative for the classification task at
hand.

Considering the topologies, the Multiplex Topology tends to yield higher accuracy for all estimators
when using all features and node strengths, which might indicate that this approach to modeling the
network preserves important discriminative information that is beneficial for the SVM model's
performance.

A permutation t-test was additionally performed on the matrix corresponding to the feature
set/topology/estimator combination with the highest accuracies, for each estimator, to assess the
significance of individual features. The permutation test on the case of the Ml in the single aggregated

layer topology showed this result:
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Table 5.2 | Features with high importa
to permutation t-test

nce according

Nodal Feature p-value

t-statistic

Fusiform_R 2.44E-06
Paracentral_Lobule_L  1.72E-10

Precentral_R 7.59E-16
Precuneus_L 1.80E-23
Postcentral_R 5.75E-38

Temporal_Pole_Mid_R 5.02E-49

-4.740505526
-6.45174395
-8.195646604
-10.24047867
-13.43857541
-15.55614955

71

Heschl_R 0 -96.26986642
L
L R
B, | I
& i
. : I
i L5 J E.
I RR~ i, s
M '._H_
y=-27 x=36 -

z=60

Figure 5.1 The Regions of Interest having the greatest statistical importance.

Out of the 90 features, only 7 successfully passed the importance test, with the Right Heschl

node strength being the most significant. In contrast, for other estimators and topologies, nearly all

features exhibited importance. A noteworthy finding was that the majority of the most crucial features

across all cases were associated with the theta frequency band.
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k-Nearest Neighbors

The approach employed for the k-Nearest Neighbors classification method closely resembled
that of the SVM models. However, a distinct step was introduced into the process. Prior to the 300
iterations of 5-fold cross-validation, an exhaustive algorithm was applied to determine the optimal value
of k. This search encompassed values from 1 to 31, utilizing the mean accuracy from a 5-fold cross-
validation as the basis for selection. The results shown below also include the best k value chosen.

Table 5.3 | Accuracies achieved by the kNN models

Aggregated Topology All Features k Nodal Strength [ Centralities k
IPLV 0.7882 + 0.0928 10 ‘ 0.8579+0.0867 5 ‘ 0.8264 £0.0886 25
mi 0.6187 £0.1015 4 ‘ 0.8718+0.0869 5 ‘ 0.8523+0.0809 3
AEC 0.6054 + 0.1092 18 ‘ 0.8872+£0.0759 2 ‘ 0.8104 £0.0922 10
Multiplex Topology All Features k Nodal Strength [ Centralities
IPLV 0.7814 + 0.0941 15 ‘ 0.8329+0.0932 5 ‘ 0.5649 + 0.1088
mi 0.6686 + 0.1126 13 ‘ 0.8780+0.0758 1 ‘ 0.5836 £ 0.0910
AEC 0.4893 £ 0.1137 5 ‘ 0.7725+0.1065 8 ‘ 0.5868 £ 0.1040 29
Full Multilayer
Topol ¢ All Features k  Nodal Strength k Centralities k
opology
IPLV 0.6182+0.1095 3 ‘ 0.5769+0.1171 5 ‘ 0.6039£0.0941 30
mi 0.5198 £ 0.0963 24 ‘ 0.6193+0.1183 6 ‘ 0.5628 £ 0.1068 3
AEC 0.5979+0.1084 10 ‘ 0.5320+£0.0543 26 ‘ 0.5359 £+ 0.0810

The outcomes are comparable to those obtained with SVM models, with a marginal
improvement. The peak accuracy is realized using the AEC estimator within the simple aggregated layer
topology, specifically when utilizing the Nodal Stengths feature set. Similarly, the Full Multilayer
topology also yields the least accurate results in this analysis. Overall, IPLV appears to consistently
provide higher accuracy across all topologies and feature sets, indicating that features derived from IPLV

are more discriminative for k-NN classification in this context.
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Furthermore, the optimal k values vary significantly across the estimators and features,
reflecting the importance of neighborhood size in the classification process. These values though do not
surpass the value of 10 regarding the optimal values of each topology, indicating that in the best
scenarios, the classification is more sensitive to the immediate neighbors.

A permutation t-test was conducted once more to identify the most significant features. The p-
values obtained indicated that all features are important for the classification task. Notably, when
employing the MI and AEC estimators within the straightforward aggregated layer topology, the Right
Heschl Nodal Stength emerged as the most significant feature, suggesting that this brain region may play

a key role in distinguishing between mTBI patients and healthy individuals.

Convolutional Neural Networks

For the Neural Networks, the training process did not involve feature extraction. The CNN used as
input the Functional Connectivity matrix of each sample. After the data normalization for
standardization and generalization, the hyperparameters tuning took place. The range of values each

hyperparameter was set to be searched were:

1 4

e Learning Rate: a value in the uniformly distributed range between e =10 and e ™.
e Batch Size: a discrete value in the uniformly distributed range between 3 and 6. Since the total

samples were 60, and thus, in the 5-fold cross-validation the size of the test input was 6, this

value should not surpass the test input size.

1 4

e Weight Decay: a value in the uniformly distributed range between e~1° and e ™*.

e Gamma rate: a value uniformly distributed range between 0.8 and 1.

The hyperparameter tuning, although time-consuming, provided us the optimal values, in a run of

40 evaluations. Bellow you can see the results:
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Table 5.4 | The optimal hyperparameter values for topologies-FC estimators by Hyperopt (CNN)

Topology FC Estimator Learning Rate Batch Size Weight Decay Gamma Rate
Single Aggregated Layer IPLV 0.000236064 3 0.000809655 0.941871
Single Aggregated Layer Mi 0.00117068 4 0.0000535 0.966507
Single Aggregated Layer AEC 0.00116644 6 0.000931653 0.825818
Multiplex IPLV 0.00018148 4 0.0000475 0.953018
Multiplex MI 0.0000466 4 0.000403813 0.892538
Multiplex AEC 0.0000472 3 0.000294425 0.924925
Full Multilayer IPLV 0.00005 3 0.000435197 0.801115
Full Multilayer Ml 0.000302184 6 0.0000478 0.944316
Full Multilayer AEC 0.0000475 3 0.0063897 0.921444

From the table, we can conclude the following:

e The learning rates are quite low across all topologies and functional connectivity (FC)
estimators, which suggests that a gentle approach to updating the weights is optimal for this
classification task. It also implies that the data or the classification problem may be sensitive
to adjustments in the model's weights, requiring careful tuning.

e The weight decay values are also quite low, which suggests that only slight regularization is
necessary. This might indicate that the model is less prone to overfitting or that the data has
sufficient complexity that it does not require aggressive regularization. However, as shown
later, there were times that the validation loss differed from the training loss by a significant

amount, indicating that in these certain cases overfitting might have been noticed.
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e The gamma rates values suggest a moderate decay rate for the learning rate during training,
ensuring that the learning rate is reduced over time but not too abruptly.

The careful tuning of these values shows the complexity of the machine learning models and their
dependency on correctly selected hyperparameters. It is also apparent that the utilization of
optimization libraries like HyperOpt enhances the models’ performance through picking the appropriate
hyperparameters.

After finding the optimal hyperparameter values, a 5-fold cross validation was run 5 times, to
verify the results and to keep track of other information regarding the CNN training. Below these results
are displayed.

Table 5.5 | Accuracies achieved by the CNN models.

Single Aggregated Layer Multiplex Full Multilayer
IPLV 0.8933 +0.0828 0.8633 £ 0.0802 0.7067 + 0.1026
mi 0.9133 + 0.0582 0.8767 + 0.0809 0.5300 £ 0.1175
AEC 0.8733 £ 0.0739 0.8567 £ 0.0791 0.6800 + 0.1151

The highest accuracy was attained using the Mutual Information (MI) estimator within the Single
Aggregated Layer topology, whereas the lowest accuracy was observed with the same FC estimator
applied to the Full Multilayer topology. The Multiplex topology demonstrated accuracy approximately
on par with the Single Aggregated Layer topology, indicating that it could play a significant role in the
classification of healthy controls and mTBI patients.

Some interesting conclusions can also be derived from the Loss vs Epoch and the Accuracy vs
Epoch figures (Figure 5.2). IPLV generally shows a closer alignment between training and validation
losses, suggesting it might be a more robust estimator for this classification task. The Full Multilayer
topology tends to show higher losses and potential overfitting issues across all FC estimators, which is

consistent with the lower classification accuracies observed in the earlier table.
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Figure 5.2 CNN Training and Validation loss over the number of epochs trained on different FC estimators and

Some comments we could conclude to from these figures are:

e At most cases, the training and validation loss both decrease smoothly and remain close
together throughout the training, indicating that the model is generalizing well in these cases.

e The figures derived from the Full Multilayer topology show a significant gap between the

training and validation loss, indicating a potential overfitting issue a model that does not

generalize as well as in other topologies. The validation loss is also considerably higher

compared to other topologies. These observations align with the lower classification accuracies
seen for the Full Multilayer topology.
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e |n many cases, early stopping seems to have taken effect, as the number of epochs is less than
the maximum 300, suggesting the model converged quickly.

e When using MI in the Single Aggregated Layer topology, the training loss shows more
fluctuation, but overall, it decreases well. The validation loss shows some instability, which
might suggest a model that is less stable or has a harder time generalizing compared to the IPLV

estimator.

In general, comparing these results to the previously discussed SVM and k-NN models, it is evident
that the CNN models achieve varying levels of accuracy depending on the FC estimator and topology
used. The Single Aggregated Layer topology generally provides the highest accuracies across all
estimators when implemented in CNN models, similar to what was observed with the SVM and k-NN
methods. This consistency across different classification approaches emphasizes the potential suitability

of the Single Aggregated Layer topology for HC/mTBI classification tasks.

Graph Convolutional Network

The training procedure for the GCN is analogous to that of the CNN model. In initial phase of the
process, feature extraction is applied to the original MEG signals, with the specific features outlined in
Section 3.5.3. For the investigation of the single layer topology, we utilized the unfiltered signals, which
yielded an array comprising 9 features for each of the 90 nodes. In contrast, for all other scenarios, the
filtered signals were employed, generating an array consisting of 9 features across 450 nodes, equating
to 90 nodes for each of the five frequency bands.

Subsequently, the HyperOpt tool helped refining the hyperparameter values through a series of

evaluations equal to 30. The hyperparameter values computed are presented below:
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Table 5.6 | The optimal hyperparameter values for topologies-FC estimators by Hyperopt (GCN)

Topology FC Estimator Learning Rate Weight Decay Gamma Rate
Single Aggregated Layer IPLV 0.000146059 0.00448692 0.879547
Single Aggregated Layer Mi 0.000369024 0.000310777 0.864897
Single Aggregated Layer AEC 0.00110464 0.000618038 0.902186
Multiplex IPLV 0.0000476 0.000137086 0.807579
Multiplex Mi 0.000666004 0.000307109 0.829866
Multiplex AEC 0.00112024 0.000788121 0.832246
Full Multilayer IPLV 0.000816 0.00711633 0.804472
Full Multilayer Mi 0.000140931 0.0018564 0.809759
Full Multilayer AEC 0.00437827 0.00047582 0.826545

The Learning Rates and the values of the Weight Decay are different across all topologies and
estimators. These variations suggest that each combination of topology and estimator may require a
specific learning rate and decay of weights for optimal training of the GCN. The highest value of both
hyperparameters was observed for the AEC estimator in the Full Multilayer topology, potentially
indicating a greater need for regularization in this configuration, fact supported by the accuracy results
bellow. The Gamma Rates are similar across the configurations (in the range of 0.8 to 0.9), so a
moderate reduction in the learning rate was required over time. Once again, the careful consideration
and tuning is required to develop effective models, maximizing the GCN’s performance for the
classification task.

Once optimized, the GCN model undergoes training 20 times, employing a 5-fold cross-validation

method to ensure robustness and reliability in its predictive performance.
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Table 5.7 | Accuracies achieved by the GCN models.

Single Aggregated Layer Multiplex
IPLV 0.9692 + 0.0397 0.7533 + 0.1080
mi 0.9683 + 0.0401 0.6633 £ 0.1253
AEC 0.9692 + 0.0393 0.5067 £ 0.0441

From the results, the following observations can be made:

79

Full Multilayer

0.7667 + 0.0994
0.5633 £ 0.1356
0.5067 + 0.0333

e The accuracies for IPLV, Ml and AEC are almost identical for the Single Aggregated Layer and

represent the highest performance across all topologies, suggesting that this topology is highly

effective for both estimators when used with GCNs.
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topologies.
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e A significant drop in accuracy is observed for all estimators for the Multiplex and the Full Multilayer
topologies, with IPLV showing the highest accuracy, followed by MI, and AEC performing the least
effectively. This suggests that both topologies may present more challenges for the GCN models to
capture the discriminative features necessary for classification. The Full Multilayer topology seems to
be the least suitable when used with GCNs, as indicated by the consistent accuracies for AEC and the
drop for M.

Variations in the performance of models trained on the Single Layer versus Multilayer topologies
can be primarily attributed to the methods employed for feature extraction. The findings suggest that
features derived from the original signals significantly aid the model in differentiating between Healthy
Controls and mTBI patients, achieving near-perfect classification rates. However, the same level of
distinction is not observed with features from the filtered signals. Consequently, it may be necessary to
either identify new features more suited to the Multilayer topologies or enhance the GCN architecture
by incorporating a larger number of Graph Convolutional filters. This is because the multilayer
Functional Connectivity (FC) Brain Networks contain an abundance of information, which may require a
more sophisticated model structure to effectively decode and utilize for classification purposes. Such
outcomes can be supported by the high losses that the models provided in the multilayer topologies.

Comparing these results to the previous models’ accuracies, GCN models appear to outperform
them when using Single Aggregated Layer topology. For the rest topologies, while the results using the
IPLV estimator seem to be promising, the case for the Ml and the AEC seem to be extremely low, and
thus inadequate for this classification task. As previously mentioned, it is plausible that with optimized
configurations, improved accuracies could be realized. This hypothesis is grounded in the observation
that even with a relatively modest setup, one of the three estimators demonstrated satisfactory
performance. This suggests that there is potential for further enhancement of the model's accuracy

through careful refinement of its configuration.
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Figure 5.8 | Top 10 Performing Models
FC o o
Model Topology Estimator Accuracy Specificity Sensitivity
GCN Single ggf;fgated IPLV  96.92% +3.97 0.9674 0.9621
GCN Single ggf;fgated AEC 96.92% + 3.93 0.9783 0.9717
GCN Single ggyg;fgated MI 96.83% + 4.01 0.9744 0.9874
CNN Single ggyg;fgated MI 91.33%+5.82  0.8527 0.9270
CNN Single ggygerfgated IPLV  89.33% +8.28 0.8844 0.9226
Single Aggregated
SVM (Nodal Stengths) Layor M 88.87% + 8.23 0.8892 0.8853
ingle A

KNN (Nodal Stengths) ~ ~"8'® Lagyge"regated AEC  88.72% +7.59 0.8197 0.9509

kNN (Nodal Stengths) Multiplex Ml 87.80% + 7.58 0.8478 0.9072
CNN Multiplex M 87.67% + 8.09 0.8778 0.9850
CNN Single ggf;fgated AEC 87.33% + 7.39 0.8673 0.8881

Overall, most models performed well under the various FC estimators and topologies. As
expected in advance, the Neural Networks achieved higher accuracies compared to the traditional
Machine Learning techniques. SVM models have historically been robust and effective for binary
classification tasks, and in our case, they provided a solid baseline for performance. kNN models, which
rely on the similarity between feature sets, also demonstrated utility, especially when the optimal
number of neighbors (k) was determined through tuning. CNNs leveraged their ability to automatically
learn spatial hierarchies of features, yielding good results particularly with the Single Aggregated Layer
topology. GCNs, the most recent addition to our model arsenal, took advantage of the graph structure
of the data and showed promise in their ability to incorporate the connectivity information inherent in
brain network data. The varying performances observed across different models and topologies
highlight the complexity of modeling brain data and suggest that there is no one-size-fits-all approach.

From the figure below, several outcomes are obtained. The models using the Single Layer

topology with IPLV and Ml estimators (both GCN and CNN) are at the top, indicating that they have the
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highest true positive rates for the lowest false positive rates. models using the AEC estimator, regardless
of the classification method (CNN, kNN), appear lower on the graph, which shows that they have lower
true positive rates for the same false positive rates compared to models using IPLV and MI, suggesting
that AEC is less effective in this context. The SVM and kNN models, while still providing reasonable
performances, generally appear below the GCN and CNN models, indicating that they may not be as

effective in this application.
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Figure 5.4 ROC Curves of the top 10 models trained on FC estimators and topologies.

While each model has shown strengths and limitations, the pursuit of higher accuracy and
generalizability remains a central goal. Enhancements to these models, novel approaches to feature
selection and extraction, and advanced methods for hyperparameter optimization are some of the

techniques that could be enforced to achieve in general higher accuracies. Insights from neuroscience
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could guide the development of even more sophisticated models that are not only accurate but also
interpretable within the context of brain function and injury. The integration of these elements will pave

the way for future research to further refine the classification of healthy controls and mTBI patients.
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Previous Studies

The landscape of neuroimaging and computational neuroscience is rich with studies aiming to
unravel the complexities of the brain, particularly in the context of diagnosing and understanding mTBI.
This section delves into a comprehensive comparison between the current study's findings and

methodologies and those of previous research in the field.

In the study "Non-linear Synchronization Methods on Magnetoencephalographic (MEG)
Recordings" by Antonakakis (2015), an examination was conducted into the Cross-Frequency Coupling
among specific frequency bands (for example, 6-B, 6-B), employing a methodology akin to the Full
Multilayer topology utilized in our thesis. The establishment of Functional Connectivity was achieved
through the application of the Phase to Amplitude measure as an estimator between two nodes, either
within the same layer or across different layers. Subsequently, models such as k-Nearest Neighbors
(kNN), Ensemble (ENS), and Extreme Learning Machine (ELM) were implemented following the
application of the tensor subspace analysis (TSA) algorithm. These models yielded the subsequent

results.

Figure 5.9 | Results of ‘Non-linear Synchronization Methods on Magnetoencephalographic (MEG)

Recordings’ research
Band Coupling kNN ENS ELM
6,B 91.25+13.24 93.33+11.65 90 + 8.607
6, y1 93.75 £+ 6.588 96.67 £ 7.027 76.67 £ 19.56
6, B 92.5+8.74 90 +8.607 76.67 £21.08
0,vy1 93.75+10.62 90 +11.65 83.33+13.61
B, y2 93.75+10.62 96.67 £7.027 91.67 +£8.784
5,8 91.25+13.24 93.33+11.65 90 + 8.607
6, y1 93.75 £ 6.588 96.67 £ 7.027 76.67 £ 19.56
6, B 92.5+8.74 90 +8.607 76.67 £21.08
0,vy1 93.75+10.62 90 +11.65 83.33+13.61
B, y2 93.75+10.62 96.67 £7.027 91.67 +£8.784
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In another study, Aberrant Whole-Brain Transitions and Dynamics of Spontaneous Network
microstates in Mild Traumatic Brain Injury (Antonakakis et al., 2020), the researchers investigated
dynamic functional connectivity (DFC) in mTBI using MEG resting-state recordings to identify abnormal
alterations. By reconstructing brain activity across several frequency bands and using phase-locking
values for DFC analysis, the research quantified network microstates (NMstates) and assessed group
differences using chronnectomics. Classification based on chronnectomics and microstates achieved

high accuracy, sensitivity, and specificity as shown bellow.

Figure 5.10 | Classification Results of ‘Aberrant Whole-Brain Transitions and Dynamics of Spontaneous

Network microstates in Mild Traumatic Brain Injury’ research

NMstates Frequency band Accuracy Sensitivity Specificity
NM1 6 91.27+1.34 100 77.30+3.49
0 92.27 +1.35 100 80.00+3.49
a 96.14 + 0.55 100 90.00+1.42
B 97.42 £ 0.67 100 93.33+1.74
Yiow 93.85+1.22 100 83.97+3.18
Yhigh 96.15 £ 0.65 100 90.00 + 1.68
NM2 6 93.56+0.73 100 83.33+1.87
0 94.85 + 0.69 100 86.67 +1.83
a 93.84+0.70 100 83.97+1.88
B 92.88+0.98 100 81.40+2.53
Yiow 93.85+1.22 100 83.97+3.18
Yhigh 95.16 + 0.54 100 87.40+1.39
Chronnectomics + Cl 80.34+1.34 99.65 + 0.32 49.23 + 3.56

Another study, Sensor-level MEG combined with machine learning yields robust classification of
mild traumatic brain injury patients (Aaltonen et al, 2023), investigated the use of traditional Machine
Learning models, specifically Support Vector Machines (SVM), LDA and Logistic Regression (LR) in order
to diagnose whether a patient suffers or suffered from MTBI or not. The research achieved median
classification accuracies between 80 and 95% without significant differences across methods or

datasets, as displayed in the following table.
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Figure 5.11 | Classification Results of ‘Sensor-level MEG combined with machine learning yields robust

classification of mild traumatic brain injury patients’ research.

opr . . Accuracy
Classifier Experimental Condition (Dataset A-B)

LDA Eyes Closed 0.95-0.85
LDA Eyes Open 0.34-0.29
SVM Eyes Closed 0.88-0.88
SVM Eyes Open 0.17-0.59
LR Eyes Closed 0.80-0.88

LR Eyes Open 0.12-0.45

Finally, the study Using normative modeling and machine learning for detecting mild traumatic
brain injury from magnetoencephalography data (Itdlinna et al.,, 2023) utilized a machine learning
approach with normative modeling on MEG data to detect mTBI. Using a large normative dataset, they
modeled individual deviations in MEG signal features, and with support-vector-machine classifiers, they
achieved 79% accuracy in distinguishing mTBI patients from controls. The study underscores the
potential of this methodology for diagnosing mTBI, highlighting the significance of low-frequency activity

in the theta band as an indicator.

Figure 5.12 | Results of ‘Using normative modeling and machine learning for detecting mild traumatic

brain injury from magnetoencephalography data’ research.

Normative Data Accuracy Sensitivity Specificity
Full 0.790+0.154 0.912 £0.176 0.638 £ 0.277
Age-matched 0.761 £ 0.150 0.907 £ 0.166 0.581 £ 0.277
Random 0.711 +£0.153 0.914 £ 0.154 0.467 £ 0.318
None 0.786 + 0.162 0.912 £ 0.154 0.629 £ 0.293
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Future Directions

While our study has yielded significant insights into brain network analysis using various
classification methods, it also paves the way for promising future research directions. These directions
hold the potential to enhance our understanding of brain network dynamics and contribute to the
development of more robust diagnostic tools.

One intriguing avenue for future exploration involves extending the multilayer topology across
the temporal dimension. Currently, our multilayer analysis focuses on different frequency bands,
offering a static snapshot of brain connectivity. To capture the dynamic nature of brain function,
researchers may consider implementing a dynamic multilayer approach. This would involve examining
how brain networks evolve over time, providing insights into the temporal dynamics of brain function
and potential changes associated with brain disorders.

Another interesting direction would be the use of Graph Attention Networks (GATs) instead of
the GCN. GATs have gained prominence in recent years for their ability to learn the importance of
neighboring nodes in a graph. Integrating GATs into our classification framework could enable more
precise feature extraction and classification. By assigning varying attention weights to different brain
regions, GATs may reveal subtle but critical patterns in brain connectivity data, potentially leading to
improved classification accuracy.

In conclusion, this thesis has laid a strong foundation for future investigations in the field of
brain network analysis. These prospective directions, including dynamic multilayer topology, Graph
Attention Networks, and the use of other sets of both signal and graph features, hold the promise of
advancing our understanding of brain connectivity and enhancing the accuracy of diagnostic tools for
neurological conditions. As we embark on these new research journeys, we aim to contribute to the

broader scientific community's efforts to unravel the complexities of the human brain.
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