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Summary 

The concept of diffuser-augmented or shrouded wind turbines represents an attractive 

and highly versatile energy solution that has the potential to achieve power performance 

coefficients exceeding the Betz limit, and thus to improve the economic feasibility of renewable 

energy production under poor wind conditions, such as those prevailing within the urban 

environment. In that regard, shrouded wind turbines could eventually enable significant 

opportunities for more geographic dispersion of wind technology applications, growth in 

distributed energy deployments, and further expansion of renewable energy utilization on a 

global scale, contributing to the so-called energy transition. However, the achievement of 

widely adopted implementations and the consolidation of this promising technological 

application in the renewable energy market call for highly efficient and economically 

sustainable designs. Against this background, the present doctoral dissertation aims towards 

the development and validation of effective computational tools and numerical methodologies 

for, but not restricted to, the aerodynamic analysis, performance prediction, and design 

optimization of shrouded wind turbines. 

Initially, the current doctoral study has been focused on the development and validation of 

an in-house Blade Element Momentum (BEM) code, which allows for the aerodynamic 

analysis and performance prediction of both conventional horizontal-axis and diffuser-

augmented wind turbine rotors, in a remarkably short period of time. The proposed 

computational model is based on the extension of classical BEM theory to the case of shrouded 

rotors, which is actually implemented by introducing the velocity speed-up distribution over 

the rotor plane, for the unloaded diffuser configuration. Furthermore, the current BEM code 

has been enhanced with several empirical and analytical correction models, dealing with many 

of the inherent limitations of BEM theory; namely, two different correction models for 

capturing the power losses related to the blade tip and rotor hub, a drag correction model that 

accounts for the Reynolds number effects, and a detailed correction model for the accurate 

calculation of the axial induction factor, at the operating states of the rotor in which the 

Momentum theory is no longer valid. Besides, two different models for the extrapolation of 

the aerodynamic lift and drag coefficients to the entire range of angles of attack have been also 

implemented, based on the Montgomerie and Viterna-Corrigan extrapolation methods. 

Finally, the calculation of induced velocities at the rotor plane is achieved by applying a fixed-

point iteration scheme, which is coupled with a typical relaxation procedure, aiming to 

dampen the fluctuating behaviour of the axial induction factor, during the iterative process. 

The accuracy of the entire BEM model, both in terms of conventional and shrouded wind 

turbines, is assessed against numerical and experimental data available in the literature, while 
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the impact of the tip loss correction model on the predicted power output of the rotor, is also 

examined. 

Subsequently, the current doctoral dissertation features the application of Artificial 

Compressibility Method (ACM) for the numerical prediction of incompressible axisymmetric 

flows that involve swirling. The respective academic solver, named IGal2D, is based on the 

axisymmetric formulation of the Reynolds-Averaged Navier-Stokes (RANS) equations, which 

have been arranged in a pseudo-Cartesian form and enhanced by the addition of the 

circumferential momentum equation. The discretization of spatial derivative terms within the 

governing equations is performed via unstructured two-dimensional grid layouts, by 

employing a node-centered finite-volume scheme. For the evaluation of inviscid fluxes, the 

upwind Roe’s approximate Riemann solver is applied, coupled with a higher-order accurate 

spatial reconstruction, whereas an element-based approach is used for the calculation of 

gradients required for the viscous fluxes. In addition, a detailed description of the convective 

flux Jacobian and the entire eigenvector system used within the Roe’s approximate Riemann 

solver is provided, filling a respective gap in research literature. Time integration is succeeded 

through a second-order accurate four-stage Runge-Kutta method, adopting a local time-

stepping technique. Further acceleration, in terms of computational time, is achieved by using 

an agglomeration multigrid scheme, incorporating the full approximation scheme in a V-cycle 

process, within an efficient edge-based data structure. A detailed validation of the proposed 

numerical methodology, and the respective flow solver, is performed by considering several 

non-swirling and swirling flows with axial symmetry. Regarding the numerical validation of 

the corresponding results, IGal2D solver is compared against the commercial software ANSYS 

Fluent, by adopting appropriate metrics and characteristic flow quantities, but also against 

experimental measurements, confirming the ability of the proposed methodology to predict 

such flows in terms of accuracy. 

Additionally, this work reports the development and validation of an axisymmetric RANS 

- BEM model, which relies on the combination of the in-house BEM and IGal2D codes, for the 

simultaneous prediction of the wind turbine rotor performance and surrounding flow 

characteristics. The fundamental idea behind the proposed model is based on replacing the 

momentum part of the classical BEM theory with a more elaborate flow model, such as the 

Navier-Stokes equations, while assuming an actuator disc representation of the actual rotor 

geometry. Eventually, the rotor blades are modelled by means of body force terms, naturally 

included within the momentum conservation laws, and the Blade Element theory equations. 

The entire coupling procedure is fully coordinated by IGal2D software, while interaction 

between the involved codes is achieved via the aerodynamic blade loads and the velocity 

components at the rotor plane. The interpolation of the aforementioned quantities between the 

mesh nodes and the blade stations is implemented by custom Matlab scripts. 
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Despite the aforementioned analysis tools, this doctoral dissertation has been also focused 

on the design and aerodynamic evaluation a low Reynolds number airfoil family, for the entire 

blade span of small wind turbines, aiming to reduce the effects related to laminar separation, 

improve startup response, and meet acceptable levels of structural integrity. In particular, six 

airfoils of varying relative thickness have been designed, by increasing the thickness 

distribution of RG15 airfoil up to 50 percent, and adopting a rounded trailing edge, with a 

diameter equal to 1 percent of the chord length. The aerodynamic performance of RG15 family 

is initially evaluated by means of XFOIL code, at several low Reynolds numbers and angles of 

attack, while more elaborate RANS simulations are also conducted, in order to get additional 

information on the flow characteristics. Furthermore, the behavior of the recirculation area 

behind the rounded trailing edge, and that of the separation bubble near the leading edge for 

different values of relative thickness and angles of attack, is also examined. The computational 

results indicate that increasing the relative thickness of the airfoils has a beneficial impact on 

separation bubbles, while no significant effect of the rounded trailing edge on the aerodynamic 

characteristics of the airfoils has been observed. 

Finally, this work presents the development and application of a modular optimization 

framework for the aerodynamic shape optimization of shrouded wind turbines, which 

combines the aforementioned analysis tools with a parallel and asynchronous version of a 

meta-model assisted Differential Evolution (DE) algorithm. When required, the 

parameterization/deformation of the computational mesh and design geometry are 

simultaneously succeeded, by employing a recently developed computational tool that is 

based on Free-Form Deformation (FFD) technique. The entire optimization process is 

implemented iteratively until the completion of the maximum number of generations, while 

the DE algorithm interacts with the parameterization, analysis, and post-processing software 

in a completely automated manner, by using specially developed scripts. Eventually, the 

proposed methodology is applied to three distinct design optimization cases, including: 

 

 The aerodynamic shape optimization of the rotor blades for a given shroud geometry. 

 The aerodynamic shape optimization of an unloaded diffuser configuration. 

 The simultaneous aerodynamic shape optimization of the blades and the diffuser. 

 

Keywords: Actuator Disc Model; Aerodynamics; Airfoil Design; Axisymmetric Flow; Blade 

Element Momentum Theory; Computational Fluid Dynamics; Diffuser-Augmented Wind 

Turbines; Ducted Wind Turbines; Differential Evolution Algorithm; Free-Form Deformation; 

Low Reynolds Airfoils; Mesh Morphing; RANS Equations; RG15 Airfoil Family; Shape 

Optimization; Shrouded Wind Turbines; SST Model; Swirling Flow; Wind Energy. 
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Σύνοψη – Summary in Greek  

Οι ανεμογεννήτριες υποβοηθούμενες από διαχύτη (diffuser-augmented ή shrouded 

wind turbines) αντιπροσωπεύουν μια ευρεία κατηγορία εξαιρετικά ευέλικτων 

συστημάτων συγκομιδής αιολικής ενέργειας, τα οποία παρέχουν τη δυνατότητα 

επίτευξης συντελεστών ισχύος που υπερβαίνουν το θεωρητικό όριο του Betz, και συνεπώς 

μπορούν να συμβάλλουν στην οικονομική βιωσιμότητα της παραγωγής ανανεώσιμης 

ενέργειας σε περιοχές που χαρακτηρίζονται από χαμηλό αιολικό δυναμικό, όπως το 

αστικό περιβάλλον. Επομένως, η ευρύτερη υιοθέτηση και εγκατάσταση ανεμογεννητριών 

υποβοηθούμενων από διαχύτη θα μπορούσε τελικά να οδηγήσει σε μεγαλύτερη 

γεωγραφική διασπορά των εφαρμογών αιολικής ενέργειας, εδραίωση των συστημάτων 

διανεμημένης παραγωγής ισχύος, και περαιτέρω χρήση των ανανεώσιμων πηγών 

ενέργειας σε παγκόσμια κλίμακα, συμβάλλοντας έτσι σε μια ταχύτερη ενεργειακή 

μετάβαση. Ωστόσο, η επίτευξη ευρέως αποδεκτών προϊόντων και η εδραίωση αυτής της 

τεχνολογικής εφαρμογής στην παγκόσμια αγορά ανανεώσιμων πηγών ενέργειας 

απαιτούν εξαιρετικά αποδοτικές και οικονομικά βιώσιμες σχεδιάσεις. Σε αυτό το πλαίσιο, 

η παρούσα διδακτορική διατριβή στοχεύει στην ανάπτυξη και επικύρωση 

αποτελεσματικών υπολογιστικών εργαλείων και αριθμητικών μεθοδολογιών, για την 

αεροδυναμική ανάλυση και τη βελτιστοποίηση ανεμογεννητριών υποβοηθούμενων από 

διαχύτη. 

Αρχικά, η παρούσα διδακτορική μελέτη εστιάζει στην ανάπτυξη και επικύρωση των 

αποτελεσμάτων ενός υπολογιστικού κώδικα που βασίζεται στη θεωρία Στοιχείων 

Πτερύγωσης - Δίσκου Ορμής (Blade Element Momentum – BEM). Το συγκεκριμένο 

υπολογιστικό μοντέλο χαρακτηρίζεται από την κατάλληλη τροποποίηση/επέκταση της 

κλασικής θεωρίας ΒΕΜ για την περίπτωση ανεμογεννητριών υποβοηθούμενων από 

διαχύτη, η οποία υλοποιείται μέσω της αδιάστατης συνιστώσας της αξονικής ταχύτητας 

στο επίπεδο του ρότορα, υπό την απουσία φόρτισης. Συνεπώς, ο προτεινόμενος κώδικας 

παρέχει τη δυνατότητα αεροδυναμικής ανάλυσης και αξιολόγησης της απόδοσης του 

ρότορα, τόσο συμβατικών ανεμογεννητριών οριζοντίου άξονα, όσο και ανεμογεννητριών 

υποβοηθούμενων από διαχύτη. Επιπλέον, η συγκεκριμένη υλοποίηση έχει εμπλουτιστεί 

με αριθμό εμπειρικών και αναλυτικών μοντέλων διόρθωσης, που σχετίζονται με την 

αντιμετώπιση εγγενών περιορισμών της θεωρίας ΒΕΜ. Αυτά συμπεριλαμβάνουν, δύο 

διαφορετικά μοντέλα διόρθωσης για τον υπολογισμό των απωλειών ισχύος από το 

ακροπτερύγιο και την πλήμνη, ένα μοντέλο διόρθωσης της τιμής του αεροδυναμικού 

συντελεστή αντίστασης λόγω των φαινομένων που σχετίζονται με τον αριθμό Reynolds, 

και ενός λεπτομερούς μοντέλου διόρθωσης για τον ορθό υπολογισμό του αξονικού 

συντελεστή επαγωγής στις περιοχές λειτουργίας του ρότορα, όπου η εγκυρότητα της 
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θεωρίας Δίσκου Ορμής παύει να ισχύει. Η προεκβολή των αεροδυναμικών συντελεστών 

άνωσης και αντίστασης σε ολόκληρο το εύρος γωνιών προσβολής πραγματοποιείται 

μέσω δύο διαφορετικών μοντέλων, που υλοποιήθηκαν στα πλαίσια της παρούσας 

διατριβής, και βασίζονται στις μεθόδους Montgomerie και Viterna-Corrigan. Τέλος, ο 

υπολογισμός των επαγόμενων ταχυτήτων στο επίπεδο του ρότορα επιτυγχάνεται μέσω 

της εφαρμογής μίας επαναληπτικής μεθόδου σταθερού σημείου, σε συνδυασμό με μια 

διαδικασία χαλάρωσης, στοχεύοντας στη μείωση των ταλαντώσεων της τιμής του 

αξονικού συντελεστή επαγωγής κατά τη διάρκεια της επαναληπτικής διαδικασίας. Η 

ακρίβεια των αποτελεσμάτων του προτεινόμενου υπολογιστικού μοντέλου – τόσο για την 

περίπτωση συμβατικών ανεμογεννητριών οριζοντίου άξονα, όσο και για αυτή 

ανεμογεννητριών υποβοηθούμενων από διαχύτη – επικυρώνεται μέσω της σύγκρισης 

των αντίστοιχων αποτελεσμάτων με αριθμητικά και πειραματικά δεδομένα από τη 

διεθνή βιβλιογραφία. 

Στη συνέχεια, η παρούσα διδακτορική διατριβή περιγράφει την εφαρμογή της Μεθόδου 

Τεχνητής Συμπιεστότητας (Artificial Compressibility Method – ACM) για την αριθμητική 

πρόλεξη ασυμπίεστων και αξονοσυμμετρικών ροών, που χαρακτηρίζονται από την 

παρουσία περιφερειακής συνιστώσας της ταχύτητας (swirling velocity). Ο αντίστοιχος 

ακαδημαϊκός αριθμητικός επιλύτης που αναπτύχθηκε – επονομαζόμενος IGal2D – 

βασίζεται στην αξονοσυμμετρική μορφή των διαφορικών εξισώσεων Reynolds-Averaged 

Navier-Stokes (RANS), οι οποίες έχουν τελικά διατυπωθεί για ένα ψευδο-καρτεσιανό 

σύστημα αναφοράς και εμπλουτιστεί με την προσθήκη της περιφερειακής συνιστώσας 

της εξίσωσης της ορμής. Η διακριτοποίηση των χωρικών παραγώγων εντός του μοντέλου 

της ροής πραγματοποιείται μέσω της χρήσης μίας κεντροκομβικής μεθόδου 

πεπερασμένων όγκων (node-centered finite-volume method), επί διδιάστατων μη-

δομημένων υπολογιστικών πλεγμάτων. Για την εκτίμηση των μη-συνεκτικών 

διανυσμάτων της ροής εφαρμόζεται ο προσεγγιστικός επιλύτης του Roe, ο οποίος θεωρεί 

ένα τοπικό μονοδιάστατο πρόβλημα Riemann στη διεπαφή των γειτονικών όγκων 

ελέγχου, ενώ η αύξηση της ακρίβειας του προαναφερθέντος υπολογισμού επιτυγχάνεται 

με την εφαρμογή ενός σχήματος δεύτερης τάξης χωρικής ακρίβειας, βασισμένο στην 

τεχνική Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL). Από την 

άλλη, η εκτίμηση των συνεκτικών διανυσμάτων της ροής προϋποθέτει τον πρωτύτερο 

υπολογισμό των παραγώγων των συνιστωσών της ταχύτητας στη διεπαφή των όγκων 

ελέγχου, η οποία συμπίπτει με το μέσο της ακμής που συνδέει τους αντίστοιχους 

υπολογιστικούς κόμβους, και βασίζεται στη δημιουργία νέων δυικών όγκων ελέγχου 

γύρω από την εξεταζόμενη ακμή. Ο υπολογισμός τόσο των μη-συνεκτικών, όσο και των 

συνεκτικών διανυσμάτων ροής, εκτελείται με σάρωση των ακμών του πλέγματος, 

χρησιμοποιώντας κατάλληλες δομές δεδομένων, με στόχο τη μείωση του απαιτούμενου 



Σύνοψη – Summary in Greek 

xi 

υπολογιστικού κόστους. Επιπλέον, η παρούσα εργασία παρέχει μια λεπτομερή 

περιγραφή του συστήματος ιδιοδιανυσμάτων που χρησιμοποιείται στον επιλύτη του Roe, 

καλύπτοντας έτσι το αντίστοιχο κενό στην διεθνή βιβλιογραφία. Η χρονική ολοκλήρωση 

και τελική κατάσταση της ροής προσεγγίζεται επαναληπτικά, μέσω ενός ρητού σχήματος 

και της μεθόδου Runge-Kutta τεσσάρων βημάτων, και δεύτερης τάξης χρονικής ακρίβειας. 

Πέραν των κατάλληλων δομών δεδομένων, περαιτέρω μείωση του υπολογιστικού χρόνου 

επιτυγχάνεται μέσω της εφαρμογής της τεχνικής του τοπικού ψευδο-χρονικού βήματος 

(local time-stepping) καθώς και της μεθόδου πολυπλέγματος (multigrid). Η εγκυρότητα 

της παρούσας μεθοδολογίας, και του αντίστοιχου λογισμικού, επαληθεύονται μέσω της 

σύγκρισης των αποτελεσμάτων με πλήθος αριθμητικών και πειραματικών δεδομένων 

αναφοράς, τα οποία είναι διαθέσιμα στη βιβλιογραφία, καθώς και με τα αποτελέσματα 

του εμπορικού λογισμικού ANSYS Fluent, για διάφορους τύπους αξονοσυμμετρικών 

ασυμπίεστων ροών. 

Επιπλέον, η παρούσα διδακτορική διατριβή περιγράφει την ανάπτυξη και επικύρωση 

των αποτελεσμάτων ενός αξονοσυμμετρικού μοντέλου RANS - BEM, για την ταυτόχρονη 

πρόλεξη της απόδοσης του ρότορα και των χαρακτηριστικών της περιβάλλουσας ροής. Η 

συγκεκριμένη μεθοδολογία βασίζεται ουσιαστικά στο συνδυασμό των λογισμικών BEM 

και IGal2D, τα οποία αναπτύχθηκαν στα πλαίσια της παρούσας διδακτορικής διατριβής. 

Η θεμελιώδης ιδέα πίσω από το προτεινόμενο μοντέλο συνοψίζεται στην αντικατάσταση 

της θεωρίας Δίσκου Ορμής εντός του κλασσικού μοντέλου BEM, με ένα πιο λεπτομερές 

μοντέλο ροής, όπως οι εξισώσεις Navier-Stokes, υποθέτοντας ότι η πραγματική γεωμετρία 

του ρότορα αναπαρίσταται από έναν απείρως λεπτό δίσκο ενέργειας (actuator disc). 

Τελικά, η επίδραση των πτερυγίων στο πεδίο ροής μοντελοποιείται μέσω των εξισώσεων 

της θεωρίας Στοιχείων Πτερύγωσης (Blade Element theory) και των όρων πηγής, που 

περιλαμβάνονται εντός των εξισώσεων διατήρησης της ορμής. H διαδικασία σύζευξης 

συντονίζεται εξ’ ολοκλήρου από το λογισμικό IGal2D, ενώ η αλληλεπίδραση μεταξύ των 

εμπλεκομένων λογισμικών επιτυγχάνεται μέσω των αεροδυναμικών φορτίων/δυνάμεων 

κατά μήκος του πτερυγίου, και των συνιστωσών της ταχύτητας στο επίπεδο του ρότορα. 

Η παρεμβολή των παραπάνω ποσοτήτων, μεταξύ των κόμβων του πλέγματος και των 

στοιχείων της πτερύγωσης υλοποιείται μέσω κατάλληλα σχεδιασμένων Matlab scripts. 

Πέραν των προαναφερθέντων λογισμικών ανάλυσης, η παρούσα διδακτορική διατριβή 

επικεντρώνεται επίσης στη σχεδίαση και την αεροδυναμική αξιολόγηση μιας πλήρους 

οικογένειας αεροτομών, για χαμηλούς αριθμούς Reynolds και ολόκληρο το εύρος 

πτερυγίων μικρών ανεμογεννητριών, με στόχο τη μείωση των επιπτώσεων της 

αποκόλλησης του οριακού στρώματος, τη βελτίωση της απόκρισης του ρότορα κατά την 

εκκίνηση, και την επίτευξη αποδεκτών επιπέδων δομικής ακεραιότητας. Συγκεκριμένα, η 

προτεινόμενη οικογένεια αεροτομών αποτελείται από έξι αεροτομές με διαφορετικό 
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σχετικό πάχος, οι οποίες σχεδιάστηκαν αυξάνοντας την κατανομή πάχους της αεροτομής 

RG15 έως και 50 τοις εκατό, και υιοθετώντας ένα στρογγυλεμένο χείλος εκφυγής (trailing 

edge) με διάμετρο ίση με 1 τοις εκατό του μήκους της χορδής. Αρχικά, η αεροδυναμική 

απόδοση της οικογένειας αεροτομών RG15 αξιολογείται μέσω του λογισμικού XFOIL, για 

διάφορους αριθμούς Reynolds και γωνίες προσβολής, ενώ στη συνέχεια 

πραγματοποιούνται πιο λεπτομερείς προσομοιώσεις RANS, μέσω του λογισμικού IGal2D, 

προκειμένου να ληφθούν πρόσθετες πληροφορίες για τα χαρακτηριστικά της 

περιβάλλουσας ροής. Επιπλέον, η παρούσα εργασία εξετάζει τη συμπεριφορά της 

περιοχής ανακυκλοφορίας πίσω από το στρογγυλεμένο χείλος εκφυγής, καθώς και αυτή 

της φυσαλίδας αποκόλλησης (separation bubble) κοντά στο χείλος προσβολής (leading 

edge), για διαφορετικές τιμές του σχετικού πάχους και της γωνίας προσβολής. Σύμφωνα 

με τα αριθμητικά αποτελέσματα, η αύξηση του πάχους των αεροτομών δείχνει να έχει 

ευεργετική επίδραση στην εμφάνιση φυσαλίδων αποκόλλησης, ενώ δεν παρατηρείται 

σημαντική επίδραση του στρογγυλεμένου χείλους εκφυγής στις τιμές της αεροδυναμικής 

άνωσης και αντίστασης. 

Τέλος, η παρούσα διατριβή – όπως δηλώνει και ο τίτλος της – παρουσιάζει την 

ανάπτυξη και εφαρμογή μιας ενιαίας, σπονδυλωτής, υπολογιστικής μεθοδολογίας για 

τον αυτοματοποιημένο βέλτιστο σχεδιασμό ανεμογεννητριών υποβοηθούμενων από 

διαχύτη, η οποία συνδυάζει τα προαναφερθέντα λογισμικά/μοντέλα ανάλυσης με μια 

παράλληλη και ασύγχρονη έκδοση ενός Διαφορικού Εξελικτικού αλγορίθμου. Στις 

περιπτώσεις όπου απαιτείται η παραμετροποίηση και παραμόρφωση του υπολογιστικού 

πλέγματος, αυτές επιτυγχάνονται μέσω ενός λογισμικού το οποίο επίσης αναπτύχθηκε 

στα πλαίσια της παρούσας διδακτορικής διατριβής και βασίζεται στην τεχνική της 

Ελεύθερης Παραμόρφωσης (Free-Form Deformation). Η διαδικασία βελτιστοποίησης 

εφαρμόζεται επαναληπτικά μέχρι την ολοκλήρωση του προκαθορισμένου αριθμού 

γενεών, ενώ ο εξελικτικός αλγόριθμος αλληλεπιδρά με τα λογισμικά παραμετροποίησης, 

ανάλυσης και μετα-επεξεργασίας των αποτελεσμάτων, εντός ενός πλήρως 

αυτοματοποιημένου πλαισίου, χρησιμοποιώντας ειδικά σχεδιασμένα scripts. Τελικά, η 

προτεινόμενη μεθοδολογία εφαρμόζεται σε τρεις διαφορετικές περιπτώσεις 

βελτιστοποίησης σχεδιασμού, οι οποίες αφορούν: 

 

 Τη βέλτιστη αεροδυναμική σχεδίαση πτερυγίων για μία δεδομένη γεωμετρία διαχύτη. 

 Τη βέλτιστη αεροδυναμική σχεδίαση ενός διαχύτη υπό μηδενική φόρτιση ρότορα. 

 Την ταυτόχρονη βέλτιστη αεροδυναμική σχεδίαση πτερυγίων και διαχύτη. 
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𝛥ℎL   Total pressure loss between the rotor plane and the diffuser exit plane 

𝑘  Turbulent kinetic energy [m2/s2] 

𝐿  Lift force [N] 
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Lref  Reference Length [m] 

𝐿𝑠  Separation length 

𝐿𝑠𝑏  Separation bubble length 

𝑚̇  Mass flow rate [kg/s] 

𝑀  Torque [Nm] 

𝑁𝑖,𝑝 , 𝑁𝑗,𝑞 B-Spline Basis functions 

𝑝  Static pressure [Pa] 

𝛥𝑝𝑑  Pressure loss across the rotor disc 

𝑃  Power [W] 

Pr  Prandtl number [-] 

𝑞̇  Volumetric flow rate [m3/s] 

𝑞𝑠  Total Shen’s loss factor [-] 

𝑞𝑠,𝑡𝑖𝑝  Shen’s tip loss factor [-] 

𝑞𝑠,ℎ𝑢𝑏 Shen’s hub loss factor [-] 

𝑅  Rotor radius [m] 

𝑅ℎ  Hub radius [m] 

𝑅𝑥  𝑥-component of total aerodynamic force 

𝑅𝑦  𝑦-component of total aerodynamic force 

Re  Reynolds number [-] 

𝑆𝑁(𝑃) Set of nodes that are directly connected to grid node 𝑃 

𝑡  Time [s] 

𝑇  Thrust force [N] 

𝑢𝑧 , 𝑢𝑟 , 𝑢𝜃 Velocity components in cylindrical coordinates 

𝑢 , 𝑣 , 𝑤 Velocity components in Cartesian coordinates 

Vref  Reference velocity [m/s] 

𝑤𝑎  Axial velocity component at the rotor plane [m/s] 

𝑤𝑡  Tangential velocity component at the rotor plane [m/s] 

𝑥 , 𝑦  Cartesian coordinates 
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𝑧 , 𝑟 , 𝜃 Cylindrical coordinates  

𝐀𝑃𝑄  Jacobian matrix of the convective flux vector related to the edge 𝑃𝑄 

𝐅𝑖 , 𝐆𝑖 Inviscid flux vectors of the flow model 

𝐅𝑖
𝑡 , 𝐆𝑖

𝑡 Inviscid flux vectors of the turbulence model 

𝐅𝑣 , 𝐆𝑣 Viscous flux vectors of the flow model 

𝐅𝑣
𝑡 , 𝐆𝑣

𝑡  Viscous flux vectors of the turbulence model 

𝐇  Source term vector of the flow model 

𝐇𝑡  Source term vector of the flow model 

𝐈  Identity matrix 

𝐋𝑃
𝑡   Jacobian matric of the turbulence model source term 

𝐧𝑃𝑄  Outward normal vector to 𝜕𝐶𝑉𝑃𝑄 

𝐧̂𝑃𝑄  Outward unit normal vector to 𝜕𝐶𝑉𝑃𝑄 

𝐑  Total aerodynamic force vector 

𝐑𝑃
(𝑛)

  Sum of the numerical fluxes at time step n 

𝐫𝑃𝑄  Position vector that connects the mesh nodes 𝑃 and 𝑄 

𝐔  Primitive variable vector of the flow model 

𝐔𝑡  Primitive variable vector of the turbulence model 

𝛥𝐔𝑃
(𝑛)

 Correction vector of primitive variables at time step n 

𝛕  Viscous stress tensor 

𝚽𝑖
𝑃𝑄  Inviscid flux vector related to edge 𝑃𝑄 

𝚽𝑣
𝑃𝑄  Viscous flux vector related to edge 𝑃𝑄 

 

Greek Symbols 

α  Angle of attack [rad] 

𝛽  Artificial compressibility parameter [-] 

𝛾  Velocity speed-up ratio for the unloaded diffuser [-] 

𝜂𝑑  Diffuser efficiency [-] 

𝜃𝐵  Global pitch angle [rad] 
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𝜃𝑃  Local pitch angle [rad] 

𝜃𝑇  Local twist angle [rad] 

𝜆  Tip-speed ratio [-] 

𝜇  Dynamic viscosity [N∙s/m2] 

𝜇𝑡  Turbulent dynamic viscosity [N∙s/m2] 

𝜈  Kinematic viscosity [m2/s] 

𝜈𝑡  Turbulent kinematic viscosity [m2/s] 

𝜈ref  Reference kinematic viscosity [m2/s] 

𝜌  Density [kg/m3] 

ρref  Reference Density [kg/m3] 

𝜎  Rotor solidity [-] 

𝜏𝑖𝑗  Stress tensor components 

𝜙  Angle between the relative velocity and rotor plane [rad] 

𝜓𝑟  Relaxation factor [-] 

𝜔𝑅  Rotational speed of the rotor [rad/s] 

𝜔𝛼  Axial induced velocity [m/s] 

𝜔𝑡  Tangential induced velocity [m/s] 

 

Subscripts and Superscripts 

∞  Free-stream quantities 

0  Station in the ambient free-stream (undisturbed flow) 

1  Station at the shroud’s inlet plane 

2  Station immediately upstream of the rotor plane 

3  Station immediately downstream of the rotor plane 

4  Station at the shroud’s exit plane 

5  Station in the ultimate (far) wake 

𝑑  Station at the actuator disc (rotor plane) 

𝑖  Inviscid quantities 
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𝑖𝑛  Quantities at the inlet of the computational domain 

𝑣  Viscous quantities 

𝑧  Axial direction component 

𝑟  Radial direction component 

𝜃  Circumferential direction component 

𝑡  Quantities related to turbulence model 

𝑥  𝑥 – direction component 

𝑦  𝑦 – direction component 

 

Abbreviations and Acronyms 

ACM   Artificial Compressibility Method 

BEM    Blade Element Momentum 

CAD    Computer-Aided Design 

CFD    Computational Fluid Dynamics 

CFL    Courant-Friedrichs-Lewy Number 

CV    Control Volume 

DAWT   Diffuser-Augmented Wind Turbine 

DE    Differential Evolution 

DoF    Degrees of Freedom 

EARSM   Explicit Algebraic Reynolds Stress Model 

ERCOFTAC   European Research Community on Flow, Turbulence and Combustion 

FFD    Free-Form Deformation 

GWEC   Global Wind Energy Council 

HAWT   Horizontal-Axis Wind Turbine 

IEC    International Electrotechnical Commission 

IRENA   International Renewable Energy Agency 

LES    Large Eddy Simulation 

LBM    Lattice – Boltzmann Method 
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MAE   Mean Absolute Error 

MAPE    Mean Absolute Percentage Error 

MLP    Multi-Layer Perceptron 

MPI    Message Parsing Interface 

NACA   National Advisory Committee for Aeronautics 

NASA   National Aeronautics and Space Administration 

NCFV   Node-Centered Finite Volume 

NREL   National Renewable Energy Laboratory 

RANS   Reynolds-Averaged Navier-Stokes 

REmap   Renewable Energy Roadmap 

RBF    Radial Basis Function 

TSR    Tip-Speed Ratio 

UAE    Unsteady Aerodynamics Experiment 

WESC   Wind Energy Conversion System 

YoY     Year-Over-Year 
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Chapter 1 

Introduction 

  

The first chapter aims to familiarize the reader with the concept of shrouded or diffuser-augmented wind 

turbines and introduce him/her to the subject of the current research study. In particular, Section 1.1 

presents the motivation underlying this doctoral dissertation, while Section 1.2 presents the main 

objectives and the respective approaches. Subsequently, Section 1.3 unravels the core physical principles 

governing the operation of shrouded wind turbines and Section 1.4 provides a detailed overview of the 

major theoretical, numerical and experimental investigations reported in literature. Finally, Section 1.5 

outlines the structure and Section 1.6 summarizes the contributions of this doctoral dissertation, while 

Section 1.7 lists all the related publications. 

 

1.1 Motivation 

In recent years, the escalating awareness about the adverse environmental impact of carbon 

dioxide emissions and global climate change has been the main factor pushing for the 

systematic revision of the conventional energy paradigm and actively promoting the massive 

deployment of sustainable energy technologies, based on renewable energy sources – a 

process widely referred to as energy transition (Creutzig et al., 2014). Under these global 

circumstances, the wind power sector has been experiencing remarkable rates of growth since 

the early years of the twenty-first century, by capitalizing on supportive government policies 

and international climate treaties (such as the Kyoto Protocol, the Paris Climate Agreement 

and the European Green Deal), along with significant technological and scientific 

developments (see Figure 1.1). As a matter of fact, and according to the latest annual report 

released by the Global Wind Energy Council (GWEC), 2020 was recorded as the best year in 

history for the global wind power industry, which – despite the adverse impact of COVID-19 

pandemic on the sectors of supply chain and project construction execution – witnessed a year-

over-year (YoY) growth of approximately 53 percent (GWEC, 2021). In particular, more than 

93 GW of new onshore and offshore wind power came online around the world during the 

course of 2020, contributing for an overall installed capacity of approximately 743 GW (GWEC, 

2021). Moreover, future projections and estimates indicate that this exciting growth will carry 

on. According to the Renewable Energy Roadmap (REmap) of the International Renewable 

Energy Agency (IRENA) – which represents a climate resilient pathway characterized by a 

relatively ambitious, yet achievable, uptake of renewable energy sector and energy efficiency 

measures – the global wind energy market has the potential to reach 2,000 GW until 2030 and 

https://unfccc.int/kyoto_protocol
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
https://gwec.net/
https://www.irena.org/remap
https://www.irena.org/
https://www.irena.org/
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6,000 GW until 2050, thus providing up to 21 and 35 percent of the worldwide energy demand, 

respectively (IRENA, 2019). Figure 1.2 summarizes the REmap targets for the wind generation 

share and total installed capacity (two of the key wind energy indicators) in order to achieve 

the global energy transformation or transition. 

 

 

Figure 1.1: Overview of the key milestones in wind power industry since 1982 (IRENA, 2019). 

 

However, the constant expansion of large wind farm installations, in combination with 

several technical, economic and social limitations, has caused a considerable reduction in the 

available sites with high quality wind resources (Mathew et al., 2016). Therefore, exploiting the 

full wind potential, increasing the wind generation share and eventually, meeting the future 

energy targets, call for the development of innovative and more versatile wind energy 

conversion systems that are capable of operating effectively in unconventional installation 

sites and under poor wind conditions, such as those usually encountered within the urban 

environment (Dighe, 2020). 
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Figure 1.2: The IRENA’s wind roadmap to 2050 (REmap). The target values of wind generation share 

and total installed capacity, in order to achieve the global energy transformation (IRENA, 2019). 

 

Against this background, shrouded or diffuser-augmented wind turbines (also abbreviated 

as DAWTs) have recently attracted renewed attention from the international engineering 

community, and have become a significant part of the current research agendas, since they 

represent a promising solution for improving the efficiency and economic feasibility of power 

production from low energy density flows (Nunes et al., 2020). The fundamental concept 

characterizing the operation of these wind energy concentrators can be summarized on the 

addition of a static diffuser around the rotor, which essentially serves as a mechanism to 

control the expansion of the wake, and create a region of high subatmospheric pressure near 

the exit plane of the diffuser – a phenomenon that eventually results in augmenting the mass 

flow rate passing through the turbine (Hansen et al., 2000). Consequently, under the condition 

of a well-designed diffuser, shrouded wind turbines have the ability to yield power 

performance coefficients well in excess of the Betz limit (Betz, 2013) and thus, to extract 

additional power from the wind, as compared to a conventional horizontal-axis wind turbine 

(HAWT) with the same rotor diameter (Leloudas et al., 2018a). Figure 1.3 illustrates the full-

scale prototype of Hummingbird H15 DAWT model designed by OGT Greentech Ltd, with a 

rated capacity of 15 kW, while Figure 1.4 presents the commercially available Halo 6 kW 

DAWT solution of Halo Energy, which was specifically designed to address the energy needs 

within the expansive telecom industry. 

https://www.omnilinkgreentech.com/
https://www.halo.energy/
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Figure 1.3: The full-scale prototypes of Hummingbird H15 DAWT model designed by OGT Greentech 

Ltd, with a rated capacity of 15 kW [Source: https://www.omnilinkgreentech.com]. 

 

In contrast to their conventional and larger counterparts, shrouded wind turbines provide 

a considerably higher level of flexibility, both in terms of required space and wind speed 

conditions (van Dorst, 2011). Therefore, they could possibly be integrated within a much 

broader spectrum of rural and remote areas (Zhu et al., 2019), operating either in a stand-alone 

mode or in combination with other small-scale energy solutions – for example, within the 

context of a distributed energy system (Evans et al., 2020) – not only for on-grid but also for 

off-grid power generation, usually directly where the power is required, rather than where the 

wind is most favourable. In addition to that, the casing of the rotor has been proved to 

drastically reduce the emitted noise levels, the danger from broken blades and the sensitivity 

of the turbine to turbulence (Phillips, 2003). Hence, these wind energy conversion systems 

could form an attractive solution for urban or residential applications as well, especially in 

terms of direct small-scale energy production (Dighe, 2020). 

 

 

Figure 1.4: The commercial Halo 6 kW model of Halo Energy [Source: https://www.halo.energy]. 

 

In summary, shrouded wind turbines represent a potentially efficient energy solution that 

could improve the feasibility of renewable energy production in regions with small wind 

potential, and eventually enable significant opportunities for more geographic dispersion of 

https://www.omnilinkgreentech.com/
https://www.halo.energy/
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wind technology applications, growth in distributed energy deployments and further 

expansion of renewable energy utilization on a global scale (Evans et al., 2020; Yang et al., 2019). 

Even though their ability to result in acceptable levels of energy production cost (levelized cost 

of energy – LCoE) had been the subject of severe criticism for many years, mainly because of 

the Vortec Energy collapse in the early 2000s, the recent success stories of several companies 

across the world, such as the Halo Energy, proves that shrouded wind turbines could actually 

form a sustainable energy option, and finally reach broad commercialization. Yet, the 

achievement of a widely adopted implementation and the consolidation of this promising 

technological application in the renewable energy market can only be realized on the condition 

of highly efficient designs. Consequently, the development of effective computational tools 

and optimization methodologies, applicable to shrouded or diffuser-augmented wind 

turbines, still remains of major importance. 

 

1.2 Aims and Objectives 

The primary aim of the current doctoral dissertation involves the development and 

validation of effective computational tools and numerical methodologies for, but not restricted 

to, the aerodynamic analysis, performance prediction and shape optimization of diffuser-

augmented wind turbines. In this direction, the following objectives, which are schematically 

illustrated in Figure 1.5, have been accomplished: 

 

 Development and validation of a computational Blade Element Momentum (BEM) code, 

for the aerodynamic analysis and power output prediction of both conventional 

(unshrouded) horizontal-axis wind turbine and diffuser-augmented wind turbine rotors 

(see Chapter 2 and Chapter 3). 

 

 Development and validation of an axisymmetric Reynolds-Averaged Navier-Stokes 

(RANS) solver – named IGal2D – for the numerical prediction of incompressible fluid 

motion that involves swirling (see Chapter 4 and Chapter 5). 

 

 Development and validation of an axisymmetric RANS - BEM model, which relies on the 

combination of the in-house BEM and IGal2D codes, for the simultaneous prediction of 

the wind turbine rotor performance and surrounding flow characteristics (see Chapter 8). 

 

 Development of a computational tool for the parameterization and deformation of two-

dimensional grids (mesh morphing), based on Free-Form Deformation (FFD) technique 

(see Section 9.2).  
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 Development, validation, and application of a complete optimization framework for the 

design of diffuser-augmented wind turbines, which combines the aforementioned 

computational tools with an asynchronous and meta-model assisted Differential 

Evolution (DE) algorithm (see Chapter 9 and Chapter 10).  

 

 Finally, this doctoral dissertation features the design and aerodynamic evaluation of a 

low-Reynolds number airfoil family, for the entire blade span of small wind turbines, 

aiming to reduce the effects related to laminar separation, improve startup response, and 

meet acceptable levels of structural integrity (see Chapter 6 and Chapter 7). 

 

 

Figure 1.5: The main objectives of the current doctoral dissertation. 
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1.3 Physics of Shrouded Wind Turbines 

The process of extracting mechanical power from the wind is inherently related to the 

application of a thrust force on the primary mass flow, pointing in the upwind direction 

(Hansen et al., 2000). In terms of horizontal-axis wind turbines, the corresponding thrust force 

is the direct outcome of the static pressure drop across the rotor plane, which in turn is induced 

by the rotation of the blades. Ultimately, the aerodynamic power output can be calculated by 

multiplying the mass flow rate through the rotor with the corresponding pressure drop 

(Manwell et al., 2010). At first glance, the power output of the system could be increased by 

increasing the thrust force and the associated pressure drop; however, that would also result 

in decreasing the mass flow rate through the rotor. Therefore, yielding the maximum power 

coefficient, that is the ratio between the rotor power output and the total wind energy input, 

requires the proper compromise of the involved quantities. According to momentum theory, 

the optimal operating conditions for an unshrouded horizontal-axis wind turbine dictate that 

the axial velocity component at the rotor plane should equal to 2/3 of the ambient wind 

velocity, and the dimensionless thrust coefficient should equal to 8/9 (Manwell et al., 2010). 

Under these conditions, the power coefficient takes its maximum theoretical value, which is 

widely known as the Betz limit (Betz, 2013). In practice, the Betz limit indicates that the 

maximum energy amount that an unshrouded horizontal-axis wind turbine can extract from 

the wind equals to 59.3 percent of the total energy contained within the stream tube passing 

through the rotor (see Section 2.1.1). The energy extraction scheme for a conventional 

horizontal-axis wind turbine is illustrated in Figure 1.6. 

 

 

Figure 1.6: The energy extraction scheme for a conventional horizontal-axis wind turbine. 

 

Evidently, the Betz limit represents a natural barrier within the power extraction process. 

However, under the presence of mechanism that increases the mass flow rate through the 
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rotor, the Betz limit could be exceeded. According to the study of van Holten (1981), enhancing 

the mass flow rate through the rotor can be achieved by means of two separate mechanisms. 

The first augmentation mechanism relies on the application of a cross-wind force on the 

primary mass flow (see Section 1.3.1), while the second one is based on mixing the wake and 

the external flow behind the rotor, in sub-atmospheric pressure (see 1.3.2). 

 

 Cross-Wind Force Mechanism 

At first, let us recall that according to momentum theory, the axial velocity component over 

the rotor plane for an unshrouded horizontal-axis wind turbine that operates at the Betz limit 

equals to 2/3 of the ambient wind velocity (Manwell et al., 2010). Therefore, under the 

assumptions of incompressible fluid motion and no mass flow crossing the lateral boundary 

of the stream tube passing through the rotor, the continuity equation implies that the far 

upstream cross-sectional area of the reference stream tube should equal to 2/3 of the rotor 

swept area; in other words, when the rotor operates at the Betz limit, it basically captures the 

kinetic energy contained in the wind, from an effective surface that is 2/3 of the rotor swept 

area (Ten Hoopen, 2009). A detailed application of momentum theory for unshrouded 

horizontal-axis wind turbines can be found in Section 2.1.1. 

 

 

Figure 1.7: Schematic representation of the diffuser-augmented wind energy extraction scheme. 

 

One of the available mechanisms to increase the effective area of the reference stream tube, 

as well as the mass flow rate through the rotor, relies on the application of a force 

perpendicular to the primary mass flow (van Holten, 1981). In practice, this perpendicular 

force can be realized by placing an annular lifting device – for example, a shroud or a diffuser 
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– around the rotor, with its suction side pointing towards the hub. Now, according to the third 

law of Newton, the mass within the reference stream tube will naturally exert a reaction force 

on the lifting device, in order to achieve a force equilibrium; a schematic representation of the 

described situation is provided in Figure 1.7. However, this reaction force can only be exerted 

by the flow, if more air mass is enforced to pass through the annular lifting device. 

Consequently, the ultimate effect of placing a diffuser or shroud around the rotor can be 

summarized on augmenting the effective area of the reference stream tube, and thus, the mass 

flow rate. 

From a different standpoint, the augmented levels of mass flow rate through the rotor of a 

shrouded wind turbine could also be described by means of vortex theory (Ten Hoopen, 2009). 

To this end, let us consider a shroud geometry in the shape of a simple annular airfoil, with 

the suction or convex side pointing towards the rotor hub, similar to the one illustrated in 

Figure 1.7. Eventually, such an annular airfoil apparatus will cause – like any airfoil 

configuration – the air flow in the suction side, which in this case represents the internal 

surface of the shroud, to accelerate. Evidently, the levels of pressure suction and flow 

acceleration are tightly related to the lift force generated by the airfoil and therefore, according 

to the Kutta-Joukowski theorem, to the bound vorticity on the airfoil surface. Essentially, the 

inward radial force generated by the airfoil is accompanied by a ring vortex, which in turn, 

according to the Biot-Savart law, will induce a higher velocity on the suction surface. 

Ultimately, these higher velocity levels increase the mass flow rate through the wind turbine 

rotor; the bound vorticity increases the effective area of the stream tube in front of the rotor 

and consequently, the volumetric flow capability (also termed as swallowing capacity) of the 

wind turbine (Ten Hoopen, 2009). 

 

 Mixing of the Wake and the External Flow Mechanism 

In addition to the first augmentation mechanism, described in Section 1.3.1, the operation 

of modern shrouded wind turbines is also characterized by mixing effects between the rotor 

wake and the external flow (van Holten, 1981) – a momentum transfer mechanism that 

eventually results in higher mass flow rates and power augmentation levels. In order to 

explain the fundamentals of the second augmentation mechanism, let us initially consider the 

flow situation behind the rotor. When a wind turbine rotor extracts energy from a moving 

fluid stream, it will induce – like every other obstacle in a flow – a wake; the wake field behind 

the rotor is characterized by both a static pressure and a velocity deficit, as compared to the 

undisturbed flow stream. Even though a low pressure region behind the rotor is favourable, 

this is not the case for the low wake velocity. According to the study of Igra (1981), the power 

augmentation obtained by a shrouded wind turbine is a direct outcome of the subatmospheric 
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pressure at the exit plane of the shroud. Therefore, an ideal situation, in terms of power 

production, would be that in which the pressure behind the rotor is low and the mass flow 

rate still high. 

 

 

Figure 1.8: Schematic representation of the diffuser-augmented wind energy extraction scheme, 

combined with wake and external flow mixing. 

 

In practice, increased levels of mass flow rate can be achieved either by means of wake 

expansion or by increasing the wake velocity (Lilley and Rainbird, 1956). The fundamental 

concept underlying the second augmentation mechanism is actually based on restoring the 

momentum deficit behind the rotor, by mixing the wake flow with the undisturbed flow 

stream, as schematically illustrated in Figure 1.8; the undisturbed flow will in turn provide the 

extra momentum for the rotor wake flow to recover from the velocity deficit, caused by the 

energy extraction process. Moreover, another reasoning behind the present augmentation 

mechanism is that the mixing effect between the rotor wake and the external flow will 

eventually cause the wake to have an additional expansion and thus, providing the rotor wake 

flow with more volume. Apparently, increased wake volume levels for the same mass flow 

rate through the shroud will result in lower exit pressure behind the rotor and therefore, more 

suction (Ten Hoopen, 2009). 

 



Chapter 1 Introduction 

 

1-11 

1.4 Shrouded Wind Turbines – A Brief Research Review 

The basic theoretical background of shrouded or diffuser-augmented wind turbines was 

originally established by Lilley and Rainbird (1956) during the 1950s, by means of axial or one-

dimensional momentum theory, while the first experimental investigations were conducted 

by Kogan and Nissim (1962), Kogan and Seginer (1962, 1963), Igra (1976, 1977, 1981), Gilbert 

and Foreman (1979, 1983), Foreman and Gilbert (1983), Gilbert et al. (1978) and Oman et al. 

(1977). In addition, Igra (1977) and Foreman et al. (1978) devised some useful theoretical 

models as well, which were based on one-dimensional momentum theory, aiming to analyze 

the obtained experimental data and prove the ability of diffuser-augmented wind turbines to 

exceed the Betz limit. Recently, these early models were upgraded by Khamlaj and Rumpfkeil 

(2017); according to these latter researchers, the improved semi-empirical formulas that they 

proposed have been proved quite effective, especially during the preliminary design stage of 

shrouded rotors. In brief, the most important outcome of these initial studies was a remarkable 

reduction in the length-to-diameter ratio of the back then shroud designs – a parameter tightly 

associated with cost – by simultaneously maintaining high augmentation values. This is 

mainly attributed to the exploitation of several innovative approaches for that certain period 

of time; these include the replacement of straight-wall diffusers with high-lift producing 

annular airfoils (Igra, 1981), the application of boundary layer control techniques (Gilbert et 

al., 1978) and the substitution of exit flaps with exit flanges (Loeffler, 1981). In summary, these 

investigations provided a much deeper understanding of the fundamental principles 

governing shrouded wind turbines. Therefore, they succeeded to establish some valuable 

preliminary design criteria, such as low static pressure at the exit plane of the shroud, high 

velocity acceleration over the rotor plane, minimum drag levels, and large pressure recovery. 

Around the same period, significant research on the development of effective 

computational models has been reported as well. In particular, Fletcher (1981) developed a 

low-fidelity computational model, based on the blade element theory, by introducing two 

empirical parameters – namely, the diffuser efficiency and the diffuser exit pressure coefficient 

– in order to include the effect of the diffuser within the rotor analysis. In addition, Fletcher 

(1981) enriched the particular model by the addition of wake rotation and blade Reynolds 

number effects; thus, he achieved a good agreement between the computational results and 

the experimental data, in terms of the turbine power coefficient and axial velocity. 

Furthermore, significant research was carried out by Koras and Georgalas (1988) and 

Georgalas et al. (1991). These latter studies were mostly focused on evaluating the influence of 

several geometrical characteristics of wing shaped shrouds, including the angle of attack, the 

chord length and the maximum camber, on the power output of the turbine. Eventually, by 

applying the lifting line theory, and by representing the shroud geometry as a superposition 
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of source and vortex rings, Koras and Georgalas (1988) reached to the conclusion that power 

output increases linearly with the chord length and the angle of attack. Later on, Phillips (2003) 

proposed a modified Blade Element Momentum (BEM) model, by introducing an empirically-

derived formula for calculating the radial distribution of the axial velocity component over the 

rotor plane. That simplified computational model – along with high-fidelity Computational 

Fluid Dynamics (CFD) simulations and wind tunnel experiments – was then extensively 

applied during a research program on a full-scale prototype built by Vortec Energy Limited 

(Phillips et al., 1999); that was the first private company that attempted to commercialize the 

diffuser-augmented wind turbine concept. Nevertheless, the particular prototype failed to 

achieve an accepted LCoE, mostly because of the intense flow separation phenomena and the 

heavy supportive structures required to endure the expected loads. Thus, unfortunately, the 

aftermath of the subsequent collapse of Vortec Energy Limited, and the economic aspects 

associated with the high cost of the shroud, led to the disappearance of shrouded wind 

turbines from the back then research agendas (Khamlaj and Rumpfkeil, 2017). 

However, in recent years, there has definitely been renewed interest in shrouded wind 

turbine applications, along with substantial attempts towards commercialization (Khamlaj 

and Rumpfkeil, 2017). In this context, Hansen et al. (2000) performed a numerical study to 

explore the impact of placing a diffuser around a wind turbine. By using momentum theory 

and CFD simulations, they demonstrated that power augmentation is proportional to the 

increased mass flow rate passing through the rotor. A similar momentum analysis was also 

carried out by van Bussel (1999); this study indicated that the optimal thrust coefficient of a 

shrouded wind turbine is equal to 8/9, as exactly for the case of conventional (unshrouded) 

horizontal-axis wind turbines. The same value for the optimal thrust coefficient was later 

suggested by Jamieson (2009), who employed an ideal limiting model, based on a 

generalization of one-dimensional momentum theory. Eventually, van Bussel (1999) reached 

to similar conclusions with Hansen et al. (2000), as he reported that power augmentation is 

proportional to the increased mass flow rate, while he emphasized on the necessity of 

substantially reducing the back pressure, in order to achieve power performance coefficients 

far beyond the Betz limit. 

In view of the preceding literature review, it is evident that momentum or actuator disk 

theory has always been a valuable tool for the analysis and preliminary design of shrouded 

wind turbines. Yet, this simplified model lacks the ability to estimate the system’s performance 

for a prescribed value of thrust coefficient and a given shroud geometry (Bontempo and 

Manna, 2016). Therefore, in efforts to address the limitations of classical momentum theory, as 

well as those of other linearized and simplified models, Bontempo and Manna (2013, 2014, 

2016) recently devised an accurate nonlinear and semi-analytical actuator disk theory. That 

model was capable of taking under consideration the shape of the examined shroud and 
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accounting for the interaction between the shroud and the rotor, the slipstream rotation and 

the non-uniform distribution of thrust over the rotor plane. Subsequently, Bontempo and 

Manna (2016) applied this nonlinear theory to investigate the impact of thrust coefficient and 

shroud’s camber on power output; according to their findings, the increase of shroud’s camber 

favours the overall system performance. 

Further computational investigations were reported by Bet and Grassmann (2003); in fact, 

they used CFD simulations to assess the potential of a shrouded wind turbine with a wing 

profiled diffuser, while Grassmann et al. (2003) carried out an experimental study on this 

particular design. The experimental results revealed that power output augmentation could 

reach 1.55 and 2, for high and low wind speeds respectively. In addition, Wang F. et al. (2008) 

investigated the possibility of improving wind energy harvesting under low wind speed 

conditions in built-up areas. In this direction, they employed experimental tests and CFD 

computations to evaluate the effect of a converging-diverging nozzle on the power output of 

a small wind turbine for domestic use in such locations. Later on, Aranake et al. (2015) assessed 

numerically the performance of several shroud configurations, based on the criterion of 

highest mass flow rate. According to Aranake et al. (2015), the improvement in power 

extraction beyond the unshrouded wind turbine was substantial, even for particularly low 

wind speeds. Ultimately, they concluded their study by supporting the fact that the concept 

of diffuser-augmented wind turbine could actually form a promising alternative for 

sustainable energy production under low wind speed regimes. 

A considerable number of studies have been also focused on the practice of using a 

brimmed or flanged diffuser. The most representative works on this concept were made by 

Abe and Ohya (2004), Ohya and Karasudani (2010), Kosasih and Tondelli (2012), Kardous et 

al. (2013), Mansour and Meskinkhoda (2014), Toshimitsu et al. (2008) and Takahashi et al. 

(2012). The majority of these studies indicated that the low pressure area and the strong vortex 

formation caused by the presence of the flange could increase the wind speed approaching the 

turbine by a factor ranging up to 2.6. Moreover, Abe and Ohya (2004) identified the turbine 

loading and the opening angle of the diffuser as the parameters with the highest impact on the 

overall performance. In particular, they suggested that low-loaded turbines, the elimination of 

large flow separations and the conservation of high pressure recovery, could significantly 

improve the power output levels. 

Lately, Rio Vaz et al. (2014) proposed an extension to the classical BEM theory, and 

developed a modified BEM model of low computational cost, for the rotor analysis of 

shrouded wind turbines. The accuracy of the particular computational model was successfully 

validated, against both numerical and experimental data, by Leloudas et al. (2017), while a 

similar model was subsequently utilized by Vaz and Wood (2016) and Leloudas et al. (2018a, 
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2019a) for the aerodynamic optimization of diffuser-augmented wind turbine blades. Besides, 

several additional optimization schemes have been recently developed and successfully 

applied for the design of improved shrouded wind turbines (Alpman, 2018; Aranake and 

Duraisamy, 2017; Bagheri-Sadeghi et al., 2018; Dighe, 2020; Foote and Agarwal, 2013; Khamlaj 

and Rumpfkeil, 2018; Leloudas et al., 2018a, 2018b, 2019a, 2020a; Liu J. et al., 2016; Oka et al., 

2014, 2016; Sorribes-Palmer et al., 2017; Venters et al., 2018). These optimization methodologies 

can be generally classified into three main categories: (i) those that exclusively involve the 

design of the shroud – either by imposing a predetermined turbine loading (Foote and 

Agarwal, 2013; Venters et al., 2018) or even by considering an unloaded shroud configuration 

(Leloudas et al., 2018b, 2020a; Liu J. et al., 2016); (ii) those that investigate the rotor design for 

a given and fixed shroud geometry (Leloudas et al., 2018a, 2019a); and finally, (iii) those 

exploring the simultaneous optimization of the coupled rotor/shroud system (Alpman, 2018; 

Aranake and Duraisamy, 2017; Khamlaj and Rumpfkeil, 2018; Oka et al., 2014, 2016). Among 

the aforementioned approaches, the latter has been generally considered as the most effective 

one, while the individual optimization of the shrouded wind turbine components could 

possibly lead to sub-optimal solutions, as characteristically reported by Khamlaj and 

Rumpfkeil (2018). This is mainly attributed to the fact that the flow field inside the diffuser, 

and therefore, its overall aerodynamic performance, are strongly dependent upon the presence 

and the geometrical characteristics of the rotor blades. In particular, the circumferential 

velocity component that is induced by the rotating turbine blades has the tendency to suppress 

possible flow recirculation in the downstream diffuser wall, while the pressure drop across 

the rotor causes a natural tendency of the pressure to recover, and the wake to expand (Hjort 

and Larsen, 2015). Eventually, these flow features could result in increasing the mass flow rate 

and the power output performance. Therefore, as Khamlaj and Rumpfkeil (2018) suggested, it 

is vital that the aerodynamic optimization of the shroud and rotor blades are simultaneously 

performed, in order to achieve a highly performing shrouded wind turbine design. 

Finally, significant research on shrouded wind turbines was also made by Venters et al. 

(2018), who explored the influence of several design parameters (thrust coefficient, angle of 

attack, rotor gap and axial position of the rotor) on power output. Among the examined ones, 

thrust coefficient was found as the parameter with the greatest impact on power output. In 

addition, Venters et al. (2018) highlighted that the optimal angle of attack of the shroud was 

much larger than the separation angle of attack for the corresponding airfoil in a freestream, 

as well as that large angles of attack did not necessary induce flow separation within the 

shroud, since the swirling velocity induced by the rotor helps to energize the boundary layer 

of the internal diffuser wall and maintain the flow attached. Conclusively, this work indicated 

that shrouded wind turbines are capable of exceeding the Betz limit, even if the power 

coefficient is calculated based on the exit area of the shroud. In line with Venters et al. (2018), 
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Alpman (2018) noted that the pressure drop across the rotor would delay flow separation 

within the diffuser; however the optimal designs obtained from this study failed to overcome 

the Betz limit, when the power coefficient was calculated based on the exit area of the shroud. 

 

1.5 Thesis Outline 

The remaining part of the current doctoral dissertation has been organized as follows: 

Chapter 2 – The first part of this chapter, namely Section 2.1, describes the application of 

axial momentum theory for both conventional horizontal-axis and diffuser-augmented 

wind turbine rotors, while the second part, namely Section 2.2 and 2.3, provides a detailed 

overview on the theoretical background and the major features of an in-house BEM code, 

which was entirely developed in the context of the present doctoral dissertation. 

Chapter 3 – This chapter provides a detailed validation study on the overall performance 

of the in-house BEM solver presented in Chapter 2. To this end, several benchmark cases 

have been selected, including both conventional horizontal-axis wind turbine (Section 3.1) 

and shrouded wind turbine (Section 3.2) rotors. The results of the current BEM 

simulations are compared against both numerical and experimental data available in the 

literature, as well as against the results obtained from the well-known QBlade software. 

Chapter 4 – This chapter describes the development of an in-house developed RANS 

solver, named IGal2D, for the numerical prediction of incompressible axisymmetric flows 

involving swirling. In particular, Section 4.1 provides a general introduction into 

axisymmetric swirling flows, as well as the incentives for the development of IGal2D 

solver, while Section 4.2 presents the adopted form of the governing equations, defining 

the flow and turbulence models. Finally, the remaining sections of the current chapter 

outline the numerical methodology underlying the IGal2D solver, emphasizing on the 

spatial and temporal discretization schemes, the flux evaluation approaches, and the 

source term treatment. 

Chapter 5 – This chapter aims to provide a detailed evaluation study on the numerical 

accuracy and performance of the in-house developed IGal2D solver. For this purpose, 

several incompressible and axisymmetric flows are considered, including both non-

swirling (see Section 5.1) and swirling (see Section 5.2) regimes. The simulation results are 

compared against analytical, numerical and experimental data. 
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Chapter 6 – This chapter features a new low-Reynolds number airfoil family for the entire 

blade span of small horizontal-axis wind turbines, aiming to reduce the effects related to 

laminar separation, improve startup response and meet acceptable levels of structural 

integrity. The proposed RG15 low Reynolds airfoil family consists of six airfoil profiles of 

varying relative thickness, which were designed by increasing the thickness distribution 

of RG15 airfoil up to 50% and adopting a rounded trailing edge, with a diameter equal to 

1% of the chord length. 

Chapter 7 – This chapter involves the aerodynamic performance evaluation of the entire 

low Reynolds RG15 airfoil family. In order to obtain the aerodynamic characteristics of 

the involved airfoils, both the well-known XFOIL code and the in-house developed 

IGal2D solver are employed. 

Chapter 8 – This chapter features the development and numerical validation of an 

axisymmetric RANS - BEM model, which relies on the combination of the in-house BEM 

and IGal2D codes, for the simultaneous prediction of the wind turbine rotor performance 

and surrounding flow characteristics. In particular, the first part of the current chapter 

provides an implementation overview of the coupled RANS - BEM model, while the 

second part includes a detailed validation study on the proposed methodology. 

Chapter 9 – This chapter describes a modular optimization framework for the 

aerodynamic shape optimization of shrouded wind turbines, which combines the analysis 

tools developed within the current study, with a parallel and asynchronous version of a 

meta-model assisted Differential Evolution (DE) algorithm. The first part of this chapter 

(Section 9.1) outlines the major features of the in-house developed surrogate-assisted DE 

algorithm, employed as the optimizer. The particular asynchronous and parallel version 

of the current algorithm was developed at the Turbomachinery and Fluid Dynamics 

laboratory in the context of the doctoral dissertation of Giorgos A. Strofylas. Subsequently, 

Section 9.2 describes the development of a mesh parameterization and deformation tool 

that is based on Free-Form Deformation (FFD), while the last part of the current chapter 

(Section 9.3) provides an overview of the proposed optimization framework. 

Chapter 10 – This chapter presents the application of the propped optimization 

framework to the design of improved diffuser-augmented wind turbines. 

Chapter 11 – Finally, this chapter summarizes the principal conclusions of the current 

doctoral dissertation. In particular, Section 11.1 provides a concise recap of the entire 
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study, focused on the most significant results and contributions, while Section 11.2 

indicates possible directions for further research on the specific topic. 

At this point, please note that, excluding Introduction and Conclusions chapters, the current 

doctoral dissertation has been divided into five thematic units that can, in one way or another, 

also be read independently. Nevertheless, they are part of a bigger storyline, illustrated in 

Figure 1.9. 

 

 

Figure 1.9: The storyline of the current doctoral dissertation. 

 

1.6 Contributions 

Considering similar studies available in the literature, the most significant contributions of 

this doctoral dissertation can be summarized as follows: 

 The design and aerodynamic evaluation of a new low Reynolds airfoil family for the 

entire  blade span of small horizontal-axis wind turbines, based on the RG15 airfoil 

(Leloudas et al., 2019b, 2020b). 
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 The behavior investigation of the recirculation area behind the rounded trailing edge of 

the newly introduced RG15 airfoils for different angles of attack. In addition, this study 

involves the impact examination of the thickness-to-chord ratio on the separation 

bubbles near the leading edge of the RG15 airfoils (Leloudas et al., 2020). 

 

 The development and validation of an in-house Blade Element Momentum code for the 

performance prediction of shrouded wind turbines (Leloudas et al., 2017). 

 

 The development and numerical assessment of an academic flow solver that combines 

the artificial compressibility technique with the axisymmetric RANS equations for the 

accurate prediction of incompressible fluid motion that involves swirling (Leloudas et 

al., 2018b, 2021). 

 

 The detailed description of the convective flux Jacobian and the entire eigenvector 

system, used within Roe’s approximate Riemann solver (Leloudas et al., 2021). 

 

 The development and application of a versatile computational framework for the 

aerodynamic shape optimization of diffuser-augmented wind turbines, which combines 

an asynchronous and meta-model assisted Differential Evolution algorithm with the 

currently developed analysis tools (Leloudas et al., 2020). 
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Chapter 2 

Development of a Blade Element Momentum Code 

 

The first part of the current chapter, namely Section 2.1, describes the application of axial momentum 

theory for both conventional horizontal-axis and diffuser-augmented wind turbine rotors, while the 

second part, namely Section 2.2 and 2.3, provides a detailed overview on the theoretical background and 

the major features of an in-house BEM solver, which was entirely developed in the context of the present 

doctoral dissertation. 

 

2.1 Momentum Theory 

Momentum theory represents one of the oldest, yet most widely adopted, theoretical tools 

for the aerodynamic analysis and performance prediction of wind turbine rotors, which is 

essentially based on control volume integrals for mass and energy conservation, along with 

axial and angular momentum balances (Sørensen, 2012). The origins of momentum theory can 

be traced back to the studies of Rankine (1865) and Froude (1889). However, several 

improvements and generalizations have been proposed since then, widening its applicability 

and boosting its accuracy (Sørensen, 2016; van Kuik, 2020). In general, the fundamental 

concept underlying momentum theory is that the actual rotor geometry can be represented by 

an infinitely thin, frictionless and permeable actuator disc with the same diameter as the rotor 

(see Figure 2.1 and Figure 2.3); the actuator disc operates under the assumptions of steady, 

inviscid, incompressible and axisymmetric flow (Burton et al., 2001; van Kuik et al., 2015). 

Besides, in the simplest form of momentum theory, the actuator disc is also considered ideal; 

that is, the disc – except from being frictionless – does not induce any azimuthal (rotational or 

circumferential) velocity component in the wake field. In that case, the resultant theory is 

referred to as axial or one-dimensional momentum theory, in order to be distinguished from 

the so-called generalized momentum theory (Sørensen, 2016), which is capable of accounting 

for wake rotation effects (Manwell et al., 2010). The following sections (namely, Section 2.1.1 

and Section 2.1.2) outline the application of axial momentum theory for both conventional 

(unshrouded) horizontal-axis and shrouded or diffuser-augmented wind turbines. As these 

sections indicate, even though the axial momentum theory is based on several simplifying 

assumptions, it can eventually provide very useful insights on the optimal operating 

conditions of the rotor, while it forms the basis for the development of the well-known BEM 

theory (see Section 2.2), which is nowadays the standard computational model for design 

applications in wind turbine industry (Malki et al., 2013). 
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 Axial Momentum Theory for HAWTs 

In this section, the fundamental concepts and equations forming the one-dimensional or 

axial momentum theory, for the case of a conventional (unshrouded) horizontal-axis wind 

turbine, are recalled. Initially, let us consider a control volume, in the form of a long stream 

tube with circular cross section – such the one illustrated in Figure 2.1 and Figure 2.2 – that 

passes through the rotor disc and extends in both upstream and downstream directions. 

Herein, the following notations are adopted; subscript (0) refers to a station far upstream of 

the actuator disc, in the undisturbed flow; subscript (2) refers to a station immediately before 

the actuator disc; subscript (d) refers to a station at the actuator disc; subscript (3) refers to a 

station immediately after the actuator disc; finally, subscript (5) refers to a station downstream 

of the actuator disc, in the ultimate wake (also called as far wake). The term ultimate or far 

wake has been introduced to indicate the region where the air stream has fully recovered its 

undisturbed pressure value (Sørensen, 2016). Please note that subscripts (1) and (4) have 

intentionally been skipped, as they will be used during the one-dimensional analysis of 

shrouded wind turbines (see Section 2.1.2) to signify the stations corresponding to the inlet 

and exit planes of the diffuser. All the reference stations used for the description of axial 

momentum theory are illustrated in Figure 2.1 and Figure 2.2. 

 

 

 

Figure 2.1: Schematic representation of the stream tube passing through the rotor of a conventional 

(unshrouded) horizontal-axis wind turbine. Illustration of the reference stations for the description of 

axial momentum theory. 

 

Under the assumption of no mass flow crossing the lateral boundary surface of the 

reference control volume, which is represented by the dashed lines in Figure 2.1 and Figure 

2.2, the fundamental law of mass conservation (continuity equation) enforces that the mass 

flow rate (𝑚̇) should be constant for each cross-section along the stream tube. Thus, 
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𝑚̇ = ∫𝜌𝑢𝑧𝑑𝐴 = 𝜌𝛢0𝑢𝑧,0 = 𝜌𝛢𝑑𝑢𝑧,𝑑 = 𝜌𝛢5𝑢𝑧,5 . (2.1) 

  

Here, 𝜌 stands for the air density, 𝑢𝑧 stands for the axial velocity component and 𝐴 stands for 

the cross-sectional area of the stream tube. In practice, the actuator disc, like the actual turbine 

rotor, acts as a drag device that applies a constant and uniform force (𝑇𝑑) on the incoming flow. 

Basically, this drag force slows the wind speed down from 𝑢𝑧,0 upstream of the actuator disc, 

to 𝑢𝑧,𝑑 at the actuator disc, and eventually, to 𝑢𝑧,5 in the ultimate wake (Hansen, 2008). As a 

result, given the assumption of incompressible fluid motion, the cross-sectional area of the 

stream tube must expand (as Figure 2.1 and Figure 2.2 characteristically demonstrate) from 𝛢0 

upstream of the actuator disc, to 𝛢𝑑 at the actuator disc and finally, to 𝛢5 in the far wake, in 

order to accommodate the slower moving air (Burton et al., 2001). 

 

 

Figure 2.2: Meridian section of the reference stream tube. 

 

At this point, let us note that stations (2) and (3) are practically coincide with station (d); 

hence, no variation in both axial velocity component (𝑢𝑧) and cross-sectional area (𝛢) of the 

stream tube among these particular stations is taken under consideration. Thus,  

  𝑢𝑧,2 = 𝑢𝑧,𝑑 = 𝑢𝑧,3 , (2.2) 

  
𝛢2 = 𝛢𝑑 = 𝛢3 . (2.3) 

  

The only reason that stations (2) and (3) have been included within the current analysis is to 

signify the upstream and downstream sides of the wind turbine rotor, which are involved in 

the description of the static pressure jump (𝛥𝑝𝑑) across the actuator disc (rotor). 

The total thrust force on the rotor, which is equal and opposite to the drag force that the 

rotor exerts on the incoming flow, equals to the rate of linear momentum change along the 

stream tube at hand. Therefore, it can be obtained through the application of the integral form 

of momentum equation in the axial direction, for the reference control volume (Hansen, 2008). 
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Eventually, the axial momentum balance results in the following expression for the rotor 

thrust (Sørensen, 2016): 

  𝑇𝑑 = 𝑢𝑧,0(𝜌𝛢0𝑢𝑧,0) − 𝑢𝑧,5(𝜌𝛢5𝑢𝑧,5) , (2.4) 

  

while under the assumption of steady-state or time-invariant flow, Eq. (2.4) recasts into: 

  𝑇𝑑 = 𝑚̇(𝑢𝑧,0 − 𝑢𝑧,5) = 𝜌𝛢𝑑𝑢𝑧,𝑑(𝑢𝑧,0 − 𝑢𝑧,5) . (2.5) 

  

Here, it is recalled that the extraction of both Eq. (2.4) and Eq. (2.5) has been based on the 

hypothesis that the static pressure in the far wake (𝑝5) equals to the static pressure of the 

undisturbed flow (𝑝0), while the net action of pressure distribution on the lateral boundary of 

the stream tube is zero (Hansen, 2008; Manwell et al., 2010). 

Besides, the thrust force on the rotor disc can be expressed in terms of the total pressure 

loss or pressure jump (𝛥𝑝𝑑) across the rotor, namely, between stations (2) and (3). Thus, 

  𝑇𝑑 = 𝛥𝑝𝑑 ∙ 𝐴𝑑 = (𝑝2 − 𝑝3) ∙ 𝐴𝑑  . (2.6) 

  

Moreover, since no work is done on either side of the actuator disc, 𝛥𝑝𝑑 can be calculated by 

applying Bernoulli’s equation, for both upstream and downstream sections of the reference 

stream tube. The application of Bernoulli’s equation between station (0) and station (2) reads: 

  
𝑝0 +

1

2
𝜌𝑢𝑧,0

2 = 𝑝2 +
1

2
𝜌𝑢𝑧,2

2  , (2.7) 

  

while for the stream tube section downstream of the actuator disc, that is, between station (3) 

and station (5), the application of Bernoulli’s equation yields: 

  
𝑝3 +

1

2
𝜌𝑢𝑧,3

2 = 𝑝5 +
1

2
𝜌𝑢𝑧,5

2  . (2.8) 

  

Accordingly, the combination of Eq. (2.7) and Eq. (2.8) with Eq. (2.6), results in the following 

expression for the rotor thrust: 

  
𝑇𝑑 =

1

2
𝜌𝐴𝑑(𝑢𝑧,0

2 − 𝑢𝑧,5
2 ) . (2.9) 

  

Now, equating the thrust values from Eq. (2.5) and Eq. (2.9) results in the following expression: 

  
𝑢𝑧,𝑑 = 𝑢𝑧,2 = 𝑢𝑧,3 =

1

2
(𝑢𝑧,0 + 𝑢𝑧,5) , (2.10) 

  

which is also known as the Froude’s law (Bontempo and Manna, 2017). Therefore, according 

to axial momentum theory, the wind velocity experienced by the actuator disc (axial velocity 
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component at the rotor plane) equals to the average of the wind velocity in the undisturbed 

flow (free stream) and the ultimate wake (Burton et al., 2001; Hansen, 2008; Manwell et al., 

2010). 

At this point, let us introduce the axial induction factor (𝑎𝑎), which practically represents 

the fractional decrease in axial velocity component between the undisturbed flow (0) and the 

rotor plane (d); in particular, the axial induction factor is defined as: 

  
𝑎𝑎 =

𝑢𝑧,0 − 𝑢𝑧,𝑑
𝑢𝑧,0

 . (2.11) 

  

Then, the axial velocity component at the rotor disc (𝑢𝑧,𝑑) and the axial velocity component in 

the ultimate wake (𝑢𝑧,5) can be expressed in terms of the axial induction factor (𝑎𝑎), as: 

  𝑢𝑧,𝑑 = 𝑢𝑧,0(1 − 𝑎𝑎) =  𝑢𝑧,0 −𝜔𝑎  , (2.12) 

  

𝑢𝑧,5 = 𝑢𝑧,0(1 − 2𝑎𝑎) = 𝑢𝑧,0 − 2𝜔𝑎  , (2.13) 

  

where the quantity 𝜔𝑎 = 𝑢𝑧,0𝑎𝑎 is often referred to as the axial induced velocity. Hence, the 

wind velocity at the rotor disc can be written as a combination of the free stream velocity and 

the induced wind velocity (Manwell et al., 2010). Now, introducing Eq. (2.12) and Eq. (2.13) 

into Eq. (2.9), the rotor thrust can be expressed as a function of the axial induction factor: 

  𝑇𝑑 = 2𝜌𝛢𝑑𝑢𝑧,0
2 𝑎𝑎(1 − 𝑎𝑎) . (2.14) 

  

Ultimately, the aerodynamic power output of the rotor (𝑃) can be calculated by multiplying 

the rotor thrust force with the axial velocity component at the rotor plane. Thus, 

  𝑃 = 𝑢𝑧,𝑑 ∙ 𝑇𝑑 = 2𝜌𝛢𝑑𝑢𝑧,0
3 𝑎𝑎(1 − 𝑎𝑎)

2 . (2.15) 

  

Furthermore, the rotor thrust and power can be expressed in the form of the dimensionless 

thrust (𝐶𝑇) and power (𝐶𝑃) coefficients, which are respectively defined as: 

  𝐶𝑇 = 𝑇𝑑 (0.5𝜌𝛢𝑑𝑢𝑧,0
2 )⁄ = 4𝑎𝑎(1 − 𝑎𝑎) , (2.16) 

  
𝐶𝑃 = 𝑃 (0.5𝜌𝛢𝑑𝑢𝑧,0

3 )⁄ = 4𝑎𝑎(1 − 𝑎𝑎)
2 . (2.17) 

  

Conclusively, the most significant outcome of axial momentum theory can be summarized 

on the fact that the particular model allows for the extraction of the maximum theoretical 

power output for an ideal horizontal-axis wind turbine rotor. This is achieved by simply 

differentiating the power coefficient with respect to the axial induction factor, as follows: 

  𝜕𝐶𝑃 𝜕𝑎𝑎⁄ = 0 →  4(1 − 𝑎𝑎)(1 − 3𝑎𝑎) = 0 →  [𝑎𝑎]𝑜𝑝𝑡 = 1 3⁄  . (2.18) 
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Therefore, the value of axial induction factor (𝑎𝑎) that maximizes the power coefficient of a 

horizontal-axis wind turbine equals to 1/3. The particular result indicates that, according to 

axial momentum theory, if an ideal horizontal-axis wind turbine rotor could possibly be 

designed, the point of maximum power production would be achieved for a value of wind 

velocity at the rotor plane that equals to 2/3 of the free stream velocity (Manwell et al., 2010). 

Eventually, by simply introducing the optimal value of axial induction factor (1/3) into Eq. 

(2.16) and Eq. (2.17) the optimal rotor thrust coefficient is given as: 

  [𝐶𝑇]𝑜𝑝𝑡  = 8 9⁄  . (2.19) 

  

while the maximum power coefficient reads: 

  [𝐶𝑃]𝑚𝑎𝑥  = 16 27⁄ = 0.593 . (2.20) 

  

The latter result is widely known as the Betz limit (Betz, 2013) and indicates that the maximum 

energy amount that an unshrouded horizontal-axis wind turbine can extract from the wind 

equals to 59.3 percent of the total energy contained within the stream tube passing through 

the rotor. However, in practice, this theoretical upper value of power coefficient can never be 

reached, due to energy losses associated with the rotation of the wake, the finite number of 

blades and non-zero aerodynamic drag. Typically, the value of power coefficient for an actual 

unshrouded wind turbine rotor ranges between 0.35 and 0.45 (Manwell et al., 2010). 

 

 Axial Momentum Theory for Shrouded Wind Turbines 

This section describes the application of axial momentum theory for the case of a shrouded 

or diffuser-augmented wind turbine, employing a similar approach to the one followed during 

the analysis of an unshrouded horizontal-axis wind turbine configuration (see Section 2.1.1). 

Initially, let us consider a control volume in the form of a long stream tube that passes through 

the shrouded rotor and extends in both upstream and downstream directions, such the one 

illustrated in Figure 2.3 and Figure 2.4. Here, the same notation strategy as for the case of an 

unshrouded wind turbine rotor has been adopted, with the only exception being the inclusion 

of two additional reference stations; station (1) refers to the inlet plane of the diffuser and 

station (4) refers to the exit plane of the diffuser. As for the case of an unshrouded horizontal-

axis wind turbine, the flow field upstream of the shrouded rotor can be described by means of 

Bernoulli’s equation. The application of Bernoulli’s equation between station (0) and station 

(2) yields: 

  
𝑝0 +

1

2
𝜌𝑢𝑧,0

2 = 𝑝2 +
1

2
𝜌𝑢𝑧,2

2  . (2.21) 
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In a similar way, the Bernoulli’s equation can be applied between station (3) and station (5), in 

order to describe the flow field downstream of the shrouded rotor. For this case, the Bernoulli’s 

equation reads: 

  
𝑝3 +

1

2
𝜌𝑢𝑧,3

2 = 𝑝5 +
1

2
𝜌𝑢𝑧,5

2 + 𝛥ℎL , (2.22) 

  

where 𝛥ℎL denotes the total pressure loss between the rotor plane and the diffuser exit plane, 

due to friction effects and possible flow separation in the boundary layer of the downstream 

diffuser wall (Sørensen, 2016).  

 

 

Figure 2.3: Schematic representation of the stream tube passing through the rotor of a shrouded wind 

turbine. Illustration of the reference stations employed for the application of axial momentum theory. 

 

Please note that in the current analysis, the total pressure loss associated with the upstream 

diffuser part, which is defined as the region between the inlet plane of the diffuser (1) and the 

rotor plane (d), has been entirely neglected for the sake of simplicity. According to Phillips 

(2003), the validity of this approximation can reasonably hold for a well-designed diffuser with 

a smooth inlet section, where the rotor position is located near the inlet plane. Therefore, the 

total pressure loss along the diffuser is defined as: 

  
𝛥ℎL = (𝑝3 +

1

2
𝜌𝑢𝑧,𝑑

2 ) − (𝑝4 +
1

2
𝜌𝑢𝑧,4

2 ) . (2.23) 

  

Here, let us recall that the total thrust on the rotor can be calculated by multiplying the total 

pressure jump (𝛥𝑝𝑑) between station (2) and station (3) with the rotor swept area (𝐴𝑑). Thus, 

  𝑇𝑑 = 𝛥𝑝𝑑 ∙ 𝐴𝑑 = (𝑝2 − 𝑝3) ∙ 𝐴𝑑  . (2.6) 
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Eventually, by combining the Bernoulli’s equation for the upstream (2.21) and downstream 

(2.22) parts of the adopted control volume, along with the expressions providing the total 

pressure loss along the diffuser (2.23) and the rotor thrust (2.6), the energy balance for the 

stream tube at hand – which essentially represents the rate of energy loss between station (0) 

and station (5) – can be written as follows: 

  
𝑞̇ (
1

2
𝜌𝑢𝑧,0

2 −
1

2
𝜌𝑢𝑧,5

2 ) = 𝑃 + 𝑞̇𝛥ℎL , (2.24) 

  

where 𝑞̇ = 𝑢𝑧,𝑑 ∙ 𝐴𝑑 stands for the volumetric flow rate through the rotor disc and 𝑃 = 𝑢𝑧,𝑑 ∙ 𝑇𝑑 

denotes the aerodynamic power output of the shrouded rotor. Finally, rearranging Eq. (2.24), 

the power output for a shrouded wind turbine rotor can be calculated as: 

  
𝑃 =

1

2
𝜌𝑢𝑧,𝑑𝐴𝑑 (𝑢𝑧,0

2 − 𝑢𝑧,5
2 − 2

𝛥ℎL
𝜌
) . (2.25) 

  

At this point, let us introduce the diffuser efficiency, denoted by 𝜂𝑑; this dimensionless 

parameter that is related to the performance of the diffuser is defined as (Phillips, 2003): 

  
𝜂𝑑 =

𝑝4 − 𝑝3

0.5𝜌(𝑢𝑧,𝑑
2 − 𝜌𝑢𝑧,4

2 )
 . (2.26) 

  

Accordingly, the total pressure loss can be expressed in terms of the diffuser efficiency, as: 

  
𝛥ℎL = (1 − 𝜂𝑑) ∙ (

1

2
𝜌𝑢𝑧,𝑑

2 −
1

2
𝜌𝑢𝑧,4

2 ) , (2.27) 

  

while substituting Eq. (2.27) into Eq. (2.25), the latter one, providing the rotor power output, 

is reformed as follows: 

  
𝑃 =

1

2
𝜌𝑢𝑧,𝑑𝐴𝑑[𝑢𝑧,0

2 − 𝑢𝑧,5
2 − (1 − 𝜂𝑑)(𝑢𝑧,𝑑

2 − 𝑢𝑧,4
2 )] . (2.28) 

  

In addition, the number of unknown quantities within Eq. (2.28) can be reduced, by expressing 

the axial velocity component at the exit plane of the diffuser (𝑢𝑧,4) as a function of the axial 

velocity component at the rotor plane (𝑢𝑧,𝑑). In fact, this can be achieved by taking advantage 

of the mass conservation law, which reads: 

  𝐴𝑑𝑢𝑧,𝑑 = 𝐴4𝑢𝑧,4 → 𝑢𝑧,4 = (𝐴𝑑 𝐴4⁄ )𝑢𝑧,𝑑 = 𝑏 ∙ 𝑢𝑧,𝑑  . (2.29) 

  

The dimensionless parameter 𝑏 is the reciprocal of the diffuser exit-area-ratio; the diffuser exit-

area-ratio is defined as the ratio between the exit area of the diffuser and the rotor swept area. 

Therefore, introducing Eq. (2.29) into Eq. (2.28) yields: 
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𝑃 =
1

2
𝜌𝑢𝑧,𝑑𝐴𝑑[𝑢𝑧,0

2 − 𝑢𝑧,5
2 − (1 − 𝜂𝑑)(𝑢𝑧,𝑑

2 − 𝑏2𝑢𝑧,𝑑
2 )] . (2.30) 

  

Ultimately, the power coefficient for a shrouded wind turbine rotor, calculated based on 

the rotor swept area, is given as (Phillips, 2003; Rio Vaz et al., 2014; Sørensen, 2016): 

  𝐶𝑃 = 𝑃 (0.5𝜌𝛢𝑑𝑢𝑧,0
3 )⁄ = 𝑢̃𝑧,𝑑[1 − 𝑢̃𝑧,5

2 − (1 − 𝜂𝑑)(1 − 𝑏
2)𝑢̃𝑧,𝑑

2 ] . (2.31) 

  

Please note that the tilde superscript denotes the dimensionless velocity components, which 

have been normalized by means of the free-stream velocity (𝑢𝑧,0). Apparently, except of the 

axial velocity component at the rotor plane (𝑢̃𝑧,𝑑), Eq. (2.31) also includes the diffuser efficiency 

parameter (𝜂𝑑) and the axial velocity component in the ultimate wake (𝑢̃𝑧,5). As long as the 

diffuser efficiency is concerned, which is essentially a measure of the total pressure loss along 

the diffuser, it has usually to be evaluated via experimental measurements for the diffuser 

configuration at hand (Sørensen, 2016). Besides, there is not a simple expression relating the 

axial velocity components in the rotor plane and ultimate wake, in contrast to the case of an 

unshrouded wind turbine rotor, where the induction in the rotor plane is half of the induction 

in the ultimate wake (see Section 2.1.1). Against this background, no simple closure for the 

equation providing the power coefficient of a shrouded wind turbine rotor is available, as in 

the case of an unshrouded horizontal-axis wind turbine rotor (Sørensen, 2016). 

A common approach to alleviate the aforementioned closure problem relies on eliminating 

the axial velocity component from Eq. (2.31). In order to achieve that, let us initially introduce 

the dimensionless back pressure parameter or pressure recovery coefficient, which is denoted 

by 𝐶𝑝,4 and defined as (Phillips, 2003): 

  
𝐶𝑝,4 =

𝑝4 − 𝑝5

0.5𝜌𝑢𝑧,0
2  . (2.32) 

  

Now, the application of Bernoulli’s equation between the exit plane of the diffuser (4) and the 

ultimate wake (5) reads:  

  
𝑝4 +

1

2
𝜌𝑢𝑧,4

2 = 𝑝5 +
1

2
𝜌𝑢𝑧,5

2  , (2.33) 

  

which can also be written by adopting a dimensionless formulation, as follows:  

  
𝑢̃𝑧,5
2 = 𝑢̃𝑧,4

2 +
𝑝4 − 𝑝5

0.5𝜌𝑢𝑧,0
2  . (2.34) 

  

Then, taking under consideration the definition of back pressure coefficient (2.32) and the 

expression connecting the axial velocity at the exit plane of the diffuser and the axial velocity 

in the far wake (2.29), Eq. (2.34) recasts into: 
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𝑢̃𝑧,5
2 = 𝑏2𝑢̃𝑧,𝑑

2 + 𝐶𝑝,4 . (2.35) 

  

Introducing Eq. (2.35) into Eq. (2.31), the equation for the power coefficient of a shrouded wind 

turbine rotor can be reformed as follows: 

  
𝐶𝑃 = 𝑢̃𝑧,𝑑[1 − 𝐶𝑝,4 + [𝜂𝑑(1 − 𝑏

2) − 1]𝑢̃𝑧,𝑑
2 ] . (2.36) 

  

Even though the two alternative expressions extracted within the current section for the 

power coefficient of a shrouded wind turbine rotor – namely, Eq. (2.31) and Eq. (2.36) – are 

mathematically equivalent, the latter one offers the opportunity to obtain the optimum 

operating conditions. This is attributed to the fact that near the optimum operating point, both 

the back pressure coefficient and the diffuser efficiency parameter are not strongly dependent 

upon the rotor velocity and mass flow rate (Sørensen, 2016). Therefore, the value of 𝑢̃𝑧,𝑑 that 

maximizes the power coefficient can be calculated by differentiating Eq. (2.36) with respect to 

𝑢̃𝑧,𝑑, while assuming constant values for the back pressure coefficient and diffuser efficiency: 

  
𝑑𝐶𝑃 𝑑𝑢̃𝑧,𝑑⁄ = 0 →  1 − 𝐶𝑝,4 + 3𝑢̃𝑧,𝑑

2 [𝜂𝑑(1 − 𝑏
2) − 1] = 0 . (2.37) 

  

Eventually, the value of axial velocity component at the rotor plane that maximizes the power 

output of a shrouded wind turbine (optimal value of axial velocity component) reads: 

  

[𝑢̃𝑧,𝑑]𝑜𝑝𝑡 = √
1 − 𝐶𝑝,4

3[1 − 𝜂𝑑(1 − 𝑏
2)]
 , (2.38) 

  

Therefore, introducing Eq. (2.38) into Eq. (2.36), the maximum power coefficient for the case 

of a shrouded wind turbine rotor is given as: 

  

[𝐶𝑃]𝑚𝑎𝑥 =
2

3
√

1 − 𝐶𝑝,4

3[1 − 𝜂𝑑(1 − 𝑏
2)]
 ∙ (1 − 𝐶𝑝,4) . (2.39) 

  

while the optimal rotor loading can be obtained by: 

  
[𝐶𝑇]𝑜𝑝𝑡 = [𝐶𝑃]𝑚𝑎𝑥 [𝑢̃𝑧,𝑑]𝑜𝑝𝑡⁄ =

2

3
(1 − 𝐶𝑝,4) . (2.40) 

  

In summary, the aforesaid equations provide a simple and useful model that describes the 

power output performance of a shrouded wind turbine. Nevertheless, the quantification of the 

involved parameters (namely, the diffuser efficiency and back pressure coefficient) in order to 

achieve the optimal operating conditions calls for experimental measurements for the diffuser 

design at hand (Sørensen, 2016). 
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Figure 2.4: Meridian section of the reference stream tube for the case of a shrouded rotor. 

 

2.1.2.1 Zero Diffusive Losses 

In this section, we examine the modification of axial momentum theory for shrouded wind 

turbine rotors that was described in Section 2.1.2, under the simplifying assumption of zero 

diffusive losses – an approach also referred to as ideal diffuser case. The particular approach, 

which essentially considers that 𝜂𝑑 = 1 and 𝛥ℎL = 0, represents a commonly adopted practice 

in the literature, aiming to simplify the expressions providing the optimal operating 

conditions. For the ideal diffuser case, the pressure jump across the rotor reads: 

  
𝛥𝑝𝑑 =

1

2
𝜌(𝑢𝑧,0

2 − 𝑢𝑧,5
2 ) , (2.41) 

  

which is equivalent to the expression for the total pressure loss across an unshrouded wind 

turbine rotor. Thus, the rotor thrust can be obtained as follows: 

  
𝑇𝑑 = 𝛥𝑝𝑑 ∙ 𝐴𝑑 =

1

2
𝜌𝐴𝑑(𝑢𝑧,0

2 − 𝑢𝑧,5
2 ) . (2.42) 

  

In addition, the application of axial momentum balance (integral momentum equation) for the 

control stream tube illustrated in Figure 2.3 and Figure 2.4 yields:  

  
𝑇𝑑 + 𝑇𝑠 = 𝜌𝑢𝑧,𝑑𝐴𝑑(𝑢𝑧,0 − 𝑢𝑧,5) , (2.43) 

  

where 𝑇𝑠 denotes the axial reaction force of the diffuser on the air within the control volume. 

Eventually, the combination of Eq. (2.42) and Eq. (2.43) results in the following equation: 
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𝑢𝑧,𝑑 =
1

2
(𝑢𝑧,0 + 𝑢𝑧,5)(1 + 𝑇𝑠 𝑇𝑑⁄ ) , (2.44) 

  

which can also be expressed in a dimensionless formulation, as follows: 

  
𝑢̃𝑧,𝑑 =

1

2
(1 + 𝑢̃𝑧,5)(1 + 𝑇𝑠 𝑇𝑑⁄ ) . (2.45) 

  

Then, introducing Eq. (2.45) into Eq. (2.36), the rotor power coefficient for the ideal diffuser 

case reads:  

  
𝐶𝑃 =

1

2
(1 + 𝑢̃𝑧,5) ∙ (1 − 𝑢𝑧,5

2 ) ∙ (1 + 𝑇𝑠 𝑇𝑑⁄ ) , (2.46) 

  

while the thrust coefficient is given by: 

  𝐶𝑇 = 𝐶𝑃 𝑢̃𝑧,𝑑⁄ = (1 − 𝑢𝑧,5
2 ) . (2.47) 

  

At this point, it is interesting to note that the comparison of the equations extracted during 

the axial momentum analysis for the ideal diffuser case to the corresponding ones for the case 

of an unshrouded wind turbine reveals that for a specified wake velocity, the pressure drop 

across the rotor is the same (Sørensen, 2016). Hence, the increase in power output for the case 

of a shrouded rotor stems from the augmented mass flow rate, which according to Eq. (2.45) 

is proportional to the diffuser force (𝑇𝑠). Ultimately, under the assumption that the force ratio 

𝑇𝑠 𝑇𝑑⁄  does not depend upon the axial velocity component in the wake (𝑢̃𝑧,5), the maximum 

power coefficient for the case of an ideal diffuser (zero diffusive losses → 𝜂𝑑 = 1 and 𝛥ℎL = 0) 

can be obtained by differentiating Eq. (2.46) with respect of 𝑢̃𝑧,5. In that situation, the maximum 

rotor power coefficient reads: 

  
[𝐶𝑃]𝑚𝑎𝑥 =

16

27
(1 + 𝑇𝑠 𝑇𝑑⁄ ) . (2.48) 

  

Here, the optimal value of axial velocity component in the ultimate wake equals to: 

  
[𝑢̃𝑧,5]𝑜𝑝𝑡 = 1 3⁄  (2.49) 

  

and – as for the case of an unshrouded horizontal-axis wind turbine rotor – the optimal value 

of the rotor thrust coefficient equals to: 

  
[𝐶𝑇]𝑜𝑝𝑡 = 8 9⁄  . (2.50) 

  

The same value for the optimal thrust coefficient of a shrouded rotor was also derived from 

the studies of van Bussel (2007) and Jamieson (2009). In particular, van Bussel (2007) assumed 

that the velocity component in the ultimate wake of a shrouded wind turbine can be calculated 
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based on Eq. (2.13), which was actually derived during the one-dimensional analysis of an 

unshrouded rotor. 

  𝑢𝑧,5 = 𝑢𝑧,0(1 − 2𝑎𝑎) = 𝑢𝑧,0 − 2𝑤𝑎 . (2.13) 

  

The purpose of this hypothesis was the development of an axial momentum theory for 

shrouded wind turbine rotors resembling the momentum equations describing the operation 

of unshrouded wind turbines. Later on, Rio Vaz et al. (2014) were based on the work of van 

Bussel (2007) in order to modify the classic axial momentum theory and eventually, to propose 

an extension of BEM theory for shrouded wind turbines. To this end, Rio Vaz et al. (2014) 

expressed the axial velocity component at the rotor plane, as a function of the normalized 

velocity component at the rotor plane for the unloaded diffuser configuration (i.e., 𝛥𝑝𝑑 = 0), 

denoted by 𝛾; this parameter is mathematically defined as: 

  

𝛾 =
[𝑢𝑧,𝑑]𝛥𝑝𝑑=0

𝑢𝑧,0
 . (2.51) 

  

Thus, the axial velocity component at the rotor can be written in terms of 𝛾 and 𝛼𝛼, as follows: 

  𝑢𝑧,𝑑 = 𝛾(1 − 𝛼𝛼)𝑢𝑧,0 ,  (2.52) 

  

while the dimensionless form of Eq. (2.52) reads: 

  𝑢̃𝑧,𝑑 = 𝛾(1 − 𝛼𝛼) . (2.53) 

  

Consequently, by combining Eq. (2.53) and Eq. (2.36), the power coefficient can be expressed 

in terms of the velocity speed-up for the unloaded diffuser (𝛾) as follows: 

  𝐶𝑃 = 𝛾(1 − 𝛼𝛼)
2[4𝑎𝑎 + 𝛾

2(1 − 𝛼𝛼)(1 − 𝛽
2)(𝜂𝑑 − 1)] ,  (2.54) 

  

which for the case of an ideal diffuser recasts into: 

: 

 

 
𝐶𝑃 = 𝛾4𝑎𝑎(1 − 𝛼𝛼)

2 . (2.55) 

  

The corresponding thrust coefficient is given by: 

  𝐶𝑇 = 4𝑎𝑎(1 − 𝛼𝛼) . (2.56) 

  

Apparently, if 𝛾 parameter equals to unity (zero velocity speed-up) the expression 

providing the aerodynamic power coefficient turns out to be identical to the one extracted 

during the one-dimensional analysis of an unshrouded horizontal-axis wind turbine (2.20). 

Nevertheless – in contrast to the case of a conventional wind turbine – a theoretical maximum 

power coefficient for the case of a shrouded wind turbine cannot be obtained, since the 
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differentiation of Eq. (2.59) with respect to the axial induction factor results in a value for the 

maximum power coefficient that is equal to: 

  [𝐶𝑃]𝑚𝑎𝑥 = 𝛾 ∙ 16 27⁄  . (2.57) 

  

As a matter of fact, the maximum power coefficient is a linear and increasing function of 

the velocity speed-up (𝛾) for the unloaded diffuser configuration, which practically depends 

on the shroud geometry at hand, and has to be calculated either by numerical methods or 

experimental measurements (Bussel, 2007; Hansen et al., 2000). In addition, please note that 

the latter expression for maximum power coefficient resembles Eq. (2.48). Both equations 

indicate that the maximum power coefficient is proportional to the mass flow rate, with the 

only difference being that in Eq. (2.48) this is expressed by means of the diffuser force, while 

in Eq. (2.60) it is expressed by means of the velocity speed-up ratio. Finally, an interesting 

remark can be drawn by observing the expression providing the rotor thrust coefficient; this 

expression is identical to the one of a conventional horizontal-axis wind turbine. However, 

van Bussel (2007) noted that – despite the similarity in the expressions for the rotor thrust – 

the reaction of a shrouded wind turbine is different, due to the significant impact of the 

diffuser on the axial induction factor. 

Conclusively, the expressions presented within the current sub-section (2.1.2.1) can provide 

very useful insights on the optimal operating conditions of a shrouded wind turbine rotor. 

However, it should also be highlighted that these expressions have been extracted based on 

several simplifying assumptions, including: 

 An ideal shroud design (𝜂𝑑 = 1 and 𝛥ℎL = 0). 

 Independence of 𝑇𝑠/𝑇𝑑 upon 𝑢𝑧,5. 

 The velocity in the far wake equals 𝑢𝑧,0 − 2𝑤𝑎. 

Therefore, the particular expressions should only be used as indicative ones (in order to obtain 

a rough approximation of the system performance), since they may not accurately reflect the 

actual flow characteristics, especially when shrouds with large downstream expansions, 

which are usually associated with large flow separations and diffusive losses, are encountered. 

 

2.2 Blade Element Momentum Theory 

The Blade Element Momentum theory represents one of the most popular computational 

tools for the preliminary aerodynamic analysis and performance prediction of wind turbine 

rotors, in both academic and industrial design applications (Malki et al., 2013). Essentially, the 

particular method – which over the years has been enhanced with the addition of various 
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empirical and analytical correction models (Branlard, 2017), dealing with many of its inherent 

limitations – relies on the combination of the well-established blade element and momentum 

theories, aiming to provide a rapid, yet reasonably accurate, prediction of the aerodynamic 

loads on the blade (Burton et al., 2001). In terms of the blade element theory (Froude, 1878), the 

entire blade geometry is decomposed into a finite number of small blade elements along the 

spanwise (radial) direction, assuming that, from an aerodynamic point of view, each blade 

element operates independently of the surrounding ones and is represented by a two-

dimensional blade section (Moriarty and Hansen, 2005); the radial distribution of axial and 

tangential forces on the rotor are estimated based on the local flow conditions and the 

geometric characteristics of the blade sections (namely, the local chord length and twist angle) 

using tabulated lift and drag coefficients. On the other hand, momentum theory refers to a 

control volume analysis of the forces acting on the blades, based on the fundamental 

conservation laws of axial and angular momentum, in order to provide the required axial and 

tangential induced velocities (local flow conditions) for the blade element calculations 

(Manwell et al., 2010). Ultimately, the coupling of blade element and momentum models 

within the context of BEM theory is implemented by means of an iterative procedure (see 

Section 2.3.4), which eventually determines the aerodynamic forces and induced velocities 

over the rotor plane (Moriarty and Hansen, 2005). The following sections present the 

theoretical background and major features of an in-house BEM code that has been exclusively 

developed within the context of the current doctoral dissertation, for the aerodynamic analysis 

and performance prediction of both conventional and shrouded wind turbine rotors (Leloudas 

et al., 2017). 

 

 Momentum Equations 

In the framework of BEM theory, the reference stream tube that passes through the wind 

turbine rotor (see Figure 2.1) is divided into a finite number of independently operating 

concentric annuli or annular stream tubes, such the one illustrated in Figure 2.5; the loss of 

pressure or momentum in the rotor plane for each one of the annular stream tubes is attributed 

to the work done by the airflow passing through the rotor plane on the corresponding blade 

element (Moriarty and Hansen, 2005). In particular, the rate of change of the axial momentum 

along an elementary stream tube that starts far upstream of the rotor (0), passes through the 

rotor disc (d) and eventually, moves off into the ultimate wake (5), equals to the axial force on 

the corresponding blade element, while the rate of change of the angular momentum along 

the aforementioned stream tube equals to the tangential force on the blade element. 

In order to derive the expressions for the elementary or differential forces on the rotor 

blades, from the standpoint of momentum theory, let us consider a control volume in the shape 
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of an annular stream tube, such the one depicted in Figure 2.5. The thrust force (𝑑𝑇) on the 

reference annulus – that is the axial reaction force by the corresponding blade element – can 

be obtained from the application of integral momentum equation, in the axial direction 

(Hansen, 2008). Thus, since the cross-sectional area of the control volume at the rotor plane 

equals 2𝜋𝑟𝑑𝑟, the thrust for the examined annulus reads: 

  𝑑𝑇 = (𝑢𝑧,0 − 𝑢𝑧,5)𝑑𝑚̇ = 2𝜋𝑟𝜌𝑢𝑧,𝑑(𝑢𝑧,0 − 𝑢𝑧,5)𝑑𝑟 . (2.58) 

  

Please note that Eq. (2.58) is actually an alternative expression of the thrust equation (2.5) that 

was derived from the application of axial momentum balance to the entire stream tube (see 

Section 2.1.1), with the only difference being that the rotor swept area (𝐴𝑑) has been replaced 

with the cross-sectional area of the annular stream tube at the rotor plane (2𝜋𝑟𝑑𝑟). 

 

 

Figure 2.5: Illustration of the annular stream tube for the extraction of elementary momentum 

equations describing an unshrouded rotor. 

 

In a similar way, the elementary tangential force on the reference stream tube – that is the 

circumferential reaction force by the corresponding blade element – can be obtained through 

the application of the integral momentum equation in the circumferential direction (Hansen, 

2008). Eventually, by multiplying the tangential force with the radial position of the control 

volume at the rotor plane, the elementary torque (𝑑𝛭) reads: 

  𝑑𝛭 = 𝑟(𝑢𝜃,5 − 𝑢𝜃,0)𝑑𝑚̇ = 𝑟𝑢𝜃,3𝑑𝑚̇ = 2𝜋𝑟2𝜌𝑢𝑧,𝑑𝑢𝜃,3𝑑𝑟 , (2.59) 

  

where 𝑢𝜃 stands for the rotational velocity of the fluid. Herein, it should be noted that the final 

expression of Eq. (2.59) has been derived under the following assumptions (Burton et al., 2001; 

Hansen, 2008): the rotational velocity of the flow upstream of the rotor equals to zero (i.e., 

𝑢𝜃,0 = 𝑢𝜃,2 = 0) and the rotation of the flow exiting the disc remains constant as the fluid 

progresses down the wake (i.e., 𝑢𝜃,3 = 𝑢𝜃,5). 
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At this point, let us recall that according to axial momentum theory (see Section 2.1.1), the 

axial velocity component at the rotor plane and the axial velocity component in the ultimate 

wake can be expressed in terms of the axial induction factor and ambient velocity, as follows: 

  
𝑢𝑧,𝑑 = (1–𝑎𝑎)𝑢𝑧,0 , (2.12) 

  
𝑢𝑧,5 = (1–2𝑎𝑎)𝑢𝑧,0 , (2.13) 

  

where the axial (𝑎𝑎) induction factor is defined as: 

  
𝑎𝑎 = (𝑢𝑧,0 − 𝑢𝑧,𝑑) 𝑢𝑧,0⁄  . (2.11) 

  

In addition, let us introduce the tangential induction factor (𝑎𝑡), which practically provides a 

measure of change in tangential (also termed as rotational or circumferential) velocity (Burton 

et al., 2001). The tangential induction factor is defined as: 

  𝑎𝑡 = 𝑢𝜃,𝑑 𝜔𝑅𝑟⁄ = 𝑢𝜃,3 2𝜔𝑅𝑟⁄  , (2.60) 

  

where 𝜔𝑅 stands for the angular or rotational velocity of the wind turbine rotor. Ultimately, 

after the combination of the aforementioned equations, the elementary thrust and torque on 

the reference annulus, which are equal to the respective quantities on the matching blade 

element, can be expressed in terms of the induction factors, as follows: 

  𝑑𝑇 = 4𝜋𝑟𝜌𝑢𝑧,0
2 𝑎𝑎(1 − 𝑎𝑎)𝑑𝑟, (2.61) 

  
𝑑𝛭 = 4𝜋𝑟3𝜌𝑢𝑧,0𝜔𝑅(1 − 𝑎𝑎)𝑎𝑡𝑑𝑟 . (2.62) 

  

 

 Blade Element Equations 

In the previous section, the aerodynamic thrust and torque on the rotor blades were 

expressed in terms of the axial and tangential induction factors. Herein, an alternative 

formulation of the respective quantities is presented, this time by means of blade element 

theory. To this end, the wind turbine blades are divided or decomposed, along the spanwise 

direction, into a finite number of blade elements – as characteristically illustrated in Figure 2.6 

– under the assumption that each blade element acts independently of the adjacent ones and 

operates aerodynamically as a two-dimensional airfoil (Manwell et al., 2010). Then, the 

resulting values of sectional thrust and torque can be summed, in order to predict the overall 

performance of the rotor. Even though the particular theory does not include any secondary 

flow effects, such as the three-dimensional flow velocities induced on the rotor by the shed tip 

vortex or the radial velocity components induced by the angular acceleration, due to the 
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rotation of the blades, it still continues to be widely used for many wind turbine applications, 

such as initial aerodynamic analysis, conceptual design, loads and stability analysis, and 

controls design. In the following analysis, 𝑅 denotes the rotor radius, 𝑅ℎ the hub radius and 

𝑑𝑟 the length of each blade element, measured in the radial direction (𝑟). 

 

 

Figure 2.6: Schematic representation of blade discretization and definition of blade elements. 

 

The local relative velocity (𝐰) experienced by each blade section along the rotating blade is 

a combination of the axial velocity component (𝑤𝑎) and the tangential velocity component (𝑤𝑡) 

at the rotor plane, which are illustrated in Figure 2.7 and defined as follows: 

  𝑤𝑎 = 𝑢𝑧,𝑑 = 𝑢𝑧,0(1 − 𝑎𝑎) , (2.63) 

  

𝑤𝑡 = 𝜔𝑅𝑟 + 𝑢𝜃,𝑑 = 𝜔𝑅𝑟(1 + 𝛼𝑡) . (2.64) 

  

Therefore, the measure of relative velocity for each blade element reads: 

  
|𝐰|2 = [𝑢𝑧,0(1 − 𝑎𝑎)]

2
+ [𝜔𝑅𝑟(1 + 𝛼𝑡)]

2 = 𝑢𝑧,𝑑
2 + (𝜔𝑅𝑟 + 𝑢𝜃,𝑑)

2
 . (2.65) 

  

The relative velocity acts at an angle (𝜙) to the rotor plane, such that: 

  
tan𝜙 =

𝑢𝑧,0(1 − 𝑎𝑎)

𝜔𝑅𝑟(1 + 𝛼𝑡)
=

𝑢𝑧,𝑑
𝜔𝑅𝑟 − 𝑢𝜃,𝑑

 . (2.66) 

  

Now, the local angle of attack (α) can be calculated by: 

  α = 𝜙 − 𝜃𝛵 , (2.67) 
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where 𝜃𝛵 is the local pitch angle, defined as the angle between the airfoil chord and the rotor 

plane (see Figure 2.7); the local pitch angle is calculated by adding the global pitch angle of the 

blade (𝜃𝐵) with the local twist angle of the blade (𝜃𝑃).  

 

 

Figure 2.7: Schematic representation of the local velocities and forces on a blade element. 

 

By introducing the lift (𝐶𝐿) and drag (𝐶𝐷) coefficients, the lift (𝐹𝐿) and drag (𝐹𝐷) force per 

unit length on the examined blade element can be expressed as: 

  
𝐹𝐿 = 𝐶𝐿 ∙

1

2
𝜌|𝐰|2𝑐 , (2.68) 

  

𝐹𝐷 = 𝐶𝐷 ∙
1

2
𝜌|𝐰|2𝑐 , (2.69) 

  

where 𝑐 denotes the local chord length. Consequently, the normal (𝐹𝑛) and tangential (𝐹𝑡) 

forces per unit radial length on each blade section can be obtained by simply adding the 

projections of 𝐹𝐿 and 𝐹𝐷 on the axial and tangential directions (see Figure 2.7). Thus, 

  
𝐹𝑛 = 𝐹𝐿 ∙ cos𝜙 + 𝐹𝐷 ∙ sin𝜙 , (2.70) 

  

𝐹𝑡 = 𝐹𝐿 ∙ sin𝜙 − 𝐹𝐷 ∙ cos𝜙 . (2.71) 
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Furthermore, the axial and tangential force per unit length can be expressed in a dimensionless 

form, by introducing the normal and tangential force coefficients, denoted by 𝐶𝑛 and 𝐶𝑡, 

respectively. Thus, 

  
𝐶𝑛 = 𝐶𝐿 ∙ cos𝜙 + 𝐶𝐷 ∙ sin𝜙 , (2.72) 

  

𝐶𝑡 = 𝐶𝐿 ∙ sin𝜙 − 𝐶𝐷 ∙ cos𝜙 , (2.73) 

  

where 

  
𝐶𝑛 = 𝐹𝑛 (0.5𝜌|𝐰|2𝑐)⁄  , (2.74) 

  

𝐶𝑡 = 𝐹𝑡 (0.5𝜌|𝐰|
2𝑐)⁄  . (2.75) 

  

Ultimately, the total axial (𝑑𝐹𝑛) and tangential (𝑑𝐹𝑡) forces exerted on the actuator disc by 

the annular streamtube swept by the examined blade element, can be calculated as: 

  𝑑𝑇 = 𝐵𝑅 ∙ 𝐹𝑛 ∙ 𝑑𝑟 , (2.76) 

  

𝑑𝑀 = 𝑟 ∙ 𝐵𝑅 ∙ 𝐹𝑡 ∙ 𝑑𝑟 , (2.77) 

  

where 𝐵𝑅 stands for the number of rotor blades. Then, taking into consideration Eq. (2.78) and 

Eq. (2.79), connecting the free stream velocity, the relative velocity, the inflow angle and the 

induction factors, 

  |𝐰| ∙ sin𝜙 = 𝑢𝑧,0(1 − 𝑎𝑎) , (2.78) 

  

|𝐰| ∙ cos𝜙 = 𝜔𝑅𝑟(1 + 𝑎𝑡) , (2.79) 

  

Eq. (2.76) and Eq. (2.77) can recast into: 

  
𝑑𝑇 =

1

2
𝜌𝛣𝑅

𝑢𝑧,0
2 (1 − 𝑎𝑎)

2

sin2𝜙
𝑐𝐶𝑛𝑑𝑟 (2.80) 

  

𝑑𝑀 =
1

2
𝜌𝛣𝑅

𝑢𝑧,0(1 − 𝑎𝑎)𝜔𝑅𝑟(1 + 𝑎𝑡)

sin𝜙 ∙ cos𝜙
𝑐𝐶𝑡𝑟𝑑𝑟 (2.81) 

  

 

 Combination of Blade Element and Momentum Equations 

In this section, the final expressions employed for the calculation of the axial and tangential 

induction factors during the iterative process of BEM theory are described, which practically 

tie together the blade element and momentum models. Initially, let us introduce the rotor 

solidity (𝜎) parameter, which is defined as: 
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𝜎 = 𝐵𝑅𝑐 2𝜋𝑟⁄  (2.82) 

  

Then, by equating the RHS of Eq. (2.61) and Eq. (2.80), the axial induction factor reads: 

  
𝑎𝑎 = 1 [(4sin2𝜙) (𝜎𝐶𝑛)⁄ + 1] ,⁄  (2.83) 

  

while equating the RHS of Eq. (2.62) and Eq. (2.81), the tangential induction factor reads: 

  
𝑎𝑡 = 1 [(4 sin𝜙 cos𝜙) (𝜎𝐶𝑡)⁄ − 1]⁄  . (2.84) 

  

Please note that after the combination of blade element and momentum equations, both 

induction factors are expressed in terms of the inflow angle and aerodynamic coefficients, 

which in turn are non-linear functions of the induction factors; consequently, a direct solution 

to the aforementioned equations cannot be obtained. In the current in-house BEM code, the 

calculation of axial and tangential induced factors is achieved by applying the common 

approach of a fixed-point iteration scheme, in which the induction at the current iterative step 

is expressed as a function of the induction at the previous step (McWilliam and Crawford, 

2011; Sun et al., 2017). A detailed description of the adopted iterative procedure is provided in 

Section 2.3.4. 

 

 Extension of BEM Theory for Shrouded Rotors 

One of the inherent shortcomings of classical BEM theory is related to the fact that the 

particular model in not capable of accounting for the shroud’s effect on the calculation of the 

axial and tangential induced velocities at the rotor plane. Hence, in an effort to overcome this 

drawback, a number of studies have been undertaken, aiming to modify the classical BEM 

theory, and thus, make it applicable for the analysis of shrouded wind turbine rotors (Leloudas 

et al., 2017). 

In this direction, Fletcher (1981) developed an efficient computational model, based on the 

blade element theory, by introducing two empirical parameters – namely, the diffuser 

efficiency and the diffuser exit pressure coefficient – in order to include the effect of the 

diffuser within the rotor analysis. In addition, Fletcher (1981) enriched the particular model by 

the addition of wake rotation and blade Reynolds number effects; thus, he achieved a good 

agreement between the computational results and the experimental data, in terms of the 

turbine power coefficient and axial velocity. 

Later on, a modified BEM model for the aerodynamic evaluation of a multi-slotted diffuser-

augmented wind turbine was proposed by Phillips (2003). The fundamental idea 

characterizing the featured methodology was the replacement of the formula for the 
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calculation of the local axial velocity with an empirically-derived velocity equation, which is a 

function of the local disk loading coefficient. Eventually, this approach proved capable of 

accurately predicting the power output characteristics of the multi-slotted diffuser-augmented 

wind turbine at the design blade pitch angle. However, significant discrepancies between the 

computational results and the experimental measurements at off-design pitch angles were also 

reported, which were mainly attributed to the fact that the empirically-derived velocity 

equation fails to fully capture the flow behavior at the particular operating conditions (Phillips, 

2003). 

More recently, another extension of the classical BEM theory to the case of shrouded wind 

turbine rotors was introduced by Rio Vaz et al. (2014). According to the particular model, the 

equation providing the axial velocity component at the rotor plane (𝑤𝑎) is enhanced by the 

addition of the velocity speed-up ratio (𝛾) for the unloaded shroud configuration, as follows: 

  𝑤𝑎 = 𝑢𝑧,𝑑 = 𝛾𝑢𝑧,0(1 − 𝑎𝑎) , (2.85) 

  

Consequently, the resultant velocity for each blade section reads: 

  
|𝐰|2 = [𝛾𝑢𝑧,0(1 − 𝑎𝑎)]

2
+ [𝜔𝑅𝑟(1 + 𝛼𝑡)]

2 , (2.86) 

  

which now acts at an angle (𝜙) to the rotor plane, such that: 

  
tan𝜙 =

𝛾𝑢𝑧,0(1 − 𝑎𝑎)

𝜔𝑅𝑟(1 + 𝛼𝑡)
 . (2.87) 

  

Subsequently, the equations providing the differential thrust and torque for an elementary 

annulus, such the one illustrated in Figure 2.8, from the standpoint of momentum theory, read: 

  𝑑𝑇 = 4𝜋𝑟𝜌𝑢𝑧,0
2 𝑎𝑎(1 − 𝑎𝑎)𝑑𝑟, (2.88) 

  
𝑑𝛭 = 4𝜋𝑟3𝜌𝑢𝑧,0𝜔𝑅(1 − 𝑎𝑎)𝑎𝑡𝑑𝑟 . (2.89) 

  

while the respective quantities from the standpoint of blade element theory can be written as: 

  
𝑑𝑇 =

1

2
𝜌𝛣𝑅

𝛾2𝑢𝑧,0
2 (1 − 𝑎𝑎)

2

sin2𝜙
𝑐𝐶𝑛𝑑𝑟 (2.90) 

  

𝑑𝑀 =
1

2
𝜌𝛣𝑅

𝛾𝑢𝑧,0(1 − 𝑎𝑎)𝜔𝑅𝑟(1 + 𝑎𝑡)

sin𝜙 ∙ cos𝜙
𝑐𝐶𝑡𝑟𝑑𝑟 (2.91) 

  

Eventually, by equating the RHS of Eq. (2.88) and Eq. (2.90), the axial induction factor reads: 

  
𝑎𝑎 = 1 [(4sin2𝜙) (𝛾2𝜎𝐶𝑛)⁄ + 1] ,⁄  (2.92) 
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while equating the RHS of Eq. (2.89) and Eq. (2.91), the tangential induction factor reads: 

  
𝑎𝑡 = 1 [(4 sin𝜙 cos𝜙) (𝜎𝐶𝑡)⁄ − 1]⁄  . (2.93) 

  

Please note that these expressions are actually generalizations of those extracted for the case 

of an ideal unshrouded wind turbine.  

 

Figure 2.8: Illustration of the annular stream tube for the extraction of elementary momentum 

equations describing a shrouded rotor. 

 

 Tip Loss Correction Model 

The addition of a correction model that accounts for tip and hub losses is a widely adopted 

practice in the context of BEM theory, which essentially deals with the simplistic assumption 

of azimuthally averaged loading and provides a more realistic representation of the actual 

wind turbine rotor, with a finite number of blades (Burton et al., 2001). More precisely, such 

correction models compensate for the inability of classical BEM theory to capture the effects 

of the vortices shed from the blade tip and hub regions into the wake (helical  structures) on 

the induced velocity field (Moriarty and Hansen, 2005). In this study, the modeling of tip and 

hub losses can be achieved by employing two different correction models; namely, the tip loss 

correction model of Prandtl (Glauert, 1935) and the tip loss correction model proposed by Shen 

et al. (2005). 

 

2.2.5.1 Prandtl’s Correction Model 

The correction model proposed by Prandtl and Glauert (1935) is actually one of the earliest 

contributions on the specific topic of tip and hub losses. Essentially, the particular model 

involves the addition of a cumulative correction factor (𝐹) in order to properly modify the 
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induced velocity field. The cumulative correction factor accounting for both tip and hub losses 

is defined as: 

  𝐹 = 𝐹𝑡𝑖𝑝 ∙ 𝐹ℎ𝑢𝑏 , (2.94) 

  

where 

  

𝐹𝑡𝑖𝑝 =
2

𝜋
∙ arccos [exp (

 

−
𝑅 − 𝑟

2𝑟sin𝜙
∙ 𝐵𝑅

 
)] , (2.95) 

  

𝐹ℎ𝑢𝑏 =
2

𝜋
∙ arccos [exp(

 

−
𝑟 − 𝑅ℎ
2𝑟sin𝜙
 

∙ 𝐵𝑅)] . (2.96) 

  

In practice, the proposed correction factor is applied to adapt the momentum part of BEM 

theory, by replacing the equations providing the elementary thrust (2.61) and torque (2.62) 

with the following ones: 

  𝑑𝑇 = 4𝜋𝑟𝜌𝑢𝑧,0
2 𝑎𝑎(1 − 𝑎𝑎)𝐹𝑑𝑟 , (2.97) 

  

𝑑𝛭 = 4𝜋𝑟3𝜌𝑢𝑧,0
2 𝜔𝑅(1 − 𝑎𝑎)𝑎𝑡𝐹𝑑𝑟 . (2.98) 

  

Hence, the expression for the axial and tangential induction factors, including the Prandtl’s 

losses model, read: 

  
𝑎𝑎
𝑑 = 1 [(4𝐹sin2𝜙) (𝛾2𝜎𝐶𝑛)⁄ + 1] ,⁄  (2.99) 

  

𝑎𝑡
𝑑 = 1 [(4𝐹 sin𝜙 cos𝜙) (𝜎𝐶𝑡)⁄ − 1] ⁄ . (2.100) 

  

If the Prandtl’s correction model is not active, 𝐹 parameter equals to unity. Apparently, in that 

case, the modified equations for the axial and tangential induction factors reduce to those 

derived in Section 2.2.3. 

 

2.2.5.2 Shen’s Correction Model 

More recently, another correction model that accounts for tip and hub losses was featured 

by Shen et al. (2005). The Shen’s tip and hub loss correction model is implemented by 

introducing the cumulative loss factor 𝑞𝑠, which practically modifies the normal and tangential 

force coefficients as follows (Shen et al., 2005): 

  𝐶𝑛 → 𝑞𝑠 ∙ 𝐶𝑛 , (2.101) 

  

𝐶𝑡 → 𝑞𝑠 ∙ 𝐶𝑡  . (2.102) 
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The Shen’s loss factor 𝑞𝑠 reads: 

  𝑞𝑠 = 𝑞𝑠,𝑡𝑖𝑝 ∙ 𝑞𝑠,ℎ𝑢𝑏 , (2.103) 

  

where 

  

𝑞𝑠,𝑡𝑖𝑝 =
2

𝜋
∙ arccos [exp (

 

−𝑔𝑠 ∙
𝑅 − 𝑟

2𝑟sin𝜙
 

∙ 𝐵𝑅)] , (2.104) 

  

𝑞𝑠,ℎ𝑢𝑏 =
2

𝜋
∙ arccos [exp (

 

−𝑔𝑠 ∙
𝑟 − 𝑅ℎ
2𝑟sin𝜙
 

∙ 𝐵𝑅)] . (2.105) 

  

Finally, the expression for the calculation of the 𝑔𝑠 parameter reads (Shen et al., 2005): 

  
𝑔𝑠 = exp[−0.125 ∙ (𝐵𝑅𝜆 − 21) + 0.1] , (2.106) 

  

where 𝜆 stands for the tip-speed ratio and 𝐵𝑅 for the number of rotor blades; the rest of the 

coefficients in Eq. (2.106) have been determined based on experimental measurements (Shen 

et al., 2005). 

 

 Empirical Region Calculations 

Even though momentum theory provides a useful theoretical model for the performance 

prediction of wind turbine rotors, the particular method is no longer valid when the value of 

axial induction factor does not lie between 0 and 0.5 (Manwell et al., 2010). Therefore, since 

momentum theory cannot longer describe the wind turbine performance, the application of 

alternative expressions for the axial induction factor is required.  

In this study, the empirical expressions proposed by Ning (2014) are employed to 

accurately predict the wind turbine performance for the different operating states of the rotor. 

Furthermore, the original expressions have been enhanced with the addition of velocity speed-

up ratio, so as they can be applied to the case of shrouded wind turbines as well. At first, let 

us introduce the following non-dimensional parameters: 

  
𝑘𝑎 = 𝛾

2𝜎𝐶𝑛 (4𝐹sin2𝜙)⁄  , (2.107) 

  

𝑘𝑡  = 𝜎𝐶𝑡 (4𝐹 sinϕ cos𝜙) .⁄  (2.108) 

  

At this point, let us also recall that 𝜙 stands for local inflow angle and 𝐹 stands for the Prandtl’s 

correction factor, quantifying the rotor tip and hub losses. 

Now, if the local inflow angle (𝜙) is positive and the value of 𝑘𝑎 parameter is less than or 

equal to 2/3, the solution falls into the momentum theory region (windmill state). Thus, 
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𝑎𝑎 = 𝑘𝑎/(1 + 𝑘𝑎). (2.109) 

  

Please note that Eq. (2.109) is identical to Eq. (2.83). If the local inflow angle (𝜙) is positive and 

the value of 𝑘𝑎 parameter is greater than 2/3, the solution falls into the empirical estimation 

region, also termed as turbulent wake state. In that case, the expression for the calculation of 

axial induction factor reads: 

  
𝑎𝑎 = (ℎ1 −√ℎ2)/ℎ3 (2.110) 

  

where 

  
ℎ1 = 2𝐹𝑘𝑎 − (10 9⁄ − 𝐹) (2.111) 

  
ℎ2 = 2𝐹𝑘𝑎 − 𝐹(4 3⁄ − 𝐹) (2.112) 

  
ℎ3 = 2𝐹𝑘𝑎 − (25 9⁄ − 2𝐹) (2.113) 

  

On the other hand, if the local inflow angle (𝜙) is negative and the value of 𝑘𝑎 parameter is 

greater than 1.0, the solution falls into the propeller brake region. The expression for the 

calculation of the axial induction factor becomes: 

  
𝑎𝑎 = 𝑘𝑎 (𝑘𝑎 − 1)⁄  (2.114) 

  

Finally, if the local inflow angle (𝜙) is negative and the value of 𝑘𝑎 parameter is less than or 

equal to 1.0, then the particular value of the inflow angle cannot possibly be a solution to the 

BEM equations; therefore, in this case, the axial induction factor should be set to any random 

value, different from its previous one. In any of the aforementioned cases, the tangential 

induction factor reads: 

  𝑎𝑡 = 𝑘𝑡 (1 − 𝑘𝑡)⁄  (2.115) 

  

 

2.3 BEM Code Features 

This section outlines the major features of the in-house BEM code. The current software 

version has been implemented in Fortran 90, while the interaction between the user and the 

program is made by properly designed text files. Additionally, an updated version of the 

current software has been also developed in the context of Maria Seremeti’s undergraduate 

diploma thesis (Seremeti, 2019), based on the Qt cross-platform and C++ programming 

language. The later employs the same computational subroutines developed for the current 

one; however it is further enhanced by the addition of a friendly graphical user interface. 
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 Blade Discretization 

The adopted strategy for the discretization of the rotor blades into a finite number of blade 

elements is illustrated in Figure 2.9, where the number of blade elements equals to the number 

of the airfoil sections defining the blade. Now, let us consider a wind turbine blade defined by 

𝑁 airfoil sections, where 𝑟𝑖 denotes the radial position of the 𝑖𝑡ℎ airfoil section, measured from 

the rotation axis. 

 

 

Figure 2.9: The adopted blade discretization concept. 

 

Therefore, the radial length of each blade element (𝑑𝑟𝑖) is defined as: 

  𝑑𝑟1 = [𝑟2 − 𝑟1] 2⁄  

(2.116) 
 

𝑑𝑟𝑖 = [𝑟1+1 − 𝑟𝑖] 2⁄ + [𝑟𝑖 − 𝑟𝑖−1] 2⁄  

 
𝑑𝑟𝑁 = [𝑟𝑁 − 𝑟𝑁−1] 2⁄  

  

Please note that the radial position of each blade element, except of the first and the last 

ones, is set as the radial position of the corresponding airfoil. As long as the first and the last 

blade elements are concerned, their radial positions are the radial position of the first and the 

last airfoil section of the blade, respectively. In practice, the number of blade elements should 

be large enough to provide a good approximation of the variations in velocity, chord, and twist 

distributions along the examined blade geometry. Experience shows that typical performance 

analyses can be done accurately using a number of blade elements between 10 and 20 (Wood, 

2011). 

 

 Aerodynamic Coefficients Calculation 

According to BEM theory, the calculation of axial and tangential force distributions along 

the rotor plane relies on the aerodynamic characteristics of the airfoil sections defining the 

wind turbine blades, as they are expressed by the lift and drag coefficients. In the early 

versions of the current BEM code, the lift and drag coefficients for each blade element and each 
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step of the iterative procedure were being obtained by means of external calls to the well-

known XFOIL code (Drela, 1989). In particular, after the calculation of the local angle of attack 

and the local Reynolds number, XFOIL code was automatically being called by the main 

calculation subroutine, so as to provide the aerodynamic data required for the estimation of 

the axial and tangential force coefficients. However, this approach was eventually rejected, 

since the XFOIL code was not always capable of achieving a converged solution for the 

prescribed flow conditions and thus, feeding back the required aerodynamic data, especially 

for angles of attack lying away from the linear lift region, causing the unexpected termination 

of BEM code. This problem was more intense during the simulation of low tip-speed ratios, 

where the angle of attack, in certain stations of the rotor blades, could be extremely high. 

Besides, such high angles of attack could also be encountered during the analysis of stall-

regulated wind turbines, where deep stall is invited, in order to limit the excessive power in 

high winds. 

In order to alleviate this shortcoming, two custom subroutines for the extrapolation of the 

aerodynamic curves, provided by XFOIL code, to the entire 360 range of angles of attack were 

later implemented and fully incorporated within the particular BEM code. The first 

extrapolation subroutine is based on the method proposed by Bjorn Montgomerie 

(Montgomerie, 2004), which actually combines the Thin Plate theory with the linear range 

behavior or the airfoil, under the assumption that an airfoil section operating at high angles of 

attack behaves like a thin plate with a sharp leading edge. The second extrapolation subroutine 

is based on the Viterna-Corrigan extrapolation method (Viterna and Corrigan, 1981). 

Subsequently, the entire procedure for the calculation of the aerodynamic coefficients was 

reformed. This time, the required XFOIL simulations for each blade section and each iterative 

step were being performed for a wider range of angles of attack, usually between -5 and 25, 

instead for the local angle of attack; then, the resulting lift and drag coefficient curves were 

automatically being passed to the selected extrapolation subroutine, which would finally 

output the lift and drag coefficients for the entire range between -180 and 180 degrees, with 

respect to the local Reynolds number. Nevertheless, since both extrapolation methods rely on 

fine-tuning parameters, the quality of the automatically extrapolated results was not always 

acceptable. 

Ultimately, in order to assure that accurate values for the lift and drag coefficients would 

always be available during the entire iterative process, regardless the angle of attack, a third 

approach was finally adopted, which is the most common one in such applications. According 

to the followed approach the XFOIL simulations for each airfoil section are manually 

performed in a pre-processing stage, before the execution of BEM code, considering an average 

Reynolds number along the blade, which is empirically estimated based on the inflow velocity 

and average chord length. Then, both lift and drag coefficient curves are manually 
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extrapolated to the entire 360o range of angles of attack, by properly selecting the 

corresponding extrapolation parameters. The main advantage of this method is that the 

aerodynamic coefficients for each blade section have been already calculated and stored 

within the database, ready to be used when required. Nevertheless, this method calculates the 

aerodynamic coefficient based on an average (reference) Reynolds number, instead of the local 

Reynolds number for each blade section. Figure 2.10 and Figure 2.11 illustrate the lift and drag 

curves of a NACA 0012 airfoil at 1,000,000 Re, extrapolated to the entire range of angles of 

attack, using the Montgomerie (2004) extrapolation method. 

 

 

Figure 2.10: Extrapolation of the lift coefficient curve for a NACA 0012 airfoil at 1,000,000 Re. 

 

 

Figure 2.11: Extrapolation of the drag coefficient curve for a NACA 0012 airfoil at 1,000,000 Re. 

 

2.3.2.1 Drag Correction for Reynolds Number 

In the framework of BEM models, the aerodynamic performance of the rotor blades is 

completely determined by means of the lift and drag coefficients, for each blade section. 

Therefore, the accurate prediction of these aerodynamic parameters is crucial for the precision 

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180

Li
ft

 C
o

ef
fi

ci
en

t

Angle of Attack - α 

XFOIL Data 360 Extrapolation

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180

D
ra

g 
C

o
ef

fi
ci

en
t

Angle of Attack - α 

XFOIL Data 360 Extrapolation



Chapter 2 Development of a Blade Element Momentum Code 

 

2-30 

of the final solution. However, the utilization of pre-calculated lift and drag coefficients, 

considering an average Reynolds number, instead of the actual local one, could introduce a 

significant amount of error. In efforts to improve the accuracy of the final solution, Hernandez 

and Crespo (1987) proposed a correction model accounting for the aforementioned problem, 

in which the drag polar is corrected by scaling the drag coefficient inversely with the Reynolds 

number, as follows: 

  
𝐶𝐷 = 𝐶𝐷,𝑅𝑒𝑓 ∙ (Re𝑅𝑒𝑓 Re⁄ )

0.2
 (2.117) 

  

Here, Re stands for the local Reynolds number while Re𝑅𝑒𝑓 denotes the average Reynolds 

number, for which the drag coefficient is available. In terms of the lift coefficient, no correction 

needs to be applied, since it is less sensitive to the Reynolds number than the drag coefficient. 

 

 Relaxation Procedure 

The fluctuating behaviour of the axial induction factor, which is characteristically 

demonstrated in Figure 2.12, represents one of the most commonly encountered problems 

during the iterative process applied for the solution of BEM equations; in particular, these 

fluctuations stem from the periodically variation of the rotor loading state, practically 

quantified by the thrust coefficient, between light and heavy loading. Therefore, since 

convergence cannot be achieved, the iteration process is terminated after a pre-defined 

number of steps and the corresponding blade element is skipped. However, this impacts both 

the accuracy of the predicted results and the performance of the code. 

 

 

Figure 2.12: Fluctuating behavior of the axial induction factor due to change of loading state. 

Reproduced from (Maheri et al., 2006). 

 

An efficient solution to the aforementioned fluctuating behaviour problem was eventually 

proposed by Maheri et al. (2006). According to this approach, a relaxation factor (𝜓𝑟) is 
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introduced within the iterative solution process for each blade element; thus, the value of the 

axial induction factor for the current iterative step is calculated by using the value of the axial 

induction at the previous iterative step, as follows (Maheri et al., 2006): 

  
𝑎𝑎
𝑘+1 = 𝜓𝑟 ∙ 𝑎𝑎

𝑘+1 + (1 − 𝜓𝑟) ∙ 𝑎𝑎
𝑘    ,   0 < 𝜓𝑟 < 1 (2.118) 

  

Moreover, Maheri et al. (2006) suggested that further acceleration of the iterative procedure 

could be achieved by adopting a value of 𝜓𝑟 equal to unity for the first few iterations, so the 

first few oscillations to happen. Eventually, these oscillations will mark the boundaries of the 

final result’s neighbourhood. By using a three-point-equation, the axial induction factor is then 

placed inside this neighbourhood as follows: 

  

𝑎𝑘+1 =
1

4
𝑎𝑘+1 +

1

2
𝑎𝑘 +

1

4
𝑎𝑘−1   (2.119) 

  

Then, the iteration proceeds as normal, by applying Eq. (2.118) with the desired relaxation 

factor. Figure 2.13 demonstrates the behaviour of axial induction factor for different values of 

the relaxation parameter 𝜓𝑟. Accordingly, for all the simulations encountered in this study a 

values between 0.2 and 0.3 have been selected. 

 

 

Figure 2.13: Damped fluctuation of the axial induction factor for different relaxation factors. 

Reproduced from (Maheri et al., 2006). 

 

 The Iterative Procedure 

At this point, all the necessary equations of the current BEM model have been derived and 

the algorithm for the calculation of the axial and tangential induction factors can be 

summarized in the following steps. Due to the assumption of no aerodynamic interaction 

between the elements, each element can be treated separately. Therefore, the application of the 

0.333

0.383

0.433

0.483

0.533

0.583

0 2 4 6 8 10 12 14 16 18 20

A
xi

al
 In

d
u

ct
io

n
 F

ac
to

r

Number of Iterations

No Relaxation Relaxation Factor - 0.5 Relaxation Factor - 0.2



Chapter 2 Development of a Blade Element Momentum Code 

 

2-32 

BEM algorithm at a specific radius can be computed before solving for another radius, while 

the sequence in which the elements are treated is irrelevant. Ultimately, for each blade element, 

the following algorithm is applied: 

 

Step 1: Initialize axial (𝛼𝛼) and tangential (𝛼𝑡) induction factors. The initial value for both 

induction factors is typically zero. 

Step 2: Compute the local inflow angle 𝜙 using Eq. (2.87). 

Step 3: Compute the Prandtl’s correction factor (𝐹) using Eq. (2.94) or the Shen’s correction 

factor (𝑞𝑠) using Eq. (2.103), depending on which of the available tip and hub correction 

models has been selected. 

Step 4: Compute the local angle of attack (α) using Eq. (2.67). 

Step 5: Compute the relative inflow velocity (𝑤) using Eq. (2.86); then calculate the local 

Reynolds number, based on the local inflow velocity (𝑤) and chord length (𝑐). 

Step 6: Calculate the lift (𝐶𝐿) and drag (𝐶𝐷) coefficients for the examined airfoil section at the 

given flow conditions. 

Step 7: If the drag correction model for Reynolds number is active, calculate the new value of 

drag coefficient applying Eq. (2.117). 

Step 8: Compute the normal (𝐶𝑛) and tangential (𝐶𝑡) force coefficients using Eq. (2.72) and Eq. 

(2.73). 

Step 9: Apply the Shen’s correction model; compute the updated values for the normal (𝐶𝑛) 

and tangential (𝐶𝑡) force coefficients using Eq. (2.101) and Eq. (2.102). 

Step 10: Calculate 𝛼𝛼 and 𝛼𝑡 based on the expressions provided in Section 2.2.6. 

Step 11: If 𝛼𝛼 or 𝛼𝑡 has changed more than the adopted tolerance 𝜀, go to Step 2. Else finish. 

Step 12: Compute the local loads on the blade element. 
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Chapter 3 

Numerical Validation of the BEM Code 

 

This chapter provides a detailed validation study on the overall performance of the in-house BEM solver 

that was presented in Chapter 2. To this end, several benchmark cases have been selected, including both 

conventional horizontal-axis wind turbine (Section 3.1) and shrouded wind turbine (Section 3.2) rotors. 

The results of the current BEM simulations are compared against both numerical and experimental data 

available in literature, as well as against the results obtained from the well-known QBlade software. 

 

3.1 Conventional Horizontal-Axis Wind Turbines 

The current section aims to investigate, and eventually validate, the ability of the in-house 

developed BEM code to accurately predict the aerodynamic performance and power output 

of unshrouded horizontal-axis wind turbine rotors. For that purpose, two widely examined 

and well-documented benchmark cases have been selected, namely the NREL Phase VI wind 

turbine (Hand et al., 2001) and the NREL 5-MW reference wind turbine (Jonkman et al., 2009), 

which represent typical examples of small and large wind turbine configurations, respectively. 

 

 NREL Phase VI Wind Turbine 

The first validation case considers the well-documented NREL Phase VI wind turbine, 

which was extensively investigated during the Unsteady Aerodynamics Experiment (UAE) 

conducted at the 24.4 m × 36.6 m wind tunnel facilities of the National Aeronautics and Space 

Administration (NASA) Ames Research Center (Hand et al., 2001). The scope of that particular 

experimental campaign was to obtain accurate quantitative aerodynamic and structural data 

for the development and validation of enhanced engineering models. Essentially, the NREL 

Phase VI wind turbine refers to a stall-regulated configuration with full-span pitch control and 

a rated capacity of approximately 20 kW that is characterized by a two-bladed rotor of 10.058 

m diameter; the rotor operates at a constant speed of 72 RPM (Hand et al., 2001). The entire 

NREL Phase VI wind turbine system is presented in Figure 3.1. 

Overall, the experimental campaign that conducted at the NASA Ames Research Center 

included thirty test sequences, which refer to various operating states and wind turbine setups 

(Hand et al., 2001). In this research study, the assessment of the developed BEM code is 

performed by using the experimental results from test sequence H, test sequence I and test 
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sequence J. All the three test sequences refer to upwind operation and zero yaw angle, with 

the only difference between them being the adopted blade pitch angle. Specifically, the blade 

pitch angle for test sequence H equals to three degrees (baseline configuration), the blade pitch 

angle for test sequence I equals to zero degrees (low pitch configuration) and the blade pitch 

angle for test sequence J equals to six degrees (high pitch configuration). At this point, it should 

be noted that according to the experimental setup, the blade pitch angle is actually referred to 

the pitch angle of the blade tip, which is defined as the angle between the rotor plane and the 

chord of the blade tip. Table 3.1 provides a summary of the simulation cases encountered in 

the present study, while detailed technical characteristics for the entire experimental campaign 

can be found in the work of Hand et al. (2001). 

 

 

Figure 3.1: The NREL Phase VI wind turbine configuration (Hand et al., 2001). 

 

Case Sequence Wind Velocity Rotor Speed Blade Pitch TSR (λ) 

1 H 5.0 – 25.0 m/s 72 RPM 3.00 deg 7.6 – 1.5 

2 I 5.0 – 25.0 m/s 72 RPM 0.00 deg 7.6 – 1.5 

3 J 5.0 – 25.0 m/s 72 RPM 6.00 deg 7.6 – 1.5 

Table 3.1: Simulation cases for the NREL Phase VI wind turbine rotor. 

  

3.1.1.1 Blade Characteristics and Simulation Parameters 

The main geometric characteristics of the aerodynamic profiles defining the NREL Phase 

VI wind turbine blade are provided in Table 3.2, while the blade planform is illustrated in 

Figure 3.2. The particular blade configuration is entirely based on the S809 airfoil, with the 
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only exception being the root region, where cylindrical profiles of varying chord length have 

been employed for the first 14 percent of the blade span. At this point, let us note that the blade 

region defined by the cylindrical profiles has been also included within the current BEM 

simulations, even though the aerodynamic contribution of that certain part of the blade to the 

overall rotor performance is practically negligible. 

 

 

Figure 3.2: The planform of NREL Phase VI wind turbine blade (Hand et al., 2001). 

 

In addition, the NREL Phase VI blade is characterized by a linear chord distribution (linear 

taper) with a maximum chord length of 0.737 m and a minimum chord length of 0.356 m; the 

aspect ratio of the blade, that is the ratio of the square of the blade span to the projected blade 

area, is approximately equal to 7.2; according to the study of Lindenburg (2003), this aspect 

ratio value is less than half of the values usually adopted in modern large wind turbines. 

Finally, the maximum twist angle of the examined blade equals to 20.04 degrees, which 

decreases in a parabolic way as the blade tip is approached, until a minimum value of -1.815 

degrees. Based on the particular blade characteristics, the solidity of the two-bladed NREL 

Phase VΙ rotor equals to 5.8 percent. 

The aerodynamic characteristics of the S809 airfoil that were used during the current BEM 

simulations – namely, the lift and drag coefficients – were calculated by means of XFOIL code 

(Drela, 1989). Then, the lift and drag curves were extrapolated to the entire 360o range of angles 

of attack, by applying the Montgomerie’s extrapolation method (Montgomerie, 2004). On the 

other hand, constant values of the lift and drag coefficients for the cylindrical profiles forming 

the root region of the blade were adopted; in that case, the lift coefficient was set to zero, while 

the drag coefficient was set equal to unity. Finally, tip and hub losses were also included within 

the current analyses, by employing both Prandtl’s and Shen’s correction models. 
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Section Airfoil Radius [m] Chord [m] Twist Angle [deg] 

1 Circular 0.508 0.218 0.00 

2 Circular 0.660 0.218 0.00 

3 Circular 0.883 0.189 0.00 

4 Circular 1.008 0.349 6.70 

5 Circular 1.067 0.441 9.90 

6 Circular 1.133 0.544 13.40 

7 S809 1.257 0.737 20.04 

8 S809 1.343 0.728 18.07 

9 S809 1.510 0.711 14.29 

10 S809 1.648 0.697 11.91 

11 S809 1.952 0.666 7.98 

12 S809 2.257 0.636 5.31 

13 S809 2.343 0.627 4.71 

14 S809 2.562 0.605 3.42 

15 S809 2.867 0.574 2.08 

16 S809 3.172 0.543 1.15 

17 S809 3.185 0.542 1.115 

18 S809 3.476 0.512 0.494 

19 S809 3.781 0.482 -0.015 

20 S809 4.023 0.457 -0.381 

21 S809 4.086 0.451 -0.475 

22 S809 4.391 0.420 -0.920 

23 S809 4.696 0.389 -1.352 

24 S809 4.780 0.381 -1.469 

25 S809 4.938 0.365 -1.689 

26 S809 5.000 0.358 -1.775 

27 S809 5.029 0.356 -1.815 

Table 3.2: Geometric characteristics of the NREL Phase VI wind turbine blade. 

 

3.1.1.2 BEM Simulation Results 

Figure 3.3 until Figure 3.5 compare the results of the current BEM simulations, in terms of 

aerodynamic rotor power and thrust, against the corresponding data from the experimental 

campaign at the NASA Ames Research Center; please note that the experimental power and 

thrust data for the NREL Phase VI wind turbine rotor that are illustrated in the following 

figures refer to the mean experimental values. The entire set of experimentally measured data 

for each one of the encountered test sequences – including the minimum, maximum and mean 

experimental values, as well as standard deviation information – are openly available at the 

following link: https://a2e.energy.gov/projects/uae6. 

https://a2e.energy.gov/projects/uae6
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According to the following comparisons, the in-house BEM code is capable of providing a 

reasonably accurate prediction of the entire power curve of the NREL Phase VI wind turbine 

rotor for the baseline (see Figure 3.4a) and high (see Figure 3.5a) pitch setups; however, at the 

same time, significant overestimations of the aerodynamic power for the low pitch setup (see 

Figure 3.3a) have been also identified, particularly for wind speed values greater than 9 m/s. 

In general, the predicted values of thrust and power are in good agreement with the 

experimentally measured ones for wind speeds below 10 m/s. Though, as the wind speed 

increases, the discrepancies between the BEM results and the experimentally measured data 

generally tend to increase as well, especially in terms of the rotor thrust. 

 

 

(a) Rotor Power – Sequence I (b) Rotor Thrust – Sequence I 

Figure 3.3: Comparison of the predicted and experimentally measured aerodynamic power and thrust 

for the NREL Phase VI wind turbine rotor – Test Sequence I (Low Pitch Setup). 

 

According to several studies on the performance of NREL Phase VI rotor (Gur and Rosen, 

2008; Arramach et al., 2017; Bontempo and Manna, 2017; Lee et al., 2017; Zhong et al., 2019), the 

particular discrepancies are primarily attributed to the fact that when the value of ambient 

wind speed exceeds approximately 10 m/s the examined rotor configuration operates in 

dynamic or deep stall mode. In such operating situations, all the computational methods that 

rely on the actuator disk concept, inherently fail to properly capture the flow physics, unless 

a tuning procedure for the two-dimensional airfoil data (the lift and drag coefficients) is 

employed (Bontempo and Manna, 2017). In fact, during the stall operation, the flow becomes 

three-dimensional, thus violating the main assumption of the actuator disk approach. Hence, 

such discrepancies between the BEM results and the experimental measurements for high 

values of the wind speed are generally anticipated, to some extent.  
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(a) Rotor Power – Sequence H (b) Rotor Thrust – Sequence H 

Figure 3.4: Comparison of the predicted and experimentally measured aerodynamic power and thrust 

for the NREL Phase VI wind turbine rotor – Test Sequence H (Baseline Setup). 

 

 

(a) Rotor Power – Sequence J (b) Rotor Thrust – Sequence J 

Figure 3.5: Comparison of the predicted and experimentally measured aerodynamic power and thrust 

for the NREL Phase VI wind turbine rotor – Test Sequence J (High Pitch Setup). 

 

 NREL 5-MW Reference Wind Turbine 

This validation case considers the NREL 5-MW reference wind turbine, which was 

originally developed by National Renewable Energy Laboratory and reflects the design 

specifications of a utility-scale system for offshore energy production, in the megawatt range 

(Jonkman et al., 2009). The particular variable-speed and pitch-regulated wind turbine 

configuration is characterized by a three-bladed upwind rotor with a diameter of 

approximately 126 meters; detailed characteristics of the NREL 5-MW wind turbine can be 

found in the work of Jonkman et al. (2009). In this validation study four typical points within 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

5 7 9 11 13 15 17 19 21 23 25

R
o

to
r 

P
o

w
er

[k
W

]

Wind Speed [m/s]

NREL Experiment - Sequence H

BEM - Shen's Model

BEM - Prandtl's Model

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5 7 9 11 13 15 17 19 21 23 25

R
o

to
r 

Th
ru

st
[k

N
]

Wind Speed [m/s]

NREL Experiment - Sequence H

BEM - Shen's Model

BEM - Prandtl's Model

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

5 7 9 11 13 15 17 19 21 23 25

R
o

to
r 

P
o

w
er

[k
W

]

Wind Speed [m/s]

NREL Experiment - Sequence J

BEM - Shen's Model

BEM - Prandtl's Model

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5 7 9 11 13 15 17 19 21 23 25

R
o

to
r 

Th
ru

st
[k

N
]

Wind Speed [m/s]

NREL Experiment - Sequence J

BEM - Shen's Model

BEM - Prandtl's Model



Chapter 3 Numerical Validation of the BEM Code 

 

3-7 

the operating envelope of NREL 5-MW reference wind turbine are considered, covering the 

three major control regions of the encountered system, as shown in Table 3.3. In particular, 

Region 2 refers to variable speed control, Region 3 refers to variable pitch control and finally, 

Region 2.5 refers to the transitional region between variable speed and variable pitch control. 

 

Case Wind Velocity  Rotor Speed  Pitch Angle (𝜃𝑏) TSR (𝜆) Control Region 

1 8.0 m/s 9.16 RPM 0.00 deg 7.55 2 

2 11.0 m/s 11.89 RPM 0.00 deg 7.13 2.5 

3 11.4 m/s 12.06 RPM 0.00 deg 6.97 2.5 

4 15.0 m/s 12.10 RPM 10.45 deg 5.32 3 

Table 3.3: Simulation cases for the NREL 5-MW reference wind turbine. 

 

3.1.2.1 Blade Characteristics and Simulation Parameters 

Table 3.4 provides a detailed overview of the main geometric characteristics of the NREL 

5-MW wind turbine blade (Resor, 2013) – a CAD representation of which is also shown in 

Figure 3.6. The current blade configuration is defined by a blended distribution of nineteen 

cross-sectional blade stations, with variable chord length and twist angle values. The first 

eleven percent of the blade span is characterized by cylindrical cross-sections, while the 

remaining blade stations are based on five different profiles from the DU airfoil family and 

one profile from the NACA five-digit series. 

 

Figure 3.6: CAD representation of the NREL 5-MW blade. 

 

Similar to the previous case study, the lift and drag coefficients for the airfoil sections 

forming the NREL 5-MW wind turbine blade were calculated using the XFOIL code, and then 

extrapolated to the entire range of angles of attack by means of Montgomerie (2004) method. 

As for the cylindrical profiles defining the root region of the blade, constant values of drag 

coefficient were adopted; for the first three cylindrical profiles, the drag coefficient was set at 
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0.5, while for the last one equal to 0.35. Finally, both the correction models proposed by Shen 

and Prandtl were used to account for the tip and hub losses. 

 

Section Airfoil Radius [m] Chord [m] Twist Angle [deg] 

1 Cylinder 1.50 3.542 13.308 

2 Cylinder 2.87 3.542 13.308 

3 Cylinder 5.60 3.854 13.308 

4 Cylinder 8.33 4.167 13.308 

5 DU40 11.75 4.557 13.308 

6 DU35 15.85 4.652 11.480 

7 DU35 19.95 4.458 10.162 

8 DU30 24.05 4.249 9.011 

9 DU25 28.15 4.007 7.795 

10 DU25 32.25 3.748 6.544 

11 DU21 36.35 3.502 5.361 

12 DU21 40.45 3.256 4.188 

13 NACA64618 44.55 3.010 3.125 

14 NACA64618 48.65 2.764 2.310 

15 NACA64618 52.75 2.518 1.526 

16 NACA64618 56.17 2.313 0.863 

17 NACA64618 58.90 2.086 0.370 

18 NACA64618 61.63 1.400 0.160 

19 NACA64618 62.90 0.700 0.000 

Table 3.4: Characteristics of the NREL 5-MW wind turbine blade. 

 

3.1.2.2 BEM Simulation Results 

Unfortunately, no experimental data for the NREL 5-MW reference wind turbine are 

available. Thus, at this stage, an indirect validation of the developed model is performed by 

comparing the results of the current BEM simulations against the corresponding results of the 

following well-respected simulation tools: 

 
 SOWFA – A computational fluid dynamics solver that is based on OpenFOAM toolbox and includes 

a version of the turbine model, coupled with FAST (Fleming et al., 2013). 
 

 OVERFLOW2 – A numerical simulation method that is based on the unsteady three-dimensional 

RANS equations (Nichols and Buning, 2021). 
 

 FAST – A comprehensive aeroelastic simulator for horizontal-axis wind turbines that combines 

modal and multibody dynamics formulation (Jonkman and Buhl, 2005). 
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 QBlade – An open source wind turbine calculation software based on Blade Element Momentum 

theory (Marten, 2015). 

 

The results of the numerical simulations performed with SOWFA, OVERFLOW2 and FAST 

were obtained from the comparative study of Anderson et al. (2015), which examines the 

aerodynamic characteristics of the NREL 5-MW rotor; detailed information on the 

aforementioned simulation tools and the established simulation parameters can be found in 

the same study. On the other hand, the simulations of NREL 5-MW wind turbine rotor with 

QBlade was implemented within the current doctoral dissertation. The simulation parameters 

for QBlade simulations were set in line with those adopted in the simulations with the current 

BEM model. 

Table 3.5 and Table 3.6 contain the predicted aerodynamic power and thrust, respectively, 

for the NREL 5-MW wind turbine rotor, at free-stream velocities equal to 8 m/s, 11 m/s and 15 

m/s. In terms of aerodynamic power prediction, the results of the in-house BEM solver are 

generally in reasonable agreement with those of the reference simulation tools. In particular, 

the maximum percentage deviation between the power output estimation of the current BEM 

model and the respective predictions obtained from the reference computational tools was 

found for OVERFLOW2, at 8 m/s, and it was approximately equal to 8.8%. As long as the 

comparison between the current BEM model and the rest simulation tools – in terms of 

aerodynamic power prediction – is concerned, the percentage deviation for each one of the 

examined operational point was below 4.4%, following a decreasing trend as the free-stream 

velocity increases. Overall, the current simulations results for the power output of the NREL 

5-MW rotor were found closer to those of FAST, since the mean percentage deviation for the 

three operational points was approximately equal to 1%; the corresponding percentages for 

SOWFA, OVERFLOW and QBlade were equal to 3.8%, 6% and 2.4%, respectively, validating 

the accuracy of our in-house methodology. 

 

 NREL 5MW Reference Wind Turbine – Power 

Wind Speed  BEM Code SOWFA OVERFLOW2 FAST QBlade 

8 m/s 1900 kW 1985 kW 1733 kW 1875 kW 1977 kW 

11 m/s 4905 kW 5061 kW 4650 kW 4827 kW 5020 kW 

15 m/s 5296 kW 5093 kW 5499 kW 5297 kW 5250 kW 

Table 3.5: Comparison of predicted power by different turbine simulation tools for the NREL 5-MW 

Reference Wind Turbine at various operational points. 
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Similar levels of accuracy can be observed on the predictions of aerodynamic thrust for the 

NREL 5-MW wind turbine rotor, which are included in Table 3.6. In this case, the estimations 

of the proposed BEM model were found closer to those of SOWFA, deviating from them by 

only 1% (average percentage deviation for all the encountered operational points); the 

corresponding percentages for OVERFLOW2 and QBlade are equal to 6.4% and 1.5%, 

respectively. The only exception to the generally good agreement between the current model 

and the reference simulation tools is the case of FAST, the predictions of which – in terms of 

aerodynamic thrust – deviate by an average percentage of 21% from the current simulation 

results. However, since the same discrepancies can be observed between the results of FAST 

and those obtained from the other reference models, this is probably attributed to the 

parameters used in FAST simulation rather to the current BEM code. 

 

 NREL 5MW Reference Wind Turbine – Thrust 

Wind Speed  BEM Code SOWFA OVERFLOW2 FAST QBlade 

8 m/s 382 kN 382 kN 399 kN 477 kN 390 kN 

11 m/s 695 kN 693 kN 733 kN 789 kN 705 kN 

15 m/s 417 kN 405 kN 455 kN 520 kN 413 kN 

Table 3.6: Comparison of predicted thrust by different turbine simulation tools for the NREL 5-MW 

Reference Wind Turbine at various operational points. 

 

Finally, in order to provide further validation to the proposed computational tool, the 

results of the current BEM simulations – in terms of axial and tangential force distributions 

over the blade – are compared against those obtained by detailed three-dimensional RANS 

simulations with a fully resolved rotor geometry (Zhong et al., 2019, 2020). The comparisons 

are performed for the operational conditions in which the NREL 5-MW wind turbine has been 

rated; namely, a freestream velocity of 11.4 m/s and a rotational speed of 12.06 RPM. According 

to Figure 3.7, the in-house BEM solver is capable to achieve similar levels of accuracy to those 

of RANS simulations, for both axial and tangential force distributions. 
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(a)  (b) 

Figure 3.7: Comparison of the axial (a) and tangential (b) force distribution over the NREL 5MW blade 

at 11.4 m/s, as obtained by the current BEM model and three-dimensional RANS simulations. 

 

3.2 Shrouded Wind Turbines 

This section aims to investigate, and eventually validate, the ability of the current BEM code 

to accurately predict the aerodynamic performance and power output characteristics of 

shrouded or diffuser-augmented wind turbine rotors. For this reason, the computational 

results of the in-house developed BEM model are compared against the corresponding data 

obtained from the experimental investigations of two different shrouded wind turbine 

configurations; namely, the Donqi Urban Windmill (van Dorst, 2011) and a multi-slotted 

diffuser-augmented wind turbine (Phillips, 2003). 

 

 Donqi Urban Windmills DAWT 

The present validation study involves the performance prediction of Donqi Urban 

Windmill, in terms of aerodynamic power output. The particular diffuser-augmented wind 

turbine, which essentially consists of a single element shroud and a three bladed rotor, with a 

tip radius of 0.75 m, was originally designed for small scale energy production within the 

urban environment by Donqi Independent Energy Company, in cooperation with the 

Netherlands Aerospace Centre (NLR) and Delft University of Technology. Since then, the 

Donqi Urban Windmill has been the subject of several experimental and numerical research 

studies (Ten Hoopen, 2009; van Dorst, 2011; Anselmi, 2017; Avallone et al., 2020; Dighe, 2020), 

which have primarily been focused on improving the performance of the original design, but 

also on evaluating newly developed engineering models for shrouded wind turbines. 
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(a) Old Blade (b) Optimal Blade (c) Linear Blade 

Figure 3.8: The three blade designs of Donqi Urban Windmill (van Dorst, 2011). 

 

Herein, the evaluation of the in-house BEM model is made by using the experimental 

measurements conducted at the Open Jet Facility of Delft University of Technology during the 

Master of Science project of van Dorst (2011). In particular, the work of van Dorst (2011) was 

mainly focused on designing improved rotor blades for the Donqi Urban Windmill. Thus, in 

order to experimentally evaluate the performance of the involved blade designs, he conducted 

a series of wind tunnel measurements by using the same diffuser geometry but three different 

blade designs, which are labelled as: old, optimal and linear. The three blade designs that were 

experimentally tested by van Dorst (2011) are shown in Figure 3.8; detailed information about 

the chord and twist distributions of the blades, as well as for the entire Donqi Urban Windmill 

system, can be found in the Master of Science thesis of van Dorst (2011). 

Actually, the old blade refers to the geometry that was originally manufactured for the 

Donqi Urban Windmill, based on the NACA 2207 airfoil (Ten Hoopen, 2009); the so-called 

optimal blade was designed through the chord and twist optimization of the old blade, while 

the third blade configuration, labelled as linear, was eventually resulted from linearizing the 

chord distribution of the optimal blade design, in an effort to reduce the material amount and 

the production costs (van Dorst, 2011). In this validation study, the assessment of the in-house 

BEM code is made by using experimental data that correspond to all the three blade designs. 

The current simulation cases are listed in Table 3.7; please note that the BEM calculations for 

each blade configuration were performed at the optimal TSR for the particular design, which 

is defined as the TSR yielding the maximum power coefficient. 

 

 

 

 

https://www.tudelft.nl/
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Case Blade Design Wind Velocity Rotor Speed Blade Pitch TSR (λ) 

1 Old 5.0 – 8.0 m/s 340 – 545 RPM 10.0 deg 5.4 

2 Optimal 5.0 – 8.0 m/s 363 – 581 RPM 10.0 deg 5.7 

3 Linear 5.0 – 8.0 m/s 376 – 601 RPM 10.0 deg 5.9 

Table 3.7: Simulation cases for the Donqi Urban Windmill rotor. 

 

Now, as long as the single element diffuser of Donqi Urban Windmill is concerned, it is 

characterized by an exit-area-ratio (that is the ratio between the diffuser exit plane area and 

the rotor swept area) equal to 1.728 and an exit plane diameter equal to 2 m, while it is also 

equipped with a 0.04 m high Gurney flap (Ten Hoopen, 2009); more information about the 

geometrical characteristics of the diffuser design are provided in Section 10.3. The velocity 

speed-up distribution over the rotor plane for the unloaded diffuser case (input for the BEM 

calculations) is provided in Figure 3.9a. To be more precise, Figure 3.9a provides both the 

experimentally measured (van Dorst, 2011) and the numerically estimated (Kesby et al., 2016) 

distribution of the velocity speed-up ratio over the rotor plane for the unloaded diffuser case. 

The particular numerical prediction of the velocity speed-up distribution was originally 

reported in the study of Kesby et al. (2016) and it was obtained by means of ANSYS CFX solver 

for an ambient wind speed of 5 m/s. 

 

 
(a) (b) 

Figure 3.9: (a) The experimentally measured and numerically predicted velocity speed-up distribution 

over the rotor plane for the unloaded Donqi Urban Windmill (Kesby et al., 2016). (b) Comparison of 

the BEM results obtained from the measured and numerically predicted velocity speed-up. 
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3.2.1.1 BEM Simulation Results 

Figure 3.10 illustrates the experimentally measured power output of the Donqi Urban 

Windmill rotor, for each one of the involved blade designs, in comparison with the results 

obtained from the in-house BEM code. Please note that the current BEM calculations for each 

blade design were performed both with and without the inclusion of a tip loss correction 

model. The aim of this strategy was to examine the effect of such a correction model on power 

output, and identify whether a tip loss correction model is necessary during the BEM analysis 

of shrouded wind turbines. As long as the power loss associated with the 0.15 m radius hub 

of Donqi Urban Windmill are concerned, the Prandtl’s hub loss correction model (see Section 

2.2.5.1) was included for every BEM simulation, regardless of the tip loss correction model. It 

is also noted that in the current validation study, all BEM calculations were performed by 

employing the numerically predicted velocity speed-up distribution reported in the study of 

Kesby et al. (2016), instead of the velocity speed-up distribution measured by van Dorst (2011), 

since both the experimentally measured and numerically estimated velocity speed-up 

distributions – shown in Figure 3.9a – led to practically identical power output predictions. In 

order to support this claim, Figure 3.9b provides a comparison between the power output 

predictions obtained by using both of the aforementioned velocity speed-up distributions, for 

the old blade geometry. The maximum observed discrepancy was less than 1.5 percent; this 

was also the case for the optimal and linear blade designs. 

 

 

(a) Old Blade (b) Optimal Blade (c) Linear Blade 

Figure 3.10: Experimental data and BEM predictions for the power output of the Donqi Urban 

Windmill rotor. (a) Old blade; (b) Optimal blade; (c) Linear blade. 
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Regarding the evaluation of the developed BEM code, in terms of accuracy, Figure 3.10 

reveals a very good association between the computational results and the experimental 

values for the aerodynamic power output of Donqi Urban Windmill rotor; the accuracy of the 

computational results does not seem to be affected by the blade design at hand. Moreover, 

from a qualitative point of view, the comparisons illustrated in Figure 3.10 definitely indicate 

that the BEM results obtained by including the tip loss correction model are much closer to the 

experimental ones, as compared to those obtained from the opposite simulation case. In fact, 

the absence of a tip loss correction model results in notable discrepancies between the 

computational and experimental results (overestimation of the aerodynamic power output) 

that increase with the value of the ambient wind speed. 

Furthermore, Table 3.8 provides the mean absolute error (MAE) and the mean absolute 

percentage error (MAPE) between the experimental and the computational results for the 

three blade designs of the Donqi Urban Windmill. Obviously, the quantitative information 

provided in Table 3.8 supports the inclusion of a tip loss correction model, since it result in 

notably smaller average deviations between the computational and the experimental results, 

even though it may generally leads to an underestimation of the measured power output. In 

general, the comparisons between the experimental measurements and BEM results reveal 

that the current model is able to reasonably predict the power output of such configurations, 

since the trend of the power curve has been adequately captured and the maximum mean 

absolute percentage error was found around 8 percent. 

 

Blade  Old Optimal Linear 

Without Prandtl's Tip Loss Model 

MAE 

MAPE 

24.28 Watts 

13.47 % 

28.18 Watts 

8.92 % 

32.89 Watts 

14.27 % 

With Prandtl's Tip Loss Model 

MAE 

MAPE 

9.89 Watts 

5.87 % 

15.08 Watts 

7.99 % 

11.99 Watts 

5.08 % 

Table 3.8: The mean absolute error (MAE) and the mean absolute percentage error (MAPE) between 

the experimental data and the BEM results for each blade of the Donqi Urban Windmill. 

 

 A Multi-Slotted DAWT 

In order to add further validity to the results of the in-house BEM code, this section 

considers the power performance prediction of the multi-slotted diffuser-augmented wind 

turbine that was experimentally investigated during the doctoral thesis of Phillips (2003), at 
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the Twisted Flow Wind Tunnel of the University of Auckland. The 0.48 m diameter multi-

slotted diffuser-augmented wind turbine is composed by a double surface diffuser. The outer 

skin of the particular diffuser design is formed by a single continuous surface, with its trailing 

edge to be fixed at an angle of 55 degrees relative to the centreline, while the inner surface has 

five boundary layer control slots, all positioned behind of the rotor plane. A schematic 

representation of the flow behaviour through the multi-slotted diffuser is provided in Figure 

3.11. The examined diffuser geometry has an inlet-area-ratio (that is the ratio of the diffuser 

inlet area to the rotor swept area) equal to 1.2 and an exit-area-ratio equal to 3. The distribution 

of the velocity speed-up ratio over the rotor plane for the unloaded diffuser case is provided 

in Table 3.9, as obtained from wind tunnel measurements conducted by Phillips (2003). 

   

 

Figure 3.11: A schematic representation of the flow behaviour through the multi-slotted diffuser-

augmented wind turbine (Phillips, 2003). 

 

𝑟 𝑅𝑡𝑖𝑝⁄  0.32 0.44 0.54 0.62 0.69 0.75 0.81 0.87 0.92 0.97 

𝛾 1.18 1.17 1.16 1.16 1.17 1.20 1.23 1.27 1.32 1.42 

Table 3.9: The velocity speed-up ratio distribution over the rotor plane for the unloaded diffuser of 

the multi-slotted diffuser-augmented wind turbine (Phillips, 2003). 

 

As long as the rotor of the multi-slotted diffuser-augmented wind turbine is concerned, the 

examined wind turbine configuration has a typical three bladed rotor. The geometrical 

characteristics of the rotor blades are presented in Table 3.10; the particular blade design was 

obtained by means of a single point optimization procedure, which was based on the modified 

BEM model developed by Phillips (2003). Eventually, the tip region of the blade has been 

formed by a Selig S-3021-095-84 airfoil with an approximate thickness-to-chord ratio of 10 
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percent, while a similar (scaled) airfoil with a thickness-to-chord ratio of 25 percent has been 

employed for the root region of the blade. The thickness-to-chord ratio of the airfoils defining 

the mid region of the blade varies linearly between 10 and 25 percent. The exact twist and 

chord distributions of the particular blade are reported in Table 3.10. Please note that all BEM 

calculations for this case study have been performed at the optimal blade pitch angle, which 

equals to 6.7 degrees (Phillips, 2003). 

 

Section Airfoil Radius [m] Chord [m] Twist Angle [deg] 

1 S-3021-095-84 0.058 0.0426 21.3 

2 S-3021-095-84 0.076 0.0426 16.9 

3 S-3021-095-84 0.094 0.0375 11.8 

4 S-3021-095-84 0.112 0.0330 8.1 

5 S-3021-095-84 0.130 0.0303 5.4 

6 S-3021-095-84 0.148 0.0278 3.3 

7 S-3021-095-84 0.166 0.0256 1.6 

8 S-3021-095-84 0.184 0.0240 0.3 

9 S-3021-095-84 0.202 0.0235 -0.6 

10 S-3021-095-84 0.220 0.0235 -0.8 

11 S-3021-095-84 0.238 0.0235 0.0 

Table 3.10: Blade characteristics for the multi-slotted DAWT (Phillips, 2003).  

 

3.2.2.1 BEM Simulation Results 

Figure 3.12 illustrates the experimentally measured values of shaft augmentation for the 

multi-slotted diffuser-augmented wind turbine, at the optimal pitch angle of 6.7 degrees, in 

comparison to the predicted augmentation values that were obtained from the current BEM 

code and the modified BEM model developed by Phillips (2003). Apparently, the current BEM 

model seems able to provide a reasonably good approximation of the entire power curve. 

However, at the same time, significant underestimations of the measured augmentation values 

can be definitely observed, especially near the optimum tip speed ratio. According to our point 

of view, these discrepancies between the experimental and the computational values probably 

stem from the inaccurate values of the aerodynamic lift and drag coefficients reported within 

the reference study, and eventually employed during the current BEM calculations. In fact, 

Phillips (2003) provided only the aerodynamic data for the Selig S-3021-095-84 airfoil, as well 

as a manually modified version of them. However, the study of Phillips (2003) did not provide 

the respective aerodynamic characteristics for the scaled airfoils defining the root and mid 

regions of the blade. Therefore, being the only ones available, the aerodynamic lift and drag 
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coefficients of the root airfoil were eventually adopted for all the airfoil sections along the 

blade, even though there was a considerable change of the thickness-to-chord ratio along the 

blade. 

 

 

Figure 3.12: The experimentally measured and computational predicted power curve of the multi-

slotted diffuser-augmented wind turbine at the optimum pitch angle of 6.7 degrees. 

 

Finally, Figure 3.12 could also provide significant information about the effect of the tip loss 

correction model on the predicted shaft augmentation. In this case, the inclusion of such a 

correction model seems to cause an even greater underestimation of the experimental data. 

Nevertheless, a solid conclusion on whether the inclusion of a tip loss model during the 

analysis of shrouded wind turbines is required, cannot be established based on this case study, 

given the inaccuracies of the utilized lift and drag data. 
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Chapter 4 

Development of an Axisymmetric RANS Solver 

 

This chapter describes the development of an academic in-house RANS solver, called IGal2D, for the 

numerical prediction of incompressible axisymmetric flows involving swirling. In particular, Section 

4.1 provides a general introduction into axisymmetric swirling flows, as well as the incentives for the 

development of IGal2D solver, while Section 4.2 presents the adopted form of the governing equations 

defining the flow and turbulence models. Finally, the remaining sections of the current chapter outline 

the numerical methodology underlying the IGal2D solver, emphasizing on the spatial and temporal 

discretization schemes, the flux evaluation approaches and the source term treatment. 

 

4.1 Axisymmetric Swirling Flows 

Axisymmetric flows that involve swirling or rotation represent a fundamental class of 

relatively complex fluid motion that is widely encountered in many engineering applications 

(e.g., pipeline systems, cooling devices, cyclone separators, combustion chambers and 

turbomachines), as well as in various natural phenomena (e.g., tornadoes, hurricanes and 

ocean circulations). Therefore, in recent decades, such flows have been consistently considered 

as an attractive subject of both scientific research and technical investigations. 

In general, the interaction between the swirling and streamwise motions has been proved 

an effective technique to enhance heat and mass transfer, as well as to stabilize and intensify 

certain working processes, particularly in aviation and rocket technology (Algifri et al., 1987). 

In addition, swirling motion has also been shown to improve the performance of shrouded 

wind turbines, since the tangential velocity component induced by the rotor blades helps to 

energize the velocity boundary layer of the internal diffuser wall and thus, to supress possible 

flow separation (Leloudas et al., 2020a; Venters et al., 2018). However, large values of the swirl 

parameter or number – which is defined as a measure of the ratio between the azimuthal and 

axial velocities (Billant et al., 1998; Ramos, 1984; Yang et al., 2018) – can possibly result in 

adverse flow patterns. A characteristic example was reported during the experimental study 

of Billant et al. (1998) on swirling water jets. This investigation concluded that increasing the 

swirl parameter over a critical threshold, for a prescribed Reynolds number, is directly related 

to the emergence of vortex breakdown (Yang et al., 2018). Negative implications of swirling, 

in terms of conventional diesel engines, were also reported by Ikegami and Kamimoto (2009), 

and although it was found that swirl itself may bring about favourable effects in fuel 
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distribution, air utilization, and acceleration of combustion, it was highlighted that large swirl 

numbers may not only decrease volumetric efficiency, but also cause poor combustion. 

In any case, accurate predictions of axisymmetric swirling flows and deep understanding 

of the associated phenomena are essential to improve the performance of the applications and 

processes involved. In modern engineering practice, numerical methods, and particularly 

CFD, represent a class of highly valuable tools – sometimes the only viable ones, given the 

drawbacks related to experimental procedures – to serve that purpose (Mazzaferro et al., 2005). 

From a macroscopic point of view, axisymmetric fluid motion, with or without the presence 

of swirling, can be predicted by means of the three-dimensional (3D) Navier-Stokes equations 

in cylindrical coordinates (Bird et al., 2006). However, the application of numerical methods 

adopting that form of governing equations is usually associated with relatively high 

computational cost and pre-processing effort, whereas their implementation entails significant 

challenges as well, which mainly stem from the 3D nature of the problem. 

On the other hand, the majority of the aforementioned shortcomings could be alleviated by 

taking advantage of the axisymmetric condition, dictating that the gradient for each flow 

variable in the azimuthal direction equals to zero. Consequently, by eliminating all the 

respective derivatives, the 3D Navier-Stokes equations in cylindrical coordinates can be 

reduced to a quasi-two-dimensional (2D) set of partial differential equations, defined over the 

meridional plane; these are widely known as the axisymmetric Navier-Stokes equations. As a 

matter of fact, the axisymmetric Navier-Stokes equations are usually arranged in a pseudo-

Cartesian form, by treating all the redundant terms associated with axisymmetric effects as 

source ones (Zhang et al., 2019). Ultimately, this approach allows for a significant reduction in 

both pre-processing effort and computational time, owned to the utilization of 2D grids and 

methods, instead of 3D ones, while at the same time providing reasonable levels of accuracy, 

when compared with the corresponding 3D models (Abedi et al., 2020; Leloudas et al., 2018b, 

2020a, 2021; Susan-Resiga et al., 2006). 

To assess the accuracy of axisymmetric Navier-Stokes models, especially in comparison 

with their 3D counterparts, but also with experimental measurements, significant studies were 

carried out by Susan-Resiga et al. (2006) and Abedi et al. (2020). In particular, Susan-Resiga et 

al. (2006) compared the numerical results of an axisymmetric solver for the incompressible 

Navier-Stokes equations, against the time-averaged solution of an unsteady 3D simulation, 

regarding the swirling flow inside the draft tube cone of Francis turbines at partial discharge. 

On the other hand, Abedi et al. (2020) performed a series of steady-state simulations on a 

supersonic inlet, using both axisymmetric and 3D flow solvers that were based on the 

compressible RANS equations and k-ω Shear Stress Transport (SST) turbulence model. Both 

research teams reached to the conclusion that numerical simulations, performed by means of 
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the axisymmetric models, could provide adequate levels of accuracy, especially in the absence 

of intense 3D effects; a valid assumption of a purely axisymmetric flow. Nevertheless, for the 

detailed prediction of strongly rotating flows that involve unsteady and intense 3D 

phenomena, associated with the collapse of the axisymmetric condition – such as the rotating 

vortex rope in the draft tube cone of Francis turbines (Susan-Resiga et al., 2006; Yang et al., 

2018) – 3D simulations were found rather appropriate (Li et al., 2014). Yet, the axisymmetric 

models could still capture the major flow aspects with reasonable accuracy for practical 

applications. 

Besides the aforementioned studies, many numerical models that employ the axisymmetric 

form of Navier-Stokes equations have been developed, for both compressible (Clain et al., 2010; 

Gokhale and Suresh, 1997; Musa et al., 2016) and incompressible flows (Dağtekin and Ünsal, 

2011; Durkish, 2006; Lee and Lee, 2011; Leloudas, 2018b, 2020a; Morsi et al., 1995; Moshkin et 

al., 2010; Saiac, 1990; Semião and Carvalho, 1997), featuring various discretization methods, 

flux evaluation schemes and turbulence models. Moreover, axisymmetric flow modelling has 

lately become a highly attractive topic in the context of mesoscopic approaches as well, such 

as the lattice Boltzmann Method (LBM) (Hajabdollahi et al., 2019; Huang et al., 2007; Lee et al., 

2005; Li et al., 2018; Liu H. et al., 2016; Liu Q. et al., 2019; Zhang et al., 2019). However, to the 

best of our knowledge, the implementation of an axisymmetric Navier-Stokes solver for 

incompressible swirling flows that employs Artificial Compressibility Method (ACM) is not 

available. 

The artificial compressibility approach, which is also termed as pseudo-compressibility 

approach, was originally introduced by Chorin (1967), in order to overcome pressure 

decoupling. Essentially, ACM involves the addition of a temporal derivative of pressure to the 

continuity equation, allowing the incompressible system of equations to be relaxed within the 

framework of a time-marching compressible flow solver (Anderson et al., 1996). In particular, 

the ACM transforms the incompressible Navier-Stokes equations of mixed elliptic/parabolic 

type, into a pseudo-temporal set of hyperbolic or parabolic partial differential equations (Kiris 

et al., 2006; Stokos et al., 2015). Additionally, in cases that the prediction of temperature 

distribution is not required (i.e., fluid motion characterized by negligible temperature 

gradients) ACM can provide significant advantages, especially over preconditioning methods; 

namely, energy equation isn’t solved, hence the corresponding flow solver is enhanced with 

substantial memory and time savings (Anderson et al., 1996). Furthermore, according to the 

comprehensive study of Tamamidis et al. (1996), ACM could outperform the pressure-based 

method (PBM) in terms of convergence rates, while according to Tanno et al. (2013), ACM has 

been proved faster than LBM on GPUs, for a properly selected value of the artificial 

compressibility parameter. 
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Therefore, against this background, and given the overall goal of the current doctoral 

dissertation to propose a computational framework for the design optimization of shrouded 

wind turbines, the remainder of this chapter features the development of an academic in-house 

flow solver that combines the ACM with the axisymmetric RANS equations, for the prediction 

of incompressible swirling flows. In particular, Section 4.2 describes the detailed derivation of 

the adopted form of the governing equations, defining the flow and turbulence models, while 

Section 4.3 until Section 4.5 outline the numerical methodology underlying the current flow 

solver, emphasizing on the spatial and temporal discretization schemes, the flux evaluation 

approaches and the source term treatment. Ultimately, the developed flow solver, called 

IGal2D (Leloudas et al., 2021; Lygidakis et al., 2020), is validated against relevant demanding 

benchmark test cases, which include both non-swirling and swirling flows with axial 

symmetry; the numerical validation of the proposed axisymmetric solver is included in 

Chapter 5. The obtained results are compared with available experimental and numerical data 

reported in the literature, as well as with those of the commercial software ANSYS Fluent 

(Fluent, 2009), aiming to confirm the potential of the proposed ACM-based methodology to 

predict such pseudo-3D flows in terms of accuracy. 

 

4.2 Governing Equations 

 Axisymmetric Navier-Stokes Equations 

The axisymmetric Navier-Stokes equations for incompressible fluid motion can be derived 

in a relatively straightforward manner from the fundamental laws of mass, momentum and 

energy conservation – when they are expressed in cylindrical coordinates (𝑟, 𝜃, 𝑧) – through 

the application of axisymmetric invariance assumption (Clain et al., 2010); essentially, the 

axisymmetric invariance assumption considers no flow variation in the azimuthal direction 

(𝜃) and therefore, eliminates all the respective partial derivatives (𝜕 𝜕𝜃⁄ ). At this point, let us 

note that the scope of this study is exclusively restricted to practically incompressible and 

isothermal flows, which are characterized by uniform density (𝜌) and kinematic viscosity (𝜈) 

values. Under these conditions, the energy equation is irrelevant, due to negligible 

temperature gradients and thermodynamic effects (Wang, 2015). Consequently, fluid motion 

is entirely governed by the continuity (4.1) and momentum (4.2) equations, which respectively 

read: 

  

∇ ∙ 𝐮 = 0 , (4.1) 

𝜕𝐮

𝜕𝑡
+ 𝐮 ∙ ∇𝐮 = −

1

𝜌
∇𝑝 + 𝜈∆𝐮 + 𝐟 . (4.2) 
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Here, 𝑝 stands for static pressure, 𝑡 stands for time, 𝐮 = (𝑢𝑟, 𝑢𝜃, 𝑢𝑧) stands for the fluid velocity 

vector and 𝐟 = (𝑓𝑟, 𝑓𝜃, 𝑓𝑧) stands for the vector of external body forces. Therefore, by 

implementing all the differential operators included within Eqs. (4.1) and (4.2) in terms of 

cylindrical coordinates (see Appendix A) while eliminating all the partial derivatives related 

to azimuthal (𝜃) direction, the non-conservative form of the incompressible axisymmetric 

Navier-Stokes equations can be emerged, as shown in Eqs. (4.3) – (4.6). 

Continuity:  

1

𝑟

𝜕(𝑟𝑢𝑟)

𝜕𝑟
+
𝜕𝑢𝑧
𝜕𝑧

= 0 (4.3) 

Radial Momentum (𝑟):  

𝜕𝑢𝑟
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟

+ 𝑢𝑧
𝜕𝑢𝑟
𝜕𝑧

−
𝑢𝜃
2

𝑟
= −

1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜈

 

𝜕

𝜕𝑟
(

 
1

𝑟 

𝜕(𝑟𝑢𝑟)

𝜕𝑟
)

 

+ 𝜈
𝜕

𝜕𝑧
(

 
𝜕𝑢𝑟
𝜕𝑧 
) + 𝑓𝑟 (4.4) 

Azimuthal Momentum (𝜃):  

𝜕𝑢𝜃
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝜃
𝜕𝑟

+ 𝑢𝑧
𝜕𝑢𝜃
𝜕𝑧

+
𝑢𝑟𝑢𝜃
𝑟

= 𝜈

 

𝜕

𝜕𝑟
(

 
1

𝑟 

𝜕(𝑟𝑢𝜃)

𝜕𝑟
)

 

+ 𝜈
𝜕

𝜕𝑧
(

 
𝜕𝑢𝜃
𝜕𝑧 
) + 𝑓𝜃 (4.5) 

Axial Momentum (𝑧):  

𝜕𝑢𝑧
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝑧
𝜕𝑟

+ 𝑢𝑧
𝜕𝑢𝑧
𝜕𝑧

= −
1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜈

1

𝑟

 

𝜕

𝜕𝑟
(𝑟 

 
𝜕𝑢𝑧
𝜕𝑟 
)

 

+ 𝜈
𝜕

𝜕𝑧
(

 
𝜕𝑢𝑧
𝜕𝑧 
) + 𝑓𝑧 (4.6) 

  

Apparently, the axisymmetric invariance assumption leads to the elimination of azimuthal 

velocity component (𝑢𝜃) from continuity equation (4.3). However, 𝑢𝜃 is still coupled to the 

axial (𝑢𝑧) and radial (𝑢𝑧) velocity components by means of momentum equations (4.4) – (4.6). 

In addition, axial symmetry condition removes the explicit effects of pressure from the 

azimuthal momentum equation (4.5). Nevertheless, 𝑢𝜃 remains coupled to the pressure field 

through the centrifugal acceleration term (𝑢𝜃
2 𝑟⁄ ), which is included within the radial 

momentum equation (4.4); the centrifugal acceleration term represents the effective 

acceleration in radial direction, resulting from fluid motion in azimuthal direction (Bird et al., 

2006; Siebert and Yocum, 1993). Finally, it should be noted that the body forces per unit volume 

in Eqs. (4.4) – (4.6), provide a convenient means by which the effect of external objects, such as 

wind turbine blades, can be introduced into the momentum equations. A detailed discussion 

on the proper modeling of body forces, as well as the development of a methodology coupling 

IGal2D and BEM solvers, is provided in Chapter 8. 

 



Chapter 4 Development of an Axisymmetric RANS Solver 

 

4-6 

4.2.1.1 Dimensionless Form of the Axisymmetric N-S Equations 

IGal2D solver is based on a dimensionless formulation of the axisymmetric Navier-Stokes 

equations. Dimensionless analysis represents a common practice in the field of fluid 

mechanics, which allows for the utilization of dimensionless similarity parameters, such as the 

Reynolds (Re) and Prandtl (Pr) numbers. In that way, the data of several equivalent 

experiments at different scales, can be grouped together and analyzed efficiently, while the 

number of required variables for the simulation of similar flows can be significantly reduced. 

Besides, dimensionless or normalized variables could also be a better alternative, compared to 

the unscaled or dimensional ones, from a numerical point of view; since their values are 

usually scaled so that they lie between zero and one, the floating point errors associated with 

very large or small numbers can be diminished (Siebert and Yocum, 1993). 

In this study, the governing equations (4.3) – (4.6) are normalized by introducing four 

reference quantities; namely, a reference length scale - Lref, a reference velocity scale - Vref, a 

reference density scale - ρref and a reference kinematic viscosity scale - νref. Consequently, the 

dimensionless length (𝑥̃𝑖), velocity (𝑢̃𝑖), density (𝜌̃) and kinematic viscosity (𝜈) are defined as: 

  
𝑥̃𝑖 =

𝑥𝑖
Lref

  ,   𝑢̃𝑖 =
𝑢𝑖
Vref

  ,   𝜌̃ =
𝜌

ρref
  ,   𝜈 =

𝜈

νref
  . (4.7) 

  

The remaining parameters included in Eqs. (4.3) – (4.6) are normalized by combinations of the 

adopted reference quantities, as follows: 

  
 𝑝̃ =

𝑝

ρref ∙ Vref
2   ,   𝑓𝑖 =

𝑓𝑖

ρref ∙ Vref
2 ∙ Lref

2   ,   𝑡̃ =
𝑡

Lref ∙ Vref
−1  , (4.8) 

  

where the "~" superscript indicates the dimensionless quantities. Typically, the reference 

length scale (Lref) is defined by using a characteristic length of the examined flow problem, 

whereas the reference velocity scale (Vref) is selected as the magnitude of the free-stream 

velocity. On the other hand, the reference scale of density (ρref) for incompressible flows is 

usually defined as the fluid’s density (𝜌), which is constant; thus, non-dimensional density (𝜌̃) 

equals to unity. At last, the fluid's kinematic viscosity (𝜈) is the most convenient reference 

scale for viscosity (νref). Consequently, for isothermal and laminar flows, the non-dimensional 

kinematic viscosity (𝜈) is also equal to unity (Siebert and Yocum, 1993). 

Ultimately, by introducing Eqs. (4.7) and (4.8) into Eqs. (4.3) – (4.6), the non-conservative 

form of the axisymmetric Navier-Stokes equations for incompressible fluid motion, in terms 

of dimensionless parameters, can be written as follows: 
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Continuity:  

1

𝑟̃

𝜕(𝑟̃𝑢̃𝑟)

𝜕𝑟̃
+
𝜕𝑢̃𝑧
𝜕𝑧̃

= 0 (4.9) 

Radial Momentum (𝒓):  

𝜕𝑢̃𝑟
𝜕𝑡̃

+ 𝑢̃𝑟
𝜕𝑢̃𝑟
𝜕𝑟̃

+ 𝑢̃𝑧
𝜕𝑢̃𝑟
𝜕𝑧̃

−
𝑢̃𝜃
2

𝑟̃
= −

1

𝜌̃

𝜕𝑝̃

𝜕𝑟̃
+
𝜈

Re

 

𝜕

𝜕𝑟̃
(

 
1

𝑟̃
 

𝜕(𝑟̃𝑢̃𝑟)

𝜕𝑟̃
)

 

+
𝜈

Re

𝜕

𝜕𝑧̃
(

 
𝜕𝑢̃𝑟
𝜕𝑧̃ 
) + 𝑓𝑟 (4.10) 

Azimuthal Momentum (𝜽):  

𝜕𝑢̃𝜃
𝜕𝑡̃

+ 𝑢̃𝑟
𝜕𝑢̃𝜃
𝜕𝑟̃

+ 𝑢̃𝑧
𝜕𝑢̃𝜃
𝜕𝑧̃

+
𝑢̃𝑟𝑢̃𝜃
𝑟

=
𝜈

Re

 

𝜕

𝜕𝑟̃
(

 
1

𝑟̃
 

𝜕(𝑟̃𝑢̃𝜃)

𝜕𝑟̃
)

 

+
𝜈

Re

𝜕

𝜕𝑧̃
(

 
𝜕𝑢̃𝜃
𝜕𝑧̃ 

) + 𝑓𝜃 (4.11) 

Axial Momentum (𝒛):  

𝜕𝑢̃𝑧
𝜕𝑡̃

+ 𝑢̃𝑟
𝜕𝑢̃𝑧
𝜕𝑟̃

+ 𝑢̃𝑧
𝜕𝑢̃𝑧
𝜕𝑧̃

= −
1

𝜌̃

𝜕𝑝̃

𝜕𝑟
+
𝜈

Re

1

𝑟̃

 

𝜕

𝜕𝑟̃
(𝑟̃ 

 
𝜕𝑢̃𝑧
𝜕𝑟̃ 
)

 

+
𝜈

Re

𝜕

𝜕𝑧̃
(

 
𝜕𝑢̃𝑧
𝜕𝑧̃ 
) + 𝑓𝑧 (4.12) 

  

Although both the dimensionless scales of density (𝜌̃) and kinematic viscosity (𝜈) are equal to 

unity, they are deliberately retained within Eqs. (4.9) - (4.12) just for the sake of completeness. 

At this point, please note that the Reynolds number – which is defined as: 

  
 Re =

Lref ∙ Vref
νref

 (4.13) 

  

and provides the ratio of inertial forces to viscous ones (Anderson, 2010) – appears naturally 

within momentum equations, when they are expressed in a dimensionless formulation. 

Apparently, in the current formulation of the non-dimensional Navier-Stokes equations, each 

viscous or diffusive term in the RHS of momentum equations (4.10) - (4.12) is divided by Re; 

an alternative to this could be to multiply every convective or inertial term, as well as the body 

force term, by Re. However, the former approach is generally preferred over the latter one, in 

order to minimize floating point errors during the numerical solution (Siebert and Yocum, 

1993), especially in the case where high-Reynolds number flows are encountered. Finally, a 

concluding remark on the normalization procedure of the Navier-Stokes equations could be 

drawn by observing the continuity equation (4.9); its form is not reformed by the non-

dimensionalization. This stems from the fact that all the terms within continuity equations are 

inviscid ones. In the rest of this thesis, the superscript "~" denoting the normalized variables 

is neglected for simplification reasons; every flow quantity is considered in its dimensionless 

form. 
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4.2.1.2 Conservative Form of the Axisymmetric N-S Equations 

In this section, the conservative form of the incompressible axisymmetric Navier-Stokes 

equations is derived. According to Hoffmann and Chiang (1993), a differential equation is 

termed to be in conservative form if the coefficients of the derivatives are either constant, or if 

variable, their derivatives do not appear anywhere in the equation. Although, the conservative 

and non-conservative forms of the governing equations – as well as those of any other 

differential equation – are mathematically equivalent, this is not the case for their discretized 

counterparts. In general, a conservative formulation of the governing equations is usually 

preferred when a numerical solution is involved. This stems from the fact that the conservative 

form of the fundamental conservation laws could result in a discrete approximation of a 

similar form, which leads to discrete conservation almost naturally. On the other hand, 

numerical conservation can be proved quite challenging when a non-conservative formulation 

is employed (Oud, 2017). In fact, by solving the equations in their conservative form, the flux 

crossing one control volume face will be the same for each of the adjacent control volumes that 

share that face. Consequently, both local and global flux conservation is guaranteed (Siebert 

and Yocum, 1993). 

In order to derive the conservative form of axisymmetric Navier-Stokes equations, Εq. (4.14) 

and Eq. (4.15) are initially introduced. Essentially, Eq. (4.14) is just an expression of the product 

rule for derivatives, while Eq. (4.15) results from the fact that cylindrical coordinate systems 

are orthogonal. Therefore, the radial coordinate (𝑟) is independent of the axial coordinate (𝑧) 

and, as such, it may be brought inside the partial derivatives with respect to 𝑧. 

  

 
𝜕𝑢𝑟
𝜕𝑟

+
𝑢𝑟
𝑟
=
1

𝑟

𝜕(𝑟𝑢𝑟)

𝜕𝑟
 , (4.14) 

  

 
𝜕𝑢𝑧
𝜕𝑧

=
1

𝑟

𝜕(𝑟𝑢𝑧)

𝜕𝑧
 . (4.15) 

  

Thus, the conservative form of the axisymmetric Navier-Stokes equations can be derived 

from the non-conservative one, presented in Section 4.2.1.1, by adding the continuity equation 

to the LHS of each momentum equation while applying Eqs. (4.14) and (4.15). At this point, 

please note that besides the convective terms in the LHS of momentum equations, some of the 

viscous ones in the RHS have been properly recast as well, so as the components of the viscous 

stress tensor (𝜏𝑖𝑗) to be emerged. Eventually, the conservative form of the incompressible 

axisymmetric Navier-Stokes equations, in terms of dimensionless parameters and viscous 

shear stress components , are shown through Eqs. (4.16) - (4.19). The equivalent (conservative 

and dimensionless) formulation of the axisymmetric Navier-Stokes equations, in terms of 

velocity gradients, is provided in Appendix B. 
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Continuity:  

1

𝑟

𝜕(𝑟𝑢𝑟)

𝜕𝑟
+
𝜕𝑢𝑧
𝜕𝑧

= 0 (4.16) 

Radial Momentum (𝒓):  

𝜕𝑢𝑟
𝜕𝑡

+
1

𝑟

𝜕(𝑟𝑢𝑟𝑢𝑟)

𝜕𝑟
+
1

𝑟

𝜕(𝑟𝑢𝑟𝑢𝑧)

𝜕𝑧
−
𝑢𝜃
2

𝑟
= −

𝜕𝑝

𝜕𝑟
+
1

𝑟

𝜕(𝑟𝜏𝑟𝑟)

𝜕𝑟
+
1

𝑟

𝜕(𝑟𝜏𝑟𝑧)

𝜕𝑧
−
𝜏𝜃𝜃
𝑟
+ 𝑓𝑟 (4.17) 

Azimuthal Momentum (𝜽):  

𝜕𝑢𝜃
𝜕𝑡

+
1

𝑟

𝜕(𝑟𝑢𝑟𝑢𝜃)

𝜕𝑟
+
1

𝑟

𝜕(𝑟𝑢𝜃𝑢𝑧)

𝜕𝑧
+
𝑢𝑟𝑢𝜃
𝑟

=
1

𝑟2
𝜕(𝑟2𝜏𝑟𝜃)

𝜕𝑟
+
1

𝑟

𝜕(𝑟𝜏𝜃𝑧)

𝜕𝑧
+ 𝑓𝜃 (4.18) 

Axial Momentum (𝒛):  

𝜕𝑢𝑧
𝜕𝑡

+
1

𝑟

𝜕(𝑟𝑢𝑧𝑢𝑟)

𝜕𝑟
+
1

𝑟

𝜕(𝑟𝑢𝑧𝑢𝑧)

𝜕𝑧
= −

𝜕𝑝

𝜕𝑧
+
1

𝑟

𝜕(𝑟𝜏𝑧𝑟)

𝜕𝑟
+
1

𝑟

𝜕(𝑟𝜏𝑧𝑧)

𝜕𝑧
+ 𝑓𝑧 (4.19) 

  

Now, the viscous stress tensor (𝛕) for incompressible flow of a Newtonian fluid is defined as: 

  

𝛕 =
1

Re
(∇𝐮 + ∇𝐮T) , (4.20) 

  

while under the axisymmetric invariance assumption, the stress tensor components (𝜏𝑖𝑗) read: 

  

𝜏𝑟𝑟 = 2
1

Re

𝜕𝑢𝑟
𝜕𝑟
 , 𝜏𝜃𝜃 = 2

1

Re

𝑢𝑟
𝑟
 , 𝜏𝑧𝑧 = 2

1

Re

𝜕𝑢𝑧
𝜕𝑧
 , 

(4.21)    

𝜏𝑟𝜃 = 𝜏𝜃𝑟 =
1

Re
(

 
𝜕𝑢𝜃
𝜕𝑟

−
𝑢𝜃
𝑟 
) , 𝜏𝜃𝑧 = 𝜏𝑧𝜃 =

1

Re

𝜕𝑢𝜃
𝜕𝑧
 , 𝜏𝑟𝑧 = 𝜏𝑧𝑟 =

1

Re
(

 
𝜕𝑢𝑧
𝜕𝑟

+
𝜕𝑢𝑟
𝜕𝑧 
) . 

 

 Axisymmetric Reynolds-Averaged Navier-Stokes Equations 

The Reynolds-Averaged Navier-Stokes (RANS) equations represent one of the most widely 

adopted approaches for turbulence modeling in engineering applications, according to which, 

each instantaneous flow quantity is decomposed into an average and a fluctuating part 

(Blazek, 2015). The Reynolds decomposition of pressure (𝑝), velocity components (𝑢𝑖) and 

body force components (𝑓𝑖) is described in Eq. (4.22), where the overbar denotes the average 

or mean part of the respective flow variable, while the prime denotes the fluctuating one. 

  
𝑝 =  𝑝̅ ⏟

𝑎𝑣𝑒𝑟𝑎𝑔𝑒

+    𝑝′ ⏟
𝑓𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑛𝑔

     

 

(4.22) 
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𝑢𝑖 =  𝑢̅𝑖 ⏟
𝑎𝑣𝑒𝑟𝑎𝑔𝑒

+   𝑢𝑖
′ ⏟

𝑓𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑛𝑔

 

𝑓𝑖 =  𝑓𝑖̅ ⏟
𝑎𝑣𝑒𝑟𝑎𝑔𝑒

+   𝑓𝑖
′ ⏟

𝑓𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑛𝑔

 

  

In general, averaging of the main flow quantities can be performed by employing three 

different strategies; namely, time-averaging, spatial averaging and ensemble averaging 

(Blazek, 2015). In this study, the time-averaging approach is adopted, since the majority of the 

encountered flows are characterized by statistically steady turbulence (steady-state flows). 

Accordingly, the mean values of pressure, velocity and body force components are defined as: 

  

 𝑝̅ = lim
𝑇→∞

1

𝑇
∫ 𝑝 𝑑𝑡

𝑡+𝑇

𝑡

 ,  𝑢̅𝑖 = lim
𝑇→∞

1

𝑇
∫ 𝑢𝑖 𝑑𝑡

𝑡+𝑇

𝑡

 ,  𝑓𝑖̅ = lim
𝑇→∞

1

𝑇
∫ 𝑓𝑖 𝑑𝑡

𝑡+𝑇

𝑡

 ,  (4.23) 

  

where 𝑇 → ∞ signifies that the time interval of integration should be larger than the typical 

time-scale of the turbulent fluctuations. Please note that the mean value of the fluctuating part 

for every flow quantity is zero, regardless of the employed averaging approach (Blazek, 2015). 

Consequently, the mean value of each flow variable does not vary in time, but only in space. 

Now, introducing Eq. (4.22) into Eqs. (4.16) - (4.19), the incompressible axisymmetric RANS 

equations, in terms of dimensionless parameters, can be expressed as: 

  
Continuity:  

1

𝑟

𝜕(𝑟𝑢̅𝑟)

𝜕𝑟
+
𝜕𝑢̅𝑧
𝜕𝑧

= 0 (4.24) 

Radial Momentum (𝒓):  

𝜕𝑢𝑟
𝜕𝑡

+
1

𝑟

𝜕(𝑟𝑢̅𝑟𝑢̅𝑟)

𝜕𝑟
+
1

𝑟

𝜕(𝑟𝑢̅𝑟𝑢̅𝑧)

𝜕𝑧
−
𝑢̅𝜃
2

𝑟
= −

𝜕𝑝̅

𝜕𝑟
+
1

𝑟

𝜕(𝑟𝜏̂𝑟𝑟)

𝜕𝑟
+
1

𝑟

𝜕(𝑟𝜏̂𝑟𝑧)

𝜕𝑧
−
𝜏̂𝜃𝜃
𝑟
+ 𝑓𝑟̅ (4.25) 

Azimuthal Momentum (𝜽):  

𝜕𝑢̅𝜃
𝜕𝑡

+
1

𝑟

𝜕(𝑟𝑢̅𝑟𝑢̅𝜃)

𝜕𝑟
+
1

𝑟

𝜕(𝑟𝑢̅𝜃𝑢̅𝑧)

𝜕𝑧
+
𝑢̅𝑟𝑢̅𝜃
𝑟

=
1

𝑟2
𝜕(𝑟2𝜏̂𝑟𝜃)

𝜕𝑟
+
1

𝑟

𝜕(𝑟𝜏̂𝜃𝑧)

𝜕𝑧
+ 𝑓𝜃̅ (4.26) 

Axial Momentum (𝒛):  

𝜕𝑢̅𝑧
𝜕𝑡

+
1

𝑟

𝜕(𝑟𝑢̅𝑧𝑢̅𝑟)

𝜕𝑟
+
1

𝑟

𝜕(𝑟𝑢̅𝑧𝑢̅𝑧)

𝜕𝑧
= −

𝜕𝑝̅

𝜕𝑧
+
1

𝑟

𝜕(𝑟𝜏̂𝑧𝑟)

𝜕𝑟
+
1

𝑟

𝜕(𝑟𝜏̂𝑧𝑧)

𝜕𝑧
+ 𝑓𝑧̅ (4.27) 

  

where 

  

𝛕̂ = 𝛕̅ − 𝐮′⊗𝐮′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
𝜈

Re
(∇𝐮̅ + ∇𝐮̅T) − 𝐮′⊗𝐮′̅̅ ̅̅ ̅̅ ̅̅ ̅̅  . (4.28) 
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Apparently, the form of axisymmetric RANS equations (4.24) - (4.28) is identical to that of 

the instantaneous or non-averaged axisymmetric Navier-Stokes equations (4.16) - (4.19); 

except of the additional non-linear term:  

  
𝐮′⊗𝐮′̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , (4.29) 

  

which has been emerged after the averaging process and denotes the Reynolds stress tensor. 

Herein, the Reynolds stress tensor is evaluated by introducing the Boussinesq hypothesis or 

approximation, assuming a linear relationship between the turbulent shear stress and the 

mean rate strain. Thus,  

  

−𝐮′⊗𝐮′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝜈𝑡(∇𝐮̅ + ∇𝐮̅
T) −

2

3
𝑘𝐈 , (4.30) 

  

where 𝜈𝑡 stands for the turbulent kinetic viscosity and 𝑘 for the turbulent kinetic energy. 

  

𝑘 =
1

2
𝐮′ ∙ 𝐮′̅̅ ̅̅ ̅̅ ̅̅   (4.31) 

  

Eventually, the total averaged stress tensor 𝛕̂ is given as: 

  

𝛕̂ = 𝛕̅ − 𝐮′⊗𝐮′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (

 
𝜈

Re
+ 𝜈𝑡
 

) ∙ (∇𝐮̅ + ∇𝐮̅T) −
2

3
𝑘𝐈 , (4.32) 

  

and the averaged stress tensor components as: 

  

𝜏̂𝑟𝑟 = 2(

 
𝜈

Re
+ 𝜈𝑡
 

)
𝜕𝑢𝑟
𝜕𝑟

−
2

3
𝑘 𝜏̂𝑟𝜃 = 𝜏̂𝜃𝑟 = (

 
𝜈

Re
+ 𝜈𝑡
 

) (

 
𝜕𝑢𝜃
𝜕𝑟

−
𝑢𝜃
𝑟 
) 

(4.33) 𝜏̂𝜃𝜃 = 2(

 
𝜈

Re
+ 𝜈𝑡
 

)
𝑢𝑟
𝑟
−
2

3
𝑘 𝜏̂𝜃𝑧 = 𝜏̂𝑧𝜃 = (

 
𝜈

Re
+ 𝜈𝑡
 

)
𝜕𝑢𝜃
𝜕𝑧

 

𝜏̂𝑧𝑧 = 2(

 
𝜈

Re
+ 𝜈𝑡
 

)
𝜕𝑢𝑧
𝜕𝑧

−
2

3
𝑘 𝜏̂𝑧𝑟 = 𝜏̂𝑟𝑧 = (

 
𝜈

Re
+ 𝜈𝑡
 

) (

 
𝜕𝑢𝑧
𝜕𝑟

+
𝜕𝑢𝑟
𝜕𝑧 
) 

  

Finally, it is recalled that according to the adopted non-dimensionalization strategy, the value 

of laminar kinematic viscosity (𝜈) equals to unity. 
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 Artificial Compressibility and Pseudo-Cartesian Formulation 

The artificial compressibility method (ACM) was originally introduced by Chorin (1967) to 

overcome pressure decoupling. Essentially, the particular method involves the addition of a 

temporal derivative of pressure to the continuity equation, allowing the incompressible 

system of equations to be relaxed within the framework of a time-marching compressible flow 

solver (Anderson et al., 1996). In particular, it transforms the incompressible Navier-Stokes 

equations of mixed elliptic/parabolic type into a pseudo-temporal set of hyperbolic or 

parabolic partial differential equations (Kiris et al., 2006; Stokos et al., 2015). Introducing the 

artificial compressibility parameter (𝛽), the continuity equation recasts as follows: 

Continuity:  

𝜕𝑝

𝜕𝑡
+
𝜕𝛽𝑢𝑟
𝜕𝑟

+
𝜕𝛽𝑢𝑧
𝜕𝑧

= −
𝛽𝑢𝑟
𝑟

 (4.34) 

  

Essentially, the artificial compressibility parameter (𝛽) allows for the incorporation of the 

pressure term in continuity equation (Anderson et al., 1996; Lygidakis et al., 2016). At this point 

it is emphasized that special attention should be paid on the proper selection of its value, since 

it affects the artificial speed of sound and consequently the corresponding speed of artificial 

pressure wave and overall convergence rate (Kallinderis and Ahn, 2005). Although the value 

of 𝛽 should be ideally chosen as high as possible to accelerate analogously the artificial 

pressure waves and consequently enforce incompressibility effects to the whole computational 

domain, values close to unit are typically chosen to assure good convergence rates, especially 

in viscous unsteady simulations (Cox et al., 2016). The momentum equations are not affected 

by artificial compressibility method. However, in order to result in a pseudo-Cartesian 

formulation, they have been arranged into inviscid, viscous and source terms, as follows: 

Radial Momentum (𝒓):  

𝜕𝑢𝑟
𝜕𝑡

+
𝜕(𝑢𝑟

2 + 𝑝)

𝜕𝑟
+
𝜕(𝑢𝑟𝑢𝑧)

𝜕𝑧
−
𝜕𝜏𝑟𝑟
𝜕𝑟

−
𝜕𝜏𝑟𝑧
𝜕𝑧

= −
𝑢𝑟
2

𝑟
+
𝜏𝑟𝑟
𝑟
−
𝜏𝜃𝜃
𝑟
+ 𝑓𝑟 (4.35) 

Azimuthal Momentum (𝜽):  

𝜕𝑢𝜃
𝜕𝑡

+
𝜕(𝑢𝑟𝑢𝜃)

𝜕𝑟
+
𝜕(𝑢𝜃𝑢𝑧)

𝜕𝑧
−
𝜕𝜏𝑟𝜃
𝜕𝑟

−
𝜕𝜏𝑧𝜃
𝜕𝑧

=
2

𝑟
(𝜏𝑟𝜃 − 𝑢𝑟𝑢𝜃) + 𝑓𝜃 (4.36) 

Axial Momentum (𝒛):  

𝜕𝑢𝑧
𝜕𝑡

+
𝜕(𝑢𝑟𝑢𝑧)

𝜕𝑟
+
𝜕(𝑢𝑧

2 + 𝑝)

𝜕𝑧
−
𝜕𝜏𝑟𝑧
𝜕𝑟

−
𝜕𝜏𝑧𝑧
𝜕𝑧

=
𝜏𝑟𝑧
𝑟
−
𝑢𝑟𝑢𝑧
𝑟

+ 𝑓𝑧 (4.37) 

  
Now, let us replace coordinates (𝑧, 𝑟) with (𝑥, 𝑦) and velocity components (𝑢𝑧, 𝑢𝑟 , 𝑢𝜃) with 

(𝑢, 𝑣, 𝑤); then, the system of partial differential equations defined by Eq. (4.34) – Eq. (4.37) can 



Chapter 4 Development of an Axisymmetric RANS Solver 

 

4-13 

be reformulated – arranged into inviscid, viscous and source terms – as follows (Cummings et 

al., 1995; Gokhale and Suresh, 1997; Masatsuka, 2013; Mohammadi and Saiac, 1993): 

  
𝜕𝐔

𝜕𝑡
+
𝜕𝐅𝑖
𝜕𝑥

+
𝜕𝐆𝑖
𝜕𝑦

−
𝜕𝐅𝑣
𝜕𝑥

−
𝜕𝐆𝑣
𝜕𝑦

= 𝐇 (4.38) 

 

 

 
where 𝐔 denotes the vector of primitive flow variables, 𝐅𝑖 and 𝐆𝑖 are the inviscid (convective) 

flux vectors, while 𝐅𝑣 and 𝐆𝑣 are the viscous (diffusive) flux vectors. 

  

𝐔 =  

𝑝

𝑢

𝑣

𝑤

 𝐅𝑖 =  

𝛽𝑢

𝑢2 + 𝑝

𝑢𝑣

𝑢𝑤

 𝐆𝑖 =  

𝛽𝑣

𝑣𝑢

𝑣2 + 𝑝

𝑣𝑤

 𝐅𝑣 =  

0

𝜏𝑥𝑥

𝜏𝑦𝑥

𝜏𝑥𝜃

 𝐆𝑣 =  

0

𝜏𝑥𝑦

𝜏𝑦𝑦

𝜏𝑦𝜃

 (4.39) 

  

Finally, the source term vector 𝐇, associated with axisymmetric swirling flows, is defined as: 

  

𝐇 =  
1

𝑦
   

−𝛽𝑣

𝑢𝜏𝑥𝑦 − 𝑢𝑣

𝜏𝑦𝑦 − 𝜏𝜃𝜃−𝑣
2 +𝑤2

2(𝜏𝑦𝜃 − 𝑣𝑤)

  +  

0

𝑓𝑥

𝑓𝑦

𝑓𝜃

 (4.40) 

  

For axisymmetric flow simulations in which circumferential or swirl velocity is neglected, the 

corresponding partial differential equation (4.36) shall be excluded and the tangential velocity 

component (𝑤) within the source term should be zeroed as well (Lee and Lee, 2011; Leloudas 

et al., 2020a, 2021). Moreover, in cases of purely two-dimensional flow simulations, the whole 

source term should be neglected. 

 

 Turbulence Modeling 

In the current version of IGal2D solver, turbulence modeling is achieved by means of k-ω 

Shear Stress Transport (SST) model (Menter, 1994; Menter et al., 2003). The SST model is 

defined by adopting the same differential formulation used for the flow partial differential 

equations, but it is solved separately, following a loose coupling approach; interaction between 

the flow and turbulence models is succeeded via the turbulent kinematic viscosity. Please note 

that no additional model is included to simulate transition from laminar to turbulent flow. To 

this end, the SST model is described as (Leloudas et al., 2021): 

  
𝜕𝐔𝑡

𝜕𝑡
+
𝜕𝐅𝑖

𝑡

𝜕𝑥
+
𝜕𝐆𝑖

𝑡

𝜕𝑦
−
𝜕𝐅𝑣

𝑡

𝜕𝑥
−
𝜕𝐆𝑣

𝑡

𝜕𝑦
= 𝐇𝑡 , (4.41) 

 

 

 
where 𝐔𝑡 denotes the vector of turbulence model variables. 
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𝐔𝑡 =  
𝑘

𝜔
 (4.42) 

 

 
 

In accordance to the flux vectors of the Navier-Stokes equations, the convective vectors of the 

SST turbulence model are given as: 

  

  𝐅𝑖
𝑡 =  

𝑢𝑘

𝑢𝜔
 𝐆𝑖

𝑡   =   
𝑣𝑘

𝑣𝜔
   (4.43) 

 

 

 

and the diffusive ones as: 

  

𝐅𝑖
𝑡 = 

(𝜈 Re⁄ + 𝜈𝑡𝜎𝑘) ∙ (𝜕𝑘 𝜕𝑥⁄ )

(𝜈 Re⁄ + 𝜈𝑡𝜎𝑘) ∙ (𝜕𝜔 𝜕𝑥⁄ )
 𝐆𝑖

𝑡 =  
(𝜈 Re⁄ + 𝜈𝑡𝜎𝑘) ∙ (𝜕𝑘 𝜕𝑦⁄ )

(𝜈 Re⁄ + 𝜈𝑡𝜎𝑘) ∙ (𝜕𝜔 𝜕𝑦⁄ )
 (4.44) 

 

 

 

Finally, the source term vector 𝐇𝑡 is defined as follows (Leloudas et al., 2021): 

  

𝐇𝑡 =   
𝑃𝑘 − 𝛽

∗𝜔𝑘

𝑃𝑘 𝛾 𝜈𝑡⁄ − 𝛾∗𝜔2 + 2(1 − 𝐹1)∇𝑘∇𝜔
   +  

1

𝑦
 ∙    

(𝜈 Re⁄ + 𝜈𝑡𝜎𝑘) ∙ (𝜕𝑘 𝜕𝑦⁄ ) − 𝑣𝑘

(𝜈 Re⁄ + 𝜈𝑡𝜎𝑘) ∙ (𝜕𝑘 𝜕𝑦⁄ ) − 𝑣𝜔
 (4.45) 

 

 
 

The parameters 𝜎𝑘 , 𝜎𝜔, 𝛽
∗, 𝛾∗ are obtained with regard to the equivalent constants of the k-ω 

and k-ε models, using the blending function 𝐹1 in a way that the parameter from the k-ω model 

is multiplied by 𝐹1 and the one from k-ε with (1 − 𝐹1) and then added together. Therefore, if 

𝑞 represents all coefficients of the SST model, 𝑞1 the constants from k-ω and 𝑞2 the ones from 

k-ε, then the first would be calculated as: 

  
𝑞 =  𝐹1 ∙ 𝑞1 + (1 − 𝐹1) ∙ 𝑞2 (4.46) 

 

 

 
The parameters for k-ω and k-ε closures are: 

  
Constants of k-ω closure:  

𝜎𝑘1 = 0.85  ,   𝜎𝜔1 = 0.5  ,   𝛽1 = 0.075  ,   𝛾1
∗ = 0.555   (4.47) 

Constants of k-ε closure:  

𝜎𝑘2 = 1.00  ,   𝜎𝜔1 = 0.856  ,   𝛽2 = 0.0828  ,   𝛾2
∗ = 0.44 (4.48) 

  
The blending function 𝐹1 is defined as: 

  
𝐹1 = tanh(arg1

4) , (4.49) 
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where 

  

arg1 =min [

 

max( 

 

√𝑘

𝛽∗𝜔𝑑
,
500𝜈

𝑑2𝜔Re
 

 ) ,
4𝜌𝜎𝜔2𝑘

𝐶𝐷𝑘𝜔𝑑
2

 

 ] , (4.50) 

 

 

 
and 

  

𝐶𝐷𝑘𝜔 = max(

 

2𝜎𝜔2
1

𝜔
∇𝑘∇𝜔 , 10−10

 
) , (4.51) 

 

 

 
where 𝑑 is the distance of the point in space where the SST model is applied, from the nearest 

solid wall surface. The turbulent kinematic viscosity is also calculated with the help of a second 

blending function (𝐹2) as: 

  

𝜈𝑡 =
𝛼1𝑘

max(𝑎1𝜔, 𝑆𝐹2)
 (4.52) 

 

 

 
The blending function 𝐹2 is defined as: 

  
𝐹2 = tanh(arg2

2) , (4.53) 

 

 

 
where 

  

arg2
2 = max(

√𝑘

𝛽∗𝜔𝑑
,
500 ∙ 𝜈

𝑑2𝜔Re
) . (4.54) 

 

 

 
Finally, the turbulent energy production term (𝑃𝑘) is computed as: 

  
𝑃𝑘 = 𝑣𝑡𝑆

2 , (4.55) 

 

 

 
where the invariant measure of the strain rate (𝑆) for the case of an axisymmetric swirling flow 

is evaluated as follows: 

  

𝑆 = √2(𝑆𝑖𝑗𝑆𝑖𝑗) = √2 [
1

2
(𝛻𝑉⃗ + 𝛻𝑉⃗ 𝑇)

𝑖𝑗

1

2
(𝛻𝑉⃗ + 𝛻𝑉⃗ 𝑇)

𝑖𝑗
]

= √2(
𝜕𝑢

𝜕𝑥
)
2

+ 2(
𝜕𝑣

𝜕𝑦
)
2

+ (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)
2

+ 2(
𝑣

𝑦
)
2

+ (
𝜕𝑤

𝜕𝑥
)
2

+ (
𝜕𝑤

𝜕𝑦
−
𝑤

𝑦
)
2

 , 

(4.56) 

 

 

 
 

 Coupling of Flow and Turbulence Models 

As already mentioned in the previous section, the coupling of the flow (4.38) and turbulence 

(4.41) models is achieved by adopting a so-called loose coupling approach, where the partial 
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differential equation defining the flow and turbulence models are resolved separately at each 

pseudo-time step, with the interaction between them to be realized by means of the turbulent 

kinetic viscosity (𝜈𝑡) and velocity components (𝑢,𝑣,𝑤). In particular, since an intermediate 

solution of the flow equations has been obtained, the resulting velocity field is fed to the 

turbulence model equations; subsequently, the turbulent model equations are resolved and 

the resulting turbulent kinematic viscosity is fed back to the flow model. The process is 

repeated in the next pseudo-time step. Eventually, this approach allows for the effortless 

switch between various available turbulence models and favors the addition of new ones. 

 

4.3 Spatial Discretization 

The spatial discretization of the partial differential equations defining the flow and 

turbulence models, namely, Eq. (4.38) and Eq. (4.41), is performed by applying a conservative 

node-centered finite-volume scheme over general unstructured grids in two dimensions, 

including triangular, quadrilateral and hybrid ones. According to the adopted discretization 

approach, the entire computational domain is divided into a finite number of non-overlapping 

control volumes, which are essentially defined as the median dual volumes of the grid nodes 

(Kallinderis and Ahn, 2005). In particular, the boundary 𝜕𝐶𝑉𝑃 of the control volume 𝐶𝑉𝑃 

around a node 𝑃 (which may be located either on the interior or the boundary of the 

computational domain) is formed by joining the line segments connecting the midpoints of 

the edges (𝑀𝑖) and the barycenters of the primary elements (𝐵𝑗) sharing this node (Leloudas et 

al., 2020a, 2021). 

Now, let 𝑄 be a random node within the set of nodes that are directly connected to 𝑃 via 

the grid edges, denoted as 𝑆𝑁(𝑃). By introducing 𝜕𝐶𝑉𝑃𝑄 to signify the intersection of 𝜕𝐶𝑉𝑃 and 

𝜕𝐶𝑉𝑄, as well as ℬ to symbolize the external boundary of the computational domain, 𝜕𝐶𝑉𝑃 is 

mathematically defined as (Nikolos and Delis, 2009): 

  
𝜕𝐶𝑉𝑃 = ⋃ 𝜕𝐶𝑉𝑃𝑄

∀ 𝑄 ∈ 𝑆𝑁(𝑃)

+ 𝜕𝐶𝑉𝑃⋂ℬ . (4.57) 

 

 

 

Figure 4.1 and Figure 4.2 illustrate the definition of such median dual control volumes, 

constructed by different types of primary elements. In particular, Figure 4.1 refers to the case 

in which the examined grid node 𝑃 is located on the interior of the computational domain, 

while Figure 4.2 describes the definition of the median dual control volume for the case of a 

boundary node. Herein, 𝐵1 and 𝐵2 denote the barycenters of the elements sharing the edge 𝑃𝑄. 

Please note that if the particular edge is a boundary one – as depicted in Figure 4.2 – 𝐵2 is not 
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defined. Finally, 𝑀𝑄 and 𝑀𝑇 stand for the midpoints of the edges 𝑃𝑄 and 𝑃𝑇 (i.e., the midpoints 

of the two boundary edges sharing the examined node 𝑃). 

 

        
(a) (b) (c) 

Figure 4.1: Definition of the median dual control volume 𝐶𝑉𝑃 for an internal grid node 𝑃. 

 

 

(a)  (b) 

Figure 4.2: Definition of the median dual control volume 𝐶𝑉𝑃 for a boundary grid node 𝑃. 

 

Based on the adopted finite-volume discretization technique, Eq. (4.38) can be integrated 

over the median dual control volume 𝐶𝑉𝑃 for each grid node 𝑃, as follows: 

  

∬
𝜕𝐔

𝜕𝑡

 

𝐶𝑉𝑃

 𝑑𝑥𝑑𝑦 + ∬
𝜕𝐅𝑖
𝜕𝑥

+
𝜕𝐆𝑖
𝜕𝑦

−
𝜕𝐅𝑣
𝜕𝑥

−
𝜕𝐆𝑣
𝜕𝑦

 𝑑𝑥𝑑𝑦

 

𝐶𝑉𝑃

= ∬𝐇 𝑑𝑥𝑑𝑦

 

𝐶𝑉𝑃

 . (4.58) 

 

 

 

Then, by applying the two-dimensional divergence theorem, which relates the divergence of 

a vector field within a region, to the flux of that vector field through the closed boundary of 

the region, Eq. (4.58) recasts into: 

  

∬
𝜕𝐔

𝜕𝑡

 

𝐶𝑉𝑃

 𝑑𝑥𝑑𝑦 + ∮ 𝚿𝑖 −𝚿𝑣

 

𝜕𝐶𝑉𝑃

 𝑑𝑠 = ∬𝐇 𝑑𝑥𝑑𝑦

 

𝐶𝑉𝑃

 ,  (4.59) 

 

 

 

where 𝚿𝑖 and 𝚿𝑣 represent the vector of inviscid and viscous fluxes, respectively. At this point, 

let us define 𝐧𝑃𝑄 = 𝐧1 + 𝐧2 as the outward normal vector to 𝜕𝐶𝑉𝑃𝑄, where 𝐧1 is normal to 𝐵1𝑀𝑄̅̅ ̅̅ ̅̅ ̅ 

with a norm equal to the length of 𝐵1𝑀𝑄̅̅ ̅̅ ̅̅ ̅ and 𝐧2 is normal to 𝑀𝑄𝐵2̅̅ ̅̅ ̅̅ ̅̅  with a norm equal to the 

length of 𝑀𝑄𝐵2̅̅ ̅̅ ̅̅ ̅̅ . In the same way, let us define 𝐧𝑜𝑢𝑡 = 𝐧𝑜𝑢𝑡,1 + 𝐧𝑜𝑢𝑡,2 as the outward normal 

vector to 𝜕𝐶𝑉𝑃⋂ℬ, where 𝐧𝑜𝑢𝑡,1 is normal to 𝑀𝑄𝑃̅̅ ̅̅ ̅̅  with a norm equal to the length of 𝑀𝑄𝑃̅̅ ̅̅ ̅̅  and 
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𝐧𝑜𝑢𝑡,2 is normal to 𝑃𝑀𝑇
̅̅ ̅̅ ̅̅  with a norm equal to the length of 𝑃𝑀𝑇

̅̅ ̅̅ ̅̅ . Figure 4.3 provides a schematic 

representation of the aforementioned vectors. 

 

 
(a)  (b) 

Figure 4.3: Vectors definition for the cases of internal and boundary nodes. 

 

Subsequently, by introducing the outward unit normal vector 𝐧̂PQ to 𝜕𝐶𝑉𝑃𝑄 and the outward 

unit normal vector 𝐧̂out to 𝜕𝐶𝑉𝑃⋂ℬ, which are defined as: 

  

𝐧̂𝑃𝑄 =
𝐧𝑃𝑄
‖𝐧𝑃𝑄‖

= [𝑛̂𝑃𝑄,𝑥 , 𝑛̂𝑃𝑄,𝑦] ,  (4.60) 

  

𝐧̂𝑜𝑢𝑡 =
𝐧𝑜𝑢𝑡
‖𝐧𝑜𝑢𝑡‖

= [𝑛̂𝑜𝑢𝑡,𝑥 , 𝑛̂𝑜𝑢𝑡,𝑦] , (4.61) 

 

 

 

𝚿𝑖 and 𝚿𝑣 can be expressed as follows: 

  
𝚿𝑖 = 𝑛̂𝑃𝑄,𝑥𝐅𝑖 + 𝑛̂𝑃𝑄,𝑦𝐆𝑖 , 

(4.62)  
𝚿𝑣 = 𝑛̂𝑃𝑄,𝑥𝐅𝑣 + 𝑛̂𝑃𝑄,𝑦𝐆𝑣  . 

 

 

 

Both inviscid and viscous fluxes are evaluated by using the values of primitive variables at 

the midpoint of the corresponding edge; in terms of the current discretization approach, this 

midpoint actually coincides with the interface between the adjacent control volumes of the 

computational nodes defining the respective edge (Lygidakis, 2015). Eventually, Eq. (4.59) can 

be reformed as: 

  

∬
𝜕𝐔

𝜕𝑡
𝑑𝑥𝑑𝑦

 

𝐶𝑉𝑝

+ ∑ ∫ 𝚿𝑖 −𝚿𝑣  𝑑𝑠

 

𝜕𝐶𝑉𝑃𝑄𝑄 ∈ 𝑆𝑁(𝑃)

+ ∫ 𝚿𝑖 −𝚿𝑣  𝑑𝑠

 

𝜕𝐶𝑉𝑃⋂ℬ

= ∬𝐇 𝑑𝑥𝑑𝑦

 

𝐶𝑉𝑝

 . (4.63) 

 

 

 

Under the assumption that the conservative variables at node 𝑃 are equal to their mean values 

over 𝐶𝑉𝑃, which is the fundamental concept underlying finite-volume method, the first term 

in the LHS of Eq. (4.63) becomes: 
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∬
𝜕𝐔

𝜕𝑡
𝑑𝑥𝑑𝑦

 

𝐶𝑉𝑝

= (

 
𝜕𝐔

𝜕𝑡 
)

𝑃

⋅ ∬𝑑𝑥𝑑𝑦

 

𝐶𝑉𝑝

=
𝜕𝐔𝑃
𝜕𝑡

𝐸𝑃 , (4.64) 

 

 

 

where 𝐸𝑃 denotes the area of the control volume 𝐶𝑉𝑃 around node 𝑃. Ultimately, by expressing 

the line integrals of the inviscid and viscous fluxes 𝚿𝑖 and 𝚿𝑣, as algebraic summations of the 

fluxes through the faces composing the control volume of node 𝑃, Eq. (4.63) recasts into: 

  

(

 
𝜕𝐔

𝜕𝑡 
)

𝑃

𝐸𝑃 + ∑ 𝚽𝑖
𝑃𝑄
−𝚽𝑣

𝑃𝑄

𝑄 ∈ 𝑆𝑁(𝑃)

+ ∑ 𝚽𝑖
𝑃,𝑜𝑢𝑡 −𝚽𝑣

𝑃,𝑜𝑢𝑡

(𝐾𝑜𝑢𝑡∈𝜕𝐶𝑉𝑃⋂ℬ)

= ∬𝐇 𝑑𝑥𝑑𝑦

 

𝐶𝑉𝑝

 , (4.65) 

 

 

 

where 

  

𝚽𝑖
𝑃𝑄
= ∫ 𝚿𝑖  𝑑𝑠

 

𝜕𝐶𝑉𝑃𝑄

= 𝐟 (𝐔𝑃𝑄
(𝐿)
, 𝐔𝑃𝑄

(𝑅)
, 𝐧𝑃𝑄) , (4.66) 

𝚽𝑣
𝑃𝑄 = ∫ 𝚿𝑣   𝑑𝑠

 

𝜕𝐶𝑉𝑃𝑄

= 𝐠(𝐔𝑃𝑄
(𝐿), 𝐔𝑃𝑄

(𝑅), 𝐧𝑃𝑄) , (4.67) 

𝚽𝑖
𝑃,𝑜𝑢𝑡 = ∫ 𝚿𝑖  𝑑𝑠

 

𝜕𝐶𝑉𝑃⋂ℬ

= 𝐟(𝐔𝑃 , 𝐔𝑜𝑢𝑡, 𝐧𝑜𝑢𝑡) , (4.68) 

𝚽𝑣
𝑃,𝑜𝑢𝑡 = ∫ 𝚿𝑣   𝑑𝑠

 

𝜕𝐶𝑉𝑃⋂ℬ

= 𝐠(𝐔𝑃, 𝐔𝑜𝑢𝑡, 𝐧𝑜𝑢𝑡) . (4.69) 

 

 

 

Herein, 𝐔𝑃𝑄
(𝐿) and 𝐔𝑃𝑄

(𝑅) denote the vectors of the conservative variables on the left and right side 

of the of point 𝑀𝑄 (i.e., the midpoint of the edge 𝑃𝑄) respectively, while 𝐔𝑜𝑢𝑡 stands for the 

corresponding vector on the boundary. 

 

4.4 Numerical Fluxes 

 Inviscid Fluxes 

In order to evaluate the inviscid (also termed as convective) flux vector associated with the 

edge 𝑃𝑄, a one-dimensional Riemann problem (Laney, 1998) between the left (𝐿) and right (𝑅) 

states existing at the two sides of point 𝑀𝑄 (i.e., the midpoint of the edge 𝑃𝑄) is assumed; these 

particular fluid states are defined by the vectors 𝐔𝑃𝑄
(𝐿) and 𝐔𝑃𝑄

(𝑅), respectively. In this study, the 

solution to the adopted Riemann problem is obtained by employing the well-known Roe’s 

approximate Riemann solver (Roe, 1981), which – even though considers a simplified version 

of the original Riemann problem – can eventually provide an exact solution. The Roe’s 
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approximate Riemann solver is based on the assumption that the Jacobian matrix is constant 

and calculated using consistency and conservation conditions (Nikolos and Delis, 2009). Thus, 

the inviscid or convective flux vector can be calculated as follows: 

  

𝚽𝑖
𝑃𝑄
=
1

2
[𝚿𝑖 (𝐔𝑃𝑄

(𝐿)
, 𝐧𝑃𝑄) + 𝚿𝑖 (𝐔𝑃𝑄

(𝑅)
, 𝐧𝑃𝑄)] −

1

2
|𝐀̿𝑃𝑄| ∙ (𝐔𝑃𝑄

(𝑅)
− 𝐔𝑃𝑄

(𝐿)
) , (4.70) 

 

 

 

where 𝐀̿𝑃𝑄 stands for the Jacobian matrix of the convective flux vector, related to the edge 𝑃𝑄. 

Please note that 𝐀̿𝑃𝑄  is evaluated at the midpoint (𝑀𝑄) of the corresponding edge by using the 

Roe-averaged values of the primitive variables, which are indicated by the double overbar and 

defined as: 

  

𝐔̿𝑃𝑄 =
√𝜌(𝐿) ∙ 𝐔𝑃𝑄

(𝐿)
+√𝜌(𝑅) ∙ 𝐔𝑃𝑄

(𝑅)
 

√𝜌(𝐿) +√𝜌(𝑅)
 . (4.71) 

 

 

 

Furthermore, by introducing the following expression (Laney, 1998; Roe, 1981): 

  
𝚿𝑖 (𝐔𝑃𝑄

(𝑅), 𝐧𝑃𝑄) − 𝚿𝑖 (𝐔𝑃𝑄
(𝐿), 𝐧𝑃𝑄) = 𝐀̿𝑃𝑄

(−) (𝐔𝑃𝑄
(𝑅) − 𝐔𝑃𝑄

(𝐿)) , (4.72) 

 

 

 

an alternative, yet equivalent, formulation of Eq. (4.70) can be obtained, which reads:  

  
𝚽𝑖
𝑃𝑄
= 𝚿𝑖 (𝐔𝑃𝑄

(𝐿)
, 𝐧𝑃𝑄) + 𝐀̿𝑃𝑄

(−)
(𝐔𝑃𝑄

(𝑅)
− 𝐔𝑃𝑄

(𝐿)
) . (4.73) 

 

 

 

Eventually, the calculation of inviscid flux vector within the current implementation of the 

proposed flow solver is performed by means of Eq. (4.73), where 𝐀̿𝑃𝑄
(−)

 represents the Jacobian 

matrix of the convective flux vector, computed using the arithmetic averages of primitive 

variables at (𝐿) and (𝑅) positions and negative eigenvalues (Nikolos and Delis, 2009). The 

detailed procedure for the derivation of 𝐀̿𝑃𝑄
(−)

 is provided in the following section (4.4.1.1). 

 

4.4.1.1 Convective Flux Jacobian 

The Jacobian matrix 𝐀̿𝑃𝑄 of the convective (inviscid) flux vector 𝚽𝑖
𝑃𝑄 related to the edge 𝑃𝑄 

can be expressed in terms of the Roe-averaged values of the primitive variables vector 𝐔̿, as: 

  

𝐀̿𝑃𝑄 =
𝜕𝚽𝑖

𝑃𝑄

𝜕𝐔̿𝑃𝑄
=  

0 𝛽 ∙ 𝑛𝑃𝑄,𝑥 𝛽 ∙ 𝑛𝑃𝑄,𝑦 0

𝑛𝑃𝑄,𝑥 Θ̿ ∙ ‖𝐧𝑃𝑄‖ + 𝑢 ∙ 𝑛𝑃𝑄,𝑥 𝑢̿ ∙ 𝑛𝑃𝑄,𝑦 0

𝑛𝑃𝑄,𝑦 𝑣̿ ∙ 𝑛𝑃𝑄,𝑥 Θ ∙ ‖𝐧𝑃𝑄‖ + 𝑣̿ ∙ 𝑛𝑃𝑄,𝑦 0

0 𝑤̿ ∙ 𝑛𝑃𝑄,𝑦 𝑤̿ ∙ 𝑛𝑃𝑄,𝑦 Θ̿ ∙ ‖𝐧𝑃𝑄‖

 (4.74) 
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where 𝐔̿ is given by Eq. (4.71) and the parameter Θ̿ is defined as: 

  
Θ̿ = 𝑢̿ ∙ 𝑛̂𝑃𝑄,𝑥 + 𝑣̿ ∙ 𝑛̂𝑃𝑄,𝑦 . (4.75) 

 

 

 

At this point, let us recall that 𝑛̂𝑃𝑄,𝑥 and 𝑛̂𝑃𝑄,𝑦 are the components of the outward unit vector 

𝐧̂PQ that is normal to 𝜕𝐶𝑉𝑃𝑄 (see Section 4.3).  

  

𝐧̂𝑃𝑄 =
𝐧𝑃𝑄
‖𝐧𝑃𝑄‖

= [𝑛̂𝑃𝑄,𝑥 , 𝑛̂𝑃𝑄,𝑦]  (4.60) 

 

 

 

The flux Jacobian calculation is made by applying the following eigenvalue decomposition: 

  
𝐀̿𝑃𝑄 = 𝚻̿ ∙ 𝚲̿ ∙ 𝚻̿

−1 , (4.76) 

 

 

 

where 𝚲̿ is the diagonal eigenvalue vector, defined as: 

  
𝚲̿ = diag{𝜆̿1, 𝜆̿2, 𝜆̿3, 𝜆̿4} ∙ ‖𝐧𝑃𝑄‖ = diag{Θ̿, Θ̿, Θ̿ + 𝑐̿, Θ̿ − 𝑐̿} ∙ ‖𝐧𝑃𝑄‖ (4.77) 

 

 

 

and 𝚻̿ is the matrix of the right eigenvector, described as: 

  

𝚻̿ =    

0 0 𝑐̿ −𝑐̿

𝑛̂𝑃𝑄,𝑦 0 𝑛̂𝑃𝑄,𝑥 +
(Θ̿ + 𝑐̿) ∙ 𝑢̿

𝛽
𝑛̂𝑃𝑄,𝑥 +

(Θ̿ − 𝑐̿) ∙ 𝑢̿

𝛽

−𝑛̂𝑃𝑄,𝑥 0 𝑛̂𝑃𝑄,𝑦 +
(Θ̿ + 𝑐̿) ∙ 𝑣̿

𝛽
𝑛̂𝑃𝑄,𝑦 +

(Θ̿ − 𝑐̿) ∙ 𝑣̿

𝛽

0 1
(Θ̿ + 𝑐̿) ∙ 𝑤̿

𝛽

(Θ̿ − 𝑐̿) ∙ 𝑤̿

𝛽

 (4.78) 

 

 
 

while 𝚻̿−1 is its inverse matrix, expressed as: 

  

𝚻̿−1 =   

𝑣̿ ∙ 𝑛̂𝑃𝑄,𝑥 − 𝑢̿ ∙ 𝑛̂𝑃𝑄,𝑦

𝑐̿2
𝛽 ∙ 𝑛̂𝑃𝑄,𝑦 + 𝑣̿ ∙ Θ̿

𝑐̿2
−
𝛽 ∙ 𝑛̂𝑃𝑄,𝑥 + 𝑢̿ ∙ Θ̿

𝑐̿2
0

−
𝑤̿

𝑐̿2
−
𝑤̿ ∙ 𝑛̂𝑃𝑄,𝑥 ∙ Θ̿

𝑐̿2
−
𝑤̿ ∙ 𝑛̂𝑃𝑄,𝑦 ∙ Θ̿

𝑐̿2
1

𝑐̿ − Θ̿

2𝑐̿2
𝛽 ∙ 𝑛̂𝑃𝑄,𝑥
2𝑐̿2

𝛽 ∙ 𝑛̂𝑃𝑄,𝑦

2𝑐̿2
0

−
𝑐̿ + Θ̿

2𝑐̿2
𝛽 ∙ 𝑛̂𝑃𝑄,𝑥
2𝑐̿2

𝛽 ∙ 𝑛̂𝑃𝑄,𝑦

2𝑐̿2
0

 (4.79) 
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The artificial speed of sound 𝑐̿, included in the above matrices, is computed as follows 

(Anderson et al., 1996; Kallinderis and Ahn, 2005; Tai et al., 2005; Tai and Zhao, 2003): 

  

𝑐̿ = √Θ̿2 + 𝛽 (4.80) 

 

 

 

Finally, for the discrete formulation of Roe’s scheme – as is expressed by Eq. (4.73) – 𝐀̿𝑃𝑄
(−)

 can 

be obtained as follows (Nikolos and Delis, 2009): 

  
𝐀̿𝑃𝑄
(−)
 = 𝚻̿ ∙ 𝚲̿(−) ∙ 𝚻̿−1 , (4.81) 

 

 

 

where 𝚲̿(−) = diag{𝜆̿1
−, 𝜆̿2

−, 𝜆̿3
−, 𝜆̿4

−} and 𝜆̿𝑖
− = min(𝜆̿𝑖, 0). 

 

4.4.1.2 Higher-Order Accurate Scheme 

At this point, please note that within the framework of a first-order spatial scheme, the 

quantities 𝐔𝑃𝑄
(𝐿) and 𝐔𝑃𝑄

(𝑅), which actually define the left (𝐿) and right (𝑅) states existing at the 

two sides of 𝜕𝐶𝑉𝑃𝑄, are approximated by using the vectors of the flow variables at points 𝑃 

and 𝑄, i.e. 𝐔𝑃𝑄
(𝐿)
= 𝐔𝑃 and 𝐔𝑃𝑄

(𝑅)
= 𝐔𝑄. However, in order to improve the accuracy of the final 

solution, the current flow solver has been enhanced by the addition of a second-order spatial 

scheme that is based on the well-known Monotonic Upstream Scheme for Conservation Laws 

(MUSCL) (van Leer, 1979). Accordingly, the values of the primitive flow variables at each side 

of 𝜕𝐶𝑉𝑃𝑄 are properly reconstructed by means of the MUSCL interpolation; the required 

gradients at the corresponding nodes (𝑃 and 𝑄) are computed using the Green-Gauss theorem, 

via an edge-based formulation (Barth, 1992). Thus, 

  

𝐔𝑃𝑄
(𝐿) = 𝐔𝑃 +

1

2
∙ (∇𝐔)𝐿 ∙ 𝐫𝑃𝑄 , (4.82) 

 

 

 
  

𝐔𝑃𝑄
(𝑅) = 𝐔𝑄 −

1

2
∙ (∇𝐔)𝑅 ∙ 𝐫𝑃𝑄 , (4.83) 

 

 

 

where 𝐫𝑃𝑄 denotes the position vector that connects the mesh nodes 𝑃 and 𝑄; 𝐫𝑃𝑄 is directed 

from 𝑃 to 𝑄. Herein, the extrapolation gradients (∇𝐔)𝐿 and (∇𝐔)𝑅 are equal to the gradients 

(∇𝐔)𝑃 and (∇𝐔)𝑄 of the flow vector at the nodes 𝑃 and 𝑄 respectively and calculated by 

applying the Green-Gauss linear representation method, as follows: 

  
(∇𝐔)𝑃 =

1

𝐸𝑝
∑

1

2
𝑄∈𝑆𝑁(𝑃)

∙ (𝐔𝑃 + 𝐔𝑄) ∙ 𝐧𝑃𝑄 . (4.84) 
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where 𝐸𝑝 stands for the area of the control volume around node 𝑃. Finally, in the case that the 

examined node is a boundary one, the respective expression for the calculation of (∇𝐔)𝑃 reads: 

  

(∇𝐔)𝑃 =
1

𝐸𝑝
[ ∑

1

2
(𝐔𝑃 + 𝐔𝑄) ∙

𝑄∈𝑆𝑁(𝑃)

𝐧𝑃𝑄 + ∑ 𝐔𝑃
(𝐾𝑜𝑢𝑡∈𝜕𝐶𝑉𝑃⋂ℬ)

∙ 𝐧𝑜𝑢𝑡] . (4.85) 

 

 

 

 

4.4.1.3 Slope Limiter 

In order to minimize the total variation and suppress any occasional discontinuities in the 

reconstructed field after the application of the second-order scheme, the proposed flow solver 

has been enhanced by the addition of the Min-Mod slope limiter (Sweby, 1984). Essentially, 

the Min-Mod limiter ensures the smoothness of the resulting solution by means of choosing 

the slope with the smallest magnitude (Lygidakis, 2015). Initially, let us introduce the centered 

(c) and upwind (u) gradients, which are defined as: 

  
(∇𝐔)𝑃𝑄

𝑐 ∙ 𝐫𝑃𝑄 = 𝐔𝑄 − 𝐔𝑃 (4.86) 

 

 

 
  

(∇𝐔)𝑃
𝑢 = 2 ∙ (∇𝐔)𝑃 − (∇𝐔)𝑃𝑄

𝑐  (4.87) 

 

 

 
  

(∇𝐔)𝑄
𝑢 = 2 ∙ (∇𝐔)𝑄 − (∇𝐔)𝑃𝑄

𝑐  (4.88) 

 

 
 

Then, according to the adopted limiting strategy, Eq. (4.82) and Eq. (4.83) recast into: 

  

𝐔𝑃𝑄
(𝐿)
= 𝐔𝑃 +

1

2
∙ ℒ((∇𝐔)𝑃

𝑢 ∙ 𝐫𝑃𝑄 ,   (∇𝐔)𝑃𝑄
𝑐 ∙ 𝐫𝑃𝑄) (4.89) 

 

 

 
  

𝐔𝑃𝑄
(𝑅) = 𝐔𝑃 −

1

2
∙ ℒ((∇𝐔)𝑄

𝑢 ∙ 𝐫𝑃𝑄 ,   (∇𝐔)𝑃𝑄
𝑐 ∙ 𝐫𝑃𝑄) (4.90) 

 

 

 

where ℒ stands for the Min-Mod liming function, defined as: 

  

ℒ(𝑎, 𝑏) =

{
 
 

 
 
𝑎 𝑖𝑓 |𝑎| < |𝑏| 𝑎𝑛𝑑 𝑎𝑏 > 0

𝑏 𝑖𝑓 |𝑏| < |𝑎| 𝑎𝑛𝑑 𝑎𝑏 > 0

0 𝑖𝑓                            𝑎𝑏 ≤ 0

 (4.91) 

  

 Viscous Fluxes 

The numerical approximation of the viscous fluxes included within the flow model requires 

the calculation of the spatial gradients of the velocity components (axial, radial and tangential) 

at the midpoint of every grid edge. In this study, the computation of the involved spatial 
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derivatives is implemented by adopting an element-based approach (Kallinderis and Ahn, 

2005; Lygidakis et al., 2016; Leloudas et al., 2020a, 2021). According to this method, a new finite 

control volume, called edge-dual volume, is created around every edge of the computational 

mesh, in such a way that includes the adjacent cells (primary elements) sharing the examined 

edge. Figure 4.4 illustrates such edge-dual volume examples around an arbitrary edge 𝑃𝑄, 

composed by different types of primary elements. Then, the divergence theorem is applied 

over these newly introduced finite volumes; the spatial derivatives of the velocity components 

at the midpoint of the edge 𝑃𝑄 are calculated by performing the surface integrals along the 

edge-dual boundaries, as follows: 

  

(

 
𝜕𝑢𝑖
𝜕𝑥 
)

𝑃𝑄

=
1

𝐸𝑃𝑄
∮𝑢𝑖 𝑛𝑥  𝑑𝑠

 

𝑃𝑄

=
1

𝐸𝑃𝑄
∑𝑛𝑥,𝑘

𝑢𝑖,𝑘
𝐿 + 𝑢𝑖,𝑘

𝑅

2

𝑚

𝑘=1

 , (4.92) 

 

 

 

(

 
𝜕𝑢𝑖
𝜕𝑦
 
)

𝑃𝑄

=
1

𝐸𝑃𝑄
∮𝑢𝑖 𝑛𝑦 𝑑𝑠

 

𝑃𝑄

=
1

𝐸𝑃𝑄
∑𝑛𝑦,𝑘

𝑢𝑖,𝑘
𝐿 + 𝑢𝑖,𝑘

𝑅

2

𝑚

𝑘=1

 . 
(4.93) 

 

 

 

Herein, 𝐸𝑃𝑄 and 𝑚 denote the area and the number of boundary edges of the edge-dual 

volume that corresponds to the examined edge 𝑃𝑄, respectively. In addition, 𝑛𝑥,𝑘 and 𝑛𝑦,𝑘 

represent the components of the normal outward vector on the 𝑘-edge of the edge-dual 

volume, whereas 𝑢𝑖,𝑘
𝐿  and 𝑢𝑖,𝑘

𝑅  stand for the velocity component values at the endpoints of the 

𝑘-edge. Ultimately, utilizing the edge-based data structure of IGal2D solver, the 

aforementioned fluxes are obtained with a single edge-loop, as no information is needed about 

the cell topology (Kallinderis and Ahn, 2005; Lygidakis et al., 2016; Leloudas et al., 2020a, 2021). 

Please note that the same approach is followed for the calculation of the viscous fluxes of the 

turbulence model as well. 

 

 

(a) (b) (c) 

Figure 4.4: Edge-dual volume examples, obtained by different types of faces. 
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 Turbulence Model’s Fluxes 

In the present study, the calculation of the numerical fluxes related to the turbulence model 

is implemented by adopting the same node-centered finite-volume discretization approach 

that was applied for the flow model equations. Especially, the convective (inviscid) fluxes of 

the SST turbulence model are evaluated at the midpoint of every edge 𝑃𝑄, by means of a 

simple first-order accurate upwind scheme (Anderson and Bonhaus, 1994); in that way 

stability of the numerical methodology is assured without reducing noticeably the accuracy of 

the final solution (Leloudas et al., 2021; Lygidakis et al., 2020). Thus,  

  

(𝚽𝑖
𝑡)
𝑃𝑄
= ∫ 𝚿𝑖

𝑡   𝑑𝑠

 

𝜕𝐶𝑉𝑃𝑄

= ∫ 𝑛̂𝑃𝑄,𝑥𝐅𝑖
𝑡 + 𝑛̂𝑃𝑄,𝑦𝐆𝑖

𝑡   𝑑𝑠

 

𝜕𝐶𝑉𝑃𝑄

= Θ+ ∙ 𝐔𝑷
𝒕 + Θ− ∙ 𝐔𝑸

𝒕  , (4.94) 

 

 

 

where denote 𝐔𝑃
𝑡  and 𝐔𝑄

𝑡  the vectors of the turbulence model variables; the parameters Θ+ and 

Θ− are defined as: 

  
Θ+ = max(Θ, 0) , (4.95) 

 

 

 
  

Θ− = min(Θ, 0) . (4.96) 

 

 

 

Now, in terms of calculating the diffusive fluxes of the turbulence model at the midpoint of 

every edge 𝑃𝑄, the spatial gradients of the respective primitive variables (namely, the 

turbulent kinetic energy and the specific rate of dissipation) have to be pre-evaluated. 

Practically, this is achieved by following a similar approach to the one adopted for the 

calculation of the velocity gradients, involved within the flow equations (see Section 4.4.2). 

Therefore, the spatial derivatives of turbulent kinetic energy (𝑘) and the specific rate of 

dissipation (𝜔) are evaluated by applying an alternative form of Eq. (4.92) and Eq. (4.93), where 

the velocity components have been replaced by 𝑘 and 𝜔. Ultimately, since the required spatial 

derivatives have been obtained, the viscous fluxes of the SST model can be calculated as: 

  
(𝚽𝑣

𝑡)𝑃𝑄 = 𝐅𝑖
𝑡 ∙ 𝑛𝑃𝑄,𝑥 + 𝐆𝑖

𝑡 ∙ 𝑛𝑃𝑄,𝑦 (4.97) 

 

 

 

 

 Boundary Conditions 

In order to complete the flux balance on each node of the computational mesh, appropriate 

boundary conditions have to be employed as well, either contributing corresponding values 

to the inviscid fluxes’ sum of boundary nodes or defining explicitly their primitive variables’ 

values. Herein, four different types of boundary conditions are encountered: solid wall, 

symmetry, inlet and outlet types of boundaries. At symmetry areas, e.g. axis of symmetry, or 
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solid walls for inviscid flows, free-slip conditions are imposed (Leloudas et al., 2021; Lygidakis 

et al., 2016; Ramos, 1986). In case of a viscous flow, the velocity components on solid wall nodes 

are set straightforward equal to zero (Leloudas et al., 2021; Lygidakis et al., 2016). Accordingly, 

at each inlet/outlet control volume, additional convective fluxes are taken into account, 

extracted by the corresponding normal to the boundary edge vector and the terms of the 

inviscid fluxes (4.39). The latter is calculated with primitive variables’ values, taken either from 

inside or outside the computational field; velocity is taken from upstream free-flow in case of 

inflow boundaries and from inside the flow domain for outflow ones, while for pressure the 

opposite procedure is followed (Anderson et al., 1996).  

Furthermore, in terms of outlet area nodes and flow problems involving swirling, the radial 

equilibrium method (Wu and Wolfenstein, 1949) is also applied, which essentially defines the 

pressure distribution outside the computational domain. The corresponding relation, derived 

from the inviscid radial momentum equation after removing the radial velocity component, is 

described as follows (Susan-Resiga et al., 2009): 

  
𝜕𝑝 𝜕𝑦⁄ = 𝑤2 𝑦⁄  . (4.98) 

 

 

 

In practice, Eq. (4.98) is implemented successively to the outlet nodes with a simple linear 

integration along the radial direction; at the starting point (closest to the axis of symmetry) the 

pre-defined outlet pressure is imposed. Additionally, a Laplacian smoothing technique is also 

applied to avoid odd-even decoupling phenomena at the outlet region; mathematically, it is 

expressed for each boundary node 𝑃 and each primitive variable as: 

  

𝐔𝑃 =
𝐔𝑃𝐸𝑃 + 𝜀 ∑ 𝐔𝑄𝐸𝑄𝑄∈𝑆𝑁(𝑃)

𝐸𝑃 + 𝜀 ∑ 𝐸𝑄𝑄∈𝑆𝑁(𝑃)
 , (4.99) 

 

 

 

where ε is the smoothing coefficient, set equal to 0.5 in this study. Ultimately, depending on 

the encountered flow, the circumferential velocity component (𝑤) at inlet (on the outside) can 

be computed via the free vortex flow approach, i.e. 𝑤 ∙ 𝑦 = 𝑐𝑜𝑛𝑠𝑡., which stems from the 

conservation of angular momentum. 

Finally, the boundary conditions of the SST turbulence model are implemented in the same 

way to those of the flow model. In particular, at inlet and solid wall regions turbulence model’s 

variables are defined explicitly (Dirichlet conditions). Values at inlet boundaries are set equal 

to those upstream the computational domain, whereas at solid walls turbulent kinetic energy 

and turbulent kinematic viscosity are zeroed (low Reynolds approach) (Leloudas et al., 2021; 

Lygidakis et al., 2016). Please note that no special treatment is required for the symmetry area. 

Finally, a simple upwind scheme is employed for the outlet nodes, with data taken from inside 
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the computational domain similarly to the flow model (Leloudas et al., 2021; Lygidakis et al., 

2016). 

 

 Source Terms 

In this study, the source term vector of the flow model – containing both the term related 

to axial symmetry and external body forces – as well as the source term vector of turbulence 

model, is calculated by applying the finite volume discretization approach, expressed as: 

  

∬ 𝐇 𝑑𝑥𝑑𝑦
 

𝐶𝑉𝑝

= 𝐇𝑃 ∙ 𝐸𝑝 (4.100) 

 

 

 

It is recalled that 𝐸𝑝 stands for the area of the control volume formed around node 𝑃.  

 

4.5 Time Integration 

Following the calculation of numerical fluxes for each control volume, Eq. (4.65) can be 

reformed as follows (Leloudas et al., 2021): 

  

−𝐸𝑃
𝛥𝐔𝑃

(n+1)

𝛥𝑡𝑃
= 𝐑𝑃

(𝑛) , (4.101) 

 

 

 

where 𝛥𝐔𝑃
(n+1) stands for the correction vector of primitive variables at time step 𝑛 + 1, 𝐑𝑃

(𝑛) 

for the sum of the numerical fluxes at the previous time step 𝑛 and 𝛥𝑡𝑃 for the time step of the 

iterative procedure. Please note that IGal2D solver employs a local time-stepping 

methodology; thus, a different time step 𝛥𝑡𝑃 is calculated for each computational node P, 

aiming to accelerate the overall convergence rate. Besides, different formulas for 𝛥𝑡𝑃 are 

adopted for the cases of inviscid and viscous flow simulations. In particular, for an inviscid 

flow problem, the local time step reads: 

  

𝛥𝑡𝑃
𝑖𝑛𝑣 = CFL ∙

0.5 𝑙𝑃
|𝐔𝑃| + 𝑐𝑃

 , (4.102) 

 

 

 

while for the case of a viscous one, the local time step is calculates as: 

  

𝛥𝑡𝑃
𝑣𝑖𝑠 = CFL ∙

𝐸𝑃
𝐴𝑥 + 𝐴𝑦 + 𝐷

 . (4.103) 

 

 

 

Herein, CFL stands for the Courant-Friedrichs-Lewy number and 𝑙𝑃 denotes the length of the 

shortest edge connected to the examined node 𝑃. |𝐔𝑃| and 𝑐𝑃 denote the magnitude of the 
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velocity vector and the artificial speed of sound at the same point, respectively; the formula 

for the calculation of the artificial speed of sound is given in Section 4.4.1.1. Lastly, the terms 

𝐴𝑥, 𝐴𝑦 and 𝐷 are expressed as follows (Kallinderis and Ahn, 2005): 

  

𝐴𝑥 = (|𝑢| + 𝑐𝑥)𝑆𝑥   ,    𝐴𝑦 = (|𝑣| + 𝑐𝑦)𝑆𝑦   ,    𝐷 =
2

Re
∙

𝐸𝑃
𝑆𝑥 + 𝑆𝑦

  . (4.104) 

 

 

 

where artificial speed of sound (𝑐𝑥  and 𝑐𝑦) and projection of dual-volume surfaces’ normal 

vector (𝑆𝑥 and 𝑆𝑦) at point 𝑃 along each Cartesian coordinate direction are calculated 

respectively as: 

  

𝑐𝑥 = √𝑢
2 + 𝛽   ,   𝑐𝑦 = √𝑣

2 + 𝛽   ,   𝑆𝑥 =
1

2
∑|𝑆𝑥|𝑒
𝑒

   ,   𝑆𝑦 =
1

2
∑|𝑆𝑦|𝑒
𝑒

 . (4.105) 

 

 

 

This method allows for the maximum acceptable time step to be used for each point and 

consequently accelerates the solution procedure (Blazek, 2015). Please note that the system of 

partial differential equation defining the SST turbulence model (4.41) is reformulated in 

exactly the same way, with the only exception being the implicit treatment of the 

corresponding source term (see Section 4.5.1). Finally, for the computation of the involved 

correction vectors an explicit second-order four-stage Runge-Kutta method (RK(4)) is applied, 

separately for flow and turbulence model equations (loose-coupling strategy) (Leloudas et al., 

2020a, 2021; Lygidakis et al., 2016). 

 

 Implicit Treatment of Turbulence Model Source Term 

The rapid change of turbulence models’ source term can cause instability to the solution or 

even its complete failure; a remedy to this shortcoming appears to be the implicit handling of 

this component (Kim, 2003). While this treatment is a prerequisite for implicit methods, for 

explicit ones constitutes an additional technique, implemented by a similar Newton 

linearization procedure only for the source term (Blazek, 2015; Kim, 2003). Considering this 

approach, the differential equation for turbulence models becomes: 

  
𝛥𝐔𝑃

𝑡(n+1)

𝛥𝑡𝑃
∙ 𝐸𝑃 + ∑ (𝚽𝑖

𝑡)
𝑃𝑄

𝑄∈𝑆𝑁(𝑃)

− ∑ (𝚽𝑣
𝑡)𝑃𝑄

𝑄∈𝑆𝑁(𝑃)

= 𝐇𝑃
𝑡 ∙ 𝐸𝑃 , 

(4.106) 
 

 
 
𝛥𝐔𝑃

𝑡(n+1)

𝛥𝑡𝑃
∙ 𝐸𝑃 + ∑ (𝚽𝑖

𝑡)
𝑃𝑄

𝑄∈𝑆𝑁(𝑃)

− ∑ (𝚽𝑣
𝑡)𝑃𝑄

𝑄∈𝑆𝑁(𝑃)

= (𝐇𝑃
𝑡 + 𝐿𝑃

𝑡 ∙ 𝛥𝐔𝑃
𝑡(n+1)) ∙ 𝐸𝑃 , 
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(
𝛥𝐔𝑃

𝑡(n+1)

𝛥𝑡𝑃
− 𝐿𝑃

𝑡 ∙ 𝛥𝐔𝑃
𝑡(n+1)

) ∙ 𝐸𝑃 + ∑ (𝚽𝑖
𝑡)
𝑃𝑄

𝑄∈𝑆𝑁(𝑃)

− ∑ (𝚽𝑣
𝑡)𝑃𝑄

𝑄∈𝑆𝑁(𝑃)

= 𝐇𝑃
𝑡 ∙ 𝐸𝑃 , 

 
 

(
𝐈

𝛥𝑡𝑃
− 𝐿𝑃

𝑡 )𝛥𝐔𝑃
𝑡(n+1)

= −
𝐑𝑃
(𝑛)

𝐸𝑃
 , 

 

 

 

where 𝐈 is a 2x2 identity matrix and 𝐿𝑃
𝑡  denotes the Jacobian matrix of the SST turbulence 

model’s source term, including only the negative main source term components; the iterative 

step of the Runge-Kutta method is transformed accordingly (Kim, 2003). Ultimately, the 

computation of the inverse (𝐈 𝛥𝑡𝑃⁄ − 𝐿𝑃
𝑡 ) matrix is implemented as follows: 

  

(
𝐈

𝛥𝑡𝑃
− 𝐋𝑃

𝑡 )
−1

=

𝑦∆𝑡𝑃
𝑦 + 𝛽∗𝜔𝑦∆𝑡𝑃 + 𝑣∆𝑡𝑃

0

0
𝑦∆𝑡𝑃

𝑦 + 2𝛽𝜔𝑦∆𝑡𝑃 + 𝑣∆𝑡𝑃

 (4.107) 

 

 

 

 

 Acceleration Techniques 

Besides local time-stepping approach and edge-based data structure, the proposed 

numerical solver is enhanced with an agglomeration multigrid scheme to further improve its 

computational performance, especially in large-scale problems (Blazek, 2015; Lygidakis et al., 

2016; Nishikawa et al., 2010). Although it was initially developed for three-dimensional 

simulations (Lygidakis et al., 2016), its edge-wise framework allowed for, almost, a 

straightforward implementation to the two-dimensional approach presented in the current 

work. According to this scheme the final solution is approximated on successively coarser 

meshes, in order the low-frequency errors to be damped more efficiently. The sequence of 

aforementioned coarser grids, comprised of irregular polyhedral cells, is generated with either 

isotropic or directional (full- or semi-coarsening) fusion of neighbouring control volumes on a 

topology-preserving framework (Lygidakis et al., 2016). Independently of the agglomeration 

type, fusion procedure begins from solid wall surfaces following pre-defined rules, and 

extends successively to the interior domain resembling in that way the advancing-front 

technique (Lygidakis et al., 2016). The whole procedure is repeated if an even coarser 

resolution is required. A number of four to five levels is usually adequate. The multigrid 

accelerated solution is succeeded with the Full Approximation Scheme (FAS) in a V-cycle 

process, according to which Eq. (4.101) is solved only at the initial finest grid; at the coarser 

ones, approximate versions of it are relaxed (Blazek, 2015; Lygidakis et al., 2016; Nishikawa et 

al., 2010). Data exchange between each two successive spatial levels is performed with the 

restriction of the variables and flux balances, computed at the centers of control cells, from the 

finer to the coarser resolution, as well as with the prolongation of the corresponding updated 
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variables’ corrections from the coarser to the finer one (Lygidakis et al., 2016). Additional 

acceleration is gained with a combined (Full Multigrid) FMG/FAS approach, according to 

which the whole procedure begins from the coarsest mesh and as the number of iterative cycles 

increases, it extends gradually to the finer grids up to the initial finest one (Lygidakis et al., 

2016). 
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Chapter 5 

Numerical Validation of IGal2D Solver 

 

This chapter aims to provide a detailed evaluation study on the numerical accuracy and performance of 

the in-house developed IGal2D solver. For this purpose, several incompressible axisymmetric flows are 

considered, including both non-swirling (see Section 5.1) and swirling flow (see Section 5.2) regimes. 

The flow simulation results are compared against analytical, numerical and experimental data. 

  

5.1 Non-Swirling Flows 

The first part of the current validation study aims to investigate the performance of the 

proposed RANS solver, by means of three widely adopted benchmark cases that involve 

axisymmetric flow without the presence of swirl velocity. In particular, the encountered case 

studies include the prediction of the inviscid flow over a sphere (see Section 5.1.1), the viscous 

laminar flow over a sphere (see Section 5.1.2) and the turbulent flow around a flanged diffuser 

(see Section 5.1.3). 

 

 Inviscid Flow over a Sphere 

The first benchmark case for the evaluation of IGal2D solver considers the inviscid, 

incompressible and irrotational flow (potential flow) around a sphere. In this case, the spatial 

discretization of the computational domain was made with a two-dimensional triangular 

mesh, composed by 14,819 triangular primary elements and 7,648 nodes. The numerical 

simulation of the axisymmetric flow field around the sphere was achieved by setting the value 

of the artificial compressibility parameter equal to 10, while the steady-state solution was 

reached with a CFL number equal to 0.5. For the evaluation of the solver’s performance, the 

numerical results are compared against the analytical solution provided by potential theory. 

In particular, according to potential theory, pressure (𝑝𝑠) and pressure coefficient (𝐶𝑝𝑠) 

distributions on the surface of the sphere read: 

  

𝑝𝑠 − 𝑝∞ =
1

2
𝜌𝑢∞ −

9

8
𝜌𝑢∞

2 sin2 θ → 𝑐𝑝𝑠 =
𝑝𝑠 − 𝑝∞
0.5𝜌𝑢∞

= 1 −
9

4
sin2 θ , (5.1) 

 

 

 

while the velocity magnitude distribution on the surface of the sphere (𝑢𝑠) is calculated as: 

  

𝑢𝑠 =
3

2
∙ 𝑢∞sinθ , (5.2) 
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where θ denotes the angle between a random point on the surface of the sphere and the 

stagnation point. Figure 5.1 illustrates the comparison of the numerical results against the 

analytical solution, in terms of both pressure coefficient (𝐶𝑝𝑠) and dimensionless velocity 

magnitude (𝑢𝑠 𝑢∞⁄ ). Apparently, an almost perfect agreement between the analytically 

calculated and numerically predicted distributions can be observed. 

 

   

(a) (b) 

Figure 5.1: Inviscid flow over a sphere: (a) Distribution of pressure coefficient on the surface of the 

sphere. (b) Distribution of dimensionless velocity magnitude on the surface of the sphere. 

  

 Viscous Laminar Flow over a Sphere 

In order to assess the ability of the developed flow solver to accurately predict drag force, 

as well as flow separation and vortex formation phenomena, the current section involves the 

simulation of viscous laminar flow around a sphere. Flow separation behind a sphere is 

generally anticipated when Reynolds number becomes greater than 24, resulting in the 

development of an attached axisymmetric vortex ring. The flow remains steady and 

axisymmetric up to a Reynolds number of approximately 220, while it finally starts to become 

unsteady and three-dimensional when the Reynolds number exceeds the aforementioned limit 

(Lee and Lee, 2011). Herein, the axisymmetric (steady-state) viscous laminar flow around a 

sphere is examined for Reynolds numbers equal to 30, 50, 100 and 150. The simulation of the 

incompressible flow field around the sphere was achieved by setting the value of the artificial 

compressibility parameter (𝛽) equal to 10. Figure 5.2 illustrates the streamlines around the 

sphere, for the different Reynolds numbers considered in this work, revealing that the size of 

the separation bubble behind the sphere increases proportionally to the Reynolds number, as 

expected. 
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(𝐚) 𝐑𝐞 =  𝟑𝟎 (𝐛) 𝐑𝐞 =  𝟓𝟎 

      

(𝐜) 𝐑𝐞 =  𝟏𝟎𝟎 (𝐝) 𝐑𝐞 =  𝟏𝟓𝟎 

Figure 5.2: Streamlines over a sphere at various Reynolds numbers. 

 

As long as the quantitative evaluation of the obtained results is concerned, Figure 5.3a 

presents the variation of drag coefficient (𝐶𝐷) with Reynolds number, in comparison to the 

corresponding data derived from the numerical study of Mittal (1999) and the experimental 

work of Roos and Wilmarth (1971).  

 

 
(a) (b) 

Figure 5.3: Laminar flow over a sphere: (a) Variation of drag coefficient with Reynolds number, (b) 

Pressure distribution on the surface of the sphere at Re = 100. 
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In addition, the pressure coefficient distribution over the sphere surface at Re = 100 is also 

provided in Figure 5.3b, along with the pressure distributions obtained from the numerical 

works of Lee (2000) and Sarakinos (2016). Evidently, the results of the present study match 

well with the corresponding ones of previous research. Finally, Table 5.1 compares the drag 

coefficient and the length of the recirculation zone (𝐿𝑠) behind the sphere at Re = 100, with 

those of other researchers. The particular comparison indicates that the present solver is 

capable of simulating accurately such flows, since both 𝐿𝑠 and 𝐶𝐷 have been well predicted. 

 

Method Separation Length - 𝑳𝒔 Drag Coefficient - 𝑪𝑫 

IGal2D 0.84D 1.090 

Wang Y. et al. (2008) 0.86D 1.108 

Vrahliotis et al. (2012) 0.87D 1.093 

Kallinderis and Ahn (2005) - 1.084 

Table 5.1: Comparison of separation length and drag coefficient at Re = 100. 

 

 Turbulent Flow around a Flanged Diffuser 

The current section considers the numerical simulation of the turbulent flow field around 

an unloaded flanged diffuser; the particular case study was selected in order to assess and 

eventually validate the ability of the in-house IGal2D solver – and particularly that of the 

employed SST turbulence model – to accurately predict such complex turbulent flows, which 

are characterized by massive flow separations. The diffuser geometry under examination is 

one of the initial designs investigated, both numerically and experimentally, by Abe and Ohya 

(2004); essentially, it is composed by a straight-wall diffuser that is connected to an exit flange, 

as shown in Figure 5.4.  

                           

Figure 5.4: Schematic representation of the examined flanged diffuser. 
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In fact, Abe and Ohya (2004) explored the performance characteristics of an entire family of 

similar configurations, which were obtained by varying the corresponding design parameters, 

such as the height of the flange and the opening angle of the diffuser. The diffuser model 

considered in this study has a throat diameter (𝐷) equal to 0.2 m, an opening angle (𝜑) equal 

to 4 degrees, a total length (𝐿) of 0.3 m, while the ratio of the flange height to the throat diameter 

(ℎ/𝐷) equals to 0.25. 

A detailed description of the simulation parameters adopted during this validation study 

(Reynolds number, computational domain, boundary conditions) can be found in the study of 

Abe and Ohya (2004). Please note that special attention was also given to the generation of the 

hybrid computational grid, which was eventually created by adopting a 𝑦+ value below 1. In 

addition, a relatively high mesh resolution was applied around the solid walls and the 

symmetry axis, in order to accurately resolve the turbulent flow field within the diffuser, as 

well as the strong flow separation phenomena anticipated behind the flange. The particular 

computational grid, partially illustrated in Figure 5.5, was finally composed by 106,997 

triangular and 15,640 quadrilateral elements; the total number of nodes was equal to 69,918. 

As in the previous benchmark case, the artificial compressibility parameter (𝛽) was set equal 

to 10. 

 

        

Figure 5.5: The computational grid for the simulation of the flow field around the flanged diffuser. 

 

Figure 5.6 presents the flow streamlines and the dimensionless contours of pressure and 

axial velocity component around the examined diffuser geometry. Good agreement is found 

by comparing these qualitative results with the corresponding ones provided within the 

numerical study of Abe and Ohya (2004). In addition, by observing Figure 5.6, it is evident that 

the streamlines flow smoothly inside the diffuser, while the axial velocity does not vary 

significantly in the radial direction, except for the boundary layer region close to the diffuser 
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wall. In view of these remarks, Abe and Ohya (2004) noted that on-axis distributions of the 

flow variables can successfully explain the fundamental aspects of such diffuser flows. 

Therefore, they used such on-axis distributions of the velocity speed-up and the pressure 

coefficients to evaluate the diffuser performance and assess their numerical models. 

 

    

(a) (b) 

    

(c) (d) 

Figure 5.6: Turbulent flow around a flanged diffuser: (a) Dimensionless contours of the axial velocity 

component, (b) Dimensionless pressure contours, (c) Velocity streamlines, (d) Axial velocity contour 

lines. 

 

Accordingly, for the quantitative evaluation of the results of the developed axisymmetric 

flow solver, Figure 5.7 contains the on-axis distributions of the velocity speed-up and pressure 

coefficient, comparatively to the corresponding distributions resulted by the numerical and 

experimental studies of Abe and Ohya (2004). It is demonstrated that the proposed axisymetric 

flow solver is capable of predicting the flow field inside the diffuser with reasonable accuracy, 

both in terms of the on-axis velocity speed-up and pressure coefficient distributions, even 
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though a small underprediction of the experimental data is observed for the particular region 

(internal diffuser area). In addition, more significant discrepancies between the numerical and 

the experimental results have been detected in the region far downstream of the diffuser exit, 

as shown in Figure 5.7. 

 

 

(a) (b) 

Figure 5.7: Turbulent flow around a flanged diffuser: (a) On-axis velocity speed-up distribution, (b) 

On-axis pressure coefficient distribution. 

 

According to our conclusions, this is mainly attributted to the steady-state flow assumption 

that was made during this study, even though unsteady flow phenomena are actually 

expected in the wake region. Such unsteady phenomena are asociated with vortex shedding. 

Therefore, the turbulent wake behind the flange is more active in the experiments than in the 

numerical simulations. A similar explanation was also provided by Abe and Ohya (2004), since 

such discrepancies were also found in their numerical results. Nevertheless, by considering 

the reasonable trends for both on-axis velocity speed-up and pressure coefficient distributions 

and the fact that the fundamental flow field characteristics within the diffuser were predicted 

with reasonable accuracy, the proposed solver seems to be capable of successfully 

encountering such turbulent flow fields. 

 

5.2 Swirling Flows 

The second part of this chapter aims to investigate and eventually validate the ability of 

IGal2D solver to accurately predict the characteristics of axisymmetric swirling flows. For this 

purpose, three relevant case studies have been considered; namely, the inviscid swirling flow 

inside an S-shaped axisymmetric tube (see Section 5.2.1), the laminar swirling flow inside an 

0.60

0.80

1.00

1.20

1.40

1.60

1.80

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0

V
el

o
ci

ty
 S

p
ee

d
-U

p

X/D

IGal2D Solver

Abe and Ohya - Numerical

Abe and Ohya - Experimental

-2.00

-1.60

-1.20

-0.80

-0.40

0.00

0.40

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0

P
re

ss
u

re
 C

o
ef

fi
ci

en
t

X/D

IGal2D Solver

Abe and Ohya -
Numerical

Abe and Ohya -
Experimental



Chapter 5 Numerical Validation of IGal2D Solver 

 

5-8 

axial tube (see Section 5.2.2) and finally, the turbulent swirling flow inside a conical diffuser 

(see Section 5.2.3). 

 

 Inviscid Swirling Flow inside an S-Shaped Axisymmetric Tube 

This benchmark case considers the inviscid incompressible flow inside an S-shaped 

axisymmetric tube. The geometric characteristics of the 2.0 m long test section are illustrated 

in Figure 5.8. The design of the particular flow apparatus has been based on a cubic (third 

order) B-spline curve, which is defined over an open uniform knot vector. The B-Spline control 

points, used to define the centerline of the S-shaped tube, are included in Table 5.2. Following 

the centerline definition, the internal and external boundaries (walls) of the S-shaped tube 

were defined by simply offsetting the centerline in both directions by 0.06 m. 

 

 

Figure 5.8: Geometric characteristics of the S-shaped axisymmetric tube. 

 

Considering the main goal of this chapter, that is to assess the ability of the proposed 

methodology in swirling flow prediction, especially in terms of accuracy, a thorough study 

was conducted against this test case. Therefore, three different grid types were constructed for 

the representation of the computational field: (a) a grid composed of quadrilateral primary 

elements, (b) a regular triangular grid, which was derived by diagonalizing all the 

quadrilateral elements of type (a) grid, and finally, (c) an unstructured triangular grid. 

Furthermore, to achieve grid independency in the presented solutions, three different grids 

(denoted as M1, M2 and M3) were generated for each one of the aforementioned types, 

increasing successively their density. Here, for each denser resolution, the Degrees of Freedom 

(DoFs) – which actually are represented by the number of grid nodes (node-centered scheme) 

– were quadruplicated compared to the coarser one. Table 5.3 contains the density data of all 

the utilized grids, whereas Figure 5.9 presents the curved part of the coarsest resolution (M1) 

of each grid type (quadrilateral, triangular-regular and triangular-unstructured). 
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Figure 5.9: Curved part of the coarsest resolution (M1) of each grid type. 

 

𝑷𝒊 𝑿𝒊 𝒀𝒊  𝑷𝒊 𝑿𝒊 𝒀𝒊  𝑷𝒊 𝑿𝒊 𝒀𝒊 

𝑃0 0.00000 0.50000  𝑃10 0.68237 0.48103  𝑃20 1.39235 0.24914 

𝑃1 0.02532 0.50000  𝑃11 0.75505 0.45840  𝑃21 1.46830 0.25045 

𝑃2 0.07596 0.50000  𝑃12 0.82430 0.42684  𝑃22 1.54426 0.24988 

𝑃3 0.15191 0.50000  𝑃13 0.88986 0.38837  𝑃23 1.62021 0.25004 

𝑃4 0.22787 0.50000  𝑃14 0.95349 0.34698  𝑃24 1.69617 0.24999 

𝑃5 0.30383 0.49999  𝑃15 1.01991 0.30979  𝑃25 1.77213 0.25000 

𝑃6 0.37979 0.50004  𝑃16 1.09135 0.28331  𝑃26 1.84809 0.25000 

𝑃7 0.45574 0.49985  𝑃17 1.16526 0.26541  𝑃27 1.92404 0.25000 

𝑃8 0.53171 0.50057  𝑃18 1.24055 0.25483  𝑃28 1.97468 0.25000 

𝑃9 0.60754 0.49472  𝑃19 1.31639 0.24994  𝑃29 2.00000 0.25000 

Table 5.2: Control points of the cubic B-spline curve, used for the design of the centerline of the S-

shaped tube. 

 

 Quadrilateral  Triangular - Regular Triangular - Unstructured 

Level Μ1 Μ2 Μ3 Μ1 Μ2 Μ3 Μ1 Μ2 Μ3 

Number of Nodes 4,000 16,000 64,000 4,000 16,000 64,000 4,055 16,082 64,051 

Number of Elements 3,735 15,469 62,937 7,470 30,938 125,874 7,580 31,102 125,976 

Table 5.3: Density data of the employed grids. 

 

Regarding the inlet boundary conditions, a uniform profile was imposed for the axial 

velocity component (𝑢), with a fixed value of 𝑢𝑖𝑛 = 0.966𝑚 𝑠⁄ . At this point, please note that 

the subscript “𝑖𝑛” is used to signify the flow quantities at the inlet of the computational 

domain. Furthermore, a free vortex approach was adopted for the calculation of the 

circumferential velocity profile over the inlet, using the following expression: 
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𝑤𝑖𝑛(𝑦) = 𝑤𝑚 ∙ 𝑦𝑚 𝑦⁄  , (5.3) 

 

 

 

where 𝑦𝑚 = 0.5 𝑚 corresponds to the mean radius of the inlet annulus; the corresponding 

tangential velocity 𝑤𝑚 was set equal to 0.259𝑚 𝑠⁄ . Finally, zero radial velocity component (𝑣𝑖𝑛) 

was imposed over the inlet. The particular values for the velocity components were selected 

in such a way that the magnitude of the total velocity vector over the inlet, which is denoted 

by 𝑉𝑖𝑛 and calculated using 𝑤𝑚, to be equal to 1.0; thus, no re-dimensionalization of the 

obtained velocity field was required. Similarly, a unit dimensionless relative static pressure 

was considered at the outlet (0.0 𝑃𝑎 relative pressure for dimensional simulations with ANSYS 

Fluent), whereas free-slip conditions were imposed to the remaining boundaries. Ultimately, 

no re-dimensionalization of the grid was required due to the unitary mean diameter of the 

computational domain at the inlet. Independently of the grid used, an artificial compressibility 

parameter and a CFL number equal to 1.0 and 0.5, respectively, were used for the iterative 

approximation of the final steady-state solution; the latter was obtained after the 𝑙𝑜𝑔(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙) 

of pressure was decreased more than ten orders of magnitude. Acceleration of the procedure 

was succeeded by implementing the incorporated multigrid scheme with up to five levels, i.e. 

with up to four agglomerated resolutions. 

In order to evaluate the performance of IGal2D solver, the obtained results were compared 

with those of ANSYS Fluent. Moreover, specific metrics were obtained from the results of both 

solvers and compared with those stemming analytically from conservation of total pressure in 

case of inviscid incompressible steady-state flow, i.e. Bernoulli theorem, and conservation of 

angular momentum (moment of momentum). The following Table 5.4 - Table 5.6 present the 

extracted differences in total pressure 𝑃𝑡 and 𝑟𝑤 quantity, between inlet and outlet boundaries 

at respective points at tip, mid and hub, i.e. between starting and ending points of 

corresponding streamlines. The aforementioned metrics were calculated for each resolution of 

the utilized grid types for both IGal2D and Fluent software. 

The metrics of both solvers reveal a very good agreement with the corresponding 

theoretical values, i.e. almost zero differences between inlet and outlet, which tend to improve 

with increasing grid resolution. Simultaneously, no significant differences are identified 

between the results of IGal2D with those of Fluent. 𝑃𝑡 or 𝑟𝑤 errors obtained by IGal2D code 

become slightly larger or smaller than those extracted by Fluent, depending on the 

computational grid type, grid density and streamline position. Independently of the code as 

well as the grid type, the best results are derived with the finer grid (M3-level) at mid 

streamline. Considering the value of 𝑟𝑤 at inlet, the errors for the aforementioned resolution 

and position are considered negligible as they correspond to less than 0.01% of the inlet value. 

The next better results are obtained at tip, whereas the worst at hub. Regarding the relatively 

small improvement of the above-mentioned errors by quadruplicating the DoFs of M2-level 
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meshes, grid independency is considered to be reached with the M3-level ones. Ultimately, no 

substantial differentiations are noticed between the results derived with the three different 

grid types. 

 

Mid 𝑷𝒕,𝟐 − 𝑷𝒕,𝟏 [𝑷𝒂] 𝒓𝟐𝒘𝟐 − 𝒓𝟏𝒘𝟏 [𝒎
𝟐 𝒔⁄ ] 

Quadrilateral Μ1 Μ2 Μ3 Μ1 Μ2 Μ3 

IGal2D -5.60E-04 -2.79E-04 -7.53E-05 3.78E-05 3.29E-06 -8.91E-08 

Ansys Fluent -2.15E-04 1.80E-05 -2.92E-06 7.89E-05 1.71E-05 2.65E-06 

Tip 𝑷𝒕,𝟐 − 𝑷𝒕,𝟏 [𝑷𝒂] 𝒓𝟐𝒘𝟐 − 𝒓𝟏𝒘𝟏 [𝒎
𝟐 𝒔⁄ ] 

Quadrilateral Μ1 Μ2 Μ3 Μ1 Μ2 Μ3 

IGal2D -1.33E-01 -6.70E-02 -3.36E-02 -1.47E-03 -6.82E-04 -3.27E-04 

Ansys Fluent -3.63E-02 -2.90E-02 -2.07E-02 -1.02E-03 -2.34E-04 -3.05E-04 

Hub 𝑷𝒕,𝟐 − 𝑷𝒕,𝟏 [𝑷𝒂] 𝒓𝟐𝒘𝟐 − 𝒓𝟏𝒘𝟏 [𝒎
𝟐 𝒔⁄ ] 

Quadrilateral Μ1 Μ2 Μ3 Μ1 Μ2 Μ3 

IGal2D -6.27E-02 -3.15E-02 -1.55E-02 -1.64E-03 -8.08E-04 -4.81E-04 

Ansys Fluent -6.02E-02 -5.11E-02 -4.39E-02 -1.66E-02 -1.25E-02 -8.32E-03 

Table 5.4: 𝑷𝒕 and 𝒓𝒘 metrics extracted from quadrilateral grids. 

 

Mid 𝑷𝒕,𝟐 − 𝑷𝒕,𝟏 [𝑷𝒂] 𝒓𝟐𝒘𝟐 − 𝒓𝟏𝒘𝟏 [𝒎
𝟐 𝒔⁄ ] 

Triangular - Regular Μ1 Μ2 Μ3 Μ1 Μ2 Μ3 

IGal2D 1.16E-02 3.57E-04 6.28E-04 8.80E-04 -1.97E-04 -7.32E-05 

Ansys Fluent 6.40E-05 3.76E-05 1.98E-05 5.07E-05 1.18E-05 2.85E-06 

Tip 𝑷𝒕,𝟐 − 𝑷𝒕,𝟏 [𝑷𝒂] 𝒓𝟐𝒘𝟐 − 𝒓𝟏𝒘𝟏 [𝒎
𝟐 𝒔⁄ ] 

Triangular - Regular Μ1 Μ2 Μ3 Μ1 Μ2 Μ3 

IGal2D -8.33E-04 6.18E-04 6.42E-04 5.88E-03 3.43E-03 1.97E-03 

Ansys Fluent -1.32E-02 -6.61E-03 -3.40E-03 6.58E-04 3.17E-04 1.55E-04 

Hub 𝑷𝒕,𝟐 − 𝑷𝒕,𝟏 [𝑷𝒂] 𝒓𝟐𝒘𝟐 − 𝒓𝟏𝒘𝟏 [𝒎
𝟐 𝒔⁄ ] 

Triangular - Regular Μ1 Μ2 Μ3 Μ1 Μ2 Μ3 

IGal2D -6.63E-02 -4.11E-02 -2.50E-02 -1.18E-02 -6.95E-03 -4.06E-03 

Ansys Fluent -9.77E-03 -4.89E-03 -3.30E-03 -3.15E-03 -1.55E-03 -7.87E-04 

Table 5.5: 𝑷𝒕 and 𝒓𝒘 metrics extracted from triangular-regular grids. 
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Mid 𝑷𝒕,𝟐 − 𝑷𝒕,𝟏 [𝑷𝒂] 𝒓𝟐𝒘𝟐 − 𝒓𝟏𝒘𝟏 [𝒎
𝟐 𝒔⁄ ] 

Triangular – Unstruct. Μ1 Μ2 Μ3 Μ1 Μ2 Μ3 

IGal2D 9.49E-04 -3.08E-05 -2.08E-04 7.89E-04 3.70E-06 1.98E-05 

Ansys Fluent -9.14E-04 -2.62E-04 -1.64E-04 2.20E-04 7.22E-05 1.80E-05 

Tip 𝑷𝒕,𝟐 − 𝑷𝒕,𝟏 [𝑷𝒂] 𝒓𝟐𝒘𝟐 − 𝒓𝟏𝒘𝟏 [𝒎
𝟐 𝒔⁄ ] 

Triangular – Unstruct. Μ1 Μ2 Μ3 Μ1 Μ2 Μ3 

IGal2D -8.12E-03 -3.17E-03 -1.38E-03 4.96E-03 2.86E-03 1.85E-03 

Ansys Fluent -2.62E-03 -7.53E-04 -7.70E-04 3.18E-03 2.10E-03 1.38E-03 

Hub 𝑷𝒕,𝟐 − 𝑷𝒕,𝟏 [𝑷𝒂] 𝒓𝟐𝒘𝟐 − 𝒓𝟏𝒘𝟏 [𝒎
𝟐 𝒔⁄ ] 

Triangular – Unstruct. Μ1 Μ2 Μ3 Μ1 Μ2 Μ3 

IGal2D -5.26E-02 -2.95E-02 -2.35E-02 -9.27E-03 -5.61E-03 -3.65E-03 

Ansys Fluent -1.44E-02 -9.24E-03 -8.08E-03 -5.80E-03 -3.66E-03 -2.36E-03 

Table 5.6: 𝑷𝒕 and 𝒓𝒘 metrics extracted from triangular-unstructured grids. 

 

Considering the previous state, the triangular-unstructured M3-level grid was selected for 

further evaluation of the proposed methodology as being the less biased and at the same time 

the most generic grid type. Figure 5.10 depicts the contours of dimensional pressure and 

velocity components, obtained with IGal2D, in comparison with those of Fluent; a perfect 

qualitative agreement is achieved between the employed software. The same agreement is 

observed in Figure 5.11, which presents comparatively isolines (contour lines) of pressure and 

radial velocity component, provided by both the aforementioned solvers. 
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Figure 5.10: Contours of dimensional pressure and velocity components inside the S-shaped tube, 

derived by IGal2D and Fluent solvers. 

 

      

 

Figure 5.11: Isolines of pressure and velocity components, derived by IGal2D and Fluent solvers. 
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In addition to the qualitative assessment of the in-house solver, a quantitative one was 

completed as well, by comparing the dimensional velocity components and pressure 

distributions along the centerline of the S-shaped axisymmetric tube. Figure 5.12 illustrates 

these distributions, whereas Figure 5.13 presents the corresponding ones at three different 

cross-sections of the S-shaped tube; the aforementioned sections S1 (𝑥 = 0.2 𝑚), S2 (𝑥 = 1.0 𝑚), 

and S3 (𝑥 = 1.8 𝑚) are defined in Figure 5.8. The actually identical results confirm the equal 

potential of the proposed solver for such internal inviscid incompressible steady-state flows 

in terms of accuracy. 

 

 
(a) (b) 

 
(c) (d) 

Figure 5.12: Dimensional velocity components and pressure distributions along the centerline of the S-

shaped tube, obtained with IGal2D and Fluent solvers. 

 

In addition to the accuracy of the final steady-state solution, the efficiency of the proposed 

solver was also assessed. In particular, the acceleration induced by the incorporated 

agglomeration multigrid methodology was evaluated. As mentioned above, up to five levels 

were utilized with the aforementioned scheme, which correspond to up to four agglomerated 
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resolutions, created following an isotropic fusion strategy (Lygidakis et al., 2016). In case of 

triangular-unstructured grids, up to four levels were constructed, as highly distorted control 

cells were generated at coarser resolutions. Table 5.7 contains the number of DoFs at every 

agglomerated level (𝐿1 − 𝐿5) for each of the utilized grids; 𝐿1 corresponds to the initial grid. 

As it can be observed, at each successively coarser grid the number of included control 

volumes was reduced approximately by 3.5 to 4 times. 

 

 
(a)  (b) 

 
(c) (d) 

Figure 5.13: Dimensional velocity components and pressure distributions along the cross-sections S1, 

S2 and S3 of the S-shaped axisymmetric tube, produced by IGal2D and Fluent solvers. 
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 Quadrilateral  Triangular - Regular Triangular - Unstructured 

 Μ1 Μ2 Μ3 Μ1 Μ2 Μ3 Μ1 Μ2 Μ3 

𝐃𝐨𝐅𝐬 − 𝑳𝟏 4,000 16,000 64,000 4,000 16,000 64,000 4,055 16,082 64,051 

𝐃𝐨𝐅𝐬 − 𝑳𝟐 1,876 7,751 31,501 1,136 4,276 16,559 1,248 4,728 18,349 

𝐃𝐨𝐅𝐬 − 𝑳𝟑 506 2,011 8,023 381 1,264 4,537 358 1,365 5,183 

𝐃𝐨𝐅𝐬 − 𝑳𝟒 160 570 2,140 129 385 1,272 98 390 1,471 

𝐃𝐨𝐅𝐬 − 𝑳𝟓 63 161 573 53 130 386 - - - 

Table 5.7: Number of DoFs at every agglomerated level (𝐿1 − 𝐿5) for each of the utilized grids for the 

S-shaped axisymmetric tube. 

 

For all the constructed grids, the FAS approach (Lygidakis et al., 2016; Nishikawa et al., 

2010) was implemented in a 𝑉(1, 0) process using three and the maximum number of created 

levels. Besides multigrid simulations, single-grid ones were performed for comparison. Table 

5.8 presents the number of iterations, required to decrease pressure log(residual) to 10−13, 

depending on grid-type, grid density and number of employed multigrid levels; 𝐿1 

corresponds to singlegrid, 𝐿3 to three-level and 𝐿𝑚𝑎𝑥 to five-level (four-level for triangular 

unstructured meshes) multigrid simulations. Regarding the single-grid simulations, only 

those using the coarser initial grids M1 were fully completed, i.e. the residual was reduced to 

the desired minimum value. Multigrid scheme speeded up the solution procedure more than 

20 times for this grid density, whereas for denser ones the corresponding acceleration is 

estimated even higher, as it cannot be exactly calculated. In addition, Figure 5.14 illustrates the 

pressure convergence history per number of iterations for the densest triangular-unstructured 

grid (M3), derived by singlegrid 𝐿1, three-level (𝐿3) and four-level (𝐿4) multigrid runs, where 

a significant efficiency improvement can be visualized. Finally, the obtained results reveal 

crucial acceleration of the IGal2D solver with the implementation of the aforementioned 

multigrid scheme, independently of the employed grid type and its density. 

 

 Quadrilateral  Triangular - Regular Triangular - Unstructured 

 Μ1 Μ2 Μ3 Μ1 Μ2 Μ3 Μ1 Μ2 Μ3 

𝐈𝐭𝐞𝐫. −𝑳𝟏 268,040 >5.0E+5 >5.0E+5 207,955 >5.0E+5 >5.0E+5 264,574 >5.0E+5 >5.0E+5 

𝐈𝐭𝐞𝐫. −𝑳𝟑 24,485 164,185 >5.0E+5 19,659 37,292 381,611 20,422 39,396 234,868 

𝐈𝐭𝐞𝐫. −𝑳𝒎𝒂𝒙 8,030 11,821 28,367 5363 9,318 16,921 9,900 18,907 36,392 

Table 5.8: Number of iterations, required to decrease pressure log(residual) to 10−13, depending on 

grid-type, grid density and number of employed multigrid levels. 
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Figure 5.14: Pressure convergence history per number of iterations for the densest triangular-

unstructured grid, derived by single-grid (𝐿1), three-level (𝐿3) and four-level (𝐿4) multigrid runs. 

 

 Laminar Swirling Flow inside an Axial Tube 

The next test case, used for the evaluation of IGal2D, concerns viscous laminar flow in an 

axial tube following an experimental swirl generator device. The aforementioned test 

apparatus, introduced by Rocha et al. (2015), allows for the study of swirling flows similar to 

those met in industrial in-inline flow phase segregators. The geometric characteristics of the 

3.0 𝑚 long and 0.05 𝑚 size (i.d.) pipe, including details of its major sections, are illustrated in 

Figure 5.15.  

 

Figure 5.15: Geometric details of the axial tube. 
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As it can be observed, the examined flow domain (coloured in blue) includes also the conical 

trailing edge of the swirl generator. This conical part of 0.082 𝑚 height, base diameter 0.040 𝑚 

and deflection angle 𝑎 = 63.5𝑜, has been added to reduce flow reversal in the central region 

(Rocha et al., 2015). The respective flow domain was discretized in this work with the grid 

presented in Figure 5.16 (consisting of triangular elements). It is composed of 59,960 nodes and 

116,844 triangular elements. In order to use it with the proposed dimensionless solver, it was 

non-dimensionalized with the internal diameter of the tube. 

 

 

Figure 5.16: Density of the utilized grid for the axial tube. 

 

In the reference work of Rocha et al. (2015) the flow inside the aforementioned geometry 

was studied for various volumetric rates 𝑞̇, ranging from 3 𝑚3/ℎ to 7.5 𝑚3/ℎ. However, in the 

current validation study a single volumetric rate of 𝑞̇ = 3 𝑚3/ℎ was examined. A uniform 

profile was adopted for both axial and tangential velocity over the inlet of the pipe; the 

corresponding values were obtained with the following expressions (Rocha et al., 2015): 

  
𝑢𝑖𝑛 = 𝑞̇ 𝜋[𝑅𝑜

2 − (𝑅𝑜 − 𝛿)
2]⁄  , (5.4) 

 

 

 
  

𝑤𝑖𝑛 = 𝑢𝑖𝑛 ∙ tan(𝑎) , (5.5) 

 

 

 

where 𝑅𝑜 = 0.025 𝑚 and 𝛿 = 0.005 𝑚. To this end, the axial and circumferential velocity 

components, 𝑢𝑖𝑛 and 𝑤𝑖𝑛, at the inlet were computed equal to 1.178 𝑚/𝑠 and 2.364 𝑚/𝑠, 

respectively, whereas they were re-dimensionalized with the total inflow velocity. Zero radial 

velocity was considered at the same boundary. At the outlet dimensionless relative static 

pressure was defined equal to unity; in dimensional simulations with Fluent it was 

correspondingly set to 0.0 𝑃𝑎 (relative pressure). The radial equilibrium method, without 

Laplacian smoothing, was applied at the outflow. Ultimately, no-slip and free-slip conditions 

were imposed to solid wall and symmetry axis, respectively. As far as the properties of the 

working fluid are concerned, its density and dynamic viscosity were set equal to 𝜌 =

1210 𝑘𝑔/𝑚3 and 𝜇 = 0.04877 𝑘𝑔/𝑚/𝑠 (Rocha, 2013). Taking into account the above mentioned 

values, the Reynolds number was computed as 3,277.6. Steady-state solution (obtained after 

the log(residual) of pressure was decreased more than eight orders of magnitude) was 
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approximated iteratively with an artificial compressibility parameter and a CFL number equal 

to 1.0 and 0.15, respectively. Although a relatively small CFL number was used for 

convergence reasons, the solution procedure was accelerated considerably with the proposed 

multigrid scheme. In particular, a three-level scheme was implemented, i.e. with two 

agglomerated coarser resolutions, derived using the incorporated isotropic fusion 

methodology (Lygidakis et al., 2016). The convergence history per number of iterations for 

pressure and velocity components are illustrated in Figure 5.17. 

 

 

Figure 5.17: Convergence history per number of iterations for static pressure and velocity components 

(Laminar flow – IGal2D simulation). 

 

Analogously to the previous inviscid test case, for this laminar case simulations were 

performed using both the IGal2D and the Fluent solvers, while the obtained results were 

compared between them, as well as with those reported by Rocha et al. (2015). Figure 5.18 and 

Figure 5.19 depict the contours of dimensional axial and swirl velocity up to 𝑥 = 1 𝑚, as 

extracted by both solvers. No qualitative difference can be identified between them. Both axial 

and circumferential velocities are zero on the centerline, increase with the radial coordinate 

and go back to zero near the solid walls due to the no-slip boundary conditions. Hence, a 

centrifugal flow field is generated along with the axial motion, restricting less dense fluid in 

the core region and consequently allowing for phase segregation in corresponding industrial 

applications. 
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Figure 5.18: Contours of axial velocity (laminar flow – axial tube). 

 

 

Figure 5.19: Contours of swirl velocity (laminar flow – axial tube). 
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Besides the previously presented qualitative assessment, a quantitative one was performed 

comparing initially the dimensional velocity components at four different cross-sections of the 

axial tube, namely S1 (𝑥 = 0.125 𝑚), S2 (𝑥 = 0.5 𝑚), S3 (𝑥 = 1.5 𝑚) and S4 (𝑥 = 2.5 𝑚), which 

are depicted in Figure 5.15. Figure 5.20 illustrates the aforementioned distributions, produced 

by IGal2D, in comparison with those derived by the Fluent solver. Axial velocity has positive 

and negative values; the latter are observed for both codes near the centerline region at cross-

section S2, indicating that the vortex breakdown gets near the entrance and axis of symmetry. 

The same conclusion is drawn from the gradual dissipation of tangential component along the 

axial direction (from S1 to S4 cross-section) due to the viscous effects, hence the initial swirling 

flow approximates progressively a purely axial one. Ultimately, the actually identical results 

of IGal2D and Fluent, included in the following Figure 5.20, confirm the ability of the proposed 

CFD software to simulate accurately such internal incompressible steady-state flows.  

 

 
(a)  (b) 

Figure 5.20: Dimensional axial and swirl velocity components’ distributions along the cross-sections 

S1, S2, S3 and S4 of the axial tube, obtained by IGal2D and Fluent solvers. 

 

Almost the same agreement is observed in Figure 5.21, which depicts the aforementioned 

distributions of axial velocity obtained with IGal2D in comparison with those reported by 

(Rocha et al., 2015). Similarly, Figure 5.22 includes the dimensional relative pressure 

distributions along the centerline of the axial tube, produced by both the employed solvers. In 

addition, they are presented comparatively with this of the reference study (Rocha et al., 2015). 

As expected (due to the previous matching velocity results), an almost perfect agreement is 

succeeded. Independently of the utilized solver, an adverse pressure gradient is obtained due 

to the pressure raising along the centerline, which consequently derives the above mentioned 
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negative axial velocity values. Finally, Table 5.9 contains the values of pressure drop between 

solid wall points at inlet and outlet of the axial tube under examination (𝑦 = 0.025 𝑚, 𝑥𝑖𝑛𝑙𝑒𝑡 =

0 𝑚 and 𝑥𝑜𝑢𝑡𝑙𝑒𝑡 = 3 𝑚), derived by both the utilized solvers, as well as by Rocha et al. (2015) 

(measured and computed). The value extracted by IGal2D compares close with the 

experimental and numerical ones of the reference work (Rocha et al., 2015); regarding the 

measured one, it is approximately over-predicted by 4 %. Its accurate prediction is of crucial 

importance, especially in petroleum industrial lines, as excessive frictional pressure drops at 

high flow rates can lead to uneconomic operations (Rocha et al., 2015). 

 

 

Figure 5.21: Dimensional axial velocity distributions along the cross-sections S1, S2, S3 and S4 of the 

axial tube, obtained by IGal2D, in comparison to those reported by Rocha et al. (2015). 

 

 

Figure 5.22: Dimensional relative pressure distribution along the centerline of the axial tube. 
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 IGal2D  Ansys Fluent Rocha – Numerical Rocha – Experimental 

Pressure Drop 4320.28 Pa 4319.13 Pa 4325.51 Pa 4193.54 Pa 

Table 5.9: Pressure drop between solid walls points at inlet and outlet positions of the axial tube. 

 

 Turbulent Swirling Flow inside a Conical Diffuser 

The current benchmark case concerns the turbulent swirling flow inside a conical diffuser 

that resembles those usually employed in shrouded or diffuser augmented wind turbine 

applications, in order to recover pressure and increase turbine efficiency. Optimizing the 

performance of a diffuser is revealed to be of dramatically crucial importance for the overall 

efficiency of diffuser augmented wind turbines and in general, of analogous industrial 

confined geometries. This is the main motivation to study this test case, considering our 

objective to develop a numerical software platform for the design and optimization of 

shrouded wind turbines. 

 

 

Figure 5.23: Geometric details of the conical diffuser (Leloudas et al., 2021). 

 

To this end, the diffuser examined in this work is the ERCOFTAC (European Research 

Community on Flow, Turbulence and Combustion) swirling conical diffuser, which has been 

extensively studied in the literature (Armfield et al., 1990; Bounous, 2008; Cho and Fletcher, 

1991; Clausen et al., 1993; From et al., 2017; Rodi et al., 1995). The geometric characteristics of 

the 0.51 𝑚 long diffuser – also reported by Clausen et al. (1993) – are provided in Figure 5.23. 

The diffuser has a half-cone angle θ = 10𝜊 and an area ratio of 2.84; the inlet radius is equal to 

0.13 𝑚, while the exit one is equal to 0.22 𝑚. A swirl generator with a rotating velocity of 
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550 𝑟𝑝𝑚 (composed of a straight pipe with an internal honeycomb) has been placed upstream 

of the diffuser (see Figure 5.23) to produce a solid body rotation type swirl. The computational 

domain (coloured in blue) along with details for its major sections are illustrated in the same 

figure. For its representation a quadrilateral grid was utilized, consisted of 15,720 nodes and 

15,470 quadrilateral elements. Its density is depicted in Figure 5.24; in order to use it with the 

proposed dimensionless solver, it was non-dimensionalized with the diameter at diffuser’s 

intake. 

 

 

Figure 5.24: Density of the utilized grid for the conical diffuser (Leloudas et al., 2021). 

 

Similarly to the previous test cases, simulations were performed by both the IGal2D and 

the Fluent solver, whereas their results were compared between them, as well as with the 

available experimental ones (Clausen et al., 1993). Axial and swirl velocities at the inlet 

boundary were imposed by interpolating the available experimental measurements (Clausen 

et al., 1993), presented in Figure 5.25. In addition, the experimentally obtained Reynolds 

stresses ( 𝑢2̅̅ ̅, 𝑣2̅̅ ̅, 𝑤2̅̅ ̅̅  ) were used to calculate the distribution of turbulent kinetic energy 𝑘 =
1

2
( 𝑢2̅̅ ̅ + 𝑣2̅̅ ̅ + 𝑤2̅̅ ̅̅  ) over the inlet (S0), and therefore, to define the inflow turbulence magnitude. 

The particular distribution of turbulent kinetic energy results in an average value of inflow 

turbulence intensity 𝑇̅𝑢 of approximately 4%, which is similar to the value of turbulence 

intensity (𝑇̅𝑢 = 5%) adopted during the numerical study of From et al. (2017). The 

experimentally obtained values for Reynolds stresses can be also found in the study of Clausen 

et al. (1993) and Digital ERCOFTAC Database. The small peak of axial velocity component next 

to the boundary layer region is caused by the proximity to the diffuser inlet (Clausen et al., 

1993). Zero radial velocity component was considered at the inlet. At the outlet relative static 

pressure was defined equal to zero for both Fluent and IGal2D solvers (in dimensional and 

non-dimensional formulation, respectively). Moreover, at the outlet radial equilibrium was 

http://cfd.mace.manchester.ac.uk/ercoftac/doku.php?id=cases:case060
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applied, while no-slip and free-slip conditions were employed to solid wall and symmetry 

axis, respectively. Regarding the working fluid, its density and dynamic viscosity were set 

equal to 1.225 𝑘𝑔/𝑚3 and 1.8375 ∙ 10−5 𝑘𝑔/𝑚/𝑠. Based on the above mentioned values the 

Reynolds number was calculated as 206,153.581. A steady-state solution was obtained after 

the log(residual) of pressure was decreased more than five orders of magnitude. An artificial 

compressibility parameter and a CFL number equal to 1.0 and 0.2, respectively, were used. For 

the acceleration of the solution procedure a three-level multigrid scheme was implemented; 

two agglomerated coarser resolutions were constructed following the incorporated isotropic 

fusion procedure (Lygidakis et al., 2016). 

 

 
(a)  (b) 

Figure 5.25: Experimentally obtained (Clausen et al., 1993) distributions of axial and swirl velocity at 

the diffuser inlet (S0) along with the interpolated profiles of the corresponding velocity components, 

used for the numerical simulations. 

 

In Figure 5.26 to Figure 5.28 the numerical results, obtained by IGal2D and ANSYS Fluent 

solvers (both using the 𝑘 − 𝜔 SST turbulence model), are compared against the experimental 

measurements provided by Clausen et al. (1993), for reference sections S1, S4 and S7 (which 

are shown in Figure 5.23 and cover the largest part of the diffuser). The aforementioned 

comparisons are made in terms of axial and swirling velocity components. An almost perfect 

agreement between IGal2D and Fluent solvers can be observed for both velocity components 

at each one of the examined sections. However, some non-trivial discrepancies between the 

numerical and experimental data are identified, especially when moving towards the exit of 

the diffuser. In particular, IGal2D and Fluent solvers were found to over-predict the axial 

velocity component for each one of the examined sections. This over-prediction tends to 

increase as the symmetry axis is approached, hence failure to capture the actual velocity deficit 
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within the core diffuser region is indicated. Yet both near-wall intensity and the peak position 

of axial velocity have been reasonably predicted, especially at sections S1 and S4. At section S7 

a relatively small under-estimation of axial velocity at the solid wall area is also noticed. In 

contrast to axial velocity component, a much better numerical computation of swirl velocity 

for every reference section was achieved, though the peak values at sections S1 and S7 have 

been slightly under-estimated. Nevertheless, an accurate prediction of the experimentally 

obtained pressure coefficient distribution over the diffuser wall (pressure recovery) was 

achieved by IGal2D solver as shown in Figure 5.29 – an anticipated result due to the 

aforementioned sufficiently matching velocity distributions. The axial pressure gradient gets 

high values near the entrance, while it decreases rapidly along the axial direction. 

 

 
(a)  (b) 

Figure 5.26: Distributions of axial and swirl velocity at cross-section S1 (conical diffuser). 

 
 

 
(a)  (b) 

Figure 5.27: Distributions of axial and swirl velocity at cross-section S4 (conical diffuser). 
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(a)  (b) 

Figure 5.28: Distributions of axial and swirl velocity at cross-section S7 (conical diffuser). 

 

Conclusively, despite some notable discrepancies between the numerical prediction of 

IGal2D and/or Fluent solvers and the experimental results, according to previous numerical 

studies (Rodi et al., 1995) on the same benchmark test case, as well as to the authors’ 

perspective, such discrepancies are almost entirely attributed to the inability of 𝑘 − 𝜔 SST 

model to predict accurately turbulent kinetic energy 𝑘 in such swirling flows along with the 

sensitivity of velocity components upon 𝑘, which increases as the diffuser exit is approached.  

 

 

Figure 5.29: Distributions of pressure coefficient on the wall (conical diffuser). 
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A similar behaviour can be found in the literature for the standard 𝑘 − 𝜀 turbulence model 

(Rodi et al., 1995), which provides globally better 𝑘 results, compared to the 𝑘 − 𝜔 one (Rodi et 

al., 1995). Miscapturing of 𝑘 is enlarged near the diffuser corner, due to the adverse pressure 

gradient and curvature effects, as well as with the implementation of low Reynolds approach 

instead of wall functions (Rodi et al., 1995). Therefore, this calls for the incorporation of more 

advanced turbulent models within the current solver. Such an example could be the BSLkω 

EARSM model, which – according to the study of From et al. (2017) – proved capable of 

predicting the flow characteristics throughout the entire diffuser with high accuracy.  

 

 

Figure 5.30: Turbulent flow inside the conical diffuser. Comparison of axial velocity contours. 

 

Finally, Figure 5.30 and Figure 5.31 illustrate the axial and tangential velocity contours, 

while Figure 5.32 illustrates the static pressure contours, as they obtained from IGal2D and 

Fluent solvers. These comparisons confirm the good agreement between the two solvers, when 

the same turbulence model is employed. Both numerical codes predict reasonably the total 

velocity reduction, associated with constant mass flow, as well as the decrease of the centerline 

axial velocity and the increase of the near-wall one, caused by the tangential velocity 

component. 
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Figure 5.31: Turbulent flow inside the conical diffuser. Comparison of swirl velocity contours. 

 

 

Figure 5.32: Turbulent flow inside the conical diffuser. Comparison of pressure contours. 
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Chapter 6 

The RG15 Low-Reynolds Airfoil Family  

 

This chapter features a new low Reynolds number airfoil family for the entire blade span of small 

horizontal-axis wind turbines, aiming to reduce the effects related to laminar separation, improve 

startup response and meet acceptable levels of structural integrity. The proposed RG15 low Reynolds 

airfoil family consists of six airfoil profiles of varying relative thickness, which were designed by 

increasing the thickness distribution of RG15 airfoil up to 50% and adopting a rounded trailing edge 

with a diameter equal to 1% of the chord length. 

 

6.1 Aerodynamics of Small Wind Turbine Blades 

On account of global efforts to reduce greenhouse gases emissions and combat climate 

change, small-scale wind energy conversion systems have recently attracted renewed 

attention from the international engineering community, since they represent a promising 

solution for sustainable energy production in site-specific cases. In contrast to their larger 

counterparts, small wind turbines provide a considerably higher level of flexibility, both in 

terms of required space and wind speed conditions (Singh et al., 2012). Therefore, they can be 

integrated within a much broader spectrum of residential, rural and remote areas for either 

on-grid or off-grid power generation – usually directly where the power is required, rather 

than where the wind is most favourable. Consequently, they could enable significant 

opportunities for more geographic dispersion of wind technology applications (Yang et al., 

2019), growth in distributed energy deployments, and further expansion of renewable energy 

utilization on a global scale. 

Small horizontal-axis wind turbines, which according to the standards issued by the 

International Electrotechnical Commission (IEC, 2013) are characterized by a rotor swept area 

of less than 200 𝑚2, rely on the same aerodynamic principles governing the operation of larger 

HAWT systems. However, the chord Reynolds numbers (Re) prevailing along the entire blade 

span of the former applications are considerably lower – generally below 500,000 – as a 

consequence of the smaller blade radius (Shah et al., 2012). One of the major aspects of high 

Reynolds number flows over airfoils is that the transition from laminar to turbulent flow inside 

the velocity boundary layer is realized earlier than laminar separation. Eventually, this early 

transition prevents the appearance of undesirable aerodynamic effects related to the latter 

phenomenon (Giguère and Selig, 1997), since a turbulent boundary layer is capable of 

withstanding an adverse pressure gradient (that is an increase of static pressure in the 



Chapter 6 The RG15 Low-Reynolds Airfoil Family 

 

6-2 

direction of the flow) better than an equivalent laminar one. On the contrary, at low Reynolds 

number regimes – typically defined by a chord Reynolds number lower than approximately 

500,000 – the boundary layer is predominantly laminar and therefore, relatively fragile (Shah 

et al., 2012). In that case, the existence of a large adverse pressure gradient may force the flow 

to detach prematurely from the surface of the airfoil, that is, prior to the development of a fully 

turbulent flow. Even though the resultant free shear layer (detached boundary layer) remains 

laminar shortly after the separation point, it eventually transits to the turbulent state due to 

the intensification of the velocity disturbances in the flow (Alam and Sandham, 2000) 

(separation-induced transition). From that point on, two distinct flow regimes may result; the 

so-called subcritical and supercritical flow regimes (Mulleners et al., 2008), which are 

represented in Figure 6.1 and Figure 6.2. 

In a supercritical flow, the detached (now turbulent) shear layer does reattach to the surface 

of the airfoil, causing the formation of a laminar separation bubble, the size and chordwise 

location of which are functions of the airfoil profile, Reynolds number, turbulence intensity 

(𝑇𝑢) and angle of attack (α) (Swift, 2009). Typically, a separation bubble moves towards the 

leading edge as the angle of attack increases (Giguère and Selig, 1997). In terms of size, laminar 

separation bubbles can be roughly classified as either short or long ones, depending on their 

chordwise extent (𝐿𝑠𝑏) and consequent effects on the pressure and velocity distributions about 

the airfoil (Tani, 1961). A short separation bubble encompasses a chordwise extent ranging up 

to approximately one percent; therefore, it does not influence the pressure distribution around 

the airfoil to a large degree. However, a long separation bubble (usually produced by the burst 

of a short one, because of either the reduction in Reynolds number or the increase in angle of 

attack) may cover a significantly larger percent of the airfoil chord, affecting severely the 

pressure distribution and the aerodynamic forces developed on the airfoil (Choudhry et al., 

2015). 

 

 
(a) (b) 

Figure 6.1: Schematic representation of laminar flow separation. (a) Subcritical flow regime. (b) 

Supercritical flow regime (Leloudas et al., 2020b). 
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Although the existence of a laminar separation bubble near the leading edge at high angles 

of attack may increase the apparent camber of the airfoil and improve the lift (𝐿) generation 

capacity (Hansen et al., 2014), it ultimately thickens (locally) the velocity boundary layer on 

the suction side, increasing considerably the drag coefficient (𝐶𝐷) as well. In addition to that, 

the presence of laminar separation bubble is also associated with a turbulent flow separation 

near the trailing edge of the airfoil, as exemplified in Figure 6.2a and Figure 6.2b; this 

characteristic phenomenon of the supercritical flow regime is known as trailing edge stall  

(Mulleners et al., 2008). Besides, the potential premature burst of a laminar separation bubble 

could cause an even larger growth of the drag coefficient, which is accompanied by a sudden 

and severe loss of the generated lift  (Hansen et al., 2014). Now, in contrast to the supercritical 

regime, if the turbulent transition takes place far away from the surface of the airfoil, there is 

a possibility that the turbulent shear layer may not be able to reattach to the airfoil surface, 

creating an open separation area (subcritical flow) instead of a separation bubble. In that case, 

a thicker and extremely unstable wake region is produced, as shown in Figure 6.2c, resulting 

in much higher drag (𝐷) levels and further reduction in the aerodynamic performance of the 

airfoil, compared to the supercritical flow regime. However, such an unattached free shear 

layer (open separation area) may also be produced by the bursting of a laminar separation 

bubble. 

Therefore, to optimize the aerodynamic performance of small wind turbine blades, 

operating at low Reynolds numbers, the effects related to laminar separation have to be 

minimized. One of the available methods to reduce or even eliminate bubble drag (that is drag 

induced by a laminar separation bubble) – as well as to delay the possible chances of separation 

at higher angles of attack – is related to the promotion of early transition on the upper surface 

(suction side) of the airfoil, through the installation of a mechanical turbulator or trip (Singh 

et al., 2012). However, the particular technique, which is the only one applicable to existing 

airfoils (Giguère and Selig, 1997), requires adequate experience in selecting the proper location 

and thickness of the trip, so as to maximize the reduction in bubble drag while minimizing the 

drag produced by the trip (Lyon et al., 1997). On the other hand, according to Giguere and 

Selig (1997), the suppression of laminar separation effects could also be achieved by means of 

specially designed airfoils with a very gradual upper-surface pressure recovery (bubble ramp), 

which can decrease significantly the additional drag induced by separation bubbles. 

Currently, the majority of low Reynolds number airfoils are designed based on the latter 

technique, providing reduced amounts of drag and higher maximum lift-to-drag ratios (also 

termed as glide ratios), as compared with those of traditional airfoils that have been mainly 

designed for high Reynolds numbers and, therefore, they usually suffer from severe laminar 

separation effects when operating at low Reynolds number regimes. 
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Figure 6.2: Velocity streamlines for different flow regimes. (a) Short separation bubble (supercritical 

regime). (b) Long separation bubble (supercritical regime). (c) Unattached shear layer (subcritical 

regime) (Leloudas et al., 2020b). 

 

 

6.2 Review of Small Wind Turbine Airfoils 

The first airfoils for small wind turbines were introduced by the National Renewable 

Energy Laboratory (NREL); the S822 and S823 airfoils (Somers, 2005) were particularly 

designed for small stall-regulated wind turbines with a rotor diameter between 3 and 10 

meters, based on the following criteria: restrained maximum lift, insensitivity to roughness 

and low profile drag. Nevertheless, the first systematic attempt to establish a wide database of 

low Reynolds number airfoils for small wind turbine blades was made by Giguere and Selig 

(1997). In that study, the aerodynamic performance of 15 already existing low Reynolds 

number airfoils (most of them had been originally designed for small unmanned aerial 

vehicles) was thoroughly evaluated, based on the results of a large-scale testing program 

undertaken in the University of Illinois at Urbana-Champaign (UIUC) low-turbulence 

subsonic wind tunnel (Broeren et al., 1995). Besides, Giguere and Selig (1997) provided useful 

guidelines to facilitate the airfoil selection process for each one of the different operational 

modes of small wind turbines (variable-speed, variable-pitch, stall regulated). Later on, 

Giguere and Selig (1998) introduced the SG604x airfoil family, which was designed by taking 

into consideration the special requirements of small variable-speed wind turbines with a rated 
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capacity up to 5 𝑘𝑊. The SG604x airfoil family was formed by three primary airfoils (SG6041, 

SG6042 and SG6043) with a maximum relative thickness of 10% and by one root airfoil 

(SG6040) with a maximum relative thickness of 16%, to accommodate possible large root 

bending moment and large blade stiffness requirements. According to both experimental and 

numerical data reported in (Giguere and Selig, 1998), the SG604x family could achieve high 

lift-to-drag ratios (𝐿 𝐷⁄ ) over a broad range of lift conditions. Moreover, Selig and McGranahan 

(2004) conducted detailed wind tunnel experiments in order to examine the performance 

characteristics of six low Reynolds number airfoils (E387, FX 63-137, S822, S834, SD2030 and 

SH3055) for small wind turbines, at various Reynolds numbers up to 500,000. 

Significant research on small wind turbine airfoils was also made by Ram et al. (2013), who 

employed a Genetic Algorithm to design a low Reynolds number airfoil with high roughness 

insensitivity and maximum relative thickness of 10%. The resultant USPT2 airfoil was 

evaluated both numerically and experimentally. According to the corresponding results 

reported in (Ram et al., 2013), USPT2 seemed to overperform the SG6043 airfoil in terms of lift-

to-drag ratio for angles of attack greater than 10 degrees, while a smother stall region, as 

compared to that of similar airfoils, was also observed. On the other hand, Henriques et al. 

(2009) applied a pressure-load prescription method to design a new airfoil (T.Urban 10/193) 

with high lift performance (𝐶𝐿 value around 2) for urban wind turbines. In comparison with 

conventional blade section designs, the T.Urban 10/193 airfoil demonstrated increased 

maximum lift, reduced leading edge suction peak and controlled soft-stall behavior, due to a 

reduction of the adverse pressure gradient on the suction side (Henriques et al., 2009). More 

recent research on small wind turbine airfoil design can also be found in the studies of Singh 

et al. (2012), Shah et al. (2012), Islam et al. (2008), Marnett et al. (2010) and Shen et al. (2016). In 

particular, the study of Singh et al. (2012) was focused on the design of a new low Reynolds 

number airfoil, aiming to improve the startup behavior and low wind speed performance of 

small wind turbines. Compared with other low Reynolds number airfoils suited for small 

wind turbines, the proposed AF300 airfoil showed good aerodynamic performance, attaining 

the highest combinations of optimum 𝐶𝐿 and lift-to-drag ratios. Moreover, Singh et al. (2012) 

highlighted that the flatback trailing edge of the AF300 airfoil had improved the aerodynamic 

properties of AF300 by delaying flow separation and increasing 𝐶𝐿. Finally, they noted that the 

structural strength added by the thick trailing edge would require lighter blade materials and 

decrease the rotor inertia. Therefore, the startup could be significantly improved and the rotor 

could operate at lower cut-in wind speeds (Singh et al., 2012). 
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6.3 Motivation and Scope 

Apart from the suppression of laminar separation effects, the achievement of a good 

starting behavior (startup response) and low cut-in speeds can also enhance significantly the 

overall performance of small wind turbines intended for low/moderate wind speeds and 

fluctuating regimes. According to Sathyajith and Philip (2011), a good startup can be 

succeeded by selecting root airfoils with high maximum lift coefficients (𝐶𝐿) and high lift-to-

drag ratios, since most of the starting torque is caused by the blade root, whereas the tip region 

generates most of the power producing torque (Wright and Wood, 2004). The RG15 is one of 

the attractive low Reynolds number airfoils – both in terms of aerodynamic performance and 

low Reynolds behavior – that were examined during the testing program at UIUC low-

turbulence subsonic wind tunnel (Broeren et al., 1995). However, the particular airfoil is rather 

unsuitable for the root region of the blade, because of its limited structural integrity (limited 

rigidity and stiffness), stemming from the small value of the thickness-to-chord ratio (𝑡 𝑐⁄ ) and 

cross-sectional area (𝐴). Against this background, this work presents the development and 

application of a methodology for the design of a low Reynolds number airfoil family, suitable 

for the entire blade span of small wind turbines, through the proper thickening of the RG15 

airfoil. Moreover, since the original RG15 airfoil geometry has a knife-sharp trailing edge, 

which does not meet the current blade manufacturing and transportation limitations, the 

original and the thickened airfoils are further modified, to result in a rounded trailing edge, 

without truncating the provided airfoil geometries. Ultimately, the aim of this study is to 

extend the use of this promising low Reynolds number airfoil and provide an adequate airfoil 

family for the entire blade span (including the root region as well) of small wind turbine 

blades, capable of significantly improving the overall power performance. 

 

6.4 The Original RG15 Airfoil 

The RG15 low Reynolds number airfoil was designed by Rolf Girsberger in an attempt to 

provide a superior alternative – in terms of maximum 𝐶𝐿 – to the Eppler E180 airfoil and meet 

the special requirements of the FAI-F3B class that is the World Championship for Model 

Gliders. Even though RG15 was initially intended exclusively for radio controlled sailplanes 

and model gliders, including slope soaring and electric powered gliders, it currently 

represents an attractive low Reynolds number airfoil for the design of small wind turbine 

blades as well. Figure 6.3a presents the theoretical profile of the RG15 airfoil, which has a 

maximum relative thickness of 8.92% located at 30.2% of the chord from the leading edge and 

a maximum relative camber of 1.8% located at 39.7% of the chord from the leading edge. 
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(a) (b) 

Figure 6.3: The RG15 airfoil. (a) Theoretical profile. (b) Actual profile (Broeren et al., 1995). 

 

The theoretical profile of the RG15 airfoil was generated by means of the Eppler airfoil code, 

according to the following criteria: 

a. Section drag for low lift (𝐶𝐿 between 0 and 0.4) comparable to E180 airfoil. 

b. Lower edge of laminar drag bucket at slightly negative lift. 

c. Higher maximum lift than E180 airfoil. 

d. Critical Reynolds number well below 100,000. 

e. Higher absolute value of pitching moment than E180 airfoil. 

f. Lower absolute value of pitching moment than E193 airfoil. 

g. Relative airfoil thickness between 8.5% and 9.5%.  

In addition, Figure 6.3b illustrates the actual airfoil profile used during the experimental study 

at the UIUC low-turbulence subsonic wind tunnel (Broeren et al., 1995). Since low Reynolds 

number airfoil performance is highly dependent on the laminar boundary layer behavior, low 

turbulence levels within the wind tunnel were necessary to ensure that laminar flow does not 

prematurely transition to the turbulent state over the airfoil surface. To this end, the wind-

tunnel settling chamber had been equipped with a 4-in thick honeycomb and four anti-

turbulence screens; the turbulence intensity was measured to be less than 0.1%, which was 

considered sufficient for low Reynolds number airfoil measurements (Broeren et al., 1995). In 

Figure 6.4, the aerodynamic characteristics of the RG15 airfoil for various Reynolds numbers 

from Re = 60,000 to Re = 300,000 are illustrated, as obtained from the testing program at the 

UIUC low-turbulence subsonic wind tunnel (Broeren et al., 1995). As expected, the increase of 

Re is associated with a reduction in drag coefficient and therefore, an increase of the lift-to-

drag ratio, since no significant variation of the lift curve with Re was observed for the 

examined angles of attack. 
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      (a)      (b) 

 
      (c)      (d) 

Figure 6.4: Aerodynamic characteristics of RG15 airfoil at several low Reynolds numbers, as measured 

at the UIUC wind tunnel (Broeren et al., 1995). (a) 𝐶𝐿 −  α. (b) 𝐶𝐷 −  α. (c) 𝐶𝐿 𝐶𝐷⁄ −  α. (d) 𝐶𝐿 − 𝐶𝐷. 

 

6.5 Thickening of the RG15 Airfoil 

During the selection of the airfoil sections for the optimum wind turbine blade design, the 

specific requirements of the different blade regions should be considered as well. In particular, 

structural requirements have higher priority than the aerodynamic ones for airfoil sections 

that form the root region of the blade, due to the high stresses they go through. However, 

increased aerodynamic efficiency is essential for airfoil sections located in the mid span and 

tip regions, because of their great impact on the rotor power output. Consequently, even 

though RG15 airfoil seems appropriate for the mid span and tip regions, because of its 

promising aerodynamic characteristics, it appears unsuitable for the root region, due to its 

limited structural integrity (limited rigidity and stiffness), resulting from the small value of 

the thickness-to-chord ratio and cross-sectional area. To this end, five new thickened airfoils 
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have been designed, based on the original RG15 geometry, in order to create an airfoil database 

suitable for the root region formation of small wind turbine blades. 

 

 

Figure 6.5: The five thickened RG15 airfoils. 

 

The five thickened airfoils have been constructed in such a way that they have the same 

mean camber line (MCL) compared to the original RG15 airfoil (in order to retain its desirable 

aerodynamic characteristics), but an increased thickness-to-chord ratio distribution by 50%, 

40%, 30%, 20% and 10% respectively, compared to the base airfoil design (see Figure 6.5). The 

construction of the five thickened airfoils, which from now on will be denoted as RG15-(50), 

RG15-(40), RG15-(30), RG15-(20) and RG15-(10), was implemented by the utilization of 

Rhinoceros 3D Computer-Aided Design (CAD) application software, developed by Robert 

McNeel & Associates, as well as Grasshopper visual programming language, which runs 

within Rhinoceros. Initially, the mean camber line of the original RG15 airfoil was calculated, 

by interpolating a smooth curve (blue line) through the centers (blue squares) of the inscribed 

circles (red circles) to the RG15 airfoil, as shown in Figure 6.6 (standard procedure for 

calculating the MCL). 

 

 

Figure 6.6: Calculation of the RG15 mean camber line (blue line). 

 

Then, the thickness distribution of the RG15 airfoil was calculated, according to the following 

procedure, which is schematically represented in Figure 6.7; for a point 𝑘 along the chord line 

(𝑐), the thickness value corresponding to 𝑘 is equal to the length of the line segment (thickness 

line – magenta) perpendicular to the MCL (blue) that passes through the projection of 𝑘 on the 

MCL. 



Chapter 6 The RG15 Low-Reynolds Airfoil Family 

 

6-10 

 

 

Figure 6.7: Calculation of the thickness line corresponding to a random point 𝑘 along the chord 

line. 

 

In Figure 6.8, only a few indicative thickness lines (magenta) of the RG15 airfoil are depicted 

for clarity purposes. Finally, as illustrated in Figure 6.9, for the construction of the points of 

the new thickened airfoils, each thickness line of the original RG15 was extended equally from 

both sides by the appropriate percentage, depending on the desirable rate of thickness 

increase. The start and end points of the extended thickness lines (magenta squares – Figure 

6.9) are the points of the new thickened airfoil. 

 

 

Figure 6.8: Indicative thickness lines (magenta) of the RG15 airfoil. 

 

 

Figure 6.9: Indicative points of a thickened airfoil, constructed through the proper extension of the 

RG15 thickness lines. 
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6.6 Trailing Edge Modification 

The Kutta-Zhukovsky theorem dictates that a lift producing airfoil should have a knife-

sharp trailing edge and therefore, it considers the practical necessity of manufacturing blades 

and wings with rounded trailing edges as a divergence from the ideal case. However, some 

early experiments (Herrig et al., 1951; Stack and Lindsey, 1938), which were carried out to 

determine the lift and drag dependence upon the trailing edge radius, revealed that a rounded 

trailing edge of radius less than 1% of the chord length produces essentially the same lift and 

drag as a maximally sharp trailing edge, while a notable increase in drag was observed for 

rounded trailing edges of radius above 2% of the chord length. In this context and given that 

the current blade manufacturing and transportation limitations do not allow sharp trailing 

edges to be constructed, the trailing edges of the original and thickened RG15 airfoils were 

locally thickened and rounded. For the generation of a blunt trailing edge without truncating 

the airfoil, QBlade software (Marten, 2015) provides the built-in Trailing Edge Gap function, 

where the desired gap and blending distance from the leading edge (i.e., the absolute 

percentage of the airfoil chord, downstream of which the smoothing code is free to modify the 

airfoil shape in order to accommodate the modified trailing edge) are specified as percentages 

of the chord length. Nevertheless, as it was observed during the utilization of the Trailing Edge 

Gap function, the user-defined blending distance was not being completely respected by the 

code; while additionally, the airfoil thickness was being measured and applied perpendicular 

to the center line (as utilized by QBlade instead of the actual MCL), which is a rough and 

generally incorrect approximation of the MCL. 

Therefore, in order to overcome the aforementioned shortcomings, a custom script was 

created within Grasshopper, to be used for the generation of a blunt trailing edge without 

truncating the airfoil, through the proper modification (local thickening) of the provided 

(baseline) airfoil geometry under consideration. As long as the features of the developed script 

are concerned, the user is permitted to precisely define the trailing edge diameter and blending 

distance from the leading edge as in QBlade, while conversely to QBlade, the airfoil thickness 

is measured and applied perpendicular to the airfoil’s MCL, as it should be, so the resultant 

airfoil to have the exact same MCL with the baseline, so as to retain its aerodynamic 

characteristics as far as possible. Once the baseline airfoil geometry (with a sharp trailing edge) 

and the required software parameters (blending distance and trailing edge diameter) have 

been provided, the modified airfoil geometry is constructed through the application of an 

additional parabolic thickness distribution to the baseline airfoil, starting from the point along 

the chord that corresponds to the established blending distance and ending at the airfoil’s 

trailing edge; in such a way that the defined trailing edge diameter to be exactly achieved and 

the resultant airfoil geometry to fulfil all the required continuity, curvature and smoothness 
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criteria. The blending distance and trailing edge diameter are schematically defined in Figure 

6.10. 

 

 
      (a)      (b) 

Figure 6.10: Schematic definition of the (a) trailing edge diameter and (b) blending distance.  

 

Figure 6.11 presents an indicative application of the developed methodology to the RG15 

airfoil; in the particular application, the trailing edge diameter and the blending distance from 

the leading edge were set equal to 1% and 50% of the chord length respectively. 

 

 

Figure 6.11: Schematic representation of the followed methodology for the creation of a rounded 

trailing edge. 

 

As it seems, the baseline (RG15 - black) and the modified (red) airfoil geometries coincide 

from the leading edge until the point that corresponds to the 50% of the chord, while the 

differentiation between the two airfoils lies only in the region downstream of the 50% of 

the chord; increasing smoothly and parabolically as the trailing edge is approached, to 
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attain the desirable thickness. Subsequently, in order to create a rounded trailing edge 

geometry, a circle (black) is fitted to the thickened trailing edge of the modified airfoil, in 

such a way that is tangent to its upper and lower surfaces and passes through the sharp 

trailing edge of the baseline airfoil, as depicted in Figure 6.11b; so as the reformed airfoil 

to have the same chord line with the baseline one. Finally, the leftover edges are properly 

cut off, to result in the final modified airfoil with a rounded trailing edge. 

 

6.7 RG15 Airfoil Family 

In this work, the methodology developed for the conversion of sharp trailing edges to 

rounded ones, was applied to all the original and thickened RG15-(xx) airfoils. For each 

one of the six airfoils (denoted as “parent” airfoils), four modified configurations were 

generated (Table 6.1), by setting the trailing edge radius equal to 0.5% of the chord length 

(i.e., trailing edge diameter equal to 1%) and the blending distance equal to 0%, 50%, 60% 

and 70% of the chord length respectively. Regarding the notation used for the modified 

airfoils, the RG15-(xx)-yy-z refers to an airfoil with an increased thickness-to-chord ratio 

by xx% compared to the original RG15, whose rounded trailing edge was created by 

setting the trailing edge diameter equal to z% and the blending distance from the leading 

edge equal to yy% of the chord length. 

 

“Parent” Airfoils - Sharp Trailing Edge 

RG15 RG15 – (10) RG15 – (20) RG15 – (30) RG15 – (40) RG15 – (50) 

Modified Airfoils - Rounded Trailing Edge 

RG15-(00)-00-1 RG15-(10)-00-1 RG15-(20)-00-1 RG15-(30)-00-1 RG15-(40)-00-1 RG15-(50)-00-1 

RG15-(00)-50-1 RG15-(10)-50-1 RG15-(20)-50-1 RG15-(30)-50-1 RG15-(40)-50-1 RG15-(50)-50-1 

RG15-(00)-60-1 RG15-(10)-60-1 RG15-(20)-60-1 RG15-(30)-60-1 RG15-(40)-60-1 RG15-(50)-60-1 

RG15-(00)-70-1 RG15-(10)-70-1 RG15-(20)-70-1 RG15-(30)-70-1 RG15-(40)-70-1 RG15-(50)-70-1 

Table 6.1: The modified RG15 airfoils with a thickened and rounded trailing edge. 

 

The four variants for each one of the “parent” airfoils, corresponding to the different 

blending distance values, as well as their “parent” airfoil, were then evaluated using XFOIL 

software (Drela, 1989), at various low Reynolds numbers, in order to examine the influence of 

the blending distance parameter on the developed aerodynamic forces. Figure 6.12a illustrates 

the drag polar for the RG15, RG15-(00)-00-1, RG15-(00)-50-1 and RG15-(00)-70-1 airfoils at Re =

300,000. Apparently, no significant variation of the drag polar was detected with different 
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values of the blending distance parameter, while the same outcome was observed by 

examining the rest of low Reynolds numbers considered during the experimental study at 

UIUC (Broeren et al., 1995). In addition, Figure 6.12a indicates that the adoption of a rounded 

trailing edge (instead of a maximally sharp one) did not result in a substantial reduction in the 

aerodynamic performance of the airfoil, since the comparison between the drag polars (XFOIL 

solver) of RG15 and RG15-(00)-70-1 airfoils reveal a high level of similarity. 

 

 
(a) XFOIL (b) 2D RANS (SST 𝒌 − 𝝎) 

Figure 6.12: The influence of the rounded trailing edge and blending distance parameter on the drag 

polar at Re = 300,000. (a) XFOIL results. (b) 2D RANS results. 

 

To further support the latter deduction, RG15 and RG15-(00)-70-1 airfoils were also 

evaluated at Re = 300,000, using the IGal2D solver (see Chapter 4) instead of XFOIL; 

turbulence simulation was achieved by means of the standard two-equation Shear Stress 

Transport (SST) turbulence model. The comparison between the resultant drag polars is 

provided in Figure 6.12b, verifying that a rounded trailing edge with a radius equal to 0.5% of 

the chord does not affect the aerodynamic performance of the airfoil to a large degree, as only 

minor differences were detected, especially in the upper high-drag region. The simulation 

parameters for both XFOIL and RANS solvers are equal to the ones adopted during the 

detailed evaluation of the entire RG15 airfoil family, which are presented in Chapter 7. 

Consequently, since no significant impact of the blending distance parameter on the 

aerodynamic performance was found, the airfoils that were produced by setting the blending 

distance equal to 70% have been selected to form the RG15 airfoil family, as they are the ones 

with the lesser deviation from the “parent” airfoils. The final airfoil family RG15-(xx)-70-1 

generated through this work is illustrated in Figure 6.13, whereas Table 6.2 contains the major 

geometrical characteristics of the corresponding airfoils. Given that all the airfoils have been 
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constructed using the same MCL (the MCL of the original RG15 airfoil), the maximum camber, 

the position of maximum camber and the position of maximum thickness are mutual for all 

members of the family. The dimensionless coordinates of the airfoils composing RG15 airfoil 

family are provided in Appendix C.  

 

 
(a) RG15-(00)-70-1 (b) RG15-(10)-70-1 

 
(c) RG15-(20)-70-1 (d) RG15-(30)-70-1 

 
(e) RG15-(40)-70-1 (f) RG15-(50)-70-1 

Figure 6.13: The airfoils composing the low-Reynolds RG15 airfoil family. 

 

Airfoil Maximum Thickness Maximum Camber Sectional Area 

Original RG15 0.0892 𝑐 0.018 𝑐 0.0595 𝑐2  

RG15-(00)-70-1 0.0892 𝑐 0.018 𝑐 0.0605 𝑐2 

RG15-(10)-70-1 0.0981 𝑐 0.018 𝑐 0.0664 𝑐2 

RG15-(20)-70-1 0.1070 𝑐 0.018 𝑐 0.0724 𝑐2 

RG15-(30)-70-1 0.1160 𝑐 0.018 𝑐 0.0784 𝑐2 

RG15-(40)-70-1 0.1249 𝑐 0.018 𝑐 0.0843 𝑐2 

RG15-(50)-70-1 0.1338 𝑐 0.018 𝑐 0.0903 𝑐2 

Table 6.2: Geometrical characteristics of the airfoils composing the RG15 airfoil family. 
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Chapter 7 

Numerical Analysis of the RG15 Airfoil Family 

 

This chapter involves the aerodynamic performance evaluation of the entire low-Reynolds RG-15 airfoil 

family. In order to obtain the aerodynamic characteristics of the involved airfoils, both the well-known 

XFOIL code and the in-house developed IGal2D solver are employed. 

 

7.1 XFOIL Analysis 

The aerodynamic performance of the RG15 airfoils was initially evaluated by means of 

XFOIL software, which relies on the combination of a potential flow panel method with an 

integral boundary layer formulation, for the analysis of subsonic isolated airfoils (Drela, 1989). 

The final solution is achieved through the implementation of an iterative procedure between 

the inner and outer flow solutions on the boundary layer displacement thickness, until an 

appropriate convergence criterion is reached; accordingly, the viscous pressure distributions 

(which capture the effects of laminar separation bubbles and trailing edge separation) can be 

predicted with reasonable accuracy (Coder and Maughmer, 2014). During an XFOIL analysis, 

the transition from laminar to turbulent state is predicted by applying an approximate 𝑒𝑁 

envelope method (Drela and Giles, 1987), according to which, only the most amplified 

frequency at a given point on the airfoil downstream from the point of instability is tracked 

(instead of tracking the amplification rates of all frequencies), in order to obtain the amplitude 

of the entire frequency envelope (Coder and Maughmer, 2014). Transition is assumed when 

this integrated amplitude 𝑁 reaches an empirically determined value, denoted as 𝑁𝑐𝑟𝑖𝑡. The 

appropriate value of 𝑁𝑐𝑟𝑖𝑡 parameter can be calculated as a function of the absolute value of 

turbulence intensity 𝑇𝑢, as follows (Van Ingen, 2008): 

  
𝑁𝑐𝑟𝑖𝑡 = −8.43 − 2.4𝑙𝑛(𝑇𝑢) (7.1) 

 

 

 

 

 XFOIL Setup and Validation 

Prior to the aerodynamic evaluation of the proposed RG15 airfoil family, the accuracy of 

XFOIL was validated against the available experimental data for the original RG15 airfoil 

(Broeren et al., 1995). In this study, a value of 9 was adopted for 𝑁𝑐𝑟𝑖𝑡, in order to match the 

turbulence levels reported during the wind tunnel testing (that is a turbulence intensity value 

less than 0.001 or 0.1%) (Broeren et al., 1995). As long as the geometry description is concerned, 
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the study of Morgado et al. (2016) concluded that no significant variation in the aerodynamic 

coefficients should be detected by increasing the number of points (panel resolution) on the 

airfoil surface over 150. However, XFOIL documentation advises that a fine panel resolution 

is required, if the appearance of laminar separation bubbles is expected. To this end, 300 points 

were used to describe the RG15 airfoil geometry, by applying a denser point distribution near 

the leading and trailing edges. The Mach number was set to zero. 

Figure 7.1 and Figure 7.2 provide the lift and drag coefficients of the RG15 airfoil, as a 

function of the angle of attack, for Re = 60,000 and Re = 300,000 respectively, as they resulted 

from both the testing program at the UIUC low-turbulence subsonic wind tunnel (Broeren et 

al., 1995) and XFOIL software; the particular Reynolds numbers correspond to the lower and 

upper values of the Reynolds number spectrum examined during the experimental studies at 

UIUC (Broeren et al., 1995). 

 

 
(a) (b) 

Figure 7.1: Comparison of the XFOIL results for the lift and drag coefficients of the original RG15 

airfoil at Re = 60,000 with the corresponding experimental measurements (Broeren et al., 1995); (a) 

𝐶𝐿 −  α. (b) 𝐶𝐷 −  α. 

 

As it can be observed, the experimental lift and drag curves have been predicted with 

reasonable accuracy for both Reynolds numbers; similar levels of accuracy were found during 

the comparisons made for the rest of the available experimental data, corresponding to the 

different Reynolds numbers (within the particular range) that were examined during the 

experimental study at UIUC (Broeren et al., 1995). However, some notable discrepancies 

between the experimental and numerical results were also detected, especially in terms of the 

drag coefficient. In particular, XFOIL seems to over-predict the drag coefficient at Re = 60,000 

for angles of attack higher than 8𝑜, while an evident under-prediction of the drag coefficient 

at Re = 300,000 was also observed, regarding the angles of attack higher than 10𝑜. 

Nevertheless, the approximation of the experimental data is considered acceptable, since the 
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trend and major aspects of both curves have been well captured. Consequently, XFOIL can be 

used for the evaluation of the RG15 airfoil family within the particular low Reynolds numbers 

range. 

 

 
(a) (b) 

Figure 7.2: Comparison of the XFOIL results for the lift and drag coefficients of the original RG15 

airfoil at Re = 300,000 with the corresponding experimental measurements (Broeren et al., 1995); (a) 

𝐶𝐿 −  α. (b) 𝐶𝐷 −  α. 

 

7.2 RANS Analysis 

Apart from the XFOIL analysis, the aerodynamic performance of the entire RG15 family 

was further evaluated by means of the in-house IGal2D solver, so as to have a better 

understanding of the respective flow fields and the associated phenomena. Herein, it is 

recalled that the particular flow solver is based on a dimensionless formulation of the RANS 

equations, modified by the artificial compressibility method; space discretization is based on 

node-centered finite volume formulation, utilizing a second order MUSCL (Monotonic 

Upstream Scheme for Conservation Laws) scheme; turbulence simulation is succeeded 

through the standard two-equation Shear Stress Transport (SST) 𝑘 − 𝜔 turbulence model 

(Menter, 1994), which is a combination of the 𝑘 − 𝜀 and 𝑘 − 𝜔 turbulence models. The SST 𝑘 −

𝜔 model was preferred over the alternative two-equation turbulence models because of the 

beneficial features that provides, since it combines the advantages of both 𝑘 − 𝜀 and 𝑘 − 𝜔 

models, while disregarding their major shortcomings (Menter et al., 2003). Furthermore, 

according to the study of Morgado et al. (2016), the SST 𝑘 − 𝜔 model seems capable of 

accurately predicting a wide spectrum of low Reynolds number flows over airfoils. The 

limitations of this approach should be taken into account, as no transition model or low-Re 

corrections are considered in this study. The spatial discretization of the flow and turbulence 

models is performed over two-dimensional unstructured grids, comprised of both triangular 
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and quadrilateral elements, along with a node-centered finite-volume scheme. A detailed 

description of the employed solver (IGal2D) can be found in Chapter 4. 

 

 IGal2D Setup and Validation 

Prior to the aerodynamic evaluation of the RG15 airfoil family, the ability of the IGal2D 

solver to accurately predict the lift and drag forces was validated against the available 

experimental data for the original RG15 airfoil (Somers, 2005). However, a grid independence 

study was also performed before the validation study, in order to guarantee that the grid 

resolution does not affect the simulation results. For this purpose, three computational grids 

with different resolutions were constructed, denoted as Mesh 1 (coarse), Mesh 2 (medium) and 

Mesh 3 (fine), by considering an angle of attack equal to 0𝑜. At this point, it is noted that the 

desired angle of attack for each flow simulation was achieved by properly rotating the airfoil 

geometry instead of changing the inflow angle; then the updated computational domain was 

re-meshed. Therefore, a different computational grid was constructed for each one of the 

considered airfoils and angles of attack. This procedure was adopted in order to retain a high 

grid density in the wake region for all different angles of attack. 

All three grids were generated by adopting a computational domain, such as the one 

depicted in Figure 7.3a, in which the inflow boundary was placed at a distance of 25 chord 

lengths upstream the airfoil’s leading edge and the outflow boundary at a distance of 40 chord 

lengths downstream the airfoil’s trailing edge. Mesh 1 (which is the coarsest among the 

examined ones) was composed of 164,345 triangular and 25,284 quadrilateral elements, with a 

total number of nodes equal to 107,927. For the description of the airfoil geometry 602 points 

were used along the airfoil surface, by applying a denser distribution near the leading and 

trailing edges. Mesh 2 was constructed by applying a denser points distribution on the airfoil 

surface (804 points), accompanied by increasing mesh resolution within the entire 

computational domain; it comprises of 380,032 triangular and 28,140 quadrilateral elements, 

with a total number of nodes equal to 218,765. Finally, an even finer mesh resolution and 

denser points distribution on the airfoil surface was adopted for the construction of Mesh 3, 

which is composed of 686,556 triangular and 47,920 quadrilateral elements, with a total 

number of nodes equal to 392,160. The wall spacing of the first inflation layer, created on the 

airfoil surface for all the three grids, was calculated by considering a 𝑦+ value of approximately 

1. The corresponding meshing parameters are also provided in Table 7.1. 
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Mesh Parameter Mesh 1 Mesh 2 Mesh 3 

Number of Nodes 107,927 218,765 392,160 

Triangular Elements 164,345 380,032 686,556 

Quadrilateral Elements 25,284 28,140 47,920 

Points on Airfoil 602 804 1200 

Target y+ ≈ 1.0 ≈ 1.0 ≈ 1.0 

Table 7.1: Meshing parameters used for the grid independence study. 

 

Table 7.2 presents the numerical lift and drag coefficients of the RG15 airfoil at Re =

300,000 and α = 0𝜊, as obtained by using Mesh 1, Mesh 2 and Mesh 3. Apparently, no 

significant variation of the lift and drag coefficients was found by increasing the mesh 

resolution over the levels provided by Mesh 2; the percentage difference in both lift and drag 

obtained through the utilization of Mesh 2 and Mesh 3 was below 0.3%, even though the 

number of nodes has been almost doubled. Therefore, the resolution provided by Mesh 2 is 

considered sufficient to result in a mesh independent solution. Consequently, a computational 

mesh of analogous resolution was constructed for each one of the different angles of attack 

that were encountered during this validation study. Such a computational mesh is presented 

in Figure 7.3a and Figure 7.4. 

 

 Number of Nodes 𝑪𝑳 𝑪𝑫 Percentage Diff. - 𝑪𝑳 Percentage Diff. - 𝑪𝑫 

Mesh 1 107,927 0.2355460 0.0117844 - - 

Mesh 2 218,765 0.2353327 0.0116944 0.09% 0.76% 

Mesh 3 392,160 0.2353510 0.0116699 0.01% 0.21% 

Table 7.2: The results of the grid independence study. The flow simulations were performed for RG15 

airfoil at Re = 300,000 and α = 0𝜊. 

 

The RANS simulations were conducted at Re = 300,000 for angles of attack ranging from 

−6𝜊 to 12𝜊 (using an increment of 1𝜊); therefore, 19 computational grids were constructed in 

total. In Figure 7.5, the lift and drag coefficients of the RG15 airfoil as a function of the angle 

of attack are illustrated, as obtained from the testing program at the UIUC low-turbulence 

subsonic wind tunnel (Broeren et al., 1995), XFOIL code and IGal2D solver. As it seems, the 

trend of both experimental curves have been well predicted by the RANS solver; however, an 

over-prediction of the drag coefficient was observed (typical characteristic of the SST 𝑘 − 𝜔 

turbulence model), especially for the angles of attack lying between −3𝜊 and 6𝜊. According to 

the results presented in the study of Morgado et al. (2016), a better match of the experimental 
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drag coefficients could be achieved by the utilization of low Reynolds number correction to 

the standard SST 𝑘 − 𝜔 turbulence model.. 

 

        

(a) (b) 

Figure 7.3: (a) The computational domain used for the validation study of the RANS solver, (b) Wide 

view of the corresponding computational grid. 

 

         
(a) (b) (c) 

Figure 7.4: The hybrid computational grid used for the flow field simulation of the original RG15 

airfoil at α = 6𝜊. 

 

 
      (a)      (b) 

Figure 7.5: The lift and drag coefficients of the original RG15 airfoil at Re = 300,000, as obtained by 

XFOIL software, IGal2D solver and the experimental measurements (Broeren et al., 1995). 
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 Lift and Drag Calculation 

The components of the total aerodynamic force 𝑹 = (𝑅𝑥, 𝑅𝑦) on the airfoil are calculated 

by integrating the pressure (𝑝) and shear stress (𝜏) distributions over the airfoil contour 

(𝐶𝑠) (Anderson, 2010). Thus, 

  
𝑅𝑥 = −∮ 𝑝𝑛𝑥𝑑𝑠

 

𝐶𝑠

+∮ (𝜏𝑥𝑥𝑛𝑥 + 𝜏𝑥𝑦𝑛𝑦)𝑑𝑠
 

𝐶𝑠

 , (7.2) 

  

𝑅𝑦 = −∮ 𝑝𝑛𝑦𝑑𝑠
 

𝐶𝑠

+∮ (𝜏𝑥𝑦𝑛𝑥 + 𝜏𝑦𝑦𝑛𝑦)𝑑𝑠
 

𝐶𝑠

 . (7.3) 

 

 

 

Herein, 𝑛𝑥 and 𝑛𝑦 denote the components of the unit vector 𝑛̂ normal to the airfoil surface; 

𝜏𝑥𝑥, 𝜏𝑥𝑦, 𝜏𝑦𝑥 and 𝜏𝑦𝑦 represent the components of the viscous stress tensor. Subsequently, the 

lift and drag forces on the airfoil can be obtained through the following equations 

(Anderson, 2010): 

  
𝐿 = 𝑅𝑦 cos(φ) − 𝑅𝑥 sin(φ) , (7.4) 

  
𝐷 = 𝑅𝑥 cos(φ) + 𝑅𝑦 sin(φ) , (7.5) 

 

 

 

where φ is the angle between the inflow velocity vector and the 𝑥 axis. In this study, φ angle 

is zero, since the desired angle of attack is simulated by rotating the airfoil geometry. 

Eventually, the lift and drag coefficients are calculated as follows (Anderson, 2010): 

  
𝐶𝐿 = 2𝐿 𝜌𝑢∞𝑐⁄ , (7.6) 

  

𝐶𝐷 = 2𝐷 𝜌𝑢∞𝑐⁄ , (7.7) 

 

 

 

where 𝜌 represents the air density, 𝑢∞ the ambient wind speed and 𝑐 the airfoil chord. 

 

7.3 Numerical Results and Discussion 

 XFOIL Results 

Similarly to the preceding validation study, the analysis of RG15 airfoil family was 

performed by setting the value of 𝑁𝑐𝑟𝑖𝑡 parameter equal to 9 and Mach number equal to 

0, while the same panel resolution was adopted (300 points on each airfoil surface). The 

aerodynamic performance of the proposed RG15 airfoil family was evaluated for each one 

of the Reynolds numbers examined during the wind tunnel experiments (Broeren et al., 

1995), by considering a range of angles of attack between -6o and 20o. Table 7.3 contains the 



Chapter 7 Numerical Analysis of the RG15 Airfoil Family 

 

7-8 

maximum lift-to-drag ratio (𝐿/𝐷)𝑚𝑎𝑥 and the maximum lift coefficient 𝐶𝐿𝑚𝑎𝑥 for the RG15 

airfoil and the entire RG15 airfoil family at the corresponding Reynolds numbers, ranging 

from Re = 60,000 to Re = 300,000. Apparently, the decrease of Re results in the reduction 

of (𝐿/𝐷)𝑚𝑎𝑥 for each one of the examined airfoils, while for a fixed Re value, a reduction 

in (𝐿/𝐷)𝑚𝑎𝑥 was also detected by increasing the thickness distribution. Therefore, all 

airfoils of the RG15 family exhibit a (𝐿/𝐷)𝑚𝑎𝑥 loss, for every Re, as compared with the 

original RG15 airfoil. However, the percentage loss of (𝐿/𝐷)𝑚𝑎𝑥 between a thickened and 

the original RG15 airfoil seems to decrease with increasing Re. In particular, the maximum 

reduction in (𝐿/𝐷)𝑚𝑎𝑥 was found for the RG15-(50)-70-1 airfoil at Re = 60,000; it was equal 

to 12.68%. The corresponding reduction at Re = 300,000 was equal to 4.13%, while the 

percentage reductions for the rest of Reynolds numbers lie within the range defined by 

the aforementioned values. Apparently, the particular range decreases as the thickness-

to-chord ratio is reduced. For example, the reduction in the maximum lift-to-drag ratio 

for the RG15-(30)-70-1 airfoil was found equal to 7.52% and 2.09%, at Re = 60,000 and 

Re = 300,000 respectively. Conclusively, the impact of thickness distribution on the 

maximum lift-to-drag ratio tends to deteriorate as the Re increases. 

 

Airfoil 
60,000 Re 100,000 Re 150,000 Re 200,000 Re 300,000 Re 

(𝐿/𝐷)𝑚𝑎𝑥 𝐶𝐿𝑚𝑎𝑥 (𝐿/𝐷)𝑚𝑎𝑥 𝐶𝐿𝑚𝑎𝑥 (𝐿/𝐷)𝑚𝑎𝑥 𝐶𝐿𝑚𝑎𝑥 (𝐿/𝐷)𝑚𝑎𝑥 𝐶𝐿𝑚𝑎𝑥 (𝐿/𝐷)𝑚𝑎𝑥 𝐶𝐿𝑚𝑎𝑥 

Original RG15 39.89 1.088 52.57 1.133 62.38 1.162 68.88 1.169 78.39 1.207 

RG15-(00)-70-1 39.50 1.073 52.38 1.109 62.01 1.139 69.22 1.155 78.28 1.195 

RG15-(10)-70-1 38.88 1.127 51.53 1.167 61.58 1.203 68.28 1.213 77.57 1.252 

RG15-(20)-70-1 38.05 1.162 50.52 1.218 60.93 1.243 67.51 1.258 77.03 1.289 

RG15-(30)-70-1 36.89 1.220 49.92 1.274 60.12 1.284 67.06 1.293 76.75 1.319 

RG15-(40)-70-1 35.91 1.222 49.09 1.276 59.29 1.293 66.49 1.304 76.00 1.342 

RG15-(50)-70-1 34.83 1.250 48.24 1.302 58.44 1.324 65.53 1.325 75.15 1.351 

Table 7.3: The maximum lift coefficient and lift-to-drag ratio for each one of the examined airfoils, 

at various Reynolds numbers, resulting from the XFOIL analysis. 

 

RG15-(50)-70-1 airfoil demonstrated the maximum reduction in (𝐿/𝐷)𝑚𝑎𝑥 at Re =

60,000 (Table 7.3) because this is the airfoil with the maximum geometrical deviation 

(thickness) from the original RG15 airfoil (compared to all the airfoils in the family) and 

the Reynold number is low enough to considerably affect the drag production. The 

(𝐿/𝐷)𝑚𝑎𝑥 for all the examined airfoils is observed in the range of angle of attack (α) between 

(approximately) 3 and 7 degrees. At this range of α, lift is not affected by the increase in 

maximum thickness of the airfoil, for constant Re (see Figure 7.6a and Figure 7.7a). However, 
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drag is increased with increasing the maximum airfoil thickness and decreasing Re (see Figure 

7.6b and Figure 7.7b). At this Re range, as the Re decreases below 100,000 there is an increase 

in drag, particularly because of premature flow separation and failure to reattach, resulting in 

a reduced drag bucket and a large decrease in lift (Winslow et al., 2018). At Re in the range 

between 50,000 and 100,000 the separation bubble and turbulent boundary-layer thickness 

both increase in size (compared to higher Re), a consequence of the higher contribution of the 

viscous forces, resulting in increased parasitic drag (Winslow et al., 2018). Nevertheless, at such 

low Re, the increase in airfoil thickness results in considerable increase in form drag, due to 

trailing edge separation, while simple flat plates outperform conventional airfoils for Re lower 

than 50,000 (Winslow et al., 2018). 

Although the thickening of the RG15 airfoil results in reduced maximum glide ratios, 

an opposite behaviour was observed for the maximum lift coefficient, which seems to 

increase by increasing the thickness-to-chord ratio, for a fixed Re value. Apart from Table 

7.3, the particular effect is characteristically demonstrated in Figure 7.6a and Figure 7.7a, 

which provide the lift coefficient for the entire RG15 airfoil family, as a function of the 

angle of attack. Additional information about the behaviour of (𝐿/𝐷)𝑚𝑎𝑥 and 𝐶𝐿𝑚𝑎𝑥 with 

Re can be obtained by observing Table 7.4, which presents the increase rate of (𝐿/𝐷)𝑚𝑎𝑥 and 

𝐶𝐿𝑚𝑎𝑥 due to the increase of Re (i.e., the rate of change in (𝐿/𝐷)𝑚𝑎𝑥 and 𝐶𝐿𝑚𝑎𝑥 as 𝑅𝑒 changes) 

for each airfoil of the RG15 family, using the slope of the linear regression line through 

data points suggested in (Animasaun et al., 2019; Shah et al., 2018). According to Table 7.4, 

Re has a higher impact on (𝐿/𝐷)𝑚𝑎𝑥, as the relative thickness of the airfoil increases. 

Unfortunately, such a conclusion cannot be drawn for 𝐶𝐿𝑚𝑎𝑥, since the slope of the linear 

regression line for 𝐶𝐿𝑚𝑎𝑥 is not a monotonic function of the relative thickness. 

 

Airfoil RG15 RG15-(00)-70-1 RG15-(10)-70-1 RG15-(20)-70-1 RG15-(30)-70-1 RG15-(40)-70-1 RG15-(50)-70-1 

(L/D)max 1.536E-04 1.552E-04 1.548E-04 1.563E-04 1.594E-04 1.605E-04 1.610E-04 

CLmax 4.536E-07 4.853E-07 4.910E-07 4.796E-07 3.532E-07 4.437E-07 3.634E-07 

Table 7.4: Increase rate of (𝐿/𝐷)𝑚𝑎𝑥  and 𝐶𝐿𝑚𝑎𝑥 with Re using the slope linear regression through data 

points. 

 

Furthermore, an extension of the high-lift region to higher angles of attack has been 

also detected for both Re = 60,000 and Re = 300,000, while the increase of the thickness 

distribution leads to a smoother stall behavior, especially at Re = 300,000. This latter 

deduction is further supported by observing the performance of the entire RG15 airfoil 

family in terms of the drag coefficient, which is represented in Figure 7.6a and Figure 7.7a. 

Even though the drag coefficient at Re = 60,000 is analogous to the airfoil thickness for 
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the angles of attack ranging from -3o to 7o, an opposite behaviour was found for the angles 

of attack higher than 7o, where the airfoils with a larger thickness-to-chord ratio exhibit a 

smaller drag coefficient. A similar behaviour was also identified at Re = 300,000; 

however, in the latter case, the drag dependence upon the thickness-to-chord ratio for the 

angles of attack below 7o was much weaker. 

 

 
      (a)      (b) 

 
       (c)      (d) 

Figure 7.6: Aerodynamic characteristics of the RG15 airfoil family at Re = 60,000, as obtained 

through the XFOIL analysis. (a) 𝐶𝐿 −  α. (b) 𝐶𝐷 −  α. (c) 𝐶𝐿 𝐶𝐷⁄ −  α. (d) 𝐶𝐿 − 𝐶𝐷 . 
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      (a)      (b) 

 
       (c)      (d) 

Figure 7.7: Aerodynamic characteristics of the RG15 airfoil family at Re = 300,000, as obtained 

through the XFOIL analysis. (a) 𝐶𝐿 −  α. (b) 𝐶𝐷 −  α. (c) 𝐶𝐿 𝐶𝐷⁄ −  α. (d) 𝐶𝐿 − 𝐶𝐷 . 
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 IGal2D Results 

RANS simulations were performed for each airfoil composing the RG15 airfoil family 

at Re = 300,000, considering a range of angles of attack from −6𝑜 to 12𝑜. As previously 

noted, a new computational grid of similar resolution to Mesh 2 was generated for each 

airfoil and angle of attack. Thus, by including the original RG15 airfoil, 133 different 

computational grids were constructed during this study. Such a computational grid (for 

the flow simulation around RG15-(30)-70-1 airfoil at α = 6𝑜) is presented in Figure 7.8. 

 

         

(a) (b) (c) 

 Figure 7.8: The hybrid computational grid used for the flow field simulation of the RG15-(30)-70-1 

airfoil at α = 6𝜊. 

 

7.3.2.1 Aerodynamic Coefficients 

Figure 7.9 illustrates the aerodynamic characteristics of the RG15 airfoil family at Re =

300,000, as obtained by the RANS simulations. In accordance to the results of XFOIL analysis, 

no significant variation in the linear region of the lift coefficient has been observed with 

increasing thickness-to-chord ratio, as shown in Figure 7.9a; a similar behavior in terms of drag 

coefficient was also found. Even though the drag coefficient seems to be proportional to the 

thickness-to-chord ratio, for the angles of attack ranging between −5𝑜 and 8𝑜, a trend reversal 

was detected for the angles of attack higher than 8𝑜, in which the airfoils with a larger 

thickness-to-chord ratio exhibit a smaller drag coefficient. This is probably attributed to the 

ability of the thicker airfoils of the RG15 family to maintain the flow attached at higher angles 

of attack (later and smoother stall). The quantification of the relationship between lift-to-drag 

ratio and angle of attack (Figure 7.9c) is provided in Table 7.5. 
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300,000 Reynolds Number 

AoA RG15 RG15-(00)-70-1 RG15-(10)-70-1 RG15-(20)-70-1 RG15-(30)-70-1 RG15-(40)-70-1 RG15-(50)-70-1 

-6o -14.56 -14.51 -23.60 -25.77 -26.82 -27.37 -28.51 

-5o -19.55 -19.62 -20.69 -21.66 -21.42 -21.42 -21.56 

-4o -14.90 -14.69 -14.55 -14.65 -14.74 -14.73 -14.40 

-3o -7.23 -6.95 -6.67 -6.77 -6.98 -6.83 -6.84 

-2o 1.62 1.76 1.94 1.58 1.49 1.32 1.24 

-1o 10.84 10.80 10.89 10.36 10.20 9.95 9.47 

0o 19.97 19.83 19.26 18.90 18.76 18.14 17.80 

1o 28.48 28.04 27.53 27.01 26.42 25.96 25.27 

2o 36.15 35.50 34.89 34.38 33.39 32.56 32.37 

3o 42.60 41.89 41.19 40.66 39.71 39.05 38.00 

4o 47.74 46.99 46.22 45.94 45.01 44.60 43.32 

5o 51.40 50.66 49.54 49.72 49.12 48.43 46.73 

6o 53.42 52.46 51.54 52.01 51.65 50.37 49.65 

7o 53.65 52.80 52.30 51.65 52.85 50.72 50.62 

8o 51.18 50.51 52.31 52.34 52.06 50.68 51.89 

9o 46.27 46.17 50.57 52.23 50.93 51.47 48.43 

10o 39.49 39.04 45.97 47.05 48.60 47.20 47.18 

11o 27.68 23.98 39.19 43.87 43.83 44.20 42.38 

12o 16.32 - 31.29 37.71 38.92 40.42 38.93 

Table 7.5: Lift-to-drag ratio as a function of angle of attack at Re = 300,000 (RANS analysis). 

 

However, as the preceding validation study already revealed, the drag levels estimated by 

the RANS solver are higher than those predicted by XFOIL solver; this conclusion can be easily 

drawn by observing both Figure 7.9b and Figure 7.9d, as well as Table 7.6, which provides a 

comparison between the maximum lift-to-drag ratios resulted from XFOIL and RANS solvers, 

for each airfoil of the RG15 family. In particular, the RANS simulation resulted in maximum 

lift-to-drag ratios which are reduced by approximately 30%, as compared to those of XFOIL 

analysis, for each airfoil. Furthermore, significant differences can be detected on the prediction 

of the angle of attack in which the maximum lift-to-drag ratio is achieved. Nevertheless, a 

fairly good agreement on the prediction of the percentage reduction of the maximum lift-to-

drag ratio between the original and the thickened airfoils was found. For example, XFOIL 

predicted that the maximum lift-to-drag ratio of the RG15-(50)-70-1 was reduced by 4.6%, as 

compared to the original RG15; the estimation of the RANS solver on the corresponding 

reduction was equal to 3.2%. A last remark on the RANS results concerns the high drag 

coefficient that was observed for the RG15-(00)-70-1 airfoil at −6𝑜 (Figure 7.7b). According to 

the examination of the respective flow field, this is attributed to the presence of a large 
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separation bubble on the lower surface of the particular airfoil, which encompasses a 

chordwise extend of approximately 9%. It should be emphasized than no transition model or 

low-Re corrections for the turbulence model were used for RANS simulations in this study, 

which can partially explain the discrepancies between the XFOIL and RANS results. 

 

 

 
      (a)      (b) 

 
      (c)      (d) 

Figure 7.9: Aerodynamic characteristics of the RG15 airfoil family at Re = 300,000 (RANS 

analysis). (a) 𝐶𝐿 −  α. (b) 𝐶𝐷 −  α. (c) 𝐶𝐿 𝐶𝐷⁄ −  α. (d) 𝐶𝐿 − 𝐶𝐷 .  

 

7.3.2.2 Comparison with XFOIL 

Further to the comparisons between the results of XFOIL and IGal2D solvers, Figure 7.10 

provides the distribution of the pressure coefficient along the RG15-(40)-70-1 airfoil, as 

obtained by the IGal2D solver and XFOIL software, for various angles of attack between −5𝑜 

and 10𝑜. Although a good match is observed for the largest extend of the airfoil chord and 
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both suction and pressure sides, significant discrepancies have been found around the points 

in which laminar to turbulent transition is realized. Obviously, this is attributed to the inability 

of the standard SST 𝑘 − 𝜔 model to predict the particular phenomenon. The calculation of 

pressure coefficient was implemented using Eq. (7.8). Thus, 

  
𝐶𝑝 = (𝑝 − 𝑝∞) (0.5𝜌𝑢∞

2 )⁄  (7.8) 

 

 

 

where 𝑝∞ is the free flow pressure. 

 

 
      (a) α = −5𝜊      (b) α = 0𝜊  

 
      (c) α = 5𝜊       (d) α = 10𝜊  

Figure 7.10: Comparison of pressure coefficient distributions obtained by XFOIL software and IGal2D 

solver for the RG15-(40)-70-1 airfoil at Re = 300,000. (a) α = −5𝜊. (b) α = 0𝜊. (c) α = 5𝜊. (d) α = 10𝜊. 

 

Finally, a detailed comparison of the lift and drag curves for the entire RG15 airfoil family 

at Re = 300,000 is provided through Figure 7.11 until Figure 7.16. Apparently, the drag levels 

predicted by IGal2D solver are higher than those resulting from the XFOIL analysis for all the 
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airfoils composing the RG15 family. On the other hand, a better match is observed for the lift 

coefficient curves, which tends to improve as the thickness-to-chord ratio of the airfoil 

increases. 

 

 300,000 Reynolds Number 

Airfoil RG15 RG15-(00)-70-1 RG15-(10)-70-1 RG15-(20)-70-1 RG15-(30)-70-1 RG15-(40)-70-1 RG15-(50)-70-1 

XFOIL 
(L/D)max 

78.76 78.65 77.80 77.31 76.56 75.84 75.12 

2D RANS 
(L/D)max 

53.64 52.80 52.31 52.34 52.85 51.47 51.89 

Table 7.6: Comparison between the results of XFOIL and RANS solvers, in terms of the maximum lift-

to-drag ratio. 

 

 

Figure 7.11: Comparison between the lift and drag curves obtained by XFOIL and IGal2D solvers for 

the RG15-(00)-70-1 airfoil at 𝑅𝑒 = 300,000. 

 

 

Figure 7.12: Comparison between the lift and drag curves obtained by XFOIL and IGal2D solvers for 

the RG15-(10)-70-1 airfoil at Re = 300,000. 
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Figure 7.13: Comparison between the lift and drag curves obtained by XFOIL and IGal2D solvers for 

the RG15-(20)-70-1 airfoil at Re = 300,000. 

 

 

Figure 7.14: Comparison between the lift and drag curves obtained by XFOIL and IGal2D solvers for 

the RG15-(30)-70-1 airfoil at Re = 300,000. 

 

 

Figure 7.15: Comparison between the lift and drag curves obtained by XFOIL and IGal2D solvers for 

the RG15-(40)-70-1 airfoil at Re = 300,000. 
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Figure 7.16: Comparison between the lift and drag curves obtained by XFOIL and IGal2D solvers for 

the RG15-(50)-70-1 airfoil at Re = 300,000. 

 

7.3.2.3 Flow Field Visualizations 

One of the most characteristic feature of the flow field around each one of the airfoils 

composing the RG15 family is the formation of a recirculation zone behind the rounded 

trailing edge, which is generally composed by two distinct vortex rings. Figure 7.17 illustrates 

the recirculation region behing the trailing edge of the proposed airfoils at α = 0𝑜 and Re =

300,000. The vortex size is approximatelly equal to 1 percent of the chord length, while no 

variation in both size and behavior of the particular recirculation area has been observed by 

increasing the thickness-to-chord ratio of the airfoil. 

     
(a) RG15-(00)-70-1 (b) RG15-(10)-70-1 (c) RG15-(20)-70-1 

     
(e) RG15-(30)-70-1 (f) RG15-(40)-70-1 (g) RG15-(50)-70-1 

Figure 7.17: Recirculation area behind the rounded trailing edges of the proposed airfoils at 𝛼 = 0𝑜 

and Re = 300,000. 
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Although the size of the recirculation zone seems not to be influenced by the thickness-

to-chord ratio, it is highly dependent upon the angle of attack. Figure 7.18 presents the 

variation of the recirculation zone behind the trailing edge of the RG15-(30)-70-1 airfoil at 

Re = 300,000 for several angles of attack between −6𝑜 and 12𝑜. As it can be observed, the 

recirculation zone size decreases as the angle of attack increases, until a trailing edge stall 

is established. Then, the recirculation region behind the trailing edge is substituted by a 

separated flow located on the suction side of the airfoil. According to the available 

numerical results, the first appearance of a trailing edge stall for the RG15-(30)-70-1 airfoil 

at Re = 300,000 was observed at an angle of attack between 10𝑜 and 11𝑜. A similar behavior 

in terms of the recirculation zone behind the rounded trailing edge was found during the 

analysis of the numerical results for the rest airfoils of the RG15 family. However, in the 

cases of RG15-(40)-70-1 and RG15-(50)-70-1 airfoils, the first appearance of a trailing edge 

stall was observed at an angle of attack between 9𝑜 and 10𝑜 (that is slightly smaller than the 

corresponding angle of attack for the rest of the RG15 airfoils). 

   

(a) 𝜶 = −𝟔𝝄 (b) 𝜶 = −𝟒𝝄 (c) 𝜶 = −𝟐𝝄 

   

(d) 𝜶 = 𝟎𝝄 (e) 𝜶 = 𝟐𝝄 (f) 𝜶 = 𝟒𝝄 

   

(g) 𝜶 = 𝟖𝝄 (h) 𝜶 = 𝟏𝟎𝝄 (i) 𝜶 = 𝟏𝟐𝝄 

Figure 7.18: Variation of the recirculation zone behind the trailing edge of the RG15-(30)-70-1 airfoil 

with the angle of attack at 𝑅𝑒 = 300,000. 
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Apart from the improvement of the structural characteristics, the thickening of the RG15 

airfoil seems to also have a beneficial impact on the appearance of separation bubbles. 

Especially, as the thickness-to-chord ratio increases the first appearance of a separation bubble 

moves to higher angles of attack. Figure 7.19 illustrates the velocity streamlines around the 

leading edge of the airfoils composing the proposed RG15 family at α = 12𝑜. As it is observed, 

an open separation area has been formed on the suction side of RG15-(00)-70-1. However, by 

increasing the thickness-to-chord ratio, the open separation area is substituted by a short 

separation bubble (Figure 7.19b) covering a chordwise extend of approximately 1.6%. Further 

increase of the airfoil thickness results in the reduction of the bubble’s size, accompanied by 

its movement away from the leading edge. Eventually, no separation bubble was detected on 

the upper surface of RG-(50)-70-1. Finally, Figure 7.20 and Figure 7.21 illustrate the pressure 

and axial velocity contours for each one of the airfoils composing the RG15 family at the angle 

of attack in which the maximum lift-to-drag ratio was detected. 

 

           
(a) RG15-(00)-70-1 (b) RG15-(10)-70-1 (c) RG15-(20)-70-1 

                     
(d) RG15-(30)-70-1 (e) RG15-(40)-70-1 (f) RG15-(50)-70-1 

Figure 7.19: The variation of laminar separation bubble with thickness-to-chord ratio at 𝛼 = 12𝑜. 

  

𝑳𝒔𝒃 = 𝟎. 𝟎𝟏𝟔𝒄 𝑳𝒔𝒃 = 𝟎. 𝟎𝟏𝟑𝒄 

𝑳𝒔𝒃 = 𝟎. 𝟎𝟎𝟕𝒄 𝑳𝒔𝒃 = 𝟎. 𝟎𝟎𝟓𝒄 𝑵𝒐 𝑩𝒖𝒃𝒃𝒍𝒆 

𝑶𝒑𝒆𝒏 𝒂𝒓𝒆𝒂 
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(a) RG15-(00)-70-1 (b) RG15-(10)-70-1 (c) RG15-(20)-70-1 

           
(d) RG15-(30)-70-1 (e) RG15-(40)-70-1 (f) RG15-(50)-70-1 

Figure 7.20: The pressure contours around each one of the airfoils composing the RG15 family at the 

angle of attack leading to the maximum lift-to-drag ratio (Re = 300,000). 

 

          
(a) RG15-(00)-70-1 (b) RG15-(10)-70-1 (c) RG15-(20)-70-1 

          
(d) RG15-(30)-70-1 (e) RG15-(40)-70-1 (f) RG15-(50)-70-1 

Figure 7.21: The axial velocity contours around each one of the airfoils composing the RG15 family at 

the angle of attack leading to the maximum lift-to-drag ratio (Re = 300,000). 

𝜶 = 𝟕𝝄 𝜶 = 𝟖𝝄 𝜶 = 𝟖𝝄 

𝜶 = 𝟕𝝄 𝜶 = 𝟗𝝄 𝜶 = 𝟖𝝄 

𝜶 = 𝟕𝝄 𝜶 = 𝟖𝝄 𝜶 = 𝟖𝝄 

𝜶 = 𝟕𝝄 𝜶 = 𝟗𝝄 𝜶 = 𝟖𝝄 
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7.4 Summary 

In this study, a low-Reynolds airfoils family (consisted of six airfoils) suitable for the entire 

blade span of small horizontal-axis wind turbines has been designed, aiming to reduce the 

effects related to laminar separation, increase the structural integrity of the blade, enhance the 

startup behavior of the wind turbine and meet the current blade manufacturing limitations. 

Initially, 5 thickened airfoils were constructed based on the RG15 airfoil. According to the 

followed methodology, the thickened airfoils were designed in such a way that they have the 

same mean camber line (MCL), as compared to the one of the original RG15 airfoil (so as to 

retain its desirable aerodynamic characteristics), but an increased thickness-to-chord ratio 

distribution by 50%, 40%, 30%, 20% and 10% respectively. Then, another custom script was 

applied to the original and the thickened RG15 airfoils, for the generation of a rounded trailing 

edge without truncating the airfoil, through the proper modification (local thickening) of the 

provided airfoil geometries. The final airfoil family resulted through the application of a 

parabolic thickness distribution to the thickened airfoils, at their trailing edge region, setting 

the value for the blending distance equal to 70% and the trailing edge radius equal to 0.5% of 

the chord length respectively. According to the aerodynamic evaluations performed with 

XFOIL code at various low Reynolds numbers, the dependence of the blending distance on the 

lift and drag coefficients was found practically zero; the same conclusion was drawn for the 

dependence of the aerodynamic coefficients on the rounded trailing edge with a radius of 0.5% 

of the chord. 

The aerodynamic performance of the entire RG15 airfoil family was initially evaluated by 

using XFOIL software for various low Reynolds numbers ranging from Re = 60,000 to Re =

300,000. The results of the XFOIL analysis revealed that the increase of the thickness-to-chord 

ratio leads to the reduction in the maximum lift-to-drag ratio for each one of the considered 

Reynolds numbers. However, as the Reynolds number increases the particular percentage 

reduction decreases. Apparently, the maximum reduction in the maximum lift-to-drag ratio, 

as compared to the one of the original RG15 airfoil, was found for the lowest Re examined 

(60,000) and the RG15-(50)-70-1 airfoil (the thicker airfoil of the RG15 family); this percentage 

reduction was equal to 12.68%. The corresponding percentage at Re = 300,000 was equal to 

4.6%. Nevertheless, even the largest reduction of the maximum lift-to-drag ratio seems minor 

given that this airfoil has a maximum thickness-to-chord ratio that is 50% higher than the 

maximum thickness-to-chord ratio of the baseline RG15 airfoil, accompanied by cross-

sectional area that has been increased by approximately 52%. On the other hand, a growth of 

the maximum lift coefficient for each Re was found by increasing the thickness-to-chord ratio. 

Moreover, the performance of the RG15 airfoil family was further examined by employing 

an in-house 2D RANS solver, using the standard two-equation SST k − ω turbulence model. 
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The RANS simulations were performed at Re = 300,000. Although the results of the RANS 

simulation were generally in accordance with those of XFOIL, a notable over-estimation of the 

drag coefficient was detected, leading to the under-estimation of the lift-to-drag ratio. Such an 

outcome clearly indicates that a low Reynolds number correction model is essential, in order 

to increase the accuracy of the numerical results. Finally, the behavior of the recirculation area 

behind the rounded trailing edge for different angles of attack was examined, while the 

thickening of the airfoils was found to have a beneficial impact on the appearance of laminar 

separation bubbles. 
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Chapter 8 

A Coupled RANS – BEM Model 

 

This chapter features the development and numerical validation of an axisymmetric RANS - BEM 

model, which relies on the combination of the in-house BEM and IGal2D codes, for the simultaneous 

prediction of the wind turbine rotor performance and surrounding flow characteristics. In particular, 

the first part of the current chapter provides an implementation overview of the coupled RANS - BEM 

model, while the second part includes a detailed validation study on the proposed methodology. 

  

8.1 Overview 

In recent years, the ability of BEM models to adequately predict aerodynamic loads and 

rotor power curves for a wide range of wind turbine configurations and operating conditions 

has been successfully validated against experimental data (Bangga and Lutz, 2021; Xu et al., 

2019; Yang et al., 2014), whereas their application has been extended to shrouded wind turbines 

as well (Leloudas et al., 2017; Rio Vaz et al., 2014). Nevertheless, momentum theory inherently 

fails to capture the rotor influence on the surrounding flow and, in turn, to predict wake 

characteristics (Malki et al., 2013). Definitely, such information could be obtained by 

employing detailed computational fluid dynamics models, either RANS or Large Eddy 

Simulation (LES) ones, with a fully resolved rotor geometry (Aranake et al., 2015; Watanabe 

and Ohya, 2019); however, these high-fidelity numerical approaches call for excessive 

computational cost, especially when integrated within iterative design optimization schemes. 

Besides, their implementation entails significant challenges stemming from the three-

dimensional nature of the problem. Against this background, a wide family of hybrid models 

combining computational fluid dynamics techniques with BEM or actuator disc theory, have 

been recently proposed (Behrouzifar and Darbandi, 2019; Belloni et al., 2017; Guo et al., 2015; 

Khamlaj and Rumpfkeil, 2018; Malki et al., 2013; Turnock et al., 2011; Zhong et al., 2019). 

The fundamental idea behind the so-called CFD - BEM approaches relies on replacing the 

momentum part of the classical BEM theory with a more elaborate flow model, such as the 

Navier-Stokes or Euler equations, while assuming an actuator disc representation of the actual 

rotor geometry (Malki et al., 2013). Eventually, the rotor blades are modelled by means of body 

force terms (naturally included within the momentum conservation laws) and blade element 

theory equations. The main advantage of this method is that the physical characteristics of the 

rotor blades can still be introduced within the analysis by using source terms, rather than being 

specifically resolved using an exact geometry, allowing for less complicated grids. Besides, the 
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representation of the rotor geometry with an actuator disc renders the entire flow field 

axisymmetric, enabling the utilization of time-saving axisymmetric solvers. Another 

significant advantage of this method is that it can be equally applied to the cases of 

unshrouded and shrouded wind turbines, in contrast to the stand-alone BEM method, where 

proper modification of the classical momentum theory is required in order to include the 

diffuser’s effect (Leloudas et al., 2017; Rio Vaz et al., 2014). This chapter presents the 

development of an efficient RANS - BEM model, implemented by coupling the recently in-

house developed axisymmetric RANS solver IGal2D (Leloudas et al., 2021; Lygidakis et al., 

2020) with the also in-house developed BEM code (Leloudas et al., 2017). 

 

8.2 Flow Modeling and Blade Representation 

Flow modelling is based on the axisymmetric formulation of the incompressible RANS 

equations, which essentially provide a time-averaged representation of mass and momentum 

conservation laws (Blazek, 2015). Eventually, by adopting a conservative formulation, and 

introducing the artificial compressibility approach (Chorin, 1967) for coupling pressure and 

velocity fields, the axisymmetric RANS equations for incompressible fluid motion, in terms of 

dimensionless parameters, can be expressed as (Leloudas et al., 2021): 

  
Continuity:  

𝜕𝑝

𝜕𝑡
+
𝜕𝛽𝑢𝑧
𝜕𝑧

+
𝜕𝛽𝑢𝑟
𝜕𝑟

= −
𝛽𝑢𝑟
𝑟

 (8.1) 

Radial Momentum (𝒓):  
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+
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+
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2 + 𝑝)

𝜕𝑟
−
𝜕𝜏𝑧𝑟
𝜕𝑧

−
𝜕𝜏𝑟𝑟
𝜕𝑟

= −
𝑢𝑟
2

𝑟
+
𝜏𝑟𝑟
𝑟
−
𝜏𝜃𝜃
𝑟
+
𝑢𝜃
2

𝑟
+ 𝑓𝑟 (8.2) 

Azimuthal Momentum (𝜽):  

𝜕𝑢𝜃
𝜕𝑡

+
𝜕(𝑢𝑧𝑢𝜃)

𝜕𝑧
+
𝜕(𝑢𝑟𝑢𝜃)

𝜕𝑟
−
𝜕𝜏𝑧𝜃
𝜕𝑧

−
𝜕𝜏𝑟𝜃
𝜕𝑟

=
2

𝑟
(𝜏𝑟𝜃 − 𝑢𝑟𝑢𝜃) + 𝑓𝜃 (8.3) 

Axial Momentum (𝒛):  

𝜕𝑢𝑧
𝜕𝑡

+
𝜕(𝑢𝑧

2 + 𝑝)

𝜕𝑧
+
𝜕(𝑢𝑧𝑢𝑟)

𝜕𝑟
−
𝜕𝜏𝑧𝑧
𝜕𝑧

−
𝜕𝜏𝑧𝑟
𝜕𝑟

=
𝜏𝑧𝑟
𝑟
−
𝑢𝑧𝑢𝑟
𝑟

+ 𝑓𝑧 (8.4) 

  

Please recall that 𝑓𝑧, 𝑓𝑟, 𝑓𝜃 denote the momentum source terms (body forces per unit volume). 

These terms provide a convenient means by which the effect of external objects, such as wind 

turbine blades, can be introduced into the momentum equations (Siebert and Yocum, 1993), 
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actually forming the basis of RANS - BEM concept. Detailed information on the governing 

flow equations, as well as on the academic IGal2D solver employed for their numerical 

solution, can be found in Chapter 4. 

The computation of axial and tangential force distributions over the actuator (rotor) disk, 

which are eventually fed into the flow model by means of the momentum source terms, is 

performed using BEM theory, and particularly by employing the in-house developed BEM 

code – a detailed description of the theoretical background underlying the current BEM model 

is given in Chapter 2. At this point, let us recall that in the framework of a stand-alone BEM 

simulation the calculation of induced velocities at the rotor plane is achieved by applying a 

fixed-point iteration scheme, in which the induction at the current iterative step is expressed 

as a function of the induction at the previous step (McWilliam and Crawford, 2011); an 

overview of the adopted iterative process is presented in Section 2.3.4. However, the 

implementation of such an iterative process during the application of a coupled RANS - BEM 

model is not actually required; in fact, a coupled RANS - BEM model allows for the direct 

calculation of the induced velocities by means of Eq. (2.63) and Eq. (2.64), since the values of 

axial and tangential velocity components at the disc are explicitly provided by the RANS 

solver. In this regard, the in-house developed BEM code has been properly modified so as to 

be  capable of operating either in stand-alone mode or coupled with IGal2D solver, within the 

context of a RANS - BEM simulation. In the latter case, the source terms of the axial (𝑓𝑧) and 

tangential (𝑓𝜃) momentum equations must be replaced with the total axial and tangential 

forces per unit volume. In the adopted axisymmetric coordinate system, a two-dimensional 

control cell with an axial length of 𝑑𝑧 and a radial length of 𝑑𝑟 represents a volume of 2𝜋𝑟𝑑𝑟𝑑𝑧. 

Therefore, the forces per unit volume are given as: 

  
𝑓𝑧 = 𝐵𝑅𝐹𝑛𝑑𝑟 2𝜋𝑟𝑑𝑟𝑑𝑧 ,⁄  (8.5)  

  
𝑓𝜃 = 𝐵𝑅𝐹𝑡𝑑𝑟 2𝜋𝑟𝑑𝑟𝑑𝑧 .⁄  (8.6) 

  

Here, it is recalled that BEM theory neglects radial interaction between the blade elements, 

hence 𝑓𝑟 = 0. In addition, please note that the aforementioned source terms are applied only 

to the computational cells within the actuator disc region.  

 

8.3 Coupling Approach 

The entire coupling procedure is coordinated by IGal2D software. After the initialization 

stage of the axisymmetric flow solver, a single stand-alone BEM simulation is performed, in 

order to provide an initial estimation of the aerodynamic loads; then, the axial and tangential 

force distributions (𝐹𝑛 and 𝐹𝑡) are transferred into the IGal2D software and the source term 
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formulation is implemented. At this point, please recall that IGal2D solver adopts a 

dimensionless formulation of the governing flow equations, while the BEM code a 

dimensional one. Therefore, prior to any force or velocity exchange, the respective flow 

quantities have to properly normalized. Given an initial approximation of the aerodynamic 

loads, the RANS solver initiates. Interaction between IGal2D and BEM software is not 

performed for every internal RANS iteration, since this proved to adversely affect 

convergence. Instead, interaction is enabled after the completion of a user-prescribed finite 

number of internal RANS iterations. At each interaction stage, the axial (𝑢𝑧,𝑑) and tangential 

(𝑢𝜃,𝑑) velocity components at the rotor plane are fed into the BEM solver. Subsequently, the 

BEM code runs in actuator disc mode and feeds back to IGal2D the updated force distributions, 

closing the interaction loop. For the interpolation of blade forces and velocities between the 

grid nodes and blade elements appropriate Matlab scripts are executed, implementing a B-

Spline interpolation. The simulation is terminated when the established residual criteria are 

satisfied. A schematic overview of the adopted coupling methodology is provided by the flow 

chart in Figure 8.1. 

 

 

Figure 8.1: Flow chart of the RANS - BEM methodology. 
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8.4 Numerical Validation of the RANS-BEM Model 

The current section aims to investigate and eventually validate the ability of the proposed 

RANS - BEM methodology to accurately predict the aerodynamic performance and power 

output of both conventional horizontal-axis and shrouded wind turbine rotors, as well as the 

characteristics of the surrounding flow field. 

 

 NREL 5-MW Reference Wind Turbine 

The first validation case involves the performance prediction of the NREL 5-MW reference 

wind turbine, which was originally developed by National Renewable Energy Laboratory and 

reflects the design specifications of a utility-scale system for offshore energy production in the 

megawatt range (Jonkman et al., 2009). The particular variable-speed and pitch-regulated wind 

turbine system is characterized by a three-bladed upwind rotor with a diameter of 

approximately 126 meters; detailed information on the geometric characteristics of the NREL 

5-MW wind turbine blade are provided in Table 3.4. In this validation study, four typical 

points within the operating envelope of NREL 5-MW reference wind turbine are considered, 

covering the major control regions of the encountered system, as shown in Table 8.1. In 

particular, Region 2 refers to variable speed control, Region 3 refers to variable pitch control 

and finally, Region 2.5 refers to the transitional region between variable speed and variable 

pitch control. 

 

Case Wind Velocity Rotor Speed Pitch Angle  TSR  Control Region 

1 8.0 m/s 9.16 RPM 0.00 deg 7.55 2 

2 11.0 m/s 11.89 RPM 0.00 deg 7.13 2.5 

3 11.4 m/s 12.06 RPM 0.00 deg 6.97 2.5 

4 15.0 m/s 12.10 RPM 10.45 deg 5.32 3 

Table 8.1: Summary of the simulation cases for the NREL 5-MW reference wind turbine. 

 

8.4.1.1 Numerical Setup 

The computational domain for the numerical simulation of the NREL 5-MW reference wind 

turbine is illustrated in Figure 8.2. The axial and radial sizes of the domain – as well as the 

distance of the actuator disc from the upstream and downstream boundaries – were 

determined based on the recent study of Behrouzifar and Darbandi (2019); in that work the 

results of previous computational studies were systematically compared in order to establish 
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suitable computational domain sizes and grid distributions. Accordingly, the axial size of the 

computational domain in this validation case was set equal to 22R and the radial one to 10R, 

while the actuator disc was placed at a distance of 6R from the inflow boundary (Behrouzifar 

and Darbandi, 2019). Then, a quadrilateral computational mesh was built, composed by 96,354 

cells and 96,976 nodes. The axial length of the grid elements within the actuator disc region 

was set equal to 1.59×10-4R. Further refinement of the computational grid, illustrated in Figure 

8.3, or further enlargement of the computational domain did not prove to affect the numerical 

results. 

 

 

Figure 8.2: The adopted computational domain for the simulation of NREL 5-MW wind turbine. 

 

 

Figure 8.3: Illustration of the quadrilateral computational mesh, employed for the simulation of NREL 

5-MW wind turbine. 
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Finally, regarding the adopted parameters and input data for the BEM calculations, please 

note that they have been the same with those employed during the stand-alone BEM analysis 

of the NREL 5-MW wind turbine configuration, presented in Section 3.1.2. The only difference 

is that in the coupled RANS - BEM simulations, the tip and hub losses are exclusively modelled 

by using the Shen’s correction model (see Section 2.2.5.2). 

 

8.4.1.2 Numerical Results 

Unfortunately, no experimental data for the NREL 5-MW reference wind turbine are 

available, as already mentioned during the assessment of the in-house BEM code. Therefore, 

at this stage, an indirect validation of the proposed numerical model is performed by 

comparing the results of IGal2D simulations against the results of independent high-fidelity 

simulations, available in the literature. Table 8.2 and Table 8.3 contain the predicted 

aerodynamic power and thrust for the NREL 5-MW wind turbine rotor at free-stream 

velocities equal to 8 m/s, 11 m/s and 15 m/s. In particular, the results of IGal2D are compared 

against those reported in the study of Anderson et al. (2015), where the aerodynamic 

characteristics of the NREL 5-MW rotor were examined by employing two numerical 

simulation tools; namely, an unsteady Reynolds-Averaged Navier-Stokes method 

(OVERFLOW2) and a large eddy simulation method (SOWFA). Detailed information on the 

aforementioned simulation tools and the established simulation parameters can be found in 

the same study. 

In terms of aerodynamic power prediction, the results of IGal2D are generally in reasonable 

agreement with those of SOWFA and OVERFLOW2. For each one of the encountered 

operating point the prediction of IGal2D lies between those of SOWFA and OVERFLOW2, 

with the only exception being the case of 11 m/s, where the power prediction of IGal2D is 

slightly higher than the respective one obtained from SOWFA. In general, the maximum 

percentage difference between IGal2D and SOWFA was observed at 15 m/s and it was 

approximately equal to 2.5%. On the contrary, the maximum percentage difference between 

IGal2D and OVERFLOW2 was observed for 8 m/s and it was approximately equal to 8.5%. 

NREL 5MW Reference Wind Turbine – Aerodynamic Power 

Wind Speed Rotor Speed IGal2D SOWFA OVERFLOW2 

8.0 m/s 9.16 RPM 1974 kW 1985 kW 1733 kW 

11.0 m/s 11.89 RPM 5066 kW 5061 kW 4650 kW 

15.0 m/s 12.10 RPM 5231 kW 5093 kW 5499 kW 

Table 8.2: Comparison of predicted power using different turbine simulation tools, for the NREL 5-

MW reference wind turbine at various operational points. 
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Similar levels of accuracy can be observed on the prediction of aerodynamic thrust. Once 

more, the predictions of IGal2D are between those of SOWFA and OVERFLOW2 for each one 

of the encountered operating points; yet, much closer to those of SOWFA. In this case, the 

maximum discrepancy between IGal2D and SOWFA was observed at 15 m/s and it was equal 

to approximately 1.7%. However, a significant deviation between IGal2D and OVERFLOW 

was found at 15 m/s, equal to 10%. Nevertheless, the percentage difference on thrust prediction 

results for both 8 m/s and 11 m/s was not larger than 4%. 

 

NREL 5MW Reference Wind Turbine – Aerodynamic Thrust 

Wind Speed Rotor Speed IGaL2D SOWFA OVERFLOW2 

8.0 m/s 9.16 RPM 387 kN 382 kN 399 kN 

11.0 m/s 11.89 RPM 703 kN 693 kN 733 kN 

15.0 m/s 12.10 RPM 413 kN 405 kN 455 kN 

Table 8.3: Comparison of predicted thrust by different turbine simulation tools, for the NREL 5-MW 

reference wind turbine at various operational points. 

 

Figure 8.4 to Figure 8.6 provide a detailed comparison between the results of IGal2D and 

SOWFA (Anderson et al., 2015) in terms of momentum deficit prediction in the wake of NREL 

5-MW wind turbine. The comparisons refer to eight stations downstream of the rotor, 

corresponding to the following axial positions: 0.16R, 0.5R, 1R, 2R, 4R, 6R, 8R, and 12R. 

Overall, the results of IGal2D match well with those obtained by SOWFA.  

 

Figure 8.4: Axial momentum deficit predicted by IGal2D and SOWFA for the NREL 5-MW rotor at 

𝑢∞ = 8 𝑚/𝑠. 
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However, some notable discrepancies can be identified as well, which are mainly located 

around the hub region. Since both models treat the rotor as if it had no hub, this discrepancies 

probably stem from different turbulence modeling approaches. Similar discrepancies can be 

also found for 8 m/s and 11 m/s at axial stations after 6R. Particularly, SOWFA seems to predict 

a larger axial momentum deficit around the radial position corresponding to the blade tip. 

 

 

Figure 8.5: Axial momentum deficit predicted by IGal2D and SOWFA for the NREL 5-MW rotor at 

𝑢∞ = 11 𝑚/𝑠. 

 

 

Figure 8.6: Axial momentum deficit predicted by IGal2D and SOWFA for the NREL 5-MW rotor at 

𝑢∞ = 15 𝑚/𝑠. 

 

Finally, in order to further validate the proposed computational model, the corresponding 

results in terms of axial and tangential force distributions over the NREL 5-MW blade, are 

compared against those obtained by detailed 3D RANS simulations with a fully resolved rotor 
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geometry, as they reported in the study of Zhong et al. (2019, 2020). The comparisons are 

performed for the operational conditions in which the particular wind turbine has been rated; 

namely, an ambient wind speed of 11.4 m/s and a rotational speed of 12.06 RPM. According to 

the results presented in Figure 8.7, the in-house axisymmetric model is capable of achieving 

similar levels of accuracy to the definitely much more elaborate reference model. 

 

 
(a)   (b) 

Figure 8.7: Axial and tangential force distribution over the NREL 5-MW blade at 11.4 m/s and 12.06 

RPM. 

 

 NREL Phase VI Rotor 

The second validation case considers the well-documented NREL Phase VI wind turbine, 

which was extensively investigated during the Unsteady Aerodynamics Experiment (UAE) 

conducted at the 24.4 m × 36.6 m wind tunnel facilities of the National Aeronautics and Space 

Administration (NASA) Ames Research Center (Hand et al., 2001). The scope of that 

experimental campaign was to obtain accurate quantitative aerodynamic and structural data 

for the development and validation of enhanced engineering models. The NREL Phase VI 

wind turbine refers to a stall-regulated configuration with full-span pitch control and a rated 

capacity of approximately 20 kW; the two-bladed rotor of the wind turbine has a diameter of 

10.058 m and operates at a constant speed of 72 RPM (Hand et al., 2001). Overall, the 

experimental campaign included 30 different operating states and configurations. In this 

study, the numerical validation of the RANS - BEM model is performed by using the 

experimental results that correspond to test sequence S; the particular test sequence refers to 

upwind operation, a blade pitch angle of three degrees and zero yaw angle. At this point, 

please recall that the blade pitch angle is actually referred to the pitch angle of the blade tip, 

which is defined as the angle between the rotor plane and the chord of the blade tip. Besides, 
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this validation study considers a shrouded NREL Phase VI wind turbine configuration that 

was numerically studied by Aranake et al. (2013). However, no experimental results are 

available for the case of shrouded wind turbine. Therefore, IGal2D is validated against the 

numerical results of 3D RANS simulations reported by Aranake et al. (2013). The operating 

points for both test cases are presented in Table 8.4. 

 

Wind Velocity Rotor Speed  Tip Pitch Angle Yaw Angle Shroud 

5 m/s 72 RPM 3.0 Deg 0.0 Deg NACA 0006 

7 m/s 72 RPM 3.0 Deg 0.0 Deg – 

Table 8.4: Summary of the simulation cases for the NREL Phase VI rotor. 

 

The examined shroud geometry is defined by a conventional NACA0006 airfoil with a 

chord length equal to the rotor radius (5.029 m) that has been placed at an angle of 15 degrees 

relative to the symmetry axis. The rotor (actuator disc) is located at an axial position of 0.1R 

downstream of the shroud’s leading edge. A schematic representation of the shrouded rotor 

is presented in Figure 8.8. Finally, detained information on the geometric characteristics of the 

NREL Phase VI wind turbine blade can be found in Section 3.1.1. 

 

 

Figure 8.8: Shroud configuration for the NREL Phase VI wind turbine rotor. 

 

8.4.2.1 Numerical Setup 

For the numerical simulation of the unshrouded NREL Phase VI wind turbine rotor, the 

same computational domain and grid as for the previous validation case (Section 8.4.1) was 

employed. On the other hand, the simulation of the shrouded NREL Phase VI configuration 

was performed by adopting a larger computational field, which extends 15R upstream and 

30R downstream the rotor; the radial size of the computational domain was set to 15R. Besides, 
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a hybrid computational mesh was generated, including 436,116 triangular elements and 42,029 

quadrilateral ones. The total number of grid nodes was 261,737 with a target 𝑦+ value below 

unity. In particular, quadrilateral elements were generated around the shroud surface and the 

actuator disc regions, while the rest of the computational domain was filled with triangular 

ones. The domain size and grid resolution were finalized based on a grid independence study. 

An overview of the employed computational mesh is shown in Figure 8.9. 

 

 

Figure 8.9: Overview of the hybrid computational mesh adopted for the simulation of the shrouded 

NREL Phase VI wind turbine rotor. 

 

8.4.2.2 Numerical Results – Unshrouded Configuration 

For the unshrouded NREL Phase VI rotor, Table 8.5 provides a comparison between the 

numerically predicted and experimental values of aerodynamic power and thrust at free 

stream velocity of 7 m/s. Apparently, both reference quantities have accurately been predicted. 

The percentage difference between the numerical prediction and experimental measurement 

of aerodynamic power is less than 1%, whereas the respective percentage difference for rotor 

thrust is approximately 3%. In addition, the axial and tangential force distributions over the 

NREL Phase VI are compared in Figure 8.10; both distributions have been accurately predicted 

for the entire blade span. 

 

 IGal2D NREL Experiment 

Wind Speed Power [W] Thrust [N] Power [W] Thrust [N] 

7.00 m/s 6006 1158 6030 1120 

Table 8.5: Numerical predictions and experimental data for power and thrust.  
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(a)    (b) 

Figure 8.10: Axial and tangential force distributions over the bare NREL Phase VI rotor at 7 m/s. 

 

8.4.2.3 Numerical Results – Shrouded Configuration 

As previously mentioned, no experimental data for the shrouded NREL Phase VI rotor are 

available. Thus, the results of the proposed model are compared against the numerical results 

of the detailed three-dimensional RANS simulations, reported in the study of Aranake et al. 

(2013). Table 8.6 compares the numerical predictions for the aerodynamic power and thrust, 

revealing that despite the various simplistic assumptions within the RANS - BEM models, 

IGal2D is capable of reasonably approximating the results of high-fidelity simulation tools. 

 

 IGaL2D 3D RANS 

Wind Speed Power [W] Thrust [N] Power [W] Thrust [N] 

5.00 m/s 4190 957 4013 927 

Table 8.6: Numerical predictions for power and thrust, for the shrouded NREL Phase VI rotor. 

 

In addition, Figure 8.11 illustrates the distribution of axial velocity for two upstream 

positions, three downstream positions and one position just before the rotor plane. As one can 

observe, the results of IGal2D match well with those of the reference study. Finally, Figure 8.12 

provides the numerical predictions of axial and tangential forces along the NREL Phase VI 

blade. Once more, the prediction of IGal2D is consistent with that of the three-dimensional 

RANS simulation, even though it does not include a transitional turbulence model, such the 

one employed in the reference study of Aranake et al. (2013). Further validation of IGal2D 

using experimental data for a second shrouded wind turbine is provided in Section 10.3.1. 
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Figure 8.11: Axial momentum deficit for the shrouded NREL Phase VI rotor at 5 m/s. 

 

 

(a)   (b) 

Figure 8.12: Axial and tangential force distribution over the NREL Phase VI blade for the shrouded 

configuration at 5 m/s. 
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Chapter 9 

Optimization Framework for Shrouded Wind Turbines 

 

This chapter describes a modular optimization framework for the aerodynamic shape optimization of 

shrouded wind turbines, which combines the analysis tools developed within the current study with a 

parallel and asynchronous version of a meta-model assisted Differential Evolution (DE) algorithm. The 

first part of this chapter (Section 9.1) outlines the major features of the in-house developed surrogate-

assisted Differential Evolution algorithm employed as the optimizer. The particular asynchronous and 

parallel version of the current algorithm was developed at the Turbomachinery and Fluid Dynamics 

laboratory, in the context of the doctoral dissertation of Giorgos A. Strofylas. Subsequently, in Section 

9.2, this chapter describes the development of an in-house mesh parameterization and deformation tool 

that is based on Free-Form Deformation, while the last part of the current chapter (Section 9.3) provides 

an overview of the proposed optimization framework. 

 

9.1   The Differential Evolution Algorithm 

Evolutionary Algorithms (EAs) represent a flexible and robust branch of heuristic methods, 

characterized by low sensitivity in terms of local minima treatment and efficient sense of 

balance between exploitation of the best solutions and exploration of the entire search space 

(Leloudas et al., 2020a). From this perspective, a parallel and asynchronous version of a highly 

versatile Differential Evolution (DE) algorithm (Strofylas et al., 2018) – that is further enhanced 

by the addition of two artificial neural networks – has been selected to form the basis of the 

optimization cases encountered in this study. The particular optimization algorithm is 

constantly developed within the Turbomachinery and Fluid Dynamics Laboratory (TurboLab 

– TUC), while the current implementation was mainly devised within the doctoral dissertation 

of Giorgos Strofylas (Strofylas, 2021). 

One of the most characteristic features of the current implementation is “differential 

mutation”. According to this evolutionary operator, a new chromosome (called trial vector) is 

produced for each individual within the current population. The creation of a new trial vector 

relies on the combination of three distinct chromosomes, randomly selected among all the 

individuals of the current population; the combination strategy involves the addition of the 

weighted difference vector between the two members of the triplet to the third one, the so 

called donor. Subsequently, a crossover recombination is applied to the mutant and the parent 

chromosomes of the current population, which results in the final candidate (trial) vector. 
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Detailed information on the employed optimization algorithm can be found in the following 

studies (Leloudas et al., 2018b, 2020a; Nikolos, 2011, 2013; Strofylas, 2021; Strofylas et al., 2018). 

 

 Surrogate Models 

In each generation of the DE algorithm, every single trial vector has to be initially evaluated 

and then, to be compared against its parent chromosome; the better-fitted among them will 

pass to the next generation. The incorporation of surrogate models (or meta-models) within 

this evaluation procedure provides the opportunity to avoid the costly CFD-based 

evaluations, using faster approximations instead (Nikolos, 2011). According to the followed 

approach, a surrogate model is employed to pre-evaluate each trial vector. In case that the 

result of the pre-evaluation indicates that the trial vector is lower-fitted than its parent 

chromosome, the latter one is directly passed to the next generation, while the trial vector is 

abandoned. On the contrary, if the pre-evaluation results that the trial vector is better-fitted 

than its parent chromosome, then an exact re-evaluation follows, accompanied by a second 

comparison between the trial and the parent chromosomes. If the trial is still better-fitted than 

the parent chromosome, then the former one is transferred to the next generation. Otherwise, 

the trial vector is rejected and the parent chromosome passes to the next generation. 

In the current optimization study, the DE algorithm is combined with a Multilayer 

Perceptron (MLP) and a Radial-Basis Function (RBF) Artificial Neural Networks (ANNs). Τhe 

utilized surrogate models are used as an ensemble. Even though the available models are re-

trained and re-tested in every single generation, using the same training and testing data sets, 

only the best one between them is chosen to be used for the pre-evaluation of the trial vectors. 

The selection of the surrogate model (which may be different in each generation) is made using 

the criterion of the lower testing error.  

 

 Parallelization Strategy  

The current parallelization strategy has been based on a master-slave architecture and 

implemented by means of the Message Passing Interface library functions. According to the 

adopted master-slave approach, all the chromosomes comprising the current population are 

scattered to the available slave processors (slave nodes). Each one of them is responsible for 

the evaluation of a single chromosome and the application of the required evolution operators 

(namely, mutation, crossover and selection). On the other hand, one of the available processors 

is chosen to be the master node; this master processor coordinates the entire optimization 

procedure and performs the inexact evaluations, through the use of a surrogate model. The 

flowcharts describing the parallel implementation of the DE algorithm are provided in Figure 
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9.1, while a thorough description of the adopted parallelization strategy can be found in the 

works of Strofylas (2021), Strofylas et al. (2018) and Leloudas et al. (2018a, 2018b, 2020a). 

 

 Asynchronous Implementation 

In the synchronous implementation of the particular algorithm, the succession between two 

consecutive generations can only be achieved when all the slave processors have finished with 

the evaluation of their assigned chromosomes. However, as these evaluation times may 

generally differ, some of the slave processors remain idle, waiting for the last one to reach the 

so-called synchronization barrier. To overcome this deficiency and reduce the overall time 

required, an asynchronous update of the current DE algorithm has been developed. According 

to the asynchronous implementation, the generation is not strictly defined and the current 

population may include chromosomes that actually belong to different generations. Each 

newly generated trial vector can directly replace the parent chromosome (if better fitted) and 

become a member of the current population, just after the end of its evaluation process, 

without waiting for the end of the evaluation stages of the rest members of the auxiliary 

population (Strofylas et al., 2018). Therefore, individuals can evolve independently (without 

full coordination between generations), while the improved solutions can contribute 

immediately to the evolution process, accelerating the convergence rate. 

 

 

Figure 9.1: Flowcharts of the parallel differential evolution algorithm (Leloudas et al., 2020a). 
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9.2 Mesh Parameterization and Deformation 

Geometry parameterization is one of the most crucial components to any shape 

optimization methodology; the employed parameterization technique should take into 

consideration the specific characteristics of the optimization problem at hand, facilitating the 

detailed, robust and flexible definition of a wide range of potentially complex shapes 

(Yamazaki et al., 2010). Besides, in the case of numerical shape optimization schemes in which 

design evaluation is performed by means of calls to a mesh-based solver, a new geometry 

definition should also be accompanied by either the proper deformation of the initial 

computational mesh or the generation of a completely new one (Morris et al., 2008). Thus, in 

such optimization applications, two distinct parameterization strategies are generally 

followed; according to the first one, a parameterization technique can be used to exclusively 

control and modify the design geometry, from which a new computational mesh should be 

then generated, while according to the second one, a parameterization technique can 

alternatively be used to control and deform the computational mesh itself. Between these 

approaches, mesh parameterization and deformation techniques are generally preferred over 

regeneration ones, since they require less computational resources, do not involve the 

utilization of an automatic mesh generator and prevent the potential introduction of numerical 

errors within the analysis, due to the change in spatial discretization of the computational 

domain (Allen and Rendall, 2013; Morris et al., 2008; Yamazaki et al., 2010). 

Within the current optimization framework, mesh and geometry parameterization are 

simultaneously succeeded by employing an in-house developed computational tool, based on 

the well-known Free-Form Deformation (FFD) technique (Sederberg and Parry, 1986); this is 

a versatile and powerful point-based methodology that does not require any information 

about the connectivity of the mesh nodes and results in deformed models with the same 

topology to the initial one. Consequently, it can equally and effortlessly be applied to both 

structured and unstructured computational meshes, composed by any type of elements. The 

fundamental idea underlying the FFD algorithm is to achieve an indirect deformation of the 

computational mesh by embedding the mesh nodes into a parametric control grid (lattice); 

then by transforming the geometry of the particular lattice, every node enclosed to it 

undergoes the corresponding deformation. 

 

Step 1 – Construction of the Parametric Lattice 

The first step for the implementation of the FFD method involves the construction of the 

parametric FFD lattice, which is actually consisted by an ordered mesh of control points, 

placed in such a way that wraps the design geometry and defines the mesh region to be 

deformed. Figure 9.2a presents the creation of such a control lattice, built around a NACA 0012 
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airfoil. Then, a parametric surface is created based on the control points of the particular lattice. 

Even though Bezier surfaces were used in the original version of FFD, a B-spline-based FFD 

can also be formulated easily by using the B-Spline basis functions instead of the Bernstein 

polynomials. In this application, a B-Spline based FFD version is employed, as the alteration 

of a control point does not modulate the entire B-Spline surface. Hence, a focused deformation 

can be achieved. The Cartesian coordinates of a mesh point lying within the 2D B-Spline 

surface may be calculated using the following formula (Piegl and Tiller, 1995): 

  

𝓢(𝓊𝑡, 𝓋𝑡) =∑∑𝑁𝑖,𝓅(𝓊𝑡)𝑁𝑗,𝓆(𝓋𝑡)𝓟𝒊𝒋

𝓂

𝑗=0

𝓃

𝑖=0

 (9.1) 

  

Here, 𝓢 represents the Cartesian coordinate vector of the examined point, while 𝓟𝒊𝒋 stand for 

the position vectors of the control points forming the FFD lattice. Moreover, 𝑁𝑖,𝓅 and 𝑁𝑗,𝓆 are 

the B-Spline basis functions; 𝑁𝑖,𝓅 is applied in 𝓊 parametric direction while 𝑁𝑗,𝓆 is applied in 

𝓋 parametric direction. 

 

      
(a) Initial Lattice (b) Mesh Deformation 

Figure 9.2: Application of the FFD technique to a hybrid computational mesh around a NACA 0012 

airfoil. 

 

Step 2 – Embedding the Object within the Lattice 

After the construction of the initial FFD lattice and the corresponding B-Spline surface, a 

quadtree algorithm is implemented so a unique parametric pair of coordinates (𝓊𝑡, 𝓋𝑡) to be 

assigned in every single node of the computational mesh to be deformed. For each grid node, 

the following algorithm is repeatedly applied (Amoiralis and Nikolos, 2008): 

 

a. The entire parametric area (surface) is divided into four equal subareas. 
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b. The Cartesian coordinates of each subarea vertex are calculated using Eq. (9.1). 
 

c. The Cartesian coordinates of each subarea vertex are compared to the Cartesian  

coordinates of the object’s point under consideration, in order to identify the subarea in 

which the corresponding point lies. 
 

d. The latter subarea is divided into four new equal subareas and steps b until d are 

repeated for a prescribed number of subdivisions, or until a desirable accuracy is 

achieved. The desired parametric coordinates of the searched point are defined as the 

parametric coordinates of the center of the subarea, in which the point resides, resulting 

from the last subdivision (Patrikalakis and Maekawa, 2002). 

 

Step 3 – Deformation of the Parametric Space 

The deformation of the parametric B-Spline surface consists of changing the coordinates 

of the control points forming the FFD lattice (Figure 9.2b). 

 

Step 4 – Evaluation of the deformation effects 

The evaluation of the effects of the deformation consists of the straightforward process to 

calculate the new Cartesian coordinates of all the mesh points lying within the FFD lattice, 

using Eq. (9.1). In fact, during the deformation procedure, the parametric coordinates of each 

point of the computational mesh do not change, in contrast to their Cartesian coordinates, 

which are deformed due to the alteration of the control lattice. Finally, it is emphasized that 

the deformation will be applied only to the nodes of the computational mesh that are contained 

within the initial FFD lattice; the nodes lying outside this area will stay fixed. In consequence, 

the control points corresponding to the extreme right, left, up and down positions of the FFD 

lattice are not permitted to move, as a means of ensuring that the deformed computational 

mesh will be of accepted quality, in terms of overlapping edges. 
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9.3 Summary of the Optimization Framework 

The flow chart shown in Figure 9.3 provides a description of the fundamental interactions 

between the main components of the modular optimization framework, proposed within the 

current doctoral dissertation for the design optimization of shrouded wind turbines. The entire 

optimization procedure is coordinated by the asynchronous DE algorithm, while the pre-

processing, genotype to phenotype, design evaluation and post-processing modules are 

properly adjusted or replaced, depending on the optimization problem at hand. 

 

 

Figure 9.3: Overview of the proposed optimization framework. 

 

Each individual member of the population, generated by the DE algorithm for each 

generation, is initially passed to the “genotype to phenotype” module, via a properly designed 

text file called chromosome.txt. After the generation of the phenotype, the respective 

information is fed to the “design evaluation” module, which – depending on the examined 

optimization problem – may be formed by one of the available analysis tools developed and 
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validated in the current study (see Section 9.3.1). Finally, a post-processing step is 

implemented, in order to extract the necessary quantities for the calculation of the fitness 

function. The fitness function value for each member of the current population is fed back to 

the DE algorithm by means of fitness.txt file. Then, the DE algorithm updates the members of 

the DE population through the application of the appropriate evolution operators (selection, 

crossover, mutation). This procedure is implemented iteratively up to the completion of the 

user-prescribed number of generations; during the course of the entire optimization process, 

the DE algorithm interacts with all the involved modules in a completely automated manner, 

by using specially developed scripts. 

 

 Design Evaluation 

In this version of the proposed optimization platform, the evaluation of the candidate 

solutions is performed by using one of the three analysis tools that were developed and 

numerically validated within the context of the current doctoral study, as shown in Figure 9.4; 

namely, the BEM code (see Chapter 2 and Chapter 3), the IGal2D solver (see Chapter 4 and 

Chapter 5) and the coupled RANS-BEM model (see Chapter 8).  

 

 

Figure 9.4: The available analysis tools for the design evaluation module. 

 

Specifically, the stand-alone version of the in-house BEM code can be employed for the 

design optimization of improved rotor blades, either for the case of a shrouded wind turbine 

or even for that of an unshrouded horizontal-axis wind turbine. In the first case, the impact of 
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the diffuser on the performance of the turbine rotor is captured by means of the velocity speed-

up over the rotor plane for the unloaded shroud configuration, as described in Section 2.2.4. 

At this point, let us note that due to the ability of the BEM theory to predict the rotor 

performance in a very short period of time, such optimization applications are generally 

characterized by high time efficiency, as shown in the respective application reported in 

Section 10.1. 

On the other hand, the preliminary design optimization of improved shrouds can be 

achieved by using the stand-alone version of the axisymmetric IGal2D solver, while 

completely ignoring the presence of the turbine rotor and the associated effects on the 

surrounding flow, including the swirling velocity component as well (see Section 10.2). Even 

though such optimization applications may lead to reduced levels of computational time – 

due to the axisymmetric consideration of the actually three-dimensional flow field – they may 

usually result in suboptimal designs as well, since they disregard the favourable impact of the 

swirling velocity component on the downstream diffuser flow. As mentioned in Section 4.1, 

swirling motion has been shown to improve the performance of shrouded wind turbines, as 

the tangential or swirling velocity component, induced by the rotor blades, helps to energize 

the velocity boundary layer of the internal diffuser wall and thus, to avoid flow separation 

(Leloudas et al., 2020a; Venters et al., 2018). 

Consequently, the performance optimization of the entire shrouded wind turbine system 

calls for the simultaneous analysis of both the rotor blades and the shroud geometry; this can 

be achieved by means of the proposed RANS-BEM model. The particular analysis method is 

capable of accounting for the effect of the rotor – such as the induced pressure drop and the 

swirling velocity component – on the flow field, as well as for counter effect of the shroud on 

the turbine rotor. Ultimately, it allows for the simultaneous design optimization of the coupled 

rotor/diffuser system (see Chapter 10.3). Nevertheless, this analysis method can be equally 

applied for the single optimization of the rotor blades or the shroud geometry. 

 

 Genotype to Phenotype 

By the term genotype to phenotype we simply refer to the process of translating the design 

variables of the examined optimization problem, which are defined by the adopted 

parameterization technique, into the design geometry. In the current doctoral dissertation, the 

encountered optimization problems involve the design of improved rotor blades and shrouds. 

As long as the rotor blades are concerned, the parameterization of the twist and chord 

distribution – which is the only geometrical information used by the BEM model – is realized 

by employing B-Spline curves. On the other hand, the parameterization of the shroud 

geometry and that of the associated computational mesh are made by using the in-house mesh 
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morphing tool that is based on the FFD technique, which was presented in Section 9.2. In the 

former case, the twist and chord distribution of the blade can be described and controlled by 

the coordinates of the control points defining the respective B-Spline curves, while in the latter 

one, the shroud geometry and the computational mesh are controlled by the coordinates of 

the control points of the FFD lattice. Therefore, in optimization applications that involve only 

the design of improved rotor blades, the genotype to phenotype module is formed by a simple 

B-Spline generator that creates the twist and chord curves, based on the design variables 

(control points) outputted by the DE algorithm; similarly, in optimization applications that 

involve only the design of improved shrouds the particular module is formed by the mesh 

morphing tool, presented in Section 9.2, which is fed with the coordinates of the control points 

of the FFD lattice outputted by the DE algorithm and generates an updated shroud geometry 

(candidate solution), accompanied by the deformed computational mesh. Apparently, in 

optimization cases that involve the simultaneous design of the blades and shroud, both the B-

Spline generator and FFD tools are executed successively.  

 

 

Figure 9.5: The available computational tools for translating the genotype into the phenotype. 

 

 Pre-processing Stage 

The pre-processing stage of the optimization procedure is implemented manually prior to 

the execution of the optimization algorithm, as shown in Figure 9.3. Apparently, the steps 

included within the pre-processing phase differ, depending on the examined optimization 

problem, the adopted parameterization approach and the employed software for the design 

evaluation. Figure 9.6 presents the major steps of the pre-processing stage for each one of the 

available design evaluation tools. Please note that the solution of the flow field simulation 

around the initial design – for the cases in which design evaluation is achieved by means of 
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IGal2D solver or RANS - BEM model – is introduced as an initial condition for the flow field 

simulation of each candidate design; this approach aims to reduce the computational time 

required for each simulation to reach convergence. 

 

 

Figure 9.6: The major steps of the pre-processing stage depending on the adopted analysis tool. 

 

 Post-processing Stage 

Finally, the post-processing module is essentially composed by properly made scripts, 

which are fed with the results of the design evaluation module and implement the fitness 

function of the examined optimization problem. 
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Chapter 10 

Design Optimization Cases 

 

This chapter presents the application of the proposed optimization framework, as described 

in Chapter 9, to the following design optimization problems: 

OP1. Aerodynamic shape optimization of the rotor blades for a given shroud geometry. 

OP2. Aerodynamic shape optimization of an unloaded diffuser configuration. 

OP3. Simultaneous aerodynamic shape optimization of the blades and the diffuser. 

Table 10.1 provides a summary of the encountered optimization cases. 

 

Case Component Optimizer Evaluation Software 

OP1 Blade Optimization DE Algorithm BEM Code 

OP2 Unloaded Shroud DE Algorithm IGal2D Solver 

OP3 Blades and Shroud DE Algorithm IGal2D – BEM 

Table 10.1: Overview of the design optimization cases encountered in this study. 

 

10.1 Design of Improved Rotor Blades 

In this section, the current optimization methodology is applied for the design of improved 

rotor blades for the Donqi Urban Windmill (Ten Hoopen, 2009). Please recall that the particular 

diffuser geometry, illustrated in Figure 10.1, was designed by the National Aerospace 

Laboratory in cooperation with Delft University of Technology; it has an exit-area-ratio equal 

to 1.728 and an exit plane diameter equal to 2 m, while it is further equipped with a 0.04 m 

high Gurney flap. The distribution of the velocity speed-up ratio over the rotor plane for the 

unloaded diffuser case is provided in Section 3.2.1, and especially in Figure 3.9a, as it was 

experimentally measured by van Dorst (2011) and numerically approximated by Kesby et al. 

(2016). The Donqi Urban Windmill has a three bladed rotor; the original blade was also 

designed by NLR, by adopting a tip diameter equal to 1.5 m and employing the NACA 2207 

profile along the entire blade span. The original chord and twist distributions are available in 

the study of van Dorst (2011). 
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Figure 10.1: Illustration of several Donqi Urban Windmill models within the urban environment 

[Source: http://www.jetsongreen.com/2011/08/donqi-urban-windmill-residentia.html].  

 

In this study, the proposed optimization method is applied to the design of improved rotor 

blades for the Donqui Urban Windmills by means of a twist and chord optimization 

procedure; in fact, the current optimization framework is applied for the design of two distinct 

blade geometries, as alternatives to the original blade configuration. For the first optimized 

blade, denoted as BD1, the NACA 2207 is employed for the entire span (similarly to the 

original blade), while for the second blade design, denoted as BD2, the RG15 airfoil is adopted; 

please recall that the RG15 is a low Reynolds number airfoil with a maximum thickness of 

8.92% located at 30.2% of the chord and a maximum camber of 1.8% located at 39.7% of the 

chord. The lift and drag coefficients for the particular airfoil profiles (inputs to the BEM code) 

were calculated with XFOIL software (Drela, 1989) at 600,000 Reynolds, which is the diffuser 

Reynolds number (Ten Hoopen, 2009); subsequently, they were extrapolated to the full 360° 

range of angles of attack, applying the Montgomerie’s 360° extrapolation method 

(Montgomerie, 2004). In this application, tip and hub losses were included within the analysis 

by employing the Prandtl’s correction model. Finally, please note that the current twist and 

chord optimization was carried out by considering a zero blade pitch angle and a constant TSR 

value equal to 6.4. 

 

 Twist and Chord Parameterization  

The parameterization of the twist and chord distributions is realized by means of two 

separate B-Spline curves of second degree; each B-Spline curve is defined by 5 control points, 

permitting the movement of each control point only in the y-direction. Therefore, the number 

of design variables for each one of the encountered optimization cases is 10, corresponding to 

http://www.jetsongreen.com/2011/08/donqi-urban-windmill-residentia.html
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y coordinates of the B-Spline curves used to represent the twist and chord distributions. The 

adopted upper and lower bounds for each design variable are presented in Figure 10.2. 

 

 
(a)   (b) 

Figure 10.2: Parameterization strategy for chord and twist distributions. 

 

 Cost Function and Constraint Formulation 

As long as the design objective is concerned, it is defined as the maximization of the rotor 

power output for a range of ambient wind speeds between 5 m/s and 8 m/s, using an increment 

of 1 m/s. Hence, considering that the current DE algorithm is designed to deal with 

minimization problems, the objective function is formed as follows: 

  
𝑓 = 10 − (𝐶𝑃,5 + 𝐶𝑃,6 + 𝐶𝑃,7 + 𝐶𝑃,8) (10.1) 

  

where 𝐶𝑃,𝑘 denotes the aerodynamic power coefficient of the rotor for an ambient wind speed 

of 𝑘 m/s. In this optimization study only explicit constraints are employed, which are formed 

by the acceptable bounds of the considered design variables. The extraction of the particular 

ranges was based on a trial and error basis, in order to achieve upper and lower bounds that 

do not restrict or magnify inefficiently the search space and simultaneously do not permit 

undesirable twist and chord distributions to be created. Specifically, the bounds for the design 

variables corresponding to the chord B-Spline curve were set in such a way so the optimal 

chord distribution to result in a blade geometry as rigid as the current one; while regarding 

the bounds for the design variables corresponding to the twist B-Spline curve, they were set 

in such a way so the optimal twist distribution to be as smooth as possible, resulting in a less 

complicated geometry. 

0.020

0.043

0.065

0.088

0.110

0.133

0.155

0.178

0.200

0.223

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

B
la

d
e 

C
h

o
rd

 [
m

]

Radial Position - r [m]

Control Points

Control Polygon

Chord Curve

-10.00

-5.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85
B

la
d

e 
Tw

is
t 

[d
eg

]
Radial Position - r [m]

Control Points

Control Polygon

Twist Curve



Chapter 10 Design Optimization Cases 

 

10-4 

 Optimization Results 

The twist and chord optimization of both blade configurations was carried out on a DELLTM 

R815 PowerEdgeTM server, with four AMD OpteronTM 6380 sixteen-core processors at 2.50 GHz 

(64 cores in total). The population size of the DE was set to 60, while the algorithm was 

executed for a total of 2000 “generations”. The overall elapsed computation time for the 

optimization of BD1 and BD2 blades was equal to 25.11 and 24.16 minutes respectively. Figure 

10.3 provides the convergence history of the DE algorithm, while Figure 10.4 illustrates the 

history of the testing error for the employed surrogate models. 

 

 
(a) BD1   (b) BD2 

Figure 10.3: The convergence history of the differential evolution algorithm. 

 

 
(a) BD1   (b) BD2 

Figure 10.4: History of the testing error for the employed surrogate models. 
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The twist and chord distributions of the optimized blade designs BD1 and BD2, along with 

the twist and chord distributions of the original blade are presented in Figure 10.5 to Figure 

10.7. It is evident that the optimization procedure resulted in blade designs that differ 

significantly from the original blade, with a much smother and less complicated twist 

distribution; a fact that makes them quite attractive from a manufacturing point of view, as 

simpler geometries are easier to be constructed. As long as the comparison between the twist 

and chord distribution of BD1 and BD2 is concerned, no significant variation is observed, as 

shown in Figure 10.7. This is mainly attributed to the similarity between the lift and drag 

coefficient curves of the NACA 2207 and RG15 airfoils. However, since the RG15 airfoil has a 

maximum thickness that is 27.4 % larger than the maximum thickness of the NACA 2207, the 

corresponding BD2 blade is expected to provide better structural features. 

 

 

Figure 10.5: Twist and chord distributions of the optimized blade BD1. 

 

 

Figure 10.6: Twist and chord distributions of the optimized blade BD2. 
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Figure 10.7: Comparison between the twist and chord distributions of BD1 and BD2. 

 

The aerodynamic performance of the 3-bladed DAWT rotor under investigation is 

presented in Figure 10.8. As it can be observed, the utilization of BD1 and BD2, instead of the 

original blade geometry, results in a visible improvement of the aerodynamic power output 

for all the considered operational points. In particular, the BD1 leads to a mean increase of the 

aerodynamic power of the rotor of approximately 18.2 %, while the corresponding percentage 

for BD2 is 19.4 %. Furthermore, Figure 10.8 demonstrates the ability of the employed BEM 

code to approximate the experimental results for the original blade (van Dorst, 2011) with high 

accuracy. 

 

 

Figure 10.8: The increased power output of the rotor, utilizing the optimized blade geometries BD1 

and BD2. 
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blades as well, despite the relatively close proximity of the blades tips to the diffuser wall; a 

similar conclusion was also drawn by Kesby et al. (2016). Nevertheless, the inclusion of such a 

correction model during the BEM analysis of a DAWT rotor may result in an underestimation 

of the total power output, as the presence of the shroud around the rotor blades produces a 

noticeable reduction of the particular losses, compared to a bare wind turbine. For this reason, 

the aerodynamic performance of the examined DAWT rotor for BD1 and BD2 optimized 

blades without the application of a tip losses correction model, is also presented in Figure 10.8. 

Finally, Figure 10.9 illustrates the three-dimensional drawings of the optimized and original 

blade designs. 

 

 
(a) (b) (c) 

Figure 10.9: Three dimensional drawings of the (a) original blade, (b) optimized blade BD1 and (c) 

optimized blade BD2. 

 

10.2 Design Optimization of an Unloaded Diffuser 

In this section, the proposed optimization scheme is applied for the design of an 

aerodynamically improved shroud for a diffuser-augmented wind turbine application, with a 

rotor swept area of 22.9 𝑚2 and a rated capacity of approximately 15 kW. The aerodynamic 

profile of the original shroud design (denoted as baseline design) is illustrated in Figure 10.10; 

Table 10.2 contains some of its main geometrical characteristics. The aerodynamic shape 

optimization is performed for an isolated diffuser configuration (without the presence of the 

turbine), considering an ambient wind velocity 𝑉∞ of 6 m/s and a Reynolds number equal to 

2.2 ∙ 106. The Reynolds number has been calculated based on the throat diameter 𝐷𝑡 of the 

baseline shroud design (characteristic length scale). 



Chapter 10 Design Optimization Cases 

 

10-8 

 

 

Figure 10.10: The aerodynamic profile of the baseline shroud design (Leloudas, Lygidakis, et al., 2020). 

         

Parameter Value 

Diffuser Length - 𝐿 3.660 m 

Inlet Radius - 𝑅𝑖𝑛 3.112 m 

Throat Radius - 𝑅𝑡 2.751 m 

Exit Radius - 𝑅𝑜𝑢𝑡 4.570 m 

Diffuser Volume - 𝑉 54.117 m3 

Table 10.2: The main geometrical characteristics of the baseline shroud design. 

 

 Grid Independence Study 

To guarantee that the resolution of the computational grid does not have a significant 

impact on the simulation of the flow field around the diffuser and, therefore, on the objective 

function calculation, a grid independence study was initially made, by considering three 

distinct computational meshes (coarse, medium and fine). The adopted hybrid grids 

(composed by both triangular and quadrilateral elements) are characterized by a total number 

of nodes equal to 26,671, 49,992 and 68,809 respectively. In all the examined cases, regions of 

higher mesh resolution were generated around the shroud. At this point, it is emphasized that 

further refinement of the computational mesh (especially in the wake region) was not possible, 

since this was found to result in the appearance of unsteady flow phenomena, making the 

achievement of a steady-state solution unfeasible. The coarse and medium grids were 

constructed with a wall-spacing value of 0.00024 m, while the fine one with a wall-spacing 

value of 0.00015 m, leading to a 𝑦+ value of 4 and 2.5 respectively. Since the current 

implementation of the axisymmetric RANS solver uses a dimensionless form of the governing 
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equations, the computational domain has been properly normalized by the throat diameter 

(characteristic length scale). Figure 10.11 illustrates the coarse, medium and fine meshes. 

 

     

(a) (b) (c) 

Figure 10.11: The computational meshes used for the grid independence study: (a) coarse, (b) medium 

and (c) fine. 

 

The drag and the mean velocity speed-up ratio at the throat (𝑥 = 0) of the baseline diffuser 

design, by adopting each of the considered computational meshes, are presented in Table 10.3. 

The obtained results indicate that both computed drag and mean velocity speed-up are 

reduced by increasing grid resolution. In detail, the percentage differrence, in terms of drag 

value, between the medium and fine meshes was found equal to 1.3%, while the respective 

percentage difference between the fine and coarse meshes is approximatelly equal to 6%. From 

a velocity speed-up standpoint, much smaller deviations were observed; the comparisson 

revealed that the percentage difference between the fine and medium meshes is equal to 0.6% 

and the percentage difference between the solutions obtained from the fine and coarse meshes 

equal to 1.9%. 

 

Mesh Resolution Coarse Medium Fine 

Target 𝑦+ Value 4 4 2.5 

Wall Spacing – [m] 0.00024 0.00024 0.00015 

Drag Force – [N] 713.77 671.11 662.37 

Mean Velocity SU Ratio 1.54 1.52 1.51 

Table 10.3: Drag variation for different mesh resolutions. 

 

In order to have a better understanding on the flow field dependence upon the mesh 

resolution, Figure 10.12 provides the variation of the on-axis velocity speed-up ratio 

distribution, the on-axis pressure coefficient distribution, the velocity speed-up distribution 

over the rotor plane, and the distribution of the pressure coefficient along the surface of the 
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shroud profile. Small, but noticeable, discrepancies have been observed between the 

distributions resulted from the use of the coarse and fine meshes, especially in the region 

around the rotor plane. On the other hand, no practical deviations were detected between the 

distributions resulted from the use of the medium and fine meshes. Accordingly, the solution 

obtained by adopting the mesh of medium resolution can be safely considered as mesh 

independent, and therefore, the particular grid should be ideally used during the 

optimization. However, owing to the limited computational resources available, the adoption 

of the medium grid within the current optimization procedure would excessively increase the 

total computational time. Therefore, the coarse mesh (26,671 nodes) has been selected instead. 

Although small discrepancies between the results obtained through the utilization of the 

coarse and fine meshes have been observed (the solution provided by the coarse grid is not 

mesh independent), the former computational mesh is capable of providing a reasonably 

accurate representation of the flow field, as shown in Figure 10.12. 

 

 
(a) (b) 

 
(c) (d) 

Figure 10.12: Grid independence study: (a) On-axis velocity speed-up ratio distribution, (b) On-axis 

pressure coefficient distribution, (c) Velocity speed-up ratio distribution over the rotor plane, (d) 

Distribution of the pressure coefficient over the surface of the shroud profile. 
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In addition, as Khamlaj and Rumpfkeil (2018) noted, the CFD model will always have some 

inherent error that is related to the modeling assumptions; hence, more reduction in truncation 

error with additional refinement seems insignificant when compared to the error associated 

with the model’s simplification of physics. Nevertheless, even though the coarse mesh will be 

used to reach the optimal design, after the completion of the optimization procedure, a fine 

mesh will be also constructed for the optimal solution (having a similar resolution to the fine 

mesh for the baseline design), in order to perform an accurate and reliable comparison. 

 

 Mesh Parameterization and Design Variables 

The parameterization of the computational mesh (coarse) was made by introducing the 2D 

lattice illustrated in Figure 10.24. The degree of the B-Spline basis function for both directions 

was set as the maximum possible, that is 6 and 5, for the (axial) 𝑥 and (radial) 𝑦 direction 

respectively, as a means to achieve smooth deformations. In addition, all the internal control 

points of the FFD lattice are free to move in both directions.  

 

      

Figure 10.13: The initial FFD lattice. 
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On the other hand, the control points located at the extreme right, left, up and down positions 

(green points) have been fixed, as a means of ensuring that the deformed computational 

meshes will be of accepted quality, in terms of overlapping edges, as explained in Section 3. 

Consequently, a number of 40 design variables resulted, which correspond to 𝑥 and 𝑦 

Cartesian coordinates of the 20 (internal) free-to-move control points of the FFD lattice. 

 

 Objective Function and Constraints 

10.2.3.1 Objectives 

Even though the diffuser is primarily used to accelerate the axial velocity over the rotor 

plane, and thus to increase the power output of the system, low levels of drag force are also 

desirable, to reduce the cost of the wind turbine (Liu J. et al., 2016). Therefore, the design 

objectives in this optimization study are defined as the maximization of the mean velocity 

speed-up distribution 𝛾(𝑟) over the rotor plane (turbine position) and the minimization of the 

total drag force 𝒟. The value of the mean speed-up ratio at the rotor plane, averaged with the 

throat radius, is calculated as: 

  

𝑓𝑠𝑢 =
2𝜋∫ 𝛾(𝑟)𝑑𝑟

𝑅

0

𝜋𝑅𝑡
2  (10.2) 

  

The (non-dimensional) total drag force 𝒟 on the shroud surface 𝐸𝑆 is computed by adding the 

pressure and viscous forces 

  

𝒟 = −2𝜋∮ 𝑝𝑛𝑥𝑦𝑑𝑠
 

𝐶𝑠

+ 2𝜋∮ (𝜏𝑥𝑥𝑛𝑥 + 𝜏𝑥𝑦𝑛𝑦) 𝑦𝑑𝑠,
 

𝐶𝑠

 (10.3) 

  

where 𝐶𝑠 is the boundary curve of the shroud’s cross-section (aerodynamic profile). The 

dimensionalization of the drag force 𝒟 is made by using the freestream density 𝜌 =

1.225 𝐾𝑔 𝑚3⁄ , the freestream velocity 𝑉∞ = 6 𝑚 𝑠⁄  and the throat diameter of the baseline 

design 𝐷𝑡 = 5.5 𝑚 (characteristic length) as: 

  
𝑓𝒟 = 𝒟𝜌𝑉∞

2𝐷𝑡
2 (10.4) 

  

Equation (10.4) was devised in line with the adopted strategy for the non-dimensionalization 

of the governing equations (see Section 4.2.1.1), according to which the scales of length and 

pressure have been normalized by means of the throat diameter 𝐷𝑡 (characteristic length) and 

the freestream dynamic pressure 𝜌𝑉∞
2, respectively. 
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10.2.3.2 Constraints 

In this optimization study, besides the explicit constraints formed by the acceptable bounds 

of the considered design variables, two additional geometrical constraints were imposed. The 

first one is related to the preservation of the throat radius of the baseline design, while the 

second one is imposed so as to ensure that the volume 𝒱 of the new shroud will be equal or 

less than the volume 𝒱𝑟𝑒𝑓 of the baseline design. Thus, 

  
𝒱 ≤ 𝒱𝑟𝑒𝑓 , (10.5) 

 

 

 
  

𝑅𝑡 = 𝑅𝑡,𝑟𝑒𝑓 . (10.6) 

 

 

 

where 𝑅𝑡 is the throat radius of a candidate shroud design, while 𝒱𝑟𝑒𝑓 = 54.15 𝑚
3, and 𝑅𝑡,𝑟𝑒𝑓 =

2.751 𝑚 is the throat radius of the baseline shroud design. Both constraints were implemented 

following a penalty function approach. The two penalty functions were formed as: 

  

𝑓𝒱 = {
 𝒱 − 𝒱𝑟𝑒𝑓 ,

0  ,
     
𝑖𝑓   𝒱 > 𝒱𝑟𝑒𝑓

𝑒𝑙𝑠𝑒
 (10.7) 

 

 

 
  

𝑓𝑡ℎ = |𝑅𝑡 − 𝑅𝑡,𝑟𝑒𝑓| (10.8) 

 

 

 

 

10.2.3.3 Cost Function 

By combining the objective and penalty functions, the single cost (or fitness) function of the 

minimization problem at hand is formed as: 

  
𝑓 = 5 − 𝑓𝑠𝑢 + 0.0001𝑓𝐷 + 0.01𝑓𝒱 + 10𝑓𝑡ℎ. (10.9) 

  

The parameters shown in Eq. (10.9) have been empirically extracted in such a way that each 

function to have almost the same impact on the cumulative cost function. 

 

 Optimization Results 

The aerodynamic shape optimization was made using a DELLTM R815 PowerEdgeTM 

computing server that is equipped with four AMD OpteronTM 6380 sixteen-core processors. 

Regarding the parameters of the DE algorithm, the population for each generation was set 

equal to 50 and the optimal solution was obtained after the completion of 500 generations; the 

time required until the completion of 500 generations was approximately 722 hours. The 

convergence history of the optimization algorithm is presented in Figure 10.14. In addition, 
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Figure 10.14 provides the testing error progression for the two surrogate models (RBF and 

MLP) utilized within the current optimization study. Evidently, the testing error of the MLP 

model was considerably smaller (as compared to the one of the RBF model) for the great 

majority of the 500 generations. Accordingly, the MLP was almost exclusively used for the 

pre-evaluation of the trial vectors. This fact reveals that all the surrogate models cannot be 

adapt equally to any given problem. Thus, the incorporation of multiple surrogate models 

(operating as an ensemble) is important, as it provides the opportunity to treat efficiently a 

wide range of different optimization problems, through the achievement of higher 

approximation levels. 

 

 
(a) (b) 

Figure 10.14: (a) The testing error for the two surrogate modes; (b) the convergence history of the DE 

algorithm. 

 

Table 10.4 presents the number of the chromosome evaluations performed through the 

RANS solver (exact evaluations), as well as the number of the total evaluations (RANS and 

ANNs), completed during the entire optimization process. Table 10.4 reveals that the 

incorporation of the surrogate models resulted in a substantial reduction of the total number 

of exact evaluations by approximately 38%, accelerating considerably the design process. 

 

Optimization Study Wall-clock time (Hrs) Exact evaluations Total evaluations 

Shroud Design 722 15401 25000 

Table 10.4: Wall-clock computation time, number of exact evaluations, and number of total 

evaluations. 
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10.2.4.1 Optimal Shroud Design 

The aerodynamic profile of the optimal shroud design (SD1) is shown in Figure 10.15, 

comparatively to the baseline aerodynamic profile. Through the comparison of the two 

aerodynamic profiles, it is evident that the optimization procedure resulted in a much thinner 

geometry (better aerodynamic performance) with a much smoother curvature in the region 

downstream of the rotor plane (throat). Another interesting remark is that the optimized 

geometry tends to approximate the shape of a flanged diffuser; this is attributed to the fact 

that such geometries are capable to create a region of high sub-atmospheric pressure near the 

exit plane, which increases the suction ability of the shroud and thus, the mass flow rate. 

However, the relatively small thickness distribution of SD1 downstream of 𝑥 𝐷⁄ = 0.2, could 

be a critical point that reduces the structural integrity of the particular design and calls for the 

installation of additional supportive structures to prevent a possible failure. To overcome this 

problem, a modified shroud profile was created (SD2 – Figure 10.15 and Figure 10.16) by 

locally (manually) thickening SD1. Even though SD2 is probably a suboptimal solution, from 

an aerodynamic point of view (as the following CFD simulations will suggest), it is expected 

to have a better performance in terms of structural integrity, while the smoother curvature 

definitely makes it more attractive from a manufacturing standpoint. Some of the main 

geometrical characteristics of SD1 and SD2 are provided through Table 10.5, while a 3D 

representation of the new shroud designs is illustrated in Figure 10.18. Thanks to the efficient 

implementation of the throat constraint, both SD1 and SD2 have the same throat radius with 

the baseline shroud design. 

 

 

Figure 10.15: The aerodynamic profiles of the baseline design, SD1, and SD2. 
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Figure 10.16: The aerodynamic profile of the SD2 shroud design (Leloudas, Lygidakis, et al., 2020). 

         

Parameter Value 

Diffuser Length - 𝐿∗ 4.360 𝑚 

Inlet Radius - 𝑅𝑖𝑛
∗  2.990 𝑚 

Throat Radius - 𝑅𝑡
∗ 2.750 𝑚 

Exit Radius - 𝑅𝑜𝑢𝑡
∗  9.952 𝑚 

Table 10.5: The main geometrical characteristics of SD1 and SD2. 

 

For the evaluation of the aerodynamic performance of both SD1 and SD2, comparatively to 

the baseline design, Table 10.6 provides the results of the objective functions, while a more 

detailed representation of the respective flow fields is given in Figure 10.17. At this point, it is 

highlighted that even though the optimization was performed with the coarser mesh (among 

the ones considered), a fine mesh of similar resolution to the fine mesh adopted during the 

grid independence study (with a 𝑦+ value of 2) was used to obtain all the following results for 

both SD1 and SD2. 

 

Design Drag Force Mean Velocity SU Volume 

Baseline Design 662.37 𝑁 1.51 54.12 𝑚3  

Shroud Design 1 (SD1) 409.45 𝑁 1.90 28.18 𝑚3  

Shroud Design 2 (SD2) 418.15 𝑁 1.87 31.81 𝑚3  

Table 10.6: Drag and velocity speed-up variation for the different shroud designs (fine meshes). 
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(a) (b) 

 
(c) (d) 

Figure 10.17: Comparison between the baseline design, SD1, and SD2. (a) Velocity speed-up ratio 

distribution over the rotor plane; (b) on-axis velocity speed-up ratio distribution; (c) on-axis pressure 

coefficient distribution; (d) distribution of the pressure coefficient over the surface of the shroud 

profile (fine meshes). 

 

SD1 achieved a remarkable reduction of drag by approximately 47% accompanied by an 

increase of the mean velocity speed-up ratio by approximately 23%, comparatively to the 

initial design. The aerodynamic performance of SD2 is not much inferior. As a matter of fact, 

the drag reduction was equal to 45% and the increase of the mean velocity speed-up ratio equal 

to 21%. Therefore, the local thickening of SD1 caused a drag increase about 2% and a mean 

velocity speed-up reduction of almost 2%, which can practically considered negligible. In 

addition, a remarkable volume reduction, touching 48% and 41% for SD1 and SD2 

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.10

2.20

0.0 0.2 0.4 0.6 0.8 1.0

V
el

o
ci

ty
 S

p
ee

d
-U

p
 R

at
io

 -
γ

Normalized Throat Radius - r/R

Baseline Design

SD1

SD2

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

V
el

o
ci

ty
 S

p
ee

d
-U

p
 R

at
io

 -
γ

X/D

Baseline Design

SD1

SD2

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

P
re

ss
u

re
 C

o
ef

fi
ci

en
t 

-
C

p

X/D

Baseline Design

SD1

SD2

-1.50

-0.50

0.50

1.50

2.50

3.50

4.50

5.50

6.50

-0.3 -0.1 0.1 0.3 0.5

P
re

ss
u

re
 C

o
ef

fi
ci

en
t 

-
C

p

X/D

Baseline Design

SD1

SD2



Chapter 10 Design Optimization Cases 

 

10-18 

respectively, was also achieved, allowing for huge cost reduction, even though the total length 

of the diffuser was increased. 

 

 
(a) Baseline Design (b) SD1 (c) SD2 

Figure 10.18: 3D representation of the (a) baseline design, (b) SD1, and (c) SD2. 

 

Furthermore, in order to have a better understanding of the aerodynamic behavior of the 

baseline and optimized designs, the dimensionless contours of pressure and velocity 

components at the symmetry plane for the isolated diffusers are presented in Figure 10.19. As 

it can be observed, the major characteristic of the baseline design is the formation of a large 

recirculation area near the exit plane (attributed to its highly-curved shape), that produces a 

high pressure gradient in the flow direction. On the contrary, the recilrulation area behind 

both SD1 and SD2 is considerably smaller (Figure 10.20 and Figure 10.21), while much higher 

acceleration of the flow inside the diffuser is observed as well. As a matter of fact, the 

recirculation region near the exit plane of SD1 and SD2 may be even smaller during the shroud 
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operation along with a rotating turbine, since the swirling velocity induced by the turbine 

tends to energize the velocity boundary layer; thus, delaying flow separation. 

 

     

          

      

Baseline Design SD1 SD2 

Figure 10.19: The dimensionless contours of axial velocity component (top), radial velocity component 

(middle), and static pressure (bottom), for the baseline design, SD1, and SD2, for a Reynolds number 

equal to 2,200,000 (fine meshes). 

 

A more detailed representation of the recirculation areas for all the considered designs can 

be found in Figure 10.20 and Figure 10.21. It is evident that the streamlines flow smoothly 

inside the diffuser, while no recirculation areas exist along the high-pressure surface of the 

new diffusers. Even though SD1 and SD2 result in significantly smaller flow separations – 

which is identified as the main reason for the increase in velocity acceleration and drag 

reduction – these areas of recirculating flow tend to hamper their full aerodynamic potential. 
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A highly promising solution to alleviate this problem involves the addition of an internal flap 

near the exit plane. 

 

    

(a) (b) 

Figure 10.20: The velocity streamlines around the (a) baseline design, and (b) SD1 (fine meshes). 

 

      

(a) (b) 

Figure 10.21: The velocity streamlines around the (a) baseline design, and (b) SD2 (fine meshes). 

 

10.3 Optimization of a Complete Shrouded Wind Turbine 

In this section, the proposed optimization scheme is applied for the simultaneous shroud 

and blade design improvement, considering the Donqi Urban Windmill as the baseline setup. 

The particular system for small energy production within urban environments was originally 

designed by Donqi Independent Energy Company, in cooperation with NRL and Delft 

University of Technology. It is consisted of a single-element shroud and a three-bladed rotor. 

To improve its performance many numerical and experimental studies have been performed 

since then (Ten Hoopen, 2009; van Dorst, 2011; Anselmi, 2017; Avallone et al., 2020). One of the 

most important was that of van Dorst (2011), who designed a new blade configuration capable 

of significantly increasing power. Figure 10.22 illustrates a three-dimensional representation 



Chapter 10 Design Optimization Cases 

 

10-21 

of the shrouded rotor of Donqi Urban Windmill with the linearized blade, while a real Donqi 

Urban Windmill is presented in Figure 10.1. 

 

Figure 10.22: The Donqi DAWT with the linearized blade. 

 

The diffuser is obtained as an axisymmetric revolution of an airfoil cross section, designed 

by NLR; the geometry was made available in the context of the DUCT4U project (Avallone et 

al., 2020). The diffuser has a radius equal to 𝑅𝑖𝑛 = 0.87 𝑚 at inlet, 𝑅𝑡 = 0.77 𝑚 at throat, 𝑅𝑜𝑢𝑡 =

1 𝑚 at exit and an axial chord equal to 1 m. The aerodynamic profile of Donqi shroud is 

depicted in Figure 10.23, whereas its main geometrical characteristics are provided in Table 

10.7. 

 

 

Figure 10.23: Geometric characteristics of the Donqi Urban Windmill shroud. 
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Parameter Symbol Value 

Axial Diffuser Length 𝐿𝑠 1.00 𝑚 

Axial Hub Length 𝐿ℎ 0.90 𝑚 

Inlet Radius 𝑅𝑖𝑛 0.87 𝑚 

Throat Radius 𝑅𝑡 0.77 𝑚 

Exit Radius 𝑅𝑜𝑢𝑡 1.00 𝑚 

Hub Radius 𝑅ℎ 0.075 𝑚 

Shroud Volume 𝑉𝑠 0.54 𝑚3 

Table 10.7: The main geometrical characteristics of the baseline shroud. 

 

The rotor has three blades with a NACA 2207 airfoil of chord length varying from 130 mm 

at root to 105 mm at tip; the rotor radius (𝑅) equals to 0.75 𝑚. The chord and twist angle 

distribution along the blade radius are plotted in Figure 10.24. Since no information of the hub 

geometry was available, a custom hub design was adopted in this study, resembling the one 

involved within the experimental studies. The radius of the hub at the rotor plane is equal to 

0.075 m; the total length of the hub is equal to 0.9 m, while its leading edge has been placed 

0.033R after the leading edge of the diffuser. 

 

 
(a)   (b) 

Figure 10.24: Chord and twist distributions of the linearized blade configuration (van Dorst, 2011). 

 

 Grid Independence Study 

Before the application of the proposed optimization scheme, a detailed grid independence 

study is carried out, in order to assure that the resolution of the employed computational grid 
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does not have a significant impact on the simulation results and objective function value. To 

this end, three computational grids, exclusively composed by quadrilateral elements, were 

generated by increasing successively the mesh density; the involved computational grids are 

denoted by QM1, QM2 and QM3. For each denser resolution the degrees of freedom, i.e. the 

nodes (considering the vertex-centered scheme of the IGal2D solver), were doubled compared 

to the coarser one. Detailed characteristics for the involved computational grids are included 

in Table 10.8, while Figure 10.25 illustrates the region around the diffuser and hub walls, for 

each one of the three computational grids. Finally, Figure 10.26 provides a wide view of QM1. 

 

Case Nodes  Elements Wall Spacing 𝒚+ Value 

QM1 49,017  48,446 0.0000750 m ≅ 1.45 

QM2 96,604  95,803 0.0000375 m ≅ 0.70 

QM3 189,246  188,123 0.0000375 m ≅ 0.70 

Table 10.8: Characteristics of the mesh employed in the grid independence study. 

 

Values of aerodynamic power and thrust, as well as drag force, on the diffuser and the hub, 

regarding different mesh resolutions, are provided in Table 10.9. Apparently, the variation of 

each one of the adopted reference quantities is below 1%. In order to have a better 

understanding of the flow field and blade loading dependence upon the mesh density, Figure 

10.27 provides the distribution of axial and tangential blade forces, as well as this of axial and 

tangential velocity components at an axial position 1.5R downstream the rotor plane. Once 

more, no deviations were detected between the distributions resulted from the use of the 

medium and fine grids. Consequently, the numerical solution, obtained by adopting QM1, can 

be safely considered as grid independent and the particular grid is used during the current 

optimization work. 

         
(a) QM1 (b) QM2 (c) QM3 

Figure 10.25: The computational grids used for the grid independence study: (a) coarse, (b) medium, 

and (c) fine. 
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Figure 10.26: Wide view of the coarse (QM1) computational grid. 

 

 
(a)   (b) 

 
(c)   (d) 

Figure 10.27: Results of the grid independence study. 

 

Finally, the computed power with QM1 is compared against the experimentally obtained 

power output for values of ambient wind speed equal to 5 m/s, 6 m/s and 7 m/s, proving that 

0

4

8

12

16

20

24

28

32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
xi

al
 B

la
d

e 
Fo

rc
e 

-
Fn

[N
/m

]

Radial Position - r/R

Mesh - M1

Mesh - M2

Mesh - M3

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ta
n

ge
n

ti
al

 B
la

d
e 

Fo
rc

e 
-

Ft
[N

/m
]

Radial Position - r/R

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

R
ad

ia
l P

o
si

ti
o

n
 -

r/
R

Axial Velocity Component - Dimensionless

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 0.06 0.12 0.18 0.24 0.3 0.36 0.42 0.48 0.54 0.6

R
ad

ia
l P

o
si

ti
o

n
 -

r/
R

Tangential Velocity Component - Dimensionless



Chapter 10 Design Optimization Cases 

 

10-25 

the proposed numerical model is capable of predicting the performance of the examined wind 

turbine configuration. 

 

Case Shroud – Drag [N] Hub – Drag [N] Rotor Power [W] Rotor Thrust [N] 

QM1 18.560 0.561 191.962 31.628 

QM2 18.520 0.562 191.776 31.605 

QM3 18.490 0.560 191.592 31.583 

Table 10.9: Results of the grid independence study. 

 

Linear Blade – Aerodynamic Power  

Wind Speed Rotor Speed IGal2D Prediction Experiment 

5 m/s 340.6 RPM 110.95 W 103.02 W 

6 m/s 408.7 RPM 191.96 W 189.50 W 

7 m/s 476.8 RPM 305.20 W 292.55 W 

Table 10.10: Comparison of the predicted and experimentally measured values of power.  

 

 Geometry Parameterization and Design Variables 

For the parameterization of the twist and chord distributions two B-Spline curves of second 

degree are employed, each one defined by 3 control points, as illustrated in Figure 10.28. The 

movement of B-Spline control points is allowed only in the vertical direction. Therefore, the 

blade chord and twist distributions can be fully defined by using 6 design variables, 

corresponding to the vertical coordinates of the respective control points. The upper and lower 

bounds for each design variable are presented in Figure 10.28. 

 

 
(a)   (b) 

Figure 10.28: Parameterization strategy for chord and twist distributions. 
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In this optimization study, the parameterization and deformation of the computational grid 

is achieved by means of the in-house mesh deformation tool presented in Section 9.2. The 

employed two-dimensional lattice around the initial shroud geometry is depicted in Figure 

10.29. The particular FFD lattice is defined by six control points in the radial direction and 

eight control points in the axial direction; in both parametric directions, fourth-degree basis 

function have been applied. Each control point of the FFD lattice is free to move in both 

directions, except of those positioned at the lattice boundaries; these points have been fixed, 

in order to avoid the formation of overlapping edges in the deformed computational grids. As 

a result, the number of design variables for the shroud geometry equals to 48, defined by the 

Cartesian coordinates of the 24 internal control points of the adopted FFD lattice. Ultimately, 

the total number of the design variables for the blade and shroud geometries within the current 

optimization study equals to 54. The upper and lower boundaries for the Cartesian coordinates 

of the FFD lattice are provided in Table 10.11. The enumeration of the control points goes from 

the bottom to top and left to right. 

 

     

Figure 10.29: Definition of the FFD lattice employed for the parameterization of the computational 

mesh. 
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Point 
Axial Direction Radial Direction 

Lower Bound Upper Bound Lower Bound Upper Bound 

CP11 -0.300 -0.200 1.014 1.014 

CP12 -0.300 -0.200 1.100 1.140 

CP13 -0.300 -0.170 1.100 1.220 

CP14 -0.300 -0.170 1.160 1.350 

CP21 -0.030 0.070 1.005 1.040 

CP22 -0.030 0.080 1.090 1.130 

CP23 -0.100 0.100 1.120 1.200 

CP24 -0.080 0.120 1.100 1.350 

CP31 0.200 0.440 0.850 1.070 

CP32 0.200 0.440 0.980 1.180 

CP33 0.200 0.440 1.000 1.300 

CP34 0.150 0.480 1.070 1.380 

CP41 0.350 0.900 0.800 1.150 

CP42 0.350 0.900 0.800 1.170 

CP43 0.350 0.850 0.990 1.370 

CP44 0.300 0.850 1.000 1.400 

CP51 0.500 1.200 0.850 1.180 

CP52 0.500 1.200 0.800 1.180 

CP53 0.500 1.200 1.050 1.400 

CP54 0.500 1.200 1.100 1.450 

CP61 0.800 1.400 0.800 1.300 

CP62 0.800 1.400 0.800 1.350 

CP63 0.800 1.400 0.850 1.500 

CP64 0.800 1.400 1.100 1.600 

Table 10.11: The adopted bounds for the control points of the FFD lattice.  

 

 

 



Chapter 10 Design Optimization Cases 

 

10-28 

 Objective Function and Implicit Constraints 

10.3.3.1 Design Objectives 

The design objectives for the current application have been defined as the maximization of 

the rotor power coefficient and the minimization of the aerodynamic shroud drag. Thus, the 

design objectives are expressed as follows: 

  
max𝑓𝑃 = max𝐶𝑃 (10.10) 

  

min𝑓𝐷 = min𝐷𝑠 (10.11) 

  

where 𝐶𝑃 denotes the power coefficient of the three bladed rotor and 𝐷𝑠 denotes the total drag 

force on the shroud at the design point. 

 

10.3.3.2 Implicit Constraints 

In this optimization study, besides the adopted explicit constraints, which are defined by 

means of the established bounds for the design variables, four additional implicit constraints 

have been introduced, to ensure that: 

 
C1. The rotor thrust coefficient of the optimal design will be less than a reference value. 

C2. The volume of the optimal shroud design will be less than the volume of the initial one. 

C3. The throat radius of the optimal shroud design will be equal to the initial one. 

C4. The local chord of the blade will be monotonically decreasing. 

 

The implicit constraints are satisfied by introducing four penalty functions. The mathematical 

formulation of the penalty functions for the adopted constraints is described as: 

C1 Constraint   

𝑓𝑇 = {
𝐶𝑇 − 𝐶𝑇,𝑟𝑒𝑓 if  𝐶𝑇 > 𝐶𝑇,𝑟𝑒𝑓 

0 otherwise
, (10.12) 

  
C2 Constraint  

𝑓𝑉 = {
𝑉𝑠 − 𝑉𝑠,𝑟𝑒𝑓 if  𝑉𝑠 > 𝑉𝑠,𝑟𝑒𝑓 

0 otherwise
, (10.13) 

  
C3 Constraint  

𝑓𝑡ℎ = |𝑅𝑡 − 𝑅𝑡,𝑟𝑒𝑓| , (10.14) 

  
C4 Constraint  

𝑓𝑐 = 𝑓𝑐12 + 𝑓𝑐23 , (10.15) 
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where 

  

𝑓𝑐12 = {
𝑐(2) − 𝑐(1) if  𝑐(2) > 𝑐(1) 

0 otherwise
  (10.16) 

  

and 

  

𝑓𝑐23 = {
𝑐(3) − 𝑐(2) if  𝑐(3) > 𝑐(2) 

0 otherwise
 .  (10.17) 

  

Herein, 𝑐(𝑖) denotes the chord value corresponding to the 𝑖𝑡ℎ control point of the respective B-

Spline curve (see Figure 10.28). 

 

10.3.3.3 Cost Function Formulation 

Eventually, the single cost function of the minimization problem at hand can be shaped by 

combining the objective and penalty functions: 

  
𝑓 = 5 − 2 ∙ 𝑓𝑃 + 0.1 ∙ 𝑓𝐷 + 2 ∙ 𝑓𝑣 + 4 ∙ 𝑓𝑡ℎ + 𝑓𝑇 + 10 ∙ 𝑓𝑐  . (10.18) 

  

The parameters multiplying the objectives and penalty functions in Eq. (10.18) have been 

finalized so that each individual function has similar impact on the cumulative cost function. 

 

 Optimization Results 

Similar to the previous optimization cases that were reported in this doctoral dissertation, 

which are included in Section 10.1 and Section 10.2, the current design optimization study was 

performed on a DELLTM R815 PowerEdgeTM computing server that is equipped with four AMD 

OpteronTM 6380 sixteen-core processors. As long as the parameters of the DE algorithm for this 

application are concerned, the population for each generation was set equal to 50 and the 

optimal solution was obtained after the completion of 70 generations. Figure 10.30a shows the 

convergence history of the optimization algorithm, in terms of the fitness function value. 

In addition, Figure 10.30b provides the testing error progression for the two surrogate 

models that were employed in the current optimization study; namely, the MLP and the RBF 

artificial neural networks. Apparently, the testing error of the MLP model was lower than the 

corresponding error of the RBF model for the entire course of the optimization process, by 

approximately two orders of magnitude. Consequently, the pre-evaluation of the trial vectors 

in the current optimization application has been exclusively based on the MLP model. 
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(a)   (b) 

Figure 10.30: (a) The convergence history of the DE algorithm; (b) The testing error for the two 

surrogate modes. 

 

10.3.4.1 Optimal Blade  

Figure 10.31 illustrates the chord and twist distributions of the optimal blade design, in 

comparison with the respective distributions of the linear blade design (also denoted as 

baseline). By observing the optimized twist and chord distributions, it is evident that the new 

blade geometry has a much smother twist distribution, as compared to the one of the linear 

blade; the maximum twist angle of the optimal blade equals to 24.95 degrees and decreases in 

a parabolic way as the blade tip is approached, until a minimum value of 1.22 degrees.  

 

 
(a)   (b) 

Figure 10.31: The chord and twist distributions of the optimal blade design against the chord and 

twist distribution of the linear blade, reported by van Dorst (2011). 
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On the other hand, the current optimization process resulted in a practically linear chord 

distribution along the entire span, with the maximum chord length to be 0.137 m and the 

minimum one 0.086 m. Please note that the linear chord distribution of the optimal blade is a 

truly desirable characteristic, as a simpler blade geometry is generally easier to be 

manufactured. Besides, the chord length of the optimal blade for almost the entire span is 

smaller than the respective value of the baseline one, allowing for significant material savings. 

 

10.3.4.2 Optimal Shroud Geometry  

Figure 10.32 illustrates the aerodynamic profile of the optimal shroud design along with 

the aerodynamic profile of the original Donqi Urban Windmill shroud, while Figure 10.33 

provides a three-dimensional representation of the two axisymmetric designs. Initially, the 

visual comparison between the two aerodynamic shapes reveals that the optimization 

procedure resulted in a very smooth geometry (this is primarily attributed to the effective 

shape parameterization technique) that has a thinner cross-section and a higher camber that 

the baseline one. The main geometrical characteristics of the optimal shroud design are 

provided in Table 10.12. 

 

 

Figure 10.32: The aerodynamic profiles of the baseline and optimized shroud designs. 

 

Please note that even though the axial length of the original and optimal shrouds is 

practically the same, the total volume of the optimal shroud has been reduced by 

approximately 24.7%, allowing for significant cost reduction. Furthermore, the optimal shroud 

design is characterized by a larger exit radius and – since the throat radius of the two designs 

is practically equal – by a larger exit-area-ratio, which according to Sorensen (2016) is 
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proportional to the maximum theoretical power coefficient. Finally, let us note that both the 

adopted geometrical constrains were successfully met, since the volume of the optimal shroud 

is lower than the original and the throat radius has been reduced by only 0.65 percent. 

 

 
(a) Baseline Shroud Design 

 

(b) Optimal Shroud Design 

Figure 10.33: Three-dimensional representation of (a) the baseline and (b) optimal shrouds. 

 

Parameter Symbol Baseline Optimal 

Axial Diffuser Length 𝐿𝑠 1.000 m 0.997 m 

Inlet Radius 𝑅𝑖𝑛 0.870 m 0.856 m 

Throat Radius 𝑅𝑡 0.770 m 0.765 m 

Exit Radius 𝑅𝑜𝑢𝑡 1.000 m 1.124 m 

Shroud Volume 𝑉𝑠 0.545 m3 0.425 m3 

Table 10.12: The main geometrical characteristics of the baseline and optimal shroud designs. 

 

 



Chapter 10 Design Optimization Cases 

 

10-33 

 Performance of the Optimal Design 

The current section involves the aerodynamic evaluation of the optimized wind turbine 

configuration. Initially, Table 10.13 compares the major performance characteristics of the 

optimal shrouded wind turbine design against the Donqi Urban Windmill; the latter one is 

also referred to as the baseline design. According to the numerical results presented in Table 

10.13, the optimal design has the ability to reach significantly higher levels of power output; 

in particular, the aerodynamic power output of the rotor has been increased by approximately 

33%. However, this is also accompanied by higher drag levels on the shroud. Yet, the increased 

value of drag force on the shroud was generally anticipated, since according to momentum 

theory – and more precisely according to Eq. (2.48) – the maximum power coefficient of a 

shrouded wind turbine is an increasing function of the shroud force. The power coefficient for 

the optimal configuration at the design point, calculated based on the rotor swept area, equals 

to 1.148; this is approximately 1.93 times higher than the Betz limit. 

 

Design Rotor Power Rotor Thrust Shroud – Drag Hub – Drag 

Baseline 191.9 Watts 31.628 N 18.560 N 0.561 N 

Optimal 268.5 Watts 36.910 N 43.000 N 0.454 N 

Table 10.13: Performance characteristics of the initial and optimal designs. 

 

In addition, Figure 10.34 presents the axial and tangential force distributions along the 

entire blade span for the optimal and baseline designs. According to both Figure 10.34 and 

Table 10.13, the total axial loading – expressed by means of the thrust force – on the optimal 

rotor design is higher than the total axial loading on the baseline one, by approximately 15.5%; 

in particular, the thrust coefficient at the design point for the baseline rotor equals to 0.812, 

while the thrust coefficient for the optimal one equals to 0.947. Moreover, as long as the 

distribution of the axial or normal force along the blade span is concerned, no significant 

variation of the axial loading value between the involved designs is observed for the blade 

stations located among the rotor hub and 0.5R. However, the axial loading for the region 

corresponding between the 50 percent and 100 percent of the span, is considerably higher for 

the optimal design, with the maximum value of axial force to be increased by approximately 

15%. Now, as long as the values of the tangential force on the blade are concerned, these are 

significantly higher for the case of the optimal design, almost along the entire blade span, as 

Figure 10.34b illustrates. Finally, no significant variation of the drag force on the rotor hub for 

the two involved designs has been observed. 
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(a)   (b) 

Figure 10.34: The axial and tangential force distributions along the optimized and baseline blade 

designs. 

 

Furthermore, in order to have a better understanding of the aerodynamic behavior of the 

baseline and optimal designs, Figure 10.35 until Figure 10.37 present the dimensionless 

contours of axial velocity component, tangential velocity component and static pressure at the 

symmetry plane of the two shrouded wind turbine rotors. In particular, Figure 10.35 clearly 

displays the higher axial velocity levels within the diffuser, for the case of the optimal design, 

which eventually result in a higher mass flow rate, and therefore higher power output.  

 

   
(a) Optimal   (b) Baseline 

Figure 10.35: The contours of dimensionless axial velocity component around the optimal and 

baseline shrouds. 
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(a) Optimal   (b) Baseline 

Figure 10.36: The contours of dimensionless swirl velocity component around the optimal and 

baseline shrouds. 

 

   
(a) Optimal   (b) Baseline 

Figure 10.37: The contours of dimensionless pressure around the optimal and baseline shrouds. 

 

Finally, Figure 10.38 displays the contour lines of the dimensionless static pressure and 

Figure 10.39 illustrates the velocity stream lines around the optimal and baseline shrouds. 

Moreover, the latter one reveals the presence of a small recirculation area near the trailing edge 
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of the optimal diffuser, which can be also identified by observing Figure 10.35a; even though 

the total length of the particular recirculation area equals to 0.3R, it is not expected to have a 

significant impact on the overall system’s performance. 

 

   
(a) Optimal   (b) Baseline 

Figure 10.38: The contour lines of dimensionless pressure around the optimal and baseline shrouds. 

 

   
(a) Optimal   (b) Baseline 

Figure 10.39: The velocity streamlines around the optimal and baseline shrouds. 
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Chapter 11 

Conclusions and Future Work 

 

This chapter summarizes the principal conclusions of the current doctoral dissertation. In particular, 

Section 11.1 provides a concise recap of the entire study, focused on the most significant results and 

contributions, while Section 11.2 indicates possible directions for further research on the specific topic. 

 

11.1 Concluding Remarks 

The concept of diffuser-augmented or shrouded wind turbine represents an attractive and 

highly versatile energy solution that has the potential to yield power performance coefficients 

exceeding the Betz limit, and therefore to improve the economic feasibility of renewable 

energy production under poor wind conditions, such as those prevailing within the urban 

environment. In that regard, shrouded wind turbines could eventually enable significant 

opportunities for more geographic dispersion of wind technology applications, growth in 

distributed energy deployments and further expansion of renewable energy utilization on a 

global scale, contributing to the so-called energy transition. However, the achievement of 

widely adopted implementations and the consolidation of this promising technological 

application in the renewable energy market call for highly efficient and economically 

sustainable designs. Against this background, the present doctoral dissertation has been 

primarily focused on the development and validation of effective computational tools and 

numerical methodologies for, but not restricted to, the aerodynamic analysis, performance 

prediction and design optimization of shrouded wind turbines. The remainder of this section 

summarizes the principal outcomes of this computational study; following the storyline of the 

entire doctoral dissertation, the major conclusions of the present research have been arranged 

into five thematic sub-sections: 

 

 Development of a Blade Element Momentum Code 

 Development of an Axisymmetric RANS Solver 

 Development of a Coupled RANS-BEM Model 

 Design of a Low Reynolds Number Airfoil Family 

 
Development of an Optimization Framework for Shrouded Wind 

Turbines 
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 Development of a Blade Element Momentum Code  

In Chapter 2, the current doctoral dissertation has been focused on the development of an 

in-house Blade Element Momentum code for the aerodynamic analysis and performance 

prediction of both conventional horizontal-axis and shrouded wind turbine rotors. In 

particular, the proposed computational model has been based on the extension of classical 

BEM theory, to the case of shrouded rotors, which was originally proposed by Rio Vaz et al. 

(2014) and is actually implemented by properly modifying the original BEM expressions with 

the axial velocity speed-up distribution over the rotor plane, for the unloaded diffuser 

configuration. Furthermore, the current BEM code has been enhanced with several empirical 

and analytical correction models, dealing with many of the inherent limitations of BEM theory; 

namely, two different correction models for capturing the power losses related to the blade tip 

and rotor hub, a drag correction model that accounts for the effects of Reynolds number, and 

a detailed correction model for the accurate calculation of the axial induction factor, at the 

operating states of rotor in which the momentum theory is no longer valid. The latter one 

employs the expressions proposed by Ning (2014), specially tailored for the case of shrouded 

wind turbines (Leloudas et al., 2017). Besides, two different models for the extrapolation of the 

aerodynamic coefficients to the entire range of angles of attack have been also implemented, 

based on the Montgomerie (2003) and Viterna-Corrigan (Viterna and Corrigan, 1981) 

extrapolation methods. Finally, the calculation of induced velocities at the rotor plane is 

achieved by applying a fixed-point iteration scheme, which is coupled with a typical relaxation 

procedure, aiming to dampen the fluctuating behaviour of the axial induction factor during 

the iterative process. 

The performance evaluation of the proposed BEM code, in terms of accuracy, has been 

reported in Chapter 3, by considering several well-documented benchmark cases, which 

include both conventional horizontal-axis wind turbine and shrouded wind turbine rotors. 

The results of the current simulations were compared against numerical and experimental 

data available in the literature, as well as against the results obtained from the well-known 

QBlade software, validating the ability of the proposed BEM code to provide rapid and 

reasonably accurate predictions of the rotor characteristics, both for unshrouded and shrouded 

wind turbine configurations. However, at the same time, significant discrepancies between the 

computational and the experimental results were identified when the rotor blades operate in 

stall mode, which is a typical deficiency of BEM models and calls for the inclusion of so-called 

stall correction models or the proper modification of the two-dimensional aerodynamic 

coefficients. In addition, the effect of including a tip loss correction model on the power output 

prediction of shrouded rotors was also examined; the corresponding results indicated that the 

inclusion of such a correction model results in more accurate predictions of the experimental 
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data, especially as the value of the freestream velocity increases. However, in some cases, a 

possible underestimation of the actual power output should be also anticipated. 

 

 Development of an Axisymmetric RANS Solver 

In Chapter 4, the current doctoral dissertation has been featuring the application of 

Artificial Compressibility Method (ACM) for the numerical prediction of incompressible 

axisymmetric flows that involve swirling. The respective numerical solver, named IGal2D, 

has been based on the axisymmetric formulation of the Reynolds-Averaged Navier-Stokes 

(RANS) equations, which were eventually arranged in a pseudo-Cartesian form and enhanced 

by the addition of the circumferential momentum equation. The discretization of spatial 

derivative terms within the governing equations has been performed via unstructured two-

dimensional grid layouts, by means of a node-centered finite-volume scheme. For the 

evaluation of inviscid fluxes, the upwind Roe’s approximate Riemann solver was applied, 

coupled with a higher-order accurate spatial reconstruction, whereas an element-based 

approach has been used for the calculation of gradients required for the viscous ones. In 

addition, a detailed description of the convective flux Jacobian and the entire eigenvector 

system used within the Roe’s approximate Riemann solver was provided, filling a respective 

gap in research literature. Time integration has been relying on a second-order accurate four-

stage Runge-Kutta method, adopting additionally a local time-stepping technique. Finally, 

further acceleration, in terms of computational time, was achieved by using an agglomeration 

multigrid scheme, incorporating the full approximation scheme in a V-cycle process, within 

an efficient edge-based data structure. 

Subsequently, Chapter 5 has been presenting a detailed validation study on the 

performance of the proposed numerical methodology and the respective flow solver, by 

encountering several non-swirling and swirling flows with axial symmetry. As long as the 

numerical prediction of swirling flows is concerned – which are generally more demanding 

than their non-swirling counterparts – the proposed methodology was initially validated by 

considering the incompressible, inviscid and swirling flow inside a specially designed 

axisymmetric S-shaped tube. Detailed comparisons between IGal2D code and the commercial 

software ANSYS Fluent (which employs the SIMPLE algorithm) were made, regarding 

velocity components and pressure distributions at different reference sections of the tube. An 

excellent agreement between them was observed. Furthermore, IGal2D was successfully 

evaluated against properly established metrics, referring to the conservation of total pressure 

and angular momentum. Regarding the performance of the FAS V-cycle scheme, the multigrid 

scheme was found capable of speeding-up the solution procedure more than 20 times. Similar 

levels of accuracy were identified by encountering the second benchmark test case, concerning 
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incompressible laminar flow inside a straight-wall pipe equipped with swirl generator. The 

particular flow apparatus has been examined numerically and experimentally by Rocha et al. 

(2015). IGal2D was capable of accurately predicting both axial and tangential velocity 

component distributions along the entire length of the pipe, while excellent agreement 

between the results of IGal2D, those of ANSYS Fluent (axisymmetric simulation) and those 

reported in the study of Rocha et al. (2015) (3D simulation), in terms of pressure distribution 

along the axisymmetric line, was observed. As long as the comparison with the available 

experimental data is concerned, the proposed method resulted in a reasonably accurate 

prediction of the pressure drop; the experimental measurement was over-predicted by only 

4%. Finally, the ERCOFTAC swirling conical diffuser (Clausen et al., 1993) was examined. As 

in the previous case studies, an almost perfect agreement between IGal2D and ANSYS Fluent 

was succeeded for both axial and tangential velocity components at each one of the examined 

sections. However, some non-trivial discrepancies between the numerical and experimental 

data were identified; these are mainly attributed to the inability of k-ω SST model to accurately 

predict turbulent kinetic energy k in such swirling flows (Rodi et al., 1995). Therefore, this calls 

for the incorporation of more advanced turbulence models within the current solver. 

Nevertheless, near-wall intensity, peak position of axial velocity and swirl velocity 

distributions along the entire length of the diffuser have been reasonably predicted. 

Furthermore, an accurate calculation of the experimentally obtained pressure coefficient 

distribution over the diffuser wall (pressure recovery) by IGal2D was achieved. Overall, the 

proposed numerical solver and consequently the corresponding axisymmetric-swirling ACM 

is revealed capable of accurately simulating a wide variety of axisymmetric swirling flows, 

whereas its performance may be further enhanced by the incorporation of alternative 

turbulence models, which will be the subject of further research. 

 

 Development of a Coupled RANS – BEM Model 

Additionally, Chapter 8 reported the development and validation of an axisymmetric 

RANS - BEM model that is based on the combination of the in-house BEM and IGal2D codes, 

for the simultaneous prediction of the wind turbine rotor performance and surrounding flow 

characteristics. The fundamental idea behind the proposed model relies on replacing the 

momentum part of the classical BEM theory with a more elaborate flow model, such as the 

Navier-Stokes equations, while assuming an actuator disc representation of the actual rotor 

geometry. Eventually, the rotor blades are modelled by means of body force terms (naturally 

included within the momentum conservation laws) and blade element theory equations. The 

entire coupling procedure is coordinated by IGal2D software, while interaction is achieved by 

means of the aerodynamic blade loads and velocity components at the rotor plane. The 
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interpolation of the involved quantities between the mesh nodes and the blade stations is 

implemented by custom Matlab scripts. 

The performance evaluation of the proposed methodology was initially investigated by 

considering the NREL 5-MW reference wind turbine, where the results of the in-house model 

were compared against those of other high-fidelity simulation tools. The comparisons between 

the involved software indicated that the current implementation has been capable of 

providing reasonably similar levels of accuracy, in terms of predicting the aerodynamic power 

and thrust of the wind turbine rotor, as well as the axial momentum deficit in the turbine wake 

field and the distribution of the aerodynamic loads along the blade span. Subsequently, in 

order to add further validity to the developed RANS - BEM methodology, two additional cases 

were studied, involving an unshrouded and a shrouded configuration of the NREL Phase VI 

rotor. As long as the unshrouded NREL Phase VI rotor is concerned, the current simulation 

results were successfully validated against the available experimental data, for the 

aerodynamic rotor power, aerodynamic rotor trust and loading distribution along the blade. 

According to the respective comparisons, all the reference quantities have been accurately 

predicted; in particular, the percentage difference between the numerical prediction and the 

experimental measurement for the aerodynamic power was less than 1%, whereas the 

respective percentage difference for the rotor thrust was approximately 3%. Finally, the 

accuracy of the current RANS - BEM implementation was assessed against a shrouded NREL 

Phase VI configuration, which was originally reported and studied by Aranake (2013). As for 

the previous cases, the proposed methodology was able to provide similar levels of accuracy, 

as compared to the detailed 3D RANS simulations with a fully resolved rotor geometry 

reported by Aranake (2013). 

 

 Design of a Low Reynolds Airfoil Family 

Besides the aforementioned analysis tools, in Chapter 6 and Chapter 7, the current doctoral 

dissertation has been focused on the design and aerodynamic evaluation of a low-Reynolds 

airfoils family, which consists of six airfoils, for the entire blade span of small horizontal-axis 

wind turbines, aiming to reduce the effects related to laminar separation, increase the 

structural integrity of the blade, enhance the startup behavior of the wind turbine and meet 

the current blade manufacturing limitations. Initially, five thickened airfoils were constructed 

based on the RG15 airfoil. According to the followed methodology, the thickened airfoils were 

designed in such a way that they have the same mean camber line (MCL), as compared to the 

one of the original RG15 airfoil (so as to retain its desirable aerodynamic characteristics), but 

an increased thickness-to-chord ratio distribution by 50%, 40%, 30%, 20% and 10%, 

respectively. Then, another custom script was applied to the original and the thickened RG15 
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airfoils, for the generation of a rounded trailing edge without truncating the airfoil, through 

the proper modification (local thickening) of the provided airfoil geometries. The final airfoil 

family resulted through the application of a parabolic thickness distribution to the thickened 

airfoils, at their trailing edge region, setting the value for the blending distance equal to 70% 

and the trailing edge radius equal to 0.5% of the chord length respectively. According to the 

aerodynamic evaluations performed with XFOIL code at various low Reynolds numbers, the 

dependence of the blending distance on the lift and drag coefficients was found practically 

zero; the same conclusion was drawn for the dependence of the aerodynamic coefficients on 

the rounded trailing edge with a radius of 0.5% of the chord. 

The aerodynamic performance of the entire RG15 airfoil family was initially evaluated by 

using XFOIL software for various low Reynolds numbers, ranging from 60,000 to 300,000. The 

results of the XFOIL analysis revealed that the increase of the thickness-to-chord ratio leads to 

a reduction in the maximum lift-to-drag ratio for each one of the considered Reynolds 

numbers. However, as the Reynolds number increases the particular percentage reduction 

decreases. Apparently, the maximum reduction in the maximum lift-to-drag ratio, as 

compared to the one of the original RG15 airfoil, was found for the lowest Reynolds number 

that was examined (i.e., 60,000) and the RG15-(50)-70-1 airfoil (the thicker airfoil of the RG15 

family); this percentage reduction was equal to 12.68%. The corresponding percentage at 

300,000 Re was equal to 4.6%. Nevertheless, even the largest reduction of the maximum lift-

to-drag ratio seems minor given that this airfoil has a maximum thickness-to-chord ratio that 

is 50% higher than the maximum thickness-to-chord ratio of the baseline RG15 airfoil, 

accompanied by cross-sectional area that has been increased by approximately 52%. On the 

other hand, a growth of the maximum lift coefficient for each Re was found by increasing the 

thickness-to-chord ratio.  

Moreover, the performance of the RG15 airfoil family was further examined by employing 

the two-dimensional version of the in-house IGal2D solver, using the standard two-equation 

SST k-ω turbulence model. The RANS simulations were performed at 300,000 Re. Although 

the results of the RANS simulation were generally in accordance with those of XFOIL, a 

notable over-estimation of the drag coefficient was detected, leading to the under-estimation 

of the lift-to-drag ratio. Such an outcome clearly indicates that a low Reynolds number 

correction model is essential, in order to increase the accuracy of the numerical results. Finally, 

the behavior of the recirculation area behind the rounded trailing edge for different angles of 

attack was examined, while the thickening of the airfoils was found to have a beneficial impact 

on the appearance of laminar separation bubbles. 
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 Development of an Optimization Framework for Shrouded 

Wind Turbines 

Finally, this work presented the development and application of a modular optimization 

framework for the aerodynamic shape optimization of shrouded wind turbines, which 

combines the aforementioned analysis tools with a parallel and asynchronous version of a 

meta-model assisted Differential Evolution (DE) algorithm. The entire optimization process is 

implemented iteratively until the completion of the maximum number of generations, while 

the DE algorithm interacts with the parameterization, analysis and post-processing software 

in a completely automated manner, by utilizing specially developed scripts. Eventually, the 

proposed methodology was applied to three distinct design optimization cases, including: 

 

 The aerodynamic shape optimization of the rotor blades for a given shroud geometry – OP1. 

 The aerodynamic shape optimization of an unloaded diffuser configuration – OP2. 

 The simultaneous aerodynamic shape optimization of the blades and the diffuser – OP3. 

 

The first optimization problem (OP1) has been focused on the aerodynamic design of 

improved rotor blades for the Donqi Urban Windmills, by considering a fixed diffuser 

geometry; the performance evaluation of the candidate solutions was achieved by using the 

in-house BEM code that was developed in the context of the current doctoral dissertation, 

while the parameterization of the twist and chord distributions was accomplished using two 

distinct B-Spline curves. The proposed optimization methodology eventually resulted in two 

new blade designs for the particular shrouded wind turbine, capable of considerably 

increasing the power output performance of the examined application. In particular, the first 

optimized blade, which is denoted as BD1 and has been based on the NACA 2207 airfoil, led 

to a mean increase of the aerodynamic power output of the rotor that approximates 18.2%, 

while the corresponding percentage for the second blade design, which is denoted as BD2 and 

has been employing the RG15 airfoil for the entire span, was found equal to 19.4%. Besides, 

the optimization procedure resulted in blade designs that differ significantly from the original 

blade, with a much smother and less complicated twist distribution; a fact that renders them 

quite attractive from a manufacturing point of view, as simpler geometries are easier to be 

manufactured. 

The second optimization problem (OP2) has been focused on the design of an improved 

shroud for a 15 kW diffuser-augmented wind turbine, aiming to maximize the mean velocity 

speed-up ratio and minimize drag force, while maintaining the throat diameter of the baseline 

shroud design; in this application, the presence of the turbine was not included. The 

performance evaluation of the candidate design was made by using the in-house IGal2D 
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solver, while the mesh and geometry parameterization were simultaneously succeeded by 

employing an in-house developed computational tool, based on the well-known Free-Form 

Deformation (FFD) technique.  In addition, a geometrical constraint ensuring that the volume 

of the optimal design will be less or equal to the volume of the baseline one, was also imposed. 

The optimization was performed for a freestream velocity of 6 m/s. Besides the utilization of a 

time-saving axisymmetric flow solver and an asynchronous version of the DE algorithm, 

further acceleration –  by approximately 38% – was achieved through the combination of the 

optimization algorithm with two meta-models; namely, an MLP and an RBF ANNs. The 

optimization resulted in a shroud design (denoted as SD1) yielding a mean-velocity speed-up 

ratio of 1.9, which was 23% higher than the mean velocity speed-up ratio of the baseline design, 

accompanied by a remarkable reduction in surface drag by approximately 47%. However, the 

relatively small thickness distribution of SD1, in the region downstream the rotor plane, was 

identified as a critical point that could probably hamper the structural integrity of the 

particular design. To this end, a modified shroud profile, denoted as SD2, was created by 

locally thickening SD1. The aerodynamic performance of SD2 was not much inferior. As a 

matter of fact, the drag reduction (comparatively to the baseline design) was equal to 45% and 

the increase in the mean velocity speed-up ratio equal to 21% (mean velocity speed-up ratio 

equal to 1.86). In addition, a remarkable volume reduction, touching 48% and 41% for SD1 

and SD2 respectively, was also achieved, allowing for huge cost reduction, even though the 

total length of the diffuser was increased. Finally, both SD1 and SD2 resulted in significantly 

smaller flow separations near the exit plane, which is identified as the main reason for the 

increase in velocity acceleration and drag reduction, while no recirculation areas were 

observed along the high-pressure surface of the new diffusers. 

Finally, the third design application (OP3) that was reported in the current doctoral study, 

has been focused on simultaneously optimizing the shape of the rotor blades and the shroud. 

For this purpose, the DE algorithm was coupled with the in-house developed RANS - BEM 

methodology, which combines the IGal2D solver and BEM code. In this application, the 

parameterization of the computational mesh and shroud geometry was made by using the 

FFD-based mesh morphing tool that was developed in the current study, while the 

parameterization of the twist and chord distributions of the blade was achieved by means of 

B-Spline curves. The optimization was performed for a free-stream velocity of 6 m/s, aiming 

to increase the rotor power output, while minimize the shroud drag. In addition, four explicit 

constraints were also imposed, in order to ensure that: (i) the rotor thrust coefficient of the 

optimal design will be less than unity; (ii) the volume of the optimal shroud design will be less 

than the volume of the initial one; (iii) the throat radius of the optimal shroud design will be 

equal to the initial one; (iv) the local chord of the blade will be monotonically decreasing. 

Eventually, the current optimization method was capable of providing a highly performing 
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solution to this challenging design problem, while respecting all the established constraints. 

Specifically, the optimal design was capable of increasing the power output of the baseline one 

by approximately 33% and yielding a power coefficient of approximately 1.93 times higher 

than the Betz limit. 

 

11.2 Further Research 

The current section indicates possible directions for the extension of the methodologies and 

computational tools that were developed within the context of this doctoral dissertation. The 

intention of the future work should be in the direction to enhance the usefulness, the 

applicability, and the accuracy of the developed methodology, and the corresponding 

computational tools. To this end, the following tasks may be applied: 

- Apply additional validation to the proposed methodology and the corresponding 

computational tools. 

- Develop a graphical interface, under which the aforementioned computational tools 

will be integrated, to provide a better working environment to the potential users. 

- Import, validate and compare additional turbulence models to the IGal2D solver. 

- Apply parallelization to the IGal2D solver, using OpenMP (a task under development). 

- Extent the presented analysis and design optimization methodology for the case of 

shrouded propellers. 
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Appendix A – Differential Operators in Cylindrical Coordinates 

At this point, let us consider a cylindrical coordinate system (𝑟, 𝜃, 𝑧) and a velocity vector 

field 𝐮 = (𝑢𝑟, 𝑢𝜃, 𝑢𝑧). The divergence of the velocity field in cylindrical coordinates reads: 

  

∇ ∙ 𝐮 =
1

𝑟

𝜕(𝑟𝑢𝑟)

𝜕𝑟
+
1

𝑟

𝜕𝑢𝜃
𝜕𝜃

+
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𝜕𝑧
 , (A.1) 

 

 

 

Moreover, the gradient of the velocity vector field in cylindrical coordinates is expressed as: 

  

grad𝐮 = ∇𝐮 =   
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 (A.2) 

 

 

 

Finally, the Laplacian of the velocity vector field in cylindrical coordinates is given as: 
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Appendix B – Conservative Form of the Axisymmetric Navier-Stokes 

The conservative form of the axisymmetric Navier-Stokes equations in terms of velocity 

gradients for incompressible fluid motion reads: 

Continuity:  

1

𝑟

𝜕(𝑟𝑢𝑟)

𝜕𝑟
+
𝜕𝑢𝑧
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= 0 (B.1) 
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Azimuthal Momentum (𝜽):  
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Axial Momentum (𝒛):  
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Appendix C - RG15 Airfoil Family 

This chapter provides the dimensionless coordinates of the low-Reynolds RG15 airfoil family. 

 

RG15-70-1 Airfoil 

Point ID x/c y/c Point ID x/c y/c 

1 1.000000 0.000000 42 0.480370 0.058146 

2 0.999615 0.002599 43 0.460770 0.059071 

3 0.998459 0.004265 44 0.441231 0.059876 

4 0.996534 0.005426 45 0.421783 0.060556 

5 0.993844 0.005893 46 0.402455 0.061105 

6 0.990393 0.006423 47 0.383277 0.061517 

7 0.986185 0.007097 48 0.364280 0.061787 

8 0.981228 0.007895 49 0.345492 0.061912 

9 0.975528 0.008803 50 0.326941 0.061889 

10 0.969096 0.009802 51 0.308658 0.061715 

11 0.961940 0.010870 52 0.290670 0.061387 

12 0.954072 0.011990 53 0.273005 0.060903 

13 0.945503 0.013150 54 0.255689 0.060260 

14 0.936248 0.014346 55 0.238751 0.059457 

15 0.926320 0.015590 56 0.222215 0.058494 

16 0.915735 0.016896 57 0.206107 0.057373 

17 0.904508 0.018261 58 0.190453 0.056093 

18 0.892658 0.019681 59 0.175276 0.054657 

19 0.880203 0.021155 60 0.160600 0.053066 

20 0.867161 0.022680 61 0.146447 0.051325 

21 0.853553 0.024254 62 0.132839 0.049440 

22 0.839400 0.025875 63 0.119797 0.047415 

23 0.824724 0.027537 64 0.107342 0.045259 

24 0.809547 0.029240 65 0.095492 0.042979 

25 0.793893 0.030977 66 0.084265 0.040579 

26 0.777785 0.032745 67 0.073680 0.038068 

27 0.761249 0.034537 68 0.063752 0.035455 

28 0.744311 0.036351 69 0.054497 0.032752 

29 0.726995 0.038183 70 0.045928 0.029972 

30 0.709330 0.040025 71 0.038060 0.027116 

31 0.691342 0.041868 72 0.030904 0.024200 

32 0.673059 0.043679 73 0.024472 0.021240 

33 0.654508 0.045446 74 0.018772 0.018273 

34 0.635720 0.047162 75 0.013815 0.015317 

35 0.616723 0.048820 76 0.009607 0.012362 

36 0.597545 0.050409 77 0.006156 0.009446 

37 0.578217 0.051922 78 0.003466 0.006636 

38 0.558769 0.053354 79 0.001541 0.004143 

39 0.539230 0.054700 80 0.000385 0.001971 

40 0.519630 0.055953 81 0.000000 0.000000 
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41 0.500000 0.057105 82 0.000385 -0.001864 

 

Point ID x/c y/c Point ID x/c y/c 

83 0.001541 -0.003636 124 0.558769 -0.020285 

84 0.003466 -0.005424 125 0.578217 -0.019214 

85 0.006156 -0.007242 126 0.597545 -0.018049 

86 0.009607 -0.008942 127 0.616723 -0.016812 

87 0.013815 -0.010544 128 0.635720 -0.015527 

88 0.018772 -0.012175 129 0.654508 -0.014218 

89 0.024472 -0.013793 130 0.673059 -0.012911 

90 0.030904 -0.015339 131 0.691342 -0.011622 

91 0.038060 -0.016775 132 0.709330 -0.010367 

92 0.045928 -0.018105 133 0.726995 -0.009182 

93 0.054497 -0.019356 134 0.744311 -0.008079 

94 0.063752 -0.020523 135 0.761249 -0.007065 

95 0.073680 -0.021600 136 0.777785 -0.006143 

96 0.084265 -0.022583 137 0.793893 -0.005317 

97 0.095492 -0.023472 138 0.809547 -0.004586 

98 0.107342 -0.024273 139 0.824724 -0.003951 

99 0.119797 -0.024987 140 0.839400 -0.003412 

100 0.132839 -0.025617 141 0.853553 -0.002969 

101 0.146447 -0.026164 142 0.867161 -0.002617 

102 0.160600 -0.026631 143 0.880203 -0.002355 

103 0.175276 -0.027018 144 0.892658 -0.002175 

104 0.190453 -0.027330 145 0.904508 -0.002074 

105 0.206107 -0.027565 146 0.915735 -0.002049 

106 0.222215 -0.027729 147 0.926320 -0.002093 

107 0.238751 -0.027823 148 0.936248 -0.002199 

108 0.255689 -0.027850 149 0.945503 -0.002356 

109 0.273005 -0.027814 150 0.954072 -0.002554 

110 0.290670 -0.027716 151 0.961940 -0.002787 

111 0.308658 -0.027556 152 0.969096 -0.003047 

112 0.326941 -0.027338 153 0.975528 -0.003325 

113 0.345492 -0.027062 154 0.981228 -0.003614 

114 0.364280 -0.026730 155 0.986185 -0.003906 

115 0.383277 -0.026343 156 0.990393 -0.004190 

116 0.402455 -0.025903 157 0.993844 -0.004463 

117 0.421783 -0.025410 158 0.996534 -0.004276 

118 0.441231 -0.024865 159 0.998459 -0.003115 

119 0.460770 -0.024266 160 0.999615 -0.001450 

120 0.480370 -0.023612 161 1.000000 0.000000 

121 0.500000 -0.022896 - - - 

122 0.519630 -0.022113 - - - 

123 0.539230 -0.021248 - - - 

Table C.1: Cartesian coordinates of RG15-70-1 airfoil. 
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RG15-(10)-70-1 

Point ID x/c y/c Point ID x/c y/c 

1 1.000000 0.000000 42 0.480370 0.062236 

2 0.999615 0.002606 43 0.460770 0.063240 

3 0.998459 0.004275 44 0.441231 0.064114 

4 0.996534 0.005442 45 0.421783 0.064855 

5 0.993844 0.005929 46 0.402455 0.065456 

6 0.990393 0.006488 47 0.383277 0.065910 

7 0.986185 0.007197 48 0.364280 0.066213 

8 0.981228 0.008035 49 0.345492 0.066360 

9 0.975528 0.008992 50 0.326941 0.066350 

10 0.969096 0.010047 51 0.308658 0.066178 

11 0.961940 0.011177 52 0.290670 0.065843 

12 0.954072 0.012365 53 0.273005 0.065341 

13 0.945503 0.013597 54 0.255689 0.064670 

14 0.936248 0.014870 55 0.238751 0.063828 

15 0.926320 0.016197 56 0.222215 0.062815 

16 0.915735 0.017592 57 0.206107 0.061632 

17 0.904508 0.019053 58 0.190453 0.060281 

18 0.892658 0.020576 59 0.175276 0.058762 

19 0.880203 0.022159 60 0.160600 0.057078 

20 0.867161 0.023799 61 0.146447 0.055233 

21 0.853553 0.025494 62 0.132839 0.053232 

22 0.839400 0.027241 63 0.119797 0.051083 

23 0.824724 0.029035 64 0.107342 0.048791 

24 0.809547 0.030874 65 0.095492 0.046366 

25 0.793893 0.032753 66 0.084265 0.043812 

26 0.777785 0.034665 67 0.073680 0.041137 

27 0.761249 0.036606 68 0.063752 0.038351 

28 0.744311 0.038571 69 0.054497 0.035468 

29 0.726995 0.040555 70 0.045928 0.032501 

30 0.709330 0.042552 71 0.038060 0.029450 

31 0.691342 0.044550 72 0.030904 0.026330 

32 0.673059 0.046515 73 0.024472 0.023164 

33 0.654508 0.048436 74 0.018772 0.019989 

34 0.635720 0.050302 75 0.013815 0.016826 

35 0.616723 0.052106 76 0.009607 0.013644 

36 0.597545 0.053836 77 0.006156 0.010484 

37 0.578217 0.055484 78 0.003466 0.007507 

38 0.558769 0.057041 79 0.001541 0.004692 

39 0.539230 0.058502 80 0.000385 0.002194 

40 0.519630 0.059861 81 0.000000 0.000195 

41 0.500000 0.061108 82 -0.000003 0.000000 
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Point ID x/c y/c Point ID x/c y/c 

83 0.000000 -0.000176 124 0.519630 -0.026012 

84 0.000385 -0.001922 125 0.539230 -0.025041 

85 0.001541 -0.003862 126 0.558769 -0.023963 

86 0.003466 -0.005881 127 0.578217 -0.022766 

87 0.006156 -0.007915 128 0.597545 -0.021467 

88 0.009607 -0.009816 129 0.616723 -0.020088 

89 0.013815 -0.011635 130 0.635720 -0.018656 

90 0.018772 -0.013498 131 0.654508 -0.017195 

91 0.024472 -0.015366 132 0.673059 -0.015734 

92 0.030904 -0.017158 133 0.691342 -0.014289 

93 0.038060 -0.018828 134 0.709330 -0.012878 

94 0.045928 -0.020379 135 0.726995 -0.011538 

95 0.054497 -0.021846 136 0.744311 -0.010280 

96 0.063752 -0.023221 137 0.761249 -0.009114 

97 0.073680 -0.024494 138 0.777785 -0.008044 

98 0.084265 -0.025664 139 0.793893 -0.007073 

99 0.095492 -0.026727 140 0.809547 -0.006200 

100 0.107342 -0.027692 141 0.824724 -0.005429 

101 0.119797 -0.028558 142 0.839400 -0.004759 

102 0.132839 -0.029328 143 0.853553 -0.004189 

103 0.146447 -0.030004 144 0.867161 -0.003718 

104 0.160600 -0.030588 145 0.880203 -0.003341 

105 0.175276 -0.031080 146 0.892658 -0.003053 

106 0.190453 -0.031483 147 0.904508 -0.002850 

107 0.206107 -0.031799 148 0.915735 -0.002729 

108 0.222215 -0.032030 149 0.926320 -0.002685 

109 0.238751 -0.032180 150 0.936248 -0.002708 

110 0.255689 -0.032251 151 0.945503 -0.002789 

111 0.273005 -0.032247 152 0.954072 -0.002915 

112 0.290670 -0.032169 153 0.961940 -0.003081 

113 0.308658 -0.032020 154 0.969096 -0.003278 

114 0.326941 -0.031800 155 0.975528 -0.003501 

115 0.345492 -0.031511 156 0.981228 -0.003742 

116 0.364280 -0.031156 157 0.986185 -0.003995 

117 0.383277 -0.030736 158 0.990393 -0.004245 

118 0.402455 -0.030253 159 0.993844 -0.004488 

119 0.421783 -0.029708 160 0.996534 -0.004288 

120 0.441231 -0.029101 161 0.998459 -0.003121 

121 0.460770 -0.028431 162 0.999615 -0.001452 

122 0.480370 -0.027697 163 1.000000 0.000000 

123 0.500000 -0.026893 - - - 

Table C.2: Cartesian coordinates of RG15-(10)-70-1 airfoil. 
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RG15-(20)-70-1 

Point ID x/c y/c Point ID x/c y/c 

1 1.000000 0.000000 42 0.480370 0.066327 

2 0.999615 0.002614 43 0.460770 0.067409 

3 0.998459 0.004288 44 0.441231 0.068353 

4 0.996534 0.005462 45 0.421783 0.069154 

5 0.993844 0.005967 46 0.402455 0.069806 

6 0.990393 0.006551 47 0.383277 0.070303 

7 0.986185 0.007292 48 0.364280 0.070638 

8 0.981228 0.008174 49 0.345492 0.070808 

9 0.975528 0.009182 50 0.326941 0.070811 

10 0.969096 0.010293 51 0.308658 0.070642 

11 0.961940 0.011485 52 0.290670 0.070300 

12 0.954072 0.012740 53 0.273005 0.069780 

13 0.945503 0.014044 54 0.255689 0.069080 

14 0.936248 0.015394 55 0.238751 0.068199 

15 0.926320 0.016804 56 0.222215 0.067136 

16 0.915735 0.018288 57 0.206107 0.065893 

17 0.904508 0.019846 58 0.190453 0.064470 

18 0.892658 0.021472 59 0.175276 0.062869 

19 0.880203 0.023164 60 0.160600 0.061092 

20 0.867161 0.024919 61 0.146447 0.059143 

21 0.853553 0.026734 62 0.132839 0.057029 

22 0.839400 0.028607 63 0.119797 0.054754 

23 0.824724 0.030534 64 0.107342 0.052328 

24 0.809547 0.032510 65 0.095492 0.049760 

25 0.793893 0.034529 66 0.084265 0.047052 

26 0.777785 0.036586 67 0.073680 0.044214 

27 0.761249 0.038675 68 0.063752 0.041256 

28 0.744311 0.040791 69 0.054497 0.038194 

29 0.726995 0.042929 70 0.045928 0.035042 

30 0.709330 0.045080 71 0.038060 0.031798 

31 0.691342 0.047233 72 0.030904 0.028474 

32 0.673059 0.049352 73 0.024472 0.025103 

33 0.654508 0.051425 74 0.018772 0.021723 

34 0.635720 0.053443 75 0.013815 0.018354 

35 0.616723 0.055393 76 0.009607 0.014954 

36 0.597545 0.057264 77 0.006156 0.011551 

37 0.578217 0.059046 78 0.003466 0.008323 

38 0.558769 0.060728 79 0.001541 0.005276 

39 0.539230 0.062305 80 0.000385 0.002567 

40 0.519630 0.063769 81 0.000000 0.000547 

41 0.500000 0.065112 82 -0.000011 0.000000 
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Point ID x/c y/c Point ID x/c y/c 

83 0.000000 -0.000248 124 0.519630 -0.029910 

84 0.000385 -0.001998 125 0.539230 -0.028833 

85 0.001541 -0.004109 126 0.558769 -0.027640 

86 0.003466 -0.006317 127 0.578217 -0.026318 

87 0.006156 -0.008557 128 0.597545 -0.024885 

88 0.009607 -0.010677 129 0.616723 -0.023365 

89 0.013815 -0.012709 130 0.635720 -0.021784 

90 0.018772 -0.014802 131 0.654508 -0.020172 

91 0.024472 -0.016920 132 0.673059 -0.018556 

92 0.030904 -0.018961 133 0.691342 -0.016955 

93 0.038060 -0.020867 134 0.709330 -0.015388 

94 0.045928 -0.022641 135 0.726995 -0.013893 

95 0.054497 -0.024325 136 0.744311 -0.012481 

96 0.063752 -0.025909 137 0.761249 -0.011163 

97 0.073680 -0.027379 138 0.777785 -0.009944 

98 0.084265 -0.028736 139 0.793893 -0.008828 

99 0.095492 -0.029976 140 0.809547 -0.007814 

100 0.107342 -0.031105 141 0.824724 -0.006906 

101 0.119797 -0.032124 142 0.839400 -0.006104 

102 0.132839 -0.033035 143 0.853553 -0.005409 

103 0.146447 -0.033841 144 0.867161 -0.004817 

104 0.160600 -0.034542 145 0.880203 -0.004326 

105 0.175276 -0.035139 146 0.892658 -0.003930 

106 0.190453 -0.035635 147 0.904508 -0.003625 

107 0.206107 -0.036032 148 0.915735 -0.003409 

108 0.222215 -0.036331 149 0.926320 -0.003276 

109 0.238751 -0.036537 150 0.936248 -0.003217 

110 0.255689 -0.036652 151 0.945503 -0.003220 

111 0.273005 -0.036680 152 0.954072 -0.003274 

112 0.290670 -0.036623 153 0.961940 -0.003373 

113 0.308658 -0.036483 154 0.969096 -0.003510 

114 0.326941 -0.036261 155 0.975528 -0.003676 

115 0.345492 -0.035960 156 0.981228 -0.003869 

116 0.364280 -0.035582 157 0.986185 -0.004079 

117 0.383277 -0.035130 158 0.990393 -0.004300 

118 0.402455 -0.034603 159 0.993844 -0.004517 

119 0.421783 -0.034005 160 0.996534 -0.004303 

120 0.441231 -0.033336 161 0.998459 -0.003129 

121 0.460770 -0.032596 162 0.999615 -0.001454 

122 0.480370 -0.031782 163 1.000000 0.000000 

123 0.500000 -0.030889 - - - 

Table C.3: Cartesian coordinates of RG15-(20)-70-1 airfoil. 
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 C-7  

RG15-(30)-70-1 

Point ID x/c y/c Point ID x/c y/c 

1 1.000000 0.000000 42 0.480370 0.070419 

2 0.999615 0.002622 43 0.460770 0.071578 

3 0.998459 0.004301 44 0.441231 0.072591 

4 0.996534 0.005482 45 0.421783 0.073453 

5 0.993844 0.006006 46 0.402455 0.074157 

6 0.990393 0.006617 47 0.383277 0.074695 

7 0.986185 0.007390 48 0.364280 0.075063 

8 0.981228 0.008315 49 0.345492 0.075256 

9 0.975528 0.009371 50 0.326941 0.075272 

10 0.969096 0.010539 51 0.308658 0.075106 

11 0.961940 0.011793 52 0.290670 0.074756 

12 0.954072 0.013115 53 0.273005 0.074219 

13 0.945503 0.014492 54 0.255689 0.073491 

14 0.936248 0.015919 55 0.238751 0.072571 

15 0.926320 0.017412 56 0.222215 0.071458 

16 0.915735 0.018986 57 0.206107 0.070155 

17 0.904508 0.020640 58 0.190453 0.068661 

18 0.892658 0.022369 59 0.175276 0.066978 

19 0.880203 0.024170 60 0.160600 0.065109 

20 0.867161 0.026039 61 0.146447 0.063057 

21 0.853553 0.027976 62 0.132839 0.060829 

22 0.839400 0.029975 63 0.119797 0.058431 

23 0.824724 0.032034 64 0.107342 0.055871 

24 0.809547 0.034146 65 0.095492 0.053159 

25 0.793893 0.036307 66 0.084265 0.050298 

26 0.777785 0.038509 67 0.073680 0.047299 

27 0.761249 0.040746 68 0.063752 0.044171 

28 0.744311 0.043013 69 0.054497 0.040930 

29 0.726995 0.045303 70 0.045928 0.037594 

30 0.709330 0.047608 71 0.038060 0.034158 

31 0.691342 0.049916 72 0.030904 0.030632 

32 0.673059 0.052190 73 0.024472 0.027058 

33 0.654508 0.054416 74 0.018772 0.023475 

34 0.635720 0.056584 75 0.013815 0.019902 

35 0.616723 0.058681 76 0.009607 0.016287 

36 0.597545 0.060693 77 0.006156 0.012642 

37 0.578217 0.062608 78 0.003466 0.009163 

38 0.558769 0.064415 79 0.001541 0.005881 

39 0.539230 0.066107 80 0.000385 0.002963 

40 0.519630 0.067677 81 0.000000 0.000887 

41 0.500000 0.069117 82 -0.000017 0.000000 
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 C-8  

Point ID x/c y/c Point ID x/c y/c 

83 0.000000 -0.000279 124 0.519630 -0.033809 

84 0.000385 -0.002068 125 0.539230 -0.032625 

85 0.001541 -0.004347 126 0.558769 -0.031316 

86 0.003466 -0.006742 127 0.578217 -0.029869 

87 0.006156 -0.009185 128 0.597545 -0.028302 

88 0.009607 -0.011522 129 0.616723 -0.026640 

89 0.013815 -0.013766 130 0.635720 -0.024912 

90 0.018772 -0.016088 131 0.654508 -0.023148 

91 0.024472 -0.018456 132 0.673059 -0.021377 

92 0.030904 -0.020748 133 0.691342 -0.019621 

93 0.038060 -0.022893 134 0.709330 -0.017898 

94 0.045928 -0.024889 135 0.726995 -0.016247 

95 0.054497 -0.026792 136 0.744311 -0.014681 

96 0.063752 -0.028586 137 0.761249 -0.013211 

97 0.073680 -0.030256 138 0.777785 -0.011844 

98 0.084265 -0.031801 139 0.793893 -0.010581 

99 0.095492 -0.033217 140 0.809547 -0.009427 

100 0.107342 -0.034512 141 0.824724 -0.008382 

101 0.119797 -0.035685 142 0.839400 -0.007449 

102 0.132839 -0.036738 143 0.853553 -0.006627 

103 0.146447 -0.037675 144 0.867161 -0.005915 

104 0.160600 -0.038493 145 0.880203 -0.005310 

105 0.175276 -0.039196 146 0.892658 -0.004806 

106 0.190453 -0.039786 147 0.904508 -0.004399 

107 0.206107 -0.040263 148 0.915735 -0.004088 

108 0.222215 -0.040631 149 0.926320 -0.003866 

109 0.238751 -0.040893 150 0.936248 -0.003725 

110 0.255689 -0.041052 151 0.945503 -0.003652 

111 0.273005 -0.041113 152 0.954072 -0.003634 

112 0.290670 -0.041077 153 0.961940 -0.003666 

113 0.308658 -0.040946 154 0.969096 -0.003740 

114 0.326941 -0.040723 155 0.975528 -0.003851 

115 0.345492 -0.040410 156 0.981228 -0.003996 

116 0.364280 -0.040009 157 0.986185 -0.004166 

117 0.383277 -0.039523 158 0.990393 -0.004355 

118 0.402455 -0.038954 159 0.993844 -0.004546 

119 0.421783 -0.038303 160 0.996534 -0.004317 

120 0.441231 -0.037571 161 0.998459 -0.003137 

121 0.460770 -0.036760 162 0.999615 -0.001457 

122 0.480370 -0.035866 163 1.000000 0.000000 

123 0.500000 -0.034885 - - - 

Table C.4: Cartesian coordinates of RG15-(30)-70-1 airfoil. 
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 C-9  

RG15-(40)-70-1 

Point ID x/c y/c Point ID x/c y/c 

1 1.000000 0.000000 42 0.480370 0.074510 

2 0.999615 0.002634 43 0.460770 0.075748 

3 0.998459 0.004321 44 0.441231 0.076830 

4 0.996534 0.005512 45 0.421783 0.077753 

5 0.993844 0.006043 46 0.402455 0.078507 

6 0.990393 0.006678 47 0.383277 0.079088 

7 0.986185 0.007490 48 0.364280 0.079488 

8 0.981228 0.008454 49 0.345492 0.079704 

9 0.975528 0.009561 50 0.326941 0.079733 

10 0.969096 0.010785 51 0.308658 0.079570 

11 0.961940 0.012101 52 0.290670 0.079212 

12 0.954072 0.013491 53 0.273005 0.078658 

13 0.945503 0.014940 54 0.255689 0.077901 

14 0.936248 0.016444 55 0.238751 0.076943 

15 0.926320 0.018020 56 0.222215 0.075781 

16 0.915735 0.019684 57 0.206107 0.074418 

17 0.904508 0.021434 58 0.190453 0.072853 

18 0.892658 0.023266 59 0.175276 0.071089 

19 0.880203 0.025176 60 0.160600 0.069128 

20 0.867161 0.027161 61 0.146447 0.066973 

21 0.853553 0.029218 62 0.132839 0.064632 

22 0.839400 0.031344 63 0.119797 0.062111 

23 0.824724 0.033534 64 0.107342 0.059418 

24 0.809547 0.035783 65 0.095492 0.056564 

25 0.793893 0.038085 66 0.084265 0.053552 

26 0.777785 0.040432 67 0.073680 0.050392 

27 0.761249 0.042817 68 0.063752 0.047094 

28 0.744311 0.045235 69 0.054497 0.043676 

29 0.726995 0.047679 70 0.045928 0.040157 

30 0.709330 0.050138 71 0.038060 0.036532 

31 0.691342 0.052600 72 0.030904 0.032805 

32 0.673059 0.055028 73 0.024472 0.029029 

33 0.654508 0.057407 74 0.018772 0.025244 

34 0.635720 0.059725 75 0.013815 0.021471 

35 0.616723 0.061969 76 0.009607 0.017644 

36 0.597545 0.064122 77 0.006156 0.013759 

37 0.578217 0.066170 78 0.003466 0.010026 

38 0.558769 0.068103 79 0.001541 0.006508 

39 0.539230 0.069911 80 0.000385 0.003382 

40 0.519630 0.071586 81 0.000000 0.001242 

41 0.500000 0.073121 82 -0.000021 0.000000 
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 C-10  

83 0.000000 -0.000297 124 0.519630 -0.037707 

84 0.000385 -0.002133 125 0.539230 -0.036417 

85 0.001541 -0.004577 126 0.558769 -0.034992 

86 0.003466 -0.007155 127 0.578217 -0.033420 

87 0.006156 -0.009801 128 0.597545 -0.031719 

88 0.009607 -0.012352 129 0.616723 -0.029915 

89 0.013815 -0.014806 130 0.635720 -0.028040 

90 0.018772 -0.017354 131 0.654508 -0.026124 

91 0.024472 -0.019975 132 0.673059 -0.024198 

92 0.030904 -0.022519 133 0.691342 -0.022286 

93 0.038060 -0.024904 134 0.709330 -0.020406 

94 0.045928 -0.027125 135 0.726995 -0.018600 

95 0.054497 -0.029248 136 0.744311 -0.016880 

96 0.063752 -0.031254 137 0.761249 -0.015258 

97 0.073680 -0.033124 138 0.777785 -0.013742 

98 0.084265 -0.034858 139 0.793893 -0.012334 

99 0.095492 -0.036452 140 0.809547 -0.011039 

100 0.107342 -0.037913 141 0.824724 -0.009858 

101 0.119797 -0.039242 142 0.839400 -0.008793 

102 0.132839 -0.040437 143 0.853553 -0.007845 

103 0.146447 -0.041505 144 0.867161 -0.007013 

104 0.160600 -0.042442 145 0.880203 -0.006294 

105 0.175276 -0.043251 146 0.892658 -0.005681 

106 0.190453 -0.043934 147 0.904508 -0.005173 

107 0.206107 -0.044493 148 0.915735 -0.004766 

108 0.222215 -0.044929 149 0.926320 -0.004456 

109 0.238751 -0.045248 150 0.936248 -0.004232 

110 0.255689 -0.045452 151 0.945503 -0.004083 

111 0.273005 -0.045546 152 0.954072 -0.003992 

112 0.290670 -0.045531 153 0.961940 -0.003957 

113 0.308658 -0.045410 154 0.969096 -0.003970 

114 0.326941 -0.045185 155 0.975528 -0.004026 

115 0.345492 -0.044859 156 0.981228 -0.004122 

116 0.364280 -0.044436 157 0.986185 -0.004253 

117 0.383277 -0.043916 158 0.990393 -0.004406 

118 0.402455 -0.043304 159 0.993844 -0.004580 

119 0.421783 -0.042600 160 0.996534 -0.004339 

120 0.441231 -0.041807 161 0.998459 -0.003148 

121 0.460770 -0.040924 162 0.999615 -0.001461 

122 0.480370 -0.039951 163 1.000000 0.000000 

123 0.500000 -0.038880 - - - 

Table C.5: Cartesian coordinates of RG15-(40)-70-1 airfoil. 
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 C-11  

RG15-(50)-70-1 

Point ID x/c y/c Point ID x/c y/c 

1 1.000000 0.000000 42 0.480370 0.078602 

2 0.999615 0.002642 43 0.460770 0.079917 

3 0.998459 0.004334 44 0.441231 0.081069 

4 0.996534 0.005532 45 0.421783 0.082052 

5 0.993844 0.006082 46 0.402455 0.082858 

6 0.990393 0.006744 47 0.383277 0.083480 

7 0.986185 0.007588 48 0.364280 0.083913 

8 0.981228 0.008595 49 0.345492 0.084152 

9 0.975528 0.009751 50 0.326941 0.084194 

10 0.969096 0.011032 51 0.308658 0.084033 

11 0.961940 0.012410 52 0.290670 0.083669 

12 0.954072 0.013868 53 0.273005 0.083097 

13 0.945503 0.015389 54 0.255689 0.082313 

14 0.936248 0.016970 55 0.238751 0.081316 

15 0.926320 0.018629 56 0.222215 0.080105 

16 0.915735 0.020383 57 0.206107 0.078682 

17 0.904508 0.022230 58 0.190453 0.077047 

18 0.892658 0.024164 59 0.175276 0.075202 

19 0.880203 0.026183 60 0.160600 0.073149 

20 0.867161 0.028283 61 0.146447 0.070893 

21 0.853553 0.030462 62 0.132839 0.068439 

22 0.839400 0.032714 63 0.119797 0.065796 

23 0.824724 0.035036 64 0.107342 0.062971 

24 0.809547 0.037422 65 0.095492 0.059975 

25 0.793893 0.039864 66 0.084265 0.056813 

26 0.777785 0.042356 67 0.073680 0.053493 

27 0.761249 0.044890 68 0.063752 0.050026 

28 0.744311 0.047458 69 0.054497 0.046431 

29 0.726995 0.050055 70 0.045928 0.042732 

30 0.709330 0.052668 71 0.038060 0.038918 

31 0.691342 0.055285 72 0.030904 0.034992 

32 0.673059 0.057867 73 0.024472 0.031014 

33 0.654508 0.060398 74 0.018772 0.027030 

34 0.635720 0.062867 75 0.013815 0.023060 

35 0.616723 0.065257 76 0.009607 0.019025 

36 0.597545 0.067551 77 0.006156 0.014902 

37 0.578217 0.069733 78 0.003466 0.010914 

38 0.558769 0.071791 79 0.001541 0.007158 

39 0.539230 0.073714 80 0.000385 0.003824 

40 0.519630 0.075495 81 0.000000 0.001619 

41 0.500000 0.077126 82 -0.000025 0.000000 
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 C-12  

Point ID x/c y/c Point ID x/c y/c 

83 0.000000 -0.000309 124 0.519630 -0.041604 

84 0.000385 -0.002194 125 0.539230 -0.040208 

85 0.001541 -0.004798 126 0.558769 -0.038668 

86 0.003466 -0.007558 127 0.578217 -0.036971 

87 0.006156 -0.010404 128 0.597545 -0.035135 

88 0.009607 -0.013167 129 0.616723 -0.033190 

89 0.013815 -0.015830 130 0.635720 -0.031167 

90 0.018772 -0.018603 131 0.654508 -0.029098 

91 0.024472 -0.021475 132 0.673059 -0.027018 

92 0.030904 -0.024274 133 0.691342 -0.024950 

93 0.038060 -0.026902 134 0.709330 -0.022914 

94 0.045928 -0.029348 135 0.726995 -0.020952 

95 0.054497 -0.031692 136 0.744311 -0.019078 

96 0.063752 -0.033912 137 0.761249 -0.017304 

97 0.073680 -0.035982 138 0.777785 -0.015639 

98 0.084265 -0.037907 139 0.793893 -0.014086 

99 0.095492 -0.039680 140 0.809547 -0.012649 

100 0.107342 -0.041309 141 0.824724 -0.011332 

101 0.119797 -0.042793 142 0.839400 -0.010135 

102 0.132839 -0.044132 143 0.853553 -0.009062 

103 0.146447 -0.045331 144 0.867161 -0.008110 

104 0.160600 -0.046388 145 0.880203 -0.007276 

105 0.175276 -0.047304 146 0.892658 -0.006555 

106 0.190453 -0.048081 147 0.904508 -0.005946 

107 0.206107 -0.048721 148 0.915735 -0.005443 

108 0.222215 -0.049227 149 0.926320 -0.005044 

109 0.238751 -0.049603 150 0.936248 -0.004739 

110 0.255689 -0.049851 151 0.945503 -0.004513 

111 0.273005 -0.049978 152 0.954072 -0.004351 

112 0.290670 -0.049984 153 0.961940 -0.004249 

113 0.308658 -0.049873 154 0.969096 -0.004200 

114 0.326941 -0.049647 155 0.975528 -0.004201 

115 0.345492 -0.049309 156 0.981228 -0.004249 

116 0.364280 -0.048862 157 0.986185 -0.004339 

117 0.383277 -0.048310 158 0.990393 -0.004461 

118 0.402455 -0.047654 159 0.993844 -0.004609 

119 0.421783 -0.046898 160 0.996534 -0.004354 

120 0.441231 -0.046042 161 0.998459 -0.003156 

121 0.460770 -0.045088 162 0.999615 -0.001463 

122 0.480370 -0.044035 163 1.000000 0.000000 

123 0.500000 -0.042875 - - - 

Table C.6: Cartesian coordinates of RG15-(50)-70-1 airfoil. 
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