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Summary

Summary

The concept of diffuser-augmented or shrouded wind turbines represents an attractive
and highly versatile energy solution that has the potential to achieve power performance
coefficients exceeding the Betz limit, and thus to improve the economic feasibility of renewable
energy production under poor wind conditions, such as those prevailing within the urban
environment. In that regard, shrouded wind turbines could eventually enable significant
opportunities for more geographic dispersion of wind technology applications, growth in
distributed energy deployments, and further expansion of renewable energy utilization on a
global scale, contributing to the so-called energy transition. However, the achievement of
widely adopted implementations and the consolidation of this promising technological
application in the renewable energy market call for highly efficient and economically
sustainable designs. Against this background, the present doctoral dissertation aims towards
the development and validation of effective computational tools and numerical methodologies
for, but not restricted to, the aerodynamic analysis, performance prediction, and design

optimization of shrouded wind turbines.

Initially, the current doctoral study has been focused on the development and validation of
an in-house Blade Element Momentum (BEM) code, which allows for the aerodynamic
analysis and performance prediction of both conventional horizontal-axis and diffuser-
augmented wind turbine rotors, in a remarkably short period of time. The proposed
computational model is based on the extension of classical BEM theory to the case of shrouded
rotors, which is actually implemented by introducing the velocity speed-up distribution over
the rotor plane, for the unloaded diffuser configuration. Furthermore, the current BEM code
has been enhanced with several empirical and analytical correction models, dealing with many
of the inherent limitations of BEM theory; namely, two different correction models for
capturing the power losses related to the blade tip and rotor hub, a drag correction model that
accounts for the Reynolds number effects, and a detailed correction model for the accurate
calculation of the axial induction factor, at the operating states of the rotor in which the
Momentum theory is no longer valid. Besides, two different models for the extrapolation of
the aerodynamic lift and drag coefficients to the entire range of angles of attack have been also
implemented, based on the Montgomerie and Viterna-Corrigan extrapolation methods.
Finally, the calculation of induced velocities at the rotor plane is achieved by applying a fixed-
point iteration scheme, which is coupled with a typical relaxation procedure, aiming to
dampen the fluctuating behaviour of the axial induction factor, during the iterative process.
The accuracy of the entire BEM model, both in terms of conventional and shrouded wind

turbines, is assessed against numerical and experimental data available in the literature, while



Summary

the impact of the tip loss correction model on the predicted power output of the rotor, is also

examined.

Subsequently, the current doctoral dissertation features the application of Artificial
Compressibility Method (ACM) for the numerical prediction of incompressible axisymmetric
flows that involve swirling. The respective academic solver, named 1Gal2D, is based on the
axisymmetric formulation of the Reynolds-Averaged Navier-Stokes (RANS) equations, which
have been arranged in a pseudo-Cartesian form and enhanced by the addition of the
circumferential momentum equation. The discretization of spatial derivative terms within the
governing equations is performed via unstructured two-dimensional grid layouts, by
employing a node-centered finite-volume scheme. For the evaluation of inviscid fluxes, the
upwind Roe’s approximate Riemann solver is applied, coupled with a higher-order accurate
spatial reconstruction, whereas an element-based approach is used for the calculation of
gradients required for the viscous fluxes. In addition, a detailed description of the convective
flux Jacobian and the entire eigenvector system used within the Roe’s approximate Riemann
solver is provided, filling a respective gap in research literature. Time integration is succeeded
through a second-order accurate four-stage Runge-Kutta method, adopting a local time-
stepping technique. Further acceleration, in terms of computational time, is achieved by using
an agglomeration multigrid scheme, incorporating the full approximation scheme in a V-cycle
process, within an efficient edge-based data structure. A detailed validation of the proposed
numerical methodology, and the respective flow solver, is performed by considering several
non-swirling and swirling flows with axial symmetry. Regarding the numerical validation of
the corresponding results, IGal2D solver is compared against the commercial software ANSYS
Fluent, by adopting appropriate metrics and characteristic flow quantities, but also against
experimental measurements, confirming the ability of the proposed methodology to predict

such flows in terms of accuracy.

Additionally, this work reports the development and validation of an axisymmetric RANS
- BEM model, which relies on the combination of the in-house BEM and 1Gal2D codes, for the
simultaneous prediction of the wind turbine rotor performance and surrounding flow
characteristics. The fundamental idea behind the proposed model is based on replacing the
momentum part of the classical BEM theory with a more elaborate flow model, such as the
Navier-Stokes equations, while assuming an actuator disc representation of the actual rotor
geometry. Eventually, the rotor blades are modelled by means of body force terms, naturally
included within the momentum conservation laws, and the Blade Element theory equations.
The entire coupling procedure is fully coordinated by IGal2D software, while interaction
between the involved codes is achieved via the aerodynamic blade loads and the velocity
components at the rotor plane. The interpolation of the aforementioned quantities between the

mesh nodes and the blade stations is implemented by custom Matlab scripts.
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Despite the aforementioned analysis tools, this doctoral dissertation has been also focused
on the design and aerodynamic evaluation a low Reynolds number airfoil family, for the entire
blade span of small wind turbines, aiming to reduce the effects related to laminar separation,
improve startup response, and meet acceptable levels of structural integrity. In particular, six
airfoils of varying relative thickness have been designed, by increasing the thickness
distribution of RG15 airfoil up to 50 percent, and adopting a rounded trailing edge, with a
diameter equal to 1 percent of the chord length. The aerodynamic performance of RG15 family
is initially evaluated by means of XFOIL code, at several low Reynolds numbers and angles of
attack, while more elaborate RANS simulations are also conducted, in order to get additional
information on the flow characteristics. Furthermore, the behavior of the recirculation area
behind the rounded trailing edge, and that of the separation bubble near the leading edge for
different values of relative thickness and angles of attack, is also examined. The computational
results indicate that increasing the relative thickness of the airfoils has a beneficial impact on
separation bubbles, while no significant effect of the rounded trailing edge on the aerodynamic

characteristics of the airfoils has been observed.

Finally, this work presents the development and application of a modular optimization
framework for the aerodynamic shape optimization of shrouded wind turbines, which
combines the aforementioned analysis tools with a parallel and asynchronous version of a
meta-model assisted Differential Evolution (DE) algorithm. When required, the
parameterization/deformation of the computational mesh and design geometry are
simultaneously succeeded, by employing a recently developed computational tool that is
based on Free-Form Deformation (FFD) technique. The entire optimization process is
implemented iteratively until the completion of the maximum number of generations, while
the DE algorithm interacts with the parameterization, analysis, and post-processing software
in a completely automated manner, by using specially developed scripts. Eventually, the

proposed methodology is applied to three distinct design optimization cases, including:

o The aerodynamic shape optimization of the rotor blades for a given shroud geometry.
o The aerodynamic shape optimization of an unloaded diffuser configuration.

o The simultaneous aerodynamic shape optimization of the blades and the diffuser.

Keywords: Actuator Disc Model; Aerodynamics; Airfoil Design; Axisymmetric Flow; Blade
Element Momentum Theory; Computational Fluid Dynamics; Diffuser-Augmented Wind
Turbines; Ducted Wind Turbines; Differential Evolution Algorithm; Free-Form Deformation;
Low Reynolds Airfoils; Mesh Morphing; RANS Equations; RG15 Airfoil Family; Shape
Optimization; Shrouded Wind Turbines; SST Model; Swirling Flow; Wind Energy.
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Xovoyn — Summary in Greek

Lovoyn - Summary in Greek

Ot avepoyevvntoleg vrofornBovpeves and diaxvtn (diffuser-augmented 1) shrouded
wind turbines) avtimEoowmevoLY Hx  evEelr  KATNYOQlX  EEAIQETIKA  EVEAIKTWV
OLOTNUATWV OVYKOUIONG ALOAIKNG €VEQYELRS, TA OTOl TAQEXOLV T dLVATOTNTA
eTTeVENG OVVTEAEOTWV LOXVOG OV LTTEPPaivouy To OewENTKO 0010 TOL Betz, kat cvvemwg
HUTIOQOVV V&t CUUPBAAAOLV TNV OKOVOUIKN] PLWCIHOTNTA TNG TIQAYWYNS AVAVEWOLUNG
EVEQYELAG O€ TEQLOXEG oL Yapaktnellovtat amd xapnAd atoAud duvapikd, 0nwe To
aoTko TeQBAAAOV. Emopévawg, 1) eveUTeQT LI0OETNON KAL EYKATAOTAOT AVEHUOYEVVITOLOV
vrtoponBovpevwv amd dxxvtn Oa pmogovoe TeAwd va odnynoel oe HeYaAUTEQN
YEWYQAPIKN DACTIONA TWV EQPAQUOYWV ALOALKIG eVEQYELAC, £DQALWOT) TWV CLOTNUATWV
dlaveunuévng magaywyns oxvog, KAl TEQAUTEQW XOT|OT] TWV AVAVEWOIUWY T YWV
EVEQYELAG O€ TIAYKOOULX KAlpAaKA, CUUPAAAOVTAC €TOL 08 I TaXUTEQN EVEQYELXKT)
petaPaot). QQoto000, 1) €MITEVEN EVEEWS ATIODEKTWV TIEOLOVTWYV KaL 1) €dpaiworn avtrg g
TEXVOAOYIKIIG €PAQUOYNG OTNV TIAYKOOUL AYOQX QVAVEWOLUWY TIYWV EVEQYELAG
ATIAUTOVV eEALQETIKA ATIODOTLKES KAL OLKOVOULKA BLidotpeg oxedidoels. Le avtd to mAalolo,
N MaEoLOX  dWAKTOQWKY] dxTOPr] OTOXEVEL OTNV  AVATITLEN KAl  ETUKVOWON
ATIOTEAEOCUATIKWV VTIOAOYLOTIKWVY eQyaAelwv kat aglOuntikwv pebodoAoywwv, v tnv
AEQODLVAULIKT] avAALOT) Kat TN BeATioTomonon avepoyevvnTowyv vtofondovpevwy amo

dlaxvTn.

AQxKA, 1 TTaEovoA DIOAKTOQIKY] HEAETN €0TLALEL OTNV AVATITLETN KAl €MUKVOWOT) TWV
ATOTEAETUATWY €VOS VTOAOYIOTIKOU KWk Tov PaoiCetar otn Oewpia Lrouxeiwv
[TtepUuywong - Aiokov Ogurjc (Blade Element Momentum - BEM). To ovykekouuévo
VTOAOYLOTIKO HOVTEAD XapaKTnoiletatl amd TV KAtdAANAN T0oTOMOMMOoN/etékTaon tng
kAaowrc Oewplag BEM vy tnv meolmtwon avepoyevvntowwyv vmoponfovpevov amo
dlxxVTn, N oMol LAoTOoLE(TAL PETW TNG ADIXTTATNG CLVIOTWOAS TNG AEOVIKNS TaXVTNTAG
07O ETUTIEDO TOL QOTOQR, VTIO TNV ATIOLO A POPTLONG. LVVETIWGS, O TEOTELVOEVOSG KWOLKAG
TIAQEXEL TI] dLVATOTITA AEQODVVAUIKNG AVAALONG Kal a&loAOYNOTNG TS amddoong Tov
00100Q, TOTO CLUPATIKWY AVEUOYEVVNTOLWV 00LLOVTIOU dEova, OO0 KAL AVELOYEVVITOLOV
vrtoBonOovpevwy anod duaxvtrn. ErumAéov, n ovykekouuévn vAomoinon éxel epmAovtioTel
He aQOUO EUTEQIKAOV KAL AVAAVTIKWOV HOVTEAWV dL0p0wong, mov oxetiCovtat pe tnv
QAVTIHETWTILON €YYEVWV TeQLOQLopHwV ¢ Oewplag BEM. Avtd cvumnegidappdavovy, dvo
dlaopetikd HOVTEAQ dL0POWONG YIX TOV VMOAOYIOHO TWV ATWAEWDV l0XVOG aTtd TO
AKQOTITEQUYLO KAl TNV TATUVT), éva HOVTEAO dLOEOWONE TG TIUNG TOL AEQODLVAULKOV
OLVTEAEOTI) avTioTAONG AdYW TWV QAVOpéV@Y Ttov oxetiCovtat pe tov aptduo Reynolds,
KAl VOGS AEMTOHEQOVG HOVTEAOL d1OOwoNnS yix Tov 0000 LTIOAOYIOHO TOL afovikov

OUVTEAEOTI] EMAYWYNS OTIS TEQLOXEG AELTOVEYIAS TOL EOTOQX, OTIOL N EYKLEOTNTA TNG

ix



Xovoyn — Summary in Greek

Oewolac Alokov Opung mavet va loxvet. H mpoekBoAr| twv aeQoduvapik@wVv oLVTEAEOTWY
AVwOoNG Kat avtlotaons g 0AOKANQO TO €0POG YWVIWV TIEOOPROATG oAy HATOTOLEITAL
Héow OVO dAPOQETIKWY HOVTEAwV, TOL LAomomOnkav ota mMAalolx TG TAEOVOAG
duatoPrs, kat PaoiCoviat otic pebddovg Montgomerie kat Viterna-Corrigan. TéAog, o
LTTOAOYLOUOG TWV EMAYOUEVWV TAXVTHTWY OTO ETIUTEDO TOL QOTOQN ETUTVYXAVETAL HETW
NG EPAQUOYNGS Miag emavaAnmTikng nebodov otabepov onueiov, oe CLVOLAOUO HE UL
dadkaoia XaA&QWOTNG, OTOXEVOVTAG 0T HEWON TWV TAAAVIWOEWV TNG TIUNG TOL
aOVIKOU OLVTEAEOTI] EMAYWYNS KATA TN dAQKewx TG emavaAnnrkic dwdwkaoiag. H
axQifelx TWV ATOTEAEOUATWY TOL TIOOTELVOUEVOL VTTOAOYLOTIKOV HOVTEAOL — TOOO YL TNV
TMEQIMTWOT] OLUBATIKAOV  AVEHOYEVVNTOWV ogllovTiov afova, 600 Kal ywx avt)
avepoyevvnTowwyv vrofondovpevwy amd dxXUTn — eMKVQWVETAL HEOW TNG OVYKQLONG
TWV AVTIOTOLXWV ATOTEAECUATWV UE AQLOUNTIKA KAl TEQAUATIKA OedOUEVA ATIO TN

dLeOvn BBALoyoapia.

L ovvéx e, 1 TaQoVOX DIOAKTOQLKT) DLATOLPRN TTEQLYQAPEL TNV eQAQMOYT) TN MeOddoL
Texvntc Zvprueotomrac (Artificial Compressibility Method — ACM) yia tnv apt@pmntikr)
TEOAEEN ACVUTHEOTWV KAl AEOVOOUHUETQIKWY QOWYV, TOL Xaaktnollovtat and v
TIAQOLO X TTEQLPEQELAKT)G TLVIOTWOAS TNG TaxVTntag (swirling velocity). O avtiotouyxog
akadNUAlKos aplounTikde emAVTNG mov avantvxOnke — enmovoupalopevos 1Gal2D -
Baoiletal otV AEOVOOUUUETOUKN HOQPT) TV dxogikwV eElowoewv Reynolds-Averaged
Navier-Stokes (RANS), ot omoleg éxovv teAwmd dxtvmwOel Y éva Pevdo-kaQTeTIAVO
OVOTNUAX AVAPOQAS KAL EUTAOVTIOTEL He TNV TTEOTOTKN TNG TEQLPEQELXKTG TUVIOTWONG
¢ elowong ¢ ogunc. H dlakQitonoinon twv XweoV TaQaywywy eVTOg TOL LOVTEAOL
MG QOMG TEAYHATOTOLElTAL HEéow TNG XONONG Hiag kevteokouPukng uebodov
nemeQaoévwy Oykwv (node-centered finite-volume method), enl dwidkotatwv un-
dounuévewv  vToAoyoTikwy  TAeypatwyv. T v extiunon  twv  UnN-OLVEKTIKWV
dLAVLOUATWV TNG QONG EPAQUOLETAL O TTROTEYYLOTIKOG eTUAVTNG ToL Roe, 0 omtolog Oewpetl
éva Torkd povodidotato mEOPBANUa Riemann otn Olemagn) Twv YEITOVIKOV OYKWV
eAEYXOU, eV 1) aVENOT TNG akEBelag Tov MEOAVAPEQDEVTOC VTTIOAOYIOHUOD ETUTVYXAVETAL
HE TNV €QPAQUOYTN €VOS OXNHATOC DeVTEQNG TAENG XWOIKTS akpifelag, Baoiopévo otnv
texvikr) Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL). Amo tnv
GAAT, N EKTIUNOT TWV OLVEKTIKWV DAVVOUATWV TNG QOT)¢ EOUTI00€TEL TOV MTEWTUTEQO
VTTOAOYIOHO TWV MAQAYW YWV TWV CLVIOTWOWYV TNG TAXVTNTAG 0TI OLETIAPT] TV OYKWYV
eAéyxov, 11 omola CLUTUTITEL HE TO HECO TNG AKUIG TOL CLVOEEL TOUG AVTIOTOLXOUG
LTTOAOYLOTIKOVG KOUPOLS, kat Baotletatr ot dNUIOLEYI VEWV DUIKWV OYKWV €A£YXOUL
YUow amo v eEetalopevn akpr). O VTOAOYIOHOC TOOO TWV HUIN-OLVEKTIKWV, 000 KAL TWV
OUVEKTIKWOV OAVUOUATWYV QO1)G, EKTEAE(TAL UE OAQWOT TWV OKUWV TOU TAELYUATOS,

XONOHOTIOLOVTAS KATAAANAEC dOoUEG DEDOEVWY, Ue OTOXO TN HEIWOT) TOL ATIALTOVLEVOL



Xovoyn — Summary in Greek

LTTOAOYLOTIKOV  KOOTOVG. ETumAéov, 1 magovoa eQyaoia moQéxel Hx AemMTOUEQT)
TLEQLYQAPT] TOL CLOTHUATOC OLODLAVVOUATWY TOL XONOLHOTIOLE(TaL 0TOV eTAUTH TOL Roe,
KaAAVTITOVTAG €T0L TO avTloTOoLX0 kKevo otnv dLeOvr) BiBAoyoapia. H xoovukr) oAokAnpwon
KAL TEALKT) KATAOTAOT) TNG QONG MEOOoeYYILeTal EMAVAANTITIKA, Hé€OW EVOG QN TOV OXT|HUATOG
Kat e pefodov Runge-Kutta tecodowv Prjpdtwv, kKot devteQng TdEnG X0oVikr|s akoifelac.
[Tépav Twv KATAAANAWVY DOV DEOOHEVWY, TTEQALTEQW UELWOT) TOL LTTIOAOYLOTIKOV XQOVOL
ETUTVYXAVETAL HEOW TNG EQPAQUOYNG TNG TEXVIKI)G TOL TOTUKOV PeLOO-XQOVIKOV BrHATOS
(local time-stepping) kaOw¢ kat g pedddov moAvmAéyuatog (multigrid). H eykvodtnta
¢ magovoag ueBodoAoyiag, kat Tov avtioTolyov AoYLoHLKOV, etaAnBevovtal Héow g
OUYKQLOT|G TWV ATOTEAEOUATWV peE TIAT00G apLOUNTIKAOV Kol TERAUATIKWY dEDOUEVWY
avapodc, ta omoia etvat dixbéoua otn PipAloyoapio, Kabwe kat pe ta amoteAéopuata
Tov eumopuoL Aoylopuov ANSYS Fluent, yix dikooouvg TUTOUS AEOVOOULUETOUKWOV

AOVUTHETTWV QOWV.

EmimtAéov, 1 magovoa ddAKTOQLKT) dLXTOLBT|) TTEQLYQAPEL TNV AVATITLEN KAL €TUKVQWOT)
TWV ATIOTEAETUATWV EVOG AEOVOOUUETOLKOV pHovTéAov RANS - BEM, yx tnv tavtdxoovn
TEOAEEN TNG ATIODOOTC TOL POTOQA KAL TWV XAQAKTNQLOTIKWYV NG TteQpdAAovoac gorjg. H
ovykekQLuévn pebodoAoyia Baciletal OLOXCTIKA 0TO CLVOLACTUO TwV AoYIopKOV BEM
kat IGal2D, ta omtolax avamtoxOnkav ota TAalowx TNG TAQOVOAG DIOAKTOQIKTC dATOLPNG.
H OepeAicodng wéa miow amod to mEoTetvOpeVO HOVTEAO CLVOYPILETAL OTNV AVTIKATAOTAOT
¢ Oewolag Atokov Ogurc evtdg tov kAaoouoL povtéAov BEM, pe éva mio Aemtopeég
HovTéAo Qor1]g, OTiws ot eElowoels Navier-Stokes, vtoOéTovtag OTL T TEAYHATIKY] YEWHETOIX
TOL QOTOPX avamaploTaTal amd evav amelpws Aemto diowko evégyewxg (actuator disc).
TeAwed, n emtidoaon Twv TMTeQLYIlwWV 0To TEdi0 QONG HovTEAOTIOLEITAL HETW TV EELOWOEWV
¢ Oewolag Lrouxelwv ItepUywong (Blade Element theory) kat twv dépwv mnyrg, mov
neQAapBavovtat evtog twv eElowoewv diatrjonong g ooune. H dxducaoio ovlevéng
ovvtoviCetat €€ oAokAnpov amo to Aoyopko 1Gal2D, eva 1) aAAnAentidoaon petald twv
EUTAEKOUEVWV AOYIOUIKWV ETUTVUYXAVETAL HEOW TWV AEQODVVAMLKWV POQTIWwV/OuVaewV
KATA U1KOG TOL TITEQLYIOV, KAL TWV CLVIOTWOWYV TNG TAXVTNTAS 0TO ETLMedO TOL POTOQA.
H magepPoAr) twv magandvw mooot)twy, Hetall Twv KOUPwV Tov MAEYHATOS KAl TwV

oToLxElwV TNG MTEQUYWOTG VAOTIOLEITAL HEOW KATAAANAQ oxedlaopuévwv Matlab scripts.

[Téoav Twv mEoava@eQd £VTwV AOYLOUIKWY AVAALOTG, 1] TAQOVOX DIDAKTOQLKT) dlxTOLBr|
ETUKEVTOWVETAL €TONG 0TI oXedlaoT Kol TNV aeQOdLVAULIKT] AELOAOYTOT) UG TTAT)Q0UG
OLKOYEVELAG QEQOTOMWYV, Yx XaunAovg alOpovs Reynolds kat 0AdkAnQo to evog
TMTEQUYIWV HIKQWV AVEHOYEVVNTOLWY, HE OTOXO TN MHEWON TV ETUNTOOEWV TG
ATIOKOAANOT)C TOL 0QLAXKOV OTOWHATOG, TN BEATIWON TNG ATIOKOLOTG TOL QOTOQX KATA TV
exkivnom, kat TNV eTUTELEN ATOOEKTWYV ETUTEDWV DOUIKTIC AKEQALOTITAG. LUYKEKQIUEVA, 1)

TIQOTELVOUEVT] OLKOYEVELX AEQOTOUWV ATIOTEAEITAL ATO €EL XEQOTOUEG e DLXPOQETLKO
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Xovoyn — Summary in Greek

OXETUKO TIAXOG, OLOTIOLEG OX EDLAOTNKAY AVEAVOVTAG TIV KATAVOUN TTAXOVG THS AEQOTOUTS
RG15 éwg kat 50 tolg ekatd, kat LIOeTWVTAS éva OTEOYYVAEEVO XelAOg exuyT¢ (trailing
edge) pe dudpetoo {on pe 1 TOIG €KATO TOL HIKOUS TNG XOEONC. AQXLKA, 1] AEQODVVALLIKT)
amodoon NG okoyévetlag aepotopwv RG15 aloAoyeltal péow tov Aoyiopucov XFOIL, yix
dudk@opovg  aplBuovc  Reynolds wat  ywviec mEOOPOANG, evw 0T OLVEXEX
Ay HaTtoTIolovvTaL 1o AemropeQeic mpooopowwoels RANS, péow tov Aoyiopuov 1Gal2Db,
TIQOKEIEVOL  va  An@Oovv TEoo0etec MANQOEPOQLES YA Ta XAQAKTNQLOTIKA TN
negBaAAovoag porg. ErmumAéov, 1 magovoa eoyaoia efetalel T CLUTEQUPOQA TNG
TLEQLOXTG AVAKUKAOQPOQLAS TOW Ao TO 0TEOYYVAEUEVO XEIAOG exPUYNS, KBS Kot avTr)
™¢ @uoaAdag amokOAAnoNg (separation bubble) kovtd oto xeldog meooPoArnc (leading
edge), Yix dlxoQeTIKEG TIUEG TOV OXETIKOV TAXOUG KAl TNG YwViag oooAng. Zoppwva
pe ta aplountikd anoteAéopata, N avENOT TOL TAXOUS TWV AEQOTOUWY delXVeL va €XeL
EVEQYETIKT] ETOQAOT OTNV EUPAVIOT] QUOAADWY ATIOKOAANONG, evw dev mMapaTnEEeitat
ONHAVTIKT] €TDQAOT TOL OTQOYYVAEUEVOL XEIAOVG EKPUYNS OTIS TIUES TNG XEQODVVA KNG

&vwong Kol avtiotaong.

TéAoc, n mapovoa datoPr) — OMws dNAWVEL kKAt 0 TITAOG TG — MAQOLOLALEL TNV
AVATITLEY KAL EPAQUOYN HLAG evialag, OTOVOLAWTNGS, vToAoYLoTIKNG HebodoAoyiag vy
TOV QUTOMATOTIONUEVO BEATIOTO OXEOAXOHUO AVEHOYEVVTTOLWV vToPBonbovuevwy amo
dlarx v, N ool cLVOLALEL Tt TTEOAVAPEQODEVTA AOYIOUIKA/HOVTEAX AVAALOTG HE pa
TAQAAANAT Kat aocvyxoovn éxdoon &evoc Awxgogikov ELeAktikov aAyopiOpov. Xtig
TEEQLTITWOELS OTIOV ATIALTEITAL T) TAQAUETQOTIOMON KAL TAQAUOQPWOT) TOL VTTOAOYLOTLKOV
TAEYHATOG, AVTEG ETUTVYXAVOVTAL HECW €VOG AOYLOULIKOU TO OTtolo eTtiong avamtoxOmnKe
ot mMAalowx ¢ magovoag ddAKTOQIKTG daTEIPT)c kKat Paciletal oTnv TEXVIKY TNG
EAev0eonc IMapapoopwong (Free-Form Deformation). H dwxdwaoia PeAtiotonoinong
epaguoletal emavaAnmTikd Héxot TV 0oAokANPwoT Tov TEOKAOOQIOUEVOL aQLOpoV
YEVEWV, VW 0 eEEAKTIKOG AAYOQLOHOC AAANAETUOQA e TA AOYLOUIKA TTAQAUETQOTIONOTG,
AVAALONG  Kal  HETa-eTMeLeQyaoiag TwV AMOTEAEOUATWY, €VTOG €VOG  TATI0WS
QUTOUATOTIOMUEVOL TAQLOIOV, XONOIHOTOLOVTAG eOKA oxediaopéva scripts. TeAwd, n
mEoTelVOpEV)  peOodoAOYIt  e@aQUOCeTaL  Oe  TEEIC  OLXPOQETIKES — TIEQLTITWOELS

PeAtiotomolnong oxedlxo oV, oL 0Toleg aPoQovV:

e TnpéAtiotn agpodvvauixn oxediaon TTepvyiwy yia uia dedouévn yewpetpia dStaxvn.
e TnpéAtiotn agpodvvauixn oxediaon evog dLaxvTn VIO UNOEVIKT] POPTLOT) POTOPA.

o Tnv tavtoxpovn éATIOTN aepodvvapiikn) oxediaon TMTEPVYiwy KaL dlaxvT.
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Chapter 1

Introduction

The first chapter aims to familiarize the reader with the concept of shrouded or diffuser-augmented wind
turbines and introduce him/her to the subject of the current research study. In particular, Section 1.1
presents the motivation underlying this doctoral dissertation, while Section 1.2 presents the main
objectives and the respective approaches. Subsequently, Section 1.3 unravels the core physical principles
governing the operation of shrouded wind turbines and Section 1.4 provides a detailed overview of the
major theoretical, numerical and experimental investigations reported in literature. Finally, Section 1.5
outlines the structure and Section 1.6 summarizes the contributions of this doctoral dissertation, while

Section 1.7 lists all the related publications.

1.1 Motivation

In recent years, the escalating awareness about the adverse environmental impact of carbon
dioxide emissions and global climate change has been the main factor pushing for the
systematic revision of the conventional energy paradigm and actively promoting the massive
deployment of sustainable energy technologies, based on renewable energy sources — a
process widely referred to as energy transition (Creutzig et al., 2014). Under these global
circumstances, the wind power sector has been experiencing remarkable rates of growth since
the early years of the twenty-first century, by capitalizing on supportive government policies
and international climate treaties (such as the Kyoto Protocol, the Paris Climate Agreement
and the European Green Deal), along with significant technological and scientific
developments (see Figure 1.1). As a matter of fact, and according to the latest annual report
released by the Global Wind Energy Council (GWEC), 2020 was recorded as the best year in
history for the global wind power industry, which — despite the adverse impact of COVID-19
pandemic on the sectors of supply chain and project construction execution — witnessed a year-
over-year (YoY) growth of approximately 53 percent (GWEC, 2021). In particular, more than
93 GW of new onshore and offshore wind power came online around the world during the
course of 2020, contributing for an overall installed capacity of approximately 743 GW (GWEC,
2021). Moreover, future projections and estimates indicate that this exciting growth will carry
on. According to the Renewable Energy Roadmap (REmap) of the International Renewable
Energy Agency (IRENA) — which represents a climate resilient pathway characterized by a
relatively ambitious, yet achievable, uptake of renewable energy sector and energy efficiency

measures — the global wind energy market has the potential to reach 2,000 GW until 2030 and
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6,000 GW until 2050, thus providing up to 21 and 35 percent of the worldwide energy demand,
respectively (IRENA, 2019). Figure 1.2 summarizes the REmap targets for the wind generation
share and total installed capacity (two of the key wind energy indicators) in order to achieve

the global energy transformation or transition.

2001

« World Wind Energy Association
(WWEA) was formed

« >1 MW Average onshore wind turbine ratings

+ First three-bladed wind turbine (22 kW) model

+ European Wind Energy Association (EWEA)
currently named as WindEurope was formed

1991

« First offshore wind farm (Vindeby) in Denmark

2008
+ Global wind power capacity reached 100 GW

2005
2014 + Global Wind Energy Council
« >1 million jobs in wind energy sector (GWEC) was formed
2016
* Wind power provided 4% KEY MILESTONES
of global electricity IN WIND INDUSTRY

« First floating offshore wind farm (Hywind)

in Scotland 2019
« First zero-subsidy offshore wind auction + 10 MW commercially available
in Germany offshore wind turbine

2018
* Global installed wind capacity: 564 GW

» Global average onshore wind auction price (projects assigned
in 2018 and to be commissioned by 2020): 46 USD/MWh
« 1.2 million jobs in wind energy sector

Figure 1.1: Overview of the key milestones in wind power industry since 1982 (IRENA, 2019).

However, the constant expansion of large wind farm installations, in combination with
several technical, economic and social limitations, has caused a considerable reduction in the
available sites with high quality wind resources (Mathew et al., 2016). Therefore, exploiting the
full wind potential, increasing the wind generation share and eventually, meeting the future
energy targets, call for the development of innovative and more versatile wind energy
conversion systems that are capable of operating effectively in unconventional installation
sites and under poor wind conditions, such as those usually encountered within the urban

environment (Dighe, 2020).
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REMAP CASE ON/OFF

2010 2018
2030 2050 TRACK

WIND POWER IN TOTAL GENERATION MIX

Onshore and offshore -I 70/ 6‘}’ 210/ 350/ ‘

wind generation share (%) P
rogress

TOTAL INSTALLED CAPACITY

S AR RS

178 542 1787 5044 O

Offshore wind (GW) l ﬁ m L) |
3 23 228

'| 606 Progress

Figure 1.2: The IRENA’s wind roadmap to 2050 (REmap). The target values of wind generation share
and total installed capacity, in order to achieve the global energy transformation (IRENA, 2019).

Against this background, shrouded or diffuser-augmented wind turbines (also abbreviated
as DAWTs) have recently attracted renewed attention from the international engineering
community, and have become a significant part of the current research agendas, since they
represent a promising solution for improving the efficiency and economic feasibility of power
production from low energy density flows (Nunes et al., 2020). The fundamental concept
characterizing the operation of these wind energy concentrators can be summarized on the
addition of a static diffuser around the rotor, which essentially serves as a mechanism to
control the expansion of the wake, and create a region of high subatmospheric pressure near
the exit plane of the diffuser — a phenomenon that eventually results in augmenting the mass
flow rate passing through the turbine (Hansen et al., 2000). Consequently, under the condition
of a well-designed diffuser, shrouded wind turbines have the ability to yield power
performance coefficients well in excess of the Betz limit (Betz, 2013) and thus, to extract
additional power from the wind, as compared to a conventional horizontal-axis wind turbine
(HAWT) with the same rotor diameter (Leloudas et al., 2018a). Figure 1.3 illustrates the full-
scale prototype of Hummingbird H15 DAWT model designed by OGT Greentech Ltd, with a
rated capacity of 15 kW, while Figure 1.4 presents the commercially available Halo 6 kW
DAWT solution of Halo Energy, which was specifically designed to address the energy needs

within the expansive telecom industry.
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Figure 1.3: The full-scale prototypes of Hummingbird H15 DAWT model designed by OGT Greentech
Ltd, with a rated capacity of 15 kW [Source: https://www.omnilinkgreentech.com].

In contrast to their conventional and larger counterparts, shrouded wind turbines provide
a considerably higher level of flexibility, both in terms of required space and wind speed
conditions (van Dorst, 2011). Therefore, they could possibly be integrated within a much
broader spectrum of rural and remote areas (Zhu et al., 2019), operating either in a stand-alone
mode or in combination with other small-scale energy solutions — for example, within the
context of a distributed energy system (Evans et al., 2020) — not only for on-grid but also for
off-grid power generation, usually directly where the power is required, rather than where the
wind is most favourable. In addition to that, the casing of the rotor has been proved to
drastically reduce the emitted noise levels, the danger from broken blades and the sensitivity
of the turbine to turbulence (Phillips, 2003). Hence, these wind energy conversion systems
could form an attractive solution for urban or residential applications as well, especially in

terms of direct small-scale energy production (Dighe, 2020).

Figure 1.4: The commercial Halo 6 kW model of Halo Energy [Source: https://www.halo.energy].

In summary, shrouded wind turbines represent a potentially efficient energy solution that
could improve the feasibility of renewable energy production in regions with small wind

potential, and eventually enable significant opportunities for more geographic dispersion of
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wind technology applications, growth in distributed energy deployments and further
expansion of renewable energy utilization on a global scale (Evans et al., 2020; Yang et al., 2019).
Even though their ability to result in acceptable levels of energy production cost (levelized cost
of energy — LCoE) had been the subject of severe criticism for many years, mainly because of
the Vortec Energy collapse in the early 2000s, the recent success stories of several companies
across the world, such as the Halo Energy, proves that shrouded wind turbines could actually
form a sustainable energy option, and finally reach broad commercialization. Yet, the
achievement of a widely adopted implementation and the consolidation of this promising
technological application in the renewable energy market can only be realized on the condition
of highly efficient designs. Consequently, the development of effective computational tools
and optimization methodologies, applicable to shrouded or diffuser-augmented wind

turbines, still remains of major importance.

1.2 Aims and Objectives

The primary aim of the current doctoral dissertation involves the development and
validation of effective computational tools and numerical methodologies for, but not restricted
to, the aerodynamic analysis, performance prediction and shape optimization of diffuser-
augmented wind turbines. In this direction, the following objectives, which are schematically

illustrated in Figure 1.5, have been accomplished:

* Development and validation of a computational Blade Element Momentum (BEM) code,
for the aerodynamic analysis and power output prediction of both conventional
(unshrouded) horizontal-axis wind turbine and diffuser-augmented wind turbine rotors

(see Chapter 2 and Chapter 3).

* Development and validation of an axisymmetric Reynolds-Averaged Navier-Stokes
(RANS) solver — named IGal2D - for the numerical prediction of incompressible fluid

motion that involves swirling (see Chapter 4 and Chapter 5).

* Development and validation of an axisymmetric RANS - BEM model, which relies on the
combination of the in-house BEM and 1Gal2D codes, for the simultaneous prediction of

the wind turbine rotor performance and surrounding flow characteristics (see Chapter 8).

* Development of a computational tool for the parameterization and deformation of two-
dimensional grids (mesh morphing), based on Free-Form Deformation (FFD) technique

(see Section 9.2).

1-5



Chapter 1 Introduction

* Development, validation, and application of a complete optimization framework for the
design of diffuser-augmented wind turbines, which combines the aforementioned
computational tools with an asynchronous and meta-model assisted Differential

Evolution (DE) algorithm (see Chapter 9 and Chapter 10).

* Finally, this doctoral dissertation features the design and aerodynamic evaluation of a
low-Reynolds number airfoil family, for the entire blade span of small wind turbines,
aiming to reduce the effects related to laminar separation, improve startup response, and

meet acceptable levels of structural integrity (see Chapter 6 and Chapter 7).

A Design Optimization Framework for Diffuser-Augmented Wind Turbines
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Figure 1.5: The main objectives of the current doctoral dissertation.



Chapter 1 Introduction

1.3 Physics of Shrouded Wind Turbines

The process of extracting mechanical power from the wind is inherently related to the
application of a thrust force on the primary mass flow, pointing in the upwind direction
(Hansen et al., 2000). In terms of horizontal-axis wind turbines, the corresponding thrust force
is the direct outcome of the static pressure drop across the rotor plane, which in turn is induced
by the rotation of the blades. Ultimately, the aerodynamic power output can be calculated by
multiplying the mass flow rate through the rotor with the corresponding pressure drop
(Manwell et al., 2010). At first glance, the power output of the system could be increased by
increasing the thrust force and the associated pressure drop; however, that would also result
in decreasing the mass flow rate through the rotor. Therefore, yielding the maximum power
coefficient, that is the ratio between the rotor power output and the total wind energy input,
requires the proper compromise of the involved quantities. According to momentum theory,
the optimal operating conditions for an unshrouded horizontal-axis wind turbine dictate that
the axial velocity component at the rotor plane should equal to 2/3 of the ambient wind
velocity, and the dimensionless thrust coefficient should equal to 8/9 (Manwell et al., 2010).
Under these conditions, the power coefficient takes its maximum theoretical value, which is
widely known as the Betz limit (Betz, 2013). In practice, the Betz limit indicates that the
maximum energy amount that an unshrouded horizontal-axis wind turbine can extract from
the wind equals to 59.3 percent of the total energy contained within the stream tube passing
through the rotor (see Section 2.1.1). The energy extraction scheme for a conventional
horizontal-axis wind turbine is illustrated in Figure 1.6.

— Fluid Flow e —

-

Force on Fluid ol

Figure 1.6: The energy extraction scheme for a conventional horizontal-axis wind turbine.

Evidently, the Betz limit represents a natural barrier within the power extraction process.

However, under the presence of mechanism that increases the mass flow rate through the
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rotor, the Betz limit could be exceeded. According to the study of van Holten (1981), enhancing
the mass flow rate through the rotor can be achieved by means of two separate mechanisms.
The first augmentation mechanism relies on the application of a cross-wind force on the
primary mass flow (see Section 1.3.1), while the second one is based on mixing the wake and

the external flow behind the rotor, in sub-atmospheric pressure (see 1.3.2).

1.3.1 Cross-Wind Force Mechanism

At first, let us recall that according to momentum theory, the axial velocity component over
the rotor plane for an unshrouded horizontal-axis wind turbine that operates at the Betz limit
equals to 2/3 of the ambient wind velocity (Manwell et al., 2010). Therefore, under the
assumptions of incompressible fluid motion and no mass flow crossing the lateral boundary
of the stream tube passing through the rotor, the continuity equation implies that the far
upstream cross-sectional area of the reference stream tube should equal to 2/3 of the rotor
swept area; in other words, when the rotor operates at the Betz limit, it basically captures the
kinetic energy contained in the wind, from an effective surface that is 2/3 of the rotor swept
area (Ten Hoopen, 2009). A detailed application of momentum theory for unshrouded

horizontal-axis wind turbines can be found in Section 2.1.1.

.
-~ - - i i
I
________________ » //
~—_ - >
_— - B
\\-___“'J - .
_— I‘I
I"‘
- s I‘
= ! —
D
- 5 | Y \Energy
{ .
—_— :‘
.‘._H__ .
—_— - ’(ﬂ; e
» 5 T~
________________ . S
T
~e_ —
~~o_

Figure 1.7: Schematic representation of the diffuser-augmented wind energy extraction scheme.

One of the available mechanisms to increase the effective area of the reference stream tube,
as well as the mass flow rate through the rotor, relies on the application of a force
perpendicular to the primary mass flow (van Holten, 1981). In practice, this perpendicular

force can be realized by placing an annular lifting device — for example, a shroud or a diffuser
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—around the rotor, with its suction side pointing towards the hub. Now, according to the third
law of Newton, the mass within the reference stream tube will naturally exert a reaction force
on the lifting device, in order to achieve a force equilibrium; a schematic representation of the
described situation is provided in Figure 1.7. However, this reaction force can only be exerted
by the flow, if more air mass is enforced to pass through the annular lifting device.
Consequently, the ultimate effect of placing a diffuser or shroud around the rotor can be
summarized on augmenting the effective area of the reference stream tube, and thus, the mass

flow rate.

From a different standpoint, the augmented levels of mass flow rate through the rotor of a
shrouded wind turbine could also be described by means of vortex theory (Ten Hoopen, 2009).
To this end, let us consider a shroud geometry in the shape of a simple annular airfoil, with
the suction or convex side pointing towards the rotor hub, similar to the one illustrated in
Figure 1.7. Eventually, such an annular airfoil apparatus will cause — like any airfoil
configuration — the air flow in the suction side, which in this case represents the internal
surface of the shroud, to accelerate. Evidently, the levels of pressure suction and flow
acceleration are tightly related to the lift force generated by the airfoil and therefore, according
to the Kutta-Joukowski theorem, to the bound vorticity on the airfoil surface. Essentially, the
inward radial force generated by the airfoil is accompanied by a ring vortex, which in turn,
according to the Biot-Savart law, will induce a higher velocity on the suction surface.
Ultimately, these higher velocity levels increase the mass flow rate through the wind turbine
rotor; the bound vorticity increases the effective area of the stream tube in front of the rotor
and consequently, the volumetric flow capability (also termed as swallowing capacity) of the

wind turbine (Ten Hoopen, 2009).

1.3.2 Mixing of the Wake and the External Flow Mechanism

In addition to the first augmentation mechanism, described in Section 1.3.1, the operation
of modern shrouded wind turbines is also characterized by mixing effects between the rotor
wake and the external flow (van Holten, 1981) — a momentum transfer mechanism that
eventually results in higher mass flow rates and power augmentation levels. In order to
explain the fundamentals of the second augmentation mechanism, let us initially consider the
flow situation behind the rotor. When a wind turbine rotor extracts energy from a moving
fluid stream, it will induce —like every other obstacle in a flow —a wake; the wake field behind
the rotor is characterized by both a static pressure and a velocity deficit, as compared to the
undisturbed flow stream. Even though a low pressure region behind the rotor is favourable,
this is not the case for the low wake velocity. According to the study of Igra (1981), the power

augmentation obtained by a shrouded wind turbine is a direct outcome of the subatmospheric
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pressure at the exit plane of the shroud. Therefore, an ideal situation, in terms of power
production, would be that in which the pressure behind the rotor is low and the mass flow

rate still high.
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Figure 1.8: Schematic representation of the diffuser-augmented wind energy extraction scheme,

combined with wake and external flow mixing.

In practice, increased levels of mass flow rate can be achieved either by means of wake
expansion or by increasing the wake velocity (Lilley and Rainbird, 1956). The fundamental
concept underlying the second augmentation mechanism is actually based on restoring the
momentum deficit behind the rotor, by mixing the wake flow with the undisturbed flow
stream, as schematically illustrated in Figure 1.8; the undisturbed flow will in turn provide the
extra momentum for the rotor wake flow to recover from the velocity deficit, caused by the
energy extraction process. Moreover, another reasoning behind the present augmentation
mechanism is that the mixing effect between the rotor wake and the external flow will
eventually cause the wake to have an additional expansion and thus, providing the rotor wake
flow with more volume. Apparently, increased wake volume levels for the same mass flow
rate through the shroud will result in lower exit pressure behind the rotor and therefore, more

suction (Ten Hoopen, 2009).

1-10



Chapter 1 Introduction

1.4 Shrouded Wind Turbines — A Brief Research Review

The basic theoretical background of shrouded or diffuser-augmented wind turbines was
originally established by Lilley and Rainbird (1956) during the 1950s, by means of axial or one-
dimensional momentum theory, while the first experimental investigations were conducted
by Kogan and Nissim (1962), Kogan and Seginer (1962, 1963), Igra (1976, 1977, 1981), Gilbert
and Foreman (1979, 1983), Foreman and Gilbert (1983), Gilbert et al. (1978) and Oman et al.
(1977). In addition, Igra (1977) and Foreman et al. (1978) devised some useful theoretical
models as well, which were based on one-dimensional momentum theory, aiming to analyze
the obtained experimental data and prove the ability of diffuser-augmented wind turbines to
exceed the Betz limit. Recently, these early models were upgraded by Khamlaj and Rumpfkeil
(2017); according to these latter researchers, the improved semi-empirical formulas that they
proposed have been proved quite effective, especially during the preliminary design stage of
shrouded rotors. In brief, the most important outcome of these initial studies was a remarkable
reduction in the length-to-diameter ratio of the back then shroud designs —a parameter tightly
associated with cost — by simultaneously maintaining high augmentation values. This is
mainly attributed to the exploitation of several innovative approaches for that certain period
of time; these include the replacement of straight-wall diffusers with high-lift producing
annular airfoils (Igra, 1981), the application of boundary layer control techniques (Gilbert et
al., 1978) and the substitution of exit flaps with exit flanges (Loeffler, 1981). In summary, these
investigations provided a much deeper understanding of the fundamental principles
governing shrouded wind turbines. Therefore, they succeeded to establish some valuable
preliminary design criteria, such as low static pressure at the exit plane of the shroud, high

velocity acceleration over the rotor plane, minimum drag levels, and large pressure recovery.

Around the same period, significant research on the development of -effective
computational models has been reported as well. In particular, Fletcher (1981) developed a
low-fidelity computational model, based on the blade element theory, by introducing two
empirical parameters — namely, the diffuser efficiency and the diffuser exit pressure coefficient
— in order to include the effect of the diffuser within the rotor analysis. In addition, Fletcher
(1981) enriched the particular model by the addition of wake rotation and blade Reynolds
number effects; thus, he achieved a good agreement between the computational results and
the experimental data, in terms of the turbine power coefficient and axial velocity.
Furthermore, significant research was carried out by Koras and Georgalas (1988) and
Georgalas ef al. (1991). These latter studies were mostly focused on evaluating the influence of
several geometrical characteristics of wing shaped shrouds, including the angle of attack, the
chord length and the maximum camber, on the power output of the turbine. Eventually, by

applying the lifting line theory, and by representing the shroud geometry as a superposition
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of source and vortex rings, Koras and Georgalas (1988) reached to the conclusion that power
output increases linearly with the chord length and the angle of attack. Later on, Phillips (2003)
proposed a modified Blade Element Momentum (BEM) model, by introducing an empirically-
derived formula for calculating the radial distribution of the axial velocity component over the
rotor plane. That simplified computational model — along with high-fidelity Computational
Fluid Dynamics (CFD) simulations and wind tunnel experiments — was then extensively
applied during a research program on a full-scale prototype built by Vortec Energy Limited
(Phillips et al., 1999); that was the first private company that attempted to commercialize the
diffuser-augmented wind turbine concept. Nevertheless, the particular prototype failed to
achieve an accepted LCoE, mostly because of the intense flow separation phenomena and the
heavy supportive structures required to endure the expected loads. Thus, unfortunately, the
aftermath of the subsequent collapse of Vortec Energy Limited, and the economic aspects
associated with the high cost of the shroud, led to the disappearance of shrouded wind
turbines from the back then research agendas (Khamlaj and Rumpfkeil, 2017).

However, in recent years, there has definitely been renewed interest in shrouded wind
turbine applications, along with substantial attempts towards commercialization (Khamlaj
and Rumpfkeil, 2017). In this context, Hansen et al. (2000) performed a numerical study to
explore the impact of placing a diffuser around a wind turbine. By using momentum theory
and CFD simulations, they demonstrated that power augmentation is proportional to the
increased mass flow rate passing through the rotor. A similar momentum analysis was also
carried out by van Bussel (1999); this study indicated that the optimal thrust coefficient of a
shrouded wind turbine is equal to 8/9, as exactly for the case of conventional (unshrouded)
horizontal-axis wind turbines. The same value for the optimal thrust coefficient was later
suggested by Jamieson (2009), who employed an ideal limiting model, based on a
generalization of one-dimensional momentum theory. Eventually, van Bussel (1999) reached
to similar conclusions with Hansen et al. (2000), as he reported that power augmentation is
proportional to the increased mass flow rate, while he emphasized on the necessity of
substantially reducing the back pressure, in order to achieve power performance coefficients

far beyond the Betz limit.

In view of the preceding literature review, it is evident that momentum or actuator disk
theory has always been a valuable tool for the analysis and preliminary design of shrouded
wind turbines. Yet, this simplified model lacks the ability to estimate the system’s performance
for a prescribed value of thrust coefficient and a given shroud geometry (Bontempo and
Manna, 2016). Therefore, in efforts to address the limitations of classical momentum theory, as
well as those of other linearized and simplified models, Bontempo and Manna (2013, 2014,
2016) recently devised an accurate nonlinear and semi-analytical actuator disk theory. That

model was capable of taking under consideration the shape of the examined shroud and
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accounting for the interaction between the shroud and the rotor, the slipstream rotation and
the non-uniform distribution of thrust over the rotor plane. Subsequently, Bontempo and
Manna (2016) applied this nonlinear theory to investigate the impact of thrust coefficient and
shroud’s camber on power output; according to their findings, the increase of shroud’s camber

favours the overall system performance.

Further computational investigations were reported by Bet and Grassmann (2003); in fact,
they used CFD simulations to assess the potential of a shrouded wind turbine with a wing
profiled diffuser, while Grassmann et al. (2003) carried out an experimental study on this
particular design. The experimental results revealed that power output augmentation could
reach 1.55 and 2, for high and low wind speeds respectively. In addition, Wang F. et al. (2008)
investigated the possibility of improving wind energy harvesting under low wind speed
conditions in built-up areas. In this direction, they employed experimental tests and CFD
computations to evaluate the effect of a converging-diverging nozzle on the power output of
a small wind turbine for domestic use in such locations. Later on, Aranake et al. (2015) assessed
numerically the performance of several shroud configurations, based on the criterion of
highest mass flow rate. According to Aranake et al. (2015), the improvement in power
extraction beyond the unshrouded wind turbine was substantial, even for particularly low
wind speeds. Ultimately, they concluded their study by supporting the fact that the concept
of diffuser-augmented wind turbine could actually form a promising alternative for

sustainable energy production under low wind speed regimes.

A considerable number of studies have been also focused on the practice of using a
brimmed or flanged diffuser. The most representative works on this concept were made by
Abe and Ohya (2004), Ohya and Karasudani (2010), Kosasih and Tondelli (2012), Kardous et
al. (2013), Mansour and Meskinkhoda (2014), Toshimitsu et al. (2008) and Takahashi et al.
(2012). The majority of these studies indicated that the low pressure area and the strong vortex
formation caused by the presence of the flange could increase the wind speed approaching the
turbine by a factor ranging up to 2.6. Moreover, Abe and Ohya (2004) identified the turbine
loading and the opening angle of the diffuser as the parameters with the highest impact on the
overall performance. In particular, they suggested that low-loaded turbines, the elimination of
large flow separations and the conservation of high pressure recovery, could significantly

improve the power output levels.

Lately, Rio Vaz et al. (2014) proposed an extension to the classical BEM theory, and
developed a modified BEM model of low computational cost, for the rotor analysis of
shrouded wind turbines. The accuracy of the particular computational model was successfully
validated, against both numerical and experimental data, by Leloudas et al. (2017), while a

similar model was subsequently utilized by Vaz and Wood (2016) and Leloudas et al. (2018a,
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2019a) for the aerodynamic optimization of diffuser-augmented wind turbine blades. Besides,
several additional optimization schemes have been recently developed and successfully
applied for the design of improved shrouded wind turbines (Alpman, 2018; Aranake and
Duraisamy, 2017; Bagheri-Sadeghi et al., 2018; Dighe, 2020; Foote and Agarwal, 2013; Khamlaj
and Rumpfkeil, 2018; Leloudas et al., 2018a, 2018b, 2019a, 2020a; Liu J. et al., 2016; Oka et al.,
2014, 2016; Sorribes-Palmer et al., 2017; Venters et al., 2018). These optimization methodologies
can be generally classified into three main categories: (i) those that exclusively involve the
design of the shroud — either by imposing a predetermined turbine loading (Foote and
Agarwal, 2013; Venters et al., 2018) or even by considering an unloaded shroud configuration
(Leloudas et al., 2018b, 2020a; Liu J. et al., 2016); (ii) those that investigate the rotor design for
a given and fixed shroud geometry (Leloudas et al., 2018a, 2019a); and finally, (iii) those
exploring the simultaneous optimization of the coupled rotor/shroud system (Alpman, 2018;
Aranake and Duraisamy, 2017; Khamlaj and Rumpfkeil, 2018; Oka et al., 2014, 2016). Among
the aforementioned approaches, the latter has been generally considered as the most effective
one, while the individual optimization of the shrouded wind turbine components could
possibly lead to sub-optimal solutions, as characteristically reported by Khamlaj and
Rumpfkeil (2018). This is mainly attributed to the fact that the flow field inside the diffuser,
and therefore, its overall aerodynamic performance, are strongly dependent upon the presence
and the geometrical characteristics of the rotor blades. In particular, the circumferential
velocity component that is induced by the rotating turbine blades has the tendency to suppress
possible flow recirculation in the downstream diffuser wall, while the pressure drop across
the rotor causes a natural tendency of the pressure to recover, and the wake to expand (Hjort
and Larsen, 2015). Eventually, these flow features could result in increasing the mass flow rate
and the power output performance. Therefore, as Khamlaj and Rumpfkeil (2018) suggested, it
is vital that the aerodynamic optimization of the shroud and rotor blades are simultaneously

performed, in order to achieve a highly performing shrouded wind turbine design.

Finally, significant research on shrouded wind turbines was also made by Venters et al.
(2018), who explored the influence of several design parameters (thrust coefficient, angle of
attack, rotor gap and axial position of the rotor) on power output. Among the examined ones,
thrust coefficient was found as the parameter with the greatest impact on power output. In
addition, Venters ef al. (2018) highlighted that the optimal angle of attack of the shroud was
much larger than the separation angle of attack for the corresponding airfoil in a freestream,
as well as that large angles of attack did not necessary induce flow separation within the
shroud, since the swirling velocity induced by the rotor helps to energize the boundary layer
of the internal diffuser wall and maintain the flow attached. Conclusively, this work indicated
that shrouded wind turbines are capable of exceeding the Betz limit, even if the power

coefficient is calculated based on the exit area of the shroud. In line with Venters et al. (2018),
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Alpman (2018) noted that the pressure drop across the rotor would delay flow separation
within the diffuser; however the optimal designs obtained from this study failed to overcome

the Betz limit, when the power coefficient was calculated based on the exit area of the shroud.

1.5 Thesis Outline

The remaining part of the current doctoral dissertation has been organized as follows:

Chapter 2 — The first part of this chapter, namely Section 2.1, describes the application of
axial momentum theory for both conventional horizontal-axis and diffuser-augmented
wind turbine rotors, while the second part, namely Section 2.2 and 2.3, provides a detailed
overview on the theoretical background and the major features of an in-house BEM code,

which was entirely developed in the context of the present doctoral dissertation.

Chapter 3 — This chapter provides a detailed validation study on the overall performance
of the in-house BEM solver presented in Chapter 2. To this end, several benchmark cases
have been selected, including both conventional horizontal-axis wind turbine (Section 3.1)
and shrouded wind turbine (Section 3.2) rotors. The results of the current BEM
simulations are compared against both numerical and experimental data available in the

literature, as well as against the results obtained from the well-known QBlade software.

Chapter 4 — This chapter describes the development of an in-house developed RANS
solver, named IGal2D, for the numerical prediction of incompressible axisymmetric flows
involving swirling. In particular, Section 4.1 provides a general introduction into
axisymmetric swirling flows, as well as the incentives for the development of 1Gal2D
solver, while Section 4.2 presents the adopted form of the governing equations, defining
the flow and turbulence models. Finally, the remaining sections of the current chapter
outline the numerical methodology underlying the IGal2D solver, emphasizing on the
spatial and temporal discretization schemes, the flux evaluation approaches, and the

source term treatment.

Chapter 5 — This chapter aims to provide a detailed evaluation study on the numerical
accuracy and performance of the in-house developed 1Gal2D solver. For this purpose,
several incompressible and axisymmetric flows are considered, including both non-
swirling (see Section 5.1) and swirling (see Section 5.2) regimes. The simulation results are

compared against analytical, numerical and experimental data.
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Chapter 6 — This chapter features a new low-Reynolds number airfoil family for the entire
blade span of small horizontal-axis wind turbines, aiming to reduce the effects related to
laminar separation, improve startup response and meet acceptable levels of structural
integrity. The proposed RG15 low Reynolds airfoil family consists of six airfoil profiles of
varying relative thickness, which were designed by increasing the thickness distribution
of RG15 airfoil up to 50% and adopting a rounded trailing edge, with a diameter equal to
1% of the chord length.

Chapter 7 — This chapter involves the aerodynamic performance evaluation of the entire
low Reynolds RG15 airfoil family. In order to obtain the aerodynamic characteristics of
the involved airfoils, both the well-known XFOIL code and the in-house developed
IGal2D solver are employed.

Chapter 8 — This chapter features the development and numerical validation of an
axisymmetric RANS - BEM model, which relies on the combination of the in-house BEM
and IGal2D codes, for the simultaneous prediction of the wind turbine rotor performance
and surrounding flow characteristics. In particular, the first part of the current chapter
provides an implementation overview of the coupled RANS - BEM model, while the

second part includes a detailed validation study on the proposed methodology.

Chapter 9 — This chapter describes a modular optimization framework for the
aerodynamic shape optimization of shrouded wind turbines, which combines the analysis
tools developed within the current study, with a parallel and asynchronous version of a
meta-model assisted Differential Evolution (DE) algorithm. The first part of this chapter
(Section 9.1) outlines the major features of the in-house developed surrogate-assisted DE
algorithm, employed as the optimizer. The particular asynchronous and parallel version
of the current algorithm was developed at the Turbomachinery and Fluid Dynamics
laboratory in the context of the doctoral dissertation of Giorgos A. Strofylas. Subsequently,
Section 9.2 describes the development of a mesh parameterization and deformation tool
that is based on Free-Form Deformation (FFD), while the last part of the current chapter

(Section 9.3) provides an overview of the proposed optimization framework.

Chapter 10 - This chapter presents the application of the propped optimization

framework to the design of improved diffuser-augmented wind turbines.

Chapter 11 - Finally, this chapter summarizes the principal conclusions of the current

doctoral dissertation. In particular, Section 11.1 provides a concise recap of the entire
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study, focused on the most significant results and contributions, while Section 11.2

indicates possible directions for further research on the specific topic.

At this point, please note that, excluding Introduction and Conclusions chapters, the current
doctoral dissertation has been divided into five thematic units that can, in one way or another,

also be read independently. Nevertheless, they are part of a bigger storyline, illustrated in
Figure 1.9.

RG15 Airfoils

IGal2D Solver RANS - BEM

BEM Code Optimization

Introduction Conclusions

Figure 1.9: The storyline of the current doctoral dissertation.

1.6 Contributions

Considering similar studies available in the literature, the most significant contributions of

this doctoral dissertation can be summarized as follows:

* The design and aerodynamic evaluation of a new low Reynolds airfoil family for the

entire blade span of small horizontal-axis wind turbines, based on the RG15 airfoil
(Leloudas et al., 2019b, 2020Db).
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* The behavior investigation of the recirculation area behind the rounded trailing edge of
the newly introduced RG15 airfoils for different angles of attack. In addition, this study
involves the impact examination of the thickness-to-chord ratio on the separation
bubbles near the leading edge of the RG15 airfoils (Leloudas et al., 2020).

* The development and validation of an in-house Blade Element Momentum code for the

performance prediction of shrouded wind turbines (Leloudas et al., 2017).

* The development and numerical assessment of an academic flow solver that combines
the artificial compressibility technique with the axisymmetric RANS equations for the
accurate prediction of incompressible fluid motion that involves swirling (Leloudas et
al., 2018b, 2021).

* The detailed description of the convective flux Jacobian and the entire eigenvector

system, used within Roe’s approximate Riemann solver (Leloudas et al., 2021).

* The development and application of a versatile computational framework for the
aerodynamic shape optimization of diffuser-augmented wind turbines, which combines
an asynchronous and meta-model assisted Differential Evolution algorithm with the

currently developed analysis tools (Leloudas et al., 2020).

1.7 List of Related Publications

The research findings of this dissertation have contributed to the following publications:
A. International Journals

1. Nikolos, LK., Lygidakis, G.N., Leloudas, S.N., Tavla, S., “Application of B-spline Basis
Functions as Harmonic Functions for the Concurrent Shape and Mesh Morphing of

Airfoils”, GPPS Journal (Accepted).

2. Leloudas, S.N., Lygidakis, G.N., Delis, A.I. and Nikolos, I.K. (2022), “Design Optimization
of Shrouded Wind Turbines Using an Axisymmetric RANS-BEM Method and a Differential
Evolution Framework”, SSRN Electronic Journal. https://www.doi.org/10.2139/ssrn.4014185.

3. Leloudas, S.N., Lygidakis, G.N., Delis, A.I. and Nikolos, LK. (2021), "An Artificial
Compressibility Method for Axisymmetric Swirling Flows", Engineering Computations, Vol.

38, No. 10, pp. 3732-3767. https://www.doi.org/10.1108/EC-10-2020-0594.

1-18


https://www.doi.org/10.2139/ssrn.4014185
https://www.doi.org/10.1108/EC-10-2020-0594

Chapter 1 Introduction

4. Leloudas, S.N., Eskantar, A.I, Lygidakis, G.N. and Nikolos, I.K. (2020), "A Robust
Methodology for the Design Optimization of Diffuser Augmented Wind Turbine Shrouds",
Renewable Energy, Vol. 150, pp.722-742. https://www.doi.org/10.1016/j.renene.2019.12.098.

5. Leloudas, S.N., Eskantar, A.L, Lygidakis, G.N. and Nikolos, I.K. (2020), "Low Reynolds
Airfoil Family for Small Horizontal Axis Wind Turbines Based on RG15 Airfoil", SN Applied
Sciences, Vol. 2, No. 3. https://www.doi.org/10.1007/s42452-020-2161-1.

6. Leloudas, S.N., Strofylas, G.A. and Nikolos, I.K. (2018), "Constrained Airfoil Optimization
Using the Area-Preserving Free-Form Deformation", Aircraft Engineering and Aerospace

Technology, Vol. 90, No. 6, pp. 914-926. https://doi.org/10.1108/AEAT-10-2016-0184.

B. Proceedings of International Conferences

1. Leloudas, S.N., Lygidakis, G.N., Delis, A.I. and Nikolos, LK. (2022), “Optimization of a
Diffuser-Augmented Wind Turbine Utilizing a Differential Evolution Software and an
Axisymmetric RANS-BEM Solver”, Proceedings of Global Power and Propulsion Society, GPPS
Chania22, 12-14 September 2022, Chania, Greece. https://doi.org/10.33737/gpps22-tc-22.

2. Nikolos, LK., Lygidakis, G.N., Leloudas, S.N. and Tavla, S. (2022), “Application of B-Spline
Basis Functions as Harmonic Functions for the Concurrent Shape and Mesh Morphing of
Airfoils”, Proceedings of Global Power and Propulsion Society, GPPS Chania22, 12-14
September 2022, Chania, Greece. https://doi.org/10.33737/gpps22-tc-9.

3. Lygidakis, G.N., Leloudas, S.N., Delis, A.I. and Nikolos, LK. (2020), “Prediction of
Turbulent Axisymmetric Flows Using an Artificial Compressibility Approach”, Proceedings
of Global Power and Propulsion Society, GPPS Chania20 (Online Conference), 7-9 September
2020, Chania, Greece. https://doi.org/10.33737/gpps20-tc-98.

4. Leloudas, S.N. and Nikolos, L.K. (2019), “Design of a Low Reynolds Airfoil Family for Small
Horizontal Axis Wind Turbine Applications Based on the RG15 Airfoil”, Proceedings of the
7th European Conference on Renewable Energy Systems, 10-12 June 2019, Madrid, Spain.

5. Leloudas, S.N., Eskantar, A.I. and Nikolos, L.K. (2019), “Design of a Low Reynolds Airfoil
Family for Small Horizontal Axis Wind Turbine Applications Based on the RG15 Airfoil”,
Proceedings of the 7th European Conference on Renewable Energy Systems, 10-12 June 2019,
Madrid, Spain.

1-19


https://www.doi.org/10.1016/j.renene.2019.12.098
https://www.doi.org/10.1016/j.renene.2019.12.098
https://www.doi.org/10.1016/j.renene.2019.12.098
https://doi.org/10.1108/AEAT-10-2016-0184
https://doi.org/10.33737/gpps22-tc-22
https://doi.org/10.33737/gpps22-tc-9
https://doi.org/10.33737/gpps20-tc-98

Chapter 1 Introduction

6. Leloudas, S.N., Strofylas, G.A. and Nikolos, LK. (2018), “Aerodynamic Shape Optimization
of Diffuser Augmented Wind Turbine Shrouds Using Asynchronous Differential
Evolution”, Proceedings of the ASME 2018 International Mechanical Engineering Congress and
Exposition, Pittsburgh, PA, USA, November 9-14, 2018. https://doi.org/10.1115/IMECE2018-
86820.

7. Lygidakis, G.N., Leloudas, S.N. and Nikolos, I.K. (2018), “Applying a Radiative Heat
Transfer Finite-Volume Methodology to a Geometrically Complex Furnace”, Proceedings of
the ASME 2018 International Mechanical Engineering Congress and Exposition, Pittsburgh,
Pennsylvania, USA, November 9-14, 2018. https://doi.org/10.1115/IMECE2018-86831.

8. Klothakis, A.G., Lygidakis, G.N., Leloudas, S.N. and Nikolos, I.K. (2018), “Revisiting
Rarefied Gas Experiments with Recent Simulation Tools”, Proceedings of the 7th European
Conference on Computational Fluid Dynamics, Glasgow, Scotland, United Kingdom, 11 — 15
June, 2018. https://api.semanticscholar.org/CorpusID:199428794.

9. Klothakis, A.G., Lygidakis, G.N., Leloudas, S.N. and Nikolos, L.K. (2018), “Rarefied Gas
Flow Analysis Over a Re-entry Space Capsule Geometry”, Proceedings of the 9th GRACM
International Congress on Computational Mechanics, Chania, Greece, June 4-6, 2018. ISBN 978-
618-81537-5-2.

10.Leloudas, S.N., Strofylas, G.A. and LK. Nikolos, (2018), “Aerodynamic Shape Optimization
of Diffuser Augmented Wind Turbine Blades Using Asynchronous Parallel Differential
Evolution”, Proceedings of the 9th GRACM International Congress on Computational Mechanics,
Chania, Greece, June 4-6, 2018. ISBN 978-618-81537-5-2.

11.Leloudas, S.N., Lygidakis, G.N. and Nikolos, I.K. (2017), “Assessment of a Modified Blade
Element Momentum Methodology for Diffuser Augmented Wind Turbines”, Proceedings of
the ASME 2017 International Mechanical Engineering Congress and Exposition, Volume 7:
Fluids Engineering, Tampa, FL, USA, November 3-9, 2017.
https://doi.org/10.1115/IMECE2017-70288.

1-20


https://doi.org/10.1115/IMECE2018-86820
https://doi.org/10.1115/IMECE2018-86820
https://doi.org/10.1115/IMECE2018-86831
https://api.semanticscholar.org/CorpusID:199428794
http://purl.tuc.gr/dl/dias/CF0F2216-5E19-4C4A-A47A-D4F9164C2E4D
http://purl.tuc.gr/dl/dias/CF0F2216-5E19-4C4A-A47A-D4F9164C2E4D
http://purl.tuc.gr/dl/dias/CF0F2216-5E19-4C4A-A47A-D4F9164C2E4D
https://doi.org/10.1115/IMECE2017-70288

Chapter 2

Development of a Blade Element Momentum Code

The first part of the current chapter, namely Section 2.1, describes the application of axial momentum
theory for both conventional horizontal-axis and diffuser-augmented wind turbine rotors, while the
second part, namely Section 2.2 and 2.3, provides a detailed overview on the theoretical background and
the major features of an in-house BEM solver, which was entirely developed in the context of the present

doctoral dissertation.

2.1 Momentum Theory

Momentum theory represents one of the oldest, yet most widely adopted, theoretical tools
for the aerodynamic analysis and performance prediction of wind turbine rotors, which is
essentially based on control volume integrals for mass and energy conservation, along with
axial and angular momentum balances (Serensen, 2012). The origins of momentum theory can
be traced back to the studies of Rankine (1865) and Froude (1889). However, several
improvements and generalizations have been proposed since then, widening its applicability
and boosting its accuracy (Serensen, 2016; van Kuik, 2020). In general, the fundamental
concept underlying momentum theory is that the actual rotor geometry can be represented by
an infinitely thin, frictionless and permeable actuator disc with the same diameter as the rotor
(see Figure 2.1 and Figure 2.3); the actuator disc operates under the assumptions of steady,
inviscid, incompressible and axisymmetric flow (Burton ef al., 2001; van Kuik et al., 2015).
Besides, in the simplest form of momentum theory, the actuator disc is also considered ideal;
that is, the disc — except from being frictionless — does not induce any azimuthal (rotational or
circumferential) velocity component in the wake field. In that case, the resultant theory is
referred to as axial or one-dimensional momentum theory, in order to be distinguished from
the so-called generalized momentum theory (Serensen, 2016), which is capable of accounting
for wake rotation effects (Manwell et al., 2010). The following sections (namely, Section 2.1.1
and Section 2.1.2) outline the application of axial momentum theory for both conventional
(unshrouded) horizontal-axis and shrouded or diffuser-augmented wind turbines. As these
sections indicate, even though the axial momentum theory is based on several simplifying
assumptions, it can eventually provide very useful insights on the optimal operating
conditions of the rotor, while it forms the basis for the development of the well-known BEM
theory (see Section 2.2), which is nowadays the standard computational model for design

applications in wind turbine industry (Malki ef al., 2013).
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2.1.1 Axial Momentum Theory for HAWTSs

In this section, the fundamental concepts and equations forming the one-dimensional or
axial momentum theory, for the case of a conventional (unshrouded) horizontal-axis wind
turbine, are recalled. Initially, let us consider a control volume, in the form of a long stream
tube with circular cross section — such the one illustrated in Figure 2.1 and Figure 2.2 — that
passes through the rotor disc and extends in both upstream and downstream directions.
Herein, the following notations are adopted; subscript (0) refers to a station far upstream of
the actuator disc, in the undisturbed flow; subscript (2) refers to a station immediately before
the actuator disc; subscript (d) refers to a station at the actuator disc; subscript (3) refers to a
station immediately after the actuator disc; finally, subscript (5) refers to a station downstream
of the actuator disc, in the ultimate wake (also called as far wake). The term ultimate or far
wake has been introduced to indicate the region where the air stream has fully recovered its
undisturbed pressure value (Serensen, 2016). Please note that subscripts (1) and (4) have
intentionally been skipped, as they will be used during the one-dimensional analysis of
shrouded wind turbines (see Section 2.1.2) to signify the stations corresponding to the inlet
and exit planes of the diffuser. All the reference stations used for the description of axial

momentum theory are illustrated in Figure 2.1 and Figure 2.2.
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Figure 2.1: Schematic representation of the stream tube passing through the rotor of a conventional
(unshrouded) horizontal-axis wind turbine. Illustration of the reference stations for the description of

axial momentum theory.

Under the assumption of no mass flow crossing the lateral boundary surface of the
reference control volume, which is represented by the dashed lines in Figure 2.1 and Figure
2.2, the fundamental law of mass conservation (continuity equation) enforces that the mass

flow rate (1) should be constant for each cross-section along the stream tube. Thus,
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i = [ pusda = pAgitzg = pAgitza = phsizs. 1)

Here, p stands for the air density, u, stands for the axial velocity component and A stands for
the cross-sectional area of the stream tube. In practice, the actuator disc, like the actual turbine
rotor, acts as a drag device that applies a constant and uniform force (T;) on the incoming flow.
Basically, this drag force slows the wind speed down from u, , upstream of the actuator disc,
to u, 4 at the actuator disc, and eventually, to u, 5 in the ultimate wake (Hansen, 2008). As a
result, given the assumption of incompressible fluid motion, the cross-sectional area of the
stream tube must expand (as Figure 2.1 and Figure 2.2 characteristically demonstrate) from 4,
upstream of the actuator disc, to A4 at the actuator disc and finally, to As in the far wake, in

order to accommodate the slower moving air (Burton et al., 2001).
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Figure 2.2: Meridian section of the reference stream tube.

At this point, let us note that stations (2) and (3) are practically coincide with station (d);
hence, no variation in both axial velocity component (u,) and cross-sectional area (4) of the

stream tube among these particular stations is taken under consideration. Thus,
Uz = Uzg = Ugz3, (2.2)
A2 = Ad = A3 . (2.3)
The only reason that stations (2) and (3) have been included within the current analysis is to

signify the upstream and downstream sides of the wind turbine rotor, which are involved in

the description of the static pressure jump (4py) across the actuator disc (rotor).

The total thrust force on the rotor, which is equal and opposite to the drag force that the
rotor exerts on the incoming flow, equals to the rate of linear momentum change along the
stream tube at hand. Therefore, it can be obtained through the application of the integral form

of momentum equation in the axial direction, for the reference control volume (Hansen, 2008).
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Eventually, the axial momentum balance results in the following expression for the rotor

thrust (Serensen, 2016):
Tq = Uz (PAouz,o) —Uzs (PAsuz,s) ) (2.4)
while under the assumption of steady-state or time-invariant flow, Eq. (2.4) recasts into:
Tq = m(uz,o - uz,S) = pAduz,d(uz,O - uz,S) - (2.5)

Here, it is recalled that the extraction of both Eq. (2.4) and Eq. (2.5) has been based on the
hypothesis that the static pressure in the far wake (ps) equals to the static pressure of the
undisturbed flow (py), while the net action of pressure distribution on the lateral boundary of
the stream tube is zero (Hansen, 2008; Manwell et al., 2010).

Besides, the thrust force on the rotor disc can be expressed in terms of the total pressure

loss or pressure jump (4p,) across the rotor, namely, between stations (2) and (3). Thus,

Tqg =Apg-Aq = (p2 —p3) " Aq - (2.6)

Moreover, since no work is done on either side of the actuator disc, Ap,; can be calculated by
applying Bernoulli’s equation, for both upstream and downstream sections of the reference

stream tube. The application of Bernoulli’s equation between station (0) and station (2) reads:

1 1
Po + E.Dug,o =p;+ E.Du%,z ) (2.7)

while for the stream tube section downstream of the actuator disc, that is, between station (3)

and station (5), the application of Bernoulli’s equation yields:

1 1
P +5pUzs = Ps 5 pUzs - (2.8)

Accordingly, the combination of Eq. (2.7) and Eq. (2.8) with Eq. (2.6), results in the following

expression for the rotor thrust:
1 2 2
Ty = E.OAd(uz,o - uz,S) . (2.9)
Now, equating the thrust values from Eq. (2.5) and Eq. (2.9) results in the following expression:
1
Uzqg = Uz = Uz3 = E (uz,O + uz,S) , (2'10)

which is also known as the Froude’s law (Bontempo and Manna, 2017). Therefore, according

to axial momentum theory, the wind velocity experienced by the actuator disc (axial velocity
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component at the rotor plane) equals to the average of the wind velocity in the undisturbed
flow (free stream) and the ultimate wake (Burton et al., 2001; Hansen, 2008, Manwell et al.,
2010).

At this point, let us introduce the axial induction factor (a,), which practically represents
the fractional decrease in axial velocity component between the undisturbed flow (0) and the

rotor plane (d); in particular, the axial induction factor is defined as:
Qg =—— - (2.11)

Then, the axial velocity component at the rotor disc (u, 4) and the axial velocity component in

the ultimate wake (u, 5) can be expressed in terms of the axial induction factor (a,), as:
Ugza = Uzo(1 —ag) = Uz — wg, (2.12)
Uzs = Ugo(1 — 2a4) = Uzp — 20q, (2.13)

where the quantity w, = u,4a, is often referred to as the axial induced velocity. Hence, the
wind velocity at the rotor disc can be written as a combination of the free stream velocity and
the induced wind velocity (Manwell et al., 2010). Now, introducing Eq. (2.12) and Eq. (2.13)

into Eq. (2.9), the rotor thrust can be expressed as a function of the axial induction factor:
Ty = 2pAguzoas(l —agy) . (2.14)

Ultimately, the aerodynamic power output of the rotor (P) can be calculated by multiplying

the rotor thrust force with the axial velocity component at the rotor plane. Thus,
P=1u,4 Ty =2pAgu;oa,(1—a,)?. (2.15)

Furthermore, the rotor thrust and power can be expressed in the form of the dimensionless

thrust (Cy) and power (Cp) coefficients, which are respectively defined as:
Cr =Ty/(0.5pAqus,) = 4a,(1—a,), (2.16)
Cp = P/(0.5pAqu3y) = 4a, (1 — ag)?. (2.17)

Conclusively, the most significant outcome of axial momentum theory can be summarized
on the fact that the particular model allows for the extraction of the maximum theoretical
power output for an ideal horizontal-axis wind turbine rotor. This is achieved by simply

differentiating the power coefficient with respect to the axial induction factor, as follows:

0Cp/0a, =0 — 4(1—a,)(1—-3a,) =0 - [aglepe =1/3. (2.18)
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Therefore, the value of axial induction factor (a,) that maximizes the power coefficient of a
horizontal-axis wind turbine equals to 1/3. The particular result indicates that, according to
axial momentum theory, if an ideal horizontal-axis wind turbine rotor could possibly be
designed, the point of maximum power production would be achieved for a value of wind
velocity at the rotor plane that equals to 2/3 of the free stream velocity (Manwell et al., 2010).
Eventually, by simply introducing the optimal value of axial induction factor (1/3) into Eq.

(2.16) and Eq. (2.17) the optimal rotor thrust coefficient is given as:
[Crlope =8/9. (2.19)
while the maximum power coefficient reads:
[Cplmax = 16/27 = 0.593. (2.20)

The latter result is widely known as the Betz limit (Betz, 2013) and indicates that the maximum
energy amount that an unshrouded horizontal-axis wind turbine can extract from the wind
equals to 59.3 percent of the total energy contained within the stream tube passing through
the rotor. However, in practice, this theoretical upper value of power coefficient can never be
reached, due to energy losses associated with the rotation of the wake, the finite number of
blades and non-zero aerodynamic drag. Typically, the value of power coefficient for an actual

unshrouded wind turbine rotor ranges between 0.35 and 0.45 (Manwell et al., 2010).

2.1.2 Axial Momentum Theory for Shrouded Wind Turbines

This section describes the application of axial momentum theory for the case of a shrouded
or diffuser-augmented wind turbine, employing a similar approach to the one followed during
the analysis of an unshrouded horizontal-axis wind turbine configuration (see Section 2.1.1).
Initially, let us consider a control volume in the form of a long stream tube that passes through
the shrouded rotor and extends in both upstream and downstream directions, such the one
illustrated in Figure 2.3 and Figure 2.4. Here, the same notation strategy as for the case of an
unshrouded wind turbine rotor has been adopted, with the only exception being the inclusion
of two additional reference stations; station (1) refers to the inlet plane of the diffuser and
station (4) refers to the exit plane of the diffuser. As for the case of an unshrouded horizontal-
axis wind turbine, the flow field upstream of the shrouded rotor can be described by means of

Bernoulli’s equation. The application of Bernoulli’s equation between station (0) and station
(2) yields:

1 1
Po +5PUz0 = P2 T pUZ, - (2.21)
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In a similar way, the Bernoulli’s equation can be applied between station (3) and station (5), in
order to describe the flow field downstream of the shrouded rotor. For this case, the Bernoulli’s

equation reads:

1 1
p3 + Epugg =ps+ Epug,s +4hy,, (2.22)

where Ahy, denotes the total pressure loss between the rotor plane and the diffuser exit plane,
due to friction effects and possible flow separation in the boundary layer of the downstream
diffuser wall (Serensen, 2016).

J—- Boundary Surface /,//”’ \
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Figure 2.3: Schematic representation of the stream tube passing through the rotor of a shrouded wind

turbine. Illustration of the reference stations employed for the application of axial momentum theory.

Please note that in the current analysis, the total pressure loss associated with the upstream
diffuser part, which is defined as the region between the inlet plane of the diffuser (1) and the
rotor plane (d), has been entirely neglected for the sake of simplicity. According to Phillips
(2003), the validity of this approximation can reasonably hold for a well-designed diffuser with
a smooth inlet section, where the rotor position is located near the inlet plane. Therefore, the

total pressure loss along the diffuser is defined as:

., T,
Ahy, = (Ps + Epuz,a> - (P4 + E.Duz,z;) . (2.23)

Here, let us recall that the total thrust on the rotor can be calculated by multiplying the total

pressure jump (4p,) between station (2) and station (3) with the rotor swept area (4,4). Thus,

Tg=A4pg-Ag = (p2—p3) 4. (2.6)
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Eventually, by combining the Bernoulli’s equation for the upstream (2.21) and downstream
(2.22) parts of the adopted control volume, along with the expressions providing the total
pressure loss along the diffuser (2.23) and the rotor thrust (2.6), the energy balance for the
stream tube at hand — which essentially represents the rate of energy loss between station (0)

and station (5) — can be written as follows:

(1 1 :
q (Epug,o - Epu§,5> =P +q4hy,, (2.24)

where ¢ = u, 4 * Ay stands for the volumetric flow rate through the rotor discand P = u, 4 T,
denotes the aerodynamic power output of the shrouded rotor. Finally, rearranging Eq. (2.24),
the power output for a shrouded wind turbine rotor can be calculated as:
1 ., Ok
P =3 pusaa (12 —u2s —2=L). (2.25)
At this point, let us introduce the diffuser efficiency, denoted by n4; this dimensionless

parameter that is related to the performance of the diffuser is defined as (Phillips, 2003):

_ Py — D3
0.5p(uzy — puz,)

Na (2.26)

Accordingly, the total pressure loss can be expressed in terms of the diffuser efficiency, as:

1 2 1 2
Ah, = (=10~ (3020~ 50124 ), 227)

while substituting Eq. (2.27) into Eq. (2.25), the latter one, providing the rotor power output,

is reformed as follows:

1
pP= Epuz,dAd [uzo —uis — (1 —na)(uiy —uz,)]. (2.28)

In addition, the number of unknown quantities within Eq. (2.28) can be reduced, by expressing
the axial velocity component at the exit plane of the diffuser (u,,) as a function of the axial
velocity component at the rotor plane (u; 4). In fact, this can be achieved by taking advantage

of the mass conservation law, which reads:
Aquzg = Agizy > Uzg = (Ag/AdUzg = b uyyg. (2.29)

The dimensionless parameter b is the reciprocal of the diffuser exit-area-ratio; the diffuser exit-
area-ratio is defined as the ratio between the exit area of the diffuser and the rotor swept area.

Therefore, introducing Eq. (2.29) into Eq. (2.28) yields:
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1
p= Epuz,dAd[ug,O —uZs — (1 —ng)(ufq — b*uiq)]. (2.30)

Ultimately, the power coefficient for a shrouded wind turbine rotor, calculated based on

the rotor swept area, is given as (Phillips, 2003; Rio Vaz et al., 2014; Serensen, 2016):
Cp = P/(0.5pAqu30) = Uya[1 — 075 — (1 = na)(1 = b2 4] (2.31)

Please note that the tilde superscript denotes the dimensionless velocity components, which
have been normalized by means of the free-stream velocity (u,,). Apparently, except of the
axial velocity component at the rotor plane (@i, 4), Eq. (2.31) also includes the diffuser efficiency
parameter (;) and the axial velocity component in the ultimate wake (ii,5). As long as the
diffuser efficiency is concerned, which is essentially a measure of the total pressure loss along
the diffuser, it has usually to be evaluated via experimental measurements for the diffuser
configuration at hand (Serensen, 2016). Besides, there is not a simple expression relating the
axial velocity components in the rotor plane and ultimate wake, in contrast to the case of an
unshrouded wind turbine rotor, where the induction in the rotor plane is half of the induction
in the ultimate wake (see Section 2.1.1). Against this background, no simple closure for the
equation providing the power coefficient of a shrouded wind turbine rotor is available, as in

the case of an unshrouded horizontal-axis wind turbine rotor (Serensen, 2016).

A common approach to alleviate the aforementioned closure problem relies on eliminating
the axial velocity component from Eq. (2.31). In order to achieve that, let us initially introduce
the dimensionless back pressure parameter or pressure recovery coefficient, which is denoted
by C, 4 and defined as (Phillips, 2003):

Ps — Ps

= 052, (232)

CPA

Now, the application of Bernoulli’s equation between the exit plane of the diffuser (4) and the

ultimate wake (5) reads:

1 2 1 2
Pa+5PUzs = D5 + 5 PUzs, (2.33)

which can also be written by adopting a dimensionless formulation, as follows:

2 (2.34)
Then, taking under consideration the definition of back pressure coefficient (2.32) and the

expression connecting the axial velocity at the exit plane of the diffuser and the axial velocity

in the far wake (2.29), Eq. (2.34) recasts into:
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g =b*u;q+ Cpa. (2.35)

Introducing Eq. (2.35) into Eq. (2.31), the equation for the power coefficient of a shrouded wind

turbine rotor can be reformed as follows:
Cp = 1izq[1 = Cpa+ [Na(1 = b?) — 117 4] . (2.36)

Even though the two alternative expressions extracted within the current section for the
power coefficient of a shrouded wind turbine rotor — namely, Eq. (2.31) and Eq. (2.36) — are
mathematically equivalent, the latter one offers the opportunity to obtain the optimum
operating conditions. This is attributed to the fact that near the optimum operating point, both
the back pressure coefficient and the diffuser efficiency parameter are not strongly dependent
upon the rotor velocity and mass flow rate (Serensen, 2016). Therefore, the value of #i, 4 that
maximizes the power coefficient can be calculated by differentiating Eq. (2.36) with respect to

1i, 4, while assuming constant values for the back pressure coefficient and diffuser efficiency:
dCp/dil,q =0 = 1—Cpy + 315 4[na(1—b*) —1] = 0. (2.37)

Eventually, the value of axial velocity component at the rotor plane that maximizes the power

output of a shrouded wind turbine (optimal value of axial velocity component) reads:

X B 1-Cpy
(%, = j ek (2.38)

Therefore, introducing Eq. (2.38) into Eq. (2.36), the maximum power coefficient for the case

of a shrouded wind turbine rotor is given as:

2 1-Cpy -
[CP]max - 5\]3[1 — T]d(l — bz)] (1 - Cp,4) . (239)

while the optimal rotor loading can be obtained by:

2
[CT]opt = [CP]max/[ﬁz,d]opt = §(1 - Cp,4) . (2.40)

In summary, the aforesaid equations provide a simple and useful model that describes the
power output performance of a shrouded wind turbine. Nevertheless, the quantification of the
involved parameters (namely, the diffuser efficiency and back pressure coefficient) in order to
achieve the optimal operating conditions calls for experimental measurements for the diffuser

design at hand (Serensen, 2016).
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Figure 2.4: Meridian section of the reference stream tube for the case of a shrouded rotor.

2.1.2.1 Zero Diffusive Losses

In this section, we examine the modification of axial momentum theory for shrouded wind
turbine rotors that was described in Section 2.1.2, under the simplifying assumption of zero
diffusive losses — an approach also referred to as ideal diffuser case. The particular approach,
which essentially considers that n; = 1 and 4h;, = 0, represents a commonly adopted practice
in the literature, aiming to simplify the expressions providing the optimal operating

conditions. For the ideal diffuser case, the pressure jump across the rotor reads:

1
Apy = 5 p(uzo—uls), (2.41)

which is equivalent to the expression for the total pressure loss across an unshrouded wind

turbine rotor. Thus, the rotor thrust can be obtained as follows:
1 2 2
Tq = Apg - Aq = EPAd(uZ,O —ujg). (2.42)

In addition, the application of axial momentum balance (integral momentum equation) for the

control stream tube illustrated in Figure 2.3 and Figure 2.4 yields:
Ty +Ts = puz,dAd(uz,O - uz,S) ’ (2.43)

where T; denotes the axial reaction force of the diffuser on the air within the control volume.

Eventually, the combination of Eq. (2.42) and Eq. (2.43) results in the following equation:
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1
Uza = 5 (ugo + uzs)1+ Ts/Ty), (2.44)

which can also be expressed in a dimensionless formulation, as follows:
N 1 N
lza =5 (1+41,5)(1+Ts/Ty). (2.45)

Then, introducing Eq. (2.45) into Eq. (2.36), the rotor power coefficient for the ideal diffuser

case reads:
Cp = %(1 +il,5) (1-uls) (1+Ts/Ta), (2.46)
while the thrust coefficient is given by:
Cr = Cp/tiza = (1~ ufs). (2.47)

At this point, it is interesting to note that the comparison of the equations extracted during
the axial momentum analysis for the ideal diffuser case to the corresponding ones for the case
of an unshrouded wind turbine reveals that for a specified wake velocity, the pressure drop
across the rotor is the same (Serensen, 2016). Hence, the increase in power output for the case
of a shrouded rotor stems from the augmented mass flow rate, which according to Eq. (2.45)
is proportional to the diffuser force (Ty). Ultimately, under the assumption that the force ratio
Ts/T4 does not depend upon the axial velocity component in the wake (ii,5), the maximum
power coefficient for the case of an ideal diffuser (zero diffusive losses —» 14 = 1 and 4h;, = 0)
can be obtained by differentiating Eq. (2.46) with respect of #i, 5. In that situation, the maximum

rotor power coefficient reads:

16
[CP]max = ﬁ(l + Ts/Td) . (248)
Here, the optimal value of axial velocity component in the ultimate wake equals to:
[z5],,, = 1/3 (2.49)

and - as for the case of an unshrouded horizontal-axis wind turbine rotor — the optimal value

of the rotor thrust coefficient equals to:
[Crlope = 8/9. (2.50)

The same value for the optimal thrust coefficient of a shrouded rotor was also derived from
the studies of van Bussel (2007) and Jamieson (2009). In particular, van Bussel (2007) assumed

that the velocity component in the ultimate wake of a shrouded wind turbine can be calculated
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based on Eq. (2.13), which was actually derived during the one-dimensional analysis of an

unshrouded rotor.
Uy = uZ,O(l - Zaa) =Uzo — 2w, . (2-13)

The purpose of this hypothesis was the development of an axial momentum theory for
shrouded wind turbine rotors resembling the momentum equations describing the operation
of unshrouded wind turbines. Later on, Rio Vaz et al. (2014) were based on the work of van
Bussel (2007) in order to modify the classic axial momentum theory and eventually, to propose
an extension of BEM theory for shrouded wind turbines. To this end, Rio Vaz et al. (2014)
expressed the axial velocity component at the rotor plane, as a function of the normalized
velocity component at the rotor plane for the unloaded diffuser configuration (i.e., 4p; = 0),
denoted by y; this parameter is mathematically defined as:
[uz'd]_ﬂpff’ , (2.51)

‘y =
uZ,O

Thus, the axial velocity component at the rotor can be written in terms of y and a,, as follows:
Uza = Y1 —ag)uzp, (2.52)
while the dimensionless form of Eq. (2.52) reads:
Uy =7l —ag) . (2.53)

Consequently, by combining Eq. (2.53) and Eq. (2.36), the power coefficient can be expressed

in terms of the velocity speed-up for the unloaded diffuser (y) as follows:
Cp=v(1 —ap)?[4a, +v*(1 — a)(1 — f)(a — D], (2.54)
which for the case of an ideal diffuser recasts into:
Cp = yda, (1 —ay)?. (2.55)
The corresponding thrust coefficient is given by:
Cr=4a,(1—-a,). (2.56)

Apparently, if y parameter equals to unity (zero velocity speed-up) the expression
providing the aerodynamic power coefficient turns out to be identical to the one extracted
during the one-dimensional analysis of an unshrouded horizontal-axis wind turbine (2.20).
Nevertheless — in contrast to the case of a conventional wind turbine — a theoretical maximum

power coefficient for the case of a shrouded wind turbine cannot be obtained, since the
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differentiation of Eq. (2.59) with respect to the axial induction factor results in a value for the

maximum power coefficient that is equal to:
[Cplmax = v - 16/27. (2.57)

As a matter of fact, the maximum power coefficient is a linear and increasing function of
the velocity speed-up (y) for the unloaded diffuser configuration, which practically depends
on the shroud geometry at hand, and has to be calculated either by numerical methods or
experimental measurements (Bussel, 2007; Hansen et al., 2000). In addition, please note that
the latter expression for maximum power coefficient resembles Eq. (2.48). Both equations
indicate that the maximum power coefficient is proportional to the mass flow rate, with the
only difference being that in Eq. (2.48) this is expressed by means of the diffuser force, while
in Eq. (2.60) it is expressed by means of the velocity speed-up ratio. Finally, an interesting
remark can be drawn by observing the expression providing the rotor thrust coefficient; this
expression is identical to the one of a conventional horizontal-axis wind turbine. However,
van Bussel (2007) noted that — despite the similarity in the expressions for the rotor thrust —
the reaction of a shrouded wind turbine is different, due to the significant impact of the

diffuser on the axial induction factor.

Conclusively, the expressions presented within the current sub-section (2.1.2.1) can provide
very useful insights on the optimal operating conditions of a shrouded wind turbine rotor.
However, it should also be highlighted that these expressions have been extracted based on

several simplifying assumptions, including;:

¢ Anideal shroud design (n; = 1 and 4h;, = 0).
¢ Independence of T, /T4 upon u, s.

e The velocity in the far wake equals u, o — 2w,.

Therefore, the particular expressions should only be used as indicative ones (in order to obtain
a rough approximation of the system performance), since they may not accurately reflect the
actual flow characteristics, especially when shrouds with large downstream expansions,

which are usually associated with large flow separations and diffusive losses, are encountered.

2.2 Blade Element Momentum Theory

The Blade Element Momentum theory represents one of the most popular computational
tools for the preliminary aerodynamic analysis and performance prediction of wind turbine
rotors, in both academic and industrial design applications (Malki et al., 2013). Essentially, the

particular method — which over the years has been enhanced with the addition of various
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empirical and analytical correction models (Branlard, 2017), dealing with many of its inherent
limitations — relies on the combination of the well-established blade element and momentum
theories, aiming to provide a rapid, yet reasonably accurate, prediction of the aerodynamic
loads on the blade (Burton et al., 2001). In terms of the blade element theory (Froude, 1878), the
entire blade geometry is decomposed into a finite number of small blade elements along the
spanwise (radial) direction, assuming that, from an aerodynamic point of view, each blade
element operates independently of the surrounding ones and is represented by a two-
dimensional blade section (Moriarty and Hansen, 2005); the radial distribution of axial and
tangential forces on the rotor are estimated based on the local flow conditions and the
geometric characteristics of the blade sections (namely, the local chord length and twist angle)
using tabulated lift and drag coefficients. On the other hand, momentum theory refers to a
control volume analysis of the forces acting on the blades, based on the fundamental
conservation laws of axial and angular momentum, in order to provide the required axial and
tangential induced velocities (local flow conditions) for the blade element calculations
(Manwell et al., 2010). Ultimately, the coupling of blade element and momentum models
within the context of BEM theory is implemented by means of an iterative procedure (see
Section 2.3.4), which eventually determines the aerodynamic forces and induced velocities
over the rotor plane (Moriarty and Hansen, 2005). The following sections present the
theoretical background and major features of an in-house BEM code that has been exclusively
developed within the context of the current doctoral dissertation, for the aerodynamic analysis
and performance prediction of both conventional and shrouded wind turbine rotors (Leloudas
et al., 2017).

2.2.1 Momentum Equations

In the framework of BEM theory, the reference stream tube that passes through the wind
turbine rotor (see Figure 2.1) is divided into a finite number of independently operating
concentric annuli or annular stream tubes, such the one illustrated in Figure 2.5; the loss of
pressure or momentum in the rotor plane for each one of the annular stream tubes is attributed
to the work done by the airflow passing through the rotor plane on the corresponding blade
element (Moriarty and Hansen, 2005). In particular, the rate of change of the axial momentum
along an elementary stream tube that starts far upstream of the rotor (0), passes through the
rotor disc (d) and eventually, moves off into the ultimate wake (5), equals to the axial force on
the corresponding blade element, while the rate of change of the angular momentum along

the aforementioned stream tube equals to the tangential force on the blade element.

In order to derive the expressions for the elementary or differential forces on the rotor

blades, from the standpoint of momentum theory, let us consider a control volume in the shape
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of an annular stream tube, such the one depicted in Figure 2.5. The thrust force (dT) on the
reference annulus — that is the axial reaction force by the corresponding blade element — can
be obtained from the application of integral momentum equation, in the axial direction
(Hansen, 2008). Thus, since the cross-sectional area of the control volume at the rotor plane

equals 2nrdr, the thrust for the examined annulus reads:
dT = (uz,o — uz,s)dm = Zmﬂpuz,d(uzlo - uzls)dr. (2.58)

Please note that Eq. (2.58) is actually an alternative expression of the thrust equation (2.5) that
was derived from the application of axial momentum balance to the entire stream tube (see
Section 2.1.1), with the only difference being that the rotor swept area (44) has been replaced

with the cross-sectional area of the annular stream tube at the rotor plane (2rrdr).
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Figure 2.5: Illustration of the annular stream tube for the extraction of elementary momentum

equations describing an unshrouded rotor.

In a similar way, the elementary tangential force on the reference stream tube — that is the
circumferential reaction force by the corresponding blade element — can be obtained through
the application of the integral momentum equation in the circumferential direction (Hansen,
2008). Eventually, by multiplying the tangential force with the radial position of the control

volume at the rotor plane, the elementary torque (dM) reads:
dM = r(ugs — Ugo)dm = rug zdm = 2nr?pu, qug 3dr, (2.59)

where ugy stands for the rotational velocity of the fluid. Herein, it should be noted that the final
expression of Eq. (2.59) has been derived under the following assumptions (Burton et al., 2001;
Hansen, 2008): the rotational velocity of the flow upstream of the rotor equals to zero (i.e.,
Ugo = Ug, = 0) and the rotation of the flow exiting the disc remains constant as the fluid

progresses down the wake (i.e., ug3 = ugs).
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At this point, let us recall that according to axial momentum theory (see Section 2.1.1), the
axial velocity component at the rotor plane and the axial velocity component in the ultimate

wake can be expressed in terms of the axial induction factor and ambient velocity, as follows:

Uza = (1_ aa)uz,o , (2-12)

Uy = (1_ 2aa)uz,o , (2-13)
where the axial (a,) induction factor is defined as:

Qg = (u’Z,O - uZ,d)/uZ.O . (2.11)

In addition, let us introduce the tangential induction factor (a;), which practically provides a
measure of change in tangential (also termed as rotational or circumferential) velocity (Burton

et al., 2001). The tangential induction factor is defined as:
ar = Ug,q/WRT = Ug3/2WRT, (2.60)

where wp stands for the angular or rotational velocity of the wind turbine rotor. Ultimately,
after the combination of the aforementioned equations, the elementary thrust and torque on
the reference annulus, which are equal to the respective quantities on the matching blade

element, can be expressed in terms of the induction factors, as follows:

dT = 4nrpuZa,(1 — ag)dr, (2.61)

dM = 4nr3puywg(1 — ag)a.dr. (2.62)

2.2.2 Blade Element Equations

In the previous section, the aerodynamic thrust and torque on the rotor blades were
expressed in terms of the axial and tangential induction factors. Herein, an alternative
formulation of the respective quantities is presented, this time by means of blade element
theory. To this end, the wind turbine blades are divided or decomposed, along the spanwise
direction, into a finite number of blade elements — as characteristically illustrated in Figure 2.6
— under the assumption that each blade element acts independently of the adjacent ones and
operates aerodynamically as a two-dimensional airfoil (Manwell et al., 2010). Then, the
resulting values of sectional thrust and torque can be summed, in order to predict the overall
performance of the rotor. Even though the particular theory does not include any secondary
flow effects, such as the three-dimensional flow velocities induced on the rotor by the shed tip

vortex or the radial velocity components induced by the angular acceleration, due to the
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rotation of the blades, it still continues to be widely used for many wind turbine applications,
such as initial aerodynamic analysis, conceptual design, loads and stability analysis, and
controls design. In the following analysis, R denotes the rotor radius, Rj, the hub radius and

dr the length of each blade element, measured in the radial direction (r).

Figure 2.6: Schematic representation of blade discretization and definition of blade elements.

The local relative velocity (w) experienced by each blade section along the rotating blade is
a combination of the axial velocity component (w,) and the tangential velocity component (w;)

at the rotor plane, which are illustrated in Figure 2.7 and defined as follows:
Wo = Uz = Uzo(l —ag), (2.63)
W = WRT + Ug g = Wpr(1+ ap) . (2.64)
Therefore, the measure of relative velocity for each blade element reads:
W2 = [uz0(1 — a)]” + [war(1 + a)1? = w2 g + (wrr +uga)” (2.65)

The relative velocity acts at an angle (¢) to the rotor plane, such that:

_ uz,O(l - aa) _ uz,d
tang = wrr(1+a;) wpr—ugq (2.66)
Now, the local angle of attack («) can be calculated by:
a=¢—0r, (2.67)
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where 67 is the local pitch angle, defined as the angle between the airfoil chord and the rotor
plane (see Figure 2.7); the local pitch angle is calculated by adding the global pitch angle of the
blade (65) with the local twist angle of the blade (6p).

ﬂ-e-
> \

Figure 2.7: Schematic representation of the local velocities and forces on a blade element.

By introducing the lift (C;) and drag (Cp) coefficients, the lift (F,) and drag (Fp) force per

unit length on the examined blade element can be expressed as:

1
F = Cp-5plwle, (2.68)

1
Fp =Cp -Eplwlzc, (2.69)

where ¢ denotes the local chord length. Consequently, the normal (F,) and tangential (F;)
forces per unit radial length on each blade section can be obtained by simply adding the

projections of F;, and Fj, on the axial and tangential directions (see Figure 2.7). Thus,
F, = F - cos¢ + Fp - sing, (2.70)

Ft = FL * Sln¢ - FD * COS¢ . (271)
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Furthermore, the axial and tangential force per unit length can be expressed in a dimensionless
form, by introducing the normal and tangential force coefficients, denoted by C, and C,

respectively. Thus,

C, =Cp-cosp + Cp - sing, (2.72)
Cy = Cp, - sing — Cp - cosg, (2.73)
where
C, = E,/(0.5p|w|?c), (2.74)
C. = F,/(0.5p|w|?c) . (2.75)

Ultimately, the total axial (dF,) and tangential (dF,) forces exerted on the actuator disc by

the annular streamtube swept by the examined blade element, can be calculated as:
dT = Bz * F, - dr, (2.76)
dM =r7-Bg " F,-dr, (2.77)

where By, stands for the number of rotor blades. Then, taking into consideration Eq. (2.78) and
Eq. (2.79), connecting the free stream velocity, the relative velocity, the inflow angle and the

induction factors,
|w|-sing =u,o(1—a,), (2.78)
|lw| - cos¢p = wrr(1 +a;), (2.79)
Eq. (2.76) and Eq. (2.77) can recast into:

1 ug,o(l - aa)z

dT' =5 PBr sin? ¢

5 cCpdr (2.80)

1 Uzo(1—ag)wgr(l+a;)

dM = -pB
2p R sing - cosg

cCirdr (2.81)

2.2.3 Combination of Blade Element and Momentum Equations

In this section, the final expressions employed for the calculation of the axial and tangential
induction factors during the iterative process of BEM theory are described, which practically
tie together the blade element and momentum models. Initially, let us introduce the rotor

solidity (o) parameter, which is defined as:
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0 = Brc/2nr (2.82)
Then, by equating the RHS of Eq. (2.61) and Eq. (2.80), the axial induction factor reads:
aq = 1/[(4sin’¢)/(aCy) + 1], (2.83)
while equating the RHS of Eq. (2.62) and Eq. (2.81), the tangential induction factor reads:

a; =1/[(4sin¢ cos¢p)/(aC;) —1]. (2.84)

Please note that after the combination of blade element and momentum equations, both
induction factors are expressed in terms of the inflow angle and aerodynamic coefficients,
which in turn are non-linear functions of the induction factors; consequently, a direct solution
to the aforementioned equations cannot be obtained. In the current in-house BEM code, the
calculation of axial and tangential induced factors is achieved by applying the common
approach of a fixed-point iteration scheme, in which the induction at the current iterative step
is expressed as a function of the induction at the previous step (McWilliam and Crawford,
2011; Sun et al., 2017). A detailed description of the adopted iterative procedure is provided in
Section 2.3.4.

2.2.4 Extension of BEM Theory for Shrouded Rotors

One of the inherent shortcomings of classical BEM theory is related to the fact that the
particular model in not capable of accounting for the shroud’s effect on the calculation of the
axial and tangential induced velocities at the rotor plane. Hence, in an effort to overcome this
drawback, a number of studies have been undertaken, aiming to modify the classical BEM
theory, and thus, make it applicable for the analysis of shrouded wind turbine rotors (Leloudas
et al., 2017).

In this direction, Fletcher (1981) developed an efficient computational model, based on the
blade element theory, by introducing two empirical parameters — namely, the diffuser
efficiency and the diffuser exit pressure coefficient — in order to include the effect of the
diffuser within the rotor analysis. In addition, Fletcher (1981) enriched the particular model by
the addition of wake rotation and blade Reynolds number effects; thus, he achieved a good
agreement between the computational results and the experimental data, in terms of the

turbine power coefficient and axial velocity.

Later on, a modified BEM model for the aerodynamic evaluation of a multi-slotted diffuser-
augmented wind turbine was proposed by Phillips (2003). The fundamental idea

characterizing the featured methodology was the replacement of the formula for the
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calculation of the local axial velocity with an empirically-derived velocity equation, which is a
function of the local disk loading coefficient. Eventually, this approach proved capable of
accurately predicting the power output characteristics of the multi-slotted diffuser-augmented
wind turbine at the design blade pitch angle. However, significant discrepancies between the
computational results and the experimental measurements at off-design pitch angles were also
reported, which were mainly attributed to the fact that the empirically-derived velocity
equation fails to fully capture the flow behavior at the particular operating conditions (Phillips,
2003).

More recently, another extension of the classical BEM theory to the case of shrouded wind
turbine rotors was introduced by Rio Vaz et al. (2014). According to the particular model, the
equation providing the axial velocity component at the rotor plane (w,) is enhanced by the

addition of the velocity speed-up ratio (y) for the unloaded shroud configuration, as follows:
Wq = Uzg = YUzo(l—ag), (2.85)
Consequently, the resultant velocity for each blade section reads:
IWI? = [y1z0(1 ~ a0)]” + [wrr (1 +a)]?, (2:86)
which now acts at an angle (¢) to the rotor plane, such that:

YUzo 1- aa)

tang = )
¢ wrr(1 + a;)

(2.87)

Subsequently, the equations providing the differential thrust and torque for an elementary

annulus, such the one illustrated in Figure 2.8, from the standpoint of momentum theory, read:
dT = 4nrpuZ a,(1 — ag)dr, (2.88)
dM = 4nr3pu, gwp(1 — ag)a.dr. (2.89)

while the respective quantities from the standpoint of blade element theory can be written as:

1 viuze( —ag)?

—— 2.90
dT > pBg SnZ g cCpdr (2.90)
_ 1 yuz,o(l —ag)wgr(1+ ay)
dM = EpBR Sing - 5P cCirdr (2.91)

Eventually, by equating the RHS of Eq. (2.88) and Eq. (2.90), the axial induction factor reads:

a, = 1/[(4sin’¢)/(y?aC,) + 1], (2.92)
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while equating the RHS of Eq. (2.89) and Eq. (2.91), the tangential induction factor reads:

a; = 1/[(4sin¢ cos ¢p)/(aC;) — 1]. (2.93)

Please note that these expressions are actually generalizations of those extracted for the case

of an ideal unshrouded wind turbine.
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Figure 2.8: Illustration of the annular stream tube for the extraction of elementary momentum

equations describing a shrouded rotor.

2.2.5 Tip Loss Correction Model

The addition of a correction model that accounts for tip and hub losses is a widely adopted
practice in the context of BEM theory, which essentially deals with the simplistic assumption
of azimuthally averaged loading and provides a more realistic representation of the actual
wind turbine rotor, with a finite number of blades (Burton ef al., 2001). More precisely, such
correction models compensate for the inability of classical BEM theory to capture the effects
of the vortices shed from the blade tip and hub regions into the wake (helical structures) on
the induced velocity field (Moriarty and Hansen, 2005). In this study, the modeling of tip and
hub losses can be achieved by employing two different correction models; namely, the tip loss
correction model of Prandtl (Glauert, 1935) and the tip loss correction model proposed by Shen
et al. (2005).

2.2.5.1 Prandtl’s Correction Model

The correction model proposed by Prandtl and Glauert (1935) is actually one of the earliest
contributions on the specific topic of tip and hub losses. Essentially, the particular model

involves the addition of a cumulative correction factor (F) in order to properly modify the
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induced velocity field. The cumulative correction factor accounting for both tip and hub losses

is defined as:

F = Fiip * Fpup , (2.94)
where
2 R—1r
b =L s o (-2, oss
2 r — Rh
Fhub = E *arccos [exp <— erind) . BR)] . (296)

In practice, the proposed correction factor is applied to adapt the momentum part of BEM
theory, by replacing the equations providing the elementary thrust (2.61) and torque (2.62)

with the following ones:
dT = 4mrpuZa, (1 — ag)Fdr, (2.97)
dM = 4nr3puZ ywgr(1 — ag)a Fdr. (2.98)

Hence, the expression for the axial and tangential induction factors, including the Prandtl’s

losses model, read:
ad = 1/[(4Fsin?¢)/(y?cC,) + 1], (2.99)
ad = 1/[(4F sing cos ¢p)/(aC;) —1]. (2.100)

If the Prandtl’s correction model is not active, F parameter equals to unity. Apparently, in that
case, the modified equations for the axial and tangential induction factors reduce to those

derived in Section 2.2.3.

2.2.5.2 Shen’s Correction Model

More recently, another correction model that accounts for tip and hub losses was featured
by Shen et al. (2005). The Shen’s tip and hub loss correction model is implemented by
introducing the cumulative loss factor q;, which practically modifies the normal and tangential

force coefficients as follows (Shen et al., 2005):
Cn = s C, (2.101)

Ct = qs Ce. (2.102)
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The Shen’s loss factor g, reads:

4s = Qstip * 9s,hub » (2.103)
where
_Z K=" g 2.104
dstip = = arccos (exp | —gs 2rsing R (2.104)
_Z rRu g 2.105
dshub = = arccos (exp | —9gs 2rsing R |- (2.105)

Finally, the expression for the calculation of the g; parameter reads (Shen et al., 2005):
gs = exp[—0.125 - (BgA — 21) + 0.1], (2.106)

where A stands for the tip-speed ratio and By for the number of rotor blades; the rest of the
coefficients in Eq. (2.106) have been determined based on experimental measurements (Shen
et al., 2005).

2.2.6 Empirical Region Calculations

Even though momentum theory provides a useful theoretical model for the performance
prediction of wind turbine rotors, the particular method is no longer valid when the value of
axial induction factor does not lie between 0 and 0.5 (Manwell ef al., 2010). Therefore, since
momentum theory cannot longer describe the wind turbine performance, the application of

alternative expressions for the axial induction factor is required.

In this study, the empirical expressions proposed by Ning (2014) are employed to
accurately predict the wind turbine performance for the different operating states of the rotor.
Furthermore, the original expressions have been enhanced with the addition of velocity speed-
up ratio, so as they can be applied to the case of shrouded wind turbines as well. At first, let

us introduce the following non-dimensional parameters:
k, = y?0C,/(4Fsin?¢), (2.107)
ki =o0Ci/(4F sindcos ). (2.108)

At this point, let us also recall that ¢ stands for local inflow angle and F stands for the Prandtl’s

correction factor, quantifying the rotor tip and hub losses.

Now, if the local inflow angle (¢) is positive and the value of k, parameter is less than or

equal to 2/3, the solution falls into the momentum theory region (windmill state). Thus,
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ag = ko/(1+ ky). (2.109)

Please note that Eq. (2.109) is identical to Eq. (2.83). If the local inflow angle (¢) is positive and
the value of k, parameter is greater than 2/3, the solution falls into the empirical estimation
region, also termed as turbulent wake state. In that case, the expression for the calculation of

axial induction factor reads:

ag = (hy —/hz)/hs (2.110)
where
hy = 2Fk, — (10/9 — F) (2.111)
hy = 2Fk, — F(4/3 — F) (2.112)
hs = 2Fkg — (25/9 — 2F) (2.113)

On the other hand, if the local inflow angle (¢) is negative and the value of k, parameter is
greater than 1.0, the solution falls into the propeller brake region. The expression for the

calculation of the axial induction factor becomes:
ag =kg/(kyg—1) (2.114)

Finally, if the local inflow angle (¢) is negative and the value of k, parameter is less than or
equal to 1.0, then the particular value of the inflow angle cannot possibly be a solution to the
BEM equations; therefore, in this case, the axial induction factor should be set to any random
value, different from its previous one. In any of the aforementioned cases, the tangential

induction factor reads:

a, = k,/(1—k,) (2.115)

2.3 BEM Code Features

This section outlines the major features of the in-house BEM code. The current software
version has been implemented in Fortran 90, while the interaction between the user and the
program is made by properly designed text files. Additionally, an updated version of the
current software has been also developed in the context of Maria Seremeti’s undergraduate
diploma thesis (Seremeti, 2019), based on the Qt cross-platform and C++ programming
language. The later employs the same computational subroutines developed for the current

one; however it is further enhanced by the addition of a friendly graphical user interface.
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2.3.1 Blade Discretization

The adopted strategy for the discretization of the rotor blades into a finite number of blade
elements is illustrated in Figure 2.9, where the number of blade elements equals to the number
of the airfoil sections defining the blade. Now, let us consider a wind turbine blade defined by
N airfoil sections, where 7; denotes the radial position of the ith airfoil section, measured from

the rotation axis.

ry Iz g I Fit1 I'y
| | | | | | | |

Blade | L J L L L LL [73 cemenn

\
Element 1 1\
1 " Airfoil
Airfoil Section N
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Section 1 Element i d
r;

Airfoil
Section 2

Figure 2.9: The adopted blade discretization concept.

Therefore, the radial length of each blade element (dr;) is defined as:

dry = [r; —11]/2
dry = [ri4g1 —71l/2 + [ri —124]/2 (2.116)
dry = [ry —1v-11/2

Please note that the radial position of each blade element, except of the first and the last
ones, is set as the radial position of the corresponding airfoil. As long as the first and the last
blade elements are concerned, their radial positions are the radial position of the first and the
last airfoil section of the blade, respectively. In practice, the number of blade elements should
be large enough to provide a good approximation of the variations in velocity, chord, and twist
distributions along the examined blade geometry. Experience shows that typical performance
analyses can be done accurately using a number of blade elements between 10 and 20 (Wood,
2011).

2.3.2 Aerodynamic Coefficients Calculation

According to BEM theory, the calculation of axial and tangential force distributions along
the rotor plane relies on the aerodynamic characteristics of the airfoil sections defining the
wind turbine blades, as they are expressed by the lift and drag coefficients. In the early

versions of the current BEM code, the lift and drag coefficients for each blade element and each
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step of the iterative procedure were being obtained by means of external calls to the well-
known XFOIL code (Drela, 1989). In particular, after the calculation of the local angle of attack
and the local Reynolds number, XFOIL code was automatically being called by the main
calculation subroutine, so as to provide the aerodynamic data required for the estimation of
the axial and tangential force coefficients. However, this approach was eventually rejected,
since the XFOIL code was not always capable of achieving a converged solution for the
prescribed flow conditions and thus, feeding back the required aerodynamic data, especially
for angles of attack lying away from the linear lift region, causing the unexpected termination
of BEM code. This problem was more intense during the simulation of low tip-speed ratios,
where the angle of attack, in certain stations of the rotor blades, could be extremely high.
Besides, such high angles of attack could also be encountered during the analysis of stall-
regulated wind turbines, where deep stall is invited, in order to limit the excessive power in

high winds.

In order to alleviate this shortcoming, two custom subroutines for the extrapolation of the
aerodynamic curves, provided by XFOIL code, to the entire 360 range of angles of attack were
later implemented and fully incorporated within the particular BEM code. The first
extrapolation subroutine is based on the method proposed by Bjorn Montgomerie
(Montgomerie, 2004), which actually combines the Thin Plate theory with the linear range
behavior or the airfoil, under the assumption that an airfoil section operating at high angles of
attack behaves like a thin plate with a sharp leading edge. The second extrapolation subroutine
is based on the Viterna-Corrigan extrapolation method (Viterna and Corrigan, 1981).
Subsequently, the entire procedure for the calculation of the aerodynamic coefficients was
reformed. This time, the required XFOIL simulations for each blade section and each iterative
step were being performed for a wider range of angles of attack, usually between -5 and 25,
instead for the local angle of attack; then, the resulting lift and drag coefficient curves were
automatically being passed to the selected extrapolation subroutine, which would finally
output the lift and drag coefficients for the entire range between -180 and 180 degrees, with
respect to the local Reynolds number. Nevertheless, since both extrapolation methods rely on
fine-tuning parameters, the quality of the automatically extrapolated results was not always

acceptable.

Ultimately, in order to assure that accurate values for the lift and drag coefficients would
always be available during the entire iterative process, regardless the angle of attack, a third
approach was finally adopted, which is the most common one in such applications. According
to the followed approach the XFOIL simulations for each airfoil section are manually
performed in a pre-processing stage, before the execution of BEM code, considering an average
Reynolds number along the blade, which is empirically estimated based on the inflow velocity

and average chord length. Then, both lift and drag coefficient curves are manually

2-28



Chapter 2 Development of a Blade Element Momentum Code

extrapolated to the entire 360° range of angles of attack, by properly selecting the
corresponding extrapolation parameters. The main advantage of this method is that the
aerodynamic coefficients for each blade section have been already calculated and stored
within the database, ready to be used when required. Nevertheless, this method calculates the
aerodynamic coefficient based on an average (reference) Reynolds number, instead of the local
Reynolds number for each blade section. Figure 2.10 and Figure 2.11 illustrate the lift and drag
curves of a NACA 0012 airfoil at 1,000,000 Re, extrapolated to the entire range of angles of
attack, using the Montgomerie (2004) extrapolation method.
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Figure 2.10: Extrapolation of the lift coefficient curve for a NACA 0012 airfoil at 1,000,000 Re.
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Figure 2.11: Extrapolation of the drag coefficient curve for a NACA 0012 airfoil at 1,000,000 Re.

2.3.2.1 Drag Correction for Reynolds Number

In the framework of BEM models, the aerodynamic performance of the rotor blades is
completely determined by means of the lift and drag coefficients, for each blade section.

Therefore, the accurate prediction of these aerodynamic parameters is crucial for the precision
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of the final solution. However, the utilization of pre-calculated lift and drag coefficients,
considering an average Reynolds number, instead of the actual local one, could introduce a
significant amount of error. In efforts to improve the accuracy of the final solution, Hernandez
and Crespo (1987) proposed a correction model accounting for the aforementioned problem,
in which the drag polar is corrected by scaling the drag coefficient inversely with the Reynolds

number, as follows:
0.2
Cp = Cpref - (Reger/Re) (2.117)

Here, Re stands for the local Reynolds number while Reg.s denotes the average Reynolds
number, for which the drag coefficient is available. In terms of the lift coefficient, no correction

needs to be applied, since it is less sensitive to the Reynolds number than the drag coefficient.

2.3.3 Relaxation Procedure

The fluctuating behaviour of the axial induction factor, which is characteristically
demonstrated in Figure 2.12, represents one of the most commonly encountered problems
during the iterative process applied for the solution of BEM equations; in particular, these
fluctuations stem from the periodically variation of the rotor loading state, practically
quantified by the thrust coefficient, between light and heavy loading. Therefore, since
convergence cannot be achieved, the iteration process is terminated after a pre-defined
number of steps and the corresponding blade element is skipped. However, this impacts both

the accuracy of the predicted results and the performance of the code.
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Figure 2.12: Fluctuating behavior of the axial induction factor due to change of loading state.
Reproduced from (Maheri et al., 2006).

An efficient solution to the aforementioned fluctuating behaviour problem was eventually

proposed by Maheri et al. (2006). According to this approach, a relaxation factor (i) is
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introduced within the iterative solution process for each blade element; thus, the value of the
axial induction factor for the current iterative step is calculated by using the value of the axial

induction at the previous iterative step, as follows (Maheri ef al., 2006):
aktl =4 - ak*t+ (1-y,)-ak , 0<y,. <1 (2.118)

Moreover, Maheri et al. (2006) suggested that further acceleration of the iterative procedure
could be achieved by adopting a value of 1, equal to unity for the first few iterations, so the
first few oscillations to happen. Eventually, these oscillations will mark the boundaries of the
final result’s neighbourhood. By using a three-point-equation, the axial induction factor is then

placed inside this neighbourhood as follows:

1 1 1
AUe+1 = 7 A1 T 5 Qe+ 7 g (2.119)

Then, the iteration proceeds as normal, by applying Eq. (2.118) with the desired relaxation
factor. Figure 2.13 demonstrates the behaviour of axial induction factor for different values of
the relaxation parameter y,.. Accordingly, for all the simulations encountered in this study a

values between 0.2 and 0.3 have been selected.
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Figure 2.13: Damped fluctuation of the axial induction factor for different relaxation factors.
Reproduced from (Maheri ef al., 2006).

2.3.4 The Iterative Procedure

At this point, all the necessary equations of the current BEM model have been derived and
the algorithm for the calculation of the axial and tangential induction factors can be
summarized in the following steps. Due to the assumption of no aerodynamic interaction

between the elements, each element can be treated separately. Therefore, the application of the
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BEM algorithm at a specific radius can be computed before solving for another radius, while
the sequence in which the elements are treated is irrelevant. Ultimately, for each blade element,

the following algorithm is applied:

Step 1: Initialize axial (@,) and tangential (a,) induction factors. The initial value for both

induction factors is typically zero.
Step 2: Compute the local inflow angle ¢ using Eq. (2.87).

Step 3: Compute the Prandtl’s correction factor (F) using Eq. (2.94) or the Shen’s correction
factor (qs) using Eq. (2.103), depending on which of the available tip and hub correction

models has been selected.
Step 4: Compute the local angle of attack () using Eq. (2.67).

Step 5: Compute the relative inflow velocity (w) using Eq. (2.86); then calculate the local

Reynolds number, based on the local inflow velocity (w) and chord length (c).

Step 6: Calculate the lift (C;) and drag (Cp) coefficients for the examined airfoil section at the

given flow conditions.

Step 7: If the drag correction model for Reynolds number is active, calculate the new value of

drag coefficient applying Eq. (2.117).

Step 8: Compute the normal (C,,) and tangential (C;) force coefficients using Eq. (2.72) and Eq.
(2.73).

Step 9: Apply the Shen’s correction model; compute the updated values for the normal (C,,)
and tangential (C;) force coefficients using Eq. (2.101) and Eq. (2.102).

Step 10: Calculate a, and a; based on the expressions provided in Section 2.2.6.
Step 11: If a,, or a; has changed more than the adopted tolerance ¢, go to Step 2. Else finish.

Step 12: Compute the local loads on the blade element.
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Chapter 3
Numerical Validation of the BEM Code

This chapter provides a detailed validation study on the overall performance of the in-house BEM solver
that was presented in Chapter 2. To this end, several benchmark cases have been selected, including both
conventional horizontal-axis wind turbine (Section 3.1) and shrouded wind turbine (Section 3.2) rotors.
The results of the current BEM simulations are compared against both numerical and experimental data

available in literature, as well as against the results obtained from the well-known QBlade software.

3.1 Conventional Horizontal-Axis Wind Turbines

The current section aims to investigate, and eventually validate, the ability of the in-house
developed BEM code to accurately predict the aerodynamic performance and power output
of unshrouded horizontal-axis wind turbine rotors. For that purpose, two widely examined
and well-documented benchmark cases have been selected, namely the NREL Phase VI wind
turbine (Hand et al., 2001) and the NREL 5-MW reference wind turbine (Jonkman et al., 2009),

which represent typical examples of small and large wind turbine configurations, respectively.

3.1.1 NREL Phase VI Wind Turbine

The first validation case considers the well-documented NREL Phase VI wind turbine,
which was extensively investigated during the Unsteady Aerodynamics Experiment (UAE)
conducted at the 24.4 m x 36.6 m wind tunnel facilities of the National Aeronautics and Space
Administration (NASA) Ames Research Center (Hand et al., 2001). The scope of that particular
experimental campaign was to obtain accurate quantitative aerodynamic and structural data
for the development and validation of enhanced engineering models. Essentially, the NREL
Phase VI wind turbine refers to a stall-regulated configuration with full-span pitch control and
a rated capacity of approximately 20 kW that is characterized by a two-bladed rotor of 10.058
m diameter; the rotor operates at a constant speed of 72 RPM (Hand et al., 2001). The entire
NREL Phase VI wind turbine system is presented in Figure 3.1.

Overall, the experimental campaign that conducted at the NASA Ames Research Center
included thirty test sequences, which refer to various operating states and wind turbine setups
(Hand et al., 2001). In this research study, the assessment of the developed BEM code is

performed by using the experimental results from test sequence H, test sequence I and test
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sequence J. All the three test sequences refer to upwind operation and zero yaw angle, with
the only difference between them being the adopted blade pitch angle. Specifically, the blade
pitch angle for test sequence H equals to three degrees (baseline configuration), the blade pitch
angle for test sequence I equals to zero degrees (low pitch configuration) and the blade pitch
angle for test sequence J equals to six degrees (high pitch configuration). At this point, it should
be noted that according to the experimental setup, the blade pitch angle is actually referred to
the pitch angle of the blade tip, which is defined as the angle between the rotor plane and the
chord of the blade tip. Table 3.1 provides a summary of the simulation cases encountered in
the present study, while detailed technical characteristics for the entire experimental campaign
can be found in the work of Hand et al. (2001).
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Figure 3.1: The NREL Phase VI wind turbine configuration (Hand et al., 2001).

Case Sequence Wind Velocity Rotor Speed Blade Pitch TSR (A)

1 H 5.0-25.0m/s 72 RPM 3.00 deg 76-15
2 I 5.0-25.0m/s 72 RPM 0.00 deg 76-15
3 J 5.0-25.0m/s 72 RPM 6.00 deg 76-15

Table 3.1: Simulation cases for the NREL Phase VI wind turbine rotor.

3.1.1.1 Blade Characteristics and Simulation Parameters

The main geometric characteristics of the aerodynamic profiles defining the NREL Phase
VI wind turbine blade are provided in Table 3.2, while the blade planform is illustrated in
Figure 3.2. The particular blade configuration is entirely based on the S809 airfoil, with the
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only exception being the root region, where cylindrical profiles of varying chord length have
been employed for the first 14 percent of the blade span. At this point, let us note that the blade
region defined by the cylindrical profiles has been also included within the current BEM
simulations, even though the aerodynamic contribution of that certain part of the blade to the

overall rotor performance is practically negligible.
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Figure 3.2: The planform of NREL Phase VI wind turbine blade (Hand et al., 2001).

In addition, the NREL Phase VI blade is characterized by a linear chord distribution (linear
taper) with a maximum chord length of 0.737 m and a minimum chord length of 0.356 m; the
aspect ratio of the blade, that is the ratio of the square of the blade span to the projected blade
area, is approximately equal to 7.2; according to the study of Lindenburg (2003), this aspect
ratio value is less than half of the values usually adopted in modern large wind turbines.
Finally, the maximum twist angle of the examined blade equals to 20.04 degrees, which
decreases in a parabolic way as the blade tip is approached, until a minimum value of -1.815
degrees. Based on the particular blade characteristics, the solidity of the two-bladed NREL
Phase VI rotor equals to 5.8 percent.

The aerodynamic characteristics of the S809 airfoil that were used during the current BEM
simulations — namely, the lift and drag coefficients — were calculated by means of XFOIL code
(Drela, 1989). Then, the lift and drag curves were extrapolated to the entire 360° range of angles
of attack, by applying the Montgomerie’s extrapolation method (Montgomerie, 2004). On the
other hand, constant values of the lift and drag coefficients for the cylindrical profiles forming
the root region of the blade were adopted; in that case, the lift coefficient was set to zero, while
the drag coefficient was set equal to unity. Finally, tip and hub losses were also included within

the current analyses, by employing both Prandtl’s and Shen’s correction models.
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Section Airfoil Radius [m] Chord [m] Twist Angle [deg]
1 Circular 0.508 0.218 0.00
2 Circular 0.660 0.218 0.00
3 Circular 0.883 0.189 0.00
4 Circular 1.008 0.349 6.70
5 Circular 1.067 0.441 9.90
6 Circular 1.133 0.544 13.40
7 S809 1.257 0.737 20.04
8 S809 1.343 0.728 18.07
9 S809 1.510 0.711 14.29
10 S809 1.648 0.697 11.91
11 5809 1.952 0.666 7.98
12 5809 2.257 0.636 5.31
13 S809 2.343 0.627 4.71
14 5809 2.562 0.605 3.42
15 S809 2.867 0.574 2.08
16 5809 3.172 0.543 1.15
17 S809 3.185 0.542 1.115
18 5809 3.476 0.512 0.494
19 S809 3.781 0.482 -0.015
20 5809 4.023 0.457 -0.381
21 S809 4.086 0.451 -0.475
22 5809 4.391 0.420 -0.920
23 S809 4.696 0.389 -1.352
24 S809 4.780 0.381 -1.469
25 5809 4.938 0.365 -1.689
26 S809 5.000 0.358 -1.775
27 5809 5.029 0.356 -1.815

Table 3.2: Geometric characteristics of the NREL Phase VI wind turbine blade.

3.1.1.2 BEM Simulation Results

Figure 3.3 until Figure 3.5 compare the results of the current BEM simulations, in terms of
aerodynamic rotor power and thrust, against the corresponding data from the experimental
campaign at the NASA Ames Research Center; please note that the experimental power and
thrust data for the NREL Phase VI wind turbine rotor that are illustrated in the following
figures refer to the mean experimental values. The entire set of experimentally measured data
for each one of the encountered test sequences — including the minimum, maximum and mean
experimental values, as well as standard deviation information — are openly available at the

following link: https://a2e.energy.gov/projects/uae6.
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According to the following comparisons, the in-house BEM code is capable of providing a
reasonably accurate prediction of the entire power curve of the NREL Phase VI wind turbine
rotor for the baseline (see Figure 3.4a) and high (see Figure 3.5a) pitch setups; however, at the
same time, significant overestimations of the aerodynamic power for the low pitch setup (see
Figure 3.3a) have been also identified, particularly for wind speed values greater than 9 m/s.
In general, the predicted values of thrust and power are in good agreement with the
experimentally measured ones for wind speeds below 10 m/s. Though, as the wind speed
increases, the discrepancies between the BEM results and the experimentally measured data

generally tend to increase as well, especially in terms of the rotor thrust.
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Figure 3.3: Comparison of the predicted and experimentally measured aerodynamic power and thrust
for the NREL Phase VI wind turbine rotor — Test Sequence I (Low Pitch Setup).

According to several studies on the performance of NREL Phase VI rotor (Gur and Rosen,
2008; Arramach et al., 2017; Bontempo and Manna, 2017; Lee et al., 2017; Zhong et al., 2019), the
particular discrepancies are primarily attributed to the fact that when the value of ambient
wind speed exceeds approximately 10 m/s the examined rotor configuration operates in
dynamic or deep stall mode. In such operating situations, all the computational methods that
rely on the actuator disk concept, inherently fail to properly capture the flow physics, unless
a tuning procedure for the two-dimensional airfoil data (the lift and drag coefficients) is
employed (Bontempo and Manna, 2017). In fact, during the stall operation, the flow becomes
three-dimensional, thus violating the main assumption of the actuator disk approach. Hence,
such discrepancies between the BEM results and the experimental measurements for high

values of the wind speed are generally anticipated, to some extent.
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Figure 3.4: Comparison of the predicted and experimentally measured aerodynamic power and thrust
for the NREL Phase VI wind turbine rotor — Test Sequence H (Baseline Setup).
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Figure 3.5: Comparison of the predicted and experimentally measured aerodynamic power and thrust
for the NREL Phase VI wind turbine rotor — Test Sequence ] (High Pitch Setup).

3.1.2 NREL 5-MW Reference Wind Turbine

This validation case considers the NREL 5-MW reference wind turbine, which was
originally developed by National Renewable Energy Laboratory and reflects the design
specifications of a utility-scale system for offshore energy production, in the megawatt range
(Jonkman et al., 2009). The particular variable-speed and pitch-regulated wind turbine
configuration is characterized by a three-bladed upwind rotor with a diameter of
approximately 126 meters; detailed characteristics of the NREL 5-MW wind turbine can be
found in the work of Jonkman et al. (2009). In this validation study four typical points within
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the operating envelope of NREL 5-MW reference wind turbine are considered, covering the
three major control regions of the encountered system, as shown in Table 3.3. In particular,
Region 2 refers to variable speed control, Region 3 refers to variable pitch control and finally,

Region 2.5 refers to the transitional region between variable speed and variable pitch control.

Case  Wind Velocity = Rotor Speed  Pitch Angle (6,) TSR (1) Control Region

1 8.0 m/s 9.16 RPM 0.00 deg 7.55 2
2 11.0 m/s 11.89 RPM 0.00 deg 7.13 2.5
3 11.4 m/s 12.06 RPM 0.00 deg 6.97 2.5
4 15.0 m/s 12.10 RPM 10.45 deg 5.32 3

Table 3.3: Simulation cases for the NREL 5-MW reference wind turbine.

3.1.2.1 Blade Characteristics and Simulation Parameters

Table 3.4 provides a detailed overview of the main geometric characteristics of the NREL
5-MW wind turbine blade (Resor, 2013) — a CAD representation of which is also shown in
Figure 3.6. The current blade configuration is defined by a blended distribution of nineteen
cross-sectional blade stations, with variable chord length and twist angle values. The first
eleven percent of the blade span is characterized by cylindrical cross-sections, while the
remaining blade stations are based on five different profiles from the DU airfoil family and

one profile from the NACA five-digit series.

Figure 3.6: CAD representation of the NREL 5-MW blade.

Similar to the previous case study, the lift and drag coefficients for the airfoil sections
forming the NREL 5-MW wind turbine blade were calculated using the XFOIL code, and then
extrapolated to the entire range of angles of attack by means of Montgomerie (2004) method.
As for the cylindrical profiles defining the root region of the blade, constant values of drag

coefficient were adopted; for the first three cylindrical profiles, the drag coefficient was set at
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0.5, while for the last one equal to 0.35. Finally, both the correction models proposed by Shen

and Prandtl were used to account for the tip and hub losses.

Section Airfoil Radius [m] Chord [m] Twist Angle [deg]
1 Cylinder 1.50 3.542 13.308
2 Cylinder 2.87 3.542 13.308
3 Cylinder 5.60 3.854 13.308
4 Cylinder 8.33 4.167 13.308
5 DU40 11.75 4.557 13.308
6 DU35 15.85 4.652 11.480
7 DU35 19.95 4.458 10.162
8 DU30 24.05 4.249 9.011
9 DU25 28.15 4.007 7.795
10 DU25 32.25 3.748 6.544
11 DuU21 36.35 3.502 5.361
12 DuU21 40.45 3.256 4.188
13 NACA64618 44.55 3.010 3.125
14 NACA64618 48.65 2.764 2.310
15 NACA64618 52.75 2.518 1.526
16 NACA64618 56.17 2.313 0.863
17 NACA64618 58.90 2.086 0.370
18 NACA64618 61.63 1.400 0.160
19 NACA64618 62.90 0.700 0.000

Table 3.4: Characteristics of the NREL 5-MW wind turbine blade.

3.1.2.2 BEM Simulation Results

Unfortunately, no experimental data for the NREL 5-MW reference wind turbine are
available. Thus, at this stage, an indirect validation of the developed model is performed by
comparing the results of the current BEM simulations against the corresponding results of the

following well-respected simulation tools:

* SOWFA - A computational fluid dynamics solver that is based on OpenFOAM toolbox and includes
a version of the turbine model, coupled with FAST (Fleming et al., 2013).

* OVERFLOW?2 — A numerical simulation method that is based on the unsteady three-dimensional
RANS equations (Nichols and Buning, 2021).

= FAST - A comprehensive aeroelastic simulator for horizontal-axis wind turbines that combines

modal and multibody dynamics formulation (Jonkman and Buhl, 2005).

3-8



Chapter 3 Numerical Validation of the BEM Code

= OBlade — An open source wind turbine calculation software based on Blade Element Momentum

theory (Marten, 2015).

The results of the numerical simulations performed with SOWFA, OVERFLOW?2 and FAST
were obtained from the comparative study of Anderson et al. (2015), which examines the
aerodynamic characteristics of the NREL 5-MW rotor; detailed information on the
aforementioned simulation tools and the established simulation parameters can be found in
the same study. On the other hand, the simulations of NREL 5-MW wind turbine rotor with
QBlade was implemented within the current doctoral dissertation. The simulation parameters

for QBlade simulations were set in line with those adopted in the simulations with the current
BEM model.

Table 3.5 and Table 3.6 contain the predicted aerodynamic power and thrust, respectively,
for the NREL 5-MW wind turbine rotor, at free-stream velocities equal to 8 m/s, 11 m/s and 15
m/s. In terms of aerodynamic power prediction, the results of the in-house BEM solver are
generally in reasonable agreement with those of the reference simulation tools. In particular,
the maximum percentage deviation between the power output estimation of the current BEM
model and the respective predictions obtained from the reference computational tools was
found for OVERFLOW?2, at 8 m/s, and it was approximately equal to 8.8%. As long as the
comparison between the current BEM model and the rest simulation tools — in terms of
aerodynamic power prediction — is concerned, the percentage deviation for each one of the
examined operational point was below 4.4%, following a decreasing trend as the free-stream
velocity increases. Overall, the current simulations results for the power output of the NREL
5-MW rotor were found closer to those of FAST, since the mean percentage deviation for the
three operational points was approximately equal to 1%; the corresponding percentages for
SOWEFA, OVERFLOW and QBlade were equal to 3.8%, 6% and 2.4%, respectively, validating

the accuracy of our in-house methodology.

NREL 5MW Reference Wind Turbine — Power

Wind Speed BEM Code SOWFA OVERFLOW?2 FAST QBlade
8 m/s 1900 kW 1985 kW 1733 kW 1875 kW 1977 kW
11 m/s 4905 kW 5061 kW 4650 kW 4827 kW 5020 kW
15 m/s 5296 kW 5093 kW 5499 kW 5297 kW 5250 kW

Table 3.5: Comparison of predicted power by different turbine simulation tools for the NREL 5-MW

Reference Wind Turbine at various operational points.
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Similar levels of accuracy can be observed on the predictions of aerodynamic thrust for the
NREL 5-MW wind turbine rotor, which are included in Table 3.6. In this case, the estimations
of the proposed BEM model were found closer to those of SOWFA, deviating from them by
only 1% (average percentage deviation for all the encountered operational points); the
corresponding percentages for OVERFLOW2 and QBlade are equal to 6.4% and 1.5%,
respectively. The only exception to the generally good agreement between the current model
and the reference simulation tools is the case of FAST, the predictions of which — in terms of
aerodynamic thrust — deviate by an average percentage of 21% from the current simulation
results. However, since the same discrepancies can be observed between the results of FAST
and those obtained from the other reference models, this is probably attributed to the

parameters used in FAST simulation rather to the current BEM code.

NREL 5MW Reference Wind Turbine — Thrust

Wind Speed BEM Code SOWFA OVERFLOW?2 FAST QBlade
8 m/s 382 kN 382 kN 399 kN 477 kN 390 kN
11 m/s 695 kN 693 kN 733 kN 789 kN 705 kN
15 m/s 417 kN 405 kN 455 kN 520 kN 413 kN

Table 3.6: Comparison of predicted thrust by different turbine simulation tools for the NREL 5-MW
Reference Wind Turbine at various operational points.

Finally, in order to provide further validation to the proposed computational tool, the
results of the current BEM simulations — in terms of axial and tangential force distributions
over the blade — are compared against those obtained by detailed three-dimensional RANS
simulations with a fully resolved rotor geometry (Zhong et al., 2019, 2020). The comparisons
are performed for the operational conditions in which the NREL 5-MW wind turbine has been
rated; namely, a freestream velocity of 11.4 m/s and a rotational speed of 12.06 RPM. According
to Figure 3.7, the in-house BEM solver is capable to achieve similar levels of accuracy to those

of RANS simulations, for both axial and tangential force distributions.
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Figure 3.7: Comparison of the axial (a) and tangential (b) force distribution over the NREL 5MW blade
at 11.4 m/s, as obtained by the current BEM model and three-dimensional RANS simulations.

3.2 Shrouded Wind Turbines

This section aims to investigate, and eventually validate, the ability of the current BEM code
to accurately predict the aerodynamic performance and power output characteristics of
shrouded or diffuser-augmented wind turbine rotors. For this reason, the computational
results of the in-house developed BEM model are compared against the corresponding data
obtained from the experimental investigations of two different shrouded wind turbine
configurations; namely, the Dongi Urban Windmill (van Dorst, 2011) and a multi-slotted

diffuser-augmented wind turbine (Phillips, 2003).

3.2.1 Donqi Urban Windmills DAWT

The present validation study involves the performance prediction of Dongi Urban
Windmill, in terms of aerodynamic power output. The particular diffuser-augmented wind
turbine, which essentially consists of a single element shroud and a three bladed rotor, with a
tip radius of 0.75 m, was originally designed for small scale energy production within the
urban environment by Dongi Independent Energy Company, in cooperation with the
Netherlands Aerospace Centre (NLR) and Delft University of Technology. Since then, the
Dongi Urban Windmill has been the subject of several experimental and numerical research
studies (Ten Hoopen, 2009; van Dorst, 2011; Anselmi, 2017; Avallone et al., 2020; Dighe, 2020),
which have primarily been focused on improving the performance of the original design, but

also on evaluating newly developed engineering models for shrouded wind turbines.
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Figure 3.8: The three blade designs of Donqi Urban Windmill (van Dorst, 2011).

Herein, the evaluation of the in-house BEM model is made by using the experimental
measurements conducted at the Open Jet Facility of Delft University of Technology during the
Master of Science project of van Dorst (2011). In particular, the work of van Dorst (2011) was
mainly focused on designing improved rotor blades for the Donqi Urban Windmill. Thus, in
order to experimentally evaluate the performance of the involved blade designs, he conducted
a series of wind tunnel measurements by using the same diffuser geometry but three different
blade designs, which are labelled as: old, optimal and linear. The three blade designs that were
experimentally tested by van Dorst (2011) are shown in Figure 3.8; detailed information about
the chord and twist distributions of the blades, as well as for the entire Donqgi Urban Windmill

system, can be found in the Master of Science thesis of van Dorst (2011).

Actually, the old blade refers to the geometry that was originally manufactured for the
Dongi Urban Windmill, based on the NACA 2207 airfoil (Ten Hoopen, 2009); the so-called
optimal blade was designed through the chord and twist optimization of the old blade, while
the third blade configuration, labelled as linear, was eventually resulted from linearizing the
chord distribution of the optimal blade design, in an effort to reduce the material amount and
the production costs (van Dorst, 2011). In this validation study, the assessment of the in-house
BEM code is made by using experimental data that correspond to all the three blade designs.
The current simulation cases are listed in Table 3.7; please note that the BEM calculations for
each blade configuration were performed at the optimal TSR for the particular design, which

is defined as the TSR yielding the maximum power coefficient.
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Case Blade Design  Wind Velocity Rotor Speed Blade Pitch TSR (A)

1 o1d 5.0-8.0 m/s 340 — 545 RPM 10.0 deg 5.4
2 Optimal 50-8.0m/s 363 — 581 RPM 10.0 deg 5.7
3 Linear 5.0-8.0 m/s 376 — 601 RPM 10.0 deg 5.9

Table 3.7: Simulation cases for the Dongi Urban Windmill rotor.

Now, as long as the single element diffuser of Donqi Urban Windmill is concerned, it is
characterized by an exit-area-ratio (that is the ratio between the diffuser exit plane area and
the rotor swept area) equal to 1.728 and an exit plane diameter equal to 2 m, while it is also
equipped with a 0.04 m high Gurney flap (Ten Hoopen, 2009); more information about the
geometrical characteristics of the diffuser design are provided in Section 10.3. The velocity
speed-up distribution over the rotor plane for the unloaded diffuser case (input for the BEM
calculations) is provided in Figure 3.9a. To be more precise, Figure 3.9a provides both the
experimentally measured (van Dorst, 2011) and the numerically estimated (Kesby et al., 2016)
distribution of the velocity speed-up ratio over the rotor plane for the unloaded diffuser case.
The particular numerical prediction of the velocity speed-up distribution was originally
reported in the study of Kesby et al. (2016) and it was obtained by means of ANSYS CFX solver

for an ambient wind speed of 5 m/s.
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Figure 3.9: (a) The experimentally measured and numerically predicted velocity speed-up distribution
over the rotor plane for the unloaded Dongi Urban Windmill (Kesby et al., 2016). (b) Comparison of
the BEM results obtained from the measured and numerically predicted velocity speed-up.
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3.2.1.1 BEM Simulation Results

Figure 3.10 illustrates the experimentally measured power output of the Dongi Urban
Windmill rotor, for each one of the involved blade designs, in comparison with the results
obtained from the in-house BEM code. Please note that the current BEM calculations for each
blade design were performed both with and without the inclusion of a tip loss correction
model. The aim of this strategy was to examine the effect of such a correction model on power
output, and identify whether a tip loss correction model is necessary during the BEM analysis
of shrouded wind turbines. As long as the power loss associated with the 0.15 m radius hub
of Dongi Urban Windmill are concerned, the Prandtl’s hub loss correction model (see Section
2.2.5.1) was included for every BEM simulation, regardless of the tip loss correction model. It
is also noted that in the current validation study, all BEM calculations were performed by
employing the numerically predicted velocity speed-up distribution reported in the study of
Kesby et al. (2016), instead of the velocity speed-up distribution measured by van Dorst (2011),
since both the experimentally measured and numerically estimated velocity speed-up
distributions — shown in Figure 3.9a — led to practically identical power output predictions. In
order to support this claim, Figure 3.9b provides a comparison between the power output
predictions obtained by using both of the aforementioned velocity speed-up distributions, for
the old blade geometry. The maximum observed discrepancy was less than 1.5 percent; this

was also the case for the optimal and linear blade designs.
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Figure 3.10: Experimental data and BEM predictions for the power output of the Dongi Urban
Windmill rotor. (a) Old blade; (b) Optimal blade; (c) Linear blade.
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Regarding the evaluation of the developed BEM code, in terms of accuracy, Figure 3.10
reveals a very good association between the computational results and the experimental
values for the aerodynamic power output of Dongi Urban Windmill rotor; the accuracy of the
computational results does not seem to be affected by the blade design at hand. Moreover,
from a qualitative point of view, the comparisons illustrated in Figure 3.10 definitely indicate
that the BEM results obtained by including the tip loss correction model are much closer to the
experimental ones, as compared to those obtained from the opposite simulation case. In fact,
the absence of a tip loss correction model results in notable discrepancies between the
computational and experimental results (overestimation of the aerodynamic power output)

that increase with the value of the ambient wind speed.

Furthermore, Table 3.8 provides the mean absolute error (MAE) and the mean absolute
percentage error (MAPE) between the experimental and the computational results for the
three blade designs of the Donqi Urban Windmill. Obviously, the quantitative information
provided in Table 3.8 supports the inclusion of a tip loss correction model, since it result in
notably smaller average deviations between the computational and the experimental results,
even though it may generally leads to an underestimation of the measured power output. In
general, the comparisons between the experimental measurements and BEM results reveal
that the current model is able to reasonably predict the power output of such configurations,
since the trend of the power curve has been adequately captured and the maximum mean

absolute percentage error was found around 8 percent.

Blade Old Optimal Linear

Without Prandtl's Tip Loss Model

MAE 24.28 Watts 28.18 Watts 32.89 Watts
MAPE 13.47 % 8.92 % 14.27 %

With Prandtl's Tip Loss Model

MAE 9.89 Watts 15.08 Watts 11.99 Watts
MAPE 5.87 % 7.99 % 5.08 %

Table 3.8: The mean absolute error (MAE) and the mean absolute percentage error (MAPE) between
the experimental data and the BEM results for each blade of the Donqgi Urban Windmill.

3.2.2 A Multi-Slotted DAWT

In order to add further validity to the results of the in-house BEM code, this section
considers the power performance prediction of the multi-slotted diffuser-augmented wind

turbine that was experimentally investigated during the doctoral thesis of Phillips (2003), at
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the Twisted Flow Wind Tunnel of the University of Auckland. The 0.48 m diameter multi-
slotted diffuser-augmented wind turbine is composed by a double surface diffuser. The outer
skin of the particular diffuser design is formed by a single continuous surface, with its trailing
edge to be fixed at an angle of 55 degrees relative to the centreline, while the inner surface has
five boundary layer control slots, all positioned behind of the rotor plane. A schematic
representation of the flow behaviour through the multi-slotted diffuser is provided in Figure
3.11. The examined diffuser geometry has an inlet-area-ratio (that is the ratio of the diffuser
inlet area to the rotor swept area) equal to 1.2 and an exit-area-ratio equal to 3. The distribution
of the velocity speed-up ratio over the rotor plane for the unloaded diffuser case is provided

in Table 3.9, as obtained from wind tunnel measurements conducted by Phillips (2003).
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Figure 3.11: A schematic representation of the flow behaviour through the multi-slotted diffuser-
augmented wind turbine (Phillips, 2003).

T/Ryp 032 044 054 062 069 075 081 087 092 097
14 118 117 116 116 117 120 123 127 132 142

Table 3.9: The velocity speed-up ratio distribution over the rotor plane for the unloaded diffuser of
the multi-slotted diffuser-augmented wind turbine (Phillips, 2003).

As long as the rotor of the multi-slotted diffuser-augmented wind turbine is concerned, the
examined wind turbine configuration has a typical three bladed rotor. The geometrical
characteristics of the rotor blades are presented in Table 3.10; the particular blade design was
obtained by means of a single point optimization procedure, which was based on the modified
BEM model developed by Phillips (2003). Eventually, the tip region of the blade has been
formed by a Selig S-3021-095-84 airfoil with an approximate thickness-to-chord ratio of 10
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percent, while a similar (scaled) airfoil with a thickness-to-chord ratio of 25 percent has been
employed for the root region of the blade. The thickness-to-chord ratio of the airfoils defining
the mid region of the blade varies linearly between 10 and 25 percent. The exact twist and
chord distributions of the particular blade are reported in Table 3.10. Please note that all BEM
calculations for this case study have been performed at the optimal blade pitch angle, which

equals to 6.7 degrees (Phillips, 2003).

Section Airfoil Radius [m] Chord [m]  Twist Angle [deg]
1 S-3021-095-84 0.058 0.0426 21.3
2 S-3021-095-84 0.076 0.0426 16.9
3 S-3021-095-84 0.094 0.0375 11.8
4 S-3021-095-84 0.112 0.0330 8.1
5 S-3021-095-84 0.130 0.0303 5.4
6 S-3021-095-84 0.148 0.0278 3.3
7 S-3021-095-84 0.166 0.0256 1.6
8 S-3021-095-84 0.184 0.0240 0.3
9 S-3021-095-84 0.202 0.0235 -0.6

10 S-3021-095-84 0.220 0.0235 -0.8
11 S-3021-095-84 0.238 0.0235 0.0

Table 3.10: Blade characteristics for the multi-slotted DAWT (Phillips, 2003).

3.2.2.1 BEM Simulation Results

Figure 3.12 illustrates the experimentally measured values of shaft augmentation for the
multi-slotted diffuser-augmented wind turbine, at the optimal pitch angle of 6.7 degrees, in
comparison to the predicted augmentation values that were obtained from the current BEM
code and the modified BEM model developed by Phillips (2003). Apparently, the current BEM
model seems able to provide a reasonably good approximation of the entire power curve.
However, at the same time, significant underestimations of the measured augmentation values
can be definitely observed, especially near the optimum tip speed ratio. According to our point
of view, these discrepancies between the experimental and the computational values probably
stem from the inaccurate values of the aerodynamic lift and drag coefficients reported within
the reference study, and eventually employed during the current BEM calculations. In fact,
Phillips (2003) provided only the aerodynamic data for the Selig S-3021-095-84 airfoil, as well
as a manually modified version of them. However, the study of Phillips (2003) did not provide
the respective aerodynamic characteristics for the scaled airfoils defining the root and mid

regions of the blade. Therefore, being the only ones available, the aerodynamic lift and drag
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coefficients of the root airfoil were eventually adopted for all the airfoil sections along the

blade, even though there was a considerable change of the thickness-to-chord ratio along the

blade.
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Figure 3.12: The experimentally measured and computational predicted power curve of the multi-
slotted diffuser-augmented wind turbine at the optimum pitch angle of 6.7 degrees.

Finally, Figure 3.12 could also provide significant information about the effect of the tip loss
correction model on the predicted shaft augmentation. In this case, the inclusion of such a
correction model seems to cause an even greater underestimation of the experimental data.
Nevertheless, a solid conclusion on whether the inclusion of a tip loss model during the
analysis of shrouded wind turbines is required, cannot be established based on this case study,

given the inaccuracies of the utilized lift and drag data.
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Chapter 4

Development of an Axisymmetric RANS Solver

This chapter describes the development of an academic in-house RANS solver, called 1Gal2D, for the
numerical prediction of incompressible axisymmetric flows involving swirling. In particular, Section
4.1 provides a general introduction into axisymmetric swirling flows, as well as the incentives for the
development of IGal2D solver, while Section 4.2 presents the adopted form of the governing equations
defining the flow and turbulence models. Finally, the remaining sections of the current chapter outline
the numerical methodology underlying the 1Gal2D solver, emphasizing on the spatial and temporal

discretization schemes, the flux evaluation approaches and the source term treatment.

4.1 Axisymmetric Swirling Flows

Axisymmetric flows that involve swirling or rotation represent a fundamental class of
relatively complex fluid motion that is widely encountered in many engineering applications
(e.., pipeline systems, cooling devices, cyclone separators, combustion chambers and
turbomachines), as well as in various natural phenomena (e.g., tornadoes, hurricanes and
ocean circulations). Therefore, in recent decades, such flows have been consistently considered

as an attractive subject of both scientific research and technical investigations.

In general, the interaction between the swirling and streamwise motions has been proved
an effective technique to enhance heat and mass transfer, as well as to stabilize and intensify
certain working processes, particularly in aviation and rocket technology (Algifri et al., 1987).
In addition, swirling motion has also been shown to improve the performance of shrouded
wind turbines, since the tangential velocity component induced by the rotor blades helps to
energize the velocity boundary layer of the internal diffuser wall and thus, to supress possible
flow separation (Leloudas et al., 2020a; Venters et al., 2018). However, large values of the swirl
parameter or number — which is defined as a measure of the ratio between the azimuthal and
axial velocities (Billant et al., 1998; Ramos, 1984; Yang et al., 2018) — can possibly result in
adverse flow patterns. A characteristic example was reported during the experimental study
of Billant et al. (1998) on swirling water jets. This investigation concluded that increasing the
swirl parameter over a critical threshold, for a prescribed Reynolds number, is directly related
to the emergence of vortex breakdown (Yang et al., 2018). Negative implications of swirling,
in terms of conventional diesel engines, were also reported by Ikegami and Kamimoto (2009),

and although it was found that swirl itself may bring about favourable effects in fuel
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distribution, air utilization, and acceleration of combustion, it was highlighted that large swirl

numbers may not only decrease volumetric efficiency, but also cause poor combustion.

In any case, accurate predictions of axisymmetric swirling flows and deep understanding
of the associated phenomena are essential to improve the performance of the applications and
processes involved. In modern engineering practice, numerical methods, and particularly
CFD, represent a class of highly valuable tools — sometimes the only viable ones, given the
drawbacks related to experimental procedures — to serve that purpose (Mazzaferro et al., 2005).
From a macroscopic point of view, axisymmetric fluid motion, with or without the presence
of swirling, can be predicted by means of the three-dimensional (3D) Navier-Stokes equations
in cylindrical coordinates (Bird et al., 2006). However, the application of numerical methods
adopting that form of governing equations is usually associated with relatively high
computational cost and pre-processing effort, whereas their implementation entails significant

challenges as well, which mainly stem from the 3D nature of the problem.

On the other hand, the majority of the aforementioned shortcomings could be alleviated by
taking advantage of the axisymmetric condition, dictating that the gradient for each flow
variable in the azimuthal direction equals to zero. Consequently, by eliminating all the
respective derivatives, the 3D Navier-Stokes equations in cylindrical coordinates can be
reduced to a quasi-two-dimensional (2D) set of partial differential equations, defined over the
meridional plane; these are widely known as the axisymmetric Navier-Stokes equations. As a
matter of fact, the axisymmetric Navier-Stokes equations are usually arranged in a pseudo-
Cartesian form, by treating all the redundant terms associated with axisymmetric effects as
source ones (Zhang et al., 2019). Ultimately, this approach allows for a significant reduction in
both pre-processing effort and computational time, owned to the utilization of 2D grids and
methods, instead of 3D ones, while at the same time providing reasonable levels of accuracy,
when compared with the corresponding 3D models (Abedi et al., 2020; Leloudas et al., 2018b,
2020a, 2021; Susan-Resiga et al., 2006).

To assess the accuracy of axisymmetric Navier-Stokes models, especially in comparison
with their 3D counterparts, but also with experimental measurements, significant studies were
carried out by Susan-Resiga et al. (2006) and Abedi et al. (2020). In particular, Susan-Resiga et
al. (2006) compared the numerical results of an axisymmetric solver for the incompressible
Navier-Stokes equations, against the time-averaged solution of an unsteady 3D simulation,
regarding the swirling flow inside the draft tube cone of Francis turbines at partial discharge.
On the other hand, Abedi et al. (2020) performed a series of steady-state simulations on a
supersonic inlet, using both axisymmetric and 3D flow solvers that were based on the
compressible RANS equations and k-w Shear Stress Transport (SST) turbulence model. Both

research teams reached to the conclusion that numerical simulations, performed by means of

4-2



Chapter 4 Development of an Axisymmetric RANS Solver

the axisymmetric models, could provide adequate levels of accuracy, especially in the absence
of intense 3D effects; a valid assumption of a purely axisymmetric flow. Nevertheless, for the
detailed prediction of strongly rotating flows that involve unsteady and intense 3D
phenomena, associated with the collapse of the axisymmetric condition — such as the rotating
vortex rope in the draft tube cone of Francis turbines (Susan-Resiga et al., 2006; Yang et al.,
2018) — 3D simulations were found rather appropriate (Li ef al., 2014). Yet, the axisymmetric
models could still capture the major flow aspects with reasonable accuracy for practical

applications.

Besides the aforementioned studies, many numerical models that employ the axisymmetric
form of Navier-Stokes equations have been developed, for both compressible (Clain et al., 2010;
Gokhale and Suresh, 1997; Musa et al., 2016) and incompressible flows (Dagtekin and Unsal,
2011; Durkish, 2006; Lee and Lee, 2011; Leloudas, 2018b, 2020a; Morsi et al., 1995; Moshkin et
al., 2010; Saiac, 1990; Semiao and Carvalho, 1997), featuring various discretization methods,
flux evaluation schemes and turbulence models. Moreover, axisymmetric flow modelling has
lately become a highly attractive topic in the context of mesoscopic approaches as well, such
as the lattice Boltzmann Method (LBM) (Hajabdollahi et al., 2019; Huang et al., 2007; Lee et al.,
2005; Li et al., 2018; Liu H. et al., 2016; Liu Q. et al., 2019; Zhang et al., 2019). However, to the
best of our knowledge, the implementation of an axisymmetric Navier-Stokes solver for
incompressible swirling flows that employs Artificial Compressibility Method (ACM) is not

available.

The artificial compressibility approach, which is also termed as pseudo-compressibility
approach, was originally introduced by Chorin (1967), in order to overcome pressure
decoupling. Essentially, ACM involves the addition of a temporal derivative of pressure to the
continuity equation, allowing the incompressible system of equations to be relaxed within the
framework of a time-marching compressible flow solver (Anderson et al., 1996). In particular,
the ACM transforms the incompressible Navier-Stokes equations of mixed elliptic/parabolic
type, into a pseudo-temporal set of hyperbolic or parabolic partial differential equations (Kiris
et al., 2006; Stokos et al., 2015). Additionally, in cases that the prediction of temperature
distribution is not required (i.e., fluid motion characterized by negligible temperature
gradients) ACM can provide significant advantages, especially over preconditioning methods;
namely, energy equation isn’t solved, hence the corresponding flow solver is enhanced with
substantial memory and time savings (Anderson et al., 1996). Furthermore, according to the
comprehensive study of Tamamidis et al. (1996), ACM could outperform the pressure-based
method (PBM) in terms of convergence rates, while according to Tanno et al. (2013), ACM has
been proved faster than LBM on GPUs, for a properly selected value of the artificial

compressibility parameter.
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Therefore, against this background, and given the overall goal of the current doctoral
dissertation to propose a computational framework for the design optimization of shrouded
wind turbines, the remainder of this chapter features the development of an academic in-house
flow solver that combines the ACM with the axisymmetric RANS equations, for the prediction
of incompressible swirling flows. In particular, Section 4.2 describes the detailed derivation of
the adopted form of the governing equations, defining the flow and turbulence models, while
Section 4.3 until Section 4.5 outline the numerical methodology underlying the current flow
solver, emphasizing on the spatial and temporal discretization schemes, the flux evaluation
approaches and the source term treatment. Ultimately, the developed flow solver, called
IGal2D (Leloudas et al., 2021; Lygidakis et al., 2020), is validated against relevant demanding
benchmark test cases, which include both non-swirling and swirling flows with axial
symmetry; the numerical validation of the proposed axisymmetric solver is included in
Chapter 5. The obtained results are compared with available experimental and numerical data
reported in the literature, as well as with those of the commercial software ANSYS Fluent
(Fluent, 2009), aiming to confirm the potential of the proposed ACM-based methodology to

predict such pseudo-3D flows in terms of accuracy.

4.2 Governing Equations

4.2.1 Axisymmetric Navier-Stokes Equations

The axisymmetric Navier-Stokes equations for incompressible fluid motion can be derived
in a relatively straightforward manner from the fundamental laws of mass, momentum and
energy conservation — when they are expressed in cylindrical coordinates (7, 8, z) — through
the application of axisymmetric invariance assumption (Clain et al., 2010); essentially, the
axisymmetric invariance assumption considers no flow variation in the azimuthal direction
(0) and therefore, eliminates all the respective partial derivatives (0/06). At this point, let us
note that the scope of this study is exclusively restricted to practically incompressible and
isothermal flows, which are characterized by uniform density (p) and kinematic viscosity (v)
values. Under these conditions, the energy equation is irrelevant, due to negligible
temperature gradients and thermodynamic effects (Wang, 2015). Consequently, fluid motion
is entirely governed by the continuity (4.1) and momentum (4.2) equations, which respectively

read:
V-u=0, 4.1)

au+ V—1V+A+f 42
atuu—ppvu. (4.2)
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Here, p stands for static pressure, t stands for time, u = (u,, ug, u,) stands for the fluid velocity
vector and f = (f;, fp, f;) stands for the vector of external body forces. Therefore, by
implementing all the differential operators included within Egs. (4.1) and (4.2) in terms of
cylindrical coordinates (see Appendix A) while eliminating all the partial derivatives related
to azimuthal (6) direction, the non-conservative form of the incompressible axisymmetric

Navier-Stokes equations can be emerged, as shown in Egs. (4.3) — (4.6).

Continuity:

10(ru,) N du,
r or 0z

=0 (4.3)

Radial Momentum (7):

ou, ou, du, uj  1dp 9 (19(ru,) d (du,
B T o Y T T oo WY ar\r ar )PV az\a ) @4
Azimuthal Momentum (0):
dug dug dug  urug 0 (10(rug) 0 (dug
ot gy Ty, - ar\r ar ) Vaz\az *fo (45)

Axial Momentum (2):

6u2+ 6u2+ ou, 16p+ 10 ( ou, 4 d (odu, 4 A6
ot Yoy TY2g, T por Viar\"ar ) T Vaz\ oz f2 (4.6)

Apparently, the axisymmetric invariance assumption leads to the elimination of azimuthal
velocity component (ug) from continuity equation (4.3). However, uy is still coupled to the
axial (u,) and radial (u,) velocity components by means of momentum equations (4.4) — (4.6).
In addition, axial symmetry condition removes the explicit effects of pressure from the
azimuthal momentum equation (4.5). Nevertheless, ug remains coupled to the pressure field
through the centrifugal acceleration term (uj/r), which is included within the radial
momentum equation (4.4); the centrifugal acceleration term represents the effective
acceleration in radial direction, resulting from fluid motion in azimuthal direction (Bird et al.,
2006; Siebert and Yocum, 1993). Finally, it should be noted that the body forces per unit volume
in Egs. (4.4) - (4.6), provide a convenient means by which the effect of external objects, such as
wind turbine blades, can be introduced into the momentum equations. A detailed discussion
on the proper modeling of body forces, as well as the development of a methodology coupling
IGal2D and BEM solvers, is provided in Chapter 8.
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4.2.1.1 Dimensionless Form of the Axisymmetric N-S Equations

IGal2D solver is based on a dimensionless formulation of the axisymmetric Navier-Stokes
equations. Dimensionless analysis represents a common practice in the field of fluid
mechanics, which allows for the utilization of dimensionless similarity parameters, such as the
Reynolds (Re) and Prandtl (Pr) numbers. In that way, the data of several equivalent
experiments at different scales, can be grouped together and analyzed efficiently, while the
number of required variables for the simulation of similar flows can be significantly reduced.
Besides, dimensionless or normalized variables could also be a better alternative, compared to
the unscaled or dimensional ones, from a numerical point of view; since their values are
usually scaled so that they lie between zero and one, the floating point errors associated with

very large or small numbers can be diminished (Siebert and Yocum, 1993).

In this study, the governing equations (4.3) — (4.6) are normalized by introducing four
reference quantities; namely, a reference length scale - L., a reference velocity scale - Vi¢f, a
reference density scale - p,f and a reference kinematic viscosity scale - v.¢r. Consequently, the
dimensionless length (¥;), velocity (ii;), density () and kinematic viscosity (V) are defined as:
Xi - Uu; P v

F=—b =, p=—, F=—. 4.7
' Lref ' Vref Pref Vref ( )

The remaining parameters included in Egs. (4.3) — (4.6) are normalized by combinations of the
adopted reference quantities, as follows:
4 . fi t

fz= (4.8)

p= = fi= 2 .12
Pref Vref Pref” Vref ’ Lref Lref- ref

where the "~" superscript indicates the dimensionless quantities. Typically, the reference
length scale (Ly¢f) is defined by using a characteristic length of the examined flow problem,
whereas the reference velocity scale (Vief) is selected as the magnitude of the free-stream
velocity. On the other hand, the reference scale of density (pref) for incompressible flows is
usually defined as the fluid’s density (p), which is constant; thus, non-dimensional density (p)
equals to unity. At last, the fluid's kinematic viscosity (v) is the most convenient reference
scale for viscosity (vyer). Consequently, for isothermal and laminar flows, the non-dimensional

kinematic viscosity (¥) is also equal to unity (Siebert and Yocum, 1993).

Ultimately, by introducing Egs. (4.7) and (4.8) into Egs. (4.3) — (4.6), the non-conservative
form of the axisymmetric Navier-Stokes equations for incompressible fluid motion, in terms

of dimensionless parameters, can be written as follows:
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Continuity:

19(74,) o1,

_ 4.9
FooF FE (*9)
Radial Momentum (7):
oti, _ o, _ Of, g 10p ¥ 9 [(10(Fii,.) v 0 (06,\
9F "o Tz TF T Tpor TRear\r o ) TReaz\az) T (10
Azimuthal Momentum (0):
ol _ Ollg _ Olig Tllg ¥ 0 (10(Filg)\ ¥ 0 (dig\
0t T Ty T TRreor\i or ) TReoz\az )t (@11)

Axial Momentum (Z):

0u, 0, 0%, _ 10§ V10 ( 0n\ V0 (0% ‘1o
ot " Yror "% T 75 7o7\" o7 ) T Reaz\ 2z ) T /2 (4.12)

Although both the dimensionless scales of density (§) and kinematic viscosity (¥) are equal to
unity, they are deliberately retained within Egs. (4.9) - (4.12) just for the sake of completeness.
At this point, please note that the Reynolds number — which is defined as:
Re = Lrer - Vret (4.13)
Vref

and provides the ratio of inertial forces to viscous ones (Anderson, 2010) — appears naturally
within momentum equations, when they are expressed in a dimensionless formulation.
Apparently, in the current formulation of the non-dimensional Navier-Stokes equations, each
viscous or diffusive term in the RHS of momentum equations (4.10) - (4.12) is divided by Re;
an alternative to this could be to multiply every convective or inertial term, as well as the body
force term, by Re. However, the former approach is generally preferred over the latter one, in
order to minimize floating point errors during the numerical solution (Siebert and Yocum,
1993), especially in the case where high-Reynolds number flows are encountered. Finally, a
concluding remark on the normalization procedure of the Navier-Stokes equations could be
drawn by observing the continuity equation (4.9); its form is not reformed by the non-
dimensionalization. This stems from the fact that all the terms within continuity equations are
inviscid ones. In the rest of this thesis, the superscript "~" denoting the normalized variables
is neglected for simplification reasons; every flow quantity is considered in its dimensionless

form.
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4.2.1.2 Conservative Form of the Axisymmetric N-S Equations

In this section, the conservative form of the incompressible axisymmetric Navier-Stokes
equations is derived. According to Hoffmann and Chiang (1993), a differential equation is
termed to be in conservative form if the coefficients of the derivatives are either constant, or if
variable, their derivatives do not appear anywhere in the equation. Although, the conservative
and non-conservative forms of the governing equations — as well as those of any other
differential equation — are mathematically equivalent, this is not the case for their discretized
counterparts. In general, a conservative formulation of the governing equations is usually
preferred when a numerical solution is involved. This stems from the fact that the conservative
form of the fundamental conservation laws could result in a discrete approximation of a
similar form, which leads to discrete conservation almost naturally. On the other hand,
numerical conservation can be proved quite challenging when a non-conservative formulation
is employed (Oud, 2017). In fact, by solving the equations in their conservative form, the flux
crossing one control volume face will be the same for each of the adjacent control volumes that
share that face. Consequently, both local and global flux conservation is guaranteed (Siebert
and Yocum, 1993).

In order to derive the conservative form of axisymmetric Navier-Stokes equations, Eq. (4.14)
and Eq. (4.15) are initially introduced. Essentially, Eq. (4.14) is just an expression of the product
rule for derivatives, while Eq. (4.15) results from the fact that cylindrical coordinate systems
are orthogonal. Therefore, the radial coordinate (r) is independent of the axial coordinate (z)

and, as such, it may be brought inside the partial derivatives with respect to z.

ou, u, 10(ru,)
or r r or '

(4.14)

du, 10(ru,)

(4.15)

0z r 0z

Thus, the conservative form of the axisymmetric Navier-Stokes equations can be derived
from the non-conservative one, presented in Section 4.2.1.1, by adding the continuity equation
to the LHS of each momentum equation while applying Eqgs. (4.14) and (4.15). At this point,
please note that besides the convective terms in the LHS of momentum equations, some of the
viscous ones in the RHS have been properly recast as well, so as the components of the viscous
stress tensor (7;;) to be emerged. Eventually, the conservative form of the incompressible
axisymmetric Navier-Stokes equations, in terms of dimensionless parameters and viscous
shear stress components, are shown through Egs. (4.16) - (4.19). The equivalent (conservative
and dimensionless) formulation of the axisymmetric Navier-Stokes equations, in terms of

velocity gradients, is provided in Appendix B.
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Continuity:

la(rur) N du,

— 4.16
r or 0z 0 ( )

Radial Momentum (7):

ou, 100rwu,) 10(ruyu,) uf dp 10(rt,..) 10(rt,.,) Tee
- += - =t += -
at r Or r 0z r or r Or r 0z r

+f @17)

Azimuthal Momentum (0):

Jug N 10(ruyug) N 19(ruguy,) L ke _ 13(r*1r6) N 19(rte,)

ot r Oor r 0z r r2 or r 0z +fo (4.18)

Axial Momentum (2):

ou, 16(ruzur)+16(ruzuz)_ dp 10(rty.) 16(rTZZ)+
ot r or r o0z 0z r oOr r 0z

fz (4.19)
Now, the viscous stress tensor (t) for incompressible flow of a Newtonian fluid is defined as:

1
t=—(Vu+VvuT), 4.20
= ) (4.20)
while under the axisymmetric invariance assumption, the stress tensor components (z;;) read:

1 ou, _zlur 1oy,
tr = “Re or t06 = “pe T2z = “Re 0z

Trg =T —i aﬂ—u—g = _16u9 Trz =T —i auz+aur
0Tt T Re\ar  r )’ 02T 20 T R4, T2 T Re\ dr 0 9z )

(4.21)

4.2.2 Axisymmetric Reynolds-Averaged Navier-Stokes Equations

The Reynolds-Averaged Navier-Stokes (RANS) equations represent one of the most widely
adopted approaches for turbulence modeling in engineering applications, according to which,
each instantaneous flow quantity is decomposed into an average and a fluctuating part
(Blazek, 2015). The Reynolds decomposition of pressure (p), velocity components (u;) and
body force components (f;) is described in Eq. (4.22), where the overbar denotes the average

or mean part of the respective flow variable, while the prime denotes the fluctuating one.

p= p + P

Ny’ 3
average  fluctuating

I

(4.22)
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u; = ﬂi + u{
R N~
average  fluctuating
— r !
fi= L o+
—

Nt A
average  fluctuating

In general, averaging of the main flow quantities can be performed by employing three
different strategies; namely, time-averaging, spatial averaging and ensemble averaging
(Blazek, 2015). In this study, the time-averaging approach is adopted, since the majority of the
encountered flows are characterized by statistically steady turbulence (steady-state flows).
Accordingly, the mean values of pressure, velocity and body force components are defined as:

t+T t+T t+T
) 1 ~ 1 i} 1
plei_r)Ic}oT pdt, uilei_r)&T u; dt, ﬁlei_r&T fi dt, (4.23)
t t t
where T — oo signifies that the time interval of integration should be larger than the typical
time-scale of the turbulent fluctuations. Please note that the mean value of the fluctuating part
for every flow quantity is zero, regardless of the employed averaging approach (Blazek, 2015).
Consequently, the mean value of each flow variable does not vary in time, but only in space.
Now, introducing Eq. (4.22) into Egs. (4.16) - (4.19), the incompressible axisymmetric RANS

equations, in terms of dimensionless parameters, can be expressed as:

Continuity:

19(ru,) N Jdu,
r or 0z

~0 (4.24)

Radial Momentum (7°):

ou, 100, i) 10(r@,i,) u  0p 100t,) 100t,) T
Vv o Tr oz v v ar Troaz ot (2

Azimuthal Momentum (0):

0ty 10(riyUg)  10(rtigh,)  Uyllg 1 0(r%tg) 10(rtg,)
ot +; or +; 0z + r 12 or +; 0z *fo (4.26)

Axial Momentum (z):

ou, 1 a(razﬂr) + la(rﬂzﬂz) _ @ + la(rf-zr) + la(rfzz) + f

ot r Or r 0z 9z r or r 0z z (4.27)

where

v -
f:-‘t—u’®u’=§(Vﬁ+VﬁT)—u’®u’. (4.28)
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Apparently, the form of axisymmetric RANS equations (4.24) - (4.28) is identical to that of
the instantaneous or non-averaged axisymmetric Navier-Stokes equations (4.16) - (4.19);

except of the additional non-linear term:

uRu, (4.29)

which has been emerged after the averaging process and denotes the Reynolds stress tensor.
Herein, the Reynolds stress tensor is evaluated by introducing the Boussinesq hypothesis or
approximation, assuming a linear relationship between the turbulent shear stress and the

mean rate strain. Thus,
— U @u =v (Vu+va') - %kl ) (4.30)
where v, stands for the turbulent kinetic viscosity and k for the turbulent kinetic energy.
k=-u-u (4.31)
Eventually, the total averaged stress tensor 7 is given as:

v

A= T = ey _ 2
T=T-w U = (o tv -(Vu+Vu)—§kl, (4.32)

and the averaged stress tensor components as:

s oL+ ou, 2 O dug Uy

Trr = Re t or _§ Trg = Tor = R t W—T

) 4 u, 2 R . 4 Jdug

Tgg = 2 R_e + v ? —§k Tz = Tz9 = R_e + vt E (4.33)
N l+v odu, Zk A l+v du, Jdu,
fzz=2\Re " )97 " 3 tr =tz = \Re T\ or 2

Finally, it is recalled that according to the adopted non-dimensionalization strategy, the value

of laminar kinematic viscosity (v) equals to unity.
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4.2.3 Artificial Compressibility and Pseudo-Cartesian Formulation

The artificial compressibility method (ACM) was originally introduced by Chorin (1967) to
overcome pressure decoupling. Essentially, the particular method involves the addition of a
temporal derivative of pressure to the continuity equation, allowing the incompressible
system of equations to be relaxed within the framework of a time-marching compressible flow
solver (Anderson et al., 1996). In particular, it transforms the incompressible Navier-Stokes
equations of mixed elliptic/parabolic type into a pseudo-temporal set of hyperbolic or
parabolic partial differential equations (Kiris et al., 2006; Stokos et al., 2015). Introducing the

artificial compressibility parameter (), the continuity equation recasts as follows:

Continuity:

AR A (434

Essentially, the artificial compressibility parameter (f) allows for the incorporation of the
pressure term in continuity equation (Anderson et al., 1996; Lygidakis et al., 2016). At this point
it is emphasized that special attention should be paid on the proper selection of its value, since
it affects the artificial speed of sound and consequently the corresponding speed of artificial
pressure wave and overall convergence rate (Kallinderis and Ahn, 2005). Although the value
of f should be ideally chosen as high as possible to accelerate analogously the artificial
pressure waves and consequently enforce incompressibility effects to the whole computational
domain, values close to unit are typically chosen to assure good convergence rates, especially
in viscous unsteady simulations (Cox et al., 2016). The momentum equations are not affected
by artificial compressibility method. However, in order to result in a pseudo-Cartesian

formulation, they have been arranged into inviscid, viscous and source terms, as follows:

Radial Momentum (7):

aur a(uf + p) a(uruz) aTrr aTrz u12‘ Trr Too
wt T YT o e r Tyt (4:35)

Azimuthal Momentum (8):

au@ + a(urue) + a(ueuz) _ aTT@ _ aTZ@
ot or 0z or 0z

2
== (tro — Urug) + fo (4.36)

Axial Momentum (2):

a‘Ll’Z a(uruz) a(u; + p) aTTZ a"’-ZZ TTZ uruZ
Jt + or + 0z “or o9z r r tfz (4.37)

Now, let us replace coordinates (z,7) with (x,y) and velocity components (u, u,, ug) with

(u, v, w); then, the system of partial differential equations defined by Eq. (4.34) — Eq. (4.37) can
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be reformulated — arranged into inviscid, viscous and source terms — as follows (Cummings et
al., 1995; Gokhale and Suresh, 1997; Masatsuka, 2013; Mohammadi and Saiac, 1993):

oU O0F, 4G, OF, 0G,

EJ’EJ“ay dx  dy

=H (4.38)

where U denotes the vector of primitive flow variables, F; and G; are the inviscid (convective)

flux vectors, while F,, and G,, are the viscous (diffusive) flux vectors.

pu pu 0 0
u? + 14 vu Toex Txy
U= ;= G; = F, = G, = (4.39)
v uv vi+p Tyx Tyy
w uw vw Txo Tyo

Finally, the source term vector H, associated with axisymmetric swirling flows, is defined as:

—-pv 0
1 UTyy — UV fx

H= - 5 , |t (4.40)
Y| Tyy —Tgg—V"+ W fy
2(typ — vw) fo

For axisymmetric flow simulations in which circumferential or swirl velocity is neglected, the
corresponding partial differential equation (4.36) shall be excluded and the tangential velocity
component (w) within the source term should be zeroed as well (Lee and Lee, 2011; Leloudas
et al., 2020a, 2021). Moreover, in cases of purely two-dimensional flow simulations, the whole

source term should be neglected.

4.2.4 Turbulence Modeling

In the current version of IGal2D solver, turbulence modeling is achieved by means of k-w
Shear Stress Transport (SST) model (Menter, 1994; Menter et al., 2003). The SST model is
defined by adopting the same differential formulation used for the flow partial differential
equations, but it is solved separately, following a loose coupling approach; interaction between
the flow and turbulence models is succeeded via the turbulent kinematic viscosity. Please note
that no additional model is included to simulate transition from laminar to turbulent flow. To
this end, the SST model is described as (Leloudas et al., 2021):

out OFf 0G{ O0F, 0G,

i 4 Ht 441
ot Tox Yoy “ax oy ' (441)

where Ut denotes the vector of turbulence model variables.
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k
Ut = (4.42)

w

In accordance to the flux vectors of the Navier-Stokes equations, the convective vectors of the

SST turbulence model are given as:

uk vk
Ff = Gf = (4.43)
UwW vw
and the diffusive ones as:
(v/Re +v;0y) - (0k/0x) (v/Re + viay) - (0k/0y)
Ff = G = (4.44)
(v/Re + vioy) - (Qw/0x) (v/Re +vi0y) - (Qw/0y)
Finally, the source term vector H' is defined as follows (Leloudas et al., 2021):
P, — B wk 1 | W/Re+voy) - (0k/dy) — vk
Ht = + . (4.45)
Poy/ve —v*0w? + 2(1 — F))VkVw Y | (v/Re +v,03) - (9k/dy) — v

The parameters oy, 0, f*,y" are obtained with regard to the equivalent constants of the k-w
and k-e models, using the blending function F; in a way that the parameter from the k- model
is multiplied by F; and the one from k-¢ with (1 — F;) and then added together. Therefore, if
q represents all coefficients of the SST model, g, the constants from k-w and g, the ones from

k-¢, then the first would be calculated as:
q=F-q+A-F)-q, (4.46)
The parameters for k-w and k-¢ closures are:

Constants of k-w closure:
01 =085, g, =05, 5, =0.075, y; =0.555 (4.47)

Constants of k-¢ closure:

Oy = 1.00 , 0,, = 0.856 , B, =0.0828 , y; = 0.44 (4.48)

The blending function F; is defined as:

F; = tanh(arg?), (4.49)
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where
arg, = min |max —\/E —SOOV M
17 B*wd’ d?wRe | CDyud? |’ (4:50)
and
1 -10
CDy, = max| 20, EVka ,10 , (4.51)

where d is the distance of the point in space where the SST model is applied, from the nearest
solid wall surface. The turbulent kinematic viscosity is also calculated with the help of a second
blending function (F;) as:

a1k

Ve = max(a,w, SF,) (4.52)

The blending function F, is defined as:

F, = tanh(arg3), (4.53)

where
- vk 500-v -
argz = max B*wd’ d?wRe)’ (2:54)

Finally, the turbulent energy production term (Py) is computed as:
Py = v,5?, (4.55)

where the invariant measure of the strain rate (S) for the case of an axisymmetric swirling flow

is evaluated as follows:

1 - - 1 — —
S= /2(Sij5ij) = \/2 [E(VV +VVT), 57V + VVT)U,]
_ |, (6u>2 i (617)2 N <6u N c’)v)z 42 (v)z N (GW) N ((’)w w>‘
B dx dy dy O0x y dx dy 'y

4.2.5 Coupling of Flow and Turbulence Models

As already mentioned in the previous section, the coupling of the flow (4.38) and turbulence

(4.41) models is achieved by adopting a so-called loose coupling approach, where the partial
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differential equation defining the flow and turbulence models are resolved separately at each
pseudo-time step, with the interaction between them to be realized by means of the turbulent
kinetic viscosity (v;) and velocity components (u,v,w). In particular, since an intermediate
solution of the flow equations has been obtained, the resulting velocity field is fed to the
turbulence model equations; subsequently, the turbulent model equations are resolved and
the resulting turbulent kinematic viscosity is fed back to the flow model. The process is
repeated in the next pseudo-time step. Eventually, this approach allows for the effortless

switch between various available turbulence models and favors the addition of new ones.

4.3 Spatial Discretization

The spatial discretization of the partial differential equations defining the flow and
turbulence models, namely, Eq. (4.38) and Eq. (4.41), is performed by applying a conservative
node-centered finite-volume scheme over general unstructured grids in two dimensions,
including triangular, quadrilateral and hybrid ones. According to the adopted discretization
approach, the entire computational domain is divided into a finite number of non-overlapping
control volumes, which are essentially defined as the median dual volumes of the grid nodes
(Kallinderis and Ahn, 2005). In particular, the boundary dCVp of the control volume CVp
around a node P (which may be located either on the interior or the boundary of the
computational domain) is formed by joining the line segments connecting the midpoints of
the edges (M;) and the barycenters of the primary elements (B;) sharing this node (Leloudas et
al., 2020a, 2021).

Now, let Q@ be a random node within the set of nodes that are directly connected to P via
the grid edges, denoted as Sy (P). By introducing dCVp,, to signify the intersection of dCVp and
dCVy, as well as B to symbolize the external boundary of the computational domain, dCVp is
mathematically defined as (Nikolos and Delis, 2009):

vV Q ESn(P)

Figure 4.1 and Figure 4.2 illustrate the definition of such median dual control volumes,
constructed by different types of primary elements. In particular, Figure 4.1 refers to the case
in which the examined grid node P is located on the interior of the computational domain,
while Figure 4.2 describes the definition of the median dual control volume for the case of a
boundary node. Herein, B; and B, denote the barycenters of the elements sharing the edge PQ.

Please note that if the particular edge is a boundary one — as depicted in Figure 4.2 — B, is not
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defined. Finally, M, and My stand for the midpoints of the edges PQ and PT (i.e., the midpoints

of the two boundary edges sharing the examined node P).

—Tx 1 7 ACVpe /& A
v—*_"_i—ll_i_* / ‘ /‘/ \"‘\ Bi 7 ’
P il b
,_‘#_ﬂ?;i . TQ
1 .
e SSSR NOR SO Sy S S —

Vo

(b) (c)

Figure 4.1: Definition of the median dual control volume CV} for an internal grid node P.

ﬁcvgn B aCVeNB

(a) (b)

Figure 4.2: Definition of the median dual control volume CV} for a boundary grid node P.

Based on the adopted finite-volume discretization technique, Eq. (4.38) can be integrated

over the median dual control volume CVp for each grid node P, as follows:

ﬂadd+f + oF, 0G, —ffﬂdd
¢ xdy ax  ay xay . (4.58)
CVp

CVp

Then, by applying the two-dimensional divergence theorem, which relates the divergence of
a vector field within a region, to the flux of that vector field through the closed boundary of

the region, Eq. (4.58) recasts into:

U
j = dxdy + 3@ Y, -, ds = ﬂdedy, (4.59)

CVp acvp CVp

where W; and W, represent the vector of inviscid and viscous fluxes, respectively. At this point,
let us define npy = n; + n; as the outward normal vector to dCVp,, where n; is normal to By M,
with a norm equal to the length of B; M, and n; is normal to M,B, with a norm equal to the
length of m In the same way, let us define ng,; = Ny, 1 + Nyyep as the outward normal

vector to dCVp N B, where n,,,. 1 is normal to My P with a norm equal to the length of M, P and
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N,y 2 is normal to PMr with anorm equal to the length of PMy. Figure 4.3 provides a schematic

representation of the aforementioned vectors.

(b)

Figure 4.3: Vectors definition for the cases of internal and boundary nodes.

Subsequently, by introducing the outward unit normal vector fpq to dCVp, and the outward

unit normal vector N, to dCVp N B, which are defined as:

nPQ

ﬁp = = ﬁP , yﬁP B ’ 4.60

Q ”nPQ I [ Q.x» "*PQ J/] ( )

~ Noyt ~ ~

Doyt = = [nout,xrnout,y] ’ (4.61)
lIm gl

¥; and ¥, can be expressed as follows:

W; = fipg, Fi +7ipg,,Gi,
(4.62)
qJV = ﬁPQ,xF‘U + ﬁPQ,yG‘U .

Both inviscid and viscous fluxes are evaluated by using the values of primitive variables at
the midpoint of the corresponding edge; in terms of the current discretization approach, this
midpoint actually coincides with the interface between the adjacent control volumes of the
computational nodes defining the respective edge (Lygidakis, 2015). Eventually, Eq. (4.59) can

be reformed as:
ou
-Uadxdy+ Z f Y, —¥, ds + J. ‘Pi—‘l’vds=ﬂ.dedy. (4.63)
CVp QESN(P) aCVpq acvpNB CVp

Under the assumption that the conservative variables at node P are equal to their mean values
over CVp, which is the fundamental concept underlying finite-volume method, the first term
in the LHS of Eq. (4.63) becomes:
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o, _ (3 gy Up
P cy,

CVyp

where Ep denotes the area of the control volume CVp around node P. Ultimately, by expressing
the line integrals of the inviscid and viscous fluxes ¥; and W, as algebraic summations of the

fluxes through the faces composing the control volume of node P, Eq. (4.63) recasts into:

ou
<_> EP + Z d)lPQ _ ¢5Q + Z d)f.out _ d)s,out — ff H dxdy , (4.65)
P

ot
Q e SN(P) (Kout€9CVpNB) Cvyp
where
PQ _ _ L) ®
@ = f w; ds = £ (U5, USenpg) (4.66)
aCVpQ
PQ _ _ L) 11(R)
(DV = j va ds = g(UpQ;UpQ FnPQ) ) (467)
aCVpQ
(Df'out = f q’i ds = f(UP; Uout; nout) ) (468)
aCVpNB
¢5'Out = f lPU dS = g(UP; Uout' nout) . (469)
acvVpNB

Herein, Ugb) and Ul(fé) denote the vectors of the conservative variables on the left and right side
of the of point My, (i.e., the midpoint of the edge PQ) respectively, while U,,, stands for the

corresponding vector on the boundary.

4.4 Numerical Fluxes

4.4.1 Inviscid Fluxes

In order to evaluate the inviscid (also termed as convective) flux vector associated with the
edge PQ, a one-dimensional Riemann problem (Laney, 1998) between the left (L) and right (R)
states existing at the two sides of point M, (i.e., the midpoint of the edge PQ) is assumed; these
particular fluid states are defined by the vectors UI(JLQ) and Ugg, respectively. In this study, the
solution to the adopted Riemann problem is obtained by employing the well-known Roe’s
approximate Riemann solver (Roe, 1981), which — even though considers a simplified version

of the original Riemann problem — can eventually provide an exact solution. The Roe’s
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approximate Riemann solver is based on the assumption that the Jacobian matrix is constant
and calculated using consistency and conservation conditions (Nikolos and Delis, 2009). Thus,
the inviscid or convective flux vector can be calculated as follows:

@/ = %[q’i (usy

) npg) + (UL, )| ~ 5 Kol - () ~U%Y), (&.70)

where A po stands for the Jacobian matrix of the convective flux vector, related to the edge PQ.
Please note that Ap, is evaluated at the midpoint (M) of the corresponding edge by using the
Roe-averaged values of the primitive variables, which are indicated by the double overbar and

defined as:

L R
_ /p(L).U}()Q)_F /p(R).Ung)

Upg = (4.71)
¢ [p® 4 [p®
Furthermore, by introducing the following expression (Laney, 1998; Roe, 1981):
R L (- R L
w; (USe,mpq ) — ¥ (U mpg ) = A5) (USY - USy), (4.72)
an alternative, yet equivalent, formulation of Eq. (4.70) can be obtained, which reads:
P L G R L
o7 =, (Ul) npg ) + A5y (USY - USy). (4.73)

Eventually, the calculation of inviscid flux vector within the current implementation of the
proposed flow solver is performed by means of Eq. (4.73), where KE,_Q) represents the Jacobian
matrix of the convective flux vector, computed using the arithmetic averages of primitive
variables at (L) and (R) positions and negative eigenvalues (Nikolos and Delis, 2009). The

detailed procedure for the derivation of KS;Q) is provided in the following section (4.4.1.1).

4.4.1.1 Convective Flux Jacobian

The Jacobian matrix A pq of the convective (inviscid) flux vector be ? related to the edge PQ

can be expressed in terms of the Roe-averaged values of the primitive variables vector U, as:

0 B - npox By 0
5 _ aq,lf’Q ~ NpQ,x CR Inpoll +u-npgx U npoy 0 (4.74)
re al=JPQ - Npg,y A Npo,x 0- ||nPQ|| +v- Npq,y 0 |
\ 0 W Npo,y W TNpg.y 0 ”nPQ”)
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where U is given by Eq. (4.71) and the parameter 8 is defined as:

l
<l
<A

= ) ﬁPer +v- ﬁPer . (475)
At this point, let us recall that fipq , and 7ipq,, are the components of the outward unit vector

Np that is normal to dCVp (see Section 4.3).

~ Npg N ~
fipy = = [fipgx » irgy] (4.60)
”nPQ I

The flux Jacobian calculation is made by applying the following eigenvalue decomposition:

-1

=l
=
=l
|

where A is the diagonal eigenvalue vector, defined as:
A = diag{1;, 15, A3, 44} - Inpgll = diag{®,0,0 + ,0 — &} - [Inpy| (4.77)
and T is the matrix of the right eigenvector, described as:
s _ _ N
0 0 c —C
R R (0+¢)-a 6—5)-11
Npg y 0 Npgx + ﬂ Npgx + ﬂ
T= = . - ,
) (0+¢)-7 (0-0)- (4.78)
—an x 0 an y + ﬁ an,y + T
0+%)-w 0—-0)w
N R (-9
\ J
while T~ is its inverse matrix, expressed as:
oo _ ~ _ = ~ _ = N
V-flpgx — U Apgy PTpgy+ V-0 B Apgx+u-0 0
& & - &
M=/ \Tf’ﬁper'ﬁ \T/'ﬁpQ,y'ﬁ
T2 T 22 T a2 1
_ c c c
T = B (4.79)
c—0 B fipgx B 7ipgy 0
2c? 2c? 2c?
_ E + 6 ‘B " ﬁPQ,X ﬁ ) ﬁPQ,y 0
g 2c? 2c? 2c? y,
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The artificial speed of sound ¢, included in the above matrices, is computed as follows
(Anderson et al., 1996; Kallinderis and Ahn, 2005; Tai et al., 2005; Tai and Zhao, 2003):

- 8248 (4.80)

N

Finally, for the discrete formulation of Roe’s scheme — as is expressed by Eq. (4.73) — KS,_Q) can

be obtained as follows (Nikolos and Delis, 2009):

=l

AS) =T-A0-T1, (4.81)

where AC) = diag{i[,ig,ig,/ﬁ} and /Ti_ = min(ii, 0).

4.4.1.2 Higher-Order Accurate Scheme

At this point, please note that within the framework of a first-order spatial scheme, the
quantities Ugg and Ul(fé), which actually define the left (L) and right (R) states existing at the
two sides of dCVp, are approximated by using the vectors of the flow variables at points P
and Q, i.e. U,(,LQ) = Up and Ugg = Uy. However, in order to improve the accuracy of the final
solution, the current flow solver has been enhanced by the addition of a second-order spatial
scheme that is based on the well-known Monotonic Upstream Scheme for Conservation Laws
(MUSCL) (van Leer, 1979). Accordingly, the values of the primitive flow variables at each side
of dCVp are properly reconstructed by means of the MUSCL interpolation; the required
gradients at the corresponding nodes (P and Q) are computed using the Green-Gauss theorem,

via an edge-based formulation (Barth, 1992). Thus,

1

Upg = Up +5 (VU)" “1pq, (4.82)
1

Uy = U, - 5" (V)R 1pq, (4.83)

where rp denotes the position vector that connects the mesh nodes P and Q; rp is directed
from P to Q. Herein, the extrapolation gradients (VU)* and (VU)R are equal to the gradients
(VU)p and (VU), of the flow vector at the nodes P and Q respectively and calculated by

applying the Green-Gauss linear representation method, as follows:

1 1
(VU)p =~ Z > (Up +Uq) - npg. (4.84)
P gesn(p)
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where E,, stands for the area of the control volume around node P. Finally, in the case that the

examined node is a boundary one, the respective expression for the calculation of (VU)p reads:

1 1
(VU)p = E_ Z E (UP + UQ) " nPQ + Z UP - nout . (4.85)
Pl gesn(P) (KoutEOCVRNB)

4.4.1.3 Slope Limiter

In order to minimize the total variation and suppress any occasional discontinuities in the
reconstructed field after the application of the second-order scheme, the proposed flow solver
has been enhanced by the addition of the Min-Mod slope limiter (Sweby, 1984). Essentially,
the Min-Mod limiter ensures the smoothness of the resulting solution by means of choosing
the slope with the smallest magnitude (Lygidakis, 2015). Initially, let us introduce the centered

(c) and upwind (u) gradients, which are defined as:

(VU)$g * Tpg = Uy — Up (4.86)
(VU)% = 2+ (VU)p — (VU)§, (4.87)
(V) = 2+ (VU), — (VU)§, (4.88)

Then, according to the adopted limiting strategy, Eq. (4.82) and Eq. (4.83) recast into:

1

UI(:LQ) =Up+ 5 LI(VU)B 1pq, (VU5 - ) (4.89)
1

Ul =Up — 3 L((VU)S tpg, (VU)$q " Tpg) (4.90)

where £ stands for the Min-Mod liming function, defined as:

(aif |lal <|bland ab >0
L(a,b) =< bif |b| <|a|land ab >0 (4.91)

0if ab<0

4.4.2 Viscous Fluxes

The numerical approximation of the viscous fluxes included within the flow model requires
the calculation of the spatial gradients of the velocity components (axial, radial and tangential)

at the midpoint of every grid edge. In this study, the computation of the involved spatial
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derivatives is implemented by adopting an element-based approach (Kallinderis and Ahn,
2005; Lygidakis et al., 2016; Leloudas et al., 2020a, 2021). According to this method, a new finite
control volume, called edge-dual volume, is created around every edge of the computational
mesh, in such a way that includes the adjacent cells (primary elements) sharing the examined
edge. Figure 4.4 illustrates such edge-dual volume examples around an arbitrary edge PQ,
composed by different types of primary elements. Then, the divergence theorem is applied
over these newly introduced finite volumes; the spatial derivatives of the velocity components
at the midpoint of the edge PQ are calculated by performing the surface integrals along the

edge-dual boundaries, as follows:

ou; 1 1 v ufy + ufy
ax =5 u; Ny ds = E_Z Ny ke - 5 (4.92)
X/ pg PO 0 PQ I
du; 1 1 v ub, +uf (4.93)
(—l> =—_— fu-n dsz—Znyk—l'k Lk
d E LY E ' 2
y PO PQ 5, PQ =

Herein, Epy and m denote the area and the number of boundary edges of the edge-dual
volume that corresponds to the examined edge PQ, respectively. In addition, n, and n,
represent the components of the normal outward vector on the k-edge of the edge-dual
volume, whereas uf;, and uf; stand for the velocity component values at the endpoints of the
k-edge. Ultimately, utilizing the edge-based data structure of IGal2D solver, the
aforementioned fluxes are obtained with a single edge-loop, as no information is needed about
the cell topology (Kallinderis and Ahn, 2005; Lygidakis et al., 2016; Leloudas et al., 2020a, 2021).
Please note that the same approach is followed for the calculation of the viscous fluxes of the

turbulence model as well.

Q- O
P Q P
® ® ®
@ —— o S o e

(a) (b) (c)
Figure 4.4: Edge-dual volume examples, obtained by different types of faces.
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4.4.3 Turbulence Model’s Fluxes

In the present study, the calculation of the numerical fluxes related to the turbulence model
is implemented by adopting the same node-centered finite-volume discretization approach
that was applied for the flow model equations. Especially, the convective (inviscid) fluxes of
the SST turbulence model are evaluated at the midpoint of every edge PQ, by means of a
simple first-order accurate upwind scheme (Anderson and Bonhaus, 1994); in that way
stability of the numerical methodology is assured without reducing noticeably the accuracy of
the final solution (Leloudas et al., 2021; Lygidakis et al., 2020). Thus,

(cpf)PQ = j Wl ds = f fipq, Fi + flpg,,Gi ds=0%-Up+07-Up, (4.94)
dCVpg dCVpg

where denote U} and U, the vectors of the turbulence model variables; the parameters ©* and

0~ are defined as:

0 = max(0,0), (4.95)
0~ = min(0,0). (4.96)

Now, in terms of calculating the diffusive fluxes of the turbulence model at the midpoint of
every edge PQ, the spatial gradients of the respective primitive variables (namely, the
turbulent kinetic energy and the specific rate of dissipation) have to be pre-evaluated.
Practically, this is achieved by following a similar approach to the one adopted for the
calculation of the velocity gradients, involved within the flow equations (see Section 4.4.2).
Therefore, the spatial derivatives of turbulent kinetic energy (k) and the specific rate of
dissipation (w) are evaluated by applying an alternative form of Eq. (4.92) and Eq. (4.93), where
the velocity components have been replaced by k and w. Ultimately, since the required spatial

derivatives have been obtained, the viscous fluxes of the SST model can be calculated as:

((DE)PQ = Flt : nPQ’x + Gf " Tpo,y (4.97)

4.4.4 Boundary Conditions

In order to complete the flux balance on each node of the computational mesh, appropriate
boundary conditions have to be employed as well, either contributing corresponding values
to the inviscid fluxes” sum of boundary nodes or defining explicitly their primitive variables’
values. Herein, four different types of boundary conditions are encountered: solid wall,

symmetry, inlet and outlet types of boundaries. At symmetry areas, e.g. axis of symmetry, or
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solid walls for inviscid flows, free-slip conditions are imposed (Leloudas et al., 2021; Lygidakis
etal., 2016; Ramos, 1986). In case of a viscous flow, the velocity components on solid wall nodes
are set straightforward equal to zero (Leloudas et al., 2021; Lygidakis et al., 2016). Accordingly,
at each inlet/outlet control volume, additional convective fluxes are taken into account,
extracted by the corresponding normal to the boundary edge vector and the terms of the
inviscid fluxes (4.39). The latter is calculated with primitive variables’ values, taken either from
inside or outside the computational field; velocity is taken from upstream free-flow in case of
inflow boundaries and from inside the flow domain for outflow ones, while for pressure the

opposite procedure is followed (Anderson et al., 1996).

Furthermore, in terms of outlet area nodes and flow problems involving swirling, the radial
equilibrium method (Wu and Wolfenstein, 1949) is also applied, which essentially defines the
pressure distribution outside the computational domain. The corresponding relation, derived
from the inviscid radial momentum equation after removing the radial velocity component, is

described as follows (Susan-Resiga et al., 2009):

op/dy =w?/y. (4.98)

In practice, Eq. (4.98) is implemented successively to the outlet nodes with a simple linear
integration along the radial direction; at the starting point (closest to the axis of symmetry) the
pre-defined outlet pressure is imposed. Additionally, a Laplacian smoothing technique is also
applied to avoid odd-even decoupling phenomena at the outlet region; mathematically, it is

expressed for each boundary node P and each primitive variable as:

_ UpEp + e Xgesy(p) UoEo
i Ep + & Xgesyp) Eq

. (4.99)

where ¢ is the smoothing coefficient, set equal to 0.5 in this study. Ultimately, depending on
the encountered flow, the circumferential velocity component (w) at inlet (on the outside) can
be computed via the free vortex flow approach, i.e. w-y = const.,, which stems from the

conservation of angular momentum.

Finally, the boundary conditions of the SST turbulence model are implemented in the same
way to those of the flow model. In particular, at inlet and solid wall regions turbulence model’s
variables are defined explicitly (Dirichlet conditions). Values at inlet boundaries are set equal
to those upstream the computational domain, whereas at solid walls turbulent kinetic energy
and turbulent kinematic viscosity are zeroed (low Reynolds approach) (Leloudas et al., 2021;
Lygidakis et al., 2016). Please note that no special treatment is required for the symmetry area.

Finally, a simple upwind scheme is employed for the outlet nodes, with data taken from inside
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the computational domain similarly to the flow model (Leloudas ef al., 2021; Lygidakis et al.,
2016).

4.4.5 Source Terms

In this study, the source term vector of the flow model — containing both the term related
to axial symmetry and external body forces — as well as the source term vector of turbulence

model, is calculated by applying the finite volume discretization approach, expressed as:

f f Hdxdy = Hp " E, (4.100)
CVy

It is recalled that E, stands for the area of the control volume formed around node P.

4.5 Time Integration

Following the calculation of numerical fluxes for each control volume, Eq. (4.65) can be

reformed as follows (Leloudas et al., 2021):
—Ep—F— =RW, (4.101)

where AUI(JHH) stands for the correction vector of primitive variables at time step n + 1, Rg,n)
for the sum of the numerical fluxes at the previous time step n and At for the time step of the
iterative procedure. Please note that IGal2D solver employs a local time-stepping
methodology; thus, a different time step Atp is calculated for each computational node P,
aiming to accelerate the overall convergence rate. Besides, different formulas for Atp are
adopted for the cases of inviscid and viscous flow simulations. In particular, for an inviscid

flow problem, the local time step reads:

. 0.5 1,
At?YY = CFL* ——, 4.102
i |Up| + cp ( )

while for the case of a viscous one, the local time step is calculates as:

Ep

AtfS = CFL- ————.
i Ay +A,+D

(4.103)

Herein, CFL stands for the Courant-Friedrichs-Lewy number and [, denotes the length of the

shortest edge connected to the examined node P. |Up| and cp denote the magnitude of the
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velocity vector and the artificial speed of sound at the same point, respectively; the formula
for the calculation of the artificial speed of sound is given in Section 4.4.1.1. Lastly, the terms
Ay, Ay and D are expressed as follows (Kallinderis and Ahn, 2005):

Ep

2
Ay =(lul+c¢)Sy , A, =(Ivl+¢,)s, , D= R ¥s, (4.104)

where artificial speed of sound (¢, and ¢;) and projection of dual-volume surfaces’ normal
vector (SyandS,) at point P along each Cartesian coordinate direction are calculated

respectively as:

1 1
ce=ul+pB , ¢, =\v2+B , S = EZISxIe , Sy = Ezlsyle- (4.105)
e e

This method allows for the maximum acceptable time step to be used for each point and
consequently accelerates the solution procedure (Blazek, 2015). Please note that the system of
partial differential equation defining the SST turbulence model (4.41) is reformulated in
exactly the same way, with the only exception being the implicit treatment of the
corresponding source term (see Section 4.5.1). Finally, for the computation of the involved
correction vectors an explicit second-order four-stage Runge-Kutta method (RK(4)) is applied,
separately for flow and turbulence model equations (loose-coupling strategy) (Leloudas et al.,
2020a, 2021; Lygidakis et al., 2016).

4.5.1 Implicit Treatment of Turbulence Model Source Term

The rapid change of turbulence models” source term can cause instability to the solution or
even its complete failure; a remedy to this shortcoming appears to be the implicit handling of
this component (Kim, 2003). While this treatment is a prerequisite for implicit methods, for
explicit ones constitutes an additional technique, implemented by a similar Newton
linearization procedure only for the source term (Blazek, 2015; Kim, 2003). Considering this

approach, the differential equation for turbulence models becomes:

AUt(n+1)
P
T'EP+ Z (‘Dit)PQ_ Z (®5)po = Hp " Ep,
P
QeSn(P) QesSn(P)
Aute+D (4.106)
t(n+1
Bt Y (@)= ). @ = (Hh+Lh-4USV) B,
Atp PQ
Qesy(P) Qesy(P)
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AUt(n+1)
t(n+1
( L}I)t —Lp 'AUP(HJr )> Ep + z (q)l't)PQ B Z (¢5)PQ =H} - Ep,
P QeSy(P) QeSy(P)
)
(L — L )AU“““) _ R
At P)TTF Ep '

where I is a 2x2 identity matrix and L} denotes the Jacobian matrix of the SST turbulence
model’s source term, including only the negative main source term components; the iterative
step of the Runge-Kutta method is transformed accordingly (Kim, 2003). Ultimately, the

computation of the inverse (I/4tp — L%) matrix is implemented as follows:

yAtp 0
I 'y 4 BrwyAts + vAt
(Atp P 0 yAtp (4.107)

y + 2wyAty + vAtp

4.5.2 Acceleration Techniques

Besides local time-stepping approach and edge-based data structure, the proposed
numerical solver is enhanced with an agglomeration multigrid scheme to further improve its
computational performance, especially in large-scale problems (Blazek, 2015; Lygidakis et al.,
2016; Nishikawa et al., 2010). Although it was initially developed for three-dimensional
simulations (Lygidakis et al., 2016), its edge-wise framework allowed for, almost, a
straightforward implementation to the two-dimensional approach presented in the current
work. According to this scheme the final solution is approximated on successively coarser
meshes, in order the low-frequency errors to be damped more efficiently. The sequence of
aforementioned coarser grids, comprised of irregular polyhedral cells, is generated with either
isotropic or directional (full- or semi-coarsening) fusion of neighbouring control volumes on a
topology-preserving framework (Lygidakis ef al., 2016). Independently of the agglomeration
type, fusion procedure begins from solid wall surfaces following pre-defined rules, and
extends successively to the interior domain resembling in that way the advancing-front
technique (Lygidakis et al.,, 2016). The whole procedure is repeated if an even coarser
resolution is required. A number of four to five levels is usually adequate. The multigrid
accelerated solution is succeeded with the Full Approximation Scheme (FAS) in a V-cycle
process, according to which Eq. (4.101) is solved only at the initial finest grid; at the coarser
ones, approximate versions of it are relaxed (Blazek, 2015; Lygidakis et al., 2016; Nishikawa et
al., 2010). Data exchange between each two successive spatial levels is performed with the
restriction of the variables and flux balances, computed at the centers of control cells, from the

finer to the coarser resolution, as well as with the prolongation of the corresponding updated
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variables” corrections from the coarser to the finer one (Lygidakis et al., 2016). Additional
acceleration is gained with a combined (Full Multigrid) FMG/FAS approach, according to
which the whole procedure begins from the coarsest mesh and as the number of iterative cycles

increases, it extends gradually to the finer grids up to the initial finest one (Lygidakis et al.,
2016).
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Chapter 5
Numerical Validation of 1Gal2D Solver

This chapter aims to provide a detailed evaluation study on the numerical accuracy and performance of
the in-house developed 1Gal2D solver. For this purpose, several incompressible axisymmetric flows are
considered, including both non-swirling (see Section 5.1) and swirling flow (see Section 5.2) regimes.

The flow simulation results are compared against analytical, numerical and experimental data.

5.1 Non-Swirling Flows

The first part of the current validation study aims to investigate the performance of the
proposed RANS solver, by means of three widely adopted benchmark cases that involve
axisymmetric flow without the presence of swirl velocity. In particular, the encountered case
studies include the prediction of the inviscid flow over a sphere (see Section 5.1.1), the viscous
laminar flow over a sphere (see Section 5.1.2) and the turbulent flow around a flanged diffuser

(see Section 5.1.3).

5.1.1 Inviscid Flow over a Sphere

The first benchmark case for the evaluation of IGal2D solver considers the inviscid,
incompressible and irrotational flow (potential flow) around a sphere. In this case, the spatial
discretization of the computational domain was made with a two-dimensional triangular
mesh, composed by 14,819 triangular primary elements and 7,648 nodes. The numerical
simulation of the axisymmetric flow field around the sphere was achieved by setting the value
of the artificial compressibility parameter equal to 10, while the steady-state solution was
reached with a CFL number equal to 0.5. For the evaluation of the solver’s performance, the
numerical results are compared against the analytical solution provided by potential theory.
In particular, according to potential theory, pressure (ps) and pressure coefficient (Cp )
distributions on the surface of the sphere read:

1 9 Ps — Poo 9

Ps—Poo=§puoo—§pugosin29—>cps=m=1—zsin29, (5.1)

while the velocity magnitude distribution on the surface of the sphere (u;) is calculated as:

3
Uus =3 UySind, (5.2)
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where 0 denotes the angle between a random point on the surface of the sphere and the
stagnation point. Figure 5.1 illustrates the comparison of the numerical results against the
analytical solution, in terms of both pressure coefficient (C, ) and dimensionless velocity
magnitude (us/us). Apparently, an almost perfect agreement between the analytically

calculated and numerically predicted distributions can be observed.
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(a) (b)
Figure 5.1: Inviscid flow over a sphere: (a) Distribution of pressure coefficient on the surface of the

sphere. (b) Distribution of dimensionless velocity magnitude on the surface of the sphere.

5.1.2 Viscous Laminar Flow over a Sphere

In order to assess the ability of the developed flow solver to accurately predict drag force,
as well as flow separation and vortex formation phenomena, the current section involves the
simulation of viscous laminar flow around a sphere. Flow separation behind a sphere is
generally anticipated when Reynolds number becomes greater than 24, resulting in the
development of an attached axisymmetric vortex ring. The flow remains steady and
axisymmetric up to a Reynolds number of approximately 220, while it finally starts to become
unsteady and three-dimensional when the Reynolds number exceeds the aforementioned limit
(Lee and Lee, 2011). Herein, the axisymmetric (steady-state) viscous laminar flow around a
sphere is examined for Reynolds numbers equal to 30, 50, 100 and 150. The simulation of the
incompressible flow field around the sphere was achieved by setting the value of the artificial
compressibility parameter (8) equal to 10. Figure 5.2 illustrates the streamlines around the
sphere, for the different Reynolds numbers considered in this work, revealing that the size of
the separation bubble behind the sphere increases proportionally to the Reynolds number, as

expected.
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(c)Re = 100 (d) Re = 150

Figure 5.2: Streamlines over a sphere at various Reynolds numbers.

As long as the quantitative evaluation of the obtained results is concerned, Figure 5.3a
presents the variation of drag coefficient (Cp) with Reynolds number, in comparison to the
corresponding data derived from the numerical study of Mittal (1999) and the experimental
work of Roos and Wilmarth (1971).
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Figure 5.3: Laminar flow over a sphere: (a) Variation of drag coefficient with Reynolds number, (b)
Pressure distribution on the surface of the sphere at Re = 100.
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In addition, the pressure coefficient distribution over the sphere surface at Re = 100 is also
provided in Figure 5.3b, along with the pressure distributions obtained from the numerical
works of Lee (2000) and Sarakinos (2016). Evidently, the results of the present study match
well with the corresponding ones of previous research. Finally, Table 5.1 compares the drag
coefficient and the length of the recirculation zone (L) behind the sphere at Re = 100, with
those of other researchers. The particular comparison indicates that the present solver is

capable of simulating accurately such flows, since both Ly and Cp, have been well predicted.

Method Separation Length - L; Drag Coefficient - C),
1Gal2D 0.84D 1.090
Wang Y. et al. (2008) 0.86D 1.108
Vrahliotis et al. (2012) 0.87D 1.093
Kallinderis and Ahn (2005) - 1.084

Table 5.1: Comparison of separation length and drag coefficient at Re = 100.

5.1.3 Turbulent Flow around a Flanged Diffuser

The current section considers the numerical simulation of the turbulent flow field around
an unloaded flanged diffuser; the particular case study was selected in order to assess and
eventually validate the ability of the in-house IGal2D solver — and particularly that of the
employed SST turbulence model - to accurately predict such complex turbulent flows, which
are characterized by massive flow separations. The diffuser geometry under examination is
one of the initial designs investigated, both numerically and experimentally, by Abe and Ohya
(2004); essentially, it is composed by a straight-wall diffuser that is connected to an exit flange,

as shown in Figure 5.4.

Diffuser/‘ Flange

Figure 5.4: Schematic representation of the examined flanged diffuser.
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In fact, Abe and Ohya (2004) explored the performance characteristics of an entire family of
similar configurations, which were obtained by varying the corresponding design parameters,
such as the height of the flange and the opening angle of the diffuser. The diffuser model
considered in this study has a throat diameter (D) equal to 0.2 m, an opening angle (¢) equal
to 4 degrees, a total length (L) of 0.3 m, while the ratio of the flange height to the throat diameter
(h/D) equals to 0.25.

A detailed description of the simulation parameters adopted during this validation study
(Reynolds number, computational domain, boundary conditions) can be found in the study of
Abe and Ohya (2004). Please note that special attention was also given to the generation of the
hybrid computational grid, which was eventually created by adopting a y* value below 1. In
addition, a relatively high mesh resolution was applied around the solid walls and the
symmetry axis, in order to accurately resolve the turbulent flow field within the diffuser, as
well as the strong flow separation phenomena anticipated behind the flange. The particular
computational grid, partially illustrated in Figure 5.5, was finally composed by 106,997
triangular and 15,640 quadrilateral elements; the total number of nodes was equal to 69,918.
As in the previous benchmark case, the artificial compressibility parameter () was set equal
to 10.

Figure 5.5: The computational grid for the simulation of the flow field around the flanged diffuser.

Figure 5.6 presents the flow streamlines and the dimensionless contours of pressure and
axial velocity component around the examined diffuser geometry. Good agreement is found
by comparing these qualitative results with the corresponding ones provided within the
numerical study of Abe and Ohya (2004). In addition, by observing Figure 5.6, it is evident that
the streamlines flow smoothly inside the diffuser, while the axial velocity does not vary

significantly in the radial direction, except for the boundary layer region close to the diffuser
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wall. In view of these remarks, Abe and Ohya (2004) noted that on-axis distributions of the
flow variables can successfully explain the fundamental aspects of such diffuser flows.
Therefore, they used such on-axis distributions of the velocity speed-up and the pressure

coefficients to evaluate the diffuser performance and assess their numerical models.
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(c) (d)

Figure 5.6: Turbulent flow around a flanged diffuser: (a) Dimensionless contours of the axial velocity
component, (b) Dimensionless pressure contours, (c) Velocity streamlines, (d) Axial velocity contour

lines.

Accordingly, for the quantitative evaluation of the results of the developed axisymmetric
flow solver, Figure 5.7 contains the on-axis distributions of the velocity speed-up and pressure
coefficient, comparatively to the corresponding distributions resulted by the numerical and
experimental studies of Abe and Ohya (2004). It is demonstrated that the proposed axisymetric
flow solver is capable of predicting the flow field inside the diffuser with reasonable accuracy,

both in terms of the on-axis velocity speed-up and pressure coefficient distributions, even
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though a small underprediction of the experimental data is observed for the particular region
(internal diffuser area). In addition, more significant discrepancies between the numerical and
the experimental results have been detected in the region far downstream of the diffuser exit,

as shown in Figure 5.7.
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Figure 5.7: Turbulent flow around a flanged diffuser: (a) On-axis velocity speed-up distribution, (b)

On-axis pressure coefficient distribution.

According to our conclusions, this is mainly attributted to the steady-state flow assumption
that was made during this study, even though unsteady flow phenomena are actually
expected in the wake region. Such unsteady phenomena are asociated with vortex shedding.
Therefore, the turbulent wake behind the flange is more active in the experiments than in the
numerical simulations. A similar explanation was also provided by Abe and Ohya (2004), since
such discrepancies were also found in their numerical results. Nevertheless, by considering
the reasonable trends for both on-axis velocity speed-up and pressure coefficient distributions
and the fact that the fundamental flow field characteristics within the diffuser were predicted
with reasonable accuracy, the proposed solver seems to be capable of successfully

encountering such turbulent flow fields.

5.2 Swirling Flows

The second part of this chapter aims to investigate and eventually validate the ability of
IGal2D solver to accurately predict the characteristics of axisymmetric swirling flows. For this
purpose, three relevant case studies have been considered; namely, the inviscid swirling flow

inside an S-shaped axisymmetric tube (see Section 5.2.1), the laminar swirling flow inside an
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axial tube (see Section 5.2.2) and finally, the turbulent swirling flow inside a conical diffuser

(see Section 5.2.3).

5.2.1 Inviscid Swirling Flow inside an S-Shaped Axisymmetric Tube

This benchmark case considers the inviscid incompressible flow inside an S-shaped
axisymmetric tube. The geometric characteristics of the 2.0 m long test section are illustrated
in Figure 5.8. The design of the particular flow apparatus has been based on a cubic (third
order) B-spline curve, which is defined over an open uniform knot vector. The B-Spline control
points, used to define the centerline of the S-shaped tube, are included in Table 5.2. Following
the centerline definition, the internal and external boundaries (walls) of the S-shaped tube

were defined by simply offsetting the centerline in both directions by 0.06 m.
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Figure 5.8: Geometric characteristics of the S-shaped axisymmetric tube.

Considering the main goal of this chapter, that is to assess the ability of the proposed
methodology in swirling flow prediction, especially in terms of accuracy, a thorough study
was conducted against this test case. Therefore, three different grid types were constructed for
the representation of the computational field: (a) a grid composed of quadrilateral primary
elements, (b) a regular triangular grid, which was derived by diagonalizing all the
quadrilateral elements of type (a) grid, and finally, (c) an unstructured triangular grid.
Furthermore, to achieve grid independency in the presented solutions, three different grids
(denoted as M1, M2 and M3) were generated for each one of the aforementioned types,
increasing successively their density. Here, for each denser resolution, the Degrees of Freedom
(DoFs) — which actually are represented by the number of grid nodes (node-centered scheme)
— were quadruplicated compared to the coarser one. Table 5.3 contains the density data of all
the utilized grids, whereas Figure 5.9 presents the curved part of the coarsest resolution (M1)

of each grid type (quadrilateral, triangular-regular and triangular-unstructured).
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Level: M1 : Level: M1 K Level: M1
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Figure 5.9: Curved part of the coarsest resolution (M1) of each grid type.

P; X; Y; P; X; Y; P; X; Y;
Py 0.00000  0.50000 Py, 0.68237  0.48103 Py, 139235  0.24914
P, 0.02532  0.50000 P, 075505  0.45840 Py 146830  0.25045
P, 0.07596  0.50000 P, 082430  0.42684 P, 154426  0.24988
P; 015191  0.50000 Pi;  0.88986  0.38837 Py 162021 0.25004
P, 0.22787  0.50000 P, 095349  0.34698 Py 169617  0.24999
Ps  0.30383  0.49999 P 1.01991  0.30979 P,s 177213 0.25000
Py 0.37979  0.50004 P 1.09135  0.28331 Pe  1.84809  0.25000
P; 045574  0.49985 P; 116526  0.26541 P,; 192404  0.25000
Py 053171  0.50057 Pg 1.24055  0.25483 Pg 197468  0.25000
Py 0.60754  0.49472 Py 131639  0.24994 Py 2.00000  0.25000
Table 5.2: Control points of the cubic B-spline curve, used for the design of the centerline of the S-
shaped tube.
Quadrilateral Triangular - Regular Triangular - Unstructured
Level M1 M2 M3 M1 M2 M3 M1 M2 M3
Number of Nodes 4,000 16,000 64,000 4,000 16,000 64,000 4,055 16,082 64,051

Number of Elements

3,735 15469 62,937 7,470 30,938 125,874 7,580 31,102 125,976

Table 5.3: Density data of the employed grids.

Regarding the inlet boundary conditions, a uniform profile was imposed for the axial

velocity component (u), with a fixed value of u;,, = 0.966 m/s. At this point, please note that

the subscript “in” is used to signify the flow quantities at the inlet of the computational

domain. Furthermore, a free vortex approach was adopted for the calculation of the

circumferential velocity profile over the inlet, using the following expression:
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Win(y) = Wi * Ym/y (5.3)

where y,;, = 0.5 m corresponds to the mean radius of the inlet annulus; the corresponding
tangential velocity w,,, was set equal to 0.259 m/s. Finally, zero radial velocity component (v;;)
was imposed over the inlet. The particular values for the velocity components were selected
in such a way that the magnitude of the total velocity vector over the inlet, which is denoted
by Vi, and calculated using wy,, to be equal to 1.0; thus, no re-dimensionalization of the
obtained velocity field was required. Similarly, a unit dimensionless relative static pressure
was considered at the outlet (0.0 Pa relative pressure for dimensional simulations with ANSYS
Fluent), whereas free-slip conditions were imposed to the remaining boundaries. Ultimately,
no re-dimensionalization of the grid was required due to the unitary mean diameter of the
computational domain at the inlet. Independently of the grid used, an artificial compressibility
parameter and a CFL number equal to 1.0 and 0.5, respectively, were used for the iterative
approximation of the final steady-state solution; the latter was obtained after the log(residual)
of pressure was decreased more than ten orders of magnitude. Acceleration of the procedure
was succeeded by implementing the incorporated multigrid scheme with up to five levels, i.e.

with up to four agglomerated resolutions.

In order to evaluate the performance of IGal2D solver, the obtained results were compared
with those of ANSYS Fluent. Moreover, specific metrics were obtained from the results of both
solvers and compared with those stemming analytically from conservation of total pressure in
case of inviscid incompressible steady-state flow, i.e. Bernoulli theorem, and conservation of
angular momentum (moment of momentum). The following Table 5.4 - Table 5.6 present the
extracted differences in total pressure P; and rw quantity, between inlet and outlet boundaries
at respective points at tip, mid and hub, ie. between starting and ending points of
corresponding streamlines. The aforementioned metrics were calculated for each resolution of

the utilized grid types for both IGal2D and Fluent software.

The metrics of both solvers reveal a very good agreement with the corresponding
theoretical values, i.e. almost zero differences between inlet and outlet, which tend to improve
with increasing grid resolution. Simultaneously, no significant differences are identified
between the results of IGal2D with those of Fluent. P, or rw errors obtained by IGal2D code
become slightly larger or smaller than those extracted by Fluent, depending on the
computational grid type, grid density and streamline position. Independently of the code as
well as the grid type, the best results are derived with the finer grid (M3-level) at mid
streamline. Considering the value of rw at inlet, the errors for the aforementioned resolution
and position are considered negligible as they correspond to less than 0.01% of the inlet value.
The next better results are obtained at tip, whereas the worst at hub. Regarding the relatively

small improvement of the above-mentioned errors by quadruplicating the DoFs of M2-level
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meshes, grid independency is considered to be reached with the M3-level ones. Ultimately, no

substantial differentiations are noticed between the results derived with the three different

grid types.

Mid P, — P;1 [Pa] T,W, — Wy [m?/s]
Quadrilateral M1 M2 M3 M1 M2 M3
IGal2D -5.60E-04  -2.79E-04  -7.53E-05 3.78E-05  3.29E-06 -8.91E-08
Ansys Fluent -2.15E-04 1.80E-05 -2.92E-06  7.89E-05  1.71E-05 2.65E-06
Tip P, — P;1 [Pa] T,W, — Wy [m?/s]
Quadrilateral M1 M2 M3 M1 M2 M3
IGal2D -1.33E-01  -6.70E-02  -3.36E-02  -1.47E-03  -6.82E-04 -3.27E-04
Ansys Fluent -3.63E-02  -290E-02  -2.07E-02  -1.02E-03  -2.34E-04 -3.05E-04
Hub Py — Py [Pa] raw, — 11wy [m?/s]
Quadrilateral M1 M2 M3 M1 M2 M3
IGal2D -6.27E-02  -3.15E-02  -1.55E-02  -1.64E-03  -8.08E-04 -4.81E-04
Ansys Fluent -6.02E-02  -5.11E-02  -4.39E-02  -1.66E-02  -1.25E-02 -8.32E-03

Table 5.4: P; and rw metrics extracted from quadrilateral grids.

Mid Py, — Py [Pa] Wy — 11wy [m?/s]
Triangular - Regular M1 M2 M3 M1 M2 M3
IGal2D 1.16E-02 3.57E-04 6.28E-04  8.80E-04 -197E-04  -7.32E-05
Ansys Fluent 6.40E-05 3.76E-05 1.98E-05  5.07E-05  1.18E-05 2.85E-06
Tip Py — Py [Pa] oWy — 11wy [m?/s]
Triangular - Regular M1 M2 M3 M1 M2 M3
IGal2D -8.33E-04 6.18E-04 6.42E-04  5.88E-03  3.43E-03 1.97E-03
Ansys Fluent -1.32E-02  -6.61E-03  -3.40E-03  6.58E-04  3.17E-04 1.55E-04
Hub P., — P,, [Pa] oW, — rywy [m?/s]
Triangular - Regular M1 M2 M3 M1 M2 M3
IGal2D -6.63E-02  -4.11E-02  -2.50E-02  -1.18E-02  -6.95E-03 -4.06E-03
Ansys Fluent -9.77E-03  -4.89E-03  -3.30E-03  -3.15E-03  -1.55E-03 -7.87E-04

Table 5.5: P, and rw metrics extracted from triangular-regular grids.
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Mid P, — P;, [Pa] T,W, — Wy [Mm?/s]
Triangular — Unstruct. M1 M2 M3 M1 M2 M3
IGal2D 9.49E-04 -3.08E-05  -2.08E-04 7.89E-04 3.70E-06 1.98E-05
Ansys Fluent -9.14E-04 -2.62E-04 -1.64E-04 2.20E-04 7.22E-05 1.80E-05
Tip P, — P4 [Pa] T,Wy — 1wy [m?/s]
Triangular — Unstruct. M1 M2 M3 M1 M2 M3
IGal2D -8.12E-03  -3.17E-03  -1.38E-03 4.96E-03 2.86E-03 1.85E-03
Ansys Fluent -2.62E-03  -7.53E-04  -7.70E-04 3.18E-03 2.10E-03 1.38E-03
Hub P, — Py [Pa] oWy — 11wy [m?/s]
Triangular — Unstruct. M1 M2 M3 M1 M2 M3
IGal2D -5.26E-02  -2.95E-02  -2.35E-02  -9.27E-03  -5.61E-03  -3.65E-03
Ansys Fluent -1.44E-02  -9.24E-03  -8.08E-03  -5.80E-03  -3.66E-03  -2.36E-03

Table 5.6: P, and rw metrics extracted from triangular-unstructured grids.

Considering the previous state, the triangular-unstructured M3-level grid was selected for
further evaluation of the proposed methodology as being the less biased and at the same time
the most generic grid type. Figure 5.10 depicts the contours of dimensional pressure and
velocity components, obtained with IGal2D, in comparison with those of Fluent; a perfect
qualitative agreement is achieved between the employed software. The same agreement is
observed in Figure 5.11, which presents comparatively isolines (contour lines) of pressure and

radial velocity component, provided by both the aforementioned solvers.
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Figure 5.10: Contours of dimensional pressure and velocity components inside the S-shaped tube,
derived by IGal2D and Fluent solvers.
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Figure 5.11: Isolines of pressure and velocity components, derived by IGal2D and Fluent solvers.
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In addition to the qualitative assessment of the in-house solver, a quantitative one was
completed as well, by comparing the dimensional velocity components and pressure
distributions along the centerline of the S-shaped axisymmetric tube. Figure 5.12 illustrates
these distributions, whereas Figure 5.13 presents the corresponding ones at three different
cross-sections of the S-shaped tube; the aforementioned sections S1 (x = 0.2 m), S2 (x = 1.0 m),
and S3 (x = 1.8 m) are defined in Figure 5.8. The actually identical results confirm the equal
potential of the proposed solver for such internal inviscid incompressible steady-state flows

in terms of accuracy.
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Figure 5.12: Dimensional velocity components and pressure distributions along the centerline of the S-
shaped tube, obtained with 1Gal2D and Fluent solvers.

In addition to the accuracy of the final steady-state solution, the efficiency of the proposed
solver was also assessed. In particular, the acceleration induced by the incorporated
agglomeration multigrid methodology was evaluated. As mentioned above, up to five levels

were utilized with the aforementioned scheme, which correspond to up to four agglomerated
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resolutions, created following an isotropic fusion strategy (Lygidakis et al., 2016). In case of
triangular-unstructured grids, up to four levels were constructed, as highly distorted control
cells were generated at coarser resolutions. Table 5.7 contains the number of DoFs at every
agglomerated level (L; — Ls) for each of the utilized grids; L; corresponds to the initial grid.
As it can be observed, at each successively coarser grid the number of included control

volumes was reduced approximately by 3.5 to 4 times.
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Figure 5.13: Dimensional velocity components and pressure distributions along the cross-sections 51,
52 and S3 of the S-shaped axisymmetric tube, produced by 1Gal2D and Fluent solvers.
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Quadrilateral Triangular - Regular Triangular - Unstructured

M1 M2 M3 M1 M2 M3 M1 M2 M3

DoFs—L; 4,000 16,000 64,000 4,000 16,000 64,000 4,055 16,082 64,051

DoFs—-L, 1,876 7,751 31,501 1,136 4,276 16,559 1,248 4,728 18,349

DoFs — L 506 2,011 8,023 381 1,264 4,537 358 1,365 5,183

DoFs—-L, 160 570 2,140 129 385 1,272 98 390 1,471

DoFs — Lg 63 161 573 53 130 386 - - -

Table 5.7: Number of DoFs at every agglomerated level (L; — Ls) for each of the utilized grids for the
S-shaped axisymmetric tube.

For all the constructed grids, the FAS approach (Lygidakis et al., 2016; Nishikawa et al.,
2010) was implemented in a V (1, 0) process using three and the maximum number of created
levels. Besides multigrid simulations, single-grid ones were performed for comparison. Table
5.8 presents the number of iterations, required to decrease pressure log(residual) to 1073,
depending on grid-type, grid density and number of employed multigrid levels; L,
corresponds to singlegrid, L3 to three-level and L,,q, to five-level (four-level for triangular
unstructured meshes) multigrid simulations. Regarding the single-grid simulations, only
those using the coarser initial grids M1 were fully completed, i.e. the residual was reduced to
the desired minimum value. Multigrid scheme speeded up the solution procedure more than
20 times for this grid density, whereas for denser ones the corresponding acceleration is
estimated even higher, as it cannot be exactly calculated. In addition, Figure 5.14 illustrates the
pressure convergence history per number of iterations for the densest triangular-unstructured
grid (M3), derived by singlegrid L, three-level (L3) and four-level (L,) multigrid runs, where
a significant efficiency improvement can be visualized. Finally, the obtained results reveal
crucial acceleration of the IGal2D solver with the implementation of the aforementioned

multigrid scheme, independently of the employed grid type and its density.

Quadrilateral Triangular - Regular Triangular - Unstructured

M1 M2 M3 M1 M2 M3 M1 M2 M3

Iter.—L, 268,040 >5.0E+5 >5.0E+5 207,955 >5.0E+5 >5.0E+5 264,574 >5.0E+5 >5.0E+5

Iter.—Lj 24,485 164,185 >5.0E+5 19,659 37,292 381,611 20422 39,396 234,868

Iter. —L 4, 8,030 11,821 28,367 5363 9,318 16,921 9,900 18,907 36,392

Table 5.8: Number of iterations, required to decrease pressure log(residual) to 107'3, depending on
grid-type, grid density and number of employed multigrid levels.
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Figure 5.14: Pressure convergence history per number of iterations for the densest triangular-

unstructured grid, derived by single-grid (L;), three-level (L;) and four-level (L,) multigrid runs.

5.2.2 Laminar Swirling Flow inside an Axial Tube

The next test case, used for the evaluation of 1Gal2D, concerns viscous laminar flow in an
axial tube following an experimental swirl generator device. The aforementioned test
apparatus, introduced by Rocha et al. (2015), allows for the study of swirling flows similar to
those met in industrial in-inline flow phase segregators. The geometric characteristics of the
3.0 m long and 0.05 m size (i.d.) pipe, including details of its major sections, are illustrated in
Figure 5.15.

52 53 54
; —
—_—
=
E i i
£ Symmetry Axis e . E
= (=]
= 51:x =125 mm w0
52: % = 500 mm
53: x = 1500 mm
54: x = 2500 mm
3000 mm

A
Y

Figure 5.15: Geometric details of the axial tube.
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As it can be observed, the examined flow domain (coloured in blue) includes also the conical
trailing edge of the swirl generator. This conical part of 0.082 m height, base diameter 0.040 m
and deflection angle a = 63.5°, has been added to reduce flow reversal in the central region
(Rocha et al., 2015). The respective flow domain was discretized in this work with the grid
presented in Figure 5.16 (consisting of triangular elements). It is composed of 59,960 nodes and
116,844 triangular elements. In order to use it with the proposed dimensionless solver, it was

non-dimensionalized with the internal diameter of the tube.

{ I 1 R T Y 1N W T T L N Y A T N LR 1 e O O YO A | - ! I A L i IR Y T ) I " T | - |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.5 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24

Figure 5.16: Density of the utilized grid for the axial tube.

In the reference work of Rocha et al. (2015) the flow inside the aforementioned geometry
was studied for various volumetric rates ¢, ranging from 3 m3/h to 7.5 m3/h. However, in the
current validation study a single volumetric rate of § = 3 m3/h was examined. A uniform
profile was adopted for both axial and tangential velocity over the inlet of the pipe; the

corresponding values were obtained with the following expressions (Rocha et al., 2015):
Uin = 4/m[RF — (R, — 8)?], (5.4)
Win = U, * tan(a), (5.5)

where R, = 0.025m and 6 = 0.005m. To this end, the axial and circumferential velocity
components, u;, and w;,, at the inlet were computed equal to 1.178 m/s and 2.364 m/s,
respectively, whereas they were re-dimensionalized with the total inflow velocity. Zero radial
velocity was considered at the same boundary. At the outlet dimensionless relative static
pressure was defined equal to unity; in dimensional simulations with Fluent it was
correspondingly set to 0.0 Pa (relative pressure). The radial equilibrium method, without
Laplacian smoothing, was applied at the outflow. Ultimately, no-slip and free-slip conditions
were imposed to solid wall and symmetry axis, respectively. As far as the properties of the
working fluid are concerned, its density and dynamic viscosity were set equal to p =
1210 kg/m? and u = 0.04877 kg/m/s (Rocha, 2013). Taking into account the above mentioned
values, the Reynolds number was computed as 3,277.6. Steady-state solution (obtained after

the log(residual) of pressure was decreased more than eight orders of magnitude) was
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approximated iteratively with an artificial compressibility parameter and a CFL number equal
to 1.0 and 0.15, respectively. Although a relatively small CFL number was used for
convergence reasons, the solution procedure was accelerated considerably with the proposed
multigrid scheme. In particular, a three-level scheme was implemented, ie. with two
agglomerated coarser resolutions, derived using the incorporated isotropic fusion
methodology (Lygidakis et al., 2016). The convergence history per number of iterations for

pressure and velocity components are illustrated in Figure 5.17.
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Figure 5.17: Convergence history per number of iterations for static pressure and velocity components
(Laminar flow — IGal2D simulation).

Analogously to the previous inviscid test case, for this laminar case simulations were
performed using both the IGal2D and the Fluent solvers, while the obtained results were
compared between them, as well as with those reported by Rocha et al. (2015). Figure 5.18 and
Figure 5.19 depict the contours of dimensional axial and swirl velocity up to x = 1m, as
extracted by both solvers. No qualitative difference can be identified between them. Both axial
and circumferential velocities are zero on the centerline, increase with the radial coordinate
and go back to zero near the solid walls due to the no-slip boundary conditions. Hence, a
centrifugal flow field is generated along with the axial motion, restricting less dense fluid in
the core region and consequently allowing for phase segregation in corresponding industrial

applications.
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Besides the previously presented qualitative assessment, a quantitative one was performed
comparing initially the dimensional velocity components at four different cross-sections of the
axial tube, namely S1 (x = 0.125m), S2 (x = 0.5 m), S3 (x = 1.5m) and 54 (x = 2.5 m), which
are depicted in Figure 5.15. Figure 5.20 illustrates the aforementioned distributions, produced
by IGal2D, in comparison with those derived by the Fluent solver. Axial velocity has positive
and negative values; the latter are observed for both codes near the centerline region at cross-
section 52, indicating that the vortex breakdown gets near the entrance and axis of symmetry.
The same conclusion is drawn from the gradual dissipation of tangential component along the
axial direction (from S1 to 54 cross-section) due to the viscous effects, hence the initial swirling
flow approximates progressively a purely axial one. Ultimately, the actually identical results
of IGal2D and Fluent, included in the following Figure 5.20, confirm the ability of the proposed

CFD software to simulate accurately such internal incompressible steady-state flows.
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Figure 5.20: Dimensional axial and swirl velocity components’ distributions along the cross-sections
S1, S2, S3 and S4 of the axial tube, obtained by IGal2D and Fluent solvers.

Almost the same agreement is observed in Figure 5.21, which depicts the aforementioned
distributions of axial velocity obtained with 1Gal2D in comparison with those reported by
(Rocha et al., 2015). Similarly, Figure 5.22 includes the dimensional relative pressure
distributions along the centerline of the axial tube, produced by both the employed solvers. In
addition, they are presented comparatively with this of the reference study (Rocha et al., 2015).
As expected (due to the previous matching velocity results), an almost perfect agreement is
succeeded. Independently of the utilized solver, an adverse pressure gradient is obtained due

to the pressure raising along the centerline, which consequently derives the above mentioned
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negative axial velocity values. Finally, Table 5.9 contains the values of pressure drop between
solid wall points at inlet and outlet of the axial tube under examination (y = 0.025 m, X;per =
0m and x,yer = 3 m), derived by both the utilized solvers, as well as by Rocha et al. (2015)
(measured and computed). The value extracted by IGal2D compares close with the
experimental and numerical ones of the reference work (Rocha et al., 2015); regarding the
measured one, it is approximately over-predicted by 4 %. Its accurate prediction is of crucial
importance, especially in petroleum industrial lines, as excessive frictional pressure drops at

high flow rates can lead to uneconomic operations (Rocha et al., 2015).
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Figure 5.21: Dimensional axial velocity distributions along the cross-sections S1, 52, S3 and 54 of the
axial tube, obtained by IGal2D, in comparison to those reported by Rocha et al. (2015).
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Figure 5.22: Dimensional relative pressure distribution along the centerline of the axial tube.
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IGal2D Ansys Fluent  Rocha — Numerical = Rocha — Experimental

Pressure Drop 4320.28 Pa 4319.13 Pa 4325.51 Pa 4193.54 Pa

Table 5.9: Pressure drop between solid walls points at inlet and outlet positions of the axial tube.

5.2.3 Turbulent Swirling Flow inside a Conical Diffuser

The current benchmark case concerns the turbulent swirling flow inside a conical diffuser
that resembles those usually employed in shrouded or diffuser augmented wind turbine
applications, in order to recover pressure and increase turbine efficiency. Optimizing the
performance of a diffuser is revealed to be of dramatically crucial importance for the overall
efficiency of diffuser augmented wind turbines and in general, of analogous industrial
confined geometries. This is the main motivation to study this test case, considering our
objective to develop a numerical software platform for the design and optimization of

shrouded wind turbines.

220 mm

Computational
— Domain \
\

400 mm

510 mm |

Figure 5.23: Geometric details of the conical diffuser (Leloudas et al., 2021).

To this end, the diffuser examined in this work is the ERCOFTAC (European Research
Community on Flow, Turbulence and Combustion) swirling conical diffuser, which has been
extensively studied in the literature (Armfield et al., 1990; Bounous, 2008; Cho and Fletcher,
1991; Clausen et al., 1993; From et al., 2017; Rodi et al., 1995). The geometric characteristics of
the 0.51 m long diffuser — also reported by Clausen et al. (1993) — are provided in Figure 5.23.
The diffuser has a half-cone angle 6 = 10° and an area ratio of 2.84; the inlet radius is equal to

0.13 m, while the exit one is equal to 0.22 m. A swirl generator with a rotating velocity of
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550 rpm (composed of a straight pipe with an internal honeycomb) has been placed upstream
of the diffuser (see Figure 5.23) to produce a solid body rotation type swirl. The computational
domain (coloured in blue) along with details for its major sections are illustrated in the same
figure. For its representation a quadrilateral grid was utilized, consisted of 15,720 nodes and
15,470 quadrilateral elements. Its density is depicted in Figure 5.24; in order to use it with the
proposed dimensionless solver, it was non-dimensionalized with the diameter at diffuser’s

intake.

Figure 5.24: Density of the utilized grid for the conical diffuser (Leloudas et al., 2021).

Similarly to the previous test cases, simulations were performed by both the IGal2D and
the Fluent solver, whereas their results were compared between them, as well as with the
available experimental ones (Clausen et al., 1993). Axial and swirl velocities at the inlet
boundary were imposed by interpolating the available experimental measurements (Clausen
et al., 1993), presented in Figure 5.25. In addition, the experimentally obtained Reynolds
stresses (ﬁ FF) were used to calculate the distribution of turbulent kinetic energy k =

% ( u? +v2 + w2 ) over the inlet (50), and therefore, to define the inflow turbulence magnitude.

The particular distribution of turbulent kinetic energy results in an average value of inflow
turbulence intensity T, of approximately 4%, which is similar to the value of turbulence
intensity (T, = 5%) adopted during the numerical study of From et al. (2017). The
experimentally obtained values for Reynolds stresses can be also found in the study of Clausen
et al. (1993) and Digital ERCOFTAC Database. The small peak of axial velocity component next
to the boundary layer region is caused by the proximity to the diffuser inlet (Clausen ef al.,
1993). Zero radial velocity component was considered at the inlet. At the outlet relative static
pressure was defined equal to zero for both Fluent and IGal2D solvers (in dimensional and

non-dimensional formulation, respectively). Moreover, at the outlet radial equilibrium was
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applied, while no-slip and free-slip conditions were employed to solid wall and symmetry
axis, respectively. Regarding the working fluid, its density and dynamic viscosity were set
equal to 1.225 kg/m3 and 1.8375- 107> kg/m/s. Based on the above mentioned values the
Reynolds number was calculated as 206,153.581. A steady-state solution was obtained after
the log(residual) of pressure was decreased more than five orders of magnitude. An artificial
compressibility parameter and a CFL number equal to 1.0 and 0.2, respectively, were used. For
the acceleration of the solution procedure a three-level multigrid scheme was implemented;
two agglomerated coarser resolutions were constructed following the incorporated isotropic

fusion procedure (Lygidakis et al., 2016).
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Figure 5.25: Experimentally obtained (Clausen et al., 1993) distributions of axial and swirl velocity at
the diffuser inlet (50) along with the interpolated profiles of the corresponding velocity components,
used for the numerical simulations.

In Figure 5.26 to Figure 5.28 the numerical results, obtained by IGal2D and ANSYS Fluent
solvers (both using the k — w SST turbulence model), are compared against the experimental
measurements provided by Clausen et al. (1993), for reference sections S1, S4 and S7 (which
are shown in Figure 5.23 and cover the largest part of the diffuser). The aforementioned
comparisons are made in terms of axial and swirling velocity components. An almost perfect
agreement between I1Gal2D and Fluent solvers can be observed for both velocity components
at each one of the examined sections. However, some non-trivial discrepancies between the
numerical and experimental data are identified, especially when moving towards the exit of
the diffuser. In particular, IGal2D and Fluent solvers were found to over-predict the axial
velocity component for each one of the examined sections. This over-prediction tends to

increase as the symmetry axis is approached, hence failure to capture the actual velocity deficit
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within the core diffuser region is indicated. Yet both near-wall intensity and the peak position
of axial velocity have been reasonably predicted, especially at sections S1 and S4. At section S7
a relatively small under-estimation of axial velocity at the solid wall area is also noticed. In
contrast to axial velocity component, a much better numerical computation of swirl velocity
for every reference section was achieved, though the peak values at sections S1 and S7 have
been slightly under-estimated. Nevertheless, an accurate prediction of the experimentally
obtained pressure coefficient distribution over the diffuser wall (pressure recovery) was
achieved by IGal2D solver as shown in Figure 5.29 — an anticipated result due to the

aforementioned sufficiently matching velocity distributions. The axial pressure gradient gets

high values near the entrance, while it decreases rapidly along the axial direction.
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Figure 5.26: Distributions of axial and swirl velocity at cross-section S1 (conical diffuser).
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Figure 5.27: Distributions of axial and swirl velocity at cross-section S4 (conical diffuser).
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Figure 5.28: Distributions of axial and swirl velocity at cross-section S7 (conical diffuser).

Conclusively, despite some notable discrepancies between the numerical prediction of
IGal2D and/or Fluent solvers and the experimental results, according to previous numerical
studies (Rodi et al., 1995) on the same benchmark test case, as well as to the authors’
perspective, such discrepancies are almost entirely attributed to the inability of k — w SST
model to predict accurately turbulent kinetic energy k in such swirling flows along with the

sensitivity of velocity components upon k, which increases as the diffuser exit is approached.
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Figure 5.29: Distributions of pressure coefficient on the wall (conical diffuser).
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A similar behaviour can be found in the literature for the standard k — ¢ turbulence model
(Rodi et al., 1995), which provides globally better k results, compared to the k — w one (Rodi et
al., 1995). Miscapturing of k is enlarged near the diffuser corner, due to the adverse pressure
gradient and curvature effects, as well as with the implementation of low Reynolds approach
instead of wall functions (Rodi et al., 1995). Therefore, this calls for the incorporation of more
advanced turbulent models within the current solver. Such an example could be the BSLk
EARSM model, which — according to the study of From et al. (2017) — proved capable of

predicting the flow characteristics throughout the entire diffuser with high accuracy.

Axial Velocity -U [m/s]: 00 15 30 45 60 75 90 105 120

Fluent

IGal2D

Figure 5.30: Turbulent flow inside the conical diffuser. Comparison of axial velocity contours.

Finally, Figure 5.30 and Figure 5.31 illustrate the axial and tangential velocity contours,
while Figure 5.32 illustrates the static pressure contours, as they obtained from IGal2D and
Fluent solvers. These comparisons confirm the good agreement between the two solvers, when
the same turbulence model is employed. Both numerical codes predict reasonably the total
velocity reduction, associated with constant mass flow, as well as the decrease of the centerline
axial velocity and the increase of the near-wall one, caused by the tangential velocity

component.
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Figure 5.31: Turbulent flow inside the conical diffuser. Comparison of swirl velocity contours.
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Figure 5.32: Turbulent flow inside the conical diffuser. Comparison of pressure contours.
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Chapter 6
The RG15 Low-Reynolds Airfoil Family

This chapter features a new low Reynolds number airfoil family for the entire blade span of small
horizontal-axis wind turbines, aiming to reduce the effects related to laminar separation, improve
startup response and meet acceptable levels of structural integrity. The proposed RG15 low Reynolds
airfoil family consists of six airfoil profiles of varying relative thickness, which were designed by
increasing the thickness distribution of RG15 airfoil up to 50% and adopting a rounded trailing edge
with a diameter equal to 1% of the chord length.

6.1 Aerodynamics of Small Wind Turbine Blades

On account of global efforts to reduce greenhouse gases emissions and combat climate
change, small-scale wind energy conversion systems have recently attracted renewed
attention from the international engineering community, since they represent a promising
solution for sustainable energy production in site-specific cases. In contrast to their larger
counterparts, small wind turbines provide a considerably higher level of flexibility, both in
terms of required space and wind speed conditions (Singh et al., 2012). Therefore, they can be
integrated within a much broader spectrum of residential, rural and remote areas for either
on-grid or off-grid power generation — usually directly where the power is required, rather
than where the wind is most favourable. Consequently, they could enable significant
opportunities for more geographic dispersion of wind technology applications (Yang et al.,
2019), growth in distributed energy deployments, and further expansion of renewable energy

utilization on a global scale.

Small horizontal-axis wind turbines, which according to the standards issued by the
International Electrotechnical Commission (IEC, 2013) are characterized by a rotor swept area
of less than 200 m?, rely on the same aerodynamic principles governing the operation of larger
HAWT systems. However, the chord Reynolds numbers (Re) prevailing along the entire blade
span of the former applications are considerably lower — generally below 500,000 — as a
consequence of the smaller blade radius (Shah et al., 2012). One of the major aspects of high
Reynolds number flows over airfoils is that the transition from laminar to turbulent flow inside
the velocity boundary layer is realized earlier than laminar separation. Eventually, this early
transition prevents the appearance of undesirable aerodynamic effects related to the latter
phenomenon (Giguere and Selig, 1997), since a turbulent boundary layer is capable of

withstanding an adverse pressure gradient (that is an increase of static pressure in the
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direction of the flow) better than an equivalent laminar one. On the contrary, at low Reynolds
number regimes — typically defined by a chord Reynolds number lower than approximately
500,000 — the boundary layer is predominantly laminar and therefore, relatively fragile (Shah
et al., 2012). In that case, the existence of a large adverse pressure gradient may force the flow
to detach prematurely from the surface of the airfoil, that is, prior to the development of a fully
turbulent flow. Even though the resultant free shear layer (detached boundary layer) remains
laminar shortly after the separation point, it eventually transits to the turbulent state due to
the intensification of the velocity disturbances in the flow (Alam and Sandham, 2000)
(separation-induced transition). From that point on, two distinct flow regimes may result; the
so-called subcritical and supercritical flow regimes (Mulleners et al., 2008), which are

represented in Figure 6.1 and Figure 6.2.

In a supercritical flow, the detached (now turbulent) shear layer does reattach to the surface
of the airfoil, causing the formation of a laminar separation bubble, the size and chordwise
location of which are functions of the airfoil profile, Reynolds number, turbulence intensity
(Ty) and angle of attack (a) (Swift, 2009). Typically, a separation bubble moves towards the
leading edge as the angle of attack increases (Giguere and Selig, 1997). In terms of size, laminar
separation bubbles can be roughly classified as either short or long ones, depending on their
chordwise extent (Lg,) and consequent effects on the pressure and velocity distributions about
the airfoil (Tani, 1961). A short separation bubble encompasses a chordwise extent ranging up
to approximately one percent; therefore, it does not influence the pressure distribution around
the airfoil to a large degree. However, a long separation bubble (usually produced by the burst
of a short one, because of either the reduction in Reynolds number or the increase in angle of
attack) may cover a significantly larger percent of the airfoil chord, affecting severely the
pressure distribution and the aerodynamic forces developed on the airfoil (Choudhry ef al.,
2015).

Laminar Separation Separation Bubble Turbulent Separation

Transition Turbulent \<

Laminar Transition
— Laminar

Turbulent

Figure 6.1: Schematic representation of laminar flow separation. (a) Subcritical flow regime. (b)
Supercritical flow regime (Leloudas et al., 2020Db).
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Although the existence of a laminar separation bubble near the leading edge at high angles
of attack may increase the apparent camber of the airfoil and improve the lift (L) generation
capacity (Hansen et al., 2014), it ultimately thickens (locally) the velocity boundary layer on
the suction side, increasing considerably the drag coefficient (Cp) as well. In addition to that,
the presence of laminar separation bubble is also associated with a turbulent flow separation
near the trailing edge of the airfoil, as exemplified in Figure 6.2a and Figure 6.2b; this
characteristic phenomenon of the supercritical flow regime is known as trailing edge stall
(Mulleners et al., 2008). Besides, the potential premature burst of a laminar separation bubble
could cause an even larger growth of the drag coefficient, which is accompanied by a sudden
and severe loss of the generated lift (Hansen et al., 2014). Now, in contrast to the supercritical
regime, if the turbulent transition takes place far away from the surface of the airfoil, there is
a possibility that the turbulent shear layer may not be able to reattach to the airfoil surface,
creating an open separation area (subcritical flow) instead of a separation bubble. In that case,
a thicker and extremely unstable wake region is produced, as shown in Figure 6.2¢, resulting
in much higher drag (D) levels and further reduction in the aerodynamic performance of the
airfoil, compared to the supercritical flow regime. However, such an unattached free shear
layer (open separation area) may also be produced by the bursting of a laminar separation
bubble.

Therefore, to optimize the aerodynamic performance of small wind turbine blades,
operating at low Reynolds numbers, the effects related to laminar separation have to be
minimized. One of the available methods to reduce or even eliminate bubble drag (that is drag
induced by a laminar separation bubble) — as well as to delay the possible chances of separation
at higher angles of attack — is related to the promotion of early transition on the upper surface
(suction side) of the airfoil, through the installation of a mechanical turbulator or trip (Singh
et al., 2012). However, the particular technique, which is the only one applicable to existing
airfoils (Giguere and Selig, 1997), requires adequate experience in selecting the proper location
and thickness of the trip, so as to maximize the reduction in bubble drag while minimizing the
drag produced by the trip (Lyon et al., 1997). On the other hand, according to Giguere and
Selig (1997), the suppression of laminar separation effects could also be achieved by means of
specially designed airfoils with a very gradual upper-surface pressure recovery (bubble ramp),
which can decrease significantly the additional drag induced by separation bubbles.
Currently, the majority of low Reynolds number airfoils are designed based on the latter
technique, providing reduced amounts of drag and higher maximum lift-to-drag ratios (also
termed as glide ratios), as compared with those of traditional airfoils that have been mainly
designed for high Reynolds numbers and, therefore, they usually suffer from severe laminar

separation effects when operating at low Reynolds number regimes.



Chapter 6 The RG15 Low-Reynolds Airfoil Family

————

1 L 1 1 1 L 1 Lol L) L
~ N -02 -0.1 0 01 02 03 04 05 06 07 08 09 1 1.1 12

\\——-—-—’

L [ B 1 L T i IS I SN B S | J [T NP WU ! 1 n [ [N e | | J
02 -0.1 0 01 02 03 04 05 06 07 08 09 1 11 12 02 -0.1 0 01 02 03 04 05 06 07 08 09 1 19 42

(b) (c)

Figure 6.2: Velocity streamlines for different flow regimes. (a) Short separation bubble (supercritical
regime). (b) Long separation bubble (supercritical regime). (c) Unattached shear layer (subcritical
regime) (Leloudas ef al., 2020Db).

6.2 Review of Small Wind Turbine Airfoils

The first airfoils for small wind turbines were introduced by the National Renewable
Energy Laboratory (NREL); the S822 and S823 airfoils (Somers, 2005) were particularly
designed for small stall-regulated wind turbines with a rotor diameter between 3 and 10
meters, based on the following criteria: restrained maximum lift, insensitivity to roughness
and low profile drag. Nevertheless, the first systematic attempt to establish a wide database of
low Reynolds number airfoils for small wind turbine blades was made by Giguere and Selig
(1997). In that study, the aerodynamic performance of 15 already existing low Reynolds
number airfoils (most of them had been originally designed for small unmanned aerial
vehicles) was thoroughly evaluated, based on the results of a large-scale testing program
undertaken in the University of Illinois at Urbana-Champaign (UIUC) low-turbulence
subsonic wind tunnel (Broeren et al., 1995). Besides, Giguere and Selig (1997) provided useful
guidelines to facilitate the airfoil selection process for each one of the different operational
modes of small wind turbines (variable-speed, variable-pitch, stall regulated). Later on,
Giguere and Selig (1998) introduced the SG604x airfoil family, which was designed by taking

into consideration the special requirements of small variable-speed wind turbines with a rated
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capacity up to 5 kW. The SG604x airfoil family was formed by three primary airfoils (5G6041,
SG6042 and SG6043) with a maximum relative thickness of 10% and by one root airfoil
(5G6040) with a maximum relative thickness of 16%, to accommodate possible large root
bending moment and large blade stiffness requirements. According to both experimental and
numerical data reported in (Giguere and Selig, 1998), the SG604x family could achieve high
lift-to-drag ratios (L /D) over a broad range of lift conditions. Moreover, Selig and McGranahan
(2004) conducted detailed wind tunnel experiments in order to examine the performance
characteristics of six low Reynolds number airfoils (E387, FX 63-137, 5822, 5834, SD2030 and
SH3055) for small wind turbines, at various Reynolds numbers up to 500,000.

Significant research on small wind turbine airfoils was also made by Ram et al. (2013), who
employed a Genetic Algorithm to design a low Reynolds number airfoil with high roughness
insensitivity and maximum relative thickness of 10%. The resultant USPT2 airfoil was
evaluated both numerically and experimentally. According to the corresponding results
reported in (Ram et al., 2013), USPT2 seemed to overperform the SG6043 airfoil in terms of lift-
to-drag ratio for angles of attack greater than 10 degrees, while a smother stall region, as
compared to that of similar airfoils, was also observed. On the other hand, Henriques et al.
(2009) applied a pressure-load prescription method to design a new airfoil (T.Urban 10/193)
with high lift performance (C;, value around 2) for urban wind turbines. In comparison with
conventional blade section designs, the T.Urban 10/193 airfoil demonstrated increased
maximum lift, reduced leading edge suction peak and controlled soft-stall behavior, due to a
reduction of the adverse pressure gradient on the suction side (Henriques et al., 2009). More
recent research on small wind turbine airfoil design can also be found in the studies of Singh
et al. (2012), Shah et al. (2012), Islam et al. (2008), Marnett et al. (2010) and Shen et al. (2016). In
particular, the study of Singh et al. (2012) was focused on the design of a new low Reynolds
number airfoil, aiming to improve the startup behavior and low wind speed performance of
small wind turbines. Compared with other low Reynolds number airfoils suited for small
wind turbines, the proposed AF300 airfoil showed good aerodynamic performance, attaining
the highest combinations of optimum C;, and lift-to-drag ratios. Moreover, Singh et al. (2012)
highlighted that the flatback trailing edge of the AF300 airfoil had improved the aerodynamic
properties of AF300 by delaying flow separation and increasing C; . Finally, they noted that the
structural strength added by the thick trailing edge would require lighter blade materials and
decrease the rotor inertia. Therefore, the startup could be significantly improved and the rotor

could operate at lower cut-in wind speeds (Singh ef al., 2012).
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6.3 Motivation and Scope

Apart from the suppression of laminar separation effects, the achievement of a good
starting behavior (startup response) and low cut-in speeds can also enhance significantly the
overall performance of small wind turbines intended for low/moderate wind speeds and
fluctuating regimes. According to Sathyajith and Philip (2011), a good startup can be
succeeded by selecting root airfoils with high maximum lift coefficients (C;) and high lift-to-
drag ratios, since most of the starting torque is caused by the blade root, whereas the tip region
generates most of the power producing torque (Wright and Wood, 2004). The RG15 is one of
the attractive low Reynolds number airfoils — both in terms of aerodynamic performance and
low Reynolds behavior — that were examined during the testing program at UIUC low-
turbulence subsonic wind tunnel (Broeren et al., 1995). However, the particular airfoil is rather
unsuitable for the root region of the blade, because of its limited structural integrity (limited
rigidity and stiffness), stemming from the small value of the thickness-to-chord ratio (t/c) and
cross-sectional area (4). Against this background, this work presents the development and
application of a methodology for the design of a low Reynolds number airfoil family, suitable
for the entire blade span of small wind turbines, through the proper thickening of the RG15
airfoil. Moreover, since the original RG15 airfoil geometry has a knife-sharp trailing edge,
which does not meet the current blade manufacturing and transportation limitations, the
original and the thickened airfoils are further modified, to result in a rounded trailing edge,
without truncating the provided airfoil geometries. Ultimately, the aim of this study is to
extend the use of this promising low Reynolds number airfoil and provide an adequate airfoil
family for the entire blade span (including the root region as well) of small wind turbine

blades, capable of significantly improving the overall power performance.

6.4 The Original RG15 Airfoil

The RG15 low Reynolds number airfoil was designed by Rolf Girsberger in an attempt to
provide a superior alternative — in terms of maximum Cj, — to the Eppler E180 airfoil and meet
the special requirements of the FAI-F3B class that is the World Championship for Model
Gliders. Even though RG15 was initially intended exclusively for radio controlled sailplanes
and model gliders, including slope soaring and electric powered gliders, it currently
represents an attractive low Reynolds number airfoil for the design of small wind turbine
blades as well. Figure 6.3a presents the theoretical profile of the RG15 airfoil, which has a
maximum relative thickness of 8.92% located at 30.2% of the chord from the leading edge and

a maximum relative camber of 1.8% located at 39.7% of the chord from the leading edge.



Chapter 6 The RG15 Low-Reynolds Airfoil Family

0.07
0.04
0.02
-0.01
-0.04

0.07
0.04
0.02
-0.01

-0.04
0.00 0.10 0.20 030 0.40 0.50 0.60 0.70 0.80 0.90 1.00 0.00 0.10 0.20 030 0.40 0.50 0.60 0.70 0.80 0.90 1.00

(a) (b)
Figure 6.3: The RG15 airfoil. (a) Theoretical profile. (b) Actual profile (Broeren et al., 1995).

The theoretical profile of the RG15 airfoil was generated by means of the Eppler airfoil code,

according to the following criteria:

a. Section drag for low lift (C, between 0 and 0.4) comparable to E180 airfoil.
b. Lower edge of laminar drag bucket at slightly negative lift.

c. Higher maximum lift than E180 airfoil.

d. Critical Reynolds number well below 100,000.

e. Higher absolute value of pitching moment than E180 airfoil.

f. Lower absolute value of pitching moment than E193 airfoil.

g. Relative airfoil thickness between 8.5% and 9.5%.

In addition, Figure 6.3b illustrates the actual airfoil profile used during the experimental study
at the UIUC low-turbulence subsonic wind tunnel (Broeren et al., 1995). Since low Reynolds
number airfoil performance is highly dependent on the laminar boundary layer behavior, low
turbulence levels within the wind tunnel were necessary to ensure that laminar flow does not
prematurely transition to the turbulent state over the airfoil surface. To this end, the wind-
tunnel settling chamber had been equipped with a 4-in thick honeycomb and four anti-
turbulence screens; the turbulence intensity was measured to be less than 0.1%, which was
considered sufficient for low Reynolds number airfoil measurements (Broeren et al., 1995). In
Figure 6.4, the aerodynamic characteristics of the RG15 airfoil for various Reynolds numbers
from Re = 60,000 to Re = 300,000 are illustrated, as obtained from the testing program at the
UIUC low-turbulence subsonic wind tunnel (Broeren ef al., 1995). As expected, the increase of
Re is associated with a reduction in drag coefficient and therefore, an increase of the lift-to-
drag ratio, since no significant variation of the lift curve with Re was observed for the

examined angles of attack.
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Figure 6.4: Aerodynamic characteristics of RG15 airfoil at several low Reynolds numbers, as measured
at the UIUC wind tunnel (Broeren et al., 1995). (a) €, — a. (b) Cp, — a. (c) C,/Cp — a. (d) C, — Cp.

6.5 Thickening of the RG15 Airfoil

During the selection of the airfoil sections for the optimum wind turbine blade design, the
specific requirements of the different blade regions should be considered as well. In particular,
structural requirements have higher priority than the aerodynamic ones for airfoil sections
that form the root region of the blade, due to the high stresses they go through. However,
increased aerodynamic efficiency is essential for airfoil sections located in the mid span and
tip regions, because of their great impact on the rotor power output. Consequently, even
though RG15 airfoil seems appropriate for the mid span and tip regions, because of its
promising aerodynamic characteristics, it appears unsuitable for the root region, due to its
limited structural integrity (limited rigidity and stiffness), resulting from the small value of

the thickness-to-chord ratio and cross-sectional area. To this end, five new thickened airfoils
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have been designed, based on the original RG15 geometry, in order to create an airfoil database

suitable for the root region formation of small wind turbine blades.

RG15
e

e R . e .

i i i B {
RG15 - (10) RG15 - (20) RG15 - (30) RG15 - (40) RG15 - (50)

e e
+10% +20% +30% +40% +50%

Thickness Thickness Thickness Thickness Thickness

Figure 6.5: The five thickened RG15 airfoils.

The five thickened airfoils have been constructed in such a way that they have the same
mean camber line (MCL) compared to the original RG15 airfoil (in order to retain its desirable
aerodynamic characteristics), but an increased thickness-to-chord ratio distribution by 50%,
40%, 30%, 20% and 10% respectively, compared to the base airfoil design (see Figure 6.5). The
construction of the five thickened airfoils, which from now on will be denoted as RG15-(50),
RG15-(40), RG15-(30), RG15-(20) and RG15-(10), was implemented by the utilization of
Rhinoceros 3D Computer-Aided Design (CAD) application software, developed by Robert
McNeel & Associates, as well as Grasshopper visual programming language, which runs
within Rhinoceros. Initially, the mean camber line of the original RG15 airfoil was calculated,
by interpolating a smooth curve (blue line) through the centers (blue squares) of the inscribed
circles (red circles) to the RG15 airfoil, as shown in Figure 6.6 (standard procedure for
calculating the MCL).

Figure 6.6: Calculation of the RG15 mean camber line (blue line).

Then, the thickness distribution of the RG15 airfoil was calculated, according to the following
procedure, which is schematically represented in Figure 6.7; for a point k along the chord line
(c), the thickness value corresponding to k is equal to the length of the line segment (thickness
line — magenta) perpendicular to the MCL (blue) that passes through the projection of k on the
MCL.
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Figure 6.7: Calculation of the thickness line corresponding to a random point k along the chord

line.

In Figure 6.8, only a few indicative thickness lines (magenta) of the RG15 airfoil are depicted
for clarity purposes. Finally, as illustrated in Figure 6.9, for the construction of the points of
the new thickened airfoils, each thickness line of the original RG15 was extended equally from
both sides by the appropriate percentage, depending on the desirable rate of thickness
increase. The start and end points of the extended thickness lines (magenta squares — Figure

6.9) are the points of the new thickened airfoil.
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Figure 6.9: Indicative points of a thickened airfoil, constructed through the proper extension of the
RG15 thickness lines.
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6.6 Trailing Edge Modification

The Kutta-Zhukovsky theorem dictates that a lift producing airfoil should have a knife-
sharp trailing edge and therefore, it considers the practical necessity of manufacturing blades
and wings with rounded trailing edges as a divergence from the ideal case. However, some
early experiments (Herrig et al., 1951; Stack and Lindsey, 1938), which were carried out to
determine the lift and drag dependence upon the trailing edge radius, revealed that a rounded
trailing edge of radius less than 1% of the chord length produces essentially the same lift and
drag as a maximally sharp trailing edge, while a notable increase in drag was observed for
rounded trailing edges of radius above 2% of the chord length. In this context and given that
the current blade manufacturing and transportation limitations do not allow sharp trailing
edges to be constructed, the trailing edges of the original and thickened RG15 airfoils were
locally thickened and rounded. For the generation of a blunt trailing edge without truncating
the airfoil, QBlade software (Marten, 2015) provides the built-in Trailing Edge Gap function,
where the desired gap and blending distance from the leading edge (i.e., the absolute
percentage of the airfoil chord, downstream of which the smoothing code is free to modify the
airfoil shape in order to accommodate the modified trailing edge) are specified as percentages
of the chord length. Nevertheless, as it was observed during the utilization of the Trailing Edge
Gap function, the user-defined blending distance was not being completely respected by the
code; while additionally, the airfoil thickness was being measured and applied perpendicular
to the center line (as utilized by QBlade instead of the actual MCL), which is a rough and

generally incorrect approximation of the MCL.

Therefore, in order to overcome the aforementioned shortcomings, a custom script was
created within Grasshopper, to be used for the generation of a blunt trailing edge without
truncating the airfoil, through the proper modification (local thickening) of the provided
(baseline) airfoil geometry under consideration. As long as the features of the developed script
are concerned, the user is permitted to precisely define the trailing edge diameter and blending
distance from the leading edge as in QBlade, while conversely to QBlade, the airfoil thickness
is measured and applied perpendicular to the airfoil’s MCL, as it should be, so the resultant
airfoil to have the exact same MCL with the baseline, so as to retain its aerodynamic
characteristics as far as possible. Once the baseline airfoil geometry (with a sharp trailing edge)
and the required software parameters (blending distance and trailing edge diameter) have
been provided, the modified airfoil geometry is constructed through the application of an
additional parabolic thickness distribution to the baseline airfoil, starting from the point along
the chord that corresponds to the established blending distance and ending at the airfoil’s
trailing edge; in such a way that the defined trailing edge diameter to be exactly achieved and

the resultant airfoil geometry to fulfil all the required continuity, curvature and smoothness
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criteria. The blending distance and trailing edge diameter are schematically defined in Figure

6.10.

Blending Distance
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TE Diameter
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Figure 6.10: Schematic definition of the (a) trailing edge diameter and (b) blending distance.

Figure 6.11 presents an indicative application of the developed methodology to the RG15
airfoil; in the particular application, the trailing edge diameter and the blending distance from

the leading edge were set equal to 1% and 50% of the chord length respectively.
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Figure 6.11: Schematic representation of the followed methodology for the creation of a rounded
trailing edge.

As it seems, the baseline (RG15 - black) and the modified (red) airfoil geometries coincide
from the leading edge until the point that corresponds to the 50% of the chord, while the
differentiation between the two airfoils lies only in the region downstream of the 50% of

the chord; increasing smoothly and parabolically as the trailing edge is approached, to
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attain the desirable thickness. Subsequently, in order to create a rounded trailing edge
geometry, a circle (black) is fitted to the thickened trailing edge of the modified airfoil, in
such a way that is tangent to its upper and lower surfaces and passes through the sharp
trailing edge of the baseline airfoil, as depicted in Figure 6.11b; so as the reformed airfoil
to have the same chord line with the baseline one. Finally, the leftover edges are properly

cut off, to result in the final modified airfoil with a rounded trailing edge.

6.7 RG15 Airfoil Family

In this work, the methodology developed for the conversion of sharp trailing edges to
rounded ones, was applied to all the original and thickened RG15-(xx) airfoils. For each
one of the six airfoils (denoted as “parent” airfoils), four modified configurations were
generated (Table 6.1), by setting the trailing edge radius equal to 0.5% of the chord length
(i.e., trailing edge diameter equal to 1%) and the blending distance equal to 0%, 50%, 60%
and 70% of the chord length respectively. Regarding the notation used for the modified
airfoils, the RG15-(xx)-yy-z refers to an airfoil with an increased thickness-to-chord ratio
by xx% compared to the original RG15, whose rounded trailing edge was created by
setting the trailing edge diameter equal to z% and the blending distance from the leading

edge equal to yy% of the chord length.

“Parent” Airfoils - Sharp Trailing Edge

RG15 RG15 — (10) RG15 — (20) RG15 - (30) RG15 - (40) RG15 - (50)

Modified Airfoils - Rounded Trailing Edge

RG15-(00)-00-1 RG15-(10)-00-1  RG15-(20)-00-1  RG15-(30)-00-1  RG15-(40)-00-1  RG15-(50)-00-1

RG15-(00)-50-1 RG15-(10)-50-1  RG15-(20)-50-1  RG15-(30)-50-1  RG15-(40)-50-1  RG15-(50)-50-1

RG15-(00)-60-1 RG15-(10)-60-1 RG15-(20)-60-1  RG15-(30)-60-1  RG15-(40)-60-1  RG15-(50)-60-1

RG15-(00)-70-1 RG15-(10)-70-1 RG15-(20)-70-1 RG15-(30)-70-1  RG15-(40)-70-1  RG15-(50)-70-1

Table 6.1: The modified RG15 airfoils with a thickened and rounded trailing edge.

The four variants for each one of the “parent” airfoils, corresponding to the different
blending distance values, as well as their “parent” airfoil, were then evaluated using XFOIL
software (Drela, 1989), at various low Reynolds numbers, in order to examine the influence of
the blending distance parameter on the developed aerodynamic forces. Figure 6.12a illustrates
the drag polar for the RG15, RG15-(00)-00-1, RG15-(00)-50-1 and RG15-(00)-70-1 airfoils at Re =
300,000. Apparently, no significant variation of the drag polar was detected with different
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values of the blending distance parameter, while the same outcome was observed by
examining the rest of low Reynolds numbers considered during the experimental study at
UIUC (Broeren et al., 1995). In addition, Figure 6.12a indicates that the adoption of a rounded
trailing edge (instead of a maximally sharp one) did not result in a substantial reduction in the
aerodynamic performance of the airfoil, since the comparison between the drag polars (XFOIL

solver) of RG15 and RG15-(00)-70-1 airfoils reveal a high level of similarity.
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Figure 6.12: The influence of the rounded trailing edge and blending distance parameter on the drag
polar at Re = 300,000. (a) XFOIL results. (b) 2D RANS results.

To further support the latter deduction, RG15 and RG15-(00)-70-1 airfoils were also
evaluated at Re = 300,000, using the IGal2D solver (see Chapter 4) instead of XFOIL;
turbulence simulation was achieved by means of the standard two-equation Shear Stress
Transport (SST) turbulence model. The comparison between the resultant drag polars is
provided in Figure 6.12b, verifying that a rounded trailing edge with a radius equal to 0.5% of
the chord does not affect the aerodynamic performance of the airfoil to a large degree, as only
minor differences were detected, especially in the upper high-drag region. The simulation
parameters for both XFOIL and RANS solvers are equal to the ones adopted during the

detailed evaluation of the entire RG15 airfoil family, which are presented in Chapter 7.

Consequently, since no significant impact of the blending distance parameter on the
aerodynamic performance was found, the airfoils that were produced by setting the blending
distance equal to 70% have been selected to form the RG15 airfoil family, as they are the ones
with the lesser deviation from the “parent” airfoils. The final airfoil family RG15-(xx)-70-1
generated through this work is illustrated in Figure 6.13, whereas Table 6.2 contains the major

geometrical characteristics of the corresponding airfoils. Given that all the airfoils have been
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constructed using the same MCL (the MCL of the original RG15 airfoil), the maximum camber,

the position of maximum camber and the position of maximum thickness are mutual for all

members of the family. The dimensionless coordinates of the airfoils composing RG15 airfoil

family are provided in Appendix C.
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Figure 6.13: The airfoils composing the low-Reynolds RG15 airfoil family.

Airfoil Maximum Thickness = Maximum Camber  Sectional Area
Original RG15 0.0892 ¢ 0.018 ¢ 0.0595 ¢?
RG15-(00)-70-1 0.0892 ¢ 0.018 ¢ 0.0605 c?
RG15-(10)-70-1 0.0981 ¢ 0.018 ¢ 0.0664 c?
RG15-(20)-70-1 0.1070 ¢ 0.018 ¢ 0.0724 c?
RG15-(30)-70-1 0.1160 ¢ 0.018 ¢ 0.0784 c?
RG15-(40)-70-1 0.1249 ¢ 0.018 ¢ 0.0843 ¢?
RG15-(50)-70-1 0.1338 ¢ 0.018 ¢ 0.0903 c?

Table 6.2: Geometrical characteristics of the airfoils composing the RG15 airfoil family.
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Chapter 7
Numerical Analysis of the RG15 Airfoil Family

This chapter involves the aerodynamic performance evaluation of the entire low-Reynolds RG-15 airfoil
family. In order to obtain the aerodynamic characteristics of the involved airfoils, both the well-known

XFOIL code and the in-house developed 1Gal2D solver are employed.

7.1 XFOIL Analysis

The aerodynamic performance of the RG15 airfoils was initially evaluated by means of
XFOIL software, which relies on the combination of a potential flow panel method with an
integral boundary layer formulation, for the analysis of subsonic isolated airfoils (Drela, 1989).
The final solution is achieved through the implementation of an iterative procedure between
the inner and outer flow solutions on the boundary layer displacement thickness, until an
appropriate convergence criterion is reached; accordingly, the viscous pressure distributions
(which capture the effects of laminar separation bubbles and trailing edge separation) can be
predicted with reasonable accuracy (Coder and Maughmer, 2014). During an XFOIL analysis,
the transition from laminar to turbulent state is predicted by applying an approximate e"
envelope method (Drela and Giles, 1987), according to which, only the most amplified
frequency at a given point on the airfoil downstream from the point of instability is tracked
(instead of tracking the amplification rates of all frequencies), in order to obtain the amplitude
of the entire frequency envelope (Coder and Maughmer, 2014). Transition is assumed when
this integrated amplitude N reaches an empirically determined value, denoted as N,,;;. The
appropriate value of N..;; parameter can be calculated as a function of the absolute value of

turbulence intensity T, as follows (Van Ingen, 2008):

Nepir = —8.43 — 2.4In(T,) (7.1)

7.1.1 XFOIL Setup and Validation

Prior to the aerodynamic evaluation of the proposed RG15 airfoil family, the accuracy of
XFOIL was validated against the available experimental data for the original RG15 airfoil
(Broeren et al., 1995). In this study, a value of 9 was adopted for N, in order to match the
turbulence levels reported during the wind tunnel testing (that is a turbulence intensity value

less than 0.001 or 0.1%) (Broeren et al., 1995). As long as the geometry description is concerned,
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the study of Morgado ef al. (2016) concluded that no significant variation in the aerodynamic
coefficients should be detected by increasing the number of points (panel resolution) on the
airfoil surface over 150. However, XFOIL documentation advises that a fine panel resolution
is required, if the appearance of laminar separation bubbles is expected. To this end, 300 points
were used to describe the RG15 airfoil geometry, by applying a denser point distribution near

the leading and trailing edges. The Mach number was set to zero.

Figure 7.1 and Figure 7.2 provide the lift and drag coefficients of the RG15 airfoil, as a
function of the angle of attack, for Re = 60,000 and Re = 300,000 respectively, as they resulted
from both the testing program at the UIUC low-turbulence subsonic wind tunnel (Broeren et
al., 1995) and XFOIL software; the particular Reynolds numbers correspond to the lower and
upper values of the Reynolds number spectrum examined during the experimental studies at

UIUC (Broeren et al., 1995).
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(a) (b)
Figure 7.1: Comparison of the XFOIL results for the lift and drag coefficients of the original RG15

airfoil at Re = 60,000 with the corresponding experimental measurements (Broeren et al., 1995); (a)
CL — Q. (b) CD — q.

As it can be observed, the experimental lift and drag curves have been predicted with
reasonable accuracy for both Reynolds numbers; similar levels of accuracy were found during
the comparisons made for the rest of the available experimental data, corresponding to the
different Reynolds numbers (within the particular range) that were examined during the
experimental study at UIUC (Broeren et al., 1995). However, some notable discrepancies
between the experimental and numerical results were also detected, especially in terms of the
drag coefficient. In particular, XFOIL seems to over-predict the drag coefficient at Re = 60,000
for angles of attack higher than 8°, while an evident under-prediction of the drag coefficient
at Re = 300,000 was also observed, regarding the angles of attack higher than 10°.

Nevertheless, the approximation of the experimental data is considered acceptable, since the
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trend and major aspects of both curves have been well captured. Consequently, XFOIL can be

used for the evaluation of the RG15 airfoil family within the particular low Reynolds numbers

range.
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Figure 7.2: Comparison of the XFOIL results for the lift and drag coefficients of the original RG15

airfoil at Re = 300,000 with the corresponding experimental measurements (Broeren et al., 1995); (a)
CL - . (b) CD - .

7.2 RANS Analysis

Apart from the XFOIL analysis, the aerodynamic performance of the entire RG15 family
was further evaluated by means of the in-house IGal2D solver, so as to have a better
understanding of the respective flow fields and the associated phenomena. Herein, it is
recalled that the particular flow solver is based on a dimensionless formulation of the RANS
equations, modified by the artificial compressibility method; space discretization is based on
node-centered finite volume formulation, utilizing a second order MUSCL (Monotonic
Upstream Scheme for Conservation Laws) scheme; turbulence simulation is succeeded
through the standard two-equation Shear Stress Transport (SST) k — w turbulence model
(Menter, 1994), which is a combination of the k — € and k — w turbulence models. The SST k —
w model was preferred over the alternative two-equation turbulence models because of the
beneficial features that provides, since it combines the advantages of both k — ¢ and k — w
models, while disregarding their major shortcomings (Menter et al., 2003). Furthermore,
according to the study of Morgado et al. (2016), the SST k — w model seems capable of
accurately predicting a wide spectrum of low Reynolds number flows over airfoils. The
limitations of this approach should be taken into account, as no transition model or low-Re
corrections are considered in this study. The spatial discretization of the flow and turbulence

models is performed over two-dimensional unstructured grids, comprised of both triangular
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and quadrilateral elements, along with a node-centered finite-volume scheme. A detailed

description of the employed solver (IGal2D) can be found in Chapter 4.

7.2.1 1Gal2D Setup and Validation

Prior to the aerodynamic evaluation of the RG15 airfoil family, the ability of the IGal2D
solver to accurately predict the lift and drag forces was validated against the available
experimental data for the original RG15 airfoil (Somers, 2005). However, a grid independence
study was also performed before the validation study, in order to guarantee that the grid
resolution does not affect the simulation results. For this purpose, three computational grids
with different resolutions were constructed, denoted as Mesh 1 (coarse), Mesh 2 (medium) and
Mesh 3 (fine), by considering an angle of attack equal to 0°. At this point, it is noted that the
desired angle of attack for each flow simulation was achieved by properly rotating the airfoil
geometry instead of changing the inflow angle; then the updated computational domain was
re-meshed. Therefore, a different computational grid was constructed for each one of the
considered airfoils and angles of attack. This procedure was adopted in order to retain a high

grid density in the wake region for all different angles of attack.

All three grids were generated by adopting a computational domain, such as the one
depicted in Figure 7.3a, in which the inflow boundary was placed at a distance of 25 chord
lengths upstream the airfoil’s leading edge and the outflow boundary at a distance of 40 chord
lengths downstream the airfoil’s trailing edge. Mesh 1 (which is the coarsest among the
examined ones) was composed of 164,345 triangular and 25,284 quadrilateral elements, with a
total number of nodes equal to 107,927. For the description of the airfoil geometry 602 points
were used along the airfoil surface, by applying a denser distribution near the leading and
trailing edges. Mesh 2 was constructed by applying a denser points distribution on the airfoil
surface (804 points), accompanied by increasing mesh resolution within the entire
computational domain; it comprises of 380,032 triangular and 28,140 quadrilateral elements,
with a total number of nodes equal to 218,765. Finally, an even finer mesh resolution and
denser points distribution on the airfoil surface was adopted for the construction of Mesh 3,
which is composed of 686,556 triangular and 47,920 quadrilateral elements, with a total
number of nodes equal to 392,160. The wall spacing of the first inflation layer, created on the
airfoil surface for all the three grids, was calculated by considering a y* value of approximately

1. The corresponding meshing parameters are also provided in Table 7.1.
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Mesh Parameter Mesh1l Mesh2 Mesh3

Number of Nodes 107,927 218,765 392,160

Triangular Elements 164,345 380,032 686,556

Quadrilateral Elements 25,284 28,140 47,920

Points on Airfoil 602 804 1200

Target y* =1.0 =1.0 =1.0

Table 7.1: Meshing parameters used for the grid independence study.

Table 7.2 presents the numerical lift and drag coefficients of the RG15 airfoil at Re =
300,000 and a = 0°, as obtained by using Mesh 1, Mesh 2 and Mesh 3. Apparently, no
significant variation of the lift and drag coefficients was found by increasing the mesh
resolution over the levels provided by Mesh 2; the percentage difference in both lift and drag
obtained through the utilization of Mesh 2 and Mesh 3 was below 0.3%, even though the
number of nodes has been almost doubled. Therefore, the resolution provided by Mesh 2 is
considered sufficient to result in a mesh independent solution. Consequently, a computational
mesh of analogous resolution was constructed for each one of the different angles of attack
that were encountered during this validation study. Such a computational mesh is presented

in Figure 7.3a and Figure 7.4.

Number of Nodes () Cp Percentage Diff. - C;, Percentage Diff. - Cp
Mesh 1 107,927 0.2355460 0.0117844 - -
Mesh 2 218,765 0.2353327 0.0116944 0.09% 0.76%
Mesh 3 392,160 0.2353510 0.0116699 0.01% 0.21%

Table 7.2: The results of the grid independence study. The flow simulations were performed for RG15
airfoil at Re = 300,000 and o = 0°.

The RANS simulations were conducted at Re = 300,000 for angles of attack ranging from
—6° to 12° (using an increment of 1°); therefore, 19 computational grids were constructed in
total. In Figure 7.5, the lift and drag coefficients of the RG15 airfoil as a function of the angle
of attack are illustrated, as obtained from the testing program at the UIUC low-turbulence
subsonic wind tunnel (Broeren et al., 1995), XFOIL code and IGal2D solver. As it seems, the
trend of both experimental curves have been well predicted by the RANS solver; however, an
over-prediction of the drag coefficient was observed (typical characteristic of the SST k — w
turbulence model), especially for the angles of attack lying between —3° and 6°. According to

the results presented in the study of Morgado et al. (2016), a better match of the experimental
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drag coefficients could be achieved by the utilization of low Reynolds number correction to

the standard SST k — w turbulence model..

Farfield

No-Slip Wall

Outflow

Farfield

(a) (b)

Figure 7.3: (a) The computational domain used for the validation study of the RANS solver, (b) Wide
view of the corresponding computational grid.

(a) (b) (c)
Figure 7.4: The hybrid computational grid used for the flow field simulation of the original RG15

airfoil at a = 6°.
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Figure 7.5: The lift and drag coefficients of the original RG15 airfoil at Re = 300,000, as obtained by
XFOIL software, IGal2D solver and the experimental measurements (Broeren et al., 1995).
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7.2.2 Lift and Drag Calculation

The components of the total aerodynamic force R = (Ry, R,,) on the airfoil are calculated
by integrating the pressure (p) and shear stress (7) distributions over the airfoil contour
(Cs) (Anderson, 2010). Thus,

R, = _3€ pryds + ¢ (Tyxny + Toyny)ds, (7.2)
Cs Cs
Ry, =— £ pnyds + jgc (Txynx + Tyyny)ds. (7.3)

Herein, n, and n,, denote the components of the unit vector # normal to the airfoil surface;
Txxs Txys Tyx and 7,,,, represent the components of the viscous stress tensor. Subsequently, the

lift and drag forces on the airfoil can be obtained through the following equations
(Anderson, 2010):

L = Ry, cos(¢@) — R, sin(¢g), (7.4)
D = Ry cos(@) + Ry, sin(¢), (7.5)

where @ is the angle between the inflow velocity vector and the x axis. In this study, ¢ angle
is zero, since the desired angle of attack is simulated by rotating the airfoil geometry.

Eventually, the lift and drag coefficients are calculated as follows (Anderson, 2010):

C, = 2L/pucc, (7.6)
Cp = 2D /pusc, (7.7)

where p represents the air density, u, the ambient wind speed and c the airfoil chord.

7.3 Numerical Results and Discussion

7.3.1 XFOIL Results

Similarly to the preceding validation study, the analysis of RG15 airfoil family was
performed by setting the value of N..;; parameter equal to 9 and Mach number equal to
0, while the same panel resolution was adopted (300 points on each airfoil surface). The
aerodynamic performance of the proposed RG15 airfoil family was evaluated for each one
of the Reynolds numbers examined during the wind tunnel experiments (Broeren et al.,

1995), by considering a range of angles of attack between -6° and 20¢. Table 7.3 contains the
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maximum lift-to-drag ratio (L/D)mqex and the maximum lift coefficient C;, . for the RG15
airfoil and the entire RG15 airfoil family at the corresponding Reynolds numbers, ranging
from Re = 60,000 to Re = 300,000. Apparently, the decrease of Re results in the reduction
of (L/D)max for each one of the examined airfoils, while for a fixed Re value, a reduction
in (L/D)max Was also detected by increasing the thickness distribution. Therefore, all
airfoils of the RG15 family exhibit a (L/D)qy loss, for every Re, as compared with the
original RG15 airfoil. However, the percentage loss of (L/D),;4x between a thickened and
the original RG15 airfoil seems to decrease with increasing Re. In particular, the maximum
reduction in (L/D) 4, was found for the RG15-(50)-70-1 airfoil at Re = 60,000; it was equal
to 12.68%. The corresponding reduction at Re = 300,000 was equal to 4.13%, while the
percentage reductions for the rest of Reynolds numbers lie within the range defined by
the aforementioned values. Apparently, the particular range decreases as the thickness-
to-chord ratio is reduced. For example, the reduction in the maximum lift-to-drag ratio
for the RG15-(30)-70-1 airfoil was found equal to 7.52% and 2.09%, at Re = 60,000 and
Re = 300,000 respectively. Conclusively, the impact of thickness distribution on the

maximum lift-to-drag ratio tends to deteriorate as the Re increases.

60,000 Re 100,000 Re 150,000 Re 200,000 Re 300,000 Re
Airfoil

L/Dmax Cimax  L/Dmax Cimax  L/DImax Cimaxr  L/DImax Cimax  (L/Dmax Clmax
Original RG15 39.89 1.088 52.57 1.133 62.38 1.162 68.88 1.169 78.39 1.207
RG15-(00)-70-1 39.50 1.073 52.38 1.109 62.01 1.139 69.22 1.155 78.28 1.195
RG15-(10)-70-1 38.88 1.127 51.53 1.167 61.58 1.203 68.28 1.213 77.57 1.252
RG15-(20)-70-1 38.05 1.162 50.52 1.218 60.93 1.243 67.51 1.258 77.03 1.289
RG15-(30)-70-1 36.89 1.220 49.92 1.274 60.12 1.284 67.06 1.293 76.75 1.319
RG15-(40)-70-1 35.91 1.222 49.09 1.276 59.29 1.293 66.49 1.304 76.00 1.342
RG15-(50)-70-1 34.83 1.250 48.24 1.302 58.44 1.324 65.53 1.325 75.15 1.351

Table 7.3: The maximum lift coefficient and lift-to-drag ratio for each one of the examined airfoils,
at various Reynolds numbers, resulting from the XFOIL analysis.

RG15-(50)-70-1 airfoil demonstrated the maximum reduction in (L/D),4, at Re =
60,000 (Table 7.3) because this is the airfoil with the maximum geometrical deviation
(thickness) from the original RG15 airfoil (compared to all the airfoils in the family) and
the Reynold number is low enough to considerably affect the drag production. The
(L/D)may for all the examined airfoils is observed in the range of angle of attack (a) between
(approximately) 3 and 7 degrees. At this range of a, lift is not affected by the increase in

maximum thickness of the airfoil, for constant Re (see Figure 7.6a and Figure 7.7a). However,
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drag is increased with increasing the maximum airfoil thickness and decreasing Re (see Figure
7.6b and Figure 7.7b). At this Re range, as the Re decreases below 100,000 there is an increase
in drag, particularly because of premature flow separation and failure to reattach, resulting in
a reduced drag bucket and a large decrease in lift (Winslow et al., 2018). At Re in the range
between 50,000 and 100,000 the separation bubble and turbulent boundary-layer thickness
both increase in size (compared to higher Re), a consequence of the higher contribution of the
viscous forces, resulting in increased parasitic drag (Winslow et al., 2018). Nevertheless, at such
low Re, the increase in airfoil thickness results in considerable increase in form drag, due to
trailing edge separation, while simple flat plates outperform conventional airfoils for Re lower
than 50,000 (Winslow et al., 2018).

Although the thickening of the RG15 airfoil results in reduced maximum glide ratios,
an opposite behaviour was observed for the maximum lift coefficient, which seems to
increase by increasing the thickness-to-chord ratio, for a fixed Re value. Apart from Table
7.3, the particular effect is characteristically demonstrated in Figure 7.6a and Figure 7.7a,
which provide the lift coefficient for the entire RG15 airfoil family, as a function of the
angle of attack. Additional information about the behaviour of (L/D)pqey and Cp,, . with
Re can be obtained by observing Table 7.4, which presents the increase rate of (L/D);4, and
CLqy due to theincrease of Re (i.e., the rate of change in (L/D)qx and €, .. as Re changes)
for each airfoil of the RG15 family, using the slope of the linear regression line through
data points suggested in (Animasaun et al., 2019; Shah et al., 2018). According to Table 7.4,
Re has a higher impact on (L/D);qx, as the relative thickness of the airfoil increases.
Unfortunately, such a conclusion cannot be drawn for C Lmax’ since the slope of the linear

regression line for C;, . is not a monotonic function of the relative thickness.

Airfoil RG15 RG15-(00)-70-1  RG15-(10)-70-1  RG15-(20)-70-1  RG15-(30)-70-1  RG15-(40)-70-1  RG15-(50)-70-1
(L/D) max 1.536E-04 1.552E-04 1.548E-04 1.563E-04 1.594E-04 1.605E-04 1.610E-04
CLnax 4.536E-07 4.853E-07 4.910E-07 4.796E-07 3.532E-07 4.437E-07 3.634E-07

Table 7.4: Increase rate of (L/D)pqx and C,, . with Re using the slope linear regression through data

points.

Furthermore, an extension of the high-lift region to higher angles of attack has been
also detected for both Re = 60,000 and Re = 300,000, while the increase of the thickness
distribution leads to a smoother stall behavior, especially at Re = 300,000. This latter
deduction is further supported by observing the performance of the entire RG15 airfoil
family in terms of the drag coefficient, which is represented in Figure 7.6a and Figure 7.7a.

Even though the drag coefficient at Re = 60,000 is analogous to the airfoil thickness for
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the angles of attack ranging from -3° to 7°, an opposite behaviour was found for the angles

of

attack higher than 7°, where the airfoils with a larger thickness-to-chord ratio exhibit a

smaller drag coefficient. A similar behaviour was also identified at Re = 300,000;

however, in the latter case, the drag dependence upon the thickness-to-chord ratio for the

angles of attack below 7° was much weaker.
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Figure 7.6: Aerodynamic characteristics of the RG15 airfoil family at Re = 60,000, as obtained
through the XFOIL analysis. (a) C;, — a. (b) Cp — a. (c) C,/Cp — a. (d) C, — Cp.
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Figure 7.7: Aerodynamic characteristics of the RG15 airfoil family at Re = 300,000, as obtained
through the XFOIL analysis. (a) C;, — a. (b) Cp — a. (c) C,/Cp — a. (d) C, — Cp.
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7.3.2 IGal2D Results

RANS simulations were performed for each airfoil composing the RG15 airfoil family
at Re = 300,000, considering a range of angles of attack from —6° to 12°. As previously
noted, a new computational grid of similar resolution to Mesh 2 was generated for each
airfoil and angle of attack. Thus, by including the original RG15 airfoil, 133 different

computational grids were constructed during this study. Such a computational grid (for

the flow simulation around RG15-(30)-70-1 airfoil at a = 6°) is presented in Figure 7.8.

(a) (b) (c)

Figure 7.8: The hybrid computational grid used for the flow field simulation of the RG15-(30)-70-1
airfoil at a0 = 6°.

7.3.2.1 Aerodynamic Coefficients

Figure 7.9 illustrates the aerodynamic characteristics of the RG15 airfoil family at Re =
300,000, as obtained by the RANS simulations. In accordance to the results of XFOIL analysis,
no significant variation in the linear region of the lift coefficient has been observed with
increasing thickness-to-chord ratio, as shown in Figure 7.9a; a similar behavior in terms of drag
coefficient was also found. Even though the drag coefficient seems to be proportional to the
thickness-to-chord ratio, for the angles of attack ranging between —5° and 8°, a trend reversal
was detected for the angles of attack higher than 8°, in which the airfoils with a larger
thickness-to-chord ratio exhibit a smaller drag coefficient. This is probably attributed to the
ability of the thicker airfoils of the RG15 family to maintain the flow attached at higher angles
of attack (later and smoother stall). The quantification of the relationship between lift-to-drag

ratio and angle of attack (Figure 7.9¢) is provided in Table 7.5.
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300,000 Reynolds Number

AcA RG15 RG15-(00)-70-1  RG15-(10)-70-1  RG15-(20)-70-1  RG15-(30)-70-1  RG15-(40)-70-1  RG15-(50)-70-1
-6° -14.56 -14.51 -23.60 -25.77 -26.82 -27.37 -28.51
-5¢ -19.55 -19.62 -20.69 -21.66 -21.42 -21.42 -21.56
-4° -14.90 -14.69 -14.55 -14.65 -14.74 -14.73 -14.40
-3¢ -7.23 -6.95 -6.67 -6.77 -6.98 -6.83 -6.84
-2° 1.62 1.76 1.94 1.58 1.49 1.32 1.24
-1° 10.84 10.80 10.89 10.36 10.20 9.95 9.47
0° 19.97 19.83 19.26 18.90 18.76 18.14 17.80
1° 28.48 28.04 27.53 27.01 26.42 25.96 25.27
2° 36.15 35.50 34.89 34.38 33.39 32.56 32.37
3° 42.60 41.89 41.19 40.66 39.71 39.05 38.00
40 47.74 46.99 46.22 45.94 45.01 44.60 43.32
5° 51.40 50.66 49.54 49.72 49.12 48.43 46.73
6° 53.42 52.46 51.54 52.01 51.65 50.37 49.65
7° 53.65 52.80 52.30 51.65 52.85 50.72 50.62
8° 51.18 50.51 52.31 52.34 52.06 50.68 51.89
9° 46.27 46.17 50.57 52.23 50.93 51.47 48.43
10° 39.49 39.04 45.97 47.05 48.60 47.20 47.18
11° 27.68 23.98 39.19 43.87 43.83 44.20 42.38
12° 16.32 - 31.29 37.71 38.92 40.42 38.93

Table 7.5: Lift-to-drag ratio as a function of angle of attack at Re = 300,000 (RANS analysis).

However, as the preceding validation study already revealed, the drag levels estimated by
the RANS solver are higher than those predicted by XFOIL solver; this conclusion can be easily
drawn by observing both Figure 7.9b and Figure 7.9d, as well as Table 7.6, which provides a
comparison between the maximum lift-to-drag ratios resulted from XFOIL and RANS solvers,
for each airfoil of the RG15 family. In particular, the RANS simulation resulted in maximum
lift-to-drag ratios which are reduced by approximately 30%, as compared to those of XFOIL
analysis, for each airfoil. Furthermore, significant differences can be detected on the prediction
of the angle of attack in which the maximum lift-to-drag ratio is achieved. Nevertheless, a
fairly good agreement on the prediction of the percentage reduction of the maximum lift-to-
drag ratio between the original and the thickened airfoils was found. For example, XFOIL
predicted that the maximum lift-to-drag ratio of the RG15-(50)-70-1 was reduced by 4.6%, as
compared to the original RG15; the estimation of the RANS solver on the corresponding
reduction was equal to 3.2%. A last remark on the RANS results concerns the high drag
coefficient that was observed for the RG15-(00)-70-1 airfoil at —6° (Figure 7.7b). According to

the examination of the respective flow field, this is attributed to the presence of a large
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separation bubble on the lower surface of the particular airfoil, which encompasses a
chordwise extend of approximately 9%. It should be emphasized than no transition model or
low-Re corrections for the turbulence model were used for RANS simulations in this study,

which can partially explain the discrepancies between the XFOIL and RANS results.
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Figure 7.9: Aerodynamic characteristics of the RG15 airfoil family at Re = 300,000 (RANS
analysis). (a) €, — a. (b) Cp — a. (c) C,/Cp — a.(d) C, — Cp.

7.3.2.2 Comparison with XFOIL

Further to the comparisons between the results of XFOIL and 1Gal2D solvers, Figure 7.10
provides the distribution of the pressure coefficient along the RG15-(40)-70-1 airfoil, as
obtained by the IGal2D solver and XFOIL software, for various angles of attack between —5°
and 10°. Although a good match is observed for the largest extend of the airfoil chord and
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both suction and pressure sides, significant discrepancies have been found around the points
in which laminar to turbulent transition is realized. Obviously, this is attributed to the inability
of the standard SST k — w model to predict the particular phenomenon. The calculation of

pressure coefficient was implemented using Eq. (7.8). Thus,

Cp = (P — Do)/ (0.5pu3,) (7.8)

where p,, is the free flow pressure.
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Figure 7.10: Comparison of pressure coefficient distributions obtained by XFOIL software and 1Gal2D
solver for the RG15-(40)-70-1 airfoil at Re = 300,000. (a) « = —5°. (b) a = 0°. (c) a = 5°. (d) a = 10°.

Finally, a detailed comparison of the lift and drag curves for the entire RG15 airfoil family

at Re = 300,000 is provided through Figure 7.11 until Figure 7.16. Apparently, the drag levels
predicted by IGal2D solver are higher than those resulting from the XFOIL analysis for all the
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airfoils composing the RG15 family. On the other hand, a better match is observed for the lift

coefficient curves, which tends to improve as the thickness-to-chord ratio of the airfoil

increases.
300,000 Reynolds Number
Airfoil RG15  RG15-(00)-70-1 RG15-(10)-70-1  RG15-(20)-70-1  RG15-(30)-70-1  RG15-(40)-70-1  RG15-(50)-70-1
(L)%;:ax 78.76 78.65 77.80 77.31 76.56 75.84 75.12
(25/3;‘:; 53.64 52.80 52.31 52.34 52.85 51.47 51.89

Table 7.6: Comparison between the results of XFOIL and RANS solvers, in terms of the maximum lift-

to-drag ratio.
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Figure 7.11: Comparison between the lift and drag curves obtained by XFOIL and 1Gal2D solvers for
the RG15-(00)-70-1 airfoil at Re = 300,000.
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Figure 7.12: Comparison between the lift and drag curves obtained by XFOIL and 1Gal2D solvers for
the RG15-(10)-70-1 airfoil at Re = 300,000.
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Figure 7.13: Comparison between the lift and drag curves obtained by XFOIL and IGal2D solvers for
the RG15-(20)-70-1 airfoil at Re = 300,000.
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Figure 7.14: Comparison between the lift and drag curves obtained by XFOIL and IGal2D solvers for
the RG15-(30)-70-1 airfoil at Re = 300,000.
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Figure 7.15: Comparison between the lift and drag curves obtained by XFOIL and 1Gal2D solvers for
the RG15-(40)-70-1 airfoil at Re = 300,000.
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Figure 7.16: Comparison between the lift and drag curves obtained by XFOIL and 1Gal2D solvers for
the RG15-(50)-70-1 airfoil at Re = 300,000.

7.3.2.3 Flow Field Visualizations

One of the most characteristic feature of the flow field around each one of the airfoils
composing the RG15 family is the formation of a recirculation zone behind the rounded
trailing edge, which is generally composed by two distinct vortex rings. Figure 7.17 illustrates
the recirculation region behing the trailing edge of the proposed airfoils at « = 0° and Re =
300,000. The vortex size is approximatelly equal to 1 percent of the chord length, while no
variation in both size and behavior of the particular recirculation area has been observed by

increasing the thickness-to-chord ratio of the airfoil.

e e e

(a) RG15-(00)-70-1 (b) RG15-(10)-70-1 (c) RG15-(20)-70-1

= = ==

(e) RG15-(30)-70-1 (f) RG15-(40)-70-1 (g) RG15-(50)-70-1

Figure 7.17: Recirculation area behind the rounded trailing edges of the proposed airfoils at a = 0°
and Re = 300,000.
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Although the size of the recirculation zone seems not to be influenced by the thickness-
to-chord ratio, it is highly dependent upon the angle of attack. Figure 7.18 presents the
variation of the recirculation zone behind the trailing edge of the RG15-(30)-70-1 airfoil at
Re = 300,000 for several angles of attack between —6° and 12°. As it can be observed, the
recirculation zone size decreases as the angle of attack increases, until a trailing edge stall
is established. Then, the recirculation region behind the trailing edge is substituted by a
separated flow located on the suction side of the airfoil. According to the available
numerical results, the first appearance of a trailing edge stall for the RG15-(30)-70-1 airfoil
at Re = 300,000 was observed at an angle of attack between 10° and 11°. A similar behavior
in terms of the recirculation zone behind the rounded trailing edge was found during the
analysis of the numerical results for the rest airfoils of the RG15 family. However, in the
cases of RG15-(40)-70-1 and RG15-(50)-70-1 airfoils, the first appearance of a trailing edge
stall was observed at an angle of attack between 9° and 10° (that is slightly smaller than the
corresponding angle of attack for the rest of the RG15 airfoils).

e e B

(a) a = —6° (b) = —4° (c)a=-2°

(d) a =0° (e) a =2° (f) a = 4°
s =
(g) a =8° (h) @ = 10° (i) a = 12°

Figure 7.18: Variation of the recirculation zone behind the trailing edge of the RG15-(30)-70-1 airfoil
with the angle of attack at Re = 300,000.
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Apart from the improvement of the structural characteristics, the thickening of the RG15
airfoil seems to also have a beneficial impact on the appearance of separation bubbles.
Especially, as the thickness-to-chord ratio increases the first appearance of a separation bubble
moves to higher angles of attack. Figure 7.19 illustrates the velocity streamlines around the
leading edge of the airfoils composing the proposed RG15 family at « = 12°. As it is observed,
an open separation area has been formed on the suction side of RG15-(00)-70-1. However, by
increasing the thickness-to-chord ratio, the open separation area is substituted by a short
separation bubble (Figure 7.19b) covering a chordwise extend of approximately 1.6%. Further
increase of the airfoil thickness results in the reduction of the bubble’s size, accompanied by
its movement away from the leading edge. Eventually, no separation bubble was detected on
the upper surface of RG-(50)-70-1. Finally, Figure 7.20 and Figure 7.21 illustrate the pressure
and axial velocity contours for each one of the airfoils composing the RG15 family at the angle

of attack in which the maximum lift-to-drag ratio was detected.

Openarea =~ =% ~~ [, -0016¢ ——— Ly, =0.013c

(a) RG15-(00)-70-1 (b) RG15-(10)-70-1 (c) RG15-(20)-70-1

Lp=0007c _————— L, =0.005c i No Bubble

(d) RG15-(30)-70-1 (e) RG15-(40)-70-1 (f) RG15-(50)-70-1

Figure 7.19: The variation of laminar separation bubble with thickness-to-chord ratio at a = 12°.
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(a) RG15-(00)-70-1 (b) RG15-(10)-70-1 (c) RG15-(20)-70-1

(d) RG15-(30)-70-1 (e) RG15-(40)-70-1 (f) RG15-(50)-70-1

Figure 7.20: The pressure contours around each one of the airfoils composing the RG15 family at the
angle of attack leading to the maximum lift-to-drag ratio (Re = 300,000).

a="7° a=8° a=8°

(a) RG15-(00)-70-1 (b) RG15-(10)-70-1 (c) RG15-(20)-70-1

80

a=17° a=9° a

(d) RG15-(30)-70-1 (e) RG15-(40)-70-1 (f) RG15-(50)-70-1

Figure 7.21: The axial velocity contours around each one of the airfoils composing the RG15 family at
the angle of attack leading to the maximum lift-to-drag ratio (Re = 300,000).
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7.4 Summary

In this study, a low-Reynolds airfoils family (consisted of six airfoils) suitable for the entire
blade span of small horizontal-axis wind turbines has been designed, aiming to reduce the
effects related to laminar separation, increase the structural integrity of the blade, enhance the
startup behavior of the wind turbine and meet the current blade manufacturing limitations.
Initially, 5 thickened airfoils were constructed based on the RG15 airfoil. According to the
followed methodology, the thickened airfoils were designed in such a way that they have the
same mean camber line (MCL), as compared to the one of the original RG15 airfoil (so as to
retain its desirable aerodynamic characteristics), but an increased thickness-to-chord ratio
distribution by 50%, 40%, 30%, 20% and 10% respectively. Then, another custom script was
applied to the original and the thickened RG15 airfoils, for the generation of a rounded trailing
edge without truncating the airfoil, through the proper modification (local thickening) of the
provided airfoil geometries. The final airfoil family resulted through the application of a
parabolic thickness distribution to the thickened airfoils, at their trailing edge region, setting
the value for the blending distance equal to 70% and the trailing edge radius equal to 0.5% of
the chord length respectively. According to the aerodynamic evaluations performed with
XFOIL code at various low Reynolds numbers, the dependence of the blending distance on the
lift and drag coefficients was found practically zero; the same conclusion was drawn for the

dependence of the aerodynamic coefficients on the rounded trailing edge with a radius of 0.5%
of the chord.

The aerodynamic performance of the entire RG15 airfoil family was initially evaluated by
using XFOIL software for various low Reynolds numbers ranging from Re = 60,000 to Re =
300,000. The results of the XFOIL analysis revealed that the increase of the thickness-to-chord
ratio leads to the reduction in the maximum lift-to-drag ratio for each one of the considered
Reynolds numbers. However, as the Reynolds number increases the particular percentage
reduction decreases. Apparently, the maximum reduction in the maximum lift-to-drag ratio,
as compared to the one of the original RG15 airfoil, was found for the lowest Re examined
(60,000) and the RG15-(50)-70-1 airfoil (the thicker airfoil of the RG15 family); this percentage
reduction was equal to 12.68%. The corresponding percentage at Re = 300,000 was equal to
4.6%. Nevertheless, even the largest reduction of the maximum lift-to-drag ratio seems minor
given that this airfoil has a maximum thickness-to-chord ratio that is 50% higher than the
maximum thickness-to-chord ratio of the baseline RG15 airfoil, accompanied by cross-
sectional area that has been increased by approximately 52%. On the other hand, a growth of

the maximum lift coefficient for each Re was found by increasing the thickness-to-chord ratio.

Moreover, the performance of the RG15 airfoil family was further examined by employing

an in-house 2D RANS solver, using the standard two-equation SST k — w turbulence model.
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The RANS simulations were performed at Re = 300,000. Although the results of the RANS
simulation were generally in accordance with those of XFOIL, a notable over-estimation of the
drag coefficient was detected, leading to the under-estimation of the lift-to-drag ratio. Such an
outcome clearly indicates that a low Reynolds number correction model is essential, in order
to increase the accuracy of the numerical results. Finally, the behavior of the recirculation area
behind the rounded trailing edge for different angles of attack was examined, while the
thickening of the airfoils was found to have a beneficial impact on the appearance of laminar

separation bubbles.
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Chapter 8
A Coupled RANS - BEM Model

This chapter features the development and numerical validation of an axisymmetric RANS - BEM
model, which relies on the combination of the in-house BEM and I1Gal2D codes, for the simultaneous
prediction of the wind turbine rotor performance and surrounding flow characteristics. In particular,
the first part of the current chapter provides an implementation overview of the coupled RANS - BEM

model, while the second part includes a detailed validation study on the proposed methodology.

8.1 Overview

In recent years, the ability of BEM models to adequately predict aerodynamic loads and
rotor power curves for a wide range of wind turbine configurations and operating conditions
has been successfully validated against experimental data (Bangga and Lutz, 2021; Xu et al.,
2019; Yang et al., 2014), whereas their application has been extended to shrouded wind turbines
as well (Leloudas et al., 2017; Rio Vaz et al., 2014). Nevertheless, momentum theory inherently
fails to capture the rotor influence on the surrounding flow and, in turn, to predict wake
characteristics (Malki et al., 2013). Definitely, such information could be obtained by
employing detailed computational fluid dynamics models, either RANS or Large Eddy
Simulation (LES) ones, with a fully resolved rotor geometry (Aranake ef al., 2015; Watanabe
and Ohya, 2019); however, these high-fidelity numerical approaches call for excessive
computational cost, especially when integrated within iterative design optimization schemes.
Besides, their implementation entails significant challenges stemming from the three-
dimensional nature of the problem. Against this background, a wide family of hybrid models
combining computational fluid dynamics techniques with BEM or actuator disc theory, have
been recently proposed (Behrouzifar and Darbandi, 2019; Belloni et al., 2017; Guo et al., 2015;
Khamlaj and Rumpfkeil, 2018; Malki et al., 2013; Turnock et al., 2011; Zhong et al., 2019).

The fundamental idea behind the so-called CFD - BEM approaches relies on replacing the
momentum part of the classical BEM theory with a more elaborate flow model, such as the
Navier-Stokes or Euler equations, while assuming an actuator disc representation of the actual
rotor geometry (Malki et al., 2013). Eventually, the rotor blades are modelled by means of body
force terms (naturally included within the momentum conservation laws) and blade element
theory equations. The main advantage of this method is that the physical characteristics of the
rotor blades can still be introduced within the analysis by using source terms, rather than being

specifically resolved using an exact geometry, allowing for less complicated grids. Besides, the
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representation of the rotor geometry with an actuator disc renders the entire flow field
axisymmetric, enabling the utilization of time-saving axisymmetric solvers. Another
significant advantage of this method is that it can be equally applied to the cases of
unshrouded and shrouded wind turbines, in contrast to the stand-alone BEM method, where
proper modification of the classical momentum theory is required in order to include the
diffuser’s effect (Leloudas et al., 2017; Rio Vaz et al., 2014). This chapter presents the
development of an efficient RANS - BEM model, implemented by coupling the recently in-
house developed axisymmetric RANS solver 1Gal2D (Leloudas et al., 2021; Lygidakis et al.,
2020) with the also in-house developed BEM code (Leloudas et al., 2017).

8.2 Flow Modeling and Blade Representation

Flow modelling is based on the axisymmetric formulation of the incompressible RANS
equations, which essentially provide a time-averaged representation of mass and momentum
conservation laws (Blazek, 2015). Eventually, by adopting a conservative formulation, and
introducing the artificial compressibility approach (Chorin, 1967) for coupling pressure and
velocity fields, the axisymmetric RANS equations for incompressible fluid motion, in terms of

dimensionless parameters, can be expressed as (Leloudas et al., 2021):

Continuity:

op , 0By,  OPur __pur

= — 8.1
Jt 0z or r ®.1)
Radial Momentum (7):
du, a(uzur) a(uf + P) 0Tz 0Ty _ u12” Trr  Tog ug
ot "o T e o r o rryth 62
Azimuthal Momentum (0):
aUQ a(uzug) a(urug) 6129 aTrg _ 2
ot VT oz T or oz or rlre ke tfe (8:3)
Axial Momentum (z):
% a(uZ +p) n d(uzuy) _ 0Tz, _ 0Tz _ Tzr  Ugly +f (8.4)

ot 0z ar 0z ar T T

Please recall that f,, f;, fo denote the momentum source terms (body forces per unit volume).
These terms provide a convenient means by which the effect of external objects, such as wind

turbine blades, can be introduced into the momentum equations (Siebert and Yocum, 1993),
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actually forming the basis of RANS - BEM concept. Detailed information on the governing
flow equations, as well as on the academic IGal2D solver employed for their numerical

solution, can be found in Chapter 4.

The computation of axial and tangential force distributions over the actuator (rotor) disk,
which are eventually fed into the flow model by means of the momentum source terms, is
performed using BEM theory, and particularly by employing the in-house developed BEM
code — a detailed description of the theoretical background underlying the current BEM model
is given in Chapter 2. At this point, let us recall that in the framework of a stand-alone BEM
simulation the calculation of induced velocities at the rotor plane is achieved by applying a
fixed-point iteration scheme, in which the induction at the current iterative step is expressed
as a function of the induction at the previous step (McWilliam and Crawford, 2011); an
overview of the adopted iterative process is presented in Section 2.3.4. However, the
implementation of such an iterative process during the application of a coupled RANS - BEM
model is not actually required; in fact, a coupled RANS - BEM model allows for the direct
calculation of the induced velocities by means of Eq. (2.63) and Eq. (2.64), since the values of
axial and tangential velocity components at the disc are explicitly provided by the RANS
solver. In this regard, the in-house developed BEM code has been properly modified so as to
be capable of operating either in stand-alone mode or coupled with IGal2D solver, within the
context of a RANS - BEM simulation. In the latter case, the source terms of the axial (f;) and
tangential (fy) momentum equations must be replaced with the total axial and tangential
forces per unit volume. In the adopted axisymmetric coordinate system, a two-dimensional
control cell with an axial length of dz and a radial length of dr represents a volume of 2rrdrdz.

Therefore, the forces per unit volume are given as:

f, = BrE,dr/2nrdrdz, (8.5)

fo = BgF:dr/2nrdrdz . (8.6)

Here, it is recalled that BEM theory neglects radial interaction between the blade elements,
hence f, = 0. In addition, please note that the aforementioned source terms are applied only

to the computational cells within the actuator disc region.

8.3 Coupling Approach

The entire coupling procedure is coordinated by 1Gal2D software. After the initialization
stage of the axisymmetric flow solver, a single stand-alone BEM simulation is performed, in
order to provide an initial estimation of the aerodynamic loads; then, the axial and tangential

force distributions (F, and F;) are transferred into the 1Gal2D software and the source term
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formulation is implemented. At this point, please recall that IGal2D solver adopts a
dimensionless formulation of the governing flow equations, while the BEM code a
dimensional one. Therefore, prior to any force or velocity exchange, the respective flow
quantities have to properly normalized. Given an initial approximation of the aerodynamic
loads, the RANS solver initiates. Interaction between IGal2D and BEM software is not
performed for every internal RANS iteration, since this proved to adversely affect
convergence. Instead, interaction is enabled after the completion of a user-prescribed finite
number of internal RANS iterations. At each interaction stage, the axial (u,,4) and tangential
(ug q) velocity components at the rotor plane are fed into the BEM solver. Subsequently, the
BEM code runs in actuator disc mode and feeds back to IGal2D the updated force distributions,
closing the interaction loop. For the interpolation of blade forces and velocities between the
grid nodes and blade elements appropriate Matlab scripts are executed, implementing a B-
Spline interpolation. The simulation is terminated when the established residual criteria are
satisfied. A schematic overview of the adopted coupling methodology is provided by the flow
chart in Figure 8.1.
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Figure 8.1: Flow chart of the RANS - BEM methodology.
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8.4 Numerical Validation of the RANS-BEM Model

The current section aims to investigate and eventually validate the ability of the proposed
RANS - BEM methodology to accurately predict the aerodynamic performance and power
output of both conventional horizontal-axis and shrouded wind turbine rotors, as well as the

characteristics of the surrounding flow field.

8.4.1 NREL 5-MW Reference Wind Turbine

The first validation case involves the performance prediction of the NREL 5-MW reference
wind turbine, which was originally developed by National Renewable Energy Laboratory and
reflects the design specifications of a utility-scale system for offshore energy production in the
megawatt range (Jonkman et al., 2009). The particular variable-speed and pitch-regulated wind
turbine system is characterized by a three-bladed upwind rotor with a diameter of
approximately 126 meters; detailed information on the geometric characteristics of the NREL
5-MW wind turbine blade are provided in Table 3.4. In this validation study, four typical
points within the operating envelope of NREL 5-MW reference wind turbine are considered,
covering the major control regions of the encountered system, as shown in Table 8.1. In
particular, Region 2 refers to variable speed control, Region 3 refers to variable pitch control
and finally, Region 2.5 refers to the transitional region between variable speed and variable

pitch control.

Case Wind Velocity Rotor Speed Pitch Angle TSR Control Region
1 8.0 m/s 9.16 RPM 0.00 deg 7.55 2
2 11.0 m/s 11.89 RPM 0.00 deg 7.13 25
3 11.4 m/s 12.06 RPM 0.00 deg 6.97 2.5
4 15.0 m/s 12.10 RPM 10.45 deg 5.32 3

Table 8.1: Summary of the simulation cases for the NREL 5-MW reference wind turbine.

8.4.1.1 Numerical Setup

The computational domain for the numerical simulation of the NREL 5-MW reference wind
turbine is illustrated in Figure 8.2. The axial and radial sizes of the domain — as well as the
distance of the actuator disc from the upstream and downstream boundaries — were
determined based on the recent study of Behrouzifar and Darbandi (2019); in that work the

results of previous computational studies were systematically compared in order to establish
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suitable computational domain sizes and grid distributions. Accordingly, the axial size of the
computational domain in this validation case was set equal to 22R and the radial one to 10R,
while the actuator disc was placed at a distance of 6R from the inflow boundary (Behrouzifar
and Darbandi, 2019). Then, a quadrilateral computational mesh was built, composed by 96,354
cells and 96,976 nodes. The axial length of the grid elements within the actuator disc region
was set equal to 1.59x10-R. Further refinement of the computational grid, illustrated in Figure

8.3, or further enlargement of the computational domain did not prove to affect the numerical
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Figure 8.2: The adopted computational domain for the simulation of NREL 5-MW wind turbine.
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Figure 8.3: Illustration of the quadrilateral computational mesh, employed for the simulation of NREL
5-MW wind turbine.

8-6



Chapter 8 A Coupled RANS — BEM Model

Finally, regarding the adopted parameters and input data for the BEM calculations, please
note that they have been the same with those employed during the stand-alone BEM analysis
of the NREL 5-MW wind turbine configuration, presented in Section 3.1.2. The only difference
is that in the coupled RANS - BEM simulations, the tip and hub losses are exclusively modelled

by using the Shen’s correction model (see Section 2.2.5.2).

8.4.1.2 Numerical Results

Unfortunately, no experimental data for the NREL 5-MW reference wind turbine are
available, as already mentioned during the assessment of the in-house BEM code. Therefore,
at this stage, an indirect validation of the proposed numerical model is performed by
comparing the results of IGal2D simulations against the results of independent high-fidelity
simulations, available in the literature. Table 8.2 and Table 8.3 contain the predicted
aerodynamic power and thrust for the NREL 5-MW wind turbine rotor at free-stream
velocities equal to 8 m/s, 11 m/s and 15 m/s. In particular, the results of IGal2D are compared
against those reported in the study of Anderson et al. (2015), where the aerodynamic
characteristics of the NREL 5-MW rotor were examined by employing two numerical
simulation tools; namely, an wunsteady Reynolds-Averaged Navier-Stokes method
(OVERFLOW?2) and a large eddy simulation method (SOWFA). Detailed information on the
aforementioned simulation tools and the established simulation parameters can be found in

the same study.

In terms of aerodynamic power prediction, the results of IGal2D are generally in reasonable
agreement with those of SOWFA and OVERFLOW?2. For each one of the encountered
operating point the prediction of 1Gal2D lies between those of SOWFA and OVERFLOW?2,
with the only exception being the case of 11 m/s, where the power prediction of 1Gal2D is
slightly higher than the respective one obtained from SOWFA. In general, the maximum
percentage difference between 1Gal2D and SOWFA was observed at 15 m/s and it was
approximately equal to 2.5%. On the contrary, the maximum percentage difference between

IGal2D and OVERFLOW?2 was observed for 8 m/s and it was approximately equal to 8.5%.

NREL 5MW Reference Wind Turbine — Aerodynamic Power

Wind Speed  Rotor Speed IGal2D SOWFA OVERFLOW2

8.0 m/s 9.16 RPM 1974 kW 1985 kW 1733 kW
11.0 m/s 11.89 RPM 5066 kW 5061 kW 4650 kW
15.0 m/s 12.10 RPM 5231 kW 5093 kW 5499 kW

Table 8.2: Comparison of predicted power using different turbine simulation tools, for the NREL 5-
MW reference wind turbine at various operational points.
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Similar levels of accuracy can be observed on the prediction of aerodynamic thrust. Once
more, the predictions of IGal2D are between those of SOWFA and OVERFLOW?2 for each one
of the encountered operating points; yet, much closer to those of SOWFA. In this case, the
maximum discrepancy between IGal2D and SOWFA was observed at 15 m/s and it was equal
to approximately 1.7%. However, a significant deviation between 1Gal2D and OVERFLOW
was found at 15 m/s, equal to 10%. Nevertheless, the percentage difference on thrust prediction

results for both 8 m/s and 11 m/s was not larger than 4%.

NREL 5MW Reference Wind Turbine — Aerodynamic Thrust

Wind Speed  Rotor Speed IGal2D SOWTFA OVERFLOW?2

8.0 m/s 9.16 RPM 387 kN 382 kN 399 kN
11.0 m/s 11.89 RPM 703 kN 693 kN 733 kN
15.0 m/s 12.10 RPM 413 kN 405 kN 455 kN

Table 8.3: Comparison of predicted thrust by different turbine simulation tools, for the NREL 5-MW
reference wind turbine at various operational points.

Figure 8.4 to Figure 8.6 provide a detailed comparison between the results of IGal2D and
SOWFA (Anderson et al., 2015) in terms of momentum deficit prediction in the wake of NREL
5-MW wind turbine. The comparisons refer to eight stations downstream of the rotor,
corresponding to the following axial positions: 0.16R, 0.5R, 1R, 2R, 4R, 6R, 8R, and 12R.
Overall, the results of IGal2D match well with those obtained by SOWFA.
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Figure 8.4: Axial momentum deficit predicted by IGal2D and SOWFA for the NREL 5-MW rotor at
Uy, = 8m/s.
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However, some notable discrepancies can be identified as well, which are mainly located
around the hub region. Since both models treat the rotor as if it had no hub, this discrepancies
probably stem from different turbulence modeling approaches. Similar discrepancies can be
also found for 8 m/s and 11 m/s at axial stations after 6R. Particularly, SOWFA seems to predict

a larger axial momentum deficit around the radial position corresponding to the blade tip.
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Figure 8.5: Axial momentum deficit predicted by IGal2D and SOWFA for the NREL 5-MW rotor at
U = 11m/s.
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Figure 8.6: Axial momentum deficit predicted by IGal2D and SOWFA for the NREL 5-MW rotor at

U, = 15m/s.

Finally, in order to further validate the proposed computational model, the corresponding
results in terms of axial and tangential force distributions over the NREL 5-MW blade, are

compared against those obtained by detailed 3D RANS simulations with a fully resolved rotor
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geometry, as they reported in the study of Zhong et al. (2019, 2020). The comparisons are
performed for the operational conditions in which the particular wind turbine has been rated;
namely, an ambient wind speed of 11.4 m/s and a rotational speed of 12.06 RPM. According to
the results presented in Figure 8.7, the in-house axisymmetric model is capable of achieving

similar levels of accuracy to the definitely much more elaborate reference model.
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Figure 8.7: Axial and tangential force distribution over the NREL 5-MW blade at 11.4 m/s and 12.06
RPM.

8.4.2 NREL Phase VI Rotor

The second validation case considers the well-documented NREL Phase VI wind turbine,
which was extensively investigated during the Unsteady Aerodynamics Experiment (UAE)
conducted at the 24.4 m x 36.6 m wind tunnel facilities of the National Aeronautics and Space
Administration (NASA) Ames Research Center (Hand et al., 2001). The scope of that
experimental campaign was to obtain accurate quantitative aerodynamic and structural data
for the development and validation of enhanced engineering models. The NREL Phase VI
wind turbine refers to a stall-regulated configuration with full-span pitch control and a rated
capacity of approximately 20 kW; the two-bladed rotor of the wind turbine has a diameter of
10.058 m and operates at a constant speed of 72 RPM (Hand ef al., 2001). Overall, the
experimental campaign included 30 different operating states and configurations. In this
study, the numerical validation of the RANS - BEM model is performed by using the
experimental results that correspond to test sequence S; the particular test sequence refers to
upwind operation, a blade pitch angle of three degrees and zero yaw angle. At this point,
please recall that the blade pitch angle is actually referred to the pitch angle of the blade tip,
which is defined as the angle between the rotor plane and the chord of the blade tip. Besides,
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this validation study considers a shrouded NREL Phase VI wind turbine configuration that
was numerically studied by Aranake ef al. (2013). However, no experimental results are
available for the case of shrouded wind turbine. Therefore, IGal2D is validated against the
numerical results of 3D RANS simulations reported by Aranake et al. (2013). The operating

points for both test cases are presented in Table 8.4.

Wind Velocity  Rotor Speed  Tip Pitch Angle Yaw Angle Shroud
5m/s 72 RPM 3.0 Deg 0.0 Deg NACA 0006
7 m/s 72 RPM 3.0 Deg 0.0 Deg -

Table 8.4: Summary of the simulation cases for the NREL Phase VI rotor.

The examined shroud geometry is defined by a conventional NACAO0006 airfoil with a
chord length equal to the rotor radius (5.029 m) that has been placed at an angle of 15 degrees
relative to the symmetry axis. The rotor (actuator disc) is located at an axial position of 0.1R
downstream of the shroud’s leading edge. A schematic representation of the shrouded rotor
is presented in Figure 8.8. Finally, detained information on the geometric characteristics of the

NREL Phase VI wind turbine blade can be found in Section 3.1.1.

A
| 150

Actuator Disc

Inlet Qutlet

Symmetry Axis

Figure 8.8: Shroud configuration for the NREL Phase VI wind turbine rotor.

8.4.2.1 Numerical Setup

For the numerical simulation of the unshrouded NREL Phase VI wind turbine rotor, the
same computational domain and grid as for the previous validation case (Section 8.4.1) was
employed. On the other hand, the simulation of the shrouded NREL Phase VI configuration
was performed by adopting a larger computational field, which extends 15R upstream and

30R downstream the rotor; the radial size of the computational domain was set to 15R. Besides,
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a hybrid computational mesh was generated, including 436,116 triangular elements and 42,029
quadrilateral ones. The total number of grid nodes was 261,737 with a target y* value below
unity. In particular, quadrilateral elements were generated around the shroud surface and the
actuator disc regions, while the rest of the computational domain was filled with triangular
ones. The domain size and grid resolution were finalized based on a grid independence study.

An overview of the employed computational mesh is shown in Figure 8.9.

Radial Position - y/R [-]

L oo oo oo b oo oo b b b b b b a bl
-15 12 -9 -6 -3 0 3 6 9 12 15 18 21 24 27 30
Axial Position - x/R [-]

Figure 8.9: Overview of the hybrid computational mesh adopted for the simulation of the shrouded
NREL Phase VI wind turbine rotor.

8.4.2.2 Numerical Results — Unshrouded Configuration

For the unshrouded NREL Phase VI rotor, Table 8.5 provides a comparison between the
numerically predicted and experimental values of aerodynamic power and thrust at free
stream velocity of 7 m/s. Apparently, both reference quantities have accurately been predicted.
The percentage difference between the numerical prediction and experimental measurement
of aerodynamic power is less than 1%, whereas the respective percentage difference for rotor
thrust is approximately 3%. In addition, the axial and tangential force distributions over the
NREL Phase VI are compared in Figure 8.10; both distributions have been accurately predicted

for the entire blade span.

IGal2D NREL Experiment
Wind Speed Power [W]  Thrust [N] Power [W] Thrust [N]
7.00 m/s 6006 1158 6030 1120

Table 8.5: Numerical predictions and experimental data for power and thrust.
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Figure 8.10: Axial and tangential force distributions over the bare NREL Phase VI rotor at 7 m/s.

8.4.2.3 Numerical Results — Shrouded Configuration

As previously mentioned, no experimental data for the shrouded NREL Phase VI rotor are
available. Thus, the results of the proposed model are compared against the numerical results
of the detailed three-dimensional RANS simulations, reported in the study of Aranake et al.
(2013). Table 8.6 compares the numerical predictions for the aerodynamic power and thrust,
revealing that despite the various simplistic assumptions within the RANS - BEM models,

IGal2D is capable of reasonably approximating the results of high-fidelity simulation tools.

IGalL2D 3D RANS
Wind Speed Power [W] Thrust [N] Power [W] Thrust [N]
5.00 m/s 4190 957 4013 927

Table 8.6: Numerical predictions for power and thrust, for the shrouded NREL Phase VI rotor.

In addition, Figure 8.11 illustrates the distribution of axial velocity for two upstream
positions, three downstream positions and one position just before the rotor plane. As one can
observe, the results of IGal2D match well with those of the reference study. Finally, Figure 8.12
provides the numerical predictions of axial and tangential forces along the NREL Phase VI
blade. Once more, the prediction of 1Gal2D is consistent with that of the three-dimensional
RANS simulation, even though it does not include a transitional turbulence model, such the
one employed in the reference study of Aranake et al. (2013). Further validation of 1Gal2D

using experimental data for a second shrouded wind turbine is provided in Section 10.3.1.
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Figure 8.11: Axial momentum deficit for the shrouded NREL Phase VI rotor at 5 m/s.
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Figure 8.12: Axial and tangential force distribution over the NREL Phase VI blade for the shrouded

8-14

configuration at 5 m/s.



Chapter 9

Optimization Framework for Shrouded Wind Turbines

This chapter describes a modular optimization framework for the aerodynamic shape optimization of
shrouded wind turbines, which combines the analysis tools developed within the current study with a
parallel and asynchronous version of a meta-model assisted Differential Evolution (DE) algorithm. The
first part of this chapter (Section 9.1) outlines the major features of the in-house developed surrogate-
assisted Differential Evolution algorithm employed as the optimizer. The particular asynchronous and
parallel version of the current algorithm was developed at the Turbomachinery and Fluid Dynamics
laboratory, in the context of the doctoral dissertation of Giorgos A. Strofylas. Subsequently, in Section
9.2, this chapter describes the development of an in-house mesh parameterization and deformation tool
that is based on Free-Form Deformation, while the last part of the current chapter (Section 9.3) provides

an overview of the proposed optimization framework.

9.1 The Differential Evolution Algorithm

Evolutionary Algorithms (EAs) represent a flexible and robust branch of heuristic methods,
characterized by low sensitivity in terms of local minima treatment and efficient sense of
balance between exploitation of the best solutions and exploration of the entire search space
(Leloudas et al., 2020a). From this perspective, a parallel and asynchronous version of a highly
versatile Differential Evolution (DE) algorithm (Strofylas et al., 2018) — that is further enhanced
by the addition of two artificial neural networks — has been selected to form the basis of the
optimization cases encountered in this study. The particular optimization algorithm is
constantly developed within the Turbomachinery and Fluid Dynamics Laboratory (TurboLab
—TUC), while the current implementation was mainly devised within the doctoral dissertation

of Giorgos Strofylas (Strofylas, 2021).

One of the most characteristic features of the current implementation is “differential
mutation”. According to this evolutionary operator, a new chromosome (called trial vector) is
produced for each individual within the current population. The creation of a new trial vector
relies on the combination of three distinct chromosomes, randomly selected among all the
individuals of the current population; the combination strategy involves the addition of the
weighted difference vector between the two members of the triplet to the third one, the so
called donor. Subsequently, a crossover recombination is applied to the mutant and the parent

chromosomes of the current population, which results in the final candidate (trial) vector.
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Detailed information on the employed optimization algorithm can be found in the following
studies (Leloudas et al., 2018b, 2020a; Nikolos, 2011, 2013; Strofylas, 2021; Strofylas et al., 2018).

9.1.1 Surrogate Models

In each generation of the DE algorithm, every single trial vector has to be initially evaluated
and then, to be compared against its parent chromosome; the better-fitted among them will
pass to the next generation. The incorporation of surrogate models (or meta-models) within
this evaluation procedure provides the opportunity to avoid the costly CFD-based
evaluations, using faster approximations instead (Nikolos, 2011). According to the followed
approach, a surrogate model is employed to pre-evaluate each trial vector. In case that the
result of the pre-evaluation indicates that the trial vector is lower-fitted than its parent
chromosome, the latter one is directly passed to the next generation, while the trial vector is
abandoned. On the contrary, if the pre-evaluation results that the trial vector is better-fitted
than its parent chromosome, then an exact re-evaluation follows, accompanied by a second
comparison between the trial and the parent chromosomes. If the trial is still better-fitted than
the parent chromosome, then the former one is transferred to the next generation. Otherwise,

the trial vector is rejected and the parent chromosome passes to the next generation.

In the current optimization study, the DE algorithm is combined with a Multilayer
Perceptron (MLP) and a Radial-Basis Function (RBF) Artificial Neural Networks (ANNSs). The
utilized surrogate models are used as an ensemble. Even though the available models are re-
trained and re-tested in every single generation, using the same training and testing data sets,
only the best one between them is chosen to be used for the pre-evaluation of the trial vectors.
The selection of the surrogate model (which may be different in each generation) is made using

the criterion of the lower testing error.

9.1.2 Parallelization Strategy

The current parallelization strategy has been based on a master-slave architecture and
implemented by means of the Message Passing Interface library functions. According to the
adopted master-slave approach, all the chromosomes comprising the current population are
scattered to the available slave processors (slave nodes). Each one of them is responsible for
the evaluation of a single chromosome and the application of the required evolution operators
(namely, mutation, crossover and selection). On the other hand, one of the available processors
is chosen to be the master node; this master processor coordinates the entire optimization
procedure and performs the inexact evaluations, through the use of a surrogate model. The

flowcharts describing the parallel implementation of the DE algorithm are provided in Figure
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9.1, while a thorough description of the adopted parallelization strategy can be found in the
works of Strofylas (2021), Strofylas et al. (2018) and Leloudas et al. (2018a, 2018b, 2020a).

9.1.3 Asynchronous Implementation

In the synchronous implementation of the particular algorithm, the succession between two
consecutive generations can only be achieved when all the slave processors have finished with
the evaluation of their assigned chromosomes. However, as these evaluation times may
generally differ, some of the slave processors remain idle, waiting for the last one to reach the
so-called synchronization barrier. To overcome this deficiency and reduce the overall time
required, an asynchronous update of the current DE algorithm has been developed. According
to the asynchronous implementation, the generation is not strictly defined and the current
population may include chromosomes that actually belong to different generations. Each
newly generated trial vector can directly replace the parent chromosome (if better fitted) and
become a member of the current population, just after the end of its evaluation process,
without waiting for the end of the evaluation stages of the rest members of the auxiliary
population (Strofylas et al., 2018). Therefore, individuals can evolve independently (without
full coordination between generations), while the improved solutions can contribute

immediately to the evolution process, accelerating the convergence rate.
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Figure 9.1: Flowcharts of the parallel differential evolution algorithm (Leloudas et al., 2020a).
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9.2 Mesh Parameterization and Deformation

Geometry parameterization is one of the most crucial components to any shape
optimization methodology; the employed parameterization technique should take into
consideration the specific characteristics of the optimization problem at hand, facilitating the
detailed, robust and flexible definition of a wide range of potentially complex shapes
(Yamazaki et al., 2010). Besides, in the case of numerical shape optimization schemes in which
design evaluation is performed by means of calls to a mesh-based solver, a new geometry
definition should also be accompanied by either the proper deformation of the initial
computational mesh or the generation of a completely new one (Morris ef al., 2008). Thus, in
such optimization applications, two distinct parameterization strategies are generally
followed; according to the first one, a parameterization technique can be used to exclusively
control and modify the design geometry, from which a new computational mesh should be
then generated, while according to the second one, a parameterization technique can
alternatively be used to control and deform the computational mesh itself. Between these
approaches, mesh parameterization and deformation techniques are generally preferred over
regeneration ones, since they require less computational resources, do not involve the
utilization of an automatic mesh generator and prevent the potential introduction of numerical
errors within the analysis, due to the change in spatial discretization of the computational

domain (Allen and Rendall, 2013; Morris et al., 2008; Yamazaki et al., 2010).

Within the current optimization framework, mesh and geometry parameterization are
simultaneously succeeded by employing an in-house developed computational tool, based on
the well-known Free-Form Deformation (FFD) technique (Sederberg and Parry, 1986); this is
a versatile and powerful point-based methodology that does not require any information
about the connectivity of the mesh nodes and results in deformed models with the same
topology to the initial one. Consequently, it can equally and effortlessly be applied to both
structured and unstructured computational meshes, composed by any type of elements. The
fundamental idea underlying the FFD algorithm is to achieve an indirect deformation of the
computational mesh by embedding the mesh nodes into a parametric control grid (lattice);
then by transforming the geometry of the particular lattice, every node enclosed to it

undergoes the corresponding deformation.

Step 1 — Construction of the Parametric Lattice

The first step for the implementation of the FFD method involves the construction of the
parametric FFD lattice, which is actually consisted by an ordered mesh of control points,
placed in such a way that wraps the design geometry and defines the mesh region to be

deformed. Figure 9.2a presents the creation of such a control lattice, built around a NACA 0012
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airfoil. Then, a parametric surface is created based on the control points of the particular lattice.
Even though Bezier surfaces were used in the original version of FFD, a B-spline-based FFD
can also be formulated easily by using the B-Spline basis functions instead of the Bernstein
polynomials. In this application, a B-Spline based FFD version is employed, as the alteration
of a control point does not modulate the entire B-Spline surface. Hence, a focused deformation
can be achieved. The Cartesian coordinates of a mesh point lying within the 2D B-Spline
surface may be calculated using the following formula (Piegl and Tiller, 1995):

n m
St v) = DY Ny () Py ©0.1)
i=0

i=0 j=0

Here, § represents the Cartesian coordinate vector of the examined point, while #;; stand for
the position vectors of the control points forming the FFD lattice. Moreover, N; , and N; ; are
the B-Spline basis functions; N; , is applied in « parametric direction while N; ; is applied in

v parametric direction.
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Figure 9.2: Application of the FFD technique to a hybrid computational mesh around a NACA 0012

airfoil.

Step 2 — Embedding the Object within the Lattice

After the construction of the initial FFD lattice and the corresponding B-Spline surface, a
quadtree algorithm is implemented so a unique parametric pair of coordinates (u,, v) to be
assigned in every single node of the computational mesh to be deformed. For each grid node,

the following algorithm is repeatedly applied (Amoiralis and Nikolos, 2008):

a. The entire parametric area (surface) is divided into four equal subareas.
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b. The Cartesian coordinates of each subarea vertex are calculated using Eq. (9.1).

c¢. The Cartesian coordinates of each subarea vertex are compared to the Cartesian
coordinates of the object’s point under consideration, in order to identify the subarea in

which the corresponding point lies.

d. The latter subarea is divided into four new equal subareas and steps b until d are
repeated for a prescribed number of subdivisions, or until a desirable accuracy is
achieved. The desired parametric coordinates of the searched point are defined as the
parametric coordinates of the center of the subarea, in which the point resides, resulting

from the last subdivision (Patrikalakis and Maekawa, 2002).

Step 3 — Deformation of the Parametric Space

The deformation of the parametric B-Spline surface consists of changing the coordinates

of the control points forming the FFD lattice (Figure 9.2b).

Step 4 — Evaluation of the deformation effects

The evaluation of the effects of the deformation consists of the straightforward process to
calculate the new Cartesian coordinates of all the mesh points lying within the FFD lattice,
using Eq. (9.1). In fact, during the deformation procedure, the parametric coordinates of each
point of the computational mesh do not change, in contrast to their Cartesian coordinates,
which are deformed due to the alteration of the control lattice. Finally, it is emphasized that
the deformation will be applied only to the nodes of the computational mesh that are contained
within the initial FFD lattice; the nodes lying outside this area will stay fixed. In consequence,
the control points corresponding to the extreme right, left, up and down positions of the FFD
lattice are not permitted to move, as a means of ensuring that the deformed computational

mesh will be of accepted quality, in terms of overlapping edges.
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9.3 Summary of the Optimization Framework

The flow chart shown in Figure 9.3 provides a description of the fundamental interactions
between the main components of the modular optimization framework, proposed within the
current doctoral dissertation for the design optimization of shrouded wind turbines. The entire
optimization procedure is coordinated by the asynchronous DE algorithm, while the pre-
processing, genotype to phenotype, design evaluation and post-processing modules are

properly adjusted or replaced, depending on the optimization problem at hand.
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Figure 9.3: Overview of the proposed optimization framework.

Each individual member of the population, generated by the DE algorithm for each
generation, is initially passed to the “genotype to phenotype” module, via a properly designed
text file called chromosome.txt. After the generation of the phenotype, the respective
information is fed to the “design evaluation” module, which — depending on the examined

optimization problem — may be formed by one of the available analysis tools developed and
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validated in the current study (see Section 9.3.1). Finally, a post-processing step is
implemented, in order to extract the necessary quantities for the calculation of the fitness
function. The fitness function value for each member of the current population is fed back to
the DE algorithm by means of fitness.txt file. Then, the DE algorithm updates the members of
the DE population through the application of the appropriate evolution operators (selection,
crossover, mutation). This procedure is implemented iteratively up to the completion of the
user-prescribed number of generations; during the course of the entire optimization process,
the DE algorithm interacts with all the involved modules in a completely automated manner,

by using specially developed scripts.

9.3.1 Design Evaluation

In this version of the proposed optimization platform, the evaluation of the candidate
solutions is performed by using one of the three analysis tools that were developed and
numerically validated within the context of the current doctoral study, as shown in Figure 9.4;
namely, the BEM code (see Chapter 2 and Chapter 3), the IGal2D solver (see Chapter 4 and
Chapter 5) and the coupled RANS-BEM model (see Chapter 8).

Design Evaluation

—————————————
e e e s s e e e &

BEM Code 1Gal2D Solver RANS-BEM

Figure 9.4: The available analysis tools for the design evaluation module.

Specifically, the stand-alone version of the in-house BEM code can be employed for the
design optimization of improved rotor blades, either for the case of a shrouded wind turbine

or even for that of an unshrouded horizontal-axis wind turbine. In the first case, the impact of
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the diffuser on the performance of the turbine rotor is captured by means of the velocity speed-
up over the rotor plane for the unloaded shroud configuration, as described in Section 2.2.4.
At this point, let us note that due to the ability of the BEM theory to predict the rotor
performance in a very short period of time, such optimization applications are generally
characterized by high time efficiency, as shown in the respective application reported in

Section 10.1.

On the other hand, the preliminary design optimization of improved shrouds can be
achieved by using the stand-alone version of the axisymmetric IGal2D solver, while
completely ignoring the presence of the turbine rotor and the associated effects on the
surrounding flow, including the swirling velocity component as well (see Section 10.2). Even
though such optimization applications may lead to reduced levels of computational time —
due to the axisymmetric consideration of the actually three-dimensional flow field — they may
usually result in suboptimal designs as well, since they disregard the favourable impact of the
swirling velocity component on the downstream diffuser flow. As mentioned in Section 4.1,
swirling motion has been shown to improve the performance of shrouded wind turbines, as
the tangential or swirling velocity component, induced by the rotor blades, helps to energize
the velocity boundary layer of the internal diffuser wall and thus, to avoid flow separation
(Leloudas et al., 2020a; Venters et al., 2018).

Consequently, the performance optimization of the entire shrouded wind turbine system
calls for the simultaneous analysis of both the rotor blades and the shroud geometry; this can
be achieved by means of the proposed RANS-BEM model. The particular analysis method is
capable of accounting for the effect of the rotor — such as the induced pressure drop and the
swirling velocity component — on the flow field, as well as for counter effect of the shroud on
the turbine rotor. Ultimately, it allows for the simultaneous design optimization of the coupled
rotor/diffuser system (see Chapter 10.3). Nevertheless, this analysis method can be equally

applied for the single optimization of the rotor blades or the shroud geometry.

9.3.2 Genotype to Phenotype

By the term genotype to phenotype we simply refer to the process of translating the design
variables of the examined optimization problem, which are defined by the adopted
parameterization technique, into the design geometry. In the current doctoral dissertation, the
encountered optimization problems involve the design of improved rotor blades and shrouds.
As long as the rotor blades are concerned, the parameterization of the twist and chord
distribution — which is the only geometrical information used by the BEM model - is realized
by employing B-Spline curves. On the other hand, the parameterization of the shroud

geometry and that of the associated computational mesh are made by using the in-house mesh
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morphing tool that is based on the FFD technique, which was presented in Section 9.2. In the
former case, the twist and chord distribution of the blade can be described and controlled by
the coordinates of the control points defining the respective B-Spline curves, while in the latter
one, the shroud geometry and the computational mesh are controlled by the coordinates of
the control points of the FFD lattice. Therefore, in optimization applications that involve only
the design of improved rotor blades, the genotype to phenotype module is formed by a simple
B-Spline generator that creates the twist and chord curves, based on the design variables
(control points) outputted by the DE algorithm; similarly, in optimization applications that
involve only the design of improved shrouds the particular module is formed by the mesh
morphing tool, presented in Section 9.2, which is fed with the coordinates of the control points
of the FFD lattice outputted by the DE algorithm and generates an updated shroud geometry
(candidate solution), accompanied by the deformed computational mesh. Apparently, in
optimization cases that involve the simultaneous design of the blades and shroud, both the B-

Spline generator and FFD tools are executed successively.

Genotype to Phenotype

—— e e e e e ——————————————

-
-—— — ——

FFD Tool B-Spline Curves

Figure 9.5: The available computational tools for translating the genotype into the phenotype.

9.3.3 Pre-processing Stage

The pre-processing stage of the optimization procedure is implemented manually prior to
the execution of the optimization algorithm, as shown in Figure 9.3. Apparently, the steps
included within the pre-processing phase differ, depending on the examined optimization
problem, the adopted parameterization approach and the employed software for the design
evaluation. Figure 9.6 presents the major steps of the pre-processing stage for each one of the
available design evaluation tools. Please note that the solution of the flow field simulation

around the initial design — for the cases in which design evaluation is achieved by means of
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IGal2D solver or RANS - BEM model - is introduced as an initial condition for the flow field

simulation of each candidate design; this approach aims to reduce the computational time

required for each simulation to reach convergence.

Definition of the computational
domain for the simulation of the
unloaded diffuser.

Generation of the computational mesh.

Simulation of the flow field around the
unloaded diffuser.

Calculation of the aerodynamic
coefficients for the blade airfoils.

Extrapolation of the lift and
drag curves.

Set DE parameters.

Preprocessing

Definition of the computational
domain for the simulation of the
unloaded diffuser.

Generation of the computational mesh.

Simulation of the flow field around the
initial geometry.

Construction of the FFD lattice.

Set DE parameters.

S ———

Definition of the computational
domain.

Generation of the computational mesh.

Mark the computational nodes within the
actuator disc area.

Calculation of the aerodynamic
coefficients for the blade airfoils.

Extrapolation of the lift and
drag curves.

Simulation of the flow field around the
initial geometry.

Set DE parameters.

Figure 9.6: The major steps of the pre-processing stage depending on the adopted analysis tool.

9.3.4 Post-processing Stage

Finally, the post-processing module is essentially composed by properly made scripts,

which are fed with the results of the design evaluation module and implement the fitness

function of the examined optimization problem.
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Chapter 10

Design Optimization Cases

This chapter presents the application of the proposed optimization framework, as described

in Chapter 9, to the following design optimization problems:

OP1. Aerodynamic shape optimization of the rotor blades for a given shroud geometry.
OP2. Aerodynamic shape optimization of an unloaded diffuser configuration.

OP3. Simultaneous aerodynamic shape optimization of the blades and the diffuser.

Table 10.1 provides a summary of the encountered optimization cases.

Case Component Optimizer Evaluation Software
OP1 Blade Optimization DE Algorithm BEM Code

or2 Unloaded Shroud DE Algorithm IGal2D Solver
or3 Blades and Shroud DE Algorithm IGal2D - BEM

Table 10.1: Overview of the design optimization cases encountered in this study.

10.1 Design of Improved Rotor Blades

In this section, the current optimization methodology is applied for the design of improved
rotor blades for the Dongi Urban Windmill (Ten Hoopen, 2009). Please recall that the particular
diffuser geometry, illustrated in Figure 10.1, was designed by the National Aerospace
Laboratory in cooperation with Delft University of Technology; it has an exit-area-ratio equal
to 1.728 and an exit plane diameter equal to 2 m, while it is further equipped with a 0.04 m
high Gurney flap. The distribution of the velocity speed-up ratio over the rotor plane for the
unloaded diffuser case is provided in Section 3.2.1, and especially in Figure 3.9a, as it was
experimentally measured by van Dorst (2011) and numerically approximated by Kesby et al.
(2016). The Dongi Urban Windmill has a three bladed rotor; the original blade was also
designed by NLR, by adopting a tip diameter equal to 1.5 m and employing the NACA 2207
profile along the entire blade span. The original chord and twist distributions are available in
the study of van Dorst (2011).
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Figure 10.1: llustration of several Donqgi Urban Windmill models within the urban environment
[Source: http://www .jetsongreen.com/2011/08/dongi-urban-windmill-residentia.html].

In this study, the proposed optimization method is applied to the design of improved rotor
blades for the Donqui Urban Windmills by means of a twist and chord optimization
procedure; in fact, the current optimization framework is applied for the design of two distinct
blade geometries, as alternatives to the original blade configuration. For the first optimized
blade, denoted as BD1, the NACA 2207 is employed for the entire span (similarly to the
original blade), while for the second blade design, denoted as BD2, the RG15 airfoil is adopted;
please recall that the RG15 is a low Reynolds number airfoil with a maximum thickness of
8.92% located at 30.2% of the chord and a maximum camber of 1.8% located at 39.7% of the
chord. The lift and drag coefficients for the particular airfoil profiles (inputs to the BEM code)
were calculated with XFOIL software (Drela, 1989) at 600,000 Reynolds, which is the diffuser
Reynolds number (Ten Hoopen, 2009); subsequently, they were extrapolated to the full 360°
range of angles of attack, applying the Montgomerie’s 360° extrapolation method
(Montgomerie, 2004). In this application, tip and hub losses were included within the analysis
by employing the Prandtl’s correction model. Finally, please note that the current twist and
chord optimization was carried out by considering a zero blade pitch angle and a constant TSR

value equal to 6.4.

10.1.1 Twist and Chord Parameterization

The parameterization of the twist and chord distributions is realized by means of two
separate B-Spline curves of second degree; each B-Spline curve is defined by 5 control points,
permitting the movement of each control point only in the y-direction. Therefore, the number

of design variables for each one of the encountered optimization cases is 10, corresponding to

10-2


http://www.jetsongreen.com/2011/08/donqi-urban-windmill-residentia.html

Chapter 10 Design Optimization Cases

y coordinates of the B-Spline curves used to represent the twist and chord distributions. The

adopted upper and lower bounds for each design variable are presented in Figure 10.2.
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Figure 10.2: Parameterization strategy for chord and twist distributions.

10.1.2 Cost Function and Constraint Formulation

As long as the design objective is concerned, it is defined as the maximization of the rotor
power output for a range of ambient wind speeds between 5 m/s and 8 m/s, using an increment
of 1 m/s. Hence, considering that the current DE algorithm is designed to deal with

minimization problems, the objective function is formed as follows:

f = 10 - (Cp's + CP,G + CP,7 + CP,B) (10.1)

where Cp ), denotes the aerodynamic power coefficient of the rotor for an ambient wind speed
of k m/s. In this optimization study only explicit constraints are employed, which are formed
by the acceptable bounds of the considered design variables. The extraction of the particular
ranges was based on a trial and error basis, in order to achieve upper and lower bounds that
do not restrict or magnify inefficiently the search space and simultaneously do not permit
undesirable twist and chord distributions to be created. Specifically, the bounds for the design
variables corresponding to the chord B-Spline curve were set in such a way so the optimal
chord distribution to result in a blade geometry as rigid as the current one; while regarding
the bounds for the design variables corresponding to the twist B-Spline curve, they were set
in such a way so the optimal twist distribution to be as smooth as possible, resulting in a less

complicated geometry.
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10.1.3 Optimization Results

The twist and chord optimization of both blade configurations was carried out on a DELL™
R815 PowerEdge™ server, with four AMD Opteron™ 6380 sixteen-core processors at 2.50 GHz
(64 cores in total). The population size of the DE was set to 60, while the algorithm was
executed for a total of 2000 “generations”. The overall elapsed computation time for the
optimization of BD1 and BD2 blades was equal to 25.11 and 24.16 minutes respectively. Figure
10.3 provides the convergence history of the DE algorithm, while Figure 10.4 illustrates the

history of the testing error for the employed surrogate models.
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Figure 10.3: The convergence history of the differential evolution algorithm.
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Figure 10.4: History of the testing error for the employed surrogate models.
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The twist and chord distributions of the optimized blade designs BD1 and BD2, along with

the twist and chord distributions of the original blade are presented in Figure 10.5 to Figure

10.7. It is evident that the optimization procedure resulted in blade designs that differ

significantly from the original blade, with a much smother and less complicated twist

distribution; a fact that makes them quite attractive from a manufacturing point of view, as

simpler geometries are easier to be constructed. As long as the comparison between the twist

and chord distribution of BD1 and BD2 is concerned, no significant variation is observed, as

shown in Figure 10.7. This is mainly attributed to the similarity between the lift and drag
coefficient curves of the NACA 2207 and RG15 airfoils. However, since the RG15 airfoil has a
maximum thickness that is 27.4 % larger than the maximum thickness of the NACA 2207, the

corresponding BD2 blade is expected to provide better structural features.
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Figure 10.5: Twist and chord distributions of the optimized blade BD1.
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Figure 10.6: Twist and chord distributions of the optimized blade BD2.

10-5



Chapter 10

Design Optimization Cases

024
020 |

016

Chord - [m]

008

004

0.00

012 |

300
250 F
200 F

150 F

Twist - [deg]

100 |

-—e—BD1 - NACA 2207

-——BD2 - RG15

0.10 020 030 040 050 060 0.70 0.80 0.00

Radius - [m]

0.20 030 040 050 060 0.70 0.80

Radius - [m]

Figure 10.7: Comparison between the twist and chord distributions of BD1 and BD2.

The aerodynamic performance of the 3-bladed DAWT rotor under investigation is

presented in Figure 10.8. As it can be observed, the utilization of BD1 and BD2, instead of the

original blade geometry, results in a visible improvement of the aerodynamic power output

for all the considered operational points. In particular, the BD1 leads to a mean increase of the

aerodynamic power of the rotor of approximately 18.2 %, while the corresponding percentage

for BD2 is 19.4 %. Furthermore, Figure 10.8 demonstrates the ability of the employed BEM

code to approximate the experimental results for the original blade (van Dorst, 2011) with high

accuracy.
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Figure 10.8: The increased power output of the rotor, utilizing the optimized blade geometries BD1
and BD?2.

At this point, it should be highlighted that the optimization of both BDI and BD2 was

conducted by including the correction model proposed by Prandtl to account for the blade tip

losses, based on the findings of Phillips (2003), who noticed that tip losses exist on DAWT
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blades as well, despite the relatively close proximity of the blades tips to the diffuser wall; a
similar conclusion was also drawn by Kesby et al. (2016). Nevertheless, the inclusion of such a
correction model during the BEM analysis of a DAWT rotor may result in an underestimation
of the total power output, as the presence of the shroud around the rotor blades produces a
noticeable reduction of the particular losses, compared to a bare wind turbine. For this reason,
the aerodynamic performance of the examined DAWT rotor for BD1 and BD2 optimized
blades without the application of a tip losses correction model, is also presented in Figure 10.8.
Finally, Figure 10.9 illustrates the three-dimensional drawings of the optimized and original

blade designs.

(a) (b) (c)

Figure 10.9: Three dimensional drawings of the (a) original blade, (b) optimized blade BD1 and (c)
optimized blade BD2.

10.2 Design Optimization of an Unloaded Diffuser

In this section, the proposed optimization scheme is applied for the design of an
aerodynamically improved shroud for a diffuser-augmented wind turbine application, with a
rotor swept area of 22.9 m? and a rated capacity of approximately 15 kW. The aerodynamic
profile of the original shroud design (denoted as baseline design) is illustrated in Figure 10.10;
Table 10.2 contains some of its main geometrical characteristics. The aerodynamic shape
optimization is performed for an isolated diffuser configuration (without the presence of the
turbine), considering an ambient wind velocity V,, of 6 m/s and a Reynolds number equal to
2.2 - 10°. The Reynolds number has been calculated based on the throat diameter D, of the

baseline shroud design (characteristic length scale).
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Figure 10.10: The aerodynamic profile of the baseline shroud design (Leloudas, Lygidakis, et al., 2020).

Parameter Value
Diffuser Length - L 3.660 m
Inlet Radius - R;, 3.112m
Throat Radius - R, 2.751 m
Exit Radius - R,y 4.570 m
Diffuser Volume - V 54.117 m3

Table 10.2: The main geometrical characteristics of the baseline shroud design.

10.2.1 Grid Independence Study

To guarantee that the resolution of the computational grid does not have a significant
impact on the simulation of the flow field around the diffuser and, therefore, on the objective
function calculation, a grid independence study was initially made, by considering three
distinct computational meshes (coarse, medium and fine). The adopted hybrid grids
(composed by both triangular and quadrilateral elements) are characterized by a total number
of nodes equal to 26,671, 49,992 and 68,809 respectively. In all the examined cases, regions of
higher mesh resolution were generated around the shroud. At this point, it is emphasized that
further refinement of the computational mesh (especially in the wake region) was not possible,
since this was found to result in the appearance of unsteady flow phenomena, making the
achievement of a steady-state solution unfeasible. The coarse and medium grids were
constructed with a wall-spacing value of 0.00024 m, while the fine one with a wall-spacing
value of 0.00015 m, leading to a y* value of 4 and 2.5 respectively. Since the current

implementation of the axisymmetric RANS solver uses a dimensionless form of the governing
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equations, the computational domain has been properly normalized by the throat diameter

(characteristic length scale). Figure 10.11 illustrates the coarse, medium and fine meshes.
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Figure 10.11: The computational meshes used for the grid independence study: (a) coarse, (b) medium

and (c) fine.

The drag and the mean velocity speed-up ratio at the throat (x = 0) of the baseline diffuser
design, by adopting each of the considered computational meshes, are presented in Table 10.3.
The obtained results indicate that both computed drag and mean velocity speed-up are
reduced by increasing grid resolution. In detail, the percentage differrence, in terms of drag
value, between the medium and fine meshes was found equal to 1.3%, while the respective
percentage difference between the fine and coarse meshes is approximatelly equal to 6%. From
a velocity speed-up standpoint, much smaller deviations were observed; the comparisson
revealed that the percentage difference between the fine and medium meshes is equal to 0.6%
and the percentage difference between the solutions obtained from the fine and coarse meshes

equal to 1.9%.

Mesh Resolution Coarse Medium Fine
Target y* Value 4 4 2.5
Wall Spacing — [m] 0.00024 0.00024 0.00015
Drag Force — [N] 713.77 671.11 662.37
Mean Velocity SU Ratio 1.54 1.52 1.51

Table 10.3: Drag variation for different mesh resolutions.

In order to have a better understanding on the flow field dependence upon the mesh
resolution, Figure 10.12 provides the variation of the on-axis velocity speed-up ratio
distribution, the on-axis pressure coefficient distribution, the velocity speed-up distribution

over the rotor plane, and the distribution of the pressure coefficient along the surface of the
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shroud profile. Small, but noticeable, discrepancies have been observed between the
distributions resulted from the use of the coarse and fine meshes, especially in the region
around the rotor plane. On the other hand, no practical deviations were detected between the
distributions resulted from the use of the medium and fine meshes. Accordingly, the solution
obtained by adopting the mesh of medium resolution can be safely considered as mesh
independent, and therefore, the particular grid should be ideally used during the
optimization. However, owing to the limited computational resources available, the adoption
of the medium grid within the current optimization procedure would excessively increase the
total computational time. Therefore, the coarse mesh (26,671 nodes) has been selected instead.
Although small discrepancies between the results obtained through the utilization of the
coarse and fine meshes have been observed (the solution provided by the coarse grid is not
mesh independent), the former computational mesh is capable of providing a reasonably

accurate representation of the flow field, as shown in Figure 10.12.

1.60 1.20 r
26,671 Nodes (Coarse)
1.50 } i 1.10
------- 49,992 Nodes (Medium)
>
5 68,809 Nodes (Fine) o o am—
2 )
& 1S
Q 2
=) =
7 b=
° 3
L ()
< E
) a3
3 - 8
° o
>
090
0.80 . L L L L g 0.40
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
X/D X/D
(a) (b)
1.80 250
200 f
>
o o 150 f
=1 ;
& £
o g 100 |
2 £
T 130 | T o050 f
L O
) L
5120 S o000
S 2
g 110 | 4
o] o -0.50
> 100
0.90 F -1.00
0.80 H 1 H 1 H 1 H 1 H ; 150
0.0 0.2 0.4 0.6 0.8 1.0 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
Normalized Throat Radius - r/R X/D

(c) (d)

Figure 10.12: Grid independence study: (a) On-axis velocity speed-up ratio distribution, (b) On-axis
pressure coefficient distribution, (c) Velocity speed-up ratio distribution over the rotor plane, (d)
Distribution of the pressure coefficient over the surface of the shroud profile.
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In addition, as Khamlaj and Rumpfkeil (2018) noted, the CFD model will always have some
inherent error that is related to the modeling assumptions; hence, more reduction in truncation
error with additional refinement seems insignificant when compared to the error associated
with the model’s simplification of physics. Nevertheless, even though the coarse mesh will be
used to reach the optimal design, after the completion of the optimization procedure, a fine
mesh will be also constructed for the optimal solution (having a similar resolution to the fine

mesh for the baseline design), in order to perform an accurate and reliable comparison.

10.2.2 Mesh Parameterization and Design Variables

The parameterization of the computational mesh (coarse) was made by introducing the 2D
lattice illustrated in Figure 10.24. The degree of the B-Spline basis function for both directions
was set as the maximum possible, that is 6 and 5, for the (axial) x and (radial) y direction
respectively, as a means to achieve smooth deformations. In addition, all the internal control

points of the FFD lattice are free to move in both directions.
1.6
1.4

1.2

Y/D

0.8

0.6

0.4

0.2

R A o T e LA I Lo el o ek 1 A T 1

0 i Ivl'l. 1 lil B ‘l i B l"'.rl R S | "" .r 13 Il ) (e i Tatn VA Favy YA AN
-0.6 -0.4 -0.2 0 0.2 04 0.6 0.8
X/D

Figure 10.13: The initial FFD lattice.
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On the other hand, the control points located at the extreme right, left, up and down positions
(green points) have been fixed, as a means of ensuring that the deformed computational
meshes will be of accepted quality, in terms of overlapping edges, as explained in Section 3.
Consequently, a number of 40 design variables resulted, which correspond to x and y

Cartesian coordinates of the 20 (internal) free-to-move control points of the FFD lattice.

10.2.3 Objective Function and Constraints

10.2.3.1 Objectives

Even though the diffuser is primarily used to accelerate the axial velocity over the rotor
plane, and thus to increase the power output of the system, low levels of drag force are also
desirable, to reduce the cost of the wind turbine (Liu J. ef al., 2016). Therefore, the design
objectives in this optimization study are defined as the maximization of the mean velocity
speed-up distribution y(r) over the rotor plane (turbine position) and the minimization of the
total drag force D. The value of the mean speed-up ratio at the rotor plane, averaged with the

throat radius, is calculated as:

_2m fOR y(r)dr

- L (10.2)

The (non-dimensional) total drag force D on the shroud surface Es is computed by adding the

pressure and viscous forces

D= —an}g pyyds + 21 @ (Tyxy + Tayny) yds, (10.3)
Cs Cs

where Cs is the boundary curve of the shroud’s cross-section (aerodynamic profile). The

dimensionalization of the drag force D is made by using the freestream density p =

1.225 Kg/m3, the freestream velocity V,, = 6 m/s and the throat diameter of the baseline

design D, = 5.5 m (characteristic length) as:

fo = DpVss D¢ (10.4)

Equation (10.4) was devised in line with the adopted strategy for the non-dimensionalization
of the governing equations (see Section 4.2.1.1), according to which the scales of length and
pressure have been normalized by means of the throat diameter D, (characteristic length) and

the freestream dynamic pressure pV.3, respectively.
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10.2.3.2 Constraints

In this optimization study, besides the explicit constraints formed by the acceptable bounds
of the considered design variables, two additional geometrical constraints were imposed. The
first one is related to the preservation of the throat radius of the baseline design, while the
second one is imposed so as to ensure that the volume V of the new shroud will be equal or

less than the volume V,..; of the baseline design. Thus,
V < Vyer, (10.5)

R, = Rt,ref- (10.6)

where R, is the throat radius of a candidate shroud design, while V,.; = 54.15 m3,and R; ;.or =
2.751 m is the throat radius of the baseline shroud design. Both constraints were implemented

following a penalty function approach. The two penalty functions were formed as:

V_Vref; lf 1% >Vref
fv= (10.7)
0, else

fen = |Rt - Rt,refl (10.8)

10.2.3.3 Cost Function

By combining the objective and penalty functions, the single cost (or fitness) function of the

minimization problem at hand is formed as:

f=5—fo, +0.0001f, + 0.01f + 10f,. (10.9)

The parameters shown in Eq. (10.9) have been empirically extracted in such a way that each

function to have almost the same impact on the cumulative cost function.

10.2.4 Optimization Results

The aerodynamic shape optimization was made using a DELL™ R815 PowerEdge™
computing server that is equipped with four AMD Opteron™ 6380 sixteen-core processors.
Regarding the parameters of the DE algorithm, the population for each generation was set
equal to 50 and the optimal solution was obtained after the completion of 500 generations; the
time required until the completion of 500 generations was approximately 722 hours. The

convergence history of the optimization algorithm is presented in Figure 10.14. In addition,
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Figure 10.14 provides the testing error progression for the two surrogate models (RBF and
MLP) utilized within the current optimization study. Evidently, the testing error of the MLP
model was considerably smaller (as compared to the one of the RBF model) for the great
majority of the 500 generations. Accordingly, the MLP was almost exclusively used for the
pre-evaluation of the trial vectors. This fact reveals that all the surrogate models cannot be
adapt equally to any given problem. Thus, the incorporation of multiple surrogate models
(operating as an ensemble) is important, as it provides the opportunity to treat efficiently a
wide range of different optimization problems, through the achievement of higher

approximation levels.
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Figure 10.14: (a) The testing error for the two surrogate modes; (b) the convergence history of the DE
algorithm.

Table 10.4 presents the number of the chromosome evaluations performed through the
RANS solver (exact evaluations), as well as the number of the total evaluations (RANS and
ANNSs), completed during the entire optimization process. Table 10.4 reveals that the
incorporation of the surrogate models resulted in a substantial reduction of the total number

of exact evaluations by approximately 38%, accelerating considerably the design process.

Optimization Study = Wall-clock time (Hrs)  Exact evaluations  Total evaluations

Shroud Design 722 15401 25000

Table 10.4: Wall-clock computation time, number of exact evaluations, and number of total

evaluations.
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10.2.4.1 Optimal Shroud Design

The aerodynamic profile of the optimal shroud design (SD1) is shown in Figure 10.15,
comparatively to the baseline aerodynamic profile. Through the comparison of the two
aerodynamic profiles, it is evident that the optimization procedure resulted in a much thinner
geometry (better aerodynamic performance) with a much smoother curvature in the region
downstream of the rotor plane (throat). Another interesting remark is that the optimized
geometry tends to approximate the shape of a flanged diffuser; this is attributed to the fact
that such geometries are capable to create a region of high sub-atmospheric pressure near the
exit plane, which increases the suction ability of the shroud and thus, the mass flow rate.
However, the relatively small thickness distribution of SD1 downstream of x/D = 0.2, could
be a critical point that reduces the structural integrity of the particular design and calls for the
installation of additional supportive structures to prevent a possible failure. To overcome this
problem, a modified shroud profile was created (SD2 — Figure 10.15 and Figure 10.16) by
locally (manually) thickening SD1. Even though SD2 is probably a suboptimal solution, from
an aerodynamic point of view (as the following CFD simulations will suggest), it is expected
to have a better performance in terms of structural integrity, while the smoother curvature
definitely makes it more attractive from a manufacturing standpoint. Some of the main
geometrical characteristics of SD1 and SD2 are provided through Table 10.5, while a 3D
representation of the new shroud designs is illustrated in Figure 10.18. Thanks to the efficient
implementation of the throat constraint, both SD1 and SD2 have the same throat radius with

the baseline shroud design.
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Figure 10.15: The aerodynamic profiles of the baseline design, SD1, and SD2.
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Figure 10.16: The aerodynamic profile of the SD2 shroud design (Leloudas, Lygidakis, et al., 2020).

Parameter Value
Diffuser Length - L* 4.360 m
Inlet Radius - R, 2990 m
Throat Radius - R{ 2.750 m
Exit Radius - R}, 9.952m

Table 10.5: The main geometrical characteristics of SD1 and SD2.

For the evaluation of the aerodynamic performance of both SD1 and SD2, comparatively to
the baseline design, Table 10.6 provides the results of the objective functions, while a more
detailed representation of the respective flow fields is given in Figure 10.17. At this point, it is
highlighted that even though the optimization was performed with the coarser mesh (among
the ones considered), a fine mesh of similar resolution to the fine mesh adopted during the
grid independence study (with a y* value of 2) was used to obtain all the following results for
both SD1 and SD2.

Design Drag Force Mean Velocity SU Volume
Baseline Design 662.37 N 1.51 54.12 m3
Shroud Design 1 (SD1) 409.45 N 1.90 28.18 m?
Shroud Design 2 (SD2) 418.15 N 1.87 31.81 m3

Table 10.6: Drag and velocity speed-up variation for the different shroud designs (fine meshes).
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Figure 10.17: Comparison between the baseline design, SD1, and SD2. (a) Velocity speed-up ratio

distribution over the rotor plane; (b) on-axis velocity speed-up ratio distribution; (c) on-axis pressure

profile (fine meshes).

coefficient distribution; (d) distribution of the pressure coefficient over the surface of the shroud

SD1 achieved a remarkable reduction of drag by approximately 47% accompanied by an

increase of the mean velocity speed-up ratio by approximately 23%, comparatively to the

initial design. The aerodynamic performance of SD2 is not much inferior. As a matter of fact,

the drag reduction was equal to 45% and the increase of the mean velocity speed-up ratio equal

to 21%. Therefore, the local thickening of SD1 caused a drag increase about 2% and a mean

velocity speed-up reduction of almost 2%, which can practically considered negligible. In

addition, a remarkable volume reduction, touching 48% and 41% for SD1 and SD2
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respectively, was also achieved, allowing for huge cost reduction, even though the total length

of the diffuser was increased.

4 — —

-

(a) Baseline Design (b) SD1 (c) SD2

Figure 10.18: 3D representation of the (a) baseline design, (b) SD1, and (c) SD2.

Furthermore, in order to have a better understanding of the aerodynamic behavior of the
baseline and optimized designs, the dimensionless contours of pressure and velocity
components at the symmetry plane for the isolated diffusers are presented in Figure 10.19. As
it can be observed, the major characteristic of the baseline design is the formation of a large
recirculation area near the exit plane (attributed to its highly-curved shape), that produces a
high pressure gradient in the flow direction. On the contrary, the recilrulation area behind
both SD1 and SD2 is considerably smaller (Figure 10.20 and Figure 10.21), while much higher
acceleration of the flow inside the diffuser is observed as well. As a matter of fact, the

recirculation region near the exit plane of SD1 and SD2 may be even smaller during the shroud
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operation along with a rotating turbine, since the swirling velocity induced by the turbine

tends to energize the velocity boundary layer; thus, delaying flow separation.

Baseline Design SD1 SD2

Figure 10.19: The dimensionless contours of axial velocity component (top), radial velocity component
(middle), and static pressure (bottom), for the baseline design, SD1, and SD2, for a Reynolds number
equal to 2,200,000 (fine meshes).

A more detailed representation of the recirculation areas for all the considered designs can
be found in Figure 10.20 and Figure 10.21. It is evident that the streamlines flow smoothly
inside the diffuser, while no recirculation areas exist along the high-pressure surface of the
new diffusers. Even though SD1 and SD2 result in significantly smaller flow separations —
which is identified as the main reason for the increase in velocity acceleration and drag

reduction — these areas of recirculating flow tend to hamper their full aerodynamic potential.
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A highly promising solution to alleviate this problem involves the addition of an internal flap

near the exit plane.
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Figure 10.21: The velocity streamlines around the (a) baseline design, and (b) SD2 (fine meshes).

10.3 Optimization of a Complete Shrouded Wind Turbine

In this section, the proposed optimization scheme is applied for the simultaneous shroud
and blade design improvement, considering the Dongi Urban Windmill as the baseline setup.
The particular system for small energy production within urban environments was originally
designed by Dongi Independent Energy Company, in cooperation with NRL and Delft
University of Technology. It is consisted of a single-element shroud and a three-bladed rotor.
To improve its performance many numerical and experimental studies have been performed
since then (Ten Hoopen, 2009; van Dorst, 2011; Anselmi, 2017; Avallone ef al., 2020). One of the
most important was that of van Dorst (2011), who designed a new blade configuration capable

of significantly increasing power. Figure 10.22 illustrates a three-dimensional representation
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of the shrouded rotor of Dongi Urban Windmill with the linearized blade, while a real Donqi
Urban Windmill is presented in Figure 10.1.

\

i

Figure 10.22: The Dongi DAWT with the linearized blade.

The diffuser is obtained as an axisymmetric revolution of an airfoil cross section, designed
by NLR; the geometry was made available in the context of the DUCT4U project (Avallone et
al., 2020). The diffuser has a radius equal to R;;, = 0.87 m atinlet, R, = 0.77 m at throat, Ry, =
1m at exit and an axial chord equal to 1 m. The aerodynamic profile of Dongi shroud is

depicted in Figure 10.23, whereas its main geometrical characteristics are provided in Table

10.7.

Dongi Diffuser

Actuator Disc

Hub

Y v /_ , _i__R_h__._._w_._._‘_._._\r _______

- Ly

X_.

Figure 10.23: Geometric characteristics of the Dongi Urban Windmill shroud.
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Parameter Symbol Value
Axial Diffuser Length L 1.00m
Axial Hub Length Ly 0.90m
Inlet Radius Rin 0.87m
Throat Radius R, 0.77m
Exit Radius Rout 1.00m
Hub Radius Ry, 0.075m
Shroud Volume Vs 0.54 m3

Table 10.7: The main geometrical characteristics of the baseline shroud.

The rotor has three blades with a NACA 2207 airfoil of chord length varying from 130 mm
at root to 105 mm at tip; the rotor radius (R) equals to 0.75 m. The chord and twist angle
distribution along the blade radius are plotted in Figure 10.24. Since no information of the hub
geometry was available, a custom hub design was adopted in this study, resembling the one
involved within the experimental studies. The radius of the hub at the rotor plane is equal to
0.075 m; the total length of the hub is equal to 0.9 m, while its leading edge has been placed
0.033R after the leading edge of the diffuser.
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Radial Position - r/R Radial Position - r/R

(a) (b)
Figure 10.24: Chord and twist distributions of the linearized blade configuration (van Dorst, 2011).

10.3.1 Grid Independence Study

Before the application of the proposed optimization scheme, a detailed grid independence

study is carried out, in order to assure that the resolution of the employed computational grid
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does not have a significant impact on the simulation results and objective function value. To
this end, three computational grids, exclusively composed by quadrilateral elements, were
generated by increasing successively the mesh density; the involved computational grids are
denoted by QM1, QM2 and QM3. For each denser resolution the degrees of freedom, i.e. the
nodes (considering the vertex-centered scheme of the IGal2D solver), were doubled compared
to the coarser one. Detailed characteristics for the involved computational grids are included
in Table 10.8, while Figure 10.25 illustrates the region around the diffuser and hub walls, for

each one of the three computational grids. Finally, Figure 10.26 provides a wide view of QM1.

Case Nodes Elements Wall Spacing  y* Value
QM1 49,017 48,446 0.0000750 m =145
QM2 96,604 95,803 0.0000375 m =0.70
QM3 189,246 188,123 0.0000375 m =0.70

Table 10.8: Characteristics of the mesh employed in the grid independence study.

Values of aerodynamic power and thrust, as well as drag force, on the diffuser and the hub,
regarding different mesh resolutions, are provided in Table 10.9. Apparently, the variation of
each one of the adopted reference quantities is below 1%. In order to have a better
understanding of the flow field and blade loading dependence upon the mesh density, Figure
10.27 provides the distribution of axial and tangential blade forces, as well as this of axial and
tangential velocity components at an axial position 1.5R downstream the rotor plane. Once
more, no deviations were detected between the distributions resulted from the use of the
medium and fine grids. Consequently, the numerical solution, obtained by adopting QM1, can
be safely considered as grid independent and the particular grid is used during the current

optimization work.

y @000 e A y 0 s
(a) am1 (b) QM2 (c) am3

Figure 10.25: The computational grids used for the grid independence study: (a) coarse, (b) medium,
and (c) fine.
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Figure 10.26: Wide view of the coarse (QM1) computational grid.
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Figure 10.27: Results of the grid independence study.

Finally, the computed power with QM1 is compared against the experimentally obtained

power output for values of ambient wind speed equal to 5 m/s, 6 m/s and 7 m/s, proving that
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the proposed numerical model is capable of predicting the performance of the examined wind

turbine configuration.

Case Shroud - Drag [N] Hub - Drag [N] Rotor Power [W]  Rotor Thrust [N]
QM1 18.560 0.561 191.962 31.628
QM2 18.520 0.562 191.776 31.605
QM3 18.490 0.560 191.592 31.583

Table 10.9: Results of the grid independence study.

Linear Blade — Aerodynamic Power

Wind Speed Rotor Speed  1Gal2D Prediction Experiment

5m/s 340.6 RPM 110.95 W 103.02 W
6 m/s 408.7 RPM 191.96 W 189.50 W
7 m/s 476.8 RPM 305.20 W 29255 W

Table 10.10: Comparison of the predicted and experimentally measured values of power.

10.3.2 Geometry Parameterization and Design Variables

For the parameterization of the twist and chord distributions two B-Spline curves of second
degree are employed, each one defined by 3 control points, as illustrated in Figure 10.28. The
movement of B-Spline control points is allowed only in the vertical direction. Therefore, the
blade chord and twist distributions can be fully defined by using 6 design variables,
corresponding to the vertical coordinates of the respective control points. The upper and lower

bounds for each design variable are presented in Figure 10.28.
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Figure 10.28: Parameterization strategy for chord and twist distributions.
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In this optimization study, the parameterization and deformation of the computational grid
is achieved by means of the in-house mesh deformation tool presented in Section 9.2. The
employed two-dimensional lattice around the initial shroud geometry is depicted in Figure
10.29. The particular FFD lattice is defined by six control points in the radial direction and
eight control points in the axial direction; in both parametric directions, fourth-degree basis
function have been applied. Each control point of the FFD Ilattice is free to move in both
directions, except of those positioned at the lattice boundaries; these points have been fixed,
in order to avoid the formation of overlapping edges in the deformed computational grids. As
a result, the number of design variables for the shroud geometry equals to 48, defined by the
Cartesian coordinates of the 24 internal control points of the adopted FFD lattice. Ultimately,
the total number of the design variables for the blade and shroud geometries within the current
optimization study equals to 54. The upper and lower boundaries for the Cartesian coordinates
of the FFD lattice are provided in Table 10.11. The enumeration of the control points goes from

the bottom to top and left to right.

Axial Position - z/R

Figure 10.29: Definition of the FFD lattice employed for the parameterization of the computational
mesh.
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Axial Direction Radial Direction
Point
Lower Bound Upper Bound Lower Bound Upper Bound
CP,, -0.300 -0.200 1.014 1.014
CP;, -0.300 -0.200 1.100 1.140
CP;;5 -0.300 -0.170 1.100 1.220
CPy, -0.300 -0.170 1.160 1.350
CP,, -0.030 0.070 1.005 1.040
CPy; -0.030 0.080 1.090 1.130
CPy3 -0.100 0.100 1.120 1.200
CP,, -0.080 0.120 1.100 1.350
CP;, 0.200 0.440 0.850 1.070
CPs, 0.200 0.440 0.980 1.180
CP35 0.200 0.440 1.000 1.300
CPs3, 0.150 0.480 1.070 1.380
CPy, 0.350 0.900 0.800 1.150
CP,, 0.350 0.900 0.800 1.170
CPys3 0.350 0.850 0.990 1.370
CPy, 0.300 0.850 1.000 1.400
CP;, 0.500 1.200 0.850 1.180
CP;, 0.500 1.200 0.800 1.180
CPs5 0.500 1.200 1.050 1.400
CPs, 0.500 1.200 1.100 1.450
CPs, 0.800 1.400 0.800 1.300
CP,, 0.800 1.400 0.800 1.350
CPs3 0.800 1.400 0.850 1.500
CP,, 0.800 1.400 1.100 1.600

Table 10.11: The adopted bounds for the control points of the FFD lattice.
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10.3.3 Objective Function and Implicit Constraints

10.3.3.1 Design Objectives

The design objectives for the current application have been defined as the maximization of
the rotor power coefficient and the minimization of the aerodynamic shroud drag. Thus, the

design objectives are expressed as follows:

max fp = max Cp (10.10)
min f, = min Dy (10.11)

where Cp denotes the power coefficient of the three bladed rotor and D denotes the total drag

force on the shroud at the design point.

10.3.3.2 Implicit Constraints

In this optimization study, besides the adopted explicit constraints, which are defined by
means of the established bounds for the design variables, four additional implicit constraints

have been introduced, to ensure that:

C1. The rotor thrust coefficient of the optimal design will be less than a reference value.
C2. The volume of the optimal shroud design will be less than the volume of the initial one.
C3. The throat radius of the optimal shroud design will be equal to the initial one.

C4. The local chord of the blade will be monotonically decreasing.

The implicit constraints are satisfied by introducing four penalty functions. The mathematical

formulation of the penalty functions for the adopted constraints is described as:

C1 Constraint

Cr—C if C->C
fr ={ T el ST e (10.12)
0 otherwise
C2 Constraint
fr = {VS ~Varer V> Vorer, (10.13)
0 otherwise
C3 Constraint
fen = |Re = Reer| » (10.14)
C4 Constraint
fe = feaz + feas, (10.15)
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where
foy = {C(Z) —c(1) ifc(2)> .c(l) (10.16)
0 otherwise
and
fy = {0(3) —c(2) ifc(3)> .c(2) . 1017)
0 otherwise

Herein, c(i) denotes the chord value corresponding to the i*" control point of the respective B-

Spline curve (see Figure 10.28).

10.3.3.3 Cost Function Formulation

Eventually, the single cost function of the minimization problem at hand can be shaped by

combining the objective and penalty functions:

F=5-2-fo4+01 fo+2-f,+4 fin+fr+10-f.. (10.18)

The parameters multiplying the objectives and penalty functions in Eq. (10.18) have been

finalized so that each individual function has similar impact on the cumulative cost function.

10.3.4 Optimization Results

Similar to the previous optimization cases that were reported in this doctoral dissertation,
which are included in Section 10.1 and Section 10.2, the current design optimization study was
performed on a DELL™ R815 PowerEdge™ computing server that is equipped with four AMD
Opteron™ 6380 sixteen-core processors. As long as the parameters of the DE algorithm for this
application are concerned, the population for each generation was set equal to 50 and the
optimal solution was obtained after the completion of 70 generations. Figure 10.30a shows the

convergence history of the optimization algorithm, in terms of the fitness function value.

In addition, Figure 10.30b provides the testing error progression for the two surrogate
models that were employed in the current optimization study; namely, the MLP and the RBF
artificial neural networks. Apparently, the testing error of the MLP model was lower than the
corresponding error of the RBF model for the entire course of the optimization process, by
approximately two orders of magnitude. Consequently, the pre-evaluation of the trial vectors

in the current optimization application has been exclusively based on the MLP model.
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Figure 10.30: (a) The convergence history of the DE algorithm; (b) The testing error for the two
surrogate modes.

10.3.4.1 Optimal Blade

Figure 10.31 illustrates the chord and twist distributions of the optimal blade design, in

comparison with the respective distributions of the linear blade design (also denoted as

baseline). By observing the optimized twist and chord distributions, it is evident that the new

blade geometry has a much smother twist distribution, as compared to the one of the linear

blade; the maximum twist angle of the optimal blade equals to 24.95 degrees and decreases in

a parabolic way as the blade tip is approached, until a minimum value of 1.22 degrees.
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Figure 10.31: The chord and twist distributions of the optimal blade design against the chord and
twist distribution of the linear blade, reported by van Dorst (2011).
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On the other hand, the current optimization process resulted in a practically linear chord
distribution along the entire span, with the maximum chord length to be 0.137 m and the
minimum one 0.086 m. Please note that the linear chord distribution of the optimal blade is a
truly desirable characteristicc, as a simpler blade geometry is generally easier to be
manufactured. Besides, the chord length of the optimal blade for almost the entire span is

smaller than the respective value of the baseline one, allowing for significant material savings.

10.3.4.2 Optimal Shroud Geometry

Figure 10.32 illustrates the aerodynamic profile of the optimal shroud design along with
the aerodynamic profile of the original Dongi Urban Windmill shroud, while Figure 10.33
provides a three-dimensional representation of the two axisymmetric designs. Initially, the
visual comparison between the two aerodynamic shapes reveals that the optimization
procedure resulted in a very smooth geometry (this is primarily attributed to the effective
shape parameterization technique) that has a thinner cross-section and a higher camber that
the baseline one. The main geometrical characteristics of the optimal shroud design are

provided in Table 10.12.

16
Baseline Profile

15 |

—— Optimal Profile
14 |

Radial Direction - y/R

Axial Direction - x/R

Figure 10.32: The aerodynamic profiles of the baseline and optimized shroud designs.

Please note that even though the axial length of the original and optimal shrouds is
practically the same, the total volume of the optimal shroud has been reduced by
approximately 24.7%, allowing for significant cost reduction. Furthermore, the optimal shroud
design is characterized by a larger exit radius and — since the throat radius of the two designs

is practically equal — by a larger exit-area-ratio, which according to Sorensen (2016) is
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proportional to the maximum theoretical power coefficient. Finally, let us note that both the
adopted geometrical constrains were successfully met, since the volume of the optimal shroud

is lower than the original and the throat radius has been reduced by only 0.65 percent.

//

(a) Baseline Shroud Design

(b) Optimal Shroud Design

Figure 10.33: Three-dimensional representation of (a) the baseline and (b) optimal shrouds.

Parameter Symbol Baseline Optimal
Axial Diffuser Length Lg 1.000 m 0.997 m
Inlet Radius Rin 0.870 m 0.856 m
Throat Radius R; 0.770 m 0.765 m
Exit Radius Rout 1.000 m 1.124 m
Shroud Volume Vs 0.545 m3 0.425 m?

Table 10.12: The main geometrical characteristics of the baseline and optimal shroud designs.
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10.3.5 Performance of the Optimal Design

The current section involves the aerodynamic evaluation of the optimized wind turbine
configuration. Initially, Table 10.13 compares the major performance characteristics of the
optimal shrouded wind turbine design against the Dongi Urban Windmill; the latter one is
also referred to as the baseline design. According to the numerical results presented in Table
10.13, the optimal design has the ability to reach significantly higher levels of power output;
in particular, the aerodynamic power output of the rotor has been increased by approximately
33%. However, this is also accompanied by higher drag levels on the shroud. Yet, the increased
value of drag force on the shroud was generally anticipated, since according to momentum
theory — and more precisely according to Eq. (2.48) — the maximum power coefficient of a
shrouded wind turbine is an increasing function of the shroud force. The power coefficient for
the optimal configuration at the design point, calculated based on the rotor swept area, equals

to 1.148; this is approximately 1.93 times higher than the Betz limit.

Design Rotor Power Rotor Thrust  Shroud - Drag  Hub - Drag
Baseline 191.9 Watts 31.628 N 18.560 N 0.561 N
Optimal 268.5 Watts 36.910 N 43.000 N 0.454 N

Table 10.13: Performance characteristics of the initial and optimal designs.

In addition, Figure 10.34 presents the axial and tangential force distributions along the
entire blade span for the optimal and baseline designs. According to both Figure 10.34 and
Table 10.13, the total axial loading — expressed by means of the thrust force — on the optimal
rotor design is higher than the total axial loading on the baseline one, by approximately 15.5%;
in particular, the thrust coefficient at the design point for the baseline rotor equals to 0.812,
while the thrust coefficient for the optimal one equals to 0.947. Moreover, as long as the
distribution of the axial or normal force along the blade span is concerned, no significant
variation of the axial loading value between the involved designs is observed for the blade
stations located among the rotor hub and 0.5R. However, the axial loading for the region
corresponding between the 50 percent and 100 percent of the span, is considerably higher for
the optimal design, with the maximum value of axial force to be increased by approximately
15%. Now, as long as the values of the tangential force on the blade are concerned, these are
significantly higher for the case of the optimal design, almost along the entire blade span, as
Figure 10.34b illustrates. Finally, no significant variation of the drag force on the rotor hub for

the two involved designs has been observed.
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Figure 10.34: The axial and tangential force distributions along the optimized and baseline blade
designs.

Furthermore, in order to have a better understanding of the aerodynamic behavior of the
baseline and optimal designs, Figure 10.35 until Figure 10.37 present the dimensionless
contours of axial velocity component, tangential velocity component and static pressure at the
symmetry plane of the two shrouded wind turbine rotors. In particular, Figure 10.35 clearly
displays the higher axial velocity levels within the diffuser, for the case of the optimal design,

which eventually result in a higher mass flow rate, and therefore higher power output.
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Figure 10.35: The contours of dimensionless axial velocity component around the optimal and
baseline shrouds.
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Figure 10.36: The contours of dimensionless swirl velocity component around the optimal and
baseline shrouds.
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Figure 10.37: The contours of dimensionless pressure around the optimal and baseline shrouds.
Finally, Figure 10.38 displays the contour lines of the dimensionless static pressure and

Figure 10.39 illustrates the velocity stream lines around the optimal and baseline shrouds.

Moreover, the latter one reveals the presence of a small recirculation area near the trailing edge
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of the optimal diffuser, which can be also identified by observing Figure 10.35a; even though

the total length of the particular recirculation area equals to 0.3R, it is not expected to have a

significant impact on the overall system’s performance.
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Figure 10.38: The contour lines of dimensionless pressure around the optimal and baseline shrouds.
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Figure 10.39: The velocity streamlines around the optimal and baseline shrouds.
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Chapter 11

Conclusions and Future Work

This chapter summarizes the principal conclusions of the current doctoral dissertation. In particular,
Section 11.1 provides a concise recap of the entire study, focused on the most significant results and

contributions, while Section 11.2 indicates possible directions for further research on the specific topic.

11.1 Concluding Remarks

The concept of diffuser-augmented or shrouded wind turbine represents an attractive and
highly versatile energy solution that has the potential to yield power performance coefficients
exceeding the Betz limit, and therefore to improve the economic feasibility of renewable
energy production under poor wind conditions, such as those prevailing within the urban
environment. In that regard, shrouded wind turbines could eventually enable significant
opportunities for more geographic dispersion of wind technology applications, growth in
distributed energy deployments and further expansion of renewable energy utilization on a
global scale, contributing to the so-called energy transition. However, the achievement of
widely adopted implementations and the consolidation of this promising technological
application in the renewable energy market call for highly efficient and economically
sustainable designs. Against this background, the present doctoral dissertation has been
primarily focused on the development and validation of effective computational tools and
numerical methodologies for, but not restricted to, the aerodynamic analysis, performance
prediction and design optimization of shrouded wind turbines. The remainder of this section
summarizes the principal outcomes of this computational study; following the storyline of the
entire doctoral dissertation, the major conclusions of the present research have been arranged

into five thematic sub-sections:

Development of a Blade Element Momentum Code
Development of an Axisymmetric RANS Solver
Development of a Coupled RANS-BEM Model

Design of a Low Reynolds Number Airfoil Family

Development of an Optimization Framework for Shrouded Wind
Turbines
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11.1.1 Development of a Blade Element Momentum Code

In Chapter 2, the current doctoral dissertation has been focused on the development of an
in-house Blade Element Momentum code for the aerodynamic analysis and performance
prediction of both conventional horizontal-axis and shrouded wind turbine rotors. In
particular, the proposed computational model has been based on the extension of classical
BEM theory, to the case of shrouded rotors, which was originally proposed by Rio Vaz et al.
(2014) and is actually implemented by properly modifying the original BEM expressions with
the axial velocity speed-up distribution over the rotor plane, for the unloaded diffuser
configuration. Furthermore, the current BEM code has been enhanced with several empirical
and analytical correction models, dealing with many of the inherent limitations of BEM theory;
namely, two different correction models for capturing the power losses related to the blade tip
and rotor hub, a drag correction model that accounts for the effects of Reynolds number, and
a detailed correction model for the accurate calculation of the axial induction factor, at the
operating states of rotor in which the momentum theory is no longer valid. The latter one
employs the expressions proposed by Ning (2014), specially tailored for the case of shrouded
wind turbines (Leloudas et al., 2017). Besides, two different models for the extrapolation of the
aerodynamic coefficients to the entire range of angles of attack have been also implemented,
based on the Montgomerie (2003) and Viterna-Corrigan (Viterna and Corrigan, 1981)
extrapolation methods. Finally, the calculation of induced velocities at the rotor plane is
achieved by applying a fixed-point iteration scheme, which is coupled with a typical relaxation
procedure, aiming to dampen the fluctuating behaviour of the axial induction factor during

the iterative process.

The performance evaluation of the proposed BEM code, in terms of accuracy, has been
reported in Chapter 3, by considering several well-documented benchmark cases, which
include both conventional horizontal-axis wind turbine and shrouded wind turbine rotors.
The results of the current simulations were compared against numerical and experimental
data available in the literature, as well as against the results obtained from the well-known
QBlade software, validating the ability of the proposed BEM code to provide rapid and
reasonably accurate predictions of the rotor characteristics, both for unshrouded and shrouded
wind turbine configurations. However, at the same time, significant discrepancies between the
computational and the experimental results were identified when the rotor blades operate in
stall mode, which is a typical deficiency of BEM models and calls for the inclusion of so-called
stall correction models or the proper modification of the two-dimensional aerodynamic
coefficients. In addition, the effect of including a tip loss correction model on the power output
prediction of shrouded rotors was also examined; the corresponding results indicated that the

inclusion of such a correction model results in more accurate predictions of the experimental
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data, especially as the value of the freestream velocity increases. However, in some cases, a

possible underestimation of the actual power output should be also anticipated.

11.1.2 Development of an Axisymmetric RANS Solver

In Chapter 4, the current doctoral dissertation has been featuring the application of
Artificial Compressibility Method (ACM) for the numerical prediction of incompressible
axisymmetric flows that involve swirling. The respective numerical solver, named 1Gal2D,
has been based on the axisymmetric formulation of the Reynolds-Averaged Navier-Stokes
(RANS) equations, which were eventually arranged in a pseudo-Cartesian form and enhanced
by the addition of the circumferential momentum equation. The discretization of spatial
derivative terms within the governing equations has been performed via unstructured two-
dimensional grid layouts, by means of a node-centered finite-volume scheme. For the
evaluation of inviscid fluxes, the upwind Roe’s approximate Riemann solver was applied,
coupled with a higher-order accurate spatial reconstruction, whereas an element-based
approach has been used for the calculation of gradients required for the viscous ones. In
addition, a detailed description of the convective flux Jacobian and the entire eigenvector
system used within the Roe’s approximate Riemann solver was provided, filling a respective
gap in research literature. Time integration has been relying on a second-order accurate four-
stage Runge-Kutta method, adopting additionally a local time-stepping technique. Finally,
further acceleration, in terms of computational time, was achieved by using an agglomeration
multigrid scheme, incorporating the full approximation scheme in a V-cycle process, within

an efficient edge-based data structure.

Subsequently, Chapter 5 has been presenting a detailed validation study on the
performance of the proposed numerical methodology and the respective flow solver, by
encountering several non-swirling and swirling flows with axial symmetry. As long as the
numerical prediction of swirling flows is concerned — which are generally more demanding
than their non-swirling counterparts — the proposed methodology was initially validated by
considering the incompressible, inviscid and swirling flow inside a specially designed
axisymmetric S-shaped tube. Detailed comparisons between IGal2D code and the commercial
software ANSYS Fluent (which employs the SIMPLE algorithm) were made, regarding
velocity components and pressure distributions at different reference sections of the tube. An
excellent agreement between them was observed. Furthermore, 1Gal2D was successfully
evaluated against properly established metrics, referring to the conservation of total pressure
and angular momentum. Regarding the performance of the FAS V-cycle scheme, the multigrid
scheme was found capable of speeding-up the solution procedure more than 20 times. Similar

levels of accuracy were identified by encountering the second benchmark test case, concerning
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incompressible laminar flow inside a straight-wall pipe equipped with swirl generator. The
particular flow apparatus has been examined numerically and experimentally by Rocha et al.
(2015). IGal2D was capable of accurately predicting both axial and tangential velocity
component distributions along the entire length of the pipe, while excellent agreement
between the results of IGal2D, those of ANSYS Fluent (axisymmetric simulation) and those
reported in the study of Rocha et al. (2015) (3D simulation), in terms of pressure distribution
along the axisymmetric line, was observed. As long as the comparison with the available
experimental data is concerned, the proposed method resulted in a reasonably accurate
prediction of the pressure drop; the experimental measurement was over-predicted by only
4%. Finally, the ERCOFTAC swirling conical diffuser (Clausen ef al., 1993) was examined. As
in the previous case studies, an almost perfect agreement between 1Gal2D and ANSYS Fluent
was succeeded for both axial and tangential velocity components at each one of the examined
sections. However, some non-trivial discrepancies between the numerical and experimental
data were identified; these are mainly attributed to the inability of k-co SST model to accurately
predict turbulent kinetic energy k in such swirling flows (Rodi et al., 1995). Therefore, this calls
for the incorporation of more advanced turbulence models within the current solver.
Nevertheless, near-wall intensity, peak position of axial velocity and swirl velocity
distributions along the entire length of the diffuser have been reasonably predicted.
Furthermore, an accurate calculation of the experimentally obtained pressure coefficient
distribution over the diffuser wall (pressure recovery) by IGal2D was achieved. Overall, the
proposed numerical solver and consequently the corresponding axisymmetric-swirling ACM
is revealed capable of accurately simulating a wide variety of axisymmetric swirling flows,
whereas its performance may be further enhanced by the incorporation of alternative

turbulence models, which will be the subject of further research.

11.1.3 Development of a Coupled RANS - BEM Model

Additionally, Chapter 8 reported the development and validation of an axisymmetric
RANS - BEM model that is based on the combination of the in-house BEM and 1Gal2D codes,
for the simultaneous prediction of the wind turbine rotor performance and surrounding flow
characteristics. The fundamental idea behind the proposed model relies on replacing the
momentum part of the classical BEM theory with a more elaborate flow model, such as the
Navier-Stokes equations, while assuming an actuator disc representation of the actual rotor
geometry. Eventually, the rotor blades are modelled by means of body force terms (naturally
included within the momentum conservation laws) and blade element theory equations. The
entire coupling procedure is coordinated by 1Gal2D software, while interaction is achieved by

means of the aerodynamic blade loads and velocity components at the rotor plane. The
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interpolation of the involved quantities between the mesh nodes and the blade stations is

implemented by custom Matlab scripts.

The performance evaluation of the proposed methodology was initially investigated by
considering the NREL 5-MW reference wind turbine, where the results of the in-house model
were compared against those of other high-fidelity simulation tools. The comparisons between
the involved software indicated that the current implementation has been capable of
providing reasonably similar levels of accuracy, in terms of predicting the aerodynamic power
and thrust of the wind turbine rotor, as well as the axial momentum deficit in the turbine wake
field and the distribution of the aerodynamic loads along the blade span. Subsequently, in
order to add further validity to the developed RANS - BEM methodology, two additional cases
were studied, involving an unshrouded and a shrouded configuration of the NREL Phase VI
rotor. As long as the unshrouded NREL Phase VI rotor is concerned, the current simulation
results were successfully validated against the available experimental data, for the
aerodynamic rotor power, aerodynamic rotor trust and loading distribution along the blade.
According to the respective comparisons, all the reference quantities have been accurately
predicted; in particular, the percentage difference between the numerical prediction and the
experimental measurement for the aerodynamic power was less than 1%, whereas the
respective percentage difference for the rotor thrust was approximately 3%. Finally, the
accuracy of the current RANS - BEM implementation was assessed against a shrouded NREL
Phase VI configuration, which was originally reported and studied by Aranake (2013). As for
the previous cases, the proposed methodology was able to provide similar levels of accuracy,
as compared to the detailed 3D RANS simulations with a fully resolved rotor geometry
reported by Aranake (2013).

11.1.4 Design of a Low Reynolds Airfoil Family

Besides the aforementioned analysis tools, in Chapter 6 and Chapter 7, the current doctoral
dissertation has been focused on the design and aerodynamic evaluation of a low-Reynolds
airfoils family, which consists of six airfoils, for the entire blade span of small horizontal-axis
wind turbines, aiming to reduce the effects related to laminar separation, increase the
structural integrity of the blade, enhance the startup behavior of the wind turbine and meet
the current blade manufacturing limitations. Initially, five thickened airfoils were constructed
based on the RG15 airfoil. According to the followed methodology, the thickened airfoils were
designed in such a way that they have the same mean camber line (MCL), as compared to the
one of the original RG15 airfoil (so as to retain its desirable aerodynamic characteristics), but
an increased thickness-to-chord ratio distribution by 50%, 40%, 30%, 20% and 10%,
respectively. Then, another custom script was applied to the original and the thickened RG15
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airfoils, for the generation of a rounded trailing edge without truncating the airfoil, through
the proper modification (local thickening) of the provided airfoil geometries. The final airfoil
family resulted through the application of a parabolic thickness distribution to the thickened
airfoils, at their trailing edge region, setting the value for the blending distance equal to 70%
and the trailing edge radius equal to 0.5% of the chord length respectively. According to the
aerodynamic evaluations performed with XFOIL code at various low Reynolds numbers, the
dependence of the blending distance on the lift and drag coefficients was found practically
zero; the same conclusion was drawn for the dependence of the aerodynamic coefficients on

the rounded trailing edge with a radius of 0.5% of the chord.

The aerodynamic performance of the entire RG15 airfoil family was initially evaluated by
using XFOIL software for various low Reynolds numbers, ranging from 60,000 to 300,000. The
results of the XFOIL analysis revealed that the increase of the thickness-to-chord ratio leads to
a reduction in the maximum lift-to-drag ratio for each one of the considered Reynolds
numbers. However, as the Reynolds number increases the particular percentage reduction
decreases. Apparently, the maximum reduction in the maximum lift-to-drag ratio, as
compared to the one of the original RG15 airfoil, was found for the lowest Reynolds number
that was examined (i.e., 60,000) and the RG15-(50)-70-1 airfoil (the thicker airfoil of the RG15
family); this percentage reduction was equal to 12.68%. The corresponding percentage at
300,000 Re was equal to 4.6%. Nevertheless, even the largest reduction of the maximum lift-
to-drag ratio seems minor given that this airfoil has a maximum thickness-to-chord ratio that
is 50% higher than the maximum thickness-to-chord ratio of the baseline RG15 airfoil,
accompanied by cross-sectional area that has been increased by approximately 52%. On the
other hand, a growth of the maximum lift coefficient for each Re was found by increasing the

thickness-to-chord ratio.

Moreover, the performance of the RG15 airfoil family was further examined by employing
the two-dimensional version of the in-house 1Gal2D solver, using the standard two-equation
SST k-w turbulence model. The RANS simulations were performed at 300,000 Re. Although
the results of the RANS simulation were generally in accordance with those of XFOIL, a
notable over-estimation of the drag coefficient was detected, leading to the under-estimation
of the lift-to-drag ratio. Such an outcome clearly indicates that a low Reynolds number
correction model is essential, in order to increase the accuracy of the numerical results. Finally,
the behavior of the recirculation area behind the rounded trailing edge for different angles of
attack was examined, while the thickening of the airfoils was found to have a beneficial impact

on the appearance of laminar separation bubbles.
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11.1.5 Development of an Optimization Framework for Shrouded
Wind Turbines

Finally, this work presented the development and application of a modular optimization
framework for the aerodynamic shape optimization of shrouded wind turbines, which
combines the aforementioned analysis tools with a parallel and asynchronous version of a
meta-model assisted Differential Evolution (DE) algorithm. The entire optimization process is
implemented iteratively until the completion of the maximum number of generations, while
the DE algorithm interacts with the parameterization, analysis and post-processing software
in a completely automated manner, by utilizing specially developed scripts. Eventually, the

proposed methodology was applied to three distinct design optimization cases, including;:

o The aerodynamic shape optimization of the rotor blades for a given shroud geometry — OP1.
o The aerodynamic shape optimization of an unloaded diffuser configuration — OP2.

o The simultaneous aerodynamic shape optimization of the blades and the diffuser — OP3.

The first optimization problem (OP1) has been focused on the aerodynamic design of
improved rotor blades for the Dongi Urban Windmills, by considering a fixed diffuser
geometry; the performance evaluation of the candidate solutions was achieved by using the
in-house BEM code that was developed in the context of the current doctoral dissertation,
while the parameterization of the twist and chord distributions was accomplished using two
distinct B-Spline curves. The proposed optimization methodology eventually resulted in two
new blade designs for the particular shrouded wind turbine, capable of considerably
increasing the power output performance of the examined application. In particular, the first
optimized blade, which is denoted as BD1 and has been based on the NACA 2207 airfoil, led
to a mean increase of the aerodynamic power output of the rotor that approximates 18.2%,
while the corresponding percentage for the second blade design, which is denoted as BD2 and
has been employing the RG15 airfoil for the entire span, was found equal to 19.4%. Besides,
the optimization procedure resulted in blade designs that differ significantly from the original
blade, with a much smother and less complicated twist distribution; a fact that renders them
quite attractive from a manufacturing point of view, as simpler geometries are easier to be

manufactured.

The second optimization problem (OP2) has been focused on the design of an improved
shroud for a 15 kW diffuser-augmented wind turbine, aiming to maximize the mean velocity
speed-up ratio and minimize drag force, while maintaining the throat diameter of the baseline
shroud design; in this application, the presence of the turbine was not included. The

performance evaluation of the candidate design was made by using the in-house 1Gal2D
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solver, while the mesh and geometry parameterization were simultaneously succeeded by
employing an in-house developed computational tool, based on the well-known Free-Form
Deformation (FFD) technique. In addition, a geometrical constraint ensuring that the volume
of the optimal design will be less or equal to the volume of the baseline one, was also imposed.
The optimization was performed for a freestream velocity of 6 m/s. Besides the utilization of a
time-saving axisymmetric flow solver and an asynchronous version of the DE algorithm,
further acceleration — by approximately 38% — was achieved through the combination of the
optimization algorithm with two meta-models; namely, an MLP and an RBF ANNs. The
optimization resulted in a shroud design (denoted as SD1) yielding a mean-velocity speed-up
ratio of 1.9, which was 23% higher than the mean velocity speed-up ratio of the baseline design,
accompanied by a remarkable reduction in surface drag by approximately 47%. However, the
relatively small thickness distribution of SD1, in the region downstream the rotor plane, was
identified as a critical point that could probably hamper the structural integrity of the
particular design. To this end, a modified shroud profile, denoted as SD2, was created by
locally thickening SD1. The aerodynamic performance of SD2 was not much inferior. As a
matter of fact, the drag reduction (comparatively to the baseline design) was equal to 45% and
the increase in the mean velocity speed-up ratio equal to 21% (mean velocity speed-up ratio
equal to 1.86). In addition, a remarkable volume reduction, touching 48% and 41% for SD1
and SD2 respectively, was also achieved, allowing for huge cost reduction, even though the
total length of the diffuser was increased. Finally, both SD1 and SD2 resulted in significantly
smaller flow separations near the exit plane, which is identified as the main reason for the
increase in velocity acceleration and drag reduction, while no recirculation areas were

observed along the high-pressure surface of the new diffusers.

Finally, the third design application (OP3) that was reported in the current doctoral study,
has been focused on simultaneously optimizing the shape of the rotor blades and the shroud.
For this purpose, the DE algorithm was coupled with the in-house developed RANS - BEM
methodology, which combines the IGal2D solver and BEM code. In this application, the
parameterization of the computational mesh and shroud geometry was made by using the
FFD-based mesh morphing tool that was developed in the current study, while the
parameterization of the twist and chord distributions of the blade was achieved by means of
B-Spline curves. The optimization was performed for a free-stream velocity of 6 m/s, aiming
to increase the rotor power output, while minimize the shroud drag. In addition, four explicit
constraints were also imposed, in order to ensure that: (i) the rotor thrust coefficient of the
optimal design will be less than unity; (ii) the volume of the optimal shroud design will be less
than the volume of the initial one; (iii) the throat radius of the optimal shroud design will be
equal to the initial one; (iv) the local chord of the blade will be monotonically decreasing.

Eventually, the current optimization method was capable of providing a highly performing
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solution to this challenging design problem, while respecting all the established constraints.
Specifically, the optimal design was capable of increasing the power output of the baseline one
by approximately 33% and yielding a power coefficient of approximately 1.93 times higher
than the Betz limit.

11.2 Further Research

The current section indicates possible directions for the extension of the methodologies and
computational tools that were developed within the context of this doctoral dissertation. The
intention of the future work should be in the direction to enhance the usefulness, the
applicability, and the accuracy of the developed methodology, and the corresponding

computational tools. To this end, the following tasks may be applied:

- Apply additional validation to the proposed methodology and the corresponding
computational tools.

- Develop a graphical interface, under which the aforementioned computational tools
will be integrated, to provide a better working environment to the potential users.

- Import, validate and compare additional turbulence models to the IGal2D solver.

- Apply parallelization to the IGal2D solver, using OpenMP (a task under development).

- Extent the presented analysis and design optimization methodology for the case of

shrouded propellers.
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Appendix A Differential Operators

Appendix A - Differential Operators in Cylindrical Coordinates

At this point, let us consider a cylindrical coordinate system (r, 6, z) and a velocity vector

field u = (u,, ug,u,). The divergence of the velocity field in cylindrical coordinates reads:

_10(ru,)  10uy N ou,

v , (A1)
r or r 060 0z

V-u

Moreover, the gradient of the velocity vector field in cylindrical coordinates is expressed as:

' ou, 10u, ug ou, ~
or r 00 r 0z

1

gradu = Vu = aﬂ _% & % (A2)

or radd r 0z

Ju, 10u, Ju,

| Or r 00 0z |
Finally, the Laplacian of the velocity vector field in cylindrical coordinates is given as:
' 0%u, 10%u, 0%u, 10u, 2 duy u, ‘
or? r?200%  0z2 ror r?00 r?

Au = V2g = 0%ug 1 0%uy 0%uy 10ug 2 0u, uy (A3)

arz ' 12 9g2 0z2 r dr 1?2900 r?
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Appendix B Conservative Form of the Axisymmetric NS Equations

Appendix B — Conservative Form of the Axisymmetric Navier-Stokes

The conservative form of the axisymmetric Navier-Stokes equations in terms of velocity

gradients for incompressible fluid motion reads:

Continuity:

19(ru,) Odu,

= B.1
r or 0z 0 (B.1)

Radial Momentum (7):

ou, 1d(ru,u,) N 10(ruyu,) uf

at r Or r 0z
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Appendix C The RG15 Airfoil Family

Appendix C - RG15 Airfoil Family

This chapter provides the dimensionless coordinates of the low-Reynolds RG15 airfoil family.

RG15-70-1 Airfoil

Point ID x/c y/c Point ID x/c y/c
1 1.000000 | 0.000000 42 0.480370 0.058146
2 0.999615 | 0.002599 43 0.460770 0.059071
3 0.998459 | 0.004265 44 0.441231 0.059876
4 0.996534 | 0.005426 45 0.421783 0.060556
5 0.993844 | 0.005893 46 0.402455 0.061105
6 0.990393 | 0.006423 47 0.383277 0.061517
7 0.986185 | 0.007097 48 0.364280 0.061787
8 0.981228 | 0.007895 49 0.345492 0.061912
9 0.975528 | 0.008803 50 0.326941 0.061889
10 0.969096 | 0.009802 51 0.308658 0.061715
11 0.961940 | 0.010870 52 0.290670 0.061387
12 0.954072 | 0.011990 53 0.273005 0.060903
13 0.945503 | 0.013150 54 0.255689 0.060260
14 0.936248 | 0.014346 55 0.238751 0.059457
15 0.926320 | 0.015590 56 0.222215 0.058494
16 0.915735 | 0.016896 57 0.206107 0.057373
17 0.904508 | 0.018261 58 0.190453 0.056093
18 0.892658 | 0.019681 59 0.175276 0.054657
19 0.880203 | 0.021155 60 0.160600 0.053066
20 0.867161 | 0.022680 61 0.146447 0.051325
21 0.853553 | 0.024254 62 0.132839 0.049440
22 0.839400 | 0.025875 63 0.119797 0.047415
23 0.824724 | 0.027537 64 0.107342 0.045259
24 0.809547 | 0.029240 65 0.095492 0.042979
25 0.793893 | 0.030977 66 0.084265 0.040579
26 0.777785 | 0.032745 67 0.073680 0.038068
27 0.761249 | 0.034537 68 0.063752 0.035455
28 0.744311 | 0.036351 69 0.054497 0.032752
29 0.726995 | 0.038183 70 0.045928 0.029972
30 0.709330 | 0.040025 71 0.038060 0.027116
31 0.691342 | 0.041868 72 0.030904 0.024200
32 0.673059 | 0.043679 73 0.024472 0.021240
33 0.654508 | 0.045446 74 0.018772 0.018273
34 0.635720 | 0.047162 75 0.013815 0.015317
35 0.616723 | 0.048820 76 0.009607 0.012362
36 0.597545 | 0.050409 77 0.006156 0.009446
37 0.578217 | 0.051922 78 0.003466 0.006636
38 0.558769 | 0.053354 79 0.001541 0.004143
39 0.539230 | 0.054700 80 0.000385 0.001971
40 0.519630 | 0.055953 81 0.000000 0.000000
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The RG15 Airfoil Family

41 | 0500000 | 0.057105 | 82 | 0.000385 | -0.001864 |
Point ID x/c y/c Point ID x/c y/c
83 | 0001541 | -0.003636 | 124 | 0.558769 | -0.020285
84 | 0003466 | -0.005424 | 125 | 0.578217 | -0.019214
85 | 0.006156 | -0.007242 | 126 | 0.597545 | -0.018049
86 | 0.009607 | -0.008942 | 127 | 0.616723 | -0.016812
87 | 0013815 | -0.010544 | 128 | 0.635720 | -0.015527
88 | 0018772 | -0.012175 | 129 | 0.654508 | -0.014218
89 | 0024472 | -0.013793 | 130 | 0.673059 | -0.012911
90 | 0.030904 | -0.015339 | 131 | 0.691342 | -0.011622
91 | 0.038060 | -0.016775 | 132 | 0709330 | -0.010367
92 | 0.045928 | -0.018105 | 133 | 0.726995 | -0.009182
93 | 0.054497 | -0.019356 | 134 | 0744311 | -0.008079
94 | 0.063752 | -0.020523 | 135 | 0.761249 | -0.007065
95 | 0.073680 | -0.021600 | 136 | 0.777785 | -0.006143
96 | 0.084265 | -0.022583 | 137 | 0.793893 | -0.005317
97 | 0.095492 | -0.023472 | 138 | 0.809547 | -0.004586
98 | 0107342 | -0.024273 | 139 | 0.824724 | -0.003951
99 | 0119797 | -0.024987 | 140 | 0.839400 | -0.003412
100 | 0.132839 | -0.025617 | 141 | 0.853553 | -0.002969
101 | 0.146447 | -0.026164 | 142 | 0.867161 | -0.002617
102 | 0.160600 | -0.026631 | 143 | 0.880203 | -0.002355
103 | 0175276 | -0.027018 | 144 | 0.892658 | -0.002175
104 | 0190453 | -0.027330 | 145 | 0.904508 | -0.002074
105 | 0206107 | -0.027565 | 146 | 0.915735 | -0.002049
106 | 0222215 | -0.027729 | 147 | 0926320 | -0.002093
107 | 0238751 | -0.027823 | 148 | 0.936248 | -0.002199
108 | 0255689 | -0.027850 | 149 | 0.945503 | -0.002356
109 | 0273005 | -0.027814 | 150 | 0.954072 | -0.002554
110 | 0290670 | -0.027716 | 151 | 0.961940 | -0.002787
111 | 0308658 | -0.027556 | 152 | 0.969096 | -0.003047
112 | 0326941 | -0.027338 | 153 | 0.975528 | -0.003325
113 | 0345492 | -0.027062 | 154 | 0.981228 | -0.003614
114 | 0364280 | -0.026730 | 155 | 0.986185 | -0.003906
115 | 0383277 | -0.026343 | 156 | 0.990393 | -0.004190
116 | 0.402455 | -0.025903 | 157 | 0.993844 | -0.004463
117 | 0421783 | -0.025410 | 158 | 0.996534 | -0.004276
118 | 0.441231 | -0.024865 | 159 | 0.998459 | -0.003115
119 | 0460770 | -0.024266 | 160 | 0.999615 | -0.001450
120 | 0.480370 | -0.023612 | 161 | 1.000000 | 0.000000
121 | 0.500000 | -0.022896 - - -
122 | 0.519630 | -0.022113 - - -
123 | 0.539230 | -0.021248 - - -

Table C.1: Cartesian coordinates of RG15-70-1 airfoil.
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RG15-(10)-70-1

Point ID x/c y/c Point ID x/c y/c
1 1.000000 0.000000 42 0.480370 0.062236
2 0.999615 0.002606 43 0.460770 0.063240
3 0.998459 0.004275 44 0.441231 0.064114
4 0.996534 0.005442 45 0.421783 0.064855
5 0.993844 0.005929 46 0.402455 0.065456
6 0.990393 0.006488 47 0.383277 0.065910
7 0.986185 0.007197 48 0.364280 0.066213
8 0.981228 0.008035 49 0.345492 0.066360
9 0.975528 0.008992 50 0.326941 0.066350
10 0.969096 0.010047 51 0.308658 0.066178
11 0.961940 0.011177 52 0.290670 0.065843
12 0.954072 0.012365 53 0.273005 0.065341
13 0.945503 0.013597 54 0.255689 0.064670
14 0.936248 0.014870 55 0.238751 0.063828
15 0.926320 0.016197 56 0.222215 0.062815
16 0.915735 0.017592 57 0.206107 0.061632
17 0.904508 0.019053 58 0.190453 0.060281
18 0.892658 0.020576 59 0.175276 0.058762
19 0.880203 0.022159 60 0.160600 0.057078
20 0.867161 0.023799 61 0.146447 0.055233
21 0.853553 0.025494 62 0.132839 0.053232
22 0.839400 0.027241 63 0.119797 0.051083
23 0.824724 0.029035 64 0.107342 0.048791
24 0.809547 0.030874 65 0.095492 0.046366
25 0.793893 0.032753 66 0.084265 0.043812
26 0.777785 0.034665 67 0.073680 0.041137
27 0.761249 0.036606 68 0.063752 0.038351
28 0.744311 0.038571 69 0.054497 0.035468
29 0.726995 0.040555 70 0.045928 0.032501
30 0.709330 0.042552 71 0.038060 0.029450
31 0.691342 0.044550 72 0.030904 0.026330
32 0.673059 0.046515 73 0.024472 0.023164
33 0.654508 0.048436 74 0.018772 0.019989
34 0.635720 0.050302 75 0.013815 0.016826
35 0.616723 0.052106 76 0.009607 0.013644
36 0.597545 0.053836 77 0.006156 0.010484
37 0.578217 0.055484 78 0.003466 0.007507
38 0.558769 0.057041 79 0.001541 0.004692
39 0.539230 0.058502 80 0.000385 0.002194
40 0.519630 0.059861 81 0.000000 0.000195
41 0.500000 0.061108 82 -0.000003 0.000000
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Point ID x/c y/c Point ID x/c y/c

83 0.000000 -0.000176 124 0.519630 -0.026012
84 0.000385 -0.001922 125 0.539230 -0.025041
85 0.001541 -0.003862 126 0.558769 -0.023963
86 0.003466 -0.005881 127 0.578217 -0.022766
87 0.006156 -0.007915 128 0.597545 -0.021467
88 0.009607 -0.009816 129 0.616723 -0.020088
89 0.013815 -0.011635 130 0.635720 -0.018656
90 0.018772 -0.013498 131 0.654508 -0.017195
91 0.024472 -0.015366 132 0.673059 -0.015734
92 0.030904 -0.017158 133 0.691342 -0.014289
93 0.038060 -0.018828 134 0.709330 -0.012878
94 0.045928 -0.020379 135 0.726995 -0.011538
95 0.054497 -0.021846 136 0.744311 -0.010280
96 0.063752 -0.023221 137 0.761249 -0.009114
97 0.073680 -0.024494 138 0.777785 -0.008044
98 0.084265 -0.025664 139 0.793893 -0.007073
99 0.095492 -0.026727 140 0.809547 -0.006200
100 0.107342 -0.027692 141 0.824724 -0.005429
101 0.119797 -0.028558 142 0.839400 -0.004759
102 0.132839 -0.029328 143 0.853553 -0.004189
103 0.146447 -0.030004 144 0.867161 -0.003718
104 0.160600 -0.030588 145 0.880203 -0.003341
105 0.175276 -0.031080 146 0.892658 -0.003053
106 0.190453 -0.031483 147 0.904508 -0.002850
107 0.206107 -0.031799 148 0.915735 -0.002729
108 0.222215 -0.032030 149 0.926320 -0.002685
109 0.238751 -0.032180 150 0.936248 -0.002708
110 0.255689 -0.032251 151 0.945503 -0.002789
111 0.273005 -0.032247 152 0.954072 -0.002915
112 0.290670 -0.032169 153 0.961940 -0.003081
113 0.308658 -0.032020 154 0.969096 -0.003278
114 0.326941 -0.031800 155 0.975528 -0.003501
115 0.345492 -0.031511 156 0.981228 -0.003742
116 0.364280 -0.031156 157 0.986185 -0.003995
117 0.383277 -0.030736 158 0.990393 -0.004245
118 0.402455 -0.030253 159 0.993844 -0.004488
119 0.421783 -0.029708 160 0.996534 -0.004288
120 0.441231 -0.029101 161 0.998459 -0.003121
121 0.460770 -0.028431 162 0.999615 -0.001452
122 0.480370 -0.027697 163 1.000000 0.000000
123 0.500000 -0.026893 - - -

Table C.2: Cartesian coordinates of RG15-(10)-70-1 airfoil.




Appendix C

The RG15 Airfoil Family

RG15-(20)-70-1

Point ID x/c y/c Point ID x/c y/c
1 1.000000 | 0.000000 42 0.480370 0.066327
2 0.999615 | 0.002614 43 0.460770 0.067409
3 0.998459 | 0.004288 44 0.441231 0.068353
4 0.996534 | 0.005462 45 0.421783 0.069154
5 0.993844 | 0.005967 46 0.402455 0.069806
6 0.990393 | 0.006551 47 0.383277 0.070303
7 0.986185 | 0.007292 48 0.364280 0.070638
8 0.981228 | 0.008174 49 0.345492 0.070808
9 0.975528 | 0.009182 50 0.326941 0.070811
10 0.969096 | 0.010293 51 0.308658 0.070642
11 0.961940 | 0.011485 52 0.290670 0.070300
12 0.954072 | 0.012740 53 0.273005 0.069780
13 0.945503 | 0.014044 54 0.255689 0.069080
14 0.936248 | 0.015394 55 0.238751 0.068199
15 0.926320 | 0.016804 56 0.222215 0.067136
16 0.915735 | 0.018288 57 0.206107 0.065893
17 0.904508 | 0.019846 58 0.190453 0.064470
18 0.892658 | 0.021472 59 0.175276 0.062869
19 0.880203 | 0.023164 60 0.160600 0.061092
20 0.867161 0.024919 61 0.146447 0.059143
21 0.853553 | 0.026734 62 0.132839 0.057029
22 0.839400 | 0.028607 63 0.119797 0.054754
23 0.824724 | 0.030534 64 0.107342 0.052328
24 0.809547 | 0.032510 65 0.095492 0.049760
25 0.793893 | 0.034529 66 0.084265 0.047052
26 0.777785 | 0.036586 67 0.073680 0.044214
27 0.761249 | 0.038675 68 0.063752 0.041256
28 0.744311 | 0.040791 69 0.054497 0.038194
29 0.726995 | 0.042929 70 0.045928 0.035042
30 0.709330 | 0.045080 71 0.038060 0.031798
31 0.691342 | 0.047233 72 0.030904 0.028474
32 0.673059 | 0.049352 73 0.024472 0.025103
33 0.654508 | 0.051425 74 0.018772 0.021723
34 0.635720 | 0.053443 75 0.013815 0.018354
35 0.616723 | 0.055393 76 0.009607 0.014954
36 0.597545 | 0.057264 77 0.006156 0.011551
37 0.578217 | 0.059046 78 0.003466 0.008323
38 0.558769 | 0.060728 79 0.001541 0.005276
39 0.539230 | 0.062305 80 0.000385 0.002567
40 0.519630 | 0.063769 81 0.000000 0.000547
41 0.500000 | 0.065112 82 -0.000011 0.000000
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Appendix C The RG15 Airfoil Family
Point ID x/c y/c Point ID x/c y/c

83 0.000000 -0.000248 124 0.519630 -0.029910
84 0.000385 -0.001998 125 0.539230 -0.028833
85 0.001541 -0.004109 126 0.558769 -0.027640
86 0.003466 -0.006317 127 0.578217 -0.026318
87 0.006156 -0.008557 128 0.597545 -0.024885
88 0.009607 -0.010677 129 0.616723 -0.023365
89 0.013815 -0.012709 130 0.635720 -0.021784
90 0.018772 -0.014802 131 0.654508 -0.020172
91 0.024472 -0.016920 132 0.673059 -0.018556
92 0.030904 -0.018961 133 0.691342 -0.016955
93 0.038060 -0.020867 134 0.709330 -0.015388
94 0.045928 -0.022641 135 0.726995 -0.013893
95 0.054497 -0.024325 136 0.744311 -0.012481
96 0.063752 -0.025909 137 0.761249 -0.011163
97 0.073680 -0.027379 138 0.777785 -0.009944
98 0.084265 -0.028736 139 0.793893 -0.008828
99 0.095492 -0.029976 140 0.809547 -0.007814
100 0.107342 -0.031105 141 0.824724 -0.006906
101 0.119797 -0.032124 142 0.839400 -0.006104
102 0.132839 -0.033035 143 0.853553 -0.005409
103 0.146447 -0.033841 144 0.867161 -0.004817
104 0.160600 -0.034542 145 0.880203 -0.004326
105 0.175276 -0.035139 146 0.892658 -0.003930
106 0.190453 -0.035635 147 0.904508 -0.003625
107 0.206107 -0.036032 148 0.915735 -0.003409
108 0.222215 -0.036331 149 0.926320 -0.003276
109 0.238751 -0.036537 150 0.936248 -0.003217
110 0.255689 -0.036652 151 0.945503 -0.003220
111 0.273005 -0.036680 152 0.954072 -0.003274
112 0.290670 -0.036623 153 0.961940 -0.003373
113 0.308658 -0.036483 154 0.969096 -0.003510
114 0.326941 -0.036261 155 0.975528 -0.003676
115 0.345492 -0.035960 156 0.981228 -0.003869
116 0.364280 -0.035582 157 0.986185 -0.004079
117 0.383277 -0.035130 158 0.990393 -0.004300
118 0.402455 -0.034603 159 0.993844 -0.004517
119 0.421783 -0.034005 160 0.996534 -0.004303
120 0.441231 -0.033336 161 0.998459 -0.003129
121 0.460770 -0.032596 162 0.999615 -0.001454
122 0.480370 -0.031782 163 1.000000 0.000000
123 0.500000 -0.030889 - - -

Table C.3: Cartesian coordinates of RG15-(20)-70-1 airfoil.
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Appendix C

The RG15 Airfoil Family

RG15-(30)-70-1

Point ID x/c y/c Point ID x/c y/c
1 1.000000 0.000000 42 0.480370 0.070419
2 0.999615 0.002622 43 0.460770 0.071578
3 0.998459 0.004301 44 0.441231 0.072591
4 0.996534 0.005482 45 0.421783 0.073453
5 0.993844 0.006006 46 0.402455 0.074157
6 0.990393 0.006617 47 0.383277 0.074695
7 0.986185 0.007390 48 0.364280 0.075063
8 0.981228 0.008315 49 0.345492 0.075256
9 0.975528 0.009371 50 0.326941 0.075272
10 0.969096 0.010539 51 0.308658 0.075106
11 0.961940 0.011793 52 0.290670 0.074756
12 0.954072 0.013115 53 0.273005 0.074219
13 0.945503 0.014492 54 0.255689 0.073491
14 0.936248 0.015919 55 0.238751 0.072571
15 0.926320 0.017412 56 0.222215 0.071458
16 0.915735 0.018986 57 0.206107 0.070155
17 0.904508 0.020640 58 0.190453 0.068661
18 0.892658 0.022369 59 0.175276 0.066978
19 0.880203 0.024170 60 0.160600 0.065109
20 0.867161 0.026039 61 0.146447 0.063057
21 0.853553 0.027976 62 0.132839 0.060829
22 0.839400 0.029975 63 0.119797 0.058431
23 0.824724 0.032034 64 0.107342 0.055871
24 0.809547 0.034146 65 0.095492 0.053159
25 0.793893 0.036307 66 0.084265 0.050298
26 0.777785 0.038509 67 0.073680 0.047299
27 0.761249 0.040746 68 0.063752 0.044171
28 0.744311 0.043013 69 0.054497 0.040930
29 0.726995 0.045303 70 0.045928 0.037594
30 0.709330 0.047608 71 0.038060 0.034158
31 0.691342 0.049916 72 0.030904 0.030632
32 0.673059 0.052190 73 0.024472 0.027058
33 0.654508 0.054416 74 0.018772 0.023475
34 0.635720 0.056584 75 0.013815 0.019902
35 0.616723 0.058681 76 0.009607 0.016287
36 0.597545 0.060693 77 0.006156 0.012642
37 0.578217 0.062608 78 0.003466 0.009163
38 0.558769 0.064415 79 0.001541 0.005881
39 0.539230 0.066107 80 0.000385 0.002963
40 0.519630 0.067677 81 0.000000 0.000887
41 0.500000 0.069117 82 -0.000017 0.000000




Appendix C The RG15 Airfoil Family
Point ID x/c y/c Point ID x/c y/c

83 0.000000 -0.000279 124 0.519630 -0.033809
84 0.000385 -0.002068 125 0.539230 -0.032625
85 0.001541 -0.004347 126 0.558769 -0.031316
86 0.003466 -0.006742 127 0.578217 -0.029869
87 0.006156 -0.009185 128 0.597545 -0.028302
88 0.009607 -0.011522 129 0.616723 -0.026640
89 0.013815 -0.013766 130 0.635720 -0.024912
90 0.018772 -0.016088 131 0.654508 -0.023148
91 0.024472 -0.018456 132 0.673059 -0.021377
92 0.030904 -0.020748 133 0.691342 -0.019621
93 0.038060 -0.022893 134 0.709330 -0.017898
94 0.045928 -0.024889 135 0.726995 -0.016247
95 0.054497 -0.026792 136 0.744311 -0.014681
96 0.063752 -0.028586 137 0.761249 -0.013211
97 0.073680 -0.030256 138 0.777785 -0.011844
98 0.084265 -0.031801 139 0.793893 -0.010581
99 0.095492 -0.033217 140 0.809547 -0.009427
100 0.107342 -0.034512 141 0.824724 -0.008382
101 0.119797 -0.035685 142 0.839400 -0.007449
102 0.132839 -0.036738 143 0.853553 -0.006627
103 0.146447 -0.037675 144 0.867161 -0.005915
104 0.160600 -0.038493 145 0.880203 -0.005310
105 0.175276 -0.039196 146 0.892658 -0.004806
106 0.190453 -0.039786 147 0.904508 -0.004399
107 0.206107 -0.040263 148 0.915735 -0.004088
108 0.222215 -0.040631 149 0.926320 -0.003866
109 0.238751 -0.040893 150 0.936248 -0.003725
110 0.255689 -0.041052 151 0.945503 -0.003652
111 0.273005 -0.041113 152 0.954072 -0.003634
112 0.290670 -0.041077 153 0.961940 -0.003666
113 0.308658 -0.040946 154 0.969096 -0.003740
114 0.326941 -0.040723 155 0.975528 -0.003851
115 0.345492 -0.040410 156 0.981228 -0.003996
116 0.364280 -0.040009 157 0.986185 -0.004166
117 0.383277 -0.039523 158 0.990393 -0.004355
118 0.402455 -0.038954 159 0.993844 -0.004546
119 0.421783 -0.038303 160 0.996534 -0.004317
120 0.441231 -0.037571 161 0.998459 -0.003137
121 0.460770 -0.036760 162 0.999615 -0.001457
122 0.480370 -0.035866 163 1.000000 0.000000
123 0.500000 -0.034885 - - -

Table C.4: Cartesian coordinates of RG15-(30)-70-1 airfoil.
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Appendix C

The RG15 Airfoil Family

RG15-(40)-70-1

Point ID x/c y/c Point ID x/c y/c
1 1.000000 | 0.000000 42 0.480370 0.074510
2 0.999615 | 0.002634 43 0.460770 0.075748
3 0.998459 | 0.004321 44 0.441231 0.076830
4 0.996534 | 0.005512 45 0.421783 0.077753
5 0.993844 | 0.006043 46 0.402455 0.078507
6 0.990393 | 0.006678 47 0.383277 0.079088
7 0.986185 | 0.007490 48 0.364280 0.079488
8 0.981228 | 0.008454 49 0.345492 0.079704
9 0.975528 | 0.009561 50 0.326941 0.079733
10 0.969096 | 0.010785 51 0.308658 0.079570
11 0.961940 0.012101 52 0.290670 0.079212
12 0.954072 | 0.013491 53 0.273005 0.078658
13 0.945503 | 0.014940 54 0.255689 0.077901
14 0.936248 | 0.016444 55 0.238751 0.076943
15 0.926320 | 0.018020 56 0.222215 0.075781
16 0.915735 | 0.019684 57 0.206107 0.074418
17 0.904508 | 0.021434 58 0.190453 0.072853
18 0.892658 | 0.023266 59 0.175276 0.071089
19 0.880203 | 0.025176 60 0.160600 0.069128
20 0.867161 0.027161 61 0.146447 0.066973
21 0.853553 | 0.029218 62 0.132839 0.064632
22 0.839400 | 0.031344 63 0.119797 0.062111
23 0.824724 | 0.033534 64 0.107342 0.059418
24 0.809547 | 0.035783 65 0.095492 0.056564
25 0.793893 | 0.038085 66 0.084265 0.053552
26 0.777785 | 0.040432 67 0.073680 0.050392
27 0.761249 | 0.042817 68 0.063752 0.047094
28 0.744311 | 0.045235 69 0.054497 0.043676
29 0.726995 | 0.047679 70 0.045928 0.040157
30 0.709330 | 0.050138 71 0.038060 0.036532
31 0.691342 | 0.052600 72 0.030904 0.032805
32 0.673059 | 0.055028 73 0.024472 0.029029
33 0.654508 | 0.057407 74 0.018772 0.025244
34 0.635720 | 0.059725 75 0.013815 0.021471
35 0.616723 | 0.061969 76 0.009607 0.017644
36 0.597545 | 0.064122 77 0.006156 0.013759
37 0.578217 | 0.066170 78 0.003466 0.010026
38 0.558769 | 0.068103 79 0.001541 0.006508
39 0.539230 | 0.069911 80 0.000385 0.003382
40 0.519630 | 0.071586 81 0.000000 0.001242
41 0.500000 | 0.073121 82 -0.000021 0.000000
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Appendix C

The RG15 Airfoil Family

83 0.000000 -0.000297 124 0.519630 -0.037707
84 0.000385 -0.002133 125 0.539230 -0.036417
85 0.001541 -0.004577 126 0.558769 -0.034992
86 0.003466 -0.007155 127 0.578217 -0.033420
87 0.006156 -0.009801 128 0.597545 -0.031719
88 0.009607 -0.012352 129 0.616723 -0.029915
89 0.013815 -0.014806 130 0.635720 -0.028040
90 0.018772 -0.017354 131 0.654508 -0.026124
91 0.024472 -0.019975 132 0.673059 -0.024198
92 0.030904 -0.022519 133 0.691342 -0.022286
93 0.038060 -0.024904 134 0.709330 -0.020406
94 0.045928 -0.027125 135 0.726995 -0.018600
95 0.054497 -0.029248 136 0.744311 -0.016880
96 0.063752 -0.031254 137 0.761249 -0.015258
97 0.073680 -0.033124 138 0.777785 -0.013742
98 0.084265 -0.034858 139 0.793893 -0.012334
99 0.095492 -0.036452 140 0.809547 -0.011039
100 0.107342 -0.037913 141 0.824724 -0.009858
101 0.119797 -0.039242 142 0.839400 -0.008793
102 0.132839 -0.040437 143 0.853553 -0.007845
103 0.146447 -0.041505 144 0.867161 -0.007013
104 0.160600 -0.042442 145 0.880203 -0.006294
105 0.175276 -0.043251 146 0.892658 -0.005681
106 0.190453 -0.043934 147 0.904508 -0.005173
107 0.206107 -0.044493 148 0.915735 -0.004766
108 0.222215 -0.044929 149 0.926320 -0.004456
109 0.238751 -0.045248 150 0.936248 -0.004232
110 0.255689 -0.045452 151 0.945503 -0.004083
111 0.273005 -0.045546 152 0.954072 -0.003992
112 0.290670 -0.045531 153 0.961940 -0.003957
113 0.308658 -0.045410 154 0.969096 -0.003970
114 0.326941 -0.045185 155 0.975528 -0.004026
115 0.345492 -0.044859 156 0.981228 -0.004122
116 0.364280 -0.044436 157 0.986185 -0.004253
117 0.383277 -0.043916 158 0.990393 -0.004406
118 0.402455 -0.043304 159 0.993844 -0.004580
119 0.421783 -0.042600 160 0.996534 -0.004339
120 0.441231 -0.041807 161 0.998459 -0.003148
121 0.460770 -0.040924 162 0.999615 -0.001461
122 0.480370 -0.039951 163 1.000000 0.000000
123 0.500000 -0.038880 - - -

Table C.5: Cartesian coordinates of RG15-(40)-70-1 airfoil.
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Appendix C

The RG15 Airfoil Family

RG15-(50)-70-1

Point ID x/c y/c Point ID x/c y/c
1 1.000000 | 0.000000 42 0.480370 0.078602
2 0.999615 | 0.002642 43 0.460770 0.079917
3 0.998459 | 0.004334 44 0.441231 0.081069
4 0.996534 | 0.005532 45 0.421783 0.082052
5 0.993844 | 0.006082 46 0.402455 0.082858
6 0.990393 | 0.006744 47 0.383277 0.083480
7 0.986185 | 0.007588 48 0.364280 0.083913
8 0.981228 | 0.008595 49 0.345492 0.084152
9 0.975528 | 0.009751 50 0.326941 0.084194
10 0.969096 | 0.011032 51 0.308658 0.084033
11 0.961940 | 0.012410 52 0.290670 0.083669
12 0.954072 | 0.013868 53 0.273005 0.083097
13 0.945503 | 0.015389 54 0.255689 0.082313
14 0.936248 | 0.016970 55 0.238751 0.081316
15 0.926320 | 0.018629 56 0.222215 0.080105
16 0.915735 | 0.020383 57 0.206107 0.078682
17 0.904508 | 0.022230 58 0.190453 0.077047
18 0.892658 | 0.024164 59 0.175276 0.075202
19 0.880203 | 0.026183 60 0.160600 0.073149
20 0.867161 | 0.028283 61 0.146447 0.070893
21 0.853553 | 0.030462 62 0.132839 0.068439
22 0.839400 | 0.032714 63 0.119797 0.065796
23 0.824724 | 0.035036 64 0.107342 0.062971
24 0.809547 | 0.037422 65 0.095492 0.059975
25 0.793893 | 0.039864 66 0.084265 0.056813
26 0.777785 | 0.042356 67 0.073680 0.053493
27 0.761249 | 0.044890 68 0.063752 0.050026
28 0.744311 | 0.047458 69 0.054497 0.046431
29 0.726995 | 0.050055 70 0.045928 0.042732
30 0.709330 | 0.052668 71 0.038060 0.038918
31 0.691342 | 0.055285 72 0.030904 0.034992
32 0.673059 | 0.057867 73 0.024472 0.031014
33 0.654508 | 0.060398 74 0.018772 0.027030
34 0.635720 | 0.062867 75 0.013815 0.023060
35 0.616723 | 0.065257 76 0.009607 0.019025
36 0.597545 | 0.067551 77 0.006156 0.014902
37 0.578217 | 0.069733 78 0.003466 0.010914
38 0.558769 | 0.071791 79 0.001541 0.007158
39 0.539230 | 0.073714 80 0.000385 0.003824
40 0.519630 | 0.075495 81 0.000000 0.001619
41 0.500000 | 0.077126 82 -0.000025 0.000000
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Appendix C The RG15 Airfoil Family
Point ID x/c y/c Point ID x/c y/c

83 0.000000 -0.000309 124 0.519630 -0.041604
84 0.000385 -0.002194 125 0.539230 -0.040208
85 0.001541 -0.004798 126 0.558769 -0.038668
86 0.003466 -0.007558 127 0.578217 -0.036971
87 0.006156 -0.010404 128 0.597545 -0.035135
88 0.009607 -0.013167 129 0.616723 -0.033190
89 0.013815 -0.015830 130 0.635720 -0.031167
90 0.018772 -0.018603 131 0.654508 -0.029098
91 0.024472 -0.021475 132 0.673059 -0.027018
92 0.030904 -0.024274 133 0.691342 -0.024950
93 0.038060 -0.026902 134 0.709330 -0.022914
94 0.045928 -0.029348 135 0.726995 -0.020952
95 0.054497 -0.031692 136 0.744311 -0.019078
96 0.063752 -0.033912 137 0.761249 -0.017304
97 0.073680 -0.035982 138 0.777785 -0.015639
98 0.084265 -0.037907 139 0.793893 -0.014086
99 0.095492 -0.039680 140 0.809547 -0.012649
100 0.107342 -0.041309 141 0.824724 -0.011332
101 0.119797 -0.042793 142 0.839400 -0.010135
102 0.132839 -0.044132 143 0.853553 -0.009062
103 0.146447 -0.045331 144 0.867161 -0.008110
104 0.160600 -0.046388 145 0.880203 -0.007276
105 0.175276 -0.047304 146 0.892658 -0.006555
106 0.190453 -0.048081 147 0.904508 -0.005946
107 0.206107 -0.048721 148 0.915735 -0.005443
108 0.222215 -0.049227 149 0.926320 -0.005044
109 0.238751 -0.049603 150 0.936248 -0.004739
110 0.255689 -0.049851 151 0.945503 -0.004513
111 0.273005 -0.049978 152 0.954072 -0.004351
112 0.290670 -0.049984 153 0.961940 -0.004249
113 0.308658 -0.049873 154 0.969096 -0.004200
114 0.326941 -0.049647 155 0.975528 -0.004201
115 0.345492 -0.049309 156 0.981228 -0.004249
116 0.364280 -0.048862 157 0.986185 -0.004339
117 0.383277 -0.048310 158 0.990393 -0.004461
118 0.402455 -0.047654 159 0.993844 -0.004609
119 0.421783 -0.046898 160 0.996534 -0.004354
120 0.441231 -0.046042 161 0.998459 -0.003156
121 0.460770 -0.045088 162 0.999615 -0.001463
122 0.480370 -0.044035 163 1.000000 0.000000
123 0.500000 -0.042875 - - -

Table C.6: Cartesian coordinates of RG15-(50)-70-1 airfoil.
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