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Summary
Topology optimization solves the basic engineering design problem of dis-
tributing a limited amount of material in a design space in order to form a
structure or a mechanism that works in an optimal way. One of the most
interesting applications is the synthesis of compliant mechanisms. A compli-
ant mechanism is a flexible monolithic structure that transforms an external
load to motion along a specific direction and the same time is stiff enough to
bear with the applied forces. Multi-purpose compliant mechanisms are struc-
tures with all the above features that are able to deliver two or more different
motions depending on the applied load case.

In this thesis a new hybrid algorithm is developed and used for the calcu-
lation of optimum structures and flexible mechanisms, which combines fea-
tures of applicable global optimization, to avoid local minima, and classic
topology optimization algorithms.

Topology optimization is used as a conceptual design tool for structures,
compliant mechanisms and auxetic materials, etc. Following classical devel-
opments, several multi-objective topology optimization problems are first for-
mulated. From numerical experiments it was noticed that when topology
optimization starts from initial random material distributions, the resulted
structures are different, meaning that local minima arise. Therefore, a hybrid
algorithm utilizing the advantages of global optimization techniques, is pro-
posed. The hybrid scheme uses topology optimization as the evaluation tool
of the previously mentioned global optimization algorithms.

The majority of materials in nature when stretched in one direction, get
thinner in the normal to loading direction, and vice versa. The opposite effect
take place in auxetic materials. Auxetic materials are artificial microstructures
with properties that may not be found in nature. Their mechanical properties
are defined by their structure rather than their composition. The feature that
describes them as auxetic, is the negative Poisson’s ratio. This auxetic behav-
ior occurs due to their specific internal structure and the way it deforms when
the sample is uniaxially loaded. The design of auxetic materials can follow
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similar techniques to the compliant mechanism and is presented as an appli-
cation which leads to new designs of auxetic microstrucures. Their effective-
ness as well as their response to nonlinearities, are verified using numerical
homogenization tools and CAD/CAE software.



Περίληψη
Η τοπολογική βελτιστοποίηση λύνει το βασικό πρόβληµα εύρεσης της
καλύτερης κατανοµής µιας περιορισµένης ποσότητας υλικού µέσα σε ένα
προδιαγεγραµµένο χωρίο, προκειµένου η προκύπτουσα δοµή να αποτελεί
µια κατασκευή ή ένα µηχανισµό που θα λειτουργεί βέλτιστα. Μία από τις
πιο ενδιαφέρουσες εφαρµογές είναι η σύνθεση εύκαµπτων µηχανισµών.
Ένας εύκαµπτος µηχανισµός είναι ένα ελαστικό, µονολιθικό σώµα που
µετατρέπει τις εξωτερικές φορτίσεις σε κίνηση µέσω της παραµόρφωσης
του, κατά µήκος µιας συγκεκριµένης κατεύθυνσης και ταυτόχρονα είναι
αρκετά άκαµπτο ώστε να αντέχει τις επιβαλλόµενες φορτίσεις. Οι πολυ-
µορφικοί εύκαµπτοι µηχανισµοί είναι κατασκευές µε όλα τα παραπάνω
χαρακτηριστικά που είναι σε θέση να παρέχουν δύο ή περισσότερες δια-
φορετικές κινήσεις, ανάλογα µε την επιβαλλόµενη φόρτιση.

Στην παρούσα διατριβή αναπτύσσεται και χρησιµοποιείται υβριδικός
αλγόριθµος για τον υπολογισµό κατασκευών και εύκαµπτων µηχανισµών,
ο οποίος συνδυάζει χαρακτηριστικά εφαρµόσιµης ολικής βελτιστοποίη-
σης, για την αποφυγή τοπικών ελαχίστων, και κλασικών αλγορίθµων το-
πολογικής βελτιστοποίησης. Η τοπολογική βελτιστοποίησης µπορεί να
χρησιµοποιηθεί ως ένα εννοιολογικό εργαλείο σχεδιασµού κατασκευών,
εύκαµπτων µηχανισµών και αυξητικών υλικών, κ.τ.λ. Η χρήση κλασσικών
τεχνικών σχεδιασµού βέλτιστων κατασκευών, οδηγεί στην διατύπωση πο-
λυκριτήριων προβληµάτων τοπολογικής βελτιστοποίησης. Από αριθµη-
τικά πειράµατα παρατηρήθηκε ότι η έναρξη της τοπολογικής βελτιστο-
ποίησης από τυχαίες αρχικές κατανοµές υλικού οδηγεί σε διαφορετικές
τελικές λύσεις, κάτι που σηµαίνει ότι ο αλγόριθµος εγκλωβίζεται σε το-
πικά ελάχιστα. Αυτό το φαινόµενο είναι ιδιαίτερα έντονο στα προβλή-
µατα σχεδιασµού εύκαµπτων µηχανισµών. Ως εκ τούτου, προτείνεται
ένας νέος υβριδικός αλγόριθµος που αξιοποιεί τα πλεονεκτήµατα τεχνι-
κών ολικής βελτιστοποίησης και χρησιµοποιεί την τοπολογική βελτιστο-
ποίηση ως εργαλείο αξιολόγησης.

Για την πλειοψηφία των υλικών στη φύση, όταν σε αυτά ασκούνται
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εφελκυστικές δυνάµεις τότε αυτά γίνονται λεπτότερα στην κάθετα προς
τη φόρτιση κατεύθυνση, και το αντίστροφο. Το αντίθετο αποτέλεσµα
λαµβάνει χώρα για τα αυξητικά υλικά. Τα αυξητικά υλικά είναι τεχνητές
µικροδοµές µε ιδιότητες που δεν µπορούν να βρεθούν στη φύση. Οι µη-
χανικές τους ιδιότητες καθορίζονται από τη δοµή τους και όχι από τη
σύνθεσή τους. Το χαρακτηριστικό που τα περιγράφει ως αυξητικά, είναι
ο αρνητικός λόγος Poisson. Η αυξητική συµπεριφορά προκύπτει λόγω
της ειδικής εσωτερικής δοµής τους και του τρόπου που παραµορφώνονται
όταν φορτιστούν µονοαξονικά. Τα αυξητικά υλικά µπορούν να σχεδια-
στούν όπως οι εύκαµπτοι µηχανισµοί και ο σχεδιασµός τους παρουσιά-
ζεται στην εργασία αυτή ως εφαρµογή, η οποία οδηγεί σε νέες µορφές
αυξητικών µικροδοµών. Η αποτελεσµατικότητά τους καθώς και η από-
κρισή τους σε µη γραµµική περιοχή επαληθεύονται µε τη χρήση αριθµη-
τικής οµογενοποίησης και εργαλείων CAD/CAE.
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CHAPTER1
Introduction

1.1 Motivation
Seeking the optimum design is not always easy. Actually it is very difficult.
For any design process, the engineer firstly drafs the outlines of the product
and later tries to optimize it by finding the best design parameters that sat-
isfy project requirements. There are always questions that must be answered
and decisions that must be taken. For example in figure 1.1 a load 𝐹 must be
supported using a cantilever beam, with the minimum of material. The ques-
tions that may arise are: how big the hole must be in order to save weight
and where should be placed?, is it beĴer to place two or more smaller holes
instead of one?, which material should be used?, should the borders (in blue)
be curves instead of lines?, is it necessary the shape of the hole to be circular?,
can the final design be manufactured? Design optimization’s goal is to find
answer to all above questions.

l

b
y

x F

⌀d

Figure 1.1: Design optimization of a cantilever beam.

Topology optimization seeks to find solution to the problem of what is
the optimum way to distribute material inside a predefined area in order for
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the resulted structure to behave the best under a given set of loads and con-
straints. The optimal structrure is created without the restrictions concerning
it’s topology, like the assumption that we are looking for a cantilever with
holes like in the previous example. Topology optimization is an incredibly
powerful tool in many areas of design such as architecture, structural and
fluid mechanics, optics and electronics, etc. The basic idea is to optimize a
structure such us to use less material than before, but at the same time to be
able to behave the same way or even beĴer under the same conditions. Some-
times the resulted structures are very difficult or even impossible to be man-
ufactured using conventional, subtractive procedures like machining a bulk
or raw material. Additive manufacturing procedures, like 3D printing, gave
the opportunity to build structures that are impossible to achieve otherwise.
This method is derived from structural design and so topology optimization
applied in this context is also known as structural optimization.

Applying topology optimization to structural design in general, involves
considering concepts such as volume, weight, stresses, stiffness, displacements,
buckling loads and resonant frequencies, with some of these defining the ob-
jective function and others constraining the structure. In other applications,
aerodynamic performance, optical performance or conductance may be of in-
terest, in which case the underlying state equations are very different to those
considered in the structural case.

In structural design, topology optimization can be regarded as an exten-
sion of size and shape optimization. Size optimization considers a structure
which can be decomposed into a finite number of members. Each member is
then parametrised so that, for example, cross sectional area of the member is
the only variable defining the member. Size optimization then seeks to find
the optimal values of the parameters defining the members.

Shape optimization is an extension of size optimization in that it allows
extra freedoms in the configuration of the structure such as the location of con-
nections between members or location of the holes in the structure or even the
shape of the hole. A hole actually may have any shape that does not always
have to be a circle. In a more general sense a hole can be represented by a tria-
gle or a polygon of any kind with filets in its corners, or even a closed NURBS
spline. The designs allowed are restricted to a fixed topology and thus can
be wriĴen using a limited number of optimization variables that may be the
number of holes or the size of the edges of the polygons and the value of the
fillets.

Topology optimization extends size and shape optimization, by allowing
the calculation of the optimal structure without any restriction related to it’s



1.2 Objectives and approach 3

type. Its purpose is to search for the optimal layout of material inside a 2-
or 3-dimensional design domain. The material must be distributed in such
a way that the structure must be feasible so that there are no islands of ma-
terial inside the design domain. In simpler words, all particles of material
must be connected, leaving areas inside the design domain empty as ”holes”.
Fearthermore, as Robert le Ricolais quoted ”the art of structure is where to
put the holes”.

1.2 Objectives and approach
When starting to use topology optimization in any problem, one must de-
fine some basic concepts, like the design domain, the loads and the boundary
conditions, as well as the amount of area or volume that are allowed to use
(sometimes mentioned as a fraction of the 2D area or the 3d volume). But
is the resulting structure really the optimal one? There are some drawbacks
in this method. Checkeboard effects may appear (the resulting structure has
areas that look like a checkerboard), the method is mesh-dependent and dif-
ferent final results appear when the method starts from different initial condi-
tions meaning that the method falls into local minima. The later phenomenon
appears often in the design of compliant mechanisms.

In order to search for global optima, one must use global optimization
techniques, deterministic, stochastic (simulated annealing, Monte-Carlo sam-
pling) or heuristic (genetic algorithms, swarm-based optimization algorithms,
differential evolution, etc.). In any case, a large number of design variables
must be used that makes the problem impossible to solve.

A new hybrid scheme is proposed, taking advantage from the use of evolu-
tionary algorithms and local search methods. The algorithm creates random
initial material distributions that are evaluated using topology optimization.
The ”initial” resulted structures are being developed according to the evolu-
tionary strategy that is used, until termination criteria are met.

In this hybrid scheme two evolutionary algorithms are used: Differen-
tial Evolution (DE), and Particles Swarms Optimization (PSO). The hybrid
scheme was used and compared applications such as simple and multifunc-
tional compliant mechanisms, and auxetic materials.
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1.3 Thesis outline
The thesis is organized as follows: chapter 2 presents some definitions of
structural and topology optimization as well as auxetic materials. Chapter 3
refers to topology optimization, and its problem definition for structures and
mechanisms, for one an multiple load case. There is also an implementation
of motion control for compliant mechanisms. Chapter 4 presents the hybrid
scheme algorithm. There is also a presentation Differential Evolution, and
Particle Swarm Optimization. Chapter 5, presents results from the design of
compliant mechanism. The example of the asymmetric compliant is used. It
is also presented a multiple load case compliant mechanism. Both examples
have been studied, initially without output control and subsequently with
output control. Chapter 6 presents results for auxetic structures using truss
and 2d plane stress elements. The auxetic behaviour of the later verified using
modern CAD & CAE software. There are is a brief description on the effects
of geometric and elastoplastic nonlinearies on the auxetic structures. Finally
chapter 7 summarizes the achievements of this works. Ideas for future work
are set out as possible topics for further research.



CHAPTER2
Literature Review

2.1 Structural optimization
A structure can be defined as any assemblage of materials which is intented to
sustain loads [Gor78]. Optimization is a process of making things optimum.
Design optimization is generally defined by Papalambros and Wilde [PW00]
as the selection of the best design within the available means. Structural op-
timization is the design and manufacture of a structure that sustains the ap-
plied loads (static or dynamic, etc.) in the best way. Galileo Galilei was one of
the pioneers in structural optimization. In the second part of his book Discorsi
[Gal38] published in 1638, he investigated the fracture process of briĴle bod-
ies, whereas also the shape of bodies was considered with regard to strength.
He also proved that the optimum shape for a beam supported at one end and
bearing a load at the other is parabolic (see figure 2.1).

Structural optimization can be classified in three major categories:

• sizing optimization: is the simplest form of structural optimization. The
main feature of the sizing optimization is that the shape of the structure
(or the design domain) is known and fixed through the optimization
process. The objective of the sizing problem is to optimize the structure
by adjusting the sizes of the components. Here the design variables are
the sizes of the structural elements, for example the diameter of a rod,
the thickness or the cross section area of a beam. In any case the opti-
mal values of the design variables minimizes (or maximizes) a physical
quantity such as the mean compliance (external work), peak stress, de-
flection, etc., while equilibrium and other constraints on the state and
design variables are satisfied. See 2.2(a) for an example of size optimiza-
tion where the diameter of the rods are the design variables.

• shape optimization: As with sizing optimization the topology (num-
ber of holes, beams, etc.) of the structure is already known when using
shape optimization, the shape optimization will not result in new holes
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(a) Galileo’s original cantilever beam’s
shape

(b) Galileo’s optimal cantilever beam’s
shape

Figure 2.1: Galileo’s Shape Optimization

or split bodies apart. In this case, the design variables can, for example,
be thickness distribution along structural members, diameter of holes,
radii of fillets or any other measure. See 2.2(b) for an example of shape
optimization. A fundamental difference between shape vs. topology
and size optimization is that instead of having one or more design vari-
ables for each element the design variables in shape optimization each
affect many elements.

• topology optimization: is the most general form of structural optimiza-
tion. The main purpose of topology optimization, is to find the opti-
mum material distribution inside a fixed, predefined design domain, in
order that, the resulting structure is able to bear with the external loads
and satisfy the boundary conditions. See 2.2(c) for an example of topol-
ogy optimization.
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Figure 2.2: Structural optimization categories
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2.2 Topology optimization
Topology optimization for truss structures has been studied first by Michell
[MCE04] in 1904. In his work he presented analytical formulas for structures
with minimum weight given stress constraints on various design domains.

Numerical topology optimization has been introduced by Bendsoe & Ki-
kuchi in 1988 when they proposed a homogenization method [BK88]. The
main idea of the homogenization method is that a material density is intro-
duced by representing the material as a microstructure. The microstructure
is a composite material with an infinite number of infinitely small voids. This
leads to a porous composite that can have a density varying between 0% and
100%. In later works [Ben89] Bendsoe removed this discrete nature of the
problem by introducing a density function that is a continuous design vari-
able. The resulted shape of the optimized structure is defined by domains of
high density [Ben89].

Rozvany et al. [RZB92] made a breakthrough by proposing a penalization
scheme called SIMP: Solid Isotropic Microstructure with Penalty. Using the
SIMP method, the resulted optimal structure is consisted of solid and empty
material only. Due to the simplicity in the methodology, SIMP has become a
popular approach to structural topology optimization.

2.3 SIMP alternatives
Except the SIMP method that is used widely in topology optimization, there
are a lot of other methods that aĴempt to solve the problem of the optimal lay-
out of material such like the alternative to SIMP method, Evolutionary Struc-
tural Optimization (ESO) proposed by Xie and Stevens [XS93], Bi-directional
Evolutionary Structural Optimization (BESO) proposed by Querin et al. in
2000 [QSX00],[Que+00], topological derivatives proposed by Sokolowski in
1999 [SZ99], level set method [OS88], a combination of level set method and
ESO [Jia+11] and a new introduced hybrid method based on evolutionary al-
gorithms and local search methods [KS12], [KDS15].
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P

(a) Design domain

(b) Topology optimized solution

(c) Michell type optimal structure

Figure 2.3: An comparison between topology optimized and Michell type
optimal structures
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2.4 Application of Topology optimization

2.4.1 Compliant mechanisms
A compliant mechanism is a single-piece flexible structure that combines the
mobility of a conventional mechanism with the stiffness of a conventional
structure. A compliant mechanism utilizes the structural deformation, to
transmit force or deliver motion. Due to the absence of joints, a compliant
mechanism can also be seen as a structure that is stiff enough to bear the in-
put loads along with the generated stresses.

The non-existance of joints results to compliant mechanisms free of phe-
nomena like joint friction and backlash, while taking away the need for lubri-
cation. Their system integration is easily achieved, and they can be coupled
with modern actuators. Their design is scalable and can be equally effective
at micro, meso or macro scale. They can be manufacturered using a wide
range of materials such as steel, aluminum, titanium, glass and carbon fiber
reinforced plastics. Due to their monolithic structure there is no need to in-
clude springs, fasteners of hinges. The compliant mechanisms are fatique
resistant as a result of the even stress distribution to their throught their de-
formation[Fle15].

A leading application of compliant mechanisms is its use in Micro Electro
Mechanical Systems (MEMS) as pressure, acceleration, displacement sensors
[KA08] or mechanical amplifiers for piezoelectric actuators [CF00]. Another
great application of compliant mechanisms is in aerospace area where they
are used to change the shape of an aifoil, and consequently the aerodynamic
features of wings and other control areas of an aircraft [Kot+03]. This is re-
ferred with the term airfoil morphing. Just recently in 2014, the first plane with
flexible wings that use compliant mechanisms took off [Ame14].

The major drawback of classical optimal structural design is that the re-
sulting structure depends on the adopted structure and only parametrization
gives some flexibility in the search for the optimum. In compliant mecha-
nisms the topology of the structure is not always known from the beginning.
Therefore topology optimization method must be applied [BK88; Ben95]. So-
me applications of the compliant mechanisms are the design force inverters
[BS03], of micro-gripers [Sig96], micro-structures with negative thermal ex-
pansion ratio [ST99], or negative Poisson’s ratio [LSB97], [KS12], structures
with multiple output points [FKK99] and contact aided compliant mecha-
nisms [MLF09; MA07].

Compliant mechanisms for single and multiple load cases have been pro-
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posed in the past [Alo+13]. Nonconvexity appears with higher severity in
the multiple loading case (polymorphic mechanisms), a fact that has already
been observed in structural optimization [XS93] and gives no guarantee that
simple heuristic iterative solution algorithms will work. For several reasons it
would be more suitable to take advantage of the flexibility of general purpose
global optimization algorithms (genetic algorithms, evolutionary algorithms
etc). Unfortunately, due to the large scale of the arising optimization prob-
lems, the lack of experience for the tuning of the involved parameters (like
the population size and the coding in genetic optimization, etc) and the huge
computing power required [Sig11], the applicability of general purpose, un-
modified, global optimization techniques, is not efficient. Several aĴempts
have been published with appropriately modified algorithms, like the ge-
netic algorithm with appropriate handling of design connectivity for struc-
tural topology optimization presented in [WT05; MRP06]. Single and multi-
criteria optimization problems are formulated. A novel hybrid algorithm is
proposed, which is based on the combination of classical, iterative solution
algorithms, with evolutionary strategies such as genetic algorithms and par-
ticle swarm methods. The results of this work can be used for the design of
optimal mechanisms and micromechanisms, for elastic mechanical problems
or in multiphysics.

In order to find the best structure that utilizes the above demands (flex-
ibility and stiffness), topology optimization is used. Similarly to structural
topology optimization, topology optimization of compliant mechanisms can
be performed based on continuum as well as truss and frame discretization.
The continuum approach will be followed here. The mechanical modelling
techniques are taken from reference [BS03] and it was based on the 99 lines
MATLAB code [Sig01]. For the purposes of this thesis, linear finite elements
has been used in order to benchmark the method in a much simpler problem
which nevertheless leads to noncovex optimization problems with multiple
solutions. The difficulties are expected to be more severe in large deformation
problems. Especially, if the design intent is the synthesis of a path following
compliant mechanism, the use of nonlinear analysis is the only way [PBS01].

2.4.2 Auxetic materials
Auxetic materials have certain properties that make them suitable for a num-
ber of novel applications to defence and civil sectors [Liu06]. The negative
Poisson’s effect is aĴributed to the microstructure of the material. From expe-
rience and analytical investigations a number of auxetic microstructures have
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been proposed and studied (re-entrant corners, nonconvex microstructures,
nematic mechanisms, etc.). Automatic design of auxetic microstructures that
go beyond the classical ones have been proposed using techniques from topol-
ogy optimization of flexible mechanisms [KS12]. Nevertheless, due to limited
ability of topology optimization to deal with all possible design goals, like
dynamic behaviour or fatigue resistance, manufacturability, constraints, etc.,
the result still requires modification. Usage of classical design optimization
techniques can be used at this step. The final verification, which indicates
that the proposed microstructure has the required properties, is done with
numerical homogenization.

Several analytical and numerical approaches have been proposed in the
past for the investigation of heterogeneous structures, like composites. Ana-
lytical/mathematical methods, like asymptotic homogenization [San80], can
be more accurate than numerical methods in the description of the microstruc-
ture, for relatively simple microscopic paĴerns and constitutive laws. On the
other hand, numerical methods are suitable for the simulation of complex
microscopic geometries, over a statistically defined representative amount of
material [ZW08], thus the Representative Volume Element (RVE).

According to numerical homogenization, a unit cell is independently solved
and the resulting average quantities are then used for the determination of the
parameters of a macroscopic constitutive law [PS00; DBA08]. From another
point of view, multi-scale computational homogenization incorporates a con-
current analysis of both the macro and the microstructure in a nested multi-
scale approach, [SSB85; Kou02; DWS13a; DWS13b; MPG07; Kan+09; Pin+09;
GKB10]. Within this method, the macroscopic response is determined during
simulation, after solving the microscopic problem and transferring the neces-
sary information on the macroscopic scale.

Some efforts towards coupling topology optimization and homogeniza-
tion, have already been reported. In [AJM04] topology optimization and ho-
mogenization concepts have been used for a minimum stress design. In [ALS14]
a homogenization procedure has been incorporated in the overall optimiza-
tion procedure. In [NTN13] a multi-scale computational homogenization ap-
proach is used in order to take into account nonlinear effects.

The verification of the auxetic behaviour of a microstructure, which is
initially obtained by topology optimization is achieved by using numerical
homogenization. Verification [ASM06] stands for an independent procedure,
according to which numerical homogenization is used to investigate in the mi-
croscopic level, the effective material behaviour for the heterogeneous mate-
rial distribution given by topology optimization. Results regarding effective
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Poisson�’s ratio are compared with the output given by optimization. The
homogenization scheme has not been incorporated in the overall topology
optimization algorithm, thus homogenization is considered independently of
the optimization procedure. First, the material distribution, which is given by
topology optimization, is considered. Then, the structure is treated as a het-
erogeneous one consisting of an existing, hard material and another soft ma-
terial in the areas of voids. A classical numerical homogenization approach
is finally used and the effective Poisson’s ratio is estimated. Another way to
testify the auxetic behaviour is to draft a 2d NURBS parametric model based
on the outcome of the hybrid scheme. An bitmap image that describes the ma-
terial distribution of the auxetic structure is imported into a CAD application
so that a virtual two dimensional model is drafted. The resulted structure is
analysed using FEA in order to confirm the auxetic behaviour.

The novelty of the presented work is focused on the combined use of state
of the art techniques from the following areas: first the material design prob-
lem is solved by using topology optimization for compliant mechanisms de-
sign [LSB97]. Furthermore, the arising nonconvex optimization problems for
several practical reasons are solved by means of a hybrid algorithm composed
of evolutionary algorithms and local search iterations such as to ensure that in-
tegral structure appears in each step of the algorithm [KS12]. Finally, the aris-
ing microstructure is verified by using numerical homogenization [ZW08].



CHAPTER3
Topology Optimization for
structures and compliant

mechanisms
3.1 Problem formulation for structures

3.1.1 Mathematical formulation of the continuum
The optimum material layout problem combines several features from the
classic problems of structural optimization. The goal of topology optimiza-
tion is to find the best material distribution inside a predefined design domain
Ω. The body is constrained at its boundaries 􏷠Γ𝑢 and 􏷡Γ𝑢, while body forces
𝑓 are applied, along with traction forces 𝑡 at boundary Γ𝑡. There are specific
areas inside the domain Ω that material must be present and areas that must
be void (see subfigure 3.1(a)). The only known parameters are the applied
loads, material properties, and boundary conditions along with several side
constraints such as areas that material is present or not inside the domain.
The optimum distributed material inside the domain Ω is Ω𝑚𝑎𝑡 and is a frac-
tion 𝜙 of the whole volume or area. In this problem, the size, shape and the
connectivity of the material are the unknowns. Subfigure 3.1(b) shows the
resulted material distribution Ω𝑚𝑎𝑡 inside the domain Ω.

3.1.2 Mathematical formulation of the topology
optimization for structures

The topology optimization problem is a ”0-1” integer optimization problem.
First, the design domain Ω is discretized into 𝑁 finite elements (figure 3.3).
Each finite element represents a design variable of density 𝐱. This means that
each finite element could or could not have material. If density is equal to
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Figure 3.1: Topology Optimization Definition

unity, material is present in that area and the cell is painted in black. If density
is equal to zero, no material is present in that area, and the cell is painted in
white. The design variables can be combined in a vector 𝐱 ∈ 𝑅𝑁 . The global
stiffness matrix of the structure K(x) ∈ R𝑑×𝑑 depends on the design variables
where 𝑑 is the total number of degrees o freedom. The displacement vector
u ∈ ℝ𝑑 can be calculated by the governing equilibrium equations:

K(x)u = f (3.1)

where f ∈ ℝ𝑑 is the external load vector that combines all applied body, sur-
face, and point forces.

Assuming linear elasticity, the strain and stress tensors can be related to
the displacement vector through the kinetic and constitutive equations:

𝜖𝑖𝑗 =
1
2(u𝑖,𝑗 + u𝑗,𝑖), (3.2)

𝜎𝑖𝑗 = E𝑖𝑗𝑘𝑙𝜖𝑘𝑙, (3.3)

where E is the constitutive matrix that is dependent upon that material’s Pois-
son’s ratio 𝜈 and Young’s modulus E􏷟.

The density design variable should aĴain one of the limiting values, zero
or one, such that the discretized domain results in a black and white solution,
giving a rough description of the continuum structure boundaries. The ”0-1”
problem can be relaxed by substituting the integer variables of density with
continuous variables powered in a penalty value 𝑝 ≥ 3 leading the design
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variables near to the ideally desired discrete values 0 and 1. This approach is
called SIMP (Solid Isotropic Material with Penalization) [Ben89; Roz09]. The
material properties E𝑒 within each element 𝑒 can be expressed as:

E𝑒 = 𝑥
𝑝
𝑒E􏷟 (3.4)

where E􏷟 is the Young’s modulus of the solid material, and 𝑝 is the penal-
ization power coefficient. Figure 3.2 illustrates the relation between relative
stiffness 𝐸𝑒

𝐸􏷩
and the element volume density 𝑥𝑒 for various penalty values. It

must be mentioned that for computational purposes a lower limit of the 𝑥𝑒
must be set. That for the values of volume elements are set to:

0 < 𝑥𝑚𝑖𝑛 < 𝑥𝑒 ≤ 1 𝑒 = 1, 2, …𝑁 (3.5)

where 𝑥𝑚𝑖𝑛 is usually set to 10−􏷢.
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Figure 3.2: Graphical representation of the SIMP approach for various penalty
coefficients 𝑝

Using SIMP the stiffness of each element K𝑒 can be set as:

K𝑒 = 𝑥
𝑝
𝑒K􏷟, 𝑒 = 1,… ,𝑁, 𝑝 > 1,

K𝑒(𝑥𝑒 = 0) = 0, K𝑒(𝑥𝑒 = 1) = K􏷟.
(3.6)
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Figure 3.3: The left image indicates the discretization of the design domain
into finite elements. Each element is equipped with a density design variable.
The right image shows a final topology. White elements indicate absence
of material 𝑥𝑒 = 0. Black cells show presence of material 𝑥𝑒 = 1. For gray
elements the density is 0 < 𝑥𝑒 < 1.

where Κ􏷟 is the element stiffness when 𝑥𝑒 = 1 and 𝑝 is the penalty factor,
usualy set 𝑝 ≥ 3. The global stiffness matrix K is expressed as:

K =
𝑁
􏾜
𝑒=􏷠

𝑥𝑝𝑒K􏷟 (3.7)

The volume of the Ω𝑚𝑎𝑡 must be a percentage 𝜙 of the whole volume of Ω.

𝑉
𝑉􏷟

≤ 𝜙 ⇔ 𝑉 ≤ 𝜙𝑉􏷟

𝑉 =
𝑁
􏾜
𝑒=􏷠

𝑣𝑒𝑥𝑒 ≤ 𝜙𝑉􏷟,
(3.8)

where 𝑣𝑒 is the volume of element 𝑒.
The objective function of the problem is the overall flexibility and it can

be expressed as the compliance of the structure:

𝑐 = f𝑇u (3.9)

All the above can express the mathematical formulation of topology opti-
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mization problem for structures:

min
u,𝑥𝑒

𝑐(𝑥𝑒) = f𝑇u,

subject to:
Ku = f,
𝑁
􏾜
𝑒=􏷠

𝑣𝑒𝑥𝑒 ≤ 𝜙𝑉􏷟,

0 < 𝑥𝑚𝑖𝑛 ≤ 𝑥𝑒 ≤ 1, 𝑒 = 1,… ,𝑁,
SIMP:

K = 􏿵
𝑁
􏾜
𝑒=􏷠

𝑥𝑝𝑒K􏷟􏿸, 𝑝 ≥ 3

(3.10)

3.1.3 Sensitivity analysis and Optimality Criteria
For a structure that must bear the applied loads, the objective function is the
global flexibility that must be minimized. It is expressed in equation (3.9):

𝑐 = f𝑇u = u𝑇Ku =
𝑁
􏾜
𝑒=􏷠

𝑢𝑒K𝑒𝑢𝑒

K𝑒 = 𝑥
𝑝
𝑒K􏷟

(3.11)

and the global flexibility is expressed as:

𝑐 =
𝑁
􏾜
𝑒=􏷠

𝑥𝑝𝑒𝑢𝑒K􏷟𝑢𝑒, 𝑒 = 1,… ,𝑁, (3.12)

In order to solve the problem (3.9), the Lagrange multipliers method must
be used. Then, a heuristic method is used to refresh the design variables while
an iterative method is used to find the Lagrange multipliers. The Langrange
function is defined as:

ℒ = 𝑐 + 𝜆(𝑉 − 𝜙𝑉􏷟) + 𝝀𝑇􏷠 (Ku − f) +
𝑁
􏾜
𝑒=􏷠

−𝜆𝑒(𝑥𝑚𝑖𝑛 − 𝑥𝑒) +
𝑁
􏾜
𝑒=􏷠

+𝜆𝑒(𝑥𝑒 − 1) (3.13)
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where 𝜆 and 𝝀􏷠 are the Lagrange multipliers for the volume and equilibrium
constraints, while −𝜆𝑒 and +𝜆𝑒 are the corresponding multipliers for the lower
and upper constraints of the design variables. The Langrange multiplier 𝜆 for
the volume constraint is a scalar, while the coefficient 𝝀􏷠 is a vector. The other
multipliers −𝜆𝑒 and +𝜆𝑒 are scalars. The optimum is found when the partial
derivatives of the Lagrange function are equal to zero:

𝜕ℒ
𝜕𝑥𝑒

= 0, for 𝑒 = 1,… ,𝑁

𝜕ℒ
𝜕𝑥𝑒

= 𝜕𝑐
𝜕𝑥𝑒

+ 𝜆𝜕𝑉𝜕𝑥𝑒
+ 𝝀𝑇􏷠

𝜕(Ku − f)
𝜕𝑥𝑒

−− 𝜆𝑒 ++ 𝜆𝑒
(3.14)

Calculating the partial derivatives of objective function 𝑐 inside the Lagrange
function by using the chain rule, we get:

𝜕𝑐
𝜕𝑥𝑒

= 𝜕(f𝑇u)
𝜕𝑥𝑒

= 𝜕(u𝑇Ku)
𝜕𝑥𝑒

= 𝜕u𝑇
𝜕𝑥𝑒

Ku + u𝑇 𝜕K𝜕𝑥𝑒
u + u𝑇K 𝜕u

𝜕𝑥𝑒

(3.15)

Calculating the partial derivatives of equilibrium constraint inside the La-
grange function by using the chain rule, we get:

𝝀𝑇􏷠
𝜕(Ku − f)
𝜕𝑥𝑒

= 𝝀𝑇􏷠 􏿴
𝜕K
𝜕𝑥𝑒

u +K 𝜕u
𝜕𝑥𝑒

􏿷 (3.16)

For the volume contraint we get:

𝜆𝜕𝑉𝜕𝑥𝑒
= 𝜆

𝜕􏿵
𝑁
􏾜
𝑒=􏷠

𝑣𝑒𝑥𝑒􏿸

𝜕𝑥𝑒
= 𝜆𝑣𝑒

(3.17)

considering non active the constraints of space definition of the design vari-
ables −𝜆𝑒 =+ 𝜆𝑒 = 0 and that the load is independent of the design variables,
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𝜕f
𝜕𝑥𝑒

= 0, finally the partial derivatives of the Lagrange function are expressed
as:

𝜕ℒ
𝜕𝑥𝑒

= 𝜕u𝑇
𝜕𝑥𝑒

Ku + u𝑇 𝜕K𝜕𝑥𝑒
u + u𝑇K 𝜕u

𝜕𝑥𝑒
+ 𝜆𝑣𝑒 + 𝝀𝑇􏷠 􏿴

𝜕K
𝜕𝑥𝑒

u +K 𝜕u
𝜕𝑥𝑒

􏿷

𝜕ℒ
𝜕𝑥𝑒

= u𝑇
𝜕K
𝜕𝑥𝑒

u + 𝝀𝑇􏷠
𝜕K
𝜕𝑥𝑒

+ 𝜕u
𝜕𝑥𝑒

􏿴2u𝑇K + 𝝀𝑇􏷠K􏿷 + 𝜆𝑣𝑒
(3.18)

Since the factor 𝝀𝑇􏷠 has been arbitrary defined, it can choosen in such a way
that the partial derivatives of the displacement over the design variables be

zero,
𝜕u
𝜕𝑥𝑒

= 0. Having K ≠ 0we get 𝝀𝑇􏷠 = −2u𝑇 , so that the factor 2u𝑇K+𝝀𝑇􏷠K
to be zero.
So the partial derivatives of the Lagrange function are expressed as:

𝜕ℒ
𝜕𝑥𝑒

= −u𝑇 𝜕K𝜕𝑥𝑒
u + 𝜆𝑣𝑒

= −𝑝𝑥𝑝−􏷠𝑒 𝑢𝑒K􏷟𝑢𝑒 + 𝜆𝑣𝑒
= −𝑝𝑥𝑝−􏷠𝑒 𝑞𝑐 + 𝜆𝑣𝑒 = 0

(3.19)

where,

𝑞𝑐 = 𝑢𝑒K􏷟𝑢𝑒 (3.20)

represents the energy of the element 𝑒, when that contains 100% material,
meaning that the design variable 𝑥𝑒 = 1. The refresh of the design variables
is expressed from equation (3.20)

𝑝𝑥𝑝−􏷠𝑒 𝑞𝑐
𝜆𝑣𝑒

= 1 (3.21)

The physical significance of the equation (3.20) is that the energy density
of the system must be constant in whole design domain. The Lagrange mul-
tiplier 𝜆 operates as a scaling factor so that the energy density to be constant.
For the update of the design variables a heuristic scheme is used:
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𝑥𝑒,𝑘+􏷠 = 𝑥𝑒,𝑘􏿵
𝑝𝑥𝑝−􏷠𝑒 𝑞𝑐
𝜆𝑣𝑒

􏿸
𝜁
= 𝑥𝑒,𝑘𝐵𝜁𝑒,𝑘,

𝐵𝑒,𝑘 =
𝑝𝑥𝑝−􏷠𝑒 𝑞𝑐
𝜆𝑣𝑒

,

𝜁 = 0.5, 0 < 𝜁 < 1

(3.22)

where the 𝑥𝑒,𝑘 stands of the relative density of element 𝑒 at the 𝑘 iteration. The
𝜁 is an damping factor, usually set to 0.5, and it is used to stabilize the iterative
process. In order not to have rapid changes in the values of the design vari-
ables in between two iterations, for example an element 𝑒first is solid and next
is void, or the opposite effect, a limit of change of the design variable is set.
This is done for stabilizing the iterative process as well. So for the heuristic
scheme, the updated design variables are calculated such as:

𝑥𝑒,𝑘+􏷠 =

⎧⎪⎪
⎨⎪⎪⎩

𝐴𝑘 if 𝑥𝑒,𝑘𝐵𝜁𝑒,𝑘 ≤ 𝐴𝑘
𝑥𝑒,𝑘𝐵𝜁𝑒,𝑘 if 𝐴𝑘 ≤ 𝑥𝑒,𝑘𝐵𝜁𝑒,𝑘 ≤ 𝐶𝑘
𝐶𝑘 if 𝑥𝑒,𝑘𝐵𝜁𝑒,𝑘 ≥ 𝐶𝑘

, (3.23)

𝐴𝑘 = max 􏿺(1 − 𝑚)𝑥𝑒,𝑘, 𝑥𝑚𝑖𝑛􏿽 (3.23a)

𝐶𝑘 = min 􏿺(1 + 𝑚)𝑥𝑒,𝑘, 1􏿽 (3.23b)

where 𝑚 is the a motion limit usually set to 0.5, but lies between 0 and 1, 0 <
𝑚 < 1. Equation (3.23) adds material in elements where their energy is greater
that the Lagrange multiplier 𝜆, and that happens when Β𝑘 > 1, and removes
material when the energy is lower than 𝜆. This is happening only when the
new values does not violate their limits 𝑥𝑚𝑖𝑛 ≤ 𝑥𝑒 ≤ 1. Equation (3.21) shows
that the Lagrange multiplier is proportional to the average energy density in
areas where the relative density takes intermediate values.

3.1.4 Topology Optimization: Iterative local search
algorithm

Since topology optimization problems have many design variables one usu-
ally wants to avoid direct usage of general purpose optimization algorithms,
since they can be computational expensive. For certain cases (mainly flexi-
bility optimization without additional constraints) the construction of local
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element-wise update techniques can be used for this purpose. Their origin is
traced back to fully stressed design methods for trusses and optimality crite-
ria methods [Roz89].

The steps of a schematic topology optimization algorithm are described
below and further illustrated in figure 3.4

• Initialization

– define design domain
– apply loading and boundary condition
– distribute randomly material inside the domain

• compute using Finite Elements Method (FEM) the structure

• run sensitivity analysis

• run low pass filtering (eliminate checkerboards effects)

• update design variables using a heuristic scheme (usually locally, element-
wise)

• if convergence criteria are not satisfied repeat the loop else plot results

3.2 Topology optimization numerical problems
Several numerical problems appear during the topology optimization pro-
cess. Most of these occur because of the:

• type and number of finite elements used

• optimization algorithm and it’s tuning coefficients

• initial state that topology optimization start its iterative process.

One of the most frequent problems appearing are the checkerboard ef-
fects. The relative densities are between 0 and 1, therefore material distribu-
tions appear that look like checkerboards. Another numerical problem is the
mesh dependency. The final material distributions are different if the design
domain is meshed differently with different number of elements. In some
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Initialization:

1)Definition of domain space

2)Constrains, loads,

3)Apply Random Material Distribution

Finite Element Analysis

Sensitivity Analysis

Optimization using

Optimiality Criteria

Update design Variables

Converange

Low pass filtering

Post-Process

stop

NO

YES

Figure 3.4: Topology optimization iterative local search algorithm.

cases different final material layouts appear if the topology optimization iter-
ative process starts from different initial material distribution, using though
the same mesh strategy. The iterative process is dependent of the starting
point, meaning that the algorithm may stuck in local optima. This although,
does not happen very often in structure problems. But when topology opti-
mization is used for the design of compliant mechanisms, these phenomena
appears frequently leading to different final distributions.

3.2.1 Checkerboard effects
Checkerboard effects shown in figure 3.5, are frequent in topology optimiza-
tion and consists of areas in the final material distributions where solid and
void elements are alternating. Initially checkerboard regions were believed to
designate areas with higher stiffness. Works in the past [DS95],[JH96] have
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shown that checkeboard paterns are due to bad numeric modelling on the
stiffness of checkerboards. Several methods have been proposed in the past
[SP98] in order to solve this problem. In our case the mesh independent filter
has been used which solves the mesh dependency problem as well. The filter
modifies the design sensitivity of a specific element based on the weighted
average on the element sensitivities in a fixed neighbourhood.

Figure 3.5: Checker board regions appears in the classic MBB problem.

3.2.2 Mesh dependency
The mesh dependency problem is illustrated in figure 3.6. For the same prob-
lem illustrated in figure 3.5 and different mesh configurations, the final mate-
rial distributions differ.

(a) Mesh 􏷢􏷟 × 􏷠􏷟, 300 ele-
ments

(b) Mesh 􏷥􏷟 × 􏷡􏷟, 1200 ele-
ments

(c) Mesh 􏷠􏷡􏷟 × 􏷣􏷟, 4800 ele-
ments

Figure 3.6: Mesh dependency phenomena

It is clear that even if the initial configuration is the same, when the mesh
becomes more dence, the final layout differs. It must be mentioned that the
proportion of elements in horizontal and vertical direction is the same. Mak-
ing the mesh denser helps us find a beĴer mapping of the final Ω𝑚𝑎𝑡 with
much smoother boundaries.
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Of course the resulted layout from the 120×40mesh is considerably more
detailed when compared with the other two. But a more detailed solution is
not always applicable for manufacturing. One way to overcome this problem
is to apply a filter that must be independent to the mesh. This method is
heuristic, but gives very good results with a small computational cost. In the
beginning a radius 𝑟𝑚𝑖𝑛 is set and it may depend on the domain. It can be set
for example the 4% to 5% of the horizontal dimension of the domain. Then
a function 𝑑𝑖𝑠𝑡(𝑒, 𝑖) that measures the distance between two elements, 𝑒 and 𝑖.
The filter can be applied on the sensitivities of the design variables or on the
design variables itself. The filter can be applied as:

𝐻̂𝑖 = 𝑟𝑚𝑖𝑛 − 𝑑𝑖𝑠𝑡(𝑒, 𝑖), {𝑖 ∈ 𝑁𝑟 ∣ 𝑑𝑖𝑠𝑡(𝑒, 𝑖) ≤ 𝑟𝑚𝑖𝑛}, 𝑒 = 1,… ,𝑁 (3.24)

where 𝑁𝑟 is a set of elements, their distance from a element 𝑘 is less or equal
of 𝑟𝑚𝑖𝑛. Obviously, 𝐻̂ is zero for elements, their distance from element 𝑒 is
greater that 𝑟𝑚𝑖𝑛. Equations 3.25 and 3.26 show the effect of the filter on the
design variables and their sensitivities respectively:

𝑥̂𝑒 =
1

􏿵
𝑁𝑟
􏾜
𝑖=􏷠
𝐻̂𝑓􏿸

𝑁𝑟
􏾜
𝑖=􏷠
𝐻̂𝑖𝑥𝑖 (3.25)

𝜕𝑐̂
𝜕𝑥𝑒

= 1

𝑥𝑒􏿵
𝑁𝑟
􏾜
𝑓=􏷠

𝐻̂𝑓􏿸

𝑁𝑟
􏾜
𝑖=􏷠
𝐻̂𝑖𝑥𝑖

𝜕𝑐
𝜕𝑥𝑒

(3.26)

The effect of the filter is illustrated in figure 3.7

3.3 Multiplicity of solutions

3.4 Multiple load cases

3.4.1 Introduction to the problem with multiple load cases
The minimization of compliance of a structure can be extended for multiple
load cases. The term multiple load cases refers to several forces being applied
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Figure 3.7: Graphic representation of the filter for the mesh dependency prob-
lem

on the a structure, but in different cases. If two or more loads are applied on
the structure at the same time, it is referred to as one load case.

Figure 3.8: Multiple Load cases. On the left: domain definition. In the middle:
the resulted structure for one load case. On the right: the resulted structure
for two load cases.

3.4.2 Problem formulation
The objective function of the problem is the minimization of the flexibility of
the structure for all load cases:
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⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

min
u􏷪,𝑥𝑒

𝑐􏷠(𝑥𝑒) = f𝑇􏷠 u􏷠,

min
u􏷫,𝑥𝑒

𝑐􏷡(𝑥𝑒) = f𝑇􏷡 u􏷡,

⋮
min
u𝑚,𝑥𝑒

𝑐𝑚(𝑥𝑒) = f𝑇𝑚u𝑚,

(3.27)

where 𝑚 is the total number of the different load cases. The problem is multi-
criteria since the structure must be optimized for each load case. The mul-
ticriteria problem can be converted to a single criteria problem taking the
weighted sum of the compliancies for each load case. [BK88]:

min
𝑚
􏾜
𝑖=􏷠
𝑤𝑖𝑐𝑖 =

𝑚
􏾜
𝑖=􏷠
𝑤𝑖u𝑇𝑖 Ku𝑖

subject to:

􏿵
𝑁
􏾜
𝑒=􏷠

𝑥𝑝𝑒K0􏿸u𝑖 = f𝑖, 𝑖 = 1, … ,𝑚

𝑁
􏾜
𝑒=􏷠

𝑣𝑒𝑥𝑒 ≤ 𝜙𝑉􏷟,

0 < 𝑥𝑚𝑖𝑛 ≤ 𝑥𝑒 ≤ 1, 𝑒 = 1,… ,𝑁,
𝑚
􏾜
𝑖=􏷠
𝑤𝑖 = 1

(3.28)

where𝑤𝑖 is the weight in each load case. Naturally all weights must be summed
to unity. In this case the Lagrange function ℒ is expressed as following in
accordance to equation (3.13):
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ℒ =
𝑚
􏾜
𝑖=􏷠
𝑤𝑖u𝑇𝑖 Ku𝑖 + 𝜆(𝑉 − 𝜙𝑉􏷟)

+
𝑚
􏾜
𝑖=􏷠
𝝀𝑇𝑖 (Ku𝑖 − f𝑖)

+
𝑁
􏾜
𝑒=􏷠

−𝜆𝑒(𝑥𝑚𝑖𝑛 − 𝑥𝑒)

+
𝑁
􏾜
𝑒=􏷠

+𝜆𝑒(𝑥𝑒 − 1)

(3.29)

The partial derivatives of ℒ are calculated just like the single load case (see
equation (3.18)):

𝜕ℒ
𝜕𝑥𝑒

= 0, for 𝑒 = 1,… ,𝑁

𝜕ℒ
𝜕𝑥𝑒

=

𝜕􏿵
𝑚
􏾜
𝑖=􏷠
𝑤𝑖u𝑇𝑖 Ku𝑖􏿸

𝜕𝑥𝑒
+ 𝜆𝜕𝑉𝜕𝑥𝑒

+
𝑚
􏾜
𝑖=􏷠
𝝀𝑇𝑖 􏿴

𝜕(Ku𝑖)
𝜕𝑥𝑒

− 𝜕f𝑖
𝜕𝑥𝑒

􏿷 −− 𝜆𝑒 ++ 𝜆𝑒 ⇒

𝜕ℒ
𝜕𝑥𝑒

= 𝑤􏷠
𝜕u𝑇􏷠
𝜕𝑥𝑒

Ku􏷠 + 𝑤􏷠u𝑇􏷠
𝜕K
𝜕𝑥𝑒

u􏷠 + 𝑤􏷠u𝑇􏷠K
𝜕u􏷠
𝜕𝑥𝑒

+ …

+ 𝑤𝑚
𝜕u𝑇𝑚
𝜕𝑥𝑒

Ku𝑚 + 𝑤𝑚u𝑇𝑚
𝜕K
𝜕𝑥𝑒

u𝑚 + 𝑤𝑚u𝑇𝑚K
𝜕u𝑚
𝜕𝑥𝑒

+ 𝜆𝜕𝑉𝜕𝑥𝑒

+ 𝝀𝑇􏷠 􏿴
𝜕K
𝜕𝑥𝑒

u􏷠 +K
𝜕u􏷠
𝜕𝑥𝑒

􏿷 + … + 𝝀𝑇𝑚􏿴
𝜕K
𝜕𝑥𝑒

u𝑚 +K
𝜕u𝑚
𝜕𝑥𝑒

􏿷 ⇒

𝜕ℒ
𝜕𝑥𝑒

=
𝑚
􏾜
𝑖=􏷠
𝑤𝑖u𝑇𝑖

𝜕K
𝜕𝑥𝑒

u𝑖 +
𝑚
􏾜
𝑖=􏷠
𝑤𝑖𝝀𝑇𝑖

𝜕K
𝜕𝑥𝑒

u𝑖 +
𝑚
􏾜
𝑖=􏷠

𝜕u𝑖
𝜕𝑥𝑒

􏿴2𝑤𝑖u𝑇𝑖 K + 𝝀𝑇𝑖 K􏿷 + 𝜆𝑣𝑒

(3.30)

Since the coefficients 𝝀𝑇𝑖 have been set arbitrarily, they can be chosen in
such a way that, the partial derivatives with respect to the design variables for
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all load cases are equal to zero,
𝜕u𝑖
𝜕𝑥𝑒

= 0, 𝑖 = 1,… ,𝑚. Moreover, since K ≠ 0

then 𝝀𝑇𝑖 = −2u𝑇𝑖 , in such a way 2u𝑇𝑖 K+ 𝝀
𝑇
𝑖 K, 𝑖 = 1, … ,𝑚 equals to zero. So we

get the partial derivatives of the Lagrange function:

𝜕ℒ
𝜕𝑥𝑒

= −
𝑚
􏾜
𝑖=􏷠
𝑤𝑖u𝑇𝑖

𝜕K
𝜕𝑥𝑒

u𝑖 + 𝜆𝑣𝑒

= −
𝑚
􏾜
𝑖=􏷠
𝑤𝑖(𝑝𝑥

𝑝−􏷠
𝑒 )𝑢𝑒,𝑖K􏷟𝑢𝑒,𝑖 + 𝜆𝑣𝑒

= −𝑝𝑥𝑝−􏷠𝑒
𝑚
􏾜
𝑖=􏷠
𝑤𝑖𝑢𝑒,𝑖K􏷟𝑢𝑒,𝑖 + 𝜆𝑣𝑒

= −𝑝𝑥𝑝−􏷠𝑒 𝑞̂𝑐 + 𝜆𝑣𝑒 = 0

(3.31)

where,

𝑞̂𝑐 =
𝑚
􏾜
𝑖=􏷠
𝑤𝑖𝑢𝑒,𝑖K􏷟𝑢𝑒,𝑖, (3.32)

that represents the energy for element 𝑒, when it is solid (𝑥𝑒 = 1) for all load
cases. The heuristic scheme for updating the design variables is similar to
that for a single load case (see equation 3.22):

𝑥𝑒,𝑘+􏷠 = 𝑥𝑒,𝑘􏿵
𝑝𝑥𝑝−􏷠𝑒 𝑞̂𝑐
𝜆𝑣𝑒

􏿸
𝜁
= 𝑥𝑒,𝑘𝐵𝜁𝑒,𝑘,

𝐵𝑒,𝑘 =
𝑝𝑥𝑝−􏷠𝑒 𝑞̂𝑐
𝜆𝑣𝑒

,

𝜁 = 0.5, 0 < 𝜁 < 1

(3.33)

while the heuristic scheme for the update of the design variables is similar to
that in equation 3.23 by just replacing the 𝑞 with 𝑞̂.
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3.5 Topology optimization for the design of
compliant mechanisms

3.5.1 Description of a compliant mechanism
Compliant mechanisms are monolithic flexible structures that deliver motion
according to predefined sets of loads and boundary conditions. The mecha-
nisms must be as flexible as possible, but at the same time must be stiff enough
to bear with loadings. The final shape of the flexible structure can be found
using topology optimization, the same way as it is used to design structures.
The flexible structure contains a fraction of volume of a predefined design
domain. The structure is actuated with input loads at specific points or areas
and delivers motion to specific output points or areas.

3.5.2 An example of a compliant mechanism
As an example of a compliant mechanism design problem we consider the
displacement inverter of Figure 3.9. The goal of the topology optimization
problem is to design a structure that converts an input displacement at point
E to the opposite direction at point B. We define as positive X direction the
rightwards direction and as positive Y direction the downwards one. At this
point it should be mentioned that real life compliant mechanisms design will
require the usage of large deformation theory. Nevertheless some of the rep-
resentative difficulties arising during this study, and in particular noncon-
vexity and multiplicity of solutions, can also be demonstrated with the linear
theory which is used here.

We assume that the input actuator is modelled by a spring with stiffness
𝑘𝑖𝑛 and a force 𝑓𝑖𝑛. The goal of the optimization problem is to maximize the dis-
placement 𝑢𝑜𝑢𝑡 at point B, performed on the workpiece modelled by a spring
with stiffness 𝑘𝑜𝑢𝑡 (see figure 3.9). By specifying different values of 𝑘𝑜𝑢𝑡 we
can control the displacement amplification. If we specify a low value of 𝑘𝑜𝑢𝑡
we get large displacement and vice versa. In order to maximize the work on
the output spring, the available material must be distributed in the most effi-
cient way.An optimization problem incorporating these ideas can be wriĴen
as [BS03]:
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Figure 3.9: A force inverter. One load case definition problem

max
u,𝑥𝑒

𝑢𝑜𝑢𝑡 = 𝟏𝑇u,

s.t:
Ku = f
𝑁
􏾜
𝑒=􏷠

𝑣𝑒𝑥𝑒 ≤ 𝜙𝑉􏷟

K = 􏿵
𝑁
􏾜
𝑒=􏷠

𝑥𝑝𝑒K􏷟􏿸, 𝑝 ≥ 3

0 < 𝑥𝑚𝑖𝑛 ≤ 𝑥𝑒 ≤ 1, 𝑒 = 1,… ,𝑁

(3.34)

Here, 𝑢𝑜𝑢𝑡 is the displacement at the output point B, 𝑥𝑒 and 𝑣𝑒 are the den-
sity and the volume of the element 𝑒. MoreoverK is the global stiffness matrix,
u is the displacement degrees of freedom vector, 𝑓 is the loading vector and 𝜙
is the maximum allowed covering of the available design space with material.

3.5.3 Sensitivity analysis for compliant mechanisms
The same iterative process that is used for solving the topology optimization
problem for structures is used for the compliant mechanism problem as well.
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The only difference is the calculation of the sensitivities of the problem. For
that, the adjoint method is used.

For the objective function 𝑢𝑜𝑢𝑡 = 𝟏𝑇u, the u vector stands for the displace-
ment vector that satisfies the equilibrium equation: f − Ku = 0. For any arbi-
trary vector 𝝎 we get:

𝑢𝑜𝑢𝑡 = 𝟏𝑇u − 𝝎𝑇 (f −Ku) (3.35)
When we differentiate equation with respect to the design variables we get:

𝜕𝑢𝑜𝑢𝑡
𝜕𝑥𝑒

= 𝟏𝑇 𝜕u𝜕𝑥𝑒
− 𝜕𝝎

𝑇

𝜕𝑥𝑒
􏿴f −Ku􏿷 − 𝝎𝑇􏿴 𝜕f

𝜕𝑥𝑒
− 𝜕K𝜕𝑥𝑒

u −K 𝜕u
𝜕𝑥𝑒

􏿷 (3.36)

Having in mind that the derivatives of the force vector f (since the force is
independent) and 𝝎 had to be zero we get:

𝜕𝑢𝑜𝑢𝑡
𝜕𝑥𝑒

= (𝟏𝑇 +𝝎𝑇K) 𝜕u𝜕𝑥𝑒
+𝝎𝑇 𝜕K

𝜕𝑥𝑒
u (3.37)

where 𝝎 is the solution that satisfies the adjoint problem K𝝎 = −𝟏, and 𝟏 is a
vector with the value 1 at the degree of freedom corresponding to the output
point and zeros at all other places 𝟏𝑇 = [0, 0, 0, … 1…0, 0, 0]. Having in mind
equation 3.7 and its derivative we get:

𝜕𝑢𝑜𝑢𝑡
𝜕𝑥𝑒

= 𝑝𝑥𝑝−􏷠𝑒 𝝎𝑇K􏷟u (3.38)

The solution of the adjoint problem K𝝎 = −𝟏 are the displacements when a
force 𝑓𝑜𝑢𝑡 is applied to the output point in the same but opposite direction
with 𝑓𝑖𝑛 when it is applied to the input point.

The optimization problem expressed in equation 3.34 is similar to the mini-
mization of compliance problem. The optimality criteria method may be used
for solving the problem along with the same heuristic scheme for the update
of the design variables:

𝑥𝑘+􏷠𝑒 = 𝑥𝑘𝑒􏿵
𝑚𝑎𝑥􏿮0, −𝜕𝑢𝑜𝑢𝑡𝜕𝑥𝑒

􏿱

𝜆𝑣𝑒
􏿸
𝜂

(3.39)

where 𝜂, is a damping factor between (0,1), and usually is set to 0.5 for the
minimization of compliance, but in the case of compliant mechanisms is set
to 0.2. According to bibliography, for optimum convergence of the iterative
process, the Method of Moving Asymptotes (MMA) [Sva87] should be used.
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3.5.4 Alternative problem definitions
The different requirements imposed on a compliant mechanism allow us to
formulate the design problem in different alternative ways. Several formu-
lations have been proposed. The weighted sum formulation, proposed by
Anathasuresh, Kota and Kikuchi [AKK94] is a linear combination of the out-
put displacement and the inverse of Strain Energy, also called compliance (de-
scribed in equation 3.41). The multi-criteria formulation, proposed by Frecker
in 1997 [Mar97], is based on a fraction of the Mutual Potential Energy (MPE)
[SP70] over the Strain Energy (SE) (described in equation 3.42). Strain and
Mutual Potential Energy are defined as follows [RS05]:

𝑆𝐸 = f𝑖𝑛u􏷠𝑜𝑢𝑡
𝑀𝑃𝐸 = f𝑣𝑜𝑢𝑡u

􏷠
𝑜𝑢𝑡

(3.40)

whereu􏷠𝑜𝑢𝑡 is the displacement at the output point due to the load f𝑖𝑛 applied at
the input port, and f𝑣𝑜𝑢𝑡 is the virtual force at the output point specifying the di-
rection of the desired output point displacement. For a given mechanism and
input load f𝑖𝑛 the resulting MPE will typically be inversely related to the stiff-
ness supplied at the output point. Hence when one refers to specific values
of MPE both the input load f𝑖𝑛 and the output point stiffness should gener-
ally be stated. Another approach is based on the maximization of the output
displacement, proposed by Bendsøe and Sigmund [BS03] and described in
equation 3.43. The previously used definitions are summarized here:

max 􏿻𝑎𝑑𝑜𝑢𝑡 + (1 − 𝑎)
1
𝑆𝐸􏿾

with predefined 𝐹𝑖𝑛 and 𝐹𝑜𝑢𝑡
(3.41)

max 􏿻
𝑀𝑃𝐸
𝑆𝐸 􏿾

with predefined 𝐹𝑖𝑛 and output direction
(3.42)

max 􏿻𝑈𝑜𝑢𝑡􏿾

with predefined 𝐹𝑖𝑛 and output direction
(3.43)
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3.5.5 Compliant Mechanisms: Multiple loading
cases-Polymorphic mechanisms.

We assume two load cases. The objective is to find the material distribu-
tion that allows for two different usages of the mechanism. In this case the
objective is to maximise the displacements at the given output points. The
problem is a genuine multiobjective optimization. One possible way to trans-
form a multi-objective problem into a single one, is to take as an objective the
weighted sum of all objectives. The graphic formulation of the problem is
shown in figure 3.10:
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Figure 3.10: Two loads case compliant mechanism problem

In the case of the multi-purpose compliant mechanisms the problems that
arise are multi-objective:

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

max
u􏷪,𝑥𝑒

𝑐􏷠(𝑥𝑒) = 𝑢𝑜𝑢𝑡,􏷠

max
u􏷫,𝑥𝑒

𝑐􏷡(𝑥𝑒) = 𝑢𝑜𝑢𝑡,􏷡,

⋮
max
u𝑚,𝑥𝑒

𝑐𝑚(𝑥𝑒) = 𝑢𝑜𝑢𝑡,𝑚

(3.44)

where 𝑢𝑜𝑢𝑡,𝑖, 𝑖 = 1, … ,𝑚 are the separate displacements for each load case.
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In order to transform a multi-objective problem into a single one, we take the
weighted sum of all objectives:

max
𝑚
􏾜
𝑖=􏷠
𝑤𝑖𝑐𝑖 = 𝑢

(􏸼)
𝑜𝑢𝑡 =

𝑚
􏾜
𝑖=􏷠
𝑤𝑖1𝑇𝑖 u𝑖

subject to:
Ku𝑖 = f𝑖, 𝑖 = 1, … ,𝑚
𝑁
􏾜
𝑒=􏷠

𝑣𝑒𝑥𝑒 ≤ 𝜙𝑉􏷟,

0 < 𝑥𝑚𝑖𝑛 ≤ 𝑥𝑒 ≤ 1, 𝑒 = 1,… ,𝑁,
𝑚
􏾜
𝑖=􏷠
𝑤𝑖 = 1

(3.45)

where 𝑢(􏸼)𝑜𝑢𝑡 is the sum of all displacements at the corresponding points, multi-
plied with weight factors 𝑤𝑖 that sum to unity and 𝟏𝑖 the corresponding unit
vector for each load case.
The objective function is described as:

𝑢(􏸼)𝑜𝑢𝑡 =
𝑚
􏾜
𝑖=􏷠
𝑤𝑖􏿵𝟏𝑇𝑖 u𝑖 − 𝝎𝑖􏿴f −Ku𝑖􏿷􏿸 (3.46)

Differentiate with respect to the design variables we get:

𝜕𝑢(􏸼)𝑜𝑢𝑡
𝜕𝑥𝑒

=
𝑚
􏾜
𝑖=􏷠
𝑤𝑖􏿵􏿴𝟏𝑇𝑖 +𝝎𝑖K􏿷

𝜕u𝑖
𝜕𝑥𝑒

+𝝎𝑖
𝜕K
𝜕𝑥𝑒

u𝑖􏿸 (3.47)

where 𝝎𝑖 are the solution of the adjoint problems K𝝎𝑖 = −𝟏, 𝑖 = 1,… ,𝑚. In
that case the derivatives are expressed as:

𝜕𝑢(􏸼)𝑜𝑢𝑡
𝜕𝑥𝑒

=
𝑚
􏾜
𝑖=􏷠
𝑤𝑖􏿴𝑝𝑥

𝑝−􏷠
𝑒 𝝎𝑖K􏷟u𝑖􏿷

= 𝑝𝑥𝑝−􏷠𝑒
𝑚
􏾜
𝑖=􏷠
𝑤𝑖𝝎𝑖K􏷟u𝑖

(3.48)
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The heuristic update scheme is modified based on equation accordingly 3.39:

𝑥𝑘+􏷠𝑒 = 𝑥𝑘𝑒􏿵
𝑚𝑎𝑥􏿮0, −𝜕𝑢

(􏸼)
𝑜𝑢𝑡

𝜕𝑥𝑒
􏿱

𝜆𝑣𝑒
􏿸
𝜂

(3.49)

3.6 Output control

3.6.1 Output control for the ”one load case” problem
The goal in this section is to design an asymmetric force inverter. The design
domain is a rectangular ”ABCD” with points ”A” and ”D” constraint. A force
is acting to the middle of the edge ”AD” in the horizontal direction. The goal
is to maximize the displacement of the output point ”B” in the X (but oppo-
site) direction, 𝑋𝑢@𝑋𝑜𝑢𝑡 , and the same time minimize the normal displacement
in the Y direction𝑋𝑢@𝑌𝑜𝑢𝑡 . One of the design goals may be the control of the out-
put point. For the asymmetric force inverter problem the goal could be: the
output point to moving in parallel to the input load. Therefore, that displace-
ment, in the normal to the intented output direction, must be as minimum as
possible. Two different criteria appear: (equation 3.50).

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

max
x
􏿖𝑢@𝑋𝑜𝑢𝑡 􏿖

and
min
x
􏿖𝑢@𝑌𝑜𝑢𝑡 􏿖

(3.50)

The second criteria in equation 3.50 could be expressed as: max 􏵶
1
𝑢@𝑌𝑜𝑢𝑡

􏵶.

Consequently the two criteria can be wriĴen as:

max
x
􏵶
𝑢@𝑋𝑜𝑢𝑡
𝑢@𝑌𝑜𝑢𝑡

􏵶 (3.51)

3.6.2 Output Control for the ”multiple load cases” problem
The problem is graphically illustrated in figure 3.12. The domain is a rectan-
gular ”ABCD” with points ”A” and ”C” fixed. Two different load cases are
present. Firstly, a horizontal force is applied to the middle of the edge ”AD”
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Figure 3.11: Maximize 𝑢@𝑋𝑜𝑢𝑡 & minimize 𝑢@𝑌𝑜𝑢𝑡 .

in a leftward direction and the objective is the output point ”B” to move to
the opposite direction. A second load is applied downwards in the middle
of ”DC” edge of the design domain and the objective is, the output point B to
move to the opposite direction (upwards).
In this case, the multicriteria problem (without output control) is presented
in equation 3.52.

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

max
x
􏿖𝑢@𝑋􏷠,𝑜𝑢𝑡􏿖

and
min
x
􏿖𝑢@𝑌􏷡,𝑜𝑢𝑡􏿖

(3.52)

In the resulted material distribution as well as in any load case, it is not ini-
tially established if output point ”B” will move as intended. Output control
must be applied.
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Figure 3.12: Graphical representation of the domain for the design of a poly-
morphic compliant mechanism

3.6.3 Motion control constraints
In any load case, point ”B” may move in any direction. This may happen due
to the final material distribution which is unknown from the beginning. It
must be stated that it is not desirable to apply motion constraints to point ”B”
in any case. The goal is by leaving output point ”B ”free to move, to find the
material distribution that satisfies both criteria: for the first load case point
”B” must move leftwards −𝑋, maximizing its displacement 𝑢@𝑋􏷠,𝑜𝑢𝑡, minimizing
the displacement in the Y direction 𝑢@𝑌􏷠,𝑜𝑢𝑡 (upwards or downwards) and in
the second load case the same output point ”B” must be moved downwards,
minimizing the displacement in the horizontal direction (rightwards or left-
wards).
Taking into account all the above, the problem is formulated as a twin multi-
criteria problem:
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(a) 1st load case

(b) 2nd load case

Figure 3.13: Two loads case compliant mechanism problem
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⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪
⎨⎪⎪⎩

max
x
􏿖𝑢@𝑋􏷠,𝑜𝑢𝑡􏿖

min
x
􏿖𝑢@𝑌􏷠,𝑜𝑢𝑡􏿖

and
⎧⎪⎪
⎨⎪⎪⎩

max
x
􏿖𝑢@𝑌􏷡,𝑜𝑢𝑡􏿖

min
x
􏿖𝑢@𝑋􏷡,𝑜𝑢𝑡􏿖

(3.53)

Transforming each of the twin multi-criteria problem to a single criteria we
get:

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

max
x
􏵶
𝑢@𝑋􏷠,𝑜𝑢𝑡
𝑢@𝑌􏷠,𝑜𝑢𝑡

􏵶

and

max
x
􏵶
𝑢@𝑌􏷡,𝑜𝑢𝑡
𝑢@𝑋􏷡,𝑜𝑢𝑡

􏵶

(3.54)

To convert all the above to a single criteria problem, maximization of the
minimum of the two criteria is sufficient. Therefore, maximization of both
criteria is accomplished. The problem is then formulated as:

max
x

⎧⎪
⎨⎪⎩

min􏿼 􏵶
𝑢@𝑋􏷠,𝑜𝑢𝑡
𝑢@𝑌􏷠,𝑜𝑢𝑡

􏵶 , 􏵶
𝑢@𝑌􏷡,𝑜𝑢𝑡
𝑢@𝑋􏷡,𝑜𝑢𝑡

􏵶 􏿿
⎫⎪
⎬⎪⎭

(3.55)



CHAPTER4
The Hybrid Scheme

4.1 The hybrid solution algorithm

4.1.1 Global and local Optimization Algorithms
All iterative techniques which are used in structural mechanism topology op-
timization are local iterative optimization methods or heuristics. In the case
of nonconvex problems, they will stop at local minima. In fact, The topology
optimization algorithm initial state dependent: when it starts from a differ-
ent initial point, it may lead to completely different final topologies. An initial
point is considered, either a uniform or a random distribution of material in-
side the design domain, that initially may violate or not the volume constraint,
and taking into account various topological constraints such as presence or
absence of material in specific areas. This effect appears more often in com-
pliant mechanisms design and illustrated in figure 4.1. Therefore the need of
using global optimization techniques arises.

The appearance of local minima in the topology optimization problem
for structures and especially for mechanisms requires the usage of global op-
timization algorithms. Several works have been published in the past con-
cerning the use of global optimization method branch-and-bound in topology
optimization especially on the design of structures [Sto03; SB11]. Due to the
large size of the problem, mathematical global optimization algorithms that
work for small size problems are not suitable. The use of discrete variables in
the brach-and-bound method, for large numbers of design variables makes
the problem computationaly extremely difficult to solve. In addition, special
constraints must be considered in order to maintain the structural integrity
in any iteration of the algorithm.

The only practically useful alternative seems to be the usage of genetic
or evolutionary optimization algorithms. Several works has been published
in the past making use of Genetic Algorithms in topology optimization prob-
lems [BRS08; BRS11; JS10; MPR10], swarm inteligence algorithms like Ant



4.1 The hybrid solution algorithm 42

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.1: Multiplicity of solution. First row: several random material distri-
butions used as starting points for the iterative process of topology optimiza-
tion. Second row: the resulted material distributions. the two from the left
for the single load case problem. Two from the right for the multiple load
case problem.

Colonies [Kav+08; LL09] and Particle Swarms [LLL11], and evolutionary al-
gorithms like Differential Evolution [WT10]. Provided that the algorithms are
carefully tunned in order to cope with the large number of unknowns, one ad-
ditional restriction makes usage of out-of-the-self algorithms difficult. In par-
ticular, the operators involved in evolutionary algorithms do not guarantee
that at every step of the algorithm the value assigned to the vector of design
variables represents a realizable structure or mechanism. It is possible that
islands of materials may appear inside the design domain, something that
make the structure with an invertible stiffness matrix. Therefore tailored op-
erators are required to keep structural integrity or constraints and this makes
every development case dependent [WT05; MRP06]. These comments are in
accordance with published results [Sig11].

The following sections contain a brief description of the evolutionary algo-
rithms, specifically Differential Evolotion and Particle Swarm Optimization,
as well as an outline of the hybrid scheme.
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4.2 Evolutionary Algorithms

4.2.1 The definition of evolution
Evolution indicates all changes in the characteristics of living organisms over
the years, including the appearance and new forms of life. In the 40s, the
development was defined in great detail, as the changes in the sequence of
alleles (different forms of a gene) in a population, from the current genera-
tion to the next. Biological evolution refers to all changes that appear in a
population of organisms over time. These changes occurres in organisms at
the genetic level, when their genes are subject to mutation and/or recombina-
tion during the reproductive process, and that way they are transmiĴed to
the next generations.

During the evolution, each member of the polulation inherits new features
from its parents, something that increase its chances to survive and repro-
duce in comparison with the other similar individuals of population, inside
their environment. The features that act positively, and thus incrementally
to the probability to survive, tend to have great incidence in the population,
while those that adversely affect or possess comparatively worse value, tend
to diminish and disappear. This process of diversification of the survival and
reproduction of individuals is known natural selection.

Charles Darwin (1809-1882) was the first to put forward the theory of evo-
lution through natural selection and which supported the theory of organic
evolution by sufficient evidence and determined how the process of natural
selection brought about the adaptation of people in their environment, but
avoided for years to publish his findings. Darwin’s theory of natural selection
claims that the diversity in organisms appears random in nature, while the
survival or extinction of each organism is determined by its ability to adapt
to its environment.

4.2.2 Evolutionary Algorithms
Inspired by the work and results of the Darwin’s theories, many scientists
and engineers apply the principles of natural evolution in research, resulting
in a new kind of algorithms which are very useful in solving demanding and
difficult problems. An example of use of the theory of evolution, for solv-
ing such problems is the Evolutionary Algorithms (Evolutionary Algorithms,
EA). This kind of algorithms are useful in cases where the user is able to de-
fine a best solution among others, but finding the best is difficult, impossible



4.2 Evolutionary Algorithms 44

or requires a long time. In these cases an EA continuously produces beĴer
solutions until one which is sufficiently satisfactory in terms of requirements
set, even if this is not the best of all.

Evolutionary algorithms are described as heuristic optimization algorithms,
using mechanisms and techniques borrowed from biological evolution, such
as reproduction, selection, crossover, recombination, mutation. Candidate
solutions to a problem are individuals in a population and their value is de-
scribed by a fitness function. The evolution of the population takes place after
a repeated application of the above mentioned operators. The process of ap-
plying the operators to the individuals in the population is the factor that
differentiate EA among each others, creating several variations.

Evolutionary algorithms are used for the solution of optimization prob-
lems because they are very easy to implement and use, and find application
in a wide range of different problems in science and engineering. Ongoing
research on this subject has led to the discovery of some of their weaknesses,
such as slow convergence, but also to improvements of these, in order to over-
come obstacles they may encounter. Users of EA’s are very difficult to have a
full overview of the best choice of tunning parameters of EA, since their per-
formance is highly dependent upon the particular problem to be solved, and
the respective parameters and constraints.

4.2.3 A brief history of EA’s
The first one who referred to genetical or evolutionary search was Alan Turing
in 1948. In 1962 Bremermann, programmed computer experiments on opti-
mization through evolution and recombination [Bremermann1968]. In the 1960s,
the main concept of the EA’s was developed into three different implemen-
tations, which follow a distinct path, but having strong interactions between
them:

• Evolution Strategies (ESs), proposed by Rechenberd and Schwefel [Rec73],
[Sch93]

• Evolutionary Programming (EP), introduced by Fogel, Owens & Walsh
[FOW66]

• Genetic Algorithms (GAs) presented in 1966 by Holland [Hol62; Hol92]
and later developed by Goldberg [Gol89; Gol02] and Michalewicz [Mic96]

All three implementation were developed seperately for about 15 years, until
the early 1990’s where they consindered as members of a greater ecosystem,
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known as Evolutionary Computing (EC). Another branch of GA’s, the Genetic
Programming (GP), has been recently developed by Koza [Koz92; Koz94] and
Banzhaf et all [Ban+98]. All four prementioned implementations are different
branches of the EA’s and can be viewed as different algorithm variants. More
information regarding Evolutionary Computing can be found in reference
[ES03].

4.2.4 EA’s features
EA’s introduce clear advantages in comparison with classical optimization
methods. They do not require convexity, continuity or existance of the first
or second derivatives of the objective function which is not always easily cal-
culated. EA’s differs from classical optimization methods in several aspects
and present the following features that are borrowed from biology:

• stochasticity: the EA’s are based on random sampling, which character-
ize them as a non-deterministic method, that may can result in usually
quite close but different solutions for a repeated number of executions
of the algorithm. In contrast with the deterministic methods that always
result in the same solution.

• population based: unlike classical optimization methods that keep the
best solution found up to the current step, the EA maintains a set of can-
didate solutions that form a population. The many different solutions
are combined together by means of genetic operators to form additional
solutions and thus to achieve evolution.

• chromosomes: in EA’s each member of the population is a candidate
solution that consists of chromosomes. For simplicity reasons, each
member consists of one and only chromosome. Each chromosome is
made by genes, and every gene represents a design variable. The chro-
mosomes can be represented as a vectors or matrices that containt the
values of each design variable. Different values in every design vari-
able represent different members. Figure 4.2 illustrates four examples of
individuals/chromosomes. Each chromosome consists of 9 genes, and
each gene/design-variable can take 10 values, from 0 to 9.
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507618925 2901328 1 2

200206233 2092899 2 7

Figure 4.2: A population of 4 individuals, represented as row vectors

• recombination/crossover: in genetics, the recombination operator crosses
the genetic material of two individuals in order to create new individ-
uals. In EA’s the recombination combines data from existing solutions
in order to create new candidate solutions. The recombination opera-
tor plays a significant role in the process: exploration of the solution
space in order to find the optimum solution. Figure 4.3 illustrates the
procedure of the one point crossover operater: a cutoff point is selected
randomly (position 5) and there is an exchange of the branches to yield
two new individuals. There exists several kinds of recombination in
the literature: two points crossover where, two cutoff points are selected
randomly and anything that lies between the two points is exchanged
between the parent individuals resulting two offsprings. Other kinds
of recombination are the following [Cre15]:

– cut and slice
– multipoint recombination
– uniform crossover
– half uniform crossver

18925 2902 1328 1 5076

507618925 2901328 1 2

Figure 4.3: One point crossover operator applied to two members of the pop-
ulation



4.2 Evolutionary Algorithms 47

• mutation: this operators derives also from genetics. The mutation makes
random changes or mutations in the genetic material (DNA) in one or
more members of the population, differentiating the population. In
EA’s mutation accomplishes exactly the same job, randomly mutating
one or more candidate solutions, which can be either beĴer or worse
than the existing ones. Mutation is equally important as crossover since
it may help the algorithm to maintain genetic diversity and easily get
away from local minima. The mutation can be applied either in par-
ent or offspring members and there are many different ways to be im-
plemented. Figure 4.4 describes the mutation procedure: one gene is
randombly selected and a new value is set (randomly).

1328 1 5076 1328 1 5776

18925 2902 18925 2102

Figure 4.4: Mutation operator applied to two offsprings that was generated
from the crossover operator

• evaluation: in life every new individual grows and competes with the
other members in the population in order to survive. Some of the in-
dividuals die and some continue their life with ultimate aim to repro-
duce and give beĴer offsprings. In EA’s, each member competes with
all other individuals in the population, therefore a value in each member
must be set. This is accomplished by applying the evaluation operator
to each member. This way all members are evaluated and sorted from
the best to the worst. An example of a fitness function with many local
minima is described in the following equation:

𝑓(x) = −𝑥􏷠𝑥􏷡􏷡 + 𝑒
􏿴 𝑥􏷢
𝑥􏷣 + 1

􏿷
− 𝑠𝑖𝑛( 𝑥􏷤𝜋

𝑥􏷡􏷦 + 1
) + 𝑐𝑜𝑠(𝑥

􏷢
􏷤)

𝑥􏷡􏷥 + 1
􏿵1 + 𝑥􏷧

10𝑐𝑜𝑠
(𝑥􏷨𝜋)􏿸

• selection: after the evaluation of each member of the population a sort-
ing is accomplished from the best to the worst. Some of the members
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must be selected for elimination. The selection operator applied in each
case depending on the strategy of each EA, some of worst members are
vanished and new members are generated to take their place.

4.2.5 The EA procedure
Starting the algorithm, an initialization of the population is performed by gen-
erating random candidate solutions inside the solutions space. Each solution
is evaluated and sorted from the best to the worst. Then an iterative pro-
cess begins, where the operators of recombination-crossover and mutation,
are applied to the population, generating a new intermediate population (off-
springs). The new members of the intermediate population are evaluated and
all of them (parents and offsprings) compete between each other. The selec-
tion operators is applied in order to create a new population that consists
of some of the parents and some of the offsprings and eliminating the oth-
ers. This dependents on the strategy of each EA. It is also possible some of
the best members of both population to be eliminated and some of the worst
to be kept in the next generation in order to maintain a genetic diversity of
the population. This is usually done in order to have the greatest possible
diversity in population, so that the EA not to converge quickly and lead to
a local optimum. On the other hand the diversity of the population should
not be excessive because the algorithm may have slow convergence. The it-
erative process terminates when it met the convergence criteria. Algorithm 1
describes in pseudocode the structure of a typical EA:

4.3 Differential Evolution (DE)
Differential Evolution (DE) is a type of evolutionary algorithms. As every
EA is a stochastic, population-based algorithm and was proposed by R. Storn
and K. Price [SP95; PSL05], and further described, among others, in [Feo06].
One of the differences from evolutionary algorithms is that DE focuses in the
distance and the direction information of the other candidate solutions. In
the evolutionary algorithms, if a crossover operator is used, it is applied ini-
tially and then, the generated offsprings are mutated. Mutation operators are
sampled from some probability distribution function. There are two basic
differences in DE in comparison with other EA’s:
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Algorithm 1 Evolutionary Algorithm
set 𝑡 = 0. Random initialization of 1st population 𝐺􏷟 with 𝑁 members
evalutate all candidate solutions
store best at g⋆
repeat

for 𝑡 = 1 ∶ to 𝑇 do
Create intermediate population: 𝐺̂𝑡
recombination/crossover
mutation
evaluation
assembly of population 𝐺⋆𝑡 ← 𝐺𝑡−􏷠 + 𝐺̂𝑡
select 𝑁 members from population 𝐺⋆𝑡 to form population 𝐺𝑡
keep the best member of 𝐺𝑡 at g⋆

end for
until Termination criteria is met
Now g⋆ holds the best found solution.

• mutation is applied first to generate a trial vector, which is then used
within the crossover operator to produce one offspring, and,

• mutation step sizes are not sampled from an a priori known probabil-
ity distribution function but they are influenced by differences between
some individuals of the current population.

4.3.1 Initialization of DE
DE follows all the steps of a classical EA. First there is an initialization of
population. Every candidate solution can be represented by a vector (in bold
leĴer) x𝑖 = (𝑥􏷠,𝑖, 𝑥􏷡,𝑖, … 𝑥𝑑,𝑖), for 𝑖 = 1,… ,𝑁 , where 𝑁 is the size of the popula-
tion. Random vectors are generated so that they satisfy the lower and upper
boundaries of each design variables that are already set. So that for each vec-
tor x𝑖: 𝑥𝐿𝑗 ≤ 𝑥𝑗,𝑖,􏷟 ≤ 𝑥𝑈𝑗 where 𝑥𝐿𝑗 and 𝑥𝑈𝑗 the lower and upper boundaries of
the design variable 𝑗. The index 0 in 𝑥𝑗,𝑖,􏷟 refers to the first generation. In gen-
eral the parameter 𝑥𝑗,𝑖,𝑔 refers to the variable 𝑗 of the 𝑖 vector in generation 𝑔,
𝑔 = 1,… ,𝐺. The initialization process is described by equation 4.1 where 𝑟𝑗,􏷟 is
a random number inside (0, 1) and illustrated in figure 4.5. For this example
8 points that correspond to 8 2-dimensional vectors are generated inside the
boundaries for each design variable.



4.3 Differential Evolution (DE) 50

𝑥𝑗,𝑖,􏷟 = 𝑥𝐿𝑗 + 𝑟𝑗,􏷟(𝑥𝑈𝑗 − 𝑥𝐿𝑗 ) (4.1)
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Figure 4.5: Initialization of DE population

4.3.2 The mutation operator
The mutation operator produces a trial individual u𝑖 for each individual x𝑖
of the current population by mutating it with a weighted differential. This
trial individual will, then, be used by the crossover operator to produce an
offspring. For each parent, x𝑖, a trial individual u𝑖, is generated as follows:
three target individuals a,b, c are selected from the population, such that x𝑖 ≠
a ≠ b ≠ c. Using these individuals, the trial vector is calculated by perturbing
the target vector as follows:

u𝑖 = a + 𝛽(b − c) (4.2)

where 𝛽 ∈ (0, +∞) is the scale factor, usually set equal to 𝛽 = 0.5. The base
vector a can be determined either by selecting a random member of the pop-
ulation or by selecting the best member of the population. The vectors b and
c are selected usually at random. Equation 4.3 presents a more sophisticated
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mutation operators than the classical one, in which the parent is mutated us-
ing three different vectors and taking into account the best vector so far 𝑥𝑜𝑝𝑡:

u𝑖 = a + 𝛽(x𝑜𝑝𝑡 − a) + 𝛽
􏷡
􏾜
𝑙=􏷠
(b𝑙 − c𝑙) (4.3)
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Figure 4.6: Generating the difference: (b − c)

The trial vector u𝑖 competes with vector x𝑖 and if has beĴer value of the
fitness function it replaces it in the population.

4.3.3 DE crossover operator
After the completion of the mutation phase of the algorithm a crossover opera-
tor is, usually, applied. We used here binomial crossover where the points are
selected randomly for the trial vector and for the parent. Initially, a crossover
operator parameter 𝐶𝑟 is selected that controls the fraction of 𝑑 design vari-
ables that are selected from the trial vector. A random index is generated
𝑘 ∈ {1, 2, … , 𝑑}. The 𝐶𝑟 value is compared with the output of a random num-
ber generator, 𝑟𝑘 ∈ (0, 1). If the random number 𝑟𝑘 is less or equal to the 𝐶𝑟 the
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Figure 4.7: Create the trial vector u𝑖 = a + 𝛽(b − c)

corresponding value is inherited from the trial vector, otherwise it is selected
from the parent:

v𝑖,𝑔 = 𝑣′𝑗,𝑖,𝑔 =
⎧⎪
⎨⎪⎩

𝑢𝑗,𝑖,𝑔 If 𝑟𝑘 ≤ 𝐶𝑟 or 𝑗 = 𝑘
𝑥𝑗,𝑖,𝑔 otherwise

(4.4)

Thus, the choice of the 𝐶𝑟 is very significant because if the value is close or
equal to 1, then, most of the values in the offspring are inherited from the trial
vector (the mutant) but if the value is close to 0, then, the values are inherited
from the parent. Figure 4.8 illustrates the crossover operator for two variables
vectors. The vectors u𝑖 and x𝑖 are crossed over exchanging variables leading
to two more possible vectors: u′𝑖 and u″𝑖 . Therefore after the crossover there
are four possible trial vectors v𝑖,𝑔 ∈ {x𝑖,u𝑖,u′𝑖 ,u

″
𝑖 }.

4.3.4 Selection
After the crossover operator, the offspring vector v𝑖,𝑔 is evaluated by the fit-
ness function and is compared with its parrent u𝑖,𝑔. If the trial vector is beĴer
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Figure 4.8: Crossover

from the parent, it is selected for the next generation, otherwise the parent
survives for at least one more generation (see figure 4.9).

x𝑖,𝑔+􏷠 =
⎧⎪
⎨⎪⎩

v𝑖,𝑔 if 𝑓(v𝑖,𝑔) ≤ 𝑓(x𝑖,𝑔)
x𝑖,𝑔 otherwise

(4.5)

4.3.5 Differentiations of DE
The Differential Evolution algorithm can be differentiate based on three major
features:

• the base vector selected for mutation whether is the best so far in the
population or it is randomly selected or it is lied on a line connecting
the best and a randomly selected vector

• one or more differences are added to the base vector

• the number of parameters donated by the mutant vector to the base vec-
tor follows binomial or exponential probability distribution
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Figure 4.9: Selection

Based on the above mentioned possible options a DE can be characterized
as: DE/rand/1/bin meaning that the based vector that is chosen for mutation
is randomly selected, 1 difference (2 random vectors are selected) is added to
the base vector (multiplied with the factor 𝛽) and the number of parameters
donated from the mutant vector follows the binomial probability distribution.
This stategy is defined as classic DE. Other possible options are illustrated in
figure 4.10 and in more details in [PSL05].

4.3.6 The DE algorithm
Algorithm 2 describes in pseudocode the procedure of a classic DE.
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Figure 4.10: DE differentiations based on a) the base vector selection b) the
number of differences used in the mutation operator, and c) the type of the
random distribution used for exchanging parameters during crossover.

Algorithm 2 Differential Evolution
Initialize all candidate solutions randomly in the design-space
Evalutate all candidate solutions, store best at g
repeat

for each solution x𝑖 ∶ 𝑖 = 1 to 𝑁 do
Pick three random solutions: a,b, c, so that: x𝑖 ≠ a ≠ b ≠ c
Create a trial individual u𝑖: u𝑖 ← a + 𝛽(b − c)
Generate a random index 𝑘 ∈ {1, 2, … 𝑑}
Generate a random number 𝑟𝑘 ∈ (0, 1)
if 𝑟𝑘 < 𝐶𝑟 then

𝑥′𝑘,𝑖 ← 𝑢𝑘,𝑖
else

𝑥′𝑘,𝑖 ← 𝑥𝑘,𝑖
end if
if 𝑓(x′𝑖 ) < 𝑓(x𝑖) then

x𝑖 ← x′𝑖
end if
if 𝑓(x′𝑖 ) < 𝑓(g) then

g← x′𝑖
end if

end for
until Termination criteria is met
Now g holds the best found solution.
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4.4 Swarm Intelligence

4.4.1 Introduction
The social behavior and education that an individual acquires in a social sys-
tem, allows the individual to develop a knowledge that help the individual,
together with other members to survive and evolve. People solve various
problems by discussing about them with other people, sharing plans, thoughts,
ideas and social behavior changes. These changes can be visualized as people
move between them within their social environment. This is more evident in
schools of fish and flocks of birds and insects when they are changing their
three-dimensional formations in order to face a potential enemy-hunter, or
to find food or to move from one place to another with the least loss of en-
ergy. This is an evidence that the swarm-group of individuals has developed
a some kind of intelligence.

Swarm Intelligence was defined by Beni and Wang as a collective behavior
of decentralized, self-organized systems, natural or artificial [BW89]. Swarm intelli-
gence systems are groups of agents that communicate and interact with each
other inside their environment without any centralized control over their be-
havior. The agents themselves follow very simple rules. However, through
random interactions between them, unrelated to their individual behavior,
an intelligent global behavior may appear. This phenomenon has been repeat-
edly observed in nature, in biological systems such as ant colonies, bird flock-
ing, animal herding, bacterial growth, fish schooling.

Swarm Intelligence has been extensively used in solving optimization prob-
lems. Just like Evolutionary Algorithms, they are population based stochastic
optimization algorithms that mimic the social behavior of groups of individ-
uals inside their environment. In general, a swarm is a group of potential so-
lutions that move inside the solution space, so as to find the optimum. There
are several optimization algorithms:

• Particle Swarm Optimization

• Ant Colony Optimization

• Artificial Bee Colony Algorithm

• Bat Algorithm
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4.4.2 Particle Swarm Optimization
Particle Swarm Optimization (PSO) was originally proposed by J. Kennedy
and R. Eberhart, [KE95; EK95] as a simulation of the social behavior of so-
cial organisms such as bird flocking and fish schooling. PSO uses the phys-
ical movements of the individuals in the swarm and has a flexible and well-
balanced mechanism to enhance and adapt to the global and local exploration
abilities. Further material can be found in [KE01].

In PSO, each particle of the swarm, corresponds to a candidate solution
that may move freely inside the solutions space. Every particle has a posi-
tion and a velocity and can be represented as vector of design variables. In
each iteration of the algorithm, every particle (candidate solution) is evalu-
ated through a fitness function. The personal best positions of each particle
are kept in memory along with the best position of the whole swarm. In that
way, each particle knows as information the best positions of the other parti-
cles along with the best position of the swarm. In the next iteration, each par-
ticle is accelerated to a new position based on the information of its personal
best and the global best position. Iterations continue until the termination
criteria are met.

4.4.3 Comparison of PSO with EAs
The most important similarity between PSO and an EA is that both are based
on the growth and the development of a population of candidate solutions.
In both cases, the evolution of the population relies on stochasticity and an
evaluation is applied to each candidate solution through a fitness function.
Of course, due to the stochasticity, it is never sure that a global optimal is
found. Another important similarity is the simplicity of the algorithms in
both implementation and use. The number of the tuning parameters is small
in both cases and both can be programmed easily in a few lines of code, with
the PSO to excel a bit. The process of evaluation is easily parallelized, making
both algorithms without difficulty tunned up to run on big clusters of CPU’s.

The advantage of PSO, in relation to EA, is that it has memory. For each
particle the best position that ever been is saved in memory, along with the
best position of the whole swarm. In PSO there is no application of biological
operators such as recombination, mutation and selection. Another difference
between PSO and EA’s, is that the particles are exchanging information (their
best ever known position) with each other around their neighborhood (lo-
cally) but also with the best so far particle (globally) in the swarm, following
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every time the best solutions so far. Usually the PSO is slower in progress and
obviously in convergence than EAs but this is also an important advantage
making PSO difficult to be trapped in local optima.

4.4.4 PSOmodeling
4.4.4.1 Initialization

As it was prementioned before, a swarm consists of 𝑁 particles, and each
particle is represented by a vector x𝑖, 𝑖 = 1, … ,𝑁 of 𝐷 design variables: x𝑖 =
(𝑥􏷠,𝑖, 𝑥􏷡,𝑖, … , 𝑥𝐷,𝑖)𝑇 . A parameter 𝑡 is set that corresponds to current motion of
the swarm, where 𝑡 = 0, 1, … , 𝑇 and 𝑇 is the maximum number of motions the
swarm is allowed to make. For each design variable there is a lower and up-
per bound: 𝑥𝐿𝑗 ≤ 𝑥𝑗,𝑖,􏷟 ≤ 𝑥𝐿𝑗 . During initialization an initial (random) position
for each particle is set inside the solution space, that satisfies the boundary
conditions of each design variable, while the parameter 𝑡 is set to 0. The ini-
tialization procedure is the same as in DE and is described by equation 4.1
and illustrated in figure 4.5.

Later an evaluation is taking place for all particles. A personal best ̂x𝑖 is
defined for each particle. The particle with the best fitness function value is
saved in ĝ:

̂x𝑖 ← x𝑖
ĝ← x𝑘 ∶ 𝑓(x𝑘) < 𝑓(x𝑖), 𝑘 ≠ 𝑖, 𝑖 = 1,… ,𝑁

(4.6)

A velocity is defined of each particle as a vector of same size as x𝑖: v𝑖 =
(𝑣􏷠,𝑖, 𝑣􏷡,𝑖, … , 𝑣𝐷,𝑖) which describes a change of its position. The vector v𝑖 is ini-
tialized the same way x𝑖 is initialized.

4.4.4.2 Progress of PSO

The flying direction of each particle is the iteration by iteration interaction
of individual and social flying experience. The algorithm completes the op-
timization through following the personal best solution of each particle and
the global best value of the whole swarm. During evolution of the algorithm
each particle updates its trajectory toward its own previous best position and
the previous best position aĴained by any particle of the swarm, namely x̂𝑖
and ĝ respectively.
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In time 𝑡 a particle 𝑖 has a position in the solution space represented by
vector x(𝑡)𝑖 and a velocity v(𝑡)𝑖 . Figure 4.11 illustrates the particle with its veloc-
ity along with its personal best and global best positions. The velocities and
positions of particles are updated using the following formulas:

v(𝑡+􏷠)𝑖 = 𝜔𝑡v
(𝑡)
𝑖 + 􏿮𝑐􏷠r􏷠 ∘ ( ̂x𝑖 − x

(𝑡)
𝑖 )􏿱 + 􏿮𝑐􏷡r􏷡 ∘ (ĝ − x

(𝑡)
𝑖 )􏿱

x(𝑡+􏷠)𝑖 = x(𝑡)𝑖 + v(𝑡+􏷠)𝑖

𝜔𝑡 = 𝜔𝑚𝑎𝑥 −
(𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛)𝑡

𝑇

(4.7)

Figure 4.11: Particle x(𝑡)𝑖 with its velocity v(𝑡)𝑖

where 𝑡 is the current time increment; 𝑐􏷠 and 𝑐􏷡 are the acceleration coefficients
controlling how far a particle will move in a single iteration (typically set to
2.0); r􏷠, r􏷡 are two random generated vectors using universal distribution in-
side [0, 1], and 𝜔𝑡 is an inertia coefficient controlling the evolution of the al-
gorithm for time step 𝑡. For high values of 𝜔 the algorithm facilitates a global
search while for small values facilitates a local search. By linearly decreasing
the inertia weight from a relatively large value to a small value through the
course of the PSO run gives the best PSO performance compared with fixed
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inertia weight seĴings. The symbol ∘ represents the Hadamard product of vec-
tors and matrices with same dimensions, where multiplication is based on
element by element: (A ∘ B)𝑖,𝑗 = (A)𝑖,𝑗 ⋅ (B)𝑖,𝑗.

Νext, the velocity vector is scaled to 𝜔𝑡v
(𝑡)
𝑖 , and the vector differences, ( ̂x𝑖 −

x(𝑡)𝑖 ) and (ĝ − x(𝑡)𝑖 ) are calculated and illustrated in figure 4.12.

Figure 4.12: Calculations of 𝜔𝑡v
(𝑡)
𝑖 , ( ̂x𝑖 − x(𝑡)𝑖 ) and (ĝ − x(𝑡)𝑖 )

Subsequently, two new random vectors are generated 𝑟􏷠 and 𝑟􏷡 and two
new vectors are composed: 𝑐􏷠r􏷠 ∘ ( ̂x𝑖 − x(𝑡)𝑖 ) and 𝑐􏷡r􏷡 ∘ (ĝ − x(𝑡)𝑖 ), which con-
sequently formulate vector 𝔸. This process is illustrated in figures 4.13 and
4.14 respectively. The two already composed vectors 𝜔𝑡v

(𝑡)
𝑖 and 𝔸 are added

to compose the new velocity vector v(𝑡+􏷠)𝑖 as presented in figure 4.15. The parti-
cle updates its new position by adding to its current position the new velocity
vector: x(𝑡+􏷠)𝑖 = x(𝑡)𝑖 + v(𝑡+􏷠)𝑖 . This is described in figure 4.16. An evaluation is
taking place and if the new x(𝑡+􏷠)𝑖 is beĴer than the old x(𝑡)𝑖 , then it updates
its personal best position x̂𝑖. If it is even beĴer than the global best ĝ, then it
becomes the global best.
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Figure 4.13: Composition of 𝑐􏷠r􏷠( ̂x𝑖 − x
(𝑡)
𝑖 ) and 𝑐􏷡r􏷡(ĝ − x

(𝑡)
𝑖 )

Figure 4.14: Composition of temporary vector 𝔸
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Figure 4.15: Composition of a new velocity vector v(𝑡+􏷠)𝑖 .

Figure 4.16: Update of position and velocity of particle 𝑖 for time increment
𝑡 + 1.
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4.4.5 The PSO algorithm
Let 𝑁 be the number of particles in the swarm, each has a position x𝑖 ∈ ℝ𝐷

and a velocity v𝑖 ∈ ℝ𝐷 where 𝐷 the total number of design variables. Let x̂𝑖
be the best known position of particle 𝑖 and let ĝ be the best known position
of the entire swarm. A basic PSO algorithm is then:

Algorithm 3 Particle Swarm Optimization
for each particle: 𝑖 = 1 to 𝑁 do

Initialize particle’s position: x(􏷟)𝑖 = x𝐿 + rx(􏷟) ∘ (x𝑈 − x𝐿)
Initialize the particle’s best known position to its initial position: x̂𝑖 ← x𝑖
if 𝑓(p𝑖) < 𝑓(g) then

update the swarm’s best known position: ĝ← ̂x𝑖
end if
Initialize the particle’s velocity: v(􏷟)𝑖 = x𝐿 + rv(􏷟) ∘ (x𝑈 − x𝐿)

end for
for 𝑡 = 1 to 𝑇 do

for each particle: 𝑖 = 1 to 𝑁 do
Generate random vectors: r􏷠, r􏷡 ∈ ℝ𝐷 in [0, 1]
Update the particle’s velocity:
v(𝑡+􏷠)𝑖 ← 𝜔𝑡v

(𝑡)
𝑖 + 􏿮𝑐􏷠r􏷠 ∘ (x̂𝑖 − x𝑖)􏿱 + 􏿮𝑐􏷡r􏷡 ∘ (ĝ − x𝑖)􏿱

Update the particle’s position: x(𝑡+􏷠)𝑖 ← x(𝑡)𝑖 + v(𝑡+􏷠)𝑖
if 𝑓(x(𝑡+􏷠)𝑖 ) < 𝑓( ̂xi) then

Update the particle’s best known position: x̂𝑖 ← x(𝑡+􏷠)𝑖
if 𝑓(x̂𝑖) < 𝑓(ĝ) then

Update the swarm’s best known position: ĝ← x̂𝑖
end if

end if
end for

Update intertia parameter 𝜔𝑡 ← 𝜔𝑚𝑎𝑥 −
(𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛)𝑡

𝑇
end for
Now g holds the best found solution.

The vectors rx, rv, r􏷠, r􏷠 ∈ ℝ𝐷 and consists of uniformaly distributed ran-
dom numbers in the interval [0, 1]. The vectors x𝐿, x𝑈 ∈ ℝ𝐷 and contain the
lower and upper boundaries of each design variable.
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4.5 The hybrid scheme
A hybrid scheme using evolutionary algorithms for structural optimization
problems has been proposed in the past [Pap+96], [Pap+98]. The use of neural
networks has also been applied [PLT98]. The hybrid scheme proposed here,
due to the usage of classical local iterative topology optimization steps, guar-
antees structural integrity along every step of the algorithm. Furthermore
the operators of the evolutionary algorithm remain unchanged. As a result
the hybrid scheme is very general and allows for the usage of any evolution-
ary algorithm (genetic, particle swarm, etc) as well as every local iterative
algorithm for the topology optimization. It must be mentioned that another
hybrid scheme based on genetic algorithms for the design of structures, has
been proposed recently [Car+13].

4.5.1 Initialization of the hybrid scheme
The hybrid algorithm starts by creating random initial material distributions.
Each one of these does not represent a feasible structure or mechanism. There-
fore an operator must be applied in order to evaluate them. This is achieved
using topology optimization thus leading to a group of final material distribu-
tions. This process is illustrated in figure 4.17. Each of the final distributions
has a value according to the fitness function used and sorted from the best to
the worst. This group constitute the initial population used for the evolution
process of the evolutionary algorithm used.

4.5.2 Progress of the hybrid scheme
The population of final material distributions generated in the previous step
are used as generation 0 or swarm in time 𝑡 = 0 for the purposes of DE and
PSO respectively. The population is evolving according the parameters of
each evolutionary algorithm used. Applying the evolutionary techniques
used in Differential Evolution or Particle Swarm Optimization over the ini-
tial population of solutions, creates intermediate material distributions that
are not feasible for two main reasons: either the resulted layout is not a struc-
ture (islands of material may appear) or the volume constraint is not satisfied.
Thus the new intermediate distributions need to become ”structures”. Topol-
ogy optimization is applied again in order to maintain structural integrity as
well as to place a value to each resulted solution.
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Figure 4.17: Initialization of the hybrid scheme

Figure 4.18 illustrates the prementioned process. The orange and magenta
strustures are combined together resulting to a different intermediate layout
which is again evaluated in order to become a ”structure”. For the purposes
of this example, the problem definition illustrated in figure 3.9(a) was used.
The design domain was discretized in 2D square plain stress elements. The
density of each element is represented as a design parameter which takes val-
ues in the (0, 1].

The iterations of the hybrid algorithm stop when the termination criteria
are met. The flow chart of the hybrid scheme is given in figure 4.19.

4.5.3 Advantages of the hybrid scheme
One of the great advantages of the proposed hybrid algorithm is that at the
end of every step, due to internal steps of classical iterative topology opti-
mization, the material distribution corresponds to a realistic structure. On the
contrary, simple application of classical evolutionary algorithms in topology
optimization, due to the drastic change of variables involved, does not guar-
antee that every material distribution resulted along the steps of the algorithm
corresponds to a real structure (with invertible stiffness matrix). It should be



4.5 The hybrid scheme 66

Figure 4.18: Evolution & evaluation inside the hybrid scheme

noted that the algorithm has been tested till now on single objective optimiza-
tion problems. Therefore all multiobjective problems mentioned previously
are transformed first into a single objective problem and then solved by this
method. Nevertheless the algorithm can be extended to treat multiobjective
problems and create solutions elements of the Pareto optimum.

It must be mentioned that the current hybrid scheme can be easily par-
allelized. Every random material distribution that is generated or envolved
according to the strategy of each evolutionary algorithm must be evaluated
using topology optimization. The procedure of evaluation, for every differ-
ent member of population is independent from the other members. Hence,
using modern computational tools like MATLAB, the evaluation procedure
for every member can be assigned to each different cores of a multicore CPU,
or GPU of modern workstations, and cut the computational cost very easy.
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Figure 4.19: The hybrid scheme



CHAPTER5
Case Study: Compliant

mechanisms
In this chapter, numerical results for the design of compliant mechanisms
using the hybrid scheme already described in the previous chapter are pre-
sented. In order to exhibit the mechanisms displacements clearly, a filter has
been applied to the final material distribution, displaying only the elements
with density greater that 0.6. This is used for visualization purposes only.

5.1 Classic compliant mechanisms: Single load
case

The results presented in this section correspond to the an asymmetric force
inverter device. There is only one load cace. meaning that the compliant
mechanism is configured to perform one function only.

5.1.1 Without output control
In this subsection, the results for the asymmetric force inverter compliant
mechanism are presented. The problem definition is illustrated in figure 3.9
and the parameters for the topology optimization algorithm are presented in
table 5.1.

5.1.1.1 Using DE

The configuration parameters for the hybrid scheme using Differential Evo-
lution wihtout output control are presented in the table 5.2.
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Parameter Value

Discritization 50x50
Design Variables 2500
Degrees of Freedom 5202
Local search iterations 100
SIMP penalty coefficient, 𝑝 3
Filter radius, 𝑟 2
Volume Limit 30%

Table 5.1: Topology Optimization Algorithm parameters

Parameter Value

Population size 32
Generations 100
Crossover 𝐶𝑟 0.9
Mutation 𝛽 1.5
Design Variables 2500

Table 5.2: Differential Evolution configuration parameters

Figure 5.1 shows the resulted material distribution for Hybrid scheme us-
ing DE for the one load case asymmetric force inverter compliant mechanism
without output control.

Figure 5.2 shows the resulted material distributions that represent the evo-
lution of the hybrid scheme.
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(a) Final Material Distribution
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Figure 5.1: Results: Hybrid Scheme, One Load Case, No output control, using
DE
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(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6 (g) Step 7 (h) Step 8

(i) Step 9 (j) Step 10 (k) Step 11 (l) Step 12

(m) Step 13 (n) Step 14 (o) Step 15

Figure 5.2: Intermediate material distributions for One load case using Differ-
ential Evolution
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5.1.1.2 Using PSO

The configuration parameters for the hybrid scheme using Differential Evo-
lution without output control are presented in the table 5.3.

Parameter Value

Swarm size 32
Iterations 100
Acceleration parameters 𝑐􏷠 = 𝑐􏷡 2
Intertial parameters 𝑤𝑚𝑎𝑥, 𝑤𝑚𝑖𝑛 0.9, 0.1
Design Variables 2500

Table 5.3: Particles Swarm Optimization configuration parameters

Figure 5.3 shows the resulted material distribution for hybrid scheme us-
ing PSO for the one load case, asymmetric force inverter compliant mecha-
nism, without output control.

Figure 5.4 shows the resulted material distributions that represent the evo-
lution of the hybrid scheme.
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(a) Final Material Distribution
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Figure 5.3: Results for one load case using Particle Swarm Optimization
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(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6 (g) Step 7 (h) Step 8

(i) Step 9 (j) Step 10 (k) Step 11 (l) Step 12

(m) Step 13

Figure 5.4: Intermediate material distributions for One load case using Parti-
cle Swarm Optimization
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5.1.1.3 Repeatability of results for the one load case

Due to the stochastic nature of the DE, we run 4 different simulations in order
to examine if the results are repeatable. Figures 5.5 and 5.6 demonstrates for
DE and PSO respectively, the final material distributions for four different
simulations of the hybrid scheme for the problem of the asymmetric force
inverted compliant mechanism without output control. In all cases, the final
material distributions seem to have the same shape. Tables 5.4 and 5.5 show
some numerical results for each case.

(a) Run1: Final Mat. Distribution (b) Run2: Final Mat. Distribution

(c) Run3: Final Mat. Distribution (d) Run4: Final Mat. Distribution

Figure 5.5: Four Final material distributions using Hybrid Scheme using Dif-
ferential Evolution for one load case



5.1 Classic compliant mechanisms: Single load case 76

Scheme fitness 𝑈 (𝑋)
𝑖𝑛 𝑈 (𝑋)

𝑜𝑢𝑡 𝑈 (𝑌)
𝑜𝑢𝑡 𝑈𝑣𝑒𝑐

DE/1load

run 1 1.367 8.123 -1.367 1.740 2.213
run 2 1.360 8.143 -1.360 1.747 2.214
run 3 1.361 8.135 -1.361 1.736 2.206
run 4 1.358 8.121 -1.358 1.746 2.212

Table 5.4: Results for One load case using Hybrid scheme with DE

(a) Run1: Final Mat. Distribution (b) Run2: Final Mat. Distribution

(c) Run3: Final Mat. Distribution (d) Run4: Final Mat. Distribution

Figure 5.6: Four Final material distributions using Hybrid Scheme using PSO
for one load case
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Scheme fitness 𝑈 (𝑋)
𝑖𝑛 𝑈 (𝑋)

𝑜𝑢𝑡 𝑈 (𝑌)
𝑜𝑢𝑡 𝑈𝑣𝑒𝑐

DE/1load

run 1 1.362 8.227 -1.362 1.680 2.168
run 2 1.354 8.029 -1.354 1.800 2.257
run 3 1.352 8.049 -1.352 1.802 2.258
run 4 1.349 8.099 -1.349 1.784 2.237

Table 5.5: Results for One load case using Hybrid scheme with PSO
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5.1.2 With output control
In this subsection, the results for the asymmetric force inverter compliant
mechanism are presented using motion control to the output point. The prob-
lem definition is illustrated in figure 3.11 and the parameters for the topology
optimization algorithm are presented in table 5.6.

Parameter Value

Discritization 30x30
Design variables 900
DOFS 1922
Local search iterations 60
SIMP penalty coefficient, 𝑝 3
Filter Radius, 𝑟 1.5
Volume fraction 30%

Table 5.6: Running parameters: topology optimization for the design of com-
pliant mechanism using DE, and featuring output control, with a single load
case.

5.1.2.1 Using DE

The configuration parameters for the hybrid scheme using Differential Evo-
lution with output control are presented in the table 5.7.

Parameter Value

Population size 20
Generations 50
Crossover factor 𝐶𝑟 0.9
Mutation factor 𝐹 1.5
Design variables 900

Table 5.7: Differential Evolution configuration parameters

Figure 5.7 shows the resulted material distribution for Hybrid scheme us-
ing DE for the one load case assymetric force inverter compliant mechanism
with output control. The numerical results are displayed in table 5.8.
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Parameter Value

Objective function 􏵶
𝑢@𝑋𝑜𝑢𝑡
𝑢@𝑌𝑜𝑢𝑡

􏵶 51.4

Input displacement at X, 𝑢@𝑋𝑖𝑛 8.722
Output Displacement at X, 𝑢@𝑋𝑜𝑢𝑡 -1.199
Output Displacement at Y, 𝑢@𝑌𝑜𝑢𝑡 -0.023
Total distance 1.200
Geometric advantage 13.8%

Table 5.8: Results: topology optimization for the design of compliant mecha-
nism using DE, and featuring output control, with a single load case.
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(a) Final Material Distribution (b) Evolution

(c) Final Mat. Distribution (filtered) (d) Displacement (filtered)

(e) Displacement & Mat. Distribution (fil-
tered)

(f) Detail

Figure 5.7: Results for one load case using Differential Evolution and output
control



5.1 Classic compliant mechanisms: Single load case 81

5.1.2.2 Using PSO

The configuration parameters for the hybrid scheme using Particles Swarm
Optimization with output control are presented in the table 5.9.

Parameter Value

Swarm size 20
Total number of PSO local searches 50
Acceleration factors 𝑐􏷠 = 𝑐􏷡 2
Inertia factors 𝑤𝑚𝑎𝑥 & 𝑤𝑚𝑖𝑛 0.9, 0.1
Design variables 900

Table 5.9: Particles Swarm Optimization configuration parameters

Figure 5.8 demonstrates the resulted material distribution for Hybrid scheme
using DE for the one load case assymetric force inverter compliant mechanism
with output control. The numerical results are displayed in table 5.10.

Parameter Value

Objective function 􏵶
𝑢@𝑋𝑜𝑢𝑡
𝑢@𝑌𝑜𝑢𝑡

􏵶 385.7

Input displacement at X, 𝑢@𝑋𝑖𝑛 8.605
Output Displacement at X, 𝑢@𝑋𝑜𝑢𝑡 -1.158
Output Displacement at Y, 𝑢@𝑌𝑜𝑢𝑡 -0.003
Total distance 1.158
Geometric advantage 13.5%

Table 5.10: Results: topology optimization for the design of compliant mech-
anism using PSO, and featuring output control, with a single load case.
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(a) Final Material Distribution (b) Evolution

(c) Final Mat. Distribution (filtered) (d) Displacement (filtered)

(e) Displacement & Mat. Distribution (fil-
tered)

(f) Detail

Figure 5.8: Results for one load case using Particle Swarm Optimization and
output control
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5.1.2.3 Comparison of DE and PSO results for an single load case

The PSO algorithm resulted to a considerably beĴer solution compared to the
DE. The values of the objective function are 357.8 and 51.4 respectively. The
displacement on the X axis in both cases is similar while in the Y axis the
difference of the displacement is remarkable. In particular PSO resulted to
𝑢@􏸽𝑜𝑢𝑡 =0.003 while DE to 𝑢@􏸽𝑜𝑢𝑡 =0.023, an about 7 times higher value. The vertical
displacement 𝑢@􏸽𝑜𝑢𝑡 is found to the denominator of the objective function and
has to be minimized. Both algorithms resulted to similar material distribu-
tions as well as volume percentage. Table 5.11 demonstrates the comparative
results of the two evolutionary algorithms.

DE vs PSO

DE PSO

Final material distribution

Objective function 􏵶
𝑢@𝑋𝑜𝑢𝑡
𝑢@𝑌𝑜𝑢𝑡

􏵶 51.4 385.7

Output Displacement at X: 𝑢@𝑋𝑜𝑢𝑡 -1.199 -1.158
Output Displacement at Y: 𝑢@𝑌𝑜𝑢𝑡 -0.023 -0.003
Geometric advantage 13.8% 13.5%

Table 5.11: Results DE vs PSO. Topology optimization for the design of com-
pliant mechanism, featuring output control, with a single load case.
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5.2 Polymorphic compliant mechanisms: Two
load cases

The results presented in this section are for the a polymorphic compliant
mechanism. There are two load cases, meaning that the compliant mecha-
nism is configured to perform two functions, one each load case.

5.2.1 Without output control
In this subsection, the results for a polymorphic force inverter compliant mech-
anism are presented. The problem definition is illustrated in figures 3.12 and
3.13. The configuration parameters for the topology optimization algorithm
are similar to the one load case example and are presented in table 5.1.

5.2.1.1 Using DE

Figure 5.9 shows the final material distribution for a two load case asymmet-
ric force inverter compliant mechanism. Figure 5.10 illustrates the resulted
material distributions that represent the evolution of the hybrid scheme.



5.2 Polymorphic compliant mechanisms: Two load cases 85

(a) Final Material Distri-
bution
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Figure 5.9: Results for two loads case using Differential Evolution
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(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6

Figure 5.10: Intermediate material distributions for Two loads case using Dif-
ferential Evolution



5.2 Polymorphic compliant mechanisms: Two load cases 87

5.2.1.2 Using PSO

Figure 5.11 illustrates the final material distribution for a two load case asym-
metric force inverter compliant mechanism. Figure 5.12 illustrates the re-
sulted material distributions that represent the evolution of the hybrid scheme.
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Figure 5.11: Results for two loads case using Particle Swarm Optimization



5.2 Polymorphic compliant mechanisms: Two load cases 89

(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6 (g) Step 7 (h) Step 8

(i) Step 9 (j) Step 10 (k) Step 11 (l) Step 12

(m) Step 13 (n) Step 14 (o) Step 15

Figure 5.12: Intermediate material distributions for Two loads case using Par-
ticle Swarm Optimization
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5.2.1.3 Repeatability for the polymorphic load case compliant
mechanism

Figures 5.13 and 5.14 demonstrate in each evolutionary algorithm used (DE
and PSO respectively), a set of four different runs of the hybrid scheme for the
two load case compliant mechanism. The material distributions that are illus-
trated in subfigures 5.13(a), 5.13(b), 5.13(d), from the DE case and subfigure
5.14(b) from the PSO case, have almost the same configuration. The material
distributions illustrated in 5.13(c) from the DE case and subfigures 5.14(c),
from the PSO case are very similar to each other while material distribution
illustrated in 5.14(b), 5.14(d), look very similar to each other and appear to
have a diagonal axis of symmetry which passed through the top right and
boĴom left points of the material distribution. The numerical results for DE
and PSO 4runs sets are presented in tables 5.12 and 5.13 respectively.

Runs fitness 𝑈𝑋
𝑖𝑛,􏷠 𝑈𝑋

𝑜𝑢𝑡,􏷠 𝑈𝑌
𝑜𝑢𝑡,􏷠 𝑈𝑌

𝑖𝑛,􏷡 𝑈𝑋
𝑜𝑢𝑡,􏷡 𝑈𝑌

𝑜𝑢𝑡,􏷡

run 1 1.486 9.390 -0.461 -0.074 8.748 0.257 -1.025
run 2 1.514 9.475 -0.498 -0.008 8.542 0.270 -1.017
run 3 1.515 8.780 -0.919 0.062 8.998 0.022 -0.596
run 4 1.510 9.517 -0.536 -0.026 8.904 0.279 -0.974

Table 5.12: Results for Two loads case using Hybrid scheme with DE

Runs fitness 𝑈𝑋
𝑖𝑛,􏷠 𝑈𝑋

𝑜𝑢𝑡,􏷠 𝑈𝑌
𝑜𝑢𝑡,􏷠 𝑈𝑌

𝑖𝑛,􏷡 𝑈𝑋
𝑜𝑢𝑡,􏷡 𝑈𝑌

𝑜𝑢𝑡,􏷡

run 1 1.593 8.914 -0.728 0.192 8.745 0.021 -0.865
run 2 1.579 9.223 -0.537 -0.059 8.814 0.213 -1.042
run 3 1.576 8.723 -0.890 0.009 9.106 0.172 -0.687
run 4 1.603 9.067 -0.711 0.165 8.776 -0.009 -0.893

Table 5.13: Results for Two loads case using Hybrid scheme with PSO



5.2 Polymorphic compliant mechanisms: Two load cases 91

(a) Run1: Final Mat. Distribution (b) Run2: Final Mat. Distribution

(c) Run3: Final Mat. Distribution (d) Run4: Final Mat. Distribution

Figure 5.13: Four Final material distributions using Hybrid Scheme using Dif-
ferential Evolution for two loads case
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(a) Run1: Final Mat. Distribution (b) Run2: Final Mat. Distribution

(c) Run3: Final Mat. Distribution (d) Run4: Final Mat. Distribution

Figure 5.14: Four Final material distributions using Hybrid Scheme using
PSO for two loads case
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5.2.2 Results for Polymorphic Compliant Mechanism using
output control

For the current problem the configuration parameters are presented in table
5.14.

Parameter Value

Discritization 50x50
Design variables 2500
DOFS 5202
Local search iterations 80
SIMP penalty coefficient, 𝑝 3
Filter Radius, 𝑟 1.5
Volume fraction 30%

Table 5.14: Running parameters: topology optimization for the design of com-
pliant mechanism using DE, and featuring output control, with a single load
case.

5.2.2.1 Using Differential Evolution

For the selected evolutionary algorithm the configuration parameters simi-
lar to the corresponding single load case with output control but with more
design variables (2500 instead of 900) and they are presented in table 5.15.

Parameter Value

Population size 20
Generations 50
Crossover factor 𝐶𝑟 0.9
Mutation factor 𝐹 1.5
Design variables 2500

Table 5.15: Differential Evolution configuration parameters

The numerical results and the resulted material distribution are presented
in table 5.16 and in figure 5.15 respectively.
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Two load Cases, DE, output control

Single Criteria Value 13.303

1st load case Output Displacement at X: 𝑢@𝑋􏷠,𝑜𝑢𝑡 -0.696
Output Displacement at Y: 𝑢@𝑌􏷠,𝑜𝑢𝑡 -0.020

Objective function 􏵶
𝑢@𝑋􏷠,𝑜𝑢𝑡
𝑢@𝑌􏷠,𝑜𝑢𝑡

􏵶 33.952

Geometric Advantage 8.2%

2nd load case Output Displacement at X: 𝑢@𝑋􏷡,𝑜𝑢𝑡 0.03
Output Displacement at Y: 𝑢@𝑌􏷡,𝑜𝑢𝑡 -0.398

Objective function 􏵶
𝑢@𝑌􏷡,𝑜𝑢𝑡
𝑢@𝑋􏷡,𝑜𝑢𝑡

􏵶 13.303

Geometric Advantage 4.3%

Table 5.16: Numerical Results for two load cases, DE and output control
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(a) Final Material Distri-
bution

(b) Evolution (c) Final Mat. Distribution
(filtered)

(d) Displacement for 1st load
case (filtered)

(e) Displacement & Mat. Dis-
tribution for 1st load case

(f) Detail for 1st load case

(g) Displacement for 2nd
load case (filtered)

(h) Displ/ment & Mat. Distri-
bution for 2nd load case

(i) Detail for 2nd load case

Figure 5.15: Results for two loads case using Differential Evolution and fea-
turing output control
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5.2.2.2 Using Particles Swarm Optimization

For the selected evolutionary algorithm the configuration parameters are sim-
ilar to those used for corresponding single load case with output control but
with more design variables (2500 instead of 900) and they are presented in
table 5.17.

Parameter Value

Population size 20
Generations 50
Acceleration factors 𝑐􏷠 = 𝑐􏷡 2
Innertia factors 𝑤𝑚𝑎𝑥 & 𝑤𝑚𝑎𝑥 0.9 & 0.1
Design variables 2500

Table 5.17: PSO configuration parameters

The numerical results and the resulted material distribution are presented
in table 5.18 and in figure 5.16 respectively.

Two load Cases, PSO, output control

Single Criteria Value 13.348

1st load case Output Displacement at X: 𝑢@𝑋􏷠,𝑜𝑢𝑡 -0.326
Output Displacement at Y: 𝑢@𝑌􏷠,𝑜𝑢𝑡 -0.004

Objective function 􏵶
𝑢@𝑋􏷠,𝑜𝑢𝑡
𝑢@𝑌􏷠,𝑜𝑢𝑡

􏵶 76.655

Geometric Advantage 3.4%

2nd load case Output Displacement at X: 𝑢@𝑋􏷡,𝑜𝑢𝑡 0.043
Output Displacement at Y: 𝑢@𝑌􏷡,𝑜𝑢𝑡 -0.580

Objective function 􏵶
𝑢@𝑌􏷡,𝑜𝑢𝑡
𝑢@𝑋􏷡,𝑜𝑢𝑡

􏵶 13.348

Geometric Advantage 6.1%

Table 5.18: Numerical Results for two load cases, PSO and output control
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(a) Final Material Distri-
bution

(b) Evolution (c) Final Mat. Distribution
(filtered)

(d) Displacement for 1st load
case (filtered)

(e) Displacement & Mat. Dis-
tribution for 1st load case

(f) Detail for 1st load case

(g) Displacement for 2nd
load case (filtered)

(h) Displ/ment & Mat. Distri-
bution for 2nd load case

(i) Detail for 2nd load case

Figure 5.16: Results for two loads case using Particles Swarm Optimization
and featuring output control
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5.2.2.3 Comparison of DE vs PSO for the design of polymorphic
compliant mechanisms using output control.

Table 5.19 represents a comparison between DE and PSO for the two load
case asymmetric force inverter compliant mechanism. It seems that PSO per-
formed beĴer than DE but regarding the objective function and both load
cases. It must be mentioned that the final material distributions look similar
to each other, when applying an diagonal axis of symmetry, from boĴom left
to top right corner.
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DE vs PSO

DE PSO

Final material distribution
Objective function
⎧⎪
⎨⎪⎩

min􏿼 􏵶
𝑢@𝑋􏷠,𝑜𝑢𝑡
𝑢@𝑌􏷠,𝑜𝑢𝑡

􏵶 , 􏵶
𝑢@𝑌􏷡,𝑜𝑢𝑡
𝑢@𝑋􏷡,𝑜𝑢𝑡

􏵶 􏿿
⎫⎪
⎬⎪⎭

13.303 13.348

First Load Case

Output Displacement at X: 𝑢@𝑋􏷠,𝑜𝑢𝑡 -0.696 -0.326
Output Displacement at Y: 𝑢@𝑌􏷠,𝑜𝑢𝑡 -0.020 -0.004

Objective function 􏵶
𝑢@𝑋􏷠,𝑜𝑢𝑡
𝑢@𝑌􏷠,𝑜𝑢𝑡

􏵶 33.952 76.655

Geometric advantage 8.2% 3.4%

Second Load Case

Output Displacement at X: 𝑢@𝑋􏷡,𝑜𝑢𝑡 0.030 0.043
Output Displacement at Y: 𝑢@𝑌􏷡,𝑜𝑢𝑡 -0.348 -0.580

Objective function 􏵶
𝑢@𝑌􏷡,𝑜𝑢𝑡
𝑢@𝑋􏷡,𝑜𝑢𝑡

􏵶 13.303 13.348

Geometric advantage 4.3% 6.1%

Table 5.19: Results DE vs PSO. Topology optimization for the design of com-
pliant mechanism, featuring output control, with two load cases.



CHAPTER6
Auxetic materials

6.1 Auxetic materials

6.1.1 General description
When a structure is under a tensile loading, shrinkage appears in directions
perpendicular to the applied load, or in other words, there is a reduction to
the cross-sectional area of structure. The opposite effect appears when a com-
pressive loading is applied, thus, an increase to the cross-sectional area takes
place. Poisson’s ratio, which measures the change of the length of elastic ma-
terial in the perpendicular direction with respect to the applied load, is usu-
ally a positive number 0 < 𝜈 < 0.5 and is defined as the negative fraction of

transverse strain
Δ𝑦
𝑙𝑦

over the axial strain
Δ𝑥
𝑙𝑥

. Materials featuring a negative

Poisson’s ratio, are called auxetics. Auxetic materials can be conceptualized
as microstructures, that under tensile loading, become thicker perpendicular
to the direction of the applied load. This is due to artificial hinges that appear
inside the microstructure and help flexing to occur. An example of an auxetic
microstructure is shown in figure 6.1, where a star-shaped auxetic structure
is presented [TSP97].

A body that behaves in an auxetic way is composed of a repeated pat-
tern of identical microstructures. Each microstructure consists of a monolithic
body with specific geometry, that under certain loading, delivers motion in
a certain way (having a predefined deformation). Thus, it integrates all the
features of a compliant mechanism. As a result, the whole body behaves in
an auxetic way (see figure 6.2).
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like structure, yields also the continuum-like material. Figure 3 presents a periodic composite
material with star-shaped inclusions convenient for developing negative Poisson’s ratios.

The described asymptotic homogenization procedure provides rigorous convergence esti-
mates for the displacements of the real structure and those derived by using the homogenized
coefficients. Concerning the effective material properties, the method tallies with the approach
based on energy principles that employ average stress and strain theorems [30]. This technique
presents the advantage to effectively use methods and solutions existing for trusses and similar
structures. In this method, three tests of the representative unit cell were considered: two
simple tension tests along either of the principal directions of the unit-cell, and a test where the
unit cell is deformed under simple shear, as described in the previous section.

According to the standard homogenization procedure, the displacement fields developed on
the boundaries of the unit-cell under these three modes of loading are expanded into an
asymptotic series, involving functions which depend on the global macroscopic variable and a
local microscopic one. The series are truncated to the desired order for each problem. They are
used to express the global properties of the material, as indicated in the previous section, taking
also into consideration the periodic boundary conditions imposed on the unit cell during each
simple mode of loading.

In order to explore the possibility of introducing a convenient shape of cross sections of the
inclusions in a fiber composite, which would contribute to the creation of a negative value for
the transverse Poisson’s ratio of the composite, we examine the case of the truss-like structure
in the form of a convex star created by a number of beams and rods, whose principal analogy
derives from open foam and porous materials. It is indeed anticipated that in order for a
porous material to present a negative Poisson’s ratio, its porosity should be rather high and the
material should be classified among the open-foam materials. We start our investigation with
the convex shaped-beam cell of Fig. 2.

The microstructure of the material produced by this cell is schematically shown in Fig. 3.
Using the numerical homogenization concepts of Sec. 4, we model the unit cell of Fig. 2 by

Fig. 2. A periodic fiber-reinforced compo-
site with star-shaped encapsulated inclu-
sions

Fig. 3. A star-shaped, two-dimensional beam-like cell
with re-entrant corners simulating the unit cell of Fig. 2.
Finite element discretization and mode numbering

281

(a)

Let us now examine a particular microstructure of a fiber composite consisting of arrays of
star-like inclusions with re-entrant corners which are encapsulated by layers of interfaces, as
those indicated in Fig. 2, where the interface layer is strongly exaggerated. The microstructure
of the composite may be considered as consisting of unit cells corresponding to the squares
KLMN of Fig. 2, whose finite-element discretization is shown in Fig. 11.

Fig. 8. Initial (thin lines) and deformed (solid lines) configurations for the cells of Fig. 7. The effect of negative,
near zero, and positive Poisson’s ratio are shown

Fig. 9. The variation of the elastic
modulus E of the unit cell versus the
angle of the corners of the star-
shaped inclusions

Fig. 10. The variation of Poisson’s
ratio v of the unit cell versus the
angle of the corners of the star-
shaped inclusions

284

(b)

Figure 6.1: a) Star shaped, two dimensional representative cell using beam
elements. Finite element discretization and node numbering. b) The star-
shaped cell deformed. Thin lines represents the undeformed shape [TSP97].

(a) Regular behaviour: when longitudinal forces are applied (blue ar-
rows), the structure shrinks

(b) Auxetic behaviour: when longitudinal forces are applied (blue ar-
rows), the structure extends

Figure 6.2: Regular and auxetic behaviour of microstructures based on their
internal substructure. Blue doĴed arrows show the displacements aligned
with the applied force direction, while red doĴed arrows show the displace-
ments normal to the applied force.
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6.1.2 Negative Poisson’s ratio definition
Subfigure 6.3(b) represents a structure that functions like a mechanism. It has
been calculated using topology optimization and truss structure of subfigure
6.3(a). The structure shown in subfigure 6.3(b) presents a flexible body: when
a force is applied to point A leftwards, point B moves upwards. Poisson’s
ratio may be defined for this specific microstructure. Using a square domain
in 6.3(a) where 𝑙𝑥 = 𝑙𝑦, the Poisson’s ratio can be expressed by definition, as
the negative fraction of the displacement at point B over the displacement at
point A. Since both displacements are positive, Poisson’s ratio is a negative
number:

𝜈 = −
𝜀𝑦
𝜀𝑥
= −

Δ𝑦
𝑙𝑦
Δ𝑥
𝑙𝑥

= −Δ𝑦Δ𝑥

Δ𝑥, Δ𝑦 > 0

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

⇒ 𝜈 < 0 (6.1)
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uout

l y

(a) Initial domain

Material Distribution

lx

ly

Δx

Δy

A

B

(b) Final material distribution & displace-
ment

Figure 6.3: Negative Poisson’s ratio resulting from topology optimization of
a compliant mechanism.
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6.2 Results: Trusses

6.2.1 Problem formulation for
The topology optimization problem formulated for the auxetic compliant mech-
anism is presented in the following equation 6.2 and illustrated in figure 6.4,

max
u,𝑥𝑒

𝑢𝑜𝑢𝑡 = 1𝑇u,

subject to:
Ku = f,
𝑁
􏾜
𝑒=􏷠

𝑙𝑒𝑥𝑒 ≤ 𝜙𝑉􏷟, 𝑉􏷟 =
𝑁
􏾜
𝑒=􏷠

𝑙𝑒 ⋅ 1

0 < 𝑥𝑚𝑖𝑛 ≤ 𝑥𝑒 ≤ 1, 𝑒 = 1,… ,𝑁,

K = 􏿵
𝑁
􏾜
𝑒=􏷠

𝑥𝑝𝑒K􏷟􏿸, 𝑝 ≥ 3

(6.2)

where 𝑙𝑒 and 𝑥𝑒 are the length and the cross section area of each element 𝑒. For
the calculation of the 𝑉􏷟 we assume that cross section area is equal to 1.

Results of auxetic materials studied using truss elements are included in
this section. The values of 30% and 40% as volume limits were chosen from
experience after several numerical experiments. In order to obtain more accu-
rate results, the mesh must be refined by adding more elements to the domain.
Doubling the subcells from 3x3 to 6x6 means that the number of the design
variables is increased to 156 for the case 6x6 case and to 600 for the 12x12 mesh
respectively. The total volume𝑉􏷟 is defined as the sum of volume of each ele-
ment (see equation 6.2). In each mesh, the initial volume 𝑉􏷟 is changed since
the number of elements is changed. In order to have comparable results with
the initial 3x3 mesh, the volume fraction in the other cases must be redefined
proportonialy due to denser placement of structural elements in comparison
with the reference 3x3 mesh. These fractions of volumes for each mesh case
and initial volume fraction are represented in table 6.1.

6.2.2 Results for 3x3 cells, Volume fraction at 40%
The results for a 6x6 cells problem which was simplified to a 3x3 cell problem,
representing one quarter of the representative volume cell, are shown in fig-
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Figure 6.4: Auxetic material problem definition
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cells 3x3 6x6 12x12
elements 42 156 600
nodes 16 49 169
cell size 10 5 2.5
𝑉􏷟 494 929 1798
𝜙% 40% 21.3% 11%
𝑉􏷣􏷟%
𝜙 197.6 197.8 197.8

𝜙% 30% 15.9% 8.3%
𝑉􏷢􏷟%
𝜙 148.2 147.4 149.2

Table 6.1: Numerical data for several cell configurations
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ure 6.5. The number of design variables is 42 and the goal volume fraction is
40%. The Poisson’s ratio is expressed as Geometric Advantage (GA) and in
this case is equal to −0.481 (the absolute value of this quantity is ploĴed in all
figures illustrating the evolution of the hybrid scheme).
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Figure 6.5: Results: 3x3 subcells, Volume fraction: 40%

6.2.3 Results for 3x3 cells, Volume fraction at 30%
Results for mesh 3x3 and volume fraction of 30% and are shown in figure 6.6.
The Poisson ratio is calculated to −0.463.
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Figure 6.6: Results: 3x3 subcells, Volume fraction: 30%
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6.2.4 Results for 6x6 cells, Volume fraction at 21.3% (3x3:
40%)

Figure 6.7 demonstrates the results for the 6x6 mesh with volume fraction
21.3% which corresponds to 40% of the 3x3 mesh. The Poisson’s ratio is equal
to -0.658.
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Figure 6.7: Results: 6x6 subcells, Volume fraction: 21.3% (3x3: 40%)
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6.2.5 Results for 6x6 cells, Volume fraction=15.9% (3x3: 30%)
Figure 6.8 represents the results for the 6x6 mesh with volume fraction 15.9%
which corresponds to 30% of the 3x3 mesh case. The Poisson’s ratio is equal
to -0.612.
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Figure 6.8: Results: 6x6 subcells, equivalent to 3x3 mesh volume 30% volume
fraction: 15.9% (3x3: 30%)
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6.2.6 Results for 12x12 cells, Volume fraction=11.0% (3x3:
40%)

In figure 6.9 are shown the results for the 12x12 mesh with volume fraction
11.0% which correspond to 40% of the 3x3 mesh. The Poisson’s ratio is equal
to -0.663.
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Figure 6.9: Results: 12x12 subcells, Volume fraction: 11.0% (3x3: 40%)
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6.2.7 Results for 12x12 cells, Volume fraction=8.3% (3x3:
30%)

Figure 6.10 demonstrates the results for the 12x12 mesh with volume fraction
8.3% which correspond to 30% of the 3x3 mesh case. The Poisson’s ratio is
equal to -0.611.
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Figure 6.10: Results: 12x12 subcells, Volume fraction: 8.3% (3x3: 30%)
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6.3 Results: Continuous formulation

6.3.1 Linear 2d plane stress elements
Figure 6.11 presents a continuous formulation of auxetic microstructure with
30x30 linear 2d plane stress elements with volume fragment of 𝜙 = 20% and
Poisson’s ratio of 𝜈 = −0.192. Subfigure 6.11(c) illustrates the final material
distribution of all elements with material density ≥ 0.6 while in 6.11(d) the
auxetic behaviour is clearly shown. Similar results are presented in figure
6.12 for volume fraction of 𝜙 = 30%. The black areas that appear in subfig-
ures 6.11(a), 6.11(b), 6.12(a) and 6.12(b), represent the material that exist in
the structure, while the white areas show the space that material does not ex-
ist. No connecting elements were used. The final material distribution that
corresponds to the micromechanism is the result of the topology optimiza-
tion procedure. Subfigures 6.11(c), 6.11(d), 6.12(c), and 6.12(d) illustrate the
displacements of the specific structure.

As mentioned before, linear analysis has been used. In figures 6.11 and
6.12 a filter has been applied, in order to show the elements with density
higher than 0.6. Elements with density lower that 0.6 are not shown, but have
been considered in the analysis. In addition a large scale factor has been used
in order to illustrate the displacements that represent the auxetic behaviour.
The filter and the scale factor have been used for visualization purposes only.
In areas where hinges appear, some elements seem to have big rotations as a
result of the large scale factor that has been applied to the displacements. It
has been noticed that by using higher mesh density, these rotations are even
smaller.

The example in figure 6.12 is used as a test case for the homogenization
problem. The results are, of course, valid up to the value of deformations and
displacements for which the finite elements work with confidence and the as-
sumptions of linear analysis are not violated (ca. up to deformations equal
to 2%). Alternatively specialized topology optimization techniques that pe-
nalize the creation of hinges can be used [Yoo+04]. Finally, if hinges that can
not be constructed easily or are prone to fatigue and extensive deformations
arise, the microstructure can be modified at these areas and the homogeniza-
tion technique of the next part can be used in order to verify the auxetic be-
haviour.
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(a) Final topology for one quarter (b) The resulting microstructure
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Figure 6.11: Continuous formulation with 30x30 elements and volume frac-
tion at 𝜙 = 20%. Poisson’s ratio 𝜈 = −0.192.



6.3 Results: Continuous formulation 113

(a) Final topology for one quarter (b) The resulting microstructure
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Figure 6.12: Continuous formulation with 30x30 elements and volume frac-
tion at 𝜙 = 30%. Poisson’s ratio 𝜈 = −0.223.
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6.4 Using homogenization to verify topology
optimization

6.4.1 Homogenization principles
According to the Hill-Mandel condition or energy averaging theorem, the
macroscopic volume average of the variation of work equals to the local work
variation, on the RVE [Hil63]:

𝝈𝑀 ∶ 𝛿𝝐𝑀 = 1
𝑉𝑚

􏾙
𝑉𝑚
𝝈𝑚 ∶ 𝛿𝝐𝑚𝑑𝑉𝑚 (6.3)

Among others, three widely used types of loading states, which satisfy the
above condition, can be applied to the RVE: a) prescribed linear displace-
ments, b) prescribed tractions, c) periodic boundary conditions. In the present
study linear displacements have been used. Thus, the loading in the bound-
aries of the RVE is given by the following relation:

𝐮|𝜕𝑉𝑚 = 𝝐𝑀𝐱 (6.4)

where a loading strain 𝝐𝑀 is applied to the boundaries 𝜕𝑉𝑚 of the RVE, and 𝐱
corresponds to the matrix with the undeformed coordinates of the boundary
nodes of the RVE.

In order to proceed to the formulation of a homogenization scheme, the
average quantities of both the microscopic strain and stress should be defined.
The general averaging relations, are:

< 𝝐 >𝑉𝑚=
1
𝑉𝑚

􏾙
𝑉𝑚
𝝐𝑚𝑑𝑉𝑚, < 𝝈 >𝑉𝑚=

1
𝑉𝑚

􏾙
𝑉𝑚
𝝈𝑚𝑑𝑉𝑚 (6.5)

Equations 6.5 can be further simplified. The volume average microscopic
strain is equal to the macroscopic strain which has been applied as loading to
the boundaries of the RVE:

< 𝝐 >𝑉𝑚= 𝝐𝑀 (6.6)

For prescribed displacements, the following simplified formulation for
the macroscopic stresses, has been chosen [Kou02]:

< 𝝈 >𝑉𝑚=
1
𝑉𝑚

𝐟𝐱 = 𝝈𝑀 (6.7)
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where 𝐟 is the matrix of the resulting external forces in the undeformed coor-
dinates of the boundary nodes 𝐱 of the RVE, after microscopic analysis has
been completed.

For the completion of the homogenization procedure, the effective con-
stitutive tensor should be calculated. In plane stress conditions, the elasticity
tensor has nine unknowns, indicating that three test loading strains should be
applied to the boundaries of the RVE and three equations per loading, should
be formulated. In total, nine equations are formulated and the effective tensor
𝐄∗ is estimated, according to the following relation:

< 𝝈 >𝑉𝑚= 𝐄∗ < 𝝐 >𝑉𝑚 (6.8)

6.4.2 Using homogenization to verify topology optimization
The main idea which is presented in this part of the study, is related to the
incorporation of the final, optimized material distribution, as it is given by
topology optimization, into the classical, linear, homogenization scheme de-
scribed in the previous section. In this work, topology optimization is used
for the design of auxetic materials, consequently the numerical homogeniza-
tion procedure focuses on the effective Poisson’s ratio, which is expected to
be negative.

In particular, the heterogeneity imposed from the topology optimization
requirement for the final configuration of the material, is considered within
numerical homogenization. For the satisfaction of the objective optimization
function, which here describes an auxetic behaviour, material may or may not
exist at the end of the analysis. The same requirement is tested in the homog-
enization scheme, by considering two materials: one strong material with the
initial properties (density> 0.6), and another soft material corresponding to
the material that does not exist at the end of the topology optimization pro-
cedure (density<0.6). In this framework, the effective material properties are
derived and comparison with the results obtained by topology optimization,
is considered.

The proposed approach offers the opportunity of verifying the results re-
ceived by topology optimization. The appearance or not of the desired aux-
etic behaviour, will be examined from the homogenization scheme. Further-
more, a complete description of the effective material properties, will be given.
The effective constitutive tensor, as it is obtained by homogenization of the
hard and the soft material and a parametric investigation of the soft material
parameters, will be presented as well.
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6.4.3 Numerical examples
In the next sections, three numerical examples are presented. The geometry
and the mesh of the structure under consideration, are shown in figure 6.13.
The same structure was used in the topology optimization illustrated in figure
6.12. In the first example, a general loading is applied to the structure. In the
second and the third one, linear displacement loading conditions are applied
to the boundaries of the RVE within a classical homogenization framework.
The developed finite element models consist of plane stress, full integration
elements.

In the topology optimization, the Young’s modulus and the Poisson’s ratio
for the hard material were considered respectively, equal to: 𝐸ℎ𝑎𝑟𝑑 = 1, 𝜈ℎ𝑎𝑟𝑑 =
0.3. The same properties were adopted for the hard material in the homoge-
nization scheme. Moreover, the effective material properties are strongly in-
fluenced by the soft material characteristics. For the first and the second exam-
ple, the soft material properties have been considered as follows: 𝐸𝑠𝑜𝑓𝑡 = 0.007,
𝜈𝑠𝑜𝑓𝑡 = 0.007. In the third example these properties are slightly changed.

600

60
0

Figure 6.13: Geometry and mesh of the structure with 3600 plane stress ele-
ments.
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6.4.3.1 Example 1: General loading

In this first example, a general loading shown in figure 6.14 is applied to the
structure. The effective Poisson’s ratio is calculate by dividing the vertical to
the horizontal displacement, as it is depicted in relation 6.1. Thus, no clas-
sical homogenization procedure (boundary conditions, average stress-strain
relations and estimation of the effective properties) has been considered here.
The effective Poisson�’s ratio of the heterogeneous structure, which consists
of the hard and the soft material, is estimated by applying relation 6.1.

LoadLoad

Fixed BC's in 
the center

Figure 6.14: General loading and boundary conditions applied to the hetero-
geneous model of the first example.

According to the displacements of the hard material, which are given in fig-
ure 6.15, an auxetic behaviour is obtained for the structure. In addition, the
Poisson’s ratio is equal to -0.2299, thus very close to the one given by topology
optimization (see figure 6.12).

6.4.3.2 Example 2: Classical homogenization

In this example, a classical numerical homogenization procedure has been
applied, for the derivation of the effective material properties of the hetero-
geneous material (hard-soft material). Linear displacement boundary condi-
tions have been applied to the boundaries of the RVE. For the estimation of
the effective constitutive tensor, three test loading strains have been used. In
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Figure 6.15: Initial and deformed position of the hard material for the loading
of figure 6.14.� Appearance of auxetic behaviour.

figure 6.16, the displacements of the hard material for a test loading strain
equal to [0.06 0.06 0]𝑇 are shown, while table 6.2 includes the effective ma-
terial properties. Homogenization represents the overall effective behaviour
of the structure. According to the results, the effective material property is
not exactly isotropic. In addition, Poisson’s ratio 𝜈𝑥𝑦 is slightly different to
𝜈𝑦𝑥, however both are very close to the one given by topology optimization
(-0.223).

𝐸∗𝑥𝑥 𝐸∗𝑦𝑦 𝜈∗𝑥𝑦 𝜈∗𝑦𝑥 𝐺∗𝑥𝑦
0.0660 0.0674 -0.2433 -0.2483 0.0117

Table 6.2: Effective material properties obtained by numerical homogeniza-
tion, for the hard and� soft material distribution given by topology optimiza-
tion.

In figure 6.17 a parametric investigation of the variation of the effective
Poisson’s ratio 𝜈𝑥𝑦 versus Young’s modulus of the soft material, is presented.
This diagram indicates that homogenized variables and especially the auxetic
behaviour depend on the properties of the soft material that is used instead of
the theoretically required voids. It is noted that values of the Poisson’s ratio
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Figure 6.16: Initial and deformed position of the hard material obtained by
numerical homogenization (with linear displacement boundary conditions).
Appearance of auxetic behaviour.

close to limits (−1 < 𝜈 < 0.5) and the respective elasticity modulus of the soft
material, can also be included.
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Figure 6.17: The effective Poisson’s ratio versus Young’s modulus of the soft
material obtained from the homogenization procedure.



6.4 Using homogenization to verify topology optimization 120

6.4.3.3 Example 3: Classical homogenization with slightly different
boundaries

In the previous example, linear displacements have been applied to the bound-
aries of the structure. Moreover, in these boundaries both hard and soft ma-
terial exist, according to topology optimization analysis. The idea presented
here, is related to the elimination of the hard material, from the boundaries
of the structure. By doing this, the hard material’s movement inside the RVE
will be independent of the boundary conditions, thus the hard material will
be free to move and demonstrate the auxetic behaviour.

In figure 6.18 the initial and the new material configuration are shown.
The circles on the top and the boĴom of figure 6.18(b) indicate that the hard
material is not in contact with these boundaries of the RVE.

Material properties of the hard material have been remained the same
with the previous examples: 𝐸ℎ𝑎𝑟𝑑 = 1, 𝜈ℎ𝑎𝑟𝑑 = 0.3. For the soft material slightly
different properties have been considered, in comparison with the first and
the second homogenization example as follows: 𝐸𝑠𝑜𝑓𝑡 = 0.0007, 𝜈𝑠𝑜𝑓𝑡 = 0.007.

(a) (b)

Figure 6.18: (a) Initial configuration of the hard material (b) A slightly dif-
ferent configuration of the hard material: The circles indicate that the hard
material is not in contact with these boundaries.

The values of the effective Poisson’s ratio which are obtained from the
homogenization approach, are close to the value received by topology opti-
mization: 𝜈𝑥𝑦 = −0.163 and 𝜈𝑥𝑦 = −0.193. In addition, in figure 6.19 the RVE
with both the hard and the soft material, as well as the RVE with the hard
material only, are shown. Auxetic behaviour appears for the two loading di-
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rections which have been adopted during simulations. For the second loading
direction (presented in figures 6.19(c), 6.19(d)) the hard material crosses the
boundaries of the RVE.

(a) (b)

(c) (d)

Figure 6.19: Initial and deformed position for the case of figure 6.18(b) Top left
figure: the hard and the soft material - load direction 1. Top right figure: hard
material only - load direction 1. BoĴom left figure: hard and soft material -
load direction 2. BoĴom right figure: hard material only - load direction 2.

6.5 CAD-CAE Verification

6.5.1 Motivation
Usually the outcome of topology optimization is either a two dimensional
black-white image that illustrates the optimum layout, or a group of three
dimensional elements (tetrahedrons or hexahedrons) that describe the opti-
mum geometry. In none of the above cases the resulted topology is ready
to be used for manufacturing and a relative post-process is required. The
post process consists of creating a 2d or 3d parametric geometry based on 2d
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curves or 3d surfcases and describes nicely the resulted layout from topology
optimization. Besides manufacturability must be taken into account. There
are automated procedures (in 2d, borrowed from the image processing) that
may help to accelerate this process, but there is always the need to tweak
the final design by hand. In addition, the new parametric geometry needs to
be verified that satisfies all the constraints that set firstly in the definition of
the topology optimization problem. These comments are in accordance with
published works [PC90; Bre+91; Chi+94].

In order to verify that the auxetic behaviour indeed occurs, a more de-
tailed sample needed to be constructed an tested using modern CAE appli-
cation. To achieve this the discretization had to be more detailed, hence in-
creased to a mesh of 120 × 120 elements. The resulted material distribution
was imported into a CAD software and a 2d NURBS model was drafted. The
outcome was simulated with FEA, to verify the auxetic behaviour.

6.5.2 Configuration parameters
Differential Evolution was used for the hybrid scheme. The configuration
parameters are presented in tables 6.3 and 6.4.

Parameter Value

Discritization 120x120
Design Variables 14400
Degrees of Freedom 29282
Local search iterations 150
SIMP penalty coefficient, 𝑝 3
Filter radius, 𝑟 4.8
Volume Limit 30%

Table 6.3: Topology Optimization Algorithm configuration parameters for
the auxetic mechanism problem with mesh 120 × 120.

6.5.3 Mesh 120 × 120: Numerical Results and material
distributions

The hybrid scheme was used twice and the numerical results are presented
in table 6.5. The final material distributions are presented in figure 6.20
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Parameter Value

Population size 8
Generations 100
Crossover 𝐶𝑟 0.9
Mutation 𝛽 1.5
Design Variables 14400

Table 6.4: Differential Evolution configuration parameters for the auxetic
mechanism problem with mesh 120 × 120.

𝑢@𝑋𝑖𝑛 𝑢@𝑌𝑜𝑢𝑡 𝜈 = − 𝑢
@𝑌
𝑜𝑢𝑡
𝑢@𝑋𝑖𝑛

case 1 1.606 7.425 -0.216
case 2 1.636 7.918 -0.207

Table 6.5: Comparison between

(a) (b)

Figure 6.20: Final material distributions for run1 and run2 respectively
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Figures 6.21 and 6.22illustrates the displacements for the ¼of the design
domain and for the whole for each run respectively. Elements with density
greater than 0.6 are shown only and a factor ×2 scale has been applied to the
displacements. The auxetic behaviour is clearly illustrated.

(a) (b)

Figure 6.21: Displacements for run1 and run2 respectively

6.5.4 3D CADmodeling
The resulted material distributions were imported into the mechanical CAD
software CREO 3.0 of Parametric Technology Corporation (www.ptc.com) in
order to create a 3D CAD model for further analysis. The 2D bitmap im-
age that illustrates material distributions was imported into the software, and
NURBS curves were drafted by hand arround the black and white areas. A 2d
flat surface model was modeled that later was thickened. The size of the de-
sign domain (since the image is dimensionless) was set to a square of 300×300
mm, of thickness is 3mm. The resulted CAD models for each case are illus-
trated in figure 6.23.

6.5.5 FEA implementation
The 2d CAD models were analysed using the embedded to CREO©3.0, sim-
ulation software, Creo Simulate. The material used is a common aluminum
alloy AL6061-T6. Its mechanical material properties are presented in table
6.6.
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(a)

(b)

Figure 6.22: Displacements for case 1 and case 2 respectively
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(a) Case 1 (b) Case 2

Figure 6.23: 2d CAD modles created in Mechanical CAD softwareCreo 3.0

Mechanical Parameters Value

Density 2.71 𝑔𝑟/𝑐𝑚􏷬
Poisson’s ratio 𝜈 0.33
Ultimate Tensile Strength 310 MPa
Tensile Yield Strength 276MPa

Table 6.6: Aluminum Alloy AL6061-T6 mechanical properties.

The boundary conditions used for the auxetic mechanism is used here as
well. A load of 50 kilograms has been applied to the lower right edge with
direction to the left. The setup of the model for the first case is presented in
figure 6.24.

6.5.6 FEA results
Both cases were simulated using the same material and loads and relative
same boundary conditions, and both verified their auxetic behaviour. Cus-
tom measures were defined at the lower left and upper right corners of the
structure, for measuring the displacement of each point. The numerical re-
sults for each cases are presented in table 6.7. It must be noticed that in case
1, according to the definition for the negative Poisson’s ratio given in equa-
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Figure 6.24: Finite element setup of case 1

tion 6.1, the poisson’s ratio for the first cases exceeded -1. In both analysis the
maximum stress exceeded the ultimate tensile strength. Even though the soft-
ware continued the analysis until convergence, a warning has been noticed.
Nevertheless for further analysis geometric nonlinearities must be taken into
account.

𝑢@𝑋𝑖𝑛 𝑢@𝑌𝑜𝑢𝑡 𝜈 = − 𝑢
@𝑌
𝑜𝑢𝑡
𝑢@𝑋𝑖𝑛

case 1 0.327 0.413 -1.263
case 2 0.429 0.390 -0.909

Table 6.7: Numerical results for each case FEA study.

Figures 6.25, 6.26 and illustrates the coresponding stress and displacement
results for each case respectivelly while figure 6.27 illustrates the mesh used.
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(a) case 1 (b) case 2

Figure 6.25: Stress results for each case

(a) case 1 (b) case 2

Figure 6.26: Displacement results for each case
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(a) case 1 (b) case 2

Figure 6.27: Meshes for each case

6.6 Mechanical behaviour of auxetic structures
using nonlinearies

In this section, the effect of geometrical, contact and material nonlinearies on
one of the above pre-mentioned auxetic structures is demostrated [Dro+15].
In particular non-linear finite element analysis show how the auxetic behaviour
is influenced by unilateral contact between the constituent materials, large dis-
placements and elastoplasticity. The example selected is the one described in
case 1, in subsections 6.5.3 and 6.5.4 and it is represented by a 120x120 repre-
sentative volume element (RVE).

6.6.1 Linear verification
The auxetic behaviour of the structure presented in subfigure 6.23(b) is veri-
fied. The CAD model for case 1 was imported into CAE software ABAQUS
and linear 2d plane stress finite elements were used using the same load-
ing and boundary conditions used during topology optimization. The mesh
is represented in figure 6.28 and the resulted Von Mises stresses are illus-
trated in figure 6.29. The negative Poisson’s ratio obtained from Abaqus is
𝜈 = −0.2064, a value very close to 𝜈 = −0.211 calculated from the hybrid
scheme.
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Figure 6.28: Mesh of the auxetic material distribution

(Avg: 75%)
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Figure 6.29: Auxetic behaviour obtained by linear analysis - von Mises stress
distribution (MPa)
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6.6.2 Geometrical and material non-linearies effects
However, in case non-linear geometric analysis is considered, the Poisson’s
ratio does not remain constant during analysis. Instead, a non-linear (bilin-
ear) variation is obtained, according to the solid line of the Poisson’s ratio -
external force diagram which is shown in figure 6.30.

Figure 6.30: Effective Poisson’s ratio-external force diagram for non-linear
finite element analysis of the auxetic microstructure

If an elastoplastic, von Mises constitutive law with a bilinear stress-strain
relation is added to the hard material, then the diagram shown with the dash
line in figure 6.30 is obtained. Thus, there is a branch, in which the auxetic
behaviour gradually decreases. At the end of the analysis, the effective Pois-
son’s ratio eventually takes positive values. It is noted that for clarity reasons,
the negative values of the Poisson’s ratio correspond to the positive vertical
axis of the diagram. By a careful examination of the elastoplastic analysis of
the auxetic microstructure, three phases regarding variation of the effective
Poisson’s ratio are clearly developed:

• phase 1: The absolute value of the effective (negative) Poisson’s increases
which results in increase of the auxetic behaviour. This is the case just
before yielding in the hard material appears.

• phase 2: The absolute value of the effective (negative) Poisson’s ratio
is reduced which results in reduction of the auxetic behaviour. In this
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phase, yielding of the hard material begins and expands until the verti-
cal branch of it (figure 6.31).

• phase 3: The effective Poisson’s ratio takes positive values which are
gradually increased. No auxetic behaviour is observed in this phase. In
addition, yielding of the hard material expands in the vertical branch of
it (figure 6.32).

These observations depend strongly on the chosen microstructure [DFJ12; GA13].
Extended description on the effects of contact and self-contact nonlinear-

ities over the auxetic structures is presented in the paper [Dro+15] (accepted
for publication) where a ”meiotic” (instead of an auxetic) behavior is pre-
sented.
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Figure 6.31: Equivalent plastic strain at the end of the auxetic behaviour
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0.099
0.132
0.165
0.198
0.231
0.263
0.296
0.329
0.362
0.394

0.000

Figure 6.32: Equivalent plastic strain at the end of analysis (no auxetic be-
haviour)



CHAPTER7
Conclusions & Future work

7.1 Achievements of the thesis
The proposed hybrid scheme can provide applicable solutions to complex
topology optimization problems such as the multi-functional compliant mech-
anism. For this kind of complex problems, topology optimization may pro-
duce a number of different sollutions. Due to the iterative nature of topology
optimization depending on the starting point of the process, it cannot be clear
which of these solutions is the optimum. The use of the hybrid scheme can, in
most cases, overcome this problem by combining the advantages of topology
optimization and evolutionary algorithms. Hence, relatively optimal solution
(close to the global optimum) can be provided. Having the above mentioned
advantages, the hybrid scheme can be used as excellent conceptual design
tool for any design application.

7.2 Conclusions
It is clear that topology optimization algorithm is a very powerful tool for
the design of compliant mechanisms and microstructures. This tool can be
extended with evolutionary algorithms in order to overcome the local min-
ima appearing from the single application of topology optimization. The
presented results indicates that the Hybrid Scheme algogithm proposed here
leads to solutions for very large scale topology optimization problems that
classical or stochastic based optimization tools are unable to find solutions
due to huge amount of design variables.

Two different applications were presented: the design of compliant mech-
anisms and auxetic materials. As it was mentioned before the design of aux-
etic materials is an extension of the methodology that used for the design
of compliant mechanisms. The hybrid scheme used for design of compliant
mechanisms, was applied with and without motion control on the output
point. It was clear that motion control leads to multiobjective criteria prob-
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lems with collateral constraints. Including all the criteria and constraints in-
side the topology optimization problem it might be very difficult. The Method
of Moving Asymptotes might be used. Another way is to just set the overall
objective function (the multicriteria problem converted to a single criteria)
outside the topology optimization iterative proceess as the objective function
for the evolutionary algorithm. This has the advantage of use any other evo-
lutionary algorithm other that Differential Evolution or PSO.

For the design of auxetic materials two different methods have been used
using truss and plane stress elements. In the later case classical numerical
homogenization has been used, for the verification of the results obtained by
topology optimization. The auxetic behaviour, as well as the effective Pois-
son’s ratio have been verified. Furthermore, homogenization offers the infor-
mation for the variation of the soft material mechanical properties, until the
desired effective behaviour arises. This is considered independently of the
optimization procedure. An implementation where the auxetic behaviour ap-
pears independently from the boundary conditions applied to the RVE, has
also been presented to indicate auxetic behaviour. It is clear that the arising
microstructures lead to auxetic phenomena. Furthermore, they are automati-
cally generated and one cannot find them by intuition like the relatively sim-
ple microstructures of figures 6.1 and 6.2. These complicated microstructures
have much more flexibility to allow fine tuning of the homogeneous parame-
ters than any convectional microstructure.

7.3 Future work
The present work can be extended to the design of compliant mechanisms
with more than two load cases, leading to more complex shapes and struc-
tures. Non-linear elasticity can be applied as well. Another area of research,
could be on the design of structures with optimum homogenized proper-
ties in multiphysics (thermoelasticity, piezoelasticity). In order to improve
the computational efficiency, the hybrid algorithm can be extended, by fine-
tuning the DE’s and PSO’s running parameters, or using other techniques
from the global optimization portfolio like Ant colony optimization, Simu-
lated annealing, Genetic Algorithms to name few of them. The hybrid scheme
can be easily extended to use alternative to topology optimization methods
like ESO and BESO or level set methods. Since the optimization problems
arising might be multi objective, multi-objective versions of DE and PSO may
be used.
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The results presented demonstrate that the hybrid algorithm proposed
here delivers solutions for large scale topology optimization problems. There-
fore topology optimization for structures and flexible mechanisms can be
used as a design tool for the design of the microstructure of tailored mate-
rials. It is clear that other microstructures different than the star-shaped ones
lead to the desired auxetic behaviour and can be found by using topology
optimization.

Within the area of elasticity the present work can be extended to the design
of anisotropic materials using linear or non-linear elasticity (load-dependent
Poisson’s ratio). In order to improve the computational efficiency, the hybrid
algorithm can be extended, by fine-tuning the DE’s running parameters, or
using other global optimization techniques like Particle Swarms Optimiza-
tion (PSO), genetic algorithms and others. Depending on the dimensions of
the structures, for more accurate solutions plane elasticity or beam elements
instead of trusses can be used.

A complete design procedure for the creation of novel auxetic microstruc-
tures has been presented here. The method can be extended to cover the de-
sign of metamaterials in multiphysics applications, like the design of ther-
moelastic microstructures with negative thermal expansion rate, in magneto-
electronics etc. Further extensions of this work include the study of nonlinear
instantaneous negative Poisson’s effect.

The design of auxetics can be transferred to reality by using 3d printing (in
two dimensions with constant thickness) to construct one of the final material
distributions shown in figures 6.11 and 6.12. As a first step one should transfer
the final quarter topology into a CAD system and create a two dimensional
model using splines. Special aĴention should be given where hinges appear.
Later a special CAD oriented optimization tool can be used in order to model
and optimize the hinge geometry and may take into account material fatigue
issues. Finishing this step, a 2d paĴern of the final CAD optimized topology
can be modelled and 3d printed in a rapid prototyping machine. A very good
example of a 3d auxetic material is described in [ALS14].

Further research towards coupling topology optimization and homoge-
nization in nonlinear problems with large deformations, material nonlinear-
ity and contact mechanics are left for future investigation.

7.3.1 Publications
During the funding program HERACLITOUS II the following journal and
conference papers where published:
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• journal papers:

– Kaminakis, N., Stavroulakis, G.E. (2012). ”Topology optimization for
compliant mechanisms, using evolutionary algorithms and application
on the design of auxetic materials”, JCOMB Composites Part B: Engi-
neering (Elsevier), vol. 43(6), pp. 2655-2668.

– Kaminakis, N., Stavroulakis, G.E. (2012). ”Design of auxeticmicrostruc-
tures using topology optimization”, Structural Longevity, vol. 8(1),
pp. 1-6.

– Kaminakis N., Drosopoulos G.A. and Stavroulakis G.E. (2014). ”De-
sign and verification of auxetic microstructures using topology optimiza-
tion and homogenization”, Archive of Applied Mechanics. Septem-
ber 2015, Volume 85, Issue 9, pp. 1289-1306

– G.A. Drosopoulos, N. Kaminakis, N. Papadogianni and G.E. Stavroulakis
(2015). ”Mechanical behaviour of auxetic microstructures using contact
mechanics and elastoplasticity”, Key Engineering Materials, vol. 681,
pp. 110-116.

• conference papers:

– Stavroulakis G.E., Kaminakis N. and Drosopoulos G.A. (2013). ”Aux-
etic Microstructures: Topology Optimization and Numerical Homoge-
nization”. 8th German – Greek – Polish Symposium: “Recent Ad-
vances in Mechanics”, 9-13 September 2013, Goslar, Germany.

– Kaminakis, N., Stavroulakis, G.E. (2013). ”Topology Optimization of
multi-functional structures and mechanisms using global and multicri-
teria optimization.”. Poster Presentation in Summer School: Topol-
ogyOptimization - Theory,Methods andApplications, organized
by: Dep. of Mechanical Engineering, Dep. of Applied Mathemat-
ics and Computer Science, Dep. of Wind Energy. Technical Uni-
versity of Denmark (DTU), 19-25 June 2003, Lyngby, Denmark.

– Fetsi V., Kaminakis N., Stavroulakis G.E. (2013). ”Design and Topol-
ogy optimization of Horizontal axis wind turbine rotor”. 10th HSTAM
International Congress onMechanics”, 25 - 27 May 2013, Chania,
Crete, Greece.

– Kaminakis, N., Stavroulakis, G. (2012). “Design of Auxetic Materi-
als using Topology Optimization of Flexible mechanisms and Hybrid –
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Evolutionary Algorithms”. International Conference of Computa-
tional and Experimental Engineering and Sciences ICCES12, 30
April – 4 May 2012, Chania, Greece.

– Kaminakis, N., Stavroulakis, G. (2012). “Design of Auxetic Materi-
als using Topology Optimization of Flexible mechanisms and Hybrid –
Evolutionary Algorithms”. International Conference of Computa-
tional and Experimental Engineering and Sciences ICCES12, 30
April – 4 May 2012, Chania, Greece.

– Kaminakis, N., Stavroulakis, G.E. (2011). “Topology Optimization
& Evolutionary Algorithms for the design of flexible mechanisms: De-
sign/Synthesis of Auxetic Material”. 2ndWorld Congress on Global
Optimization, July 2011, Chania, Greece.
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