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TECHNICAL UNIVERSITY OF CRETE

Abstract
School of Production, Engineering & Managment

Doctor of Philosophy

Effect of Automated Vehicles on Highway Traffic Flow and Signalized Junctions

by Panagiotis TYPALDOS

Over the past years, intensive research has been carried out towards the development of
fully automated driving for road vehicles. Fully automated vehicles could improve safety and
efficiency of traffic operations by reducing accidents caused by human driver errors;
improving driver and passenger comfort; reducing traffic congestion and, at the same time,
they contribute to the environmental and economical aspects by reducing fuel consumption
and emissions. Although vehicle automation has already led to significant achievements in
supporting the driver in various ways, rising the level of automation to fully-automated driving
is an extremely challenging problem. This is mainly due to the complexity of real-world
environments, including avoidance of static and moving obstacles, compliance with traffic
rules and consideration of human driving behavior aspects.

The importance of eco-driving in reducing cumulative fuel consumption of road vehicles
is a well-known and widely treated subject. Eco-driving intends to minimize fuel consumption
by maneuvering a vehicle with a human or automated driver. In the current work, the
eco-driving problem is cast in an optimal control framework with fixed time horizon. For the
fuel consumption estimation, a number of alternatives are employed. Initially, a realistic, but
nonlinear and non-smooth formula from the literature is considered. Simple smoothing
procedures are then applied, so as to enable the application of powerful numerical algorithms
for the efficient solution of the resulting nonlinear optimal control problem. Furthermore,
suitable quadratic approximations of the nonlinear formula are also considered, which enable
analytical problem solutions. A comprehensive comparison on the basis of various driving
scenarios demonstrates the features of each alternative approach. In particular, it is
demonstrated that the often utilized, but sometimes strongly questioned,
square-of-acceleration term delivers excellent approximations for fuel minimizing trajectories
in the present setting.

Despite the, seemingly, simple structure of highway environments, human drivers’ actions
may, often, lead to accidents and excessive fuel consumption. Automated vehicles equipped
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by appropriate sensor and path-planning algorithms have the potential to overcome these
issues. In this context, a path-planning algorithm for connected and non-connected automated
road vehicles on multilane motorways is derived from the opportune formulation of an optimal
control problem. In this framework, the objective function to be minimized contains
appropriate respective terms to reflect: the goals of vehicle advancement; passenger comfort;
and avoidance of collisions with other vehicles and of road departures. Connectivity implies,
within the present work, that connected vehicles can exchange with each other (V2V)
real-time information about their last generated short-term path. For the numerical solution of
the optimal control problem, an efficient feasible direction algorithm (FDA) is used. To ensure
high-quality local minima, a simplified Dynamic Programming (DP) algorithm is also
conceived to deliver the initial guess trajectory for the start of the FDA iterations. Thanks to
very low computation times, the approach is readily executable within a Model Predictive
Control (MPC) framework. The proposed MPC-based approach is embedded within a
microsimulation platform, which enables the evaluation of a plethora of realistic vehicle
driving and advancement scenarios under different vehicles mixes. Results obtained on a
multilane motorway stretch indicate higher efficiency of the optimally controlled vehicles in
driving closer to their desired speed, compared to ordinary manually driven vehicles.
Increased penetration rates of automated vehicles are found to increase the efficiency of the
overall traffic flow, benefiting manual vehicles as well. Moreover, connected controlled
vehicles appear to be more efficient in achieving their desired speed, compared also to the
corresponding non-connected controlled vehicles, due to the improved real-time information
and short-term prediction achieved via V2V communication.

Urban areas, and specifically signalized intersections have a crucial role on the safety of
drivers, as well as the increased fuel consumption of vehicles. To address these issues,
appropriate systems have been developed, known as Green Light Optimal Speed Advisory
(GLOSA) systems. In the current work, a discrete-time stochastic optimal control problem has
been proposed to address the GLOSA problem in cases where the next signal switching time
is decided in real time and is therefore uncertain in advance. The corresponding numerical
solution via SDP (Stochastic Dynamic Programming) calls for substantial computational time,
which excludes problem solution in the vehicle’s on-board computer in real time. To
overcome the computation time bottleneck, several modified versions of Dynamic
Programming were also developed. As a first attempt, a Discrete Differential Dynamic
Programming (DDDP) was employed for the numerical solution of the stochastic optimal
control problem. The DDDP algorithm was demonstrated to achieve results equivalent to
those obtained with the ordinary SDP algorithm, albeit with significantly reduced
computational times. Subsequently, a different modified version of Dynamic Programming,
known as Differential Dynamic Programming (DDP) was utilized. For the stochastic GLOSA
problem, it is demonstrated that DDP achieves quasi-instantaneous (extremely fast) solutions
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in terms of CPU times, which allows for the proposed approach to be readily executable
online, within an MPC framework, in the vehicle’s on-board computer. The approach is
demonstrated by use of realistic examples. It should be noted that DDP does not require
discretization of variables, hence the obtained solutions may be slightly superior than the
standard SDP solutions. However, in all pre-mentioned GLOSA problems, there was an
assumption that the traffic signal is initially red and turns to green, which means that only half
traffic light cycle was considered. To this end, the aforementioned problem was extended
considering a full traffic light cycle, consisting of four phases: a certain green phase, during
which the vehicle can freely pass; an uncertain green phase, in which there is a probability that
the traffic light will extend its duration or turn to red at any time; a certain red phase during
which the vehicle cannot pass; and an uncertain red phase, in which there is a probability that
the red signal may be extended or turn to green at any time. Preliminary results indicate that
the proposed SDP approach achieves better average performance, in terms of fuel
consumption, compared to the IDM (Intelligent Driver Model) model, which emulates
human-driving behavior.
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ΠΟΛΥΤΕΧΝΕ΄ΙΟ ΚΡ΄ΗΤΗΣ

Περίληψη

Σχολή Μηχανικών Παραγωγής και Διοίκησης

Doctor of Philosophy

Επίδραση Αυτόματων Οχημάτων στη Κυκλοφοριακή Ροή σε Αυτοκινητόδρομους και

Σηματοδοτούμενες Διασταυρώσεις

Παναγιώτης Τυπάλδος

Τα τελευταία χρόνια, έχει διεξαχθεί εντατική έρευνα για την ανάπτυξη πλήρως

αυτοματοποιημένης οδήγησης για οχήματα κινούμενα σε δρόμους. Τα πλήρως αυτόματα

οχήματα θα μπορούσαν να βελτιώσουν την ασφάλεια και την αποτελεσματικότητα των

κυκλοφοριακών λειτουργιών μειώνοντας τα ατυχήματα που προκαλούνται από ανθρώπινα

λάθη, βελτιώνοντας την άνεση του οδηγού και των επιβατών, μειώνοντας την

κυκλοφοριακή συμφόρησης και, ταυτόχρονα, συμβάλλοντας σε περιβαλλοντικές και

οικονομικές πτυχές μέσω της μείωσης της κατανάλωσης καυσίμων και της εκπομπής

ρύπων. Παρόλο που ο αυτοματισμός του οχήματος έχει ήδη οδηγήσει σε σημαντικά

επιτεύγματα, υποστηρίζοντας τους οδηγούς με διάφορους τρόπους, η αύξηση του

επιπέδου αυτοματισμού σε πλήρως αυτοματοποιημένη οδήγηση είναι ένα εξαιρετικά

δύσκολο πρόβλημα. Αυτό οφείλεται κυρίως στην πολυπλοκότητα των περιβάλλοντων του

φυσικού κόσμου, συμπεριλαμβανομένης της αποφυγής στατικών και κινούμενων

εμποδίων, της συμμόρφωσης με τους κανόνες οδικής κυκλοφορίας και της ανθρώπινης

οδηγικής συμπεριφοράς.

Η σημασία της οικολογικής οδήγησης για τη μείωση της κατανάλωσης καυσίμου των

οχημάτων στου δρόμους είναι ένα πολύ γνωστό και ευρέως αντιμετωπισμένο θέμα. Η

οικολογική οδήγηση σκοπεύει στο να ελαχιστοποιήσει την κατανάλωση καυσίμων μέσω

κατάλληλων ελιγμών ενός αυτόματου ή μη οχήματος. Στην τρέχουσα εργασία, το

πρόβλημα της οικολογικής οδήγησης προσεγγίζεται ως ένα πρόβλημα βέλτιστου ελέγχου

με σταθερό χρονικό ορίζοντα. Για την εκτίμηση της κατανάλωσης καυσίμου,

χρησιμοποιούνται διάφορες εναλλακτικές λύσεις. Αρχικά, εξετάζεται ένα ρεαλιστικό, αλλά

μη-γραμμικό και μη-λείο μοντέλο κατανάλωσης καυσίμων από τη βιβλιογραφία. Στη

συνέχεια εφαρμόζονται απλές διαδικασίες εξομάλυνσης, ώστε να καταστεί δυνατή η

εφαρμογή αριθμητικών αλγορίθμων για την αποτελεσματική λύση του προκύπτοντος



vii

μη-γραμμικού προβλήματος βέλτιστου ελέγχου. Επιπλέον, εξετάζονται κατάλληλες

τετραγωνικές προσεγγίσεις του μη-γραμμικού μοντέλου, οι οποίες επιτρέπουν τη

αναλυτική λύση του προβλήματος. Μια εκτενής σύγκριση, με βάση διάφορα σενάρια

οδήγησης, δείχνει τα χαρακτηριστικά κάθε εναλλακτικής προσέγγισης. Συγκεκριμένα,

αποδεικνύεται ότι ο συχνά χρησιμοποιούμενος, αλλά έντονα αμφισβητούμενος,

τετραγωνικός όρος της επιτάχυνσης παρέχει εξαιρετικές προσεγγίσεις για τροχιές που

ελαχιστοποιούν την κατανάλωση καυσίμων.

Παρά την, φαινομενικά, απλή δομή του περιβάλλοντος των αυτοκινητοδρόμων, οι

ενέργειες των ανθρώπινων οδηγών μπορεί, συχνά, να οδηγήσουν σε ατυχήματα και

αυξημένη κατανάλωση καυσίμων. Τα αυτόματα οχήματα εξοπλισμένα με κατάλληλους

αισθητήρες και αλγόριθμους προγραμματισμού πορείας έχουν τη δυνατότητα να

αντιμετωπίσουν αυτά τα ζητήματα. Σε αυτό το πλαίσιο, ένας αλγόριθμος

προγραμματισμού πορείας, για συνδεδεμένα και μη-συνδεδεμένα αυτόματα οχήματα σε

αυτοκινητόδρομους πολλαπλών λωρίδων, εξάγεται από την κατάλληλη διαμόρφωση ενός

προβλήματος βέλτιστου ελέγχου. Σε αυτό το πλαίσιο, η αντικειμενική συνάρτηση προς

ελαχιστοποίηση περιέχει κατάλληλους όρους που αντικατοπτρίζουν: τους στόχους της

κίνησης του οχήματος, την άνεση των επιβατών, την αποφυγή συγκρούσεων με άλλα

οχήματα και την αποφυγή κίνησης εκτός δρόμου. Η συνδεσιμότητα συνεπάγεται, στην

παρούσα εργασία, ότι τα συνδεδεμένα οχήματα μπορούν να ανταλλάσσουν μεταξύ τους

(V2V) πληροφορίες σε πραγματικό χρόνο σχετικά με την τελευταία βραχυπρόθεσμη
διαδρομή τους. Για την αριθμητική επίλυση του προβλήματος βέλτιστου ελέγχου,

χρησιμοποιείται ένας αποτελεσματικός αλγόριθμος εφικτών κατευθύνσης. Για να

εξασφαλιστούν τοπικά ελάχιστα υψηλής ποιότητας, σχεδιάστηκε επίσης ένας

απλοποιημένος αλγόριθμος Δυναμικού Προγραμματισμού, για να υπολογίσει μια

αποτελεσματική αρχική τροχιά για τον αλγόριθμο εφικτών κατευθύνσεων. Χάρη στους

πολύ χαμηλούς υπολογιστικούς χρόνους, η προσέγγιση είναι εκτελέσιμη σε πραγματικό

χρόνο στο πλαίσιο ελέγχου προβλεπτικού μοντέλου (MPC) που αντιμετωπίζει διάφορες
εμπλεκόμενες αβεβαιότητες. Η προτεινόμενη προσέγγιση ενσωματώνεται σε μια

πλατφόρμα μικροσκοπικής προσομοίωσης, η οποία επιτρέπει την αξιολόγηση πληθώρας

ρεαλιστικών σεναρίων κίνησης οχημάτων κάτω από διαφορετικά μείγματα οχημάτων. Τα

αποτελέσματα που προέκυψαν, σε έναν ευθύγραμμο αυτοκινητόδρομο πολλαπλών

λωρίδων, υποδεικνύουν υψηλότερη αποτελεσματικότητα των βέλτιστα ελεγχόμενων

οχημάτων στο να διατηρηθούν κοντά στην επιθυμητή τους ταχύτητά, σε σύγκριση με τα

χειροκίνητα οχήματα. Η αύξηση του ποσοστού των αυτόματων οχημάτων διαπιστώθηκε

ότι οδηγεί σε συνολικά αποτελεσματικότερη κυκλοφοριακή ροή, ωφελώντας και τα

χειροκίνητα οχήματα. Επιπλέον, τα συνδεδεμένα ελεγχόμενα οχήματα φαίνεται να είναι

πιο αποτελεσματικά στην επίτευξη της επιθυμητής ταχύτητάς τους, σε σύγκριση επίσης με

τα αντίστοιχα μη-συνδεδεμένα ελεγχόμενα οχήματα, λόγω της βελτιωμένης
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πληροφόρησης σε πραγματικό χρόνο και της βραχυπρόθεσμης πρόβλεψης που

επιτυγχάνονται μέσω της επικοινωνίας V2V.
Οι αστικές περιοχές και συγκεκριμένα οι σηματοδοτούμενες διασταυρώσεις έχουν

καθοριστικό ρόλο στην ασφάλεια των οδηγών, καθώς και στην αυξημένη κατανάλωση

καυσίμων των οχημάτων. Για την αντιμετώπιση αυτού του ζητήματος, έχουν αναπτυχθεί

κατάλληλα συστήματα, γνωστά ως συστήματα GLOSA (Green Light Optimal Speed
Advisory). Στην τρέχουσα εργασία, έχει προταθεί ένα πρόβλημα στοχαστικού βέλτιστου
ελέγχου διακριτού χρόνου για την αντιμετώπιση του προβλήματος GLOSA σε περιπτώσεις
όπου ο χρόνος της επόμενης εναλλαγής σήματος αποφασίζεται σε πραγματικό χρόνο και

επομένως είναι αβέβαιος εκ των προτέρων. Η αντίστοιχη αριθμητική λύση μέσω ΣΔΠ

(Στοχαστικού Δυναμικού Προγραμματισμού) απαιτεί αυξημένο υπολογιστικό χρόνο, ο

οποίος αποκλείει τη λύση του προβλήματος στον υπολογιστή του οχήματος σε

πραγματικό χρόνο. Για την αντιμετόπηση του αυξημένου υπολογιστικού φόρτου,

αναπτύχθηκαν επίσης αρκετές τροποποιημένες εκδοχές του Δυναμικού Προγραμματισμού.

Ως πρώτη προσπάθεια, χρησιμοποιήθηκε Διακριτικός Διαφορικός Δυναμικός

Προγραμματισμός (ΔΔΔΠ) για την αριθμητική επίλυση του προβλήματος του

στοχαστικού βέλτιστου ελέγχου. Ο αλγόριθμος ΔΔΔΠ αποδείχθηκε ότι επιτυγχάνει

αποτελέσματα ισοδύναμα με αυτά που λαμβάνονται με τον συνηθισμένο αλγόριθμο ΣΔΠ,

αλλά με σημαντικά μειωμένους υπολογιστικούς χρόνους. Στη συνέχεια, χρησιμοποιήθηκε

μια διαφορετική τροποποιημένη έκδοση του Δυναμικού Προγραμματισμού, γνωστή ως

Διαφορικός Δυναμικός Προγραμματισμός (ΔΔΠ). Για το στοχαστικό πρόβλημα GLOSA,
αποδεικνύεται ότι ο ΔΔΠ επιτυγχάνει σχεδόν στιγμιαίες (εξαιρετικά γρήγορες) λύσεις

όσον αφορά τους υπολογιστικούς χρόνους, γεγονός που επιτρέπει την εύκολη εκτέλεση

της προτεινόμενης προσέγγισης σε πραγματικό χρόνο στο πλαίσιο ελέγχου προβλεπτικού

μοντέλου, στον υπολογιστή του οχήματος. Θα πρέπει να σημειωθεί ότι ο ΔΔΠ δεν

απαιτεί διακριτοποίηση των μεταβλητών, επομένως οι λύσεις που λαμβάνονται μπορεί να

είναι ελαφρώς καλύτερες από τις τυπικές λύσεις του ΣΔΠ. Ωστόσο, σε όλα τα

προαναφερθέντα προβλήματα GLOSA, υπήρχε η υπόθεση ότι το σήμα κυκλοφορίας είναι
αρχικά κόκκινο και γίνεται πράσινο, πράγμα που σημαίνει ότι λήφθηκε υπόψη μόνο μισός

κύκλος ενός φωτεινού σηματοδότη. Για το σκοπό αυτό, το προαναφερθέν πρόβλημα

επεκτάθηκε λαμβάνοντας υπόψη έναν πλήρη κύκλο φωτεινών σηματοδοτών, που

αποτελείται από τέσσερις φάσεις: μια ορισμένη πράσινη φάση, κατά την οποία το όχημα

μπορεί να περάσει ελεύθερα, μια αβέβαιη πράσινη φάση, στην οποία υπάρχει πιθανότητα το

φανάρι να παρατείνει τη διάρκειά του ή να γίνει κόκκινο ανά πάσα στιγμή, μια ορισμένη

κόκκινη φάση κατά την οποία το όχημα δεν μπορεί να περάσει, και μια αβέβαιη κόκκινη

φάση, στην οποία υπάρχει πιθανότητα το κόκκινο σήμα να παραταθεί ή να γίνει πράσινο

ανά πάσα στιγμή. Τα αποτελέσματα υποδεικνύουν ότι η προτεινόμενη προσέγγιση ΣΔΠ

επιτυγχάνει καλύτερη μέση απόδοση, όσον αφορά την κατανάλωση καυσίμων, σε



ix

σύγκριση με το μοντέλο IDM (Intelligent Driver Model), το οποίο μιμείται την ανθρώπινη
συμπεριφορά οδήγησης.
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Chapter 1

Introduction and State of the Art

1.1 Introduction

1.1.1 Motivations

In an era of climate crisis and cheap energy shortage, actions toward environment protection
should be taken across all technical fields. The impact of transportation systems on both
environmental pollution and energy resources shortage is significant as the current trend
towards increased mobility seems to run counter to the resolve of these issues, thus
approaches that lead to increased fuel efficiency are crucial.

Regarding road traffic transportation, several studies note the alarming economical and
environmental impacts as well as the affect on road traffic conditions. In (Schrank et al., 2011),
it is reported that, in 2020, the amount of fuel consumed and gas emissions in USA were
estimated to 1.7 billion gallons and 18 million tons, respectively. Similarly, the travel delay was
estimated to 4.3 billion hours, with the congestion cost being 101 billion dollars. Additionally,
the demand for transportation is expected to increase, especially in the cities around the world,
as the number of population increases rapidly. To this end, benefits of fuel efficiency in road
vehicles are twofold, as it is directly correlated with reduction of fuel emissions, as well as
to economic aspects, as fuel economy means less expenses for the driver. Indeed, a wide
range of technologies have been developed in recent years to decrease fuel consumption of
vehicles, including efficient engines, adjusted vehicle designs and lighter chassis. Furthermore,
considerable efforts in the development and deployment of efficient intelligent transportation
systems (including real-time traffic signals) lead to reduced congestion and fuel consumption.

In the past decade, automated driving has attracted strong interest in industry and scientific
community. This is fostered by strong technological advancements, compared to which
human driving capabilities appear limited in terms of perception of the driving environment,
reaction time, and real-time decision efficiency. Automated vehicles (AVs) are expected to
revolutionize the transportation sector, improving on traffic safety and efficiency by
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overcoming the limitations of human driving. Sensors and path planning algorithms play a
significant role on the path from human driving towards full vehicle automation (Marti et al.,
2019). The current driving pattern followed by human drivers is resulting in underuse of the
road infrastructure and excessive fuel consumption due to non-optimal accelerations. Human
perception of the surroundings is limited compared to the wide range of sensors that are
available onboard automated vehicles. According to statistics (Singh, 2015), the reasons for
around 94% of the road accidents are attributed to drivers, and related driving errors can be
classified to be due to perception, recognition, decision, performance, and non-performance.
Each year, road accidents result in approximately 1.35 million fatalities and leave some 50
million of injured or disabled worldwide. Road congestion is another major issue, causing
excessive delays, fuel consumption and emissions around the globe (Goniewicz et al., 2016;
Montanaro et al., 2019). Since the introduction of motorized vehicles, an extensive amount of
research has been going on to make the roads safer and more efficient. However, accidents and
congestion are still regular plaguing occurrences across the world, calling for comprehensive
and radical solutions. One potential solution would be introducing automated vehicles on the
roads with appropriate movement strategies. Automation is based on high-level precision
while performing ordinary tasks, that are boring and distraction-prone for humans. However,
due to the strongly dynamic nature of road traffic in both longitudinal and lateral directions,
complex algorithms, like optimal model predictive control, nonlinear feedback control,
reinforcement learning, and artificial intelligence, are necessary (González et al., 2015;
Karafyllis et al., 2021; Troullinos et al., 2021; Yanumula et al., 2021). With appropriate
sharing of information via Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)
communication, automated vehicles may be enabled to drastically alleviate the problems of
safety and congestion (Diakaki et al., 2015; Loke, 2019). Traffic lanes were introduced to aid
the human driving, as they minimize the need for lateral and rear monitoring; albeit with an
exception during lane-changing, which calls for simultaneous multi-direction monitoring,
prediction of multiple vehicle movements and fast decision making. Around 10% of all road
accidents occur while performing the lane-change by human drivers (Rahman et al., 2013).
Besides, due to diverse vehicle dimensions, lanes are designed to fit the widest vehicles in
regular traffic, which are big trucks. Thus, a great deal of lateral space is left unused when
smaller vehicles are using the same lane structure. At traffic level, lane-changes lead to
capacity losses and are known to trigger traffic breakdown at critical traffic conditions.

Traffic signals guarantee, in the first place, the safe crossing of vehicles at urban junctions
in cities around the world. Clearly, enforcing safety via traffic lights implies that some
vehicles will have to stop in front of a red light; and then accelerate after the traffic light
switching to green; something that affects the fuel consumption of concerned vehicles. To
reduce the resulting vehicle delays and number of stops, several algorithms have been
proposed and deployed over the past decades, aiming at optimizing the traffic signals
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operation, see (Hounsell, McDonald, 2001; Papageorgiou et al., 2003) for overviews.
Fixed-time signal plans are derived off-line for respective times-of-day (e.g., morning peak
hour, off-peak etc.) by use of appropriate optimization codes, based on historical constant
demands; and are applied without deviations; this implies that switching times of the traffic
lights are always known in advance. In contrast, real-time (or traffic-responsive or adaptive)
signal control strategies make use of real-time measurements to calculate in real time suitable
signal settings. Depending on the employed signal control strategy, the control update period
may range from one second to one signal cycle; clearly, for real-time signals, the next
switching time is not known before the switching decision is actually made. It should be noted
that real-time strategies are deemed to be more advanced and potentially more efficient than
fixed signal operation. Fuel consumption is increasingly considered as an optimization or
evaluation criterion while developing and deploying signal control systems (Jamshidnejad
et al., 2017).

Although traffic signals greatly contribute to the safety of the vehicle drivers, they are also
one of the major reasons of decreased traffic flow and, consequently, of increased emissions and
fuel consumption. Human drivers tend to maintain constant speed while approaching a traffic
signal, which leads to excessive deceleration in order to fully stop and, apparently, acceleration
when the traffic signal switches to green. On the other hand, by appropriately adjusting the
speed either by accelerating or decelerating, the vehicle may be able to cross the traffic signal
after it has switched to green, or smoothly stop in case of red, in which cases no fuel-intensive
acceleration needs to be applied. This dilemma of vehicle movement towards a red traffic signal
is addressed by use appropriately designed systems called Green Light Optimal Speed Advisory
(GLOSA) systems (Stahlmann et al., 2016). GLOSA systems, by receiving information from
the traffic signal about the potential duration of green or red phase duration, guide the driver (or
automated vehicle) by giving speed advice which ensures that, by the time the vehicle reaches
the traffic signal, it will be green; or, more specifically, that the fuel consumption and emissions
will be minimized.

1.1.2 Outline and Contributions

Following the introduction, the outline of the thesis is presented in this section. In section 1.2,
a literature review, regarding different applications of trajectory planning methodologies for
automated vehicles, is presented.

In section 2, the minimization of a vehicle’s fuel consumption by optimizing its kinematic
trajectories, while driving from a given initial state to a given final state within a fixed time
horizon, is considered. The minimization problem is formulated as an optimal control
problem, which minimizes a specific energy-related, realistic but complex fuel consumption
function. Section 2.3 presents the fuel consumption model used as cost criterion. Specifically,
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Section 2.3.1 describes, in details, the complex fuel-consumption model, while in Sections
2.3.2 and 2.3.3 a smooth form, as well as a quadratic approximation are derived. Section 2.4
contains the formulation of the optimal control problem, along with the analytical solution of
the approximated fuel model, followed by the numerical solution of the smoothed cost
criterion. In Section 2.5, the results of the approximate and exact solutions are compared for a
number of driving scenarios, and it is demonstrated that simpler (quadratic) functions may
indeed serve as appropriation tools for obtaining good approximations of eco-driving
solutions.

In section 3, a path-planning algorithm for connected and non-connected automated road
vehicles on multilane motorways is derived from the opportune formulation of an optimal
control problem. Section 3.3 presents the formulation of the problem, starting with the
dynamics and the constraints of each AV in Section 3.3.1. The objective function with all the
contained terms are thoroughly explained in Section 3.3.2, with the corresponding terms
reflecting the goals of vehicle advancement; passenger comfort; and avoidance of collisions
with other vehicles and of road departures. Section 3.4 includes an efficient feasible direction
algorithm (FDA) and a simplified Dynamic Programming (DP) algorithm that utilized for the
numerical solution of the optimal control problem. Note that, the combination of the two
algorithms ensure high-quality local minima, as the DP algorithm is conceived to deliver good
initial guess trajectory for the start of the FDA iterations. The proposed approach features very
low computation times, which enables the open-loop solution procedure to be case in a model
predictive control (MPC) framework as described in Section 3.4.4. Section 3.5 contains the
simulation results obtained on a multilane motorway stretch for different penetration rates of
connected and non-connected automated vehicles. The results indicate indicate higher
efficiency of the optimally controlled vehicles in driving closer to their desired speed,
compared to ordinary manually driven vehicles, while Increased penetration rates of
automated vehicles are found to increase the efficiency of the overall traffic flow.

Chapters 4 address the problem of generating optimal trajectories for vehicles crossing a
signalized junction, with traffic signals operated in either fixed-time or real-time (adaptive)
mode. For the first case, in Section 4.3, the problem is formulated as an optimal control
problem with pertinent final state for the vehicle and is solved analytically via PMP. Section
4.4 presents the case where the traffic light’s switching time is stochastic, with known
probability distribution, is addressed, and the problem is cast in the format of a stochastic
optimal control problem, which is solved numerically using SDP techniques. In contrast to
other works from the literature, the stochastic optimal control problem is designed to extend
up to the vehicle’s final state by exploiting appropriately the analytic solution of the fixed
switching time problem derived earlier, something that guarantees that the obtained solution is
consistent, independently of the actual switching time occurrence. The proposed SDP
algorithm may take several minutes to execute, which implies that the solution is not real-time
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feasible and can therefore not be obtained on-board the vehicle, but must be executed offline,
at the infrastructure side, and be communicated to approaching vehicles according to their
current state. To substantially reduce the computation time and memory requirements for the
solution of the stochastic GLOSA problem and enable its solution on-board the vehicle, two
modified (S)DP algorithms are developed in Chapter 5. The first modified algorithm, known
as, Discrete Differential Dynamic Programming (DDDP) algorithm is described in section 5.4.
DDDP is an iterative algorithm, which solves at each iteration the conventional DP problem
but in strongly reduced state space around an initial, given, trajectory. Thus, the computational
and memory requirements are lower compared to the one-shot full problem solution, leading
in very fast solutions (around 1 s CPU time). As an attempt to further reduce the computation
time for the solution of the stochastic GLOSA problem and enable its solution on vehicle’s
side, a Differential Dynamic Programming (DDP) algorithm is utilized in section 5.5. DDP is
found to deliver solutions quasi-instantaneously, which enables the approach to be readily
implementable in an MPC (model predictive control) framework and be executed online on
the vehicle’s computer. In the aforementioned GLOSA problem, there is the assumption that
the traffic signal is initially red and turns to green, which means that only half traffic light
cycle was considered. To this end, an extension of the stochastic optimal control problem is
described in Section 6, where a full traffic light cycle is considered, consisting of four phases:
a certain green phase, during which the vehicle can freely pass; an uncertain green phase, in
which there is a probability that the traffic light will extend its duration or turn to red at any
time; a certain red phase during which the vehicle cannot pass; and an uncertain red phase, in
which there is a probability that the red signal may be extended or turn to green at any time.

The list of the publications included in this thesis is given below :

• Chapter 2: P. Typaldos et al. (2020b). “Minimization of fuel consumption for vehicle
trajectories”. IEEE Transactions on Intelligent Transportation Systems 21.4,
pp. 1716–1727

• Chapter 3: P. Typaldos et al. (2022b). “Optimization-based path-planning for connected
and non-connected automated vehicles”. Transportation Research Part C: Emerging
Technologies 134, p. 103487

• Chapter 4: P. Typaldos et al. (2020a). “Vehicle trajectory specification in presence of
traffic lights with known or uncertain switching times”. Transportation research record
2674.8, pp. 53–66

• Chapter 5: P. Typaldos, M. Papageorgiou (2022). “Modified dynamic programming
algorithms for GLOSA systems with stochastic signal switching times”. URL:
https://arxiv.org/abs/2211.12159 (submitted)

https://arxiv.org/abs/2211.12159
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• Chapter 6: P. Typaldos et al. (2022a). “GLOSA system with uncertain green and red
signal phases”. 4th Symposium on Management of Future motorway and urban Traffic
Systems (MFTS 2022)

1.2 State of the Art

1.2.1 Eco-Driving as an Optimization Problem

Research related to vehicle control for improving its fuel economy has a long track. Some early
studies were conducted to determine the optimal cruising velocity of a vehicle based on its
operating characteristics (Gilbert, 1976). In other studies, such as (Hooker, 1988), the optimal
values of acceleration for starting up and cruising speed over hilly terrains or flat roads are
determined for fuel-efficient driving. The problem of improving fuel economy of road vehicles
has been recently often referred to as eco-driving (Barkenbus, 2010). Ecological (eco) driving
is a way of maneuvering a vehicle with a human (or, more recently, an automated) driver that
is intended to minimize fuel consumption by trading off the most efficient driving behaviour of
the vehicle. Aside from various physical factors, driving style has a great influence on vehicle
emissions and energy consumption (Van Mierlo et al., 2004). Several studies have indicated
that eco-driving can improve fuel economy by 15-25% (Kamal et al., 2011).

The eco-driving problem can be formulated as an optimal control problem. To solve the
problem, one may employ Dynamic Programming (DP) techniques (Hooker, 1988; Mensing
et al., 2011; Monastyrsky, Golownykh, 1993; Ozatay et al., 2014); however, DP application
may face real-time feasibility difficulties, in cases where online solutions are required, due to
the method’s notorious "curse of dimensionality". Alternatively, one may transform the
optimal control problem (in a number of possible ways) to a Nonlinear Programming (NLP)
problem that can be solved using numerical NLP methods, see e.g. (Saboohi, Farzaneh, 2009;
Xu et al., 2014); note, however, that even some NLP-based approaches may lead to
computational times that are not feasible in real-time applications. Another approach for the
solution of the fuel/energy efficiency problem is to use Pontryagin’s Minimum Principle
(PMP), where the optimal control problem is transformed to a boundary value problem (Petit,
Sciarretta, 2011; Schwarzkopf, Leipnik, 1977). In (Ozatay et al., 2012), the authors develop an
analytical solution to the optimization problem of finding the minimum fuel consumption of a
vehicle given the road and possibly the traffic light information. Also, the authors in(Kim
et al., 2010) proposed an optimal control based on PMP approach. The simulation results are
the same as the global optimal control based on dynamic programming results. The work in
(Lawitzky et al., 2013) concentrates on energy optimal approaching red traffic lights. The
energy efficiency optimal control problem is first solved analytically based on PMP and then
numerically with stochastic dynamic programming techniques. In (Malikopoulos et al.,
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2018a), the authors address the problem of optimally controlling CAVs crossing an urban
intersection without any explicit traffic signaling so as to minimize energy consumption,
where a complete analytical solution of the problem is described.

To design or evaluate eco-driving algorithms, an appropriate fuel consumption model that
can predict instantaneous (second-by-second) fuel consumption is needed. Faris, in (Faris et al.,
2011), performed a comprehensive review of fuel consumption and emission models, such
as the VT-Micro model (Ahn et al., 2002), the power-based fuel consumption model (Post
et al., 1984), and the POLY model (Teng et al., 2002). On the other hand, instead of using
complex fuel consumption models, a strongly simplified cost criterion, namely the square-
of-acceleration, is often used by researchers (e.g. (Hong et al., 2017)) to reflect eco-driving
aspects, something that is sometimes strongly questioned by other researchers with regard to
its relevance to fuel consumption. At first view, the use of this simplified cost criterion seems
reasonable due to the positive correlation between the acceleration and the fuel consumption;
however, the square-of-acceleration applies equally to decelerations (negative accelerations),
which seems less plausible, because fuel consumption is usually low in the deceleration state.
Since a comparison between the minimum-fuel vehicle trajectories derived from this simple
criterion versus those derived from a genuine fuel consumption model is not available, to the
best of our knowledge, the related level of approximation is unknown.

1.2.2 Path-Planning for Automated vehicles

With the recent advances in vehicle communications, either vehicle-to-vehicle (V2V) or
infrastructure-to-vehicle (I2V), new communication channels, carrying a potentially wide
range of information becomes available in real time. Connected automated vehicles (CAVs)
may receive or exchange relevant information, including vehicle state, the current traffic
conditions, the next switching time of a traffic signals etc. This extended information entails
better knowledge of the driving conditions for CAVs and may be beneficial in various driving
situations concerning road safety, flow efficiency and environmental sustainability (Sjoberg
et al., 2017; Tian et al., 2018). Specifically, automated driving may improve various driving
aspects, such as lane-changing, obstacle avoidance, forming of platoons with short
inter-vehicle distances and the application of smoother acceleration or deceleration.

The development of fully automated driving algorithms is inherently related to planning
and updating a vehicle path, which should be efficient, collision-free and user-acceptable.
Planning such a path can be viewed as a trajectory generation problem, i.e., creation in real
time of a quasi-continuous sequence of states that must be tracked by the vehicle via
appropriate steering, throttle and braking actions. Inspired by earlier studies on motion
planning of robot vehicles in other contexts (e.g. (González et al., 2015)) and driven by
imminent implementations and optimistic forecasts of CAV technologies (e.g. (Gu, Hu, 2002;
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Nagy, Kelly, 2001)), studies on CAV trajectory optimization in the road traffic context have
boomed in the past decade. However, path-planning for road vehicles is a difficult task, since
speeds are very high, and safety of the passengers must be guaranteed. Thus, automation on
roads calls for sophisticated approaches, such as optimal control methods, advanced feedback
control or reinforcement learning (Claussmann et al., 2019; Haydari, Yilmaz, 2020; Karafyllis
et al., 2021; Troullinos et al., 2021; Yanumula et al., 2021).

In the related literature, many works exist for trajectory generation of longitudinal motion
for CAVs (Wang et al., 2019). Cooperative adaptive cruise control (CACC) or platoon-based
systems aim at forming platoons or strings of CAVs, which maintain short inter-vehicle
distances. By this formation, vehicles are able to achieve reduced energy/fuel consumption
due to the mitigation of aerodynamic drag, as well as increased capacity of the highways (Dey
et al., 2015; Wang et al., 2018b). Several methodologies have been proposed for the CACC
systems, icluding linear feedback control (Bernardo et al., 2015; Van Arem et al., 2006; Wang
et al., 2017a) and optimal control (Turri et al., 2016; Van De Hoef et al., 2017; Wang et al.,
2017b). Cooperative Merging at Highway On-Ramps focuses on addressing the difficult task
of how the vehicles, driving along an on-ramp, should adapt their speed in order to enter the
main lane in a safe and smooth way. On the other hand, vehicles on the main highway also
contribute to this process by modifying their speeds, if necessary, so as to facilitate the
merging vehicles, which may affect the traffic flow (Milanés et al., 2010). In the literature,
there are numerous studies proposing different control algorithms for the cooperative merging
of CAVs (Ntousakis et al., 2016; Rios-Torres, Malikopoulos, 2016a,b; Zhao et al., 2019).
Speed harmonization techniques on highways aim at reducing congestion by regulating traffic
speeds upstream the congestion point. This is achieved with the application of various
highway traffic management strategies, which aim at lowering speeds of traffic upstream the
congested area in order to avoid abrupt acceleration/deceleration, which may lead to traffic
waves, decrease of safety and traffic flow (Ghiasi et al., 2017; Ma et al., 2016; Malikopoulos
et al., 2018b).

On the other hand, there are relatively few studies on CAV trajectory optimization
considering lane-changing (Wang et al., 2018c), which indicates that optimization of CAV
trajectories in both longitudinal and lateral directions is worth additional investigations.
Existing literature indicates that the majority of trajectory planning methods, considering
overtaking of moving or static obstacles, employ cell decomposition, potential fields, and
optimal control techniques (Dixit et al., 2018).

Cell decomposition, like Rapidly-exploring Random Tree (RRT), is a widely used obstacle
avoidance method in robotics, which generates paths within a set of finite, non-overlapping,
convex polygons (cells). The set of cells is obtained by decomposing the obstacle-free space
(Kuwata et al., 2008; Ma et al., 2014). These algorithms have been modified and applied for
CAVs featuring collision-free paths. On the other hand, the memory and computational
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requirements are high as the complexity of the algorithms increases, in correlation with the
increase of the traffic density (Glaser et al., 2010; Ma et al., 2014). Note also that, the obtained
trajectories from RRT’s are difficult to be tracked by tracking methods as they are jerky,
jeopardizing passengers comfort (Katrakazas et al., 2015).

Potential field methods exploit the idea of repulsive and attractive fields for the
corresponding obstacles and collision-free areas, respectively. The vehicle’s path is calculated
by following the steepest gradient in the generated field (Glaser et al., 2010; Kitazawa,
Kaneko, 2016). However, in this methods, the accurate knowledge of the position of static or
moving obstacles is important as it may affect the accuracy of the resulting potential fields,
and subsequently, affect the vehicles’ trajectories.

Optimal control methods aim is to calculate the optimal path of a vehicle by minimizing a
performance index, subject to a set of constraints. The performance index may account on
different goals, such as minimization of fuel consumption; longitudinal and lateral jerk or/and
acceleration; lateral acceleration, etc., while the constraints express, vehicles’ speed and
acceleration bounds, environment constraints (e.g. road boundaries) or surrounding vehicles
(obstacles). Literature results demonstrate that, optimal control methods feature low
computational times, while generating collision-free trajectories (Chu et al., 2012;
Makantasis, Papageorgiou, 2018; Shim et al., 2012; Werling et al., 2010). On the other hand,
the open-loop solution results on trajectories that do not account on the uncertainties that may
arise due to the dynamic environment.

Model Predictive Control (MPC) method is, also, widely used for CAVs trajectory
planning. MPC has a long history of applications in control, automation, and chemical
industries (Mayne, 2014; Mayne, Michalska, 1988; Qin, Badgwell, 2003). The approach
solves a finite horizon open-loop optimal control problem to determine a sequence of control
inputs; the first part of the optimal inputs is then applied, using a receding horizon principle,
and the procedure is repeated (Carvalho et al., 2013). Due to the strongly dynamic
environment of the path-planning problem for AVs, the accurate prediction of the surrounding
vehicles’ paths is crucial, particularly at high highway speeds. However, the uncertainties
related to the changing environment and to the actual vehicle advancement inevitably increase
over time. Therefore, the MPC approach is often used for online path planning of AVs, as it is
very efficient in handling the arising uncertainties due to its re-planning ability (Claussmann
et al., 2019; Dixit et al., 2019; Jalalmaab et al., 2015; Rasekhipour et al., 2016; Wang et al.,
2018a). One possibility for the MPC procedure is to solve the optimal control problem at each
time step, with a corresponding shift of the planning horizon (Howard et al., 2010; Murillo
et al., 2018; Nilsson et al., 2015). An alternative possibility is to update path decisions in
event-based mode (Earl, D’Andrea, 2007; Khazaeni, Cassandras, 2016).

As far as the connectivity capabilities of the CAVs is concerned, most of the related
mentioned works consider limited knowledge of their surroundings, specifically knowledge of
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the current position and speed of surrounding vehicles, e.g. thought their own sensors. Thus,
the short-term future path of the obstacles is considered as a projection of their initial states,
e.g. assuming zero acceleration and no lane change. For example, in (Sadat et al., 2020; Shao
et al., 2021), the prediction of the surrounding environment is handled through marginal
distributions of semantic occupancy over time; or considered as static region, respectively. In
the same context, (Saxena et al., 2020) studies the problem of successfully executing a safe
and comfortable merge into dense traffic, while the surrounding obstacle vehicles are handled
either as static or as constant-speed obstacles. Note that a variety of path planning approaches
that emerged in decade-long research in the Robotics domain are valuable for road vehicle
path planning as well, but there is a crucial difference in the respective requirements due to
automated highway vehicles (and dynamic obstacles) driving much faster than typically
considered autonomous robots. This important difference calls for enhanced prediction of the
obstacles behaviour, which is indeed achieved via vehicle connectivity, as considered in this
work.

1.2.3 Green Light Optimal Speed Advisory (GLOSA) Systems

Consider a vehicle approaching a red traffic light at a given speed. If the vehicle continues
driving at that speed, it may reach the traffic light after it has switched to green, in which case
no fuel-intensive acceleration needs to be applied; however, the constant-speed vehicle might
also reach the traffic light before the green switch, in which case it will have to stop and
accelerate to a higher speed after the green switch. On the other hand, if the vehicle
decelerates smoothly in view of the red light, this may prove beneficial or not, depending on
the time of the green switch. This dilemma of vehicle movement towards a red traffic signal
may be addressed by appropriately designed systems. Some early such systems (Van Leersum,
1985) were displaying on road-side dynamic advisory speed signs the speed that would allow
a vehicle to cross the downstream signalized junction at green. With recent and emerging
advances in vehicle communications, the current state and timing of a traffic signal can be
transmitted to equipped vehicles (or apps therein) to enable sensible approaching speed
decisions. Based on signal information, it is possible to guide the driver (or an automated
vehicle) all the way from the current state to the traffic signal by giving speed advice, which
ensures that, by the time the vehicle reaches the traffic signal, it will be green; or, more
specifically, that the fuel consumption and emissions will be minimized. Systems (or apps)
optimizing the vehicle approach to traffic lights are often referred to as Green Light Optimal
Speed Advisory (GLOSA) systems (Stahlmann et al., 2016).

In the case of fixed signals, and hence prior knowledge of the next switching time, a
corresponding message is broadcasted by the signal controller. Under these conditions, the
problem of how to optimize the approach to traffic signals has been addressed in different
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ways. In (Richter, 2005), speed profiles have been compared to their energy demand; however,
only a limited set of profiles has been considered, and, more generally, there is a lack of
mathematical justification that the derived speed profile is indeed optimal. Rule-based
algorithms have been employed in various works to produce advisory speeds for vehicles
approaching traffic signals, so as to reduce fuel consumption and emissions, see e.g. (Katsaros
et al., 2011; Ma et al., 2018; Sanchez et al., 2006); clearly, rule-based algorithms may deliver
sub-optimal results, in particular when the dynamic vehicle kinematics are not accounted for,
i.e. when no vehicle acceleration, but only the vehicle speed, is involved. Optimal control
approaches, considering explicitly the vehicle kinematics, are, by their nature, more pertinent
in producing fuel-optimal speed profiles for vehicles approaching fixed traffic signals. Such an
approach is proposed in (Lawitzky et al., 2013), attempting the minimization of vehicle’s
physical work; the resulting optimal control problem is solved analytically via Pontryagin’s
Minimum Principle (PMP). This paper also presents an optimal control approach for fuel
minimization with more pertinent final state conditions for the vehicle, consisting of a final
position sufficiently downstream of the signals and a high final speed, so as to avoid distorted
or non-comparable vehicle trajectories.

The situation becomes more complicated when real-time signals with very short (e.g.
second-by-second) control update periods are present, in which case exact prior knowledge of
the next switching time is not available even with the signal controller. In this case, the best
available knowledge about the next signal switching can be presented as an estimate or as a
probabilistic distribution for the next switching time within a short-term future time-window.
A system called SignalGure (Koukoumidis et al., 2011) does not require communication to the
infrastructure, but relies solely on a collection of mobile phone data to detect and predict the
traffic signal timing. The mobile phones detect current traffic signals with their cameras,
collaboratively communicate and learn traffic signal timing patterns, and predict their future
timing. Reportedly (Koukoumidis et al., 2011), SignalGuru’s estimates come on average
within 0.66 s for fixed traffic signals; and within 2.45 s for real-time traffic signals; of the
actual switching times. Such an estimate of the next switching time may then be used as a
proxy for any of the GLOSA approaches that need a known switching time, possibly with
appropriate extensions to account for the consequences of estimation inaccuracy. Richer
probabilistic information than a single estimate for the next signal switching time can be
produced in form of a probability distribution for the next switching time within a short-term
future time-window by use of statistics from previous signal operations over a sufficiently
long rolling horizon. Such an approach to produce probability distribution for the next
switching time, within a short-term future time-window, based on past signal switching, is
proposed in (Mahler, Vahidi, 2012). However, the available probability distribution is used
heuristically (rather than optimally), to accordingly time-weigh the objective function, within
a deterministic optimal control problem that is solved via a Dynamic Programming algorithm.
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In (Sun et al., 2020), the uncertainty of traffic signal timing is considered as a data-driven
chance-constrained robust optimization problem, where the red-light duration is defined as a
random variable. A data-driven approach is adopted to formulate chance constraints, based on
empirical sample data, and Dynamic Programming is employed to solve the optimization
problem. An appropriate utilization of the available probabilistic distribution of the next signal
switching time within a stochastic optimal control problem is proposed in (Lawitzky et al.,
2013), and the problem is solved via a discrete Stochastic Dynamic Programming (SDP)
algorithm; however, the formulated optimal control problem extends only up the point in time
where the next switching time becomes known, thus neglecting the cost incurred after this
time until the vehicle’s final state is reached, something that may lead to non-commensurable
vehicle trajectories and skewed solutions.
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Chapter 2

Minimization of Fuel Consumption for
Vehicle Trajectories

2.1 Abstract

The importance of eco-driving in reducing cumulative fuel consumption of road vehicles is a
well-known and widely treated subject. Eco-driving intends to minimize fuel consumption by
maneuvering a vehicle with a human or automated driver. In this work, the eco-driving
problem is cast in an optimal control framework with fixed time horizon. State equations
reflect the simple vehicle kinematics for position and speed, with the acceleration acting as a
control input. Initial and final states (position and speed) are fixed. For the fuel consumption
estimation, a number of alternatives are employed. To start with, a realistic, but nonlinear and
non-smooth formula from the literature is considered. Simple smoothing procedures are then
applied, so as to enable the application of powerful numerical algorithms for the efficient
solution of the resulting nonlinear optimal control problem. Furthermore, suitable quadratic
approximations of the nonlinear formula are also considered, which enable analytical problem
solutions. A comprehensive comparison on the basis of various driving scenarios
demonstrates the features of each alternative approach. In particular, it is demonstrated that
the often utilized, but sometimes strongly questioned, square-of-acceleration term delivers
excellent approximations for fuel-minimizing trajectories in the present setting.

2.2 Introduction

Energy and fuel consumption reduction has gained high importance due to the related
reduction of emissions, among other reasons. The current trend towards increased mobility
seems to run counter to the purposes of controlling the greenhouse effect, local pollution and
the efficient exploitation of fuel resources; as a result, fuel consumption has become a crucial
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issue. Intensive research has been carried out in order to find optimal solutions for a number
of possible settings.

Research related to vehicle control for improving its fuel economy has a long track. Some
early studies were conducted to determine the optimal cruising velocity of a vehicle based on its
operating characteristics (Gilbert, 1976). In other studies, such as (Hooker, 1988), the optimal
values of acceleration for starting up and cruising speed over hilly terrains or flat roads are
determined for fuel-efficient driving. The problem of improving fuel economy of road vehicles
has been recently often referred to as eco-driving (Barkenbus, 2010). Ecological (eco) driving
is a way of maneuvering a vehicle with a human (or, more recently, an automated) driver that
is intended to minimize fuel consumption by trading off the most efficient driving behaviour of
the vehicle. Aside from various physical factors, driving style has a great influence on vehicle
emissions and energy consumption (Van Mierlo et al., 2004). Several studies have indicated
that eco-driving can improve fuel economy by 15-25% (Kamal et al., 2011).

The eco-driving problem can be formulated as an optimal control problem. To solve the
problem, one may employ Dynamic Programming (DP) techniques (Hooker, 1988; Mensing
et al., 2011; Monastyrsky, Golownykh, 1993; Ozatay et al., 2014); however, DP application
may face real-time feasibility difficulties, in cases where online solutions are required, due to
the method’s notorious "curse of dimensionality". Alternatively, one may transform the optimal
control problem (in a number of possible ways) to a Nonlinear Programming (NLP) problem
that can be solved using numerical NLP methods, see e.g. (Saboohi, Farzaneh, 2009; Xu et al.,
2014); note, however, that even some NLP-based approaches may lead to computational times
that are not feasible in real-time applications.

Another approach for the solution of the fuel/energy efficiency problem is to use
Pontryagin’s Minimum Principle (PMP), where the optimal control problem is transformed to
a boundary value problem (Petit, Sciarretta, 2011; Schwarzkopf, Leipnik, 1977). In (Ozatay
et al., 2012), the authors develop an analytical solution to the optimization problem of finding
the minimum fuel consumption of a vehicle given the road and possibly the traffic light
information. Also, the authors in(Kim et al., 2010) proposed an optimal control based on PMP
approach. The simulation results are the same as the global optimal control based on dynamic
programming results. The work in (Lawitzky et al., 2013) concentrates on energy optimal
approaching red traffic lights. The energy efficiency optimal control problem is first solved
analytically based on PMP and then numerically with stochastic dynamic programming
techniques. In (Malikopoulos et al., 2018a), the authors address the problem of optimally
controlling CAVs crossing an urban intersection without any explicit traffic signaling so as to
minimize energy consumption, where a complete analytical solution of the problem is
described.

To design or evaluate eco-driving algorithms, an appropriate fuel consumption model that
can predict instantaneous (second-by-second) fuel consumption is needed. Faris, in (Faris et al.,
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2011), performed a comprehensive review of fuel consumption and emission models, such
as the VT-Micro model (Ahn et al., 2002), the power-based fuel consumption model (Post
et al., 1984), and the POLY model (Teng et al., 2002). On the other hand, instead of using
complex fuel consumption models, a strongly simplified cost criterion, namely the square-
of-acceleration, is often used by researchers (e.g. (Hong et al., 2017)) to reflect eco-driving
aspects, something that is sometimes strongly questioned by other researchers with regard to
its relevance to fuel consumption. At first view, the use of this simplified cost criterion seems
reasonable due to the positive correlation between the acceleration and the fuel consumption;
however, the square-of-acceleration applies equally to decelerations (negative accelerations),
which seems less plausible, because fuel consumption is usually low in the deceleration state.
Since a comparison between the minimum-fuel vehicle trajectories derived from this simple
criterion versus those derived from a genuine fuel consumption model is not available, to the
best of our knowledge, the related level of approximation is unknown.

This research aims at the minimization of the vehicle fuel consumption by optimizing its
kinematic trajectories (using vehicle acceleration as the control input), while driving from a
given initial state to a given final state within a fixed time horizon. The minimization problem
is formulated as an optimal control problem, which minimizes a specific energy-related,
realistic but complex fuel consumption function (Akçelik, Biggs, 1987). In a first
(approximate) solution approach, the problem is solved analytically, based on Pontryagin’s
Minimum Principle, using a quadratic approximation of the fuel consumption function. As a
special case of this solution, we also obtain the vehicle trajectories which minimise the
square-of-acceleration criterion. On the other hand, in a second (exact) solution approach, we
consider the optimal control problem with the original complex nonlinear fuel consumption
function, appropriately smoothed at its non-smooth locations, and proceed to the numerical
solution of the optimal control problem by use of a very efficient feasible direction algorithm
(Papageorgiou et al., 2015, 2016). Specifically, we use the reduced gradient to enable the
problem solution in the reduced space of the control variables, and we employ an NLP-like
iterative algorithm to produce the solution trajectories. The results of the approximate and
exact solutions are compared for a number of driving scenarios, and it is demonstrated that
simpler (quadratic) functions may indeed serve as appropriation tools for obtaining good
approximations of eco-driving solutions. Note that, part of this work is also included in
Typaldos MSc Thesis (Typaldos, 2017), however the present work includes additional and
more extensive evaluations and investigations over more realistic scenarios.

The remainder of the paper is organized as follows: Section 2.3 presents the fuel
consumption model used as a cost criterion. The fuel consumption optimal control problem is
formulated and solved in Section 2.4. Several variations and comparison results of the
approximate and exact solutions are presented in Section 2.5, and Section 2.6 concludes this
work.
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2.3 Fuel Consumption Criterion

2.3.1 Energy-Related Model for Estimating Fuel Consumption

The model used for the estimation of the vehicle’s fuel consumption rate is the Australian
Road Research Board (ARRB) model (or Energy-Related model) described below, which
estimates instantaneous values of fuel consumption in dependence of the current speed,
acceleration and grade information. The model is an extended and modified version of the
power model described in (Post et al., 1984), with more details given in (Akçelik, Biggs,
1987) and (Bowyer et al., 1985). Basically, the model relates fuel consumption during a small
increment, dt, to:

(a) the fuel to maintain engine operation,

(b) the energy consumed (work done) by the vehicle engine while traveling an increment of
distance dx during this time period, and

(c) the product of energy and acceleration during periods of positive acceleration.

Part (c) accounts for the inefficient use of fuel during periods of high acceleration. Since
energy is dE = RT dx, where RT is the total tractive force required to drive the vehicle along
distance dx, the fuel consumed in the time increment dt is expressed as

dF =

{
αdt +β1RT dx+

[
β2aRIdx

]
a>0 for RT > 0

αdt for RT ≤ 0
(2.1)

where

dF is the increment of fuel consumed (ml) during travel along distance dx (m) and in time dt
(s),

α is the constant idle fuel rate (ml/s), which applies during all modes of driving as an estimate
of fuel needed to maintain engine operation,

β1 is an efficiency parameter which relates fuel consumed to the energy provided by the engine,
i.e. fuel consumption per unit of energy (ml/kJ),

β2 is an efficiency parameter, which relates fuel consumed during positive acceleration to the
product of inertia energy and acceleration, i.e. fuel consumption per unit of energy-
acceleration (ml/(kJ · m/s2)),
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a is the instantaneous acceleration (dv/dt) in m/s2, which has a negative value for slowing
down, and

RT is the total "tractive" force required to drive the vehicle, which is the sum of drag force
(RD), inertia force (RI) and grade force (RG) in kN (kilonewtons):

RT = RD +RI +RG. (2.2)

The resistive forces can be expressed as:

RD = b1 +b2v2 (2.3)

RI = Ma/1000 (2.4)

RG = 9.81M(G/100)/1000 (2.5)

where

v is the speed (dx/dt) in m/s,

G is the percent grade which has a negative value for downhill grade,

M is the vehicle mass in kg, including occupants and any other load, and

b1,b2 are the vehicle parameters related mainly to rolling resistance and aerodynamic drag,
but each containing a component due to drag associated with the engine. The parameters
of drag function (2.3) were derived using steady-speed fuel consumption data. However,
if data collected during coast-down in neutral are also available, a three-term function
RD = b1 + b2v+ b3v2 can be derived where b1,b2 and b3 are related to rolling, engine
and aerodynamic drag, respectively.

Instantaneous fuel consumption per unit time (ml/s) can then be expressed as:

f (v,a) =
dF
dt

=

α +β1RT v+
[

β2Ma2v
1000

]
a>0

for RT > 0

α for RT ≤ 0
(2.6)

where the total tractive force required is:

RT = b1 +b2v+b3v2 +
Ma

1000
+9.81×10−5MG. (2.7)

The following parameter values derived for the Melbourne University test car (4.1-L Ford
Cortina station-wagon) with automatic transmission (Biggs, Akçelik, 1986) have been used for
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this work: M = 1600 kg, G = 0, α = 0.666 ml/s, β1 = 0.0717 ml/kJ, β2 = 0.0344 ml/(kJ·m/s2),
b1 = 0.269 kN, b2 = 0.0171 kN(m/s)−2, b3 = 0.000672.

2.3.2 Smooth Form of the ARRB Fuel Consumption Function

The ARRB fuel consumption function (2.6) can be expressed in the form
f (v,a) = max{A1,A2}, assuming v≥ 0, where

A1 = α

A2 =

{
α +β1RT v+ β2Ma2v

1000 for a > 0
α +β1RT v for a≤ 0

(2.8)

Consider a general non-smooth function F = max{A1, · · · ,An}. As suggested in
(Jamshidnejad et al., 2015), such a function may be approximated for αs >> 1, via a smooth
function as follows:

F = max
i=1,...,n

{Ai} ≈
1
αs

log
n

∑
i=1

eαsAi (2.9)

with αs a smoothing parameter. The bigger one chooses the parameter αs, the closer is the
smooth approximation to the non-smooth max-function.

By applying (2.9) and (2.8) to the ARRB fuel consumption model we obtain the smooth
approximation

fs(v,a)≈

{
1
αs
(log(eαsα + eαs(α+β1RT v+ β2Ma2v

1000 ))) for a > 0
1
αs
(log(eαsα + eαs(α+β1RT v))) for a≤ 0

(2.10)

Note that the original ARRB function is actually smooth at a = 0, hence the smoothing
approximation is only applied at RT = 0. For the choice of the parameter αs, different values
have been tested to observe the behavior of the smoothed model. As expected, and can be
verified in Fig. 2.1, the smaller the value of the parameter αs is (see the case where αs = 1),
the more the smoothed model diverges from the original model, while as the value is increased,
the smoothed-function approaches increasingly the non-smooth fuel consumption model. The
performance of the approximation with different smoothing parameters is similar for different
speed values. The value αs = 20 was finally selected, since the fuel consumption differences,
when using higher values, were practically insignificant.
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Figure 2.1: The ARRB Fuel Consumption function and its smoothed variants
versus the acceleration a (assuming the value of speed is constant, v = 15 m/s)

for different values of αs.

2.3.3 Quadratic Approximation of the Fuel Consumption Model

A quadratic approximation can be achieved through a Taylor expansion, approximating the fuel
consumption function around a given point (v = vk,a = ak). The quadratic form of a second-
order Taylor polynomial can be expressed in general form as follows

q(v,a) = f (vk,ak)+∇ f (vk,ak)
T
[

v− vk
a−ak

]
+

1
2
[
v− vk a−ak

]T
∇

2 f (vk,ak)

[
v− vk
a−ak

] (2.11)

where ∇ f (vk,ak) denotes the gradient vector and ∇2 f (vk,ak) the Hessian matrix of f (v,a) at
the point (v = vk,a = ak).
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By defining a general form of the gradient vector and the Hessian matrix of the
approximated model

∇ f (vk,ak) =
[
g1 g2

]T (2.12)

∇
2 f (vk,ak) =

[
h11 h12
h21 h22

]
(2.13)

where g1,g2 and h11, . . . ,h22 are the elements of the gradient vector and the Hessian matrix,
respectively, the quadratic Taylor approximation function becomes

q(v,a) =
a2h22

2
+

v2h11

2
+

v
(

g1 +
1
2

a(h12 +h21)−
1
2

ak (h12 +h21)−h11vk

)
+a
(

g2−akh22−
1
2
(h12 +h21)vk

)
+

1
2
(
2 f (vk,ak)−2akg2 +ak

2h22

+ak (h12 +h21)vk + vk (−2g1 +h11vk)
)

(2.14)

This function may be used as an approximation of the nonlinear model f (v,a) within the
optimal control problem.

2.4 Optimal Control Problems

The problem considered in this work is a typical case of a fuel consumption minimization
problem, where a vehicle starts from an initial state xxx0 = [x0,v0]

T , where x0 is a given initial
position and v0 a given initial speed of the vehicle, and must reach a final state xxxe = [xe,ve]

T

within a fixed time horizon T , with xe and ve being the fixed final position and speed of the
vehicle, respectively. The objective of the vehicle, is to appropriately adjust its acceleration in
order to achieve the minimum possible fuel consumption, while satisfying the initial and final
conditions xxx0 and xxxe traveling alone on a straight road segment.

The minimization problem outlined above is formulated as an optimal control problem.
The system is described by the following state variables:

ẋ = v (speed) (2.15)

v̇ = a (acceleration). (2.16)
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The objective is to drive the system from the given initial condition xxx0 = [x0,v0]
T to the

fixed final condition xxxe = [xe,ve]
T within the given time T , while minimizing the criterion

J =
∫ T

0
f (v,a)dt. (2.17)

If necessary, upper and lower bounds may be applied to speed v and acceleration a. Such
constraints would limit the speed between zero and its maximum value; and the acceleration
between its minimum and maximum values.

2.4.1 Approach 1: Analytic Solution of Approximated Fuel Consumption Model

As a first approach, a simplified version of the optimal control problem is solved analytically.
To enable the analytic solution, one may approximate the fuel consumption function with a
quadratic function (see 2.3.3).

2.4.1.1 Optimal Control Methodology for the Approximated Fuel Consumption Model

The approximate fuel consumption optimal control problem considers the minimization of the
approximated quadratic fuel consumption (2.14), replacing f (v,a) in (2.17) subject to the state
equations of vehicle motion, (2.15) and (2.16), with fixed initial and final states x(0) = x0,
x(T ) = xe, v(0) = v0, v(T ) = ve.

The quadratic cost criterion leads to smooth variations of the states and the control over
time. For the sake of simplicity in deriving the optimal solution, no constraints are considered
for the state and control variables. It should be noted that the derivation of analytic solutions for
the corresponding constrained optimization problem is not an easy task and may indeed be even
infeasible or computationally demanding due to many possible combinations of subsequent
constraint activation and deactivation that would need to be elaborated. In any case, a non-
analytic computation possibility, with explicit constraint consideration, is offered in the next
sections.

The Hamiltonian function (Pontryagin, 1987) for the approximate optimal control problem
reads

H(v,a,λ1,λ2) = q(v,a)+λ1v+λ2a (2.18)

where λ1 and λ2 are the co-state variables.
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The optimal control is calculated from

∂H
∂a

= 0⇒

g2 +
1
2
(2(a−ak)h22 +h12 (v− vk)+h21 (v− vk))+λ2 = 0.

(2.19)

Solving (2.19) for a, yields

a =−(h12 +h21)v
2h22

+
−2g2 +2akh22 +(h12 +h21)vk

2h22
− λ2

h22
. (2.20)

Substituting (2.20) into (2.18), the optimal Hamiltonian function H0 = H(v,λ1,λ2) is
derived.

The other necessary conditions of optimality are:

ẋ=
∂H0

∂λ1
= v (2.21)

v̇=
∂H0

∂λ2
=−(h12 +h21)v

2h22
(2.22)

+
−2g2 +2akh22 +(h12 +h21)vk

2h22
− λ2

h22

λ̇1=−
∂H0

∂x
= 0 (2.23)

λ̇2=−
∂H0

∂v
=

(
−h11 +

(h12 +h21)
2

4h22

)
v (2.24)

−λ1 +
(h12 +h21)λ2

2h22

−
−2g2 (h12 +h21)+4g1h22 +

(
(h12 +h21)

2−4h11h22

)
vk

4h22

The system of ordinary differential equations (2.21)-(2.24) is linear and can be easily
solved analytically. Its solution is given by an exponential-function of time for the involved
state and co-state variables. The related parameters of the solution trajectories depend on the
initial and final conditions of the problem as well as on the approximation point used for the
fuel consumption model. This solution can be easily derived in analytic (explicit) form using
symbolic differentiation tools (e.g. Mathematica (Wolfram Research, Inc., 2016)). The
analytic solution for x(t), v(t), λ1(t), λ2(t) may then be plugged into (2.20) to get the analytic
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solution for the optimal acceleration a(t).

2.4.1.2 Approach 1-a: A Special Case of the Approximated Fuel Consumption Model

It is important to note that, a special case, that is often used (e.g. (Hong et al., 2017)) as a proxy
for fuel consumption minimization, can be derived from the general quadratic solution (2.14).
This special case is the simple quadratic cost criterion

q̃(v,a) =
1
2

a2 (2.25)

with the corresponding gradient vector and the Hessian matrix ((2.12) and (2.13)) of the
approximated fuel consumption model equal to

∇ f (v,a) =
[
0 a

]T and ∇
2 f (v,a) =

[
0 0
0 1

]
(2.26)

This cost function is often used as a surrogate of fuel consumption, on the grounds that
there is a positive correlation between acceleration and fuel consumption. However, as the
original formula in (2.6) indicates, this statement does not apply in case of vehicle deceleration
(i.e. negative acceleration); hence it is of significant interest to test and compare the produced
optimal results with those produced by use of the original complex fuel consumption model, so
as to conclude on the appropriateness (or otherwise) of, and level of approximation resulting
from the minimization of the square-of-acceleration for eco-driving problems.

In this special case, the solution trajectory for the control (acceleration) is linear with
respect to time t (see (Ntousakis et al., 2016)). In fact, we have from (2.23) λ1(t) = c1, where
c1 is a constant; while, for this special case, (2.24) yields λ̇2 = −λ1, hence λ2(t) = −c1t + c2,
where c2 is another constant. Furthermore, (2.20) simplifies in this special case to a = −λ2,
hence we have finally

a(t) = c1t− c2 (2.27)

i.e. a linear function of time, where c1 and c2 may be calculated from the boundary conditions.
It is pointed out that both Approach 1 and 1-a produce a closed form solution that depends

on the initial and final conditions of the problem and can be applied instantaneously.

2.4.2 Approach 2: Numerical Solution of the Smoothed Fuel Consumption
Model

The analytic solution of optimal control problems by use of the necessary conditions of
optimality is only possible for simple problems, e.g. problems with low dimension or
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problems with special structure (e.g. Linear-Quadratic Optimization). In all other cases,
numerical solution algorithms are required for the calculation of the optimal trajectories. For
the pursposes of this work, a very efficient feasible direction algorithm has been used
(Papageorgiou et al., 2016), which exploits the notion of reduced gradient to eliminate the
state variables and solve the problem in the space of the control variables using well-known
NLP methods.

It is noted that the ARRB fuel consumption function (2.6) is a continuous, but non-smooth
function, since it features discontinuous first-order derivatives when the value of the total force
term RT is equal to 0. This may lead to difficulties when using gradient-based optimization
methods. Hence, it would be useful to have a smooth nonlinear cost function that is
differentiable everywhere in its domain, as the one derived in Section 2.3.2.

2.4.2.1 Feasible Direction Algorithm

The feasible direction algorithm can be applied to continuous-time or discrete-time
formulations of an optimal control problem. For the convenience of using available software,
we employ the discrete-time version of the algorithm. Then, the general optimal control
problem that is addressed by the method is as follows.

We consider a discrete-time dynamic process described by the following set of state-space
difference equations organized in vector form

xxx(k+1) = fff [xxx(k),uuu(k)], k = 0, . . . ,K−1 (2.28)

where xxx ∈ Rn, uuu ∈ Rm are the system state and control variable vectors, respectively, k is the
discrete time index, K is the considered discrete time horizon, and fff : Rn×Rm→Rn is a twice
continuous differentiable cost function. The system has a known initial state

xxx(0) = xxx0. (2.29)

The problem consists in minimizing the discrete-time cost function

J = θθθ [xxx(K)]+
K−1

∑
k=0

φ [xxx(k),uuu(k)] (2.30)

subject to (2.28) and (2.29), where θθθ : Rn → Rl,φ : Rn ×Rm → Rq are twice continuous
differentiable vector functions. The final state must be free. Upper and lower bounds may
apply to the control variables uuu(k).

The solution of a discrete-time optimal control problem corresponds to the calculation of
the optimal trajectories for the control variables, uuu(k), and corresponding states, xxx(k + 1),
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k = 0, . . . ,K − 1, that minimize the cost function over the time horizon. To describe the
solution procedure, we need to first present the necessary optimality conditions for the
formulated discrete-time optimal control problem. As it is customary, we use to this end the
discrete-time Hamiltonian Function

H[xxx(k),uuu(k),λλλ (k+1)] = φ [xxx(k),uuu(k)]+λλλ (k+1)T fff [xxx(k),uuu(k)] (2.31)

where λλλ (k+1) stands for the co-state vector.
Then we have the following conditions of optimality that must be satisfied for k= 0, . . . ,K−

1 (notation: xy = dx/dy):

xxx(k+1) = Hλλλ (k+1) = fff [xxx(k),uuu(k)] (2.32)

λλλ (k) = Hxxx(k) = φxxx(k)(k)+ fff T
xxx(k)λλλ (k+1) (2.33)

Huuu(k) = φxxx(k)(k)+ fff T
uuu(k)λλλ (k+1) = 0 (2.34)

Furthermore, the following boundary conditions must be satisfied

xxx(0) = xxx0 (2.35)

λλλ (K) = θxxx(K) (2.36)

(for more details regarding the conditions of optimality, see (Papageorgiou et al., 2015, 2016)).
The solution of this problem is calculated by use of the very efficient feasible direction

algorithm (Papageorgiou et al., 2016), which exploits the structure of the state equations and
maps the optimal control problem into an NLP problem in the reduced space of control
variables. Thus, the algorithm attempts the calculation of a control trajectory uuu(k),
k = 0, . . . ,K − 1, which corresponds to a local minimum of the cost function in the
mK-dimensional space, where m is the number of control variables. This marks a substantial
reduction of the problem dimension, as the state variables are eliminated.

The feasible direction algorithm is an iterative procedure, whose algorithmic steps are
presented below (superscripts (i) indicate the iteration index);

Step 1 Guess an initial control trajectory uuu(0)(k), k = 0, . . . ,K− 1 ; Calculate states xxx(0)(k)
from (2.32), (2.35) and co-states λλλ

(0)(k), k = 0, . . . ,K−1 from (2.33), (2.36).
Calculate the reduced gradient ggg(0)(k) = dH

duuu(k) , k = 0, . . . ,K−1, using (2.34).
Set iteration index i = 0.

Step 2 Specify a descent direction sss(i)(k), k = 0, . . . ,K−1.



Chapter 2. Minimization of Fuel Consumption for Vehicle Trajectories 26

Step 3 Specify an optimal scalar step ξ (i) > 0 through line optimization.
Set uuu(i+1)(k) = uuu(i)(k)+ξ (i)sss(i)(k), k = 0, . . . ,K−1.
Calculate states xxx(i+1)(k), co-states λλλ

(i+1)(k) and gradient ggg(i+1)(k), k = 0, . . . ,K−1 as
above.

Step 4 If a convergence test is satisfied, stop, otherwise start a new iteration i := i+1, i.e. go
to Step 2.

The algorithm starts with an initial guess control trajectory uuu(0)(k), k = 0, . . . ,K− 1. At
each iteration i, it calculates the corresponding states, xxx(i)(k), (from (2.32), (2.35)) and co-
states, λλλ

(i)(k), (from (2.33), (2.36)). Then, based on the calculated states and co-states, the
algorithm computes the reduced gradient ggg(i)(k) = dH/duuu(k) (from (2.34)), which is used to
specify a descent direction sss(i)(k). Finally, the control trajectory is updated

uuu(i+1)(k) = uuu(i)(k)+ξ
(i)sss(i)(k), (2.37)

where ξ (i) is a scalar step specified via line optimization. For the specification of the descent
search direction sss(i)(k), five methods have been used and compared in this work: two
quasi-Newton mathods, DFB and BFGS; two conjugate-gradient methods, Fletcher-Reeves
and Polak-Ribiere; and the Steepest-Descent method, see (Papageorgiou et al., 2015, 2016) for
details.

At the end of each iteration, if a convergence criterion (gradient close to zero) is satisfied,
then all necessary conditions are satisfied, and the algorithm stops; otherwise it starts a new
iteration. Note that the method does not allow for strictly fixed final states, but these may be
readily considered indirectly by the introduction of appropriate penalty terms in the final term
θ [xxx(K)] of the objective function (2.30). The algorithm may be readily extended to consider
fixed bounds of the control variables, see (Papageorgiou et al., 2015, 2016) for all details.

2.4.2.2 Discrete-Time Optimal Control Problem Formulation

We will now transform the fuel-optimal control problem into a discrete-time optimal control
problem as above. The discrete-time version of the state equations (2.15), (2.16) is

x(k+1) = x(k)+ v(k)∆t +
1
2

a(k)∆t2

v(k+1) = v(k)+a(k)∆t
(2.38)
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and have indeed the required general form of (2.28), with ∆t being the time step length and
k ·∆t = t. For the objective function, we have

J[v(k),a(k)] =
1
2

p1[xe− x(K)]2 +
1
2

p2[ve− v(K)]2

+
K−1

∑
k=0

{1
2

p3 min[0,v(k)+ ε]2 + fs[v(k),a(k)]
} (2.39)

where the first two quadratic penalty terms account for the final conditions of the vehicle
position and speed, respectively, by penalizing deviations from the respective desired final
states; and fs[v(k),a(k)] is the smoothed nonlinear fuel consumption function (2.10). The
penalty weights p1 and p2 must be selected sufficiently large to ensure the virtual fulfillment
of the final state conditions. Moreover, a penalty term to suppress negative speeds has been
added in the objective function, with p3 being the corresponding weight. This additional
penalty term ensures that no negative speed values will appear in the solution. Note that this
term is mainly activated in the case of the fuel consumption maximization problem that will be
addressed later.

2.4.3 A Stop Point Scenario

A slightly modified scenario of the fuel minimization problem is examined in this section,
where a vehicle starting from an initial state xxx0 = [x0,v0]

T aims at reaching a final state xxxe =
[xe,ve]

T within a fixed time horizon T , but now with the restriction that it cannot pass through
a given position x1, before a fixed time tr (assuming that x1 is the position of a traffic light
and tr is the time that the traffic light turns green from red, see Fig. 2.2). The objective of
the vehicle, also in this case, is to appropriately adjust its acceleration in order to achieve the
minimum possible fuel consumption, while satisfying the initial and final conditions as well as
the intermediate (traffic signal) constraint.

2.4.3.1 Continuous-Time Formulation

The optimal control problem is described by the same states and the objective is to drive the
system from the given initial condition xxx0 = [x0,v0]

T to the fixed final condition xxxe = [xe,ve]
T

within the given time T , while minimizing the criterion

J(t1) =
1
2

∫ t1

0
a2dt +

∫ T

t1
a2dt. (2.40)
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Figure 2.2: A vehicle starting from a given initial state (x0,v0), aims to reach
a final state (xe,ve) with the presence of a traffic light at a given position that

switches to green at time tr.

i.e., we consider the special case of Approach 1-a for this enlarged problem, in which, in
addition, the constraint, tr ≤ t1, must be fulfilled, where t1 is the time in which the vehicle
crosses from the position x1.

As for this case, the state and control trajectories can be derived from the solution of the
following equation system

a(t) =

{
c1t + c2 0≤ t ≤ t−1
c5t ′+ c6 t+1 ≤ t ≤ T

(2.41)

v(t) =

{
1
2 c1t2 + c2t + c3 0≤ t ≤ t−1
1
2 c5t ′2 + c6t ′+ c7 t+1 ≤ t ≤ T

(2.42)

x(t) =

{
1
6 c1t3 + 1

2 c2t2 + c3t + c4 0≤ t ≤ t−1
1
6 c5t ′3 + 1

2 c6t ′2 + c7t ′+ c8 t+1 ≤ t ≤ T
(2.43)

where t ′ = t− t1, using the initial and final conditions of the problem, the corner conditions of
continuity of control and states a(t−1 ) = a(t+1 ),v(t−1 ) = v(t+1 ),x(t−1 ) = x(t+1 ) and the condition
x(t1) = x1.

Obtaining the state and control trajectories, by solving the above dynamic system, the
optimal cost J∗, which now depends on t1, is given from the solution of the following
optimization problem

minJ∗(t1)

t1 ≥ tr
(2.44)

The cost function is pseudo-convex for t1 ≥ tr. As a result KKT conditions are both necessary
and sufficient and any KKT point is a global minimum.



Chapter 2. Minimization of Fuel Consumption for Vehicle Trajectories 29

The KKT conditions are given by

∂J∗

∂ t1
+µ

∂ (tr− t1)
∂ t1

= 0 (2.45)

µ(tr− t1) = 0 (2.46)

µ ≥ 0 (2.47)

The resulting time t1 is either equal to the value that corresponds to the solution of the above
optimization problem without taking into account the inequality constrain (µ = 0), or else it is
equal to tr, due to (2.46) and µ = ∂J∗

∂ t1
> 0. Also in this case it can be seen that, the solution

trajectory for the control consists of two linear equations with respect to time t, see (2.41).

2.4.3.2 Discrete-Time Formulation

The discrete-time form of the state equations, for this case with signal constraint, is the same as
in (2.38) and the objective function is slightly modified compared to (2.39) by adding a penalty
term for the point constraint

J[v(k),a(k)] =
1
2

p1[xe− x(K)]2 +
1
2

p2[ve− v(K)]2

+
K−1

∑
k=0

{1
2

p3 min[0,v(k)+ ε]2 + fs[v(k),a(k)]
}

+ p4

k1

∑
k=0

{
min(x1− x(k),0)2

} (2.48)

with the fourth term being the penalty term that prevents position values greater than a given
point, x1, for a given time t1, that corresponds to k1, with p4 being the weight. This penalty
term ensures that the vehicle will not pass the traffic light position before switching from red to
green.

2.5 Results and Comparisons

In this section, various comparisons are presented to investigate the accuracy and the reliability
of the presented variations of the fuel consumption problem. Several scenarios have been tested,
with different initial and terminal conditions. In these scenarios, different cases with increasing
or decreasing acceleration and deceleration, as well as combinations thereof, were considered
(Typaldos, 2017). However, due to limited space, only two scenarios (Scenarios 1 and 2) for
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the simple fuel consumption problem, without the signal constraint (Case 1); and one scenario
(Scenario 3) for the modified problem (Case 2) will be presented here, with the following initial
and final conditions:

Scenario 1. x0 =−320 m, xe = 0 m, v0 = 15 m/s, ve = 20 m/s, T = 19 s

Scenario 2. x0 =−420 m, xe = 0 m, v0 = 20 m/s, ve = 15 m/s, T = 25 s

Scenario 3. x0 =−320 m, xe = 0 m, v0 = 10 m/s, ve = 15 m/s, x1 =−235 m, T = 30 s

Scenario 1 is a positive acceleration scenario where the initial speed is less than the final
speed, so the vehicle needs to accelerate in order to reach the final position. On the other hand,
Scenario 2 is a negative acceleration scenario with initial speed greater than the final speed
which demands from the vehicle to decelerate. As far as Scenario 3 is concerned (traffic light
scenario), the initial speed is less than the final speed but, in contrast with Scenario 1, its a
mixed acceleration-deceleration scenario as the vehicle has to adjust its speed in order to cross
the traffic light after a specific time, tr, and then fulfill the terminal conditions.

More specifically, the results for Approaches 1 and 1-a, for Case 1, are first derived for
Scenarios 1 and 2. Then, the feasible direction algorithm is employed for the solution of
Approach 2, for Case 1, comparing different methods of producing descent directions. The
results obtained from the different approaches are compared, with respect to the respective
optimal control, state trajectories and fuel consumption values, for Scenarios 1 and 2.
Subsequently, a comparison of the optimal fuel consumption results of Scenario 1 obtained
with different time horizons are presented. Afterwards, the comparison between the optimal
trajectories and fuel consumption obtained from Approach 1-a and 2, for Case 2 and for
different values of traffic light’s switching time, considering Scenario 3, is presented. Finally,
the maximization problem for both Cases 1 and 2 using Approach 2 is solved and compared
with the corresponding minimization problem.

2.5.1 Solution Approaches 1 and 1-a for Case 1

The resulting optimal trajectories of acceleration, speed and position of the vehicle, for the two
mentioned initial and final states Scenarios 1 and 2, are presented in Fig. 2.3 for Approaches 1
and 1-a. The quadratic approximation in Approach 1 was effectuated around the point (vk,ak)=
(15 m/s, 0.05 m/s2), but results would be similar for other points as well. It is evident that the
derived results with both approaches are very close to each other; and that the target speed
ve and target position xe are achieved at the final time T as requested. The fuel consumption
values obtained from the ARRB fuel consumption model (2.6) for Scenario 1 are: 42.15 ml
for Approach 1, and 42.39 ml for Approach 1-a; while for Scenario 2 they are 28.77 ml for



Chapter 2. Minimization of Fuel Consumption for Vehicle Trajectories 31

(a)

(b)

Figure 2.3: Graphical representation of the solution trajectories, for the
Approach 1 (blue lines), Approach 1-a (red lines) and Approach 2 (magenta

lines), for (a) Scenario 1 and (b) Scenario 2.

Approach 1 and 28.78 ml for Approach 1-a. Note that, for Scenario 1, the vehicle needs to
accelerate continuously in order to reach the required final speed of 20 m/s; while in Scenario
2, the vehicle decelerates continuously to reach the final speed of 15 m/s.

2.5.2 Comparison of the Search Direction Algorithms for Approach 2 for Case 1

The performance of different search direction methods used in step 2 of the feasible direction
algorithm to produce the numerical solution of Approach 2 for Scenarios 1 and 2 is now
investigated. The penalty weights were set to p1 = 102, p2 = 103 and p3 = 102. The
discrete-time horizon is set to K = 100 with a step length ∆t = 0.19 s for Scenario 1 and
∆t = 0.25 s for Scenario 2. As an initial guess, the trajectory u(k) = 0 m/s2, ∀k ∈ [0,99], was
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utilized. The corresponding results of each search direction method are summarized in Table
2.1. From these results, the following conclusions can be drawn:

• All methods converge extremely fast, despite the bad initial guess, to the optimal solution.

• For the addressed problem and settings, all search direction methods, apart from Steepest
Descent, are equally efficient.

• The required solution time amounts to only few hundreds of a second.

• In all cases, the final conditions are reached with sufficient accuracy via the quadratic
penalty terms.

The evolution of the optimal control and state trajectories a(k), x(k), v(k), for the search
direction method DFP are presented in Fig. 2.3. In the following investigations whenever
Approach 2 is considered, DFP is utilized.

2.5.3 Comparison of Approaches 1, 1-a and 2 for Case 1

For Scenario 1, it can be observed, from Fig. 2.3a, that the resulting control and state
trajectories for all Approaches are virtually identical. The fuel consumption values obtained
from the ARRB fuel consumption model (2.6) are: 42.15 ml for Approach 1, 42.39 ml for
Approach 1-a and 42.01 ml for Approach 2. Clearly, Approach 2 is always superior, because it
directly minimizes the nonlinear (smoothed) ARRB formula, while Approach 1-a minimizes a
surrogate (a2). However, the maximum percentage difference between the fuel consumption
values obtained by the different approaches is less than 1%.

On the other hand, for Scenario 2, the trajectories of Approaches 1 and 1-a are almost the
same, but the trajectories of the acceleration and speed of Approach 2 differ. This is because, in
the deceleration mode, total force RT is negative, hence the fuel consumption value is constant
and equal to the idle fuel consumption. Thus, the fuel consumption value is the same for any
deceleration trajectory, the only concern being to eventually reach the required final states. This
implies that the acceleration trajectory may take different paths which lead to the same optimal
fuel consumption. Indeed, the resulting fuel consumption values are: 28.77 ml for Approach 1,
28.78 ml for Approach 1-a and 28.76 ml for Approach 2; clearly, Approach 2 is again superior,
but the percentage difference is less than 0.1%.

1The results have been acquired with a standard PC with an Intel i5 at 3.2 GHz and 8 GB ram.
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Table 2.1: Comparison of search direction methods of Approach 2 for (a)
Scenario 1 and (b) Scenario 2

(a)

Search Direction

Algorithm
Iter. CPU1(s) x1(T ) (m) x2(T ) (m/s) cost (ml)

Steepest Descent 47 0.15 -0.002 19.998 42.01

DFP 4 0.01 -0.002 19.998 42.01

BFGS 6 0.03 -0.002 19.998 42.01

Fletcher-Reeves 4 0.03 -0.002 19.998 42.01

Polak-Ribiere 3 0.02 -0.002 19.998 42.01
(b)

Search Direction

Algorithm
Iter. CPU1 (s) x1(T ) (m) x2(T ) (m/s) cost (ml)

Steepest Descent 23 0.09 -0.004 14.999 28.76

DFP 10 0.04 -0.004 14.999 28.76

BFGS 11 0.05 -0.004 14.999 28.76

Fletcher-Reeves 8 0.04 -0.004 14.999 28.76

Polak-Ribiere 6 0.03 -0.004 14.999 28.76

2.5.4 Approaches 1-a and 2 for Different Time Horizons for Case 1

This section presents the comparison of the optimal fuel consumption values and trajectories
obtained from Approaches 1-a and 2, for Scenario 1, for the same time step ∆t = 0.19 s, but
different (increased) time horizons. By increasing the time horizon, the scenario is factually
modified, because there is more time available to lead the initial states to the final states. Fig.
2.4 displays the control and the states for time steps K = 100, 200, 300 and corresponding time
horizons T = 19 s, 2 · 19 s, 3 · 19 s for Approaches 1-a and 2. From Fig. 2.4b and 2.4c, it
can be observed that for longer time horizons the problem has been modified into a combined
deceleration-acceleration scenario. As the vehicle has more time to reach the final position,
it starts by decelerating, in order to achieve the minimum fuel consumption, and accelerates
eventually to fulfill the final conditions.

In the results, it can be observed that, when using the initial time horizon (Fig. 2.4a), the
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control and states trajectories are virtually identical (as already commented earlier); but as the
time horizon is increasing, the acceleration and speed trajectories are slightly differentiated.
Specifically, Approach 1-a delivers again a time-linear trajectory for the acceleration; while
for Approach 2, as already mentioned, the acceleration has no unique optimal trajectory in the
initial phase, due to the constant fuel consumption associated with any deceleration value. For
the longest investigated horizon (Fig. 2.4c), we also have activation of the lower speed bound
for a short period, which further modifies the acceleration trajectory. Nevertheless, the vehicle
position trajectories for both Approaches and all horizons are virtually coinciding, thanks to
the smoothing effect of the double integrator applied on the acceleration.

Regarding the percentage difference between the respective fuel consumption values, we
have for of all the three horizons differences less than 1.3%. Specifically, the fuel consumption
values obtained from the ARRB fuel consumption model for T = 19 s are: 42.39 ml for
Approach 1-a and 42.01 ml for Approach 2; for T = 38 s they are: 69.05 ml for Approach 1-a
and 68.18 ml for Approach 2; and for T = 57 s they are: 82.18 ml for Approach 1-a and 81.34
ml for Approach 2. This outcome supports and underlines the previous conclusion, namely
that Approach 1-a is an excellent approximation for fuel minimization, now demonstrated
even in scenarios with combined deceleration-acceleration phases of the vehicle.

2.5.5 Approaches 1-a and 2 for Case 2 with Different Stop Point Values

In this section, the optimal trajectories and fuel consumption values obtained from Approaches
1-a and 2, for Case 2 and for different values of time that correspond to k1, in which the
traffic light switches from red to green, are presented. The corresponding fuel consumption
values for each different time (k1) of traffic light switching are summarized in Table 2.2 for
both Approaches 1-a and 2. The resulting graphs of acceleration, speed and position of the
vehicle, for Scenario 3, are presented in Fig. 2.5 for Approaches 1-a and 2. It can be observed
that, the more the red light period is extended, the more the optimal fuel consumption value
is increasing. This behavior is expected for the reason that the vehicle keeps lower speed at
the beginning to avoid passing the red traffic light; but then it has to increase, significantly, its
acceleration to reach the final position and speed. The trajectories of Case 1 and those of Case
2 with k1 = 60 are visually identical, as for k1 ≤ 60 the problem is, essentially, equivalent to
that of Case 1. Table 2.2 contains the optimal values of fuel consumption of Approach 1-a and
Approach 2, obtained from the ARRB fuel consumption model. It can be observed that, also in
this case, the percentage difference of the fuel consumption, obtained from the ARRB model,
between Approach 1-a and 2, is less than 1.5%.
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(a)

(b)

(c)

Figure 2.4: Control and states for Approach 1-a (red lines) and Approach 2
(blue lines) for the cases of (a) T = 19 s and K = 100, (b) T = 38 s and K = 200,

(c) T = 57 s and K = 300.
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(a)

(b)

Figure 2.5: Graphical representation of the solution trajectories, for different
values of k1, where the blue lines are for Case 1 and the red, magenta, green,
black lines for Case 2 with k1 = 60,70,80,90, respectively, for (a) Approach

1-a and (b) Approach 2.

2.5.6 Fuel Consumption Maximization Problem for Cases 1 and 2

In the previous investigations, we have demonstrated that the approximate Approaches 1 and 1-
a deliver results and fuel consumption values that are within few % from each other. However,
one could argue that this might be because the range of possible feasible controls (vehicle
maneuvers) that ensure that the vehicle will reach the fixed final state, when started from the
given initial state, is accordingly limited. In other words, we would like to investigate what is
the range of possible fuel consumption values resulting from feasible control (accelerations).
To explore this issue, i.e. to have a feeling of the range of possible maneuvers, we consider
in this section the solution of the fuel maximization problem for both Cases 1 and 2 using
Approach 2.
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Table 2.2: Numerical solutions of Approaches 2 and 1-a for different values
of k1, using the DFP algorithm. The Cost is the fuel consumption based on the

ARRB model.

Cost (ml) Approach 2 Approach 1-a

Case 1 41.25 41.31

Case 2 with k1 = 90 49.18 49.95

Case 2 with k1 = 80 45.48 45.89

Case 2 with k1 = 70 42.67 42.88

Case 2 with k1 = 60 41.25 41.31

In order to achieve the maximum fuel consumption, maximization problems write the
following objective functions need to be solved

J[v(k),a(k)] =
1
2

p1[xe− x(K)]2 +
1
2

p2[ve− v(K)]2

+
K−1

∑
k=0

{1
2

p3 min[0,v(k)+ ε]2− fs[v(k),a(k)]
}

and
J[v(k),a(k)] =

1
2

p1[xe− x(K)]2 +
1
2

p2[ve− v(K)]2

+
K−1

∑
k=0

{1
2

p3 min[0,v(k)+ ε]2− fs[v(k),a(k)]
}

+ p4

k1

∑
k=0

{
min[x1− x(k),0]2

} (2.49)

for Cases 1 and 2 respectively, where fs[v(k),a(k)] is the smoothed nonlinear fuel consumption
function (2.10), subject to the same state equations and initial and terminal conditions.

For the maximization problem, an upper and lower bound is applied to the acceleration (see
(Papageorgiou et al., 2016)) and also, the penalty term for negative speeds is essential in order
to avoid oscillations of the vehicle around the final position with infinite positive and negative
speeds.

Fig. 2.6 reflects the comparison between the maximization and minimization problems.
Fig. 2.6a displays the optimal state and control trajectories obtained with Approaches 1-a and 2
for Case 1 and Scenario 1, while Fig. 2.6b represents the optimal state and control trajectories



Chapter 2. Minimization of Fuel Consumption for Vehicle Trajectories 38

(a)

(b)

Figure 2.6: Comparison between minimization (red line) and maximization
(blue line) problems of the smoothed fuel consumption model, for (a) Case 1

for Scenario 1 and (b) Case 2 for k1 = 70.

of Approach 1-a and 2 for Case 2 and Scenario 3, with traffic light switching time k1 = 70. The
acceleration bound have been set to amin =−2.5 m/s2 and amax = 2.5 m/s2.

The fuel consumption values resulting from the two maximization problems are 138.89 ml
and 145.29 ml, respectively; while for the minimization cases they were 42.39 ml and 42.88
ml, respectively. The percentage difference between the two solutions for both cases is more
than 220%, which indicates that the range of possible fuel consumption values while driving
the vehicle from the given initial state to the given final state is indeed substantial, and, hence,
the previously achieved approximations with Approach 1 and 1-a are indeed excellent.

From Fig. 2.6, a bang-bang behavior can be observed between the minimum and maximum
values of the control, amin and amax, for the maximization case. This behavior is expected, as the
vehicle has to reach high acceleration values in order to achieve the maximum fuel consumption
and, eventually, it has also to reach high values of deceleration in order to fulfill the final state
conditions of the problem.
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2.6 Conclusion

The focus of this work is the minimization of fuel consumption of a vehicle, by optimizing its
kinematic trajectories. The fuel consumption problem was formulated as an optimal control
problem and was solved, firstly, analytically (after an appropriate approximation (Approach
1 and Approach 1-a)) and then numerically (Approach 2). The results obtained from all the
solutions were very satisfactory, and the percentage difference of fuel consumption between
all the Approaches was negligible. Regarding the comparison of the resulted trajectories, for
small time horizon, Approaches 1-a and 2 give almost the same trajectories, but, as the time
horizon are increased, the trajectories increasingly differ, but the percentage difference of the
fuel consumption values remain very low (less than 1.3%).

Finally, the maximization problem for the fuel consumption was also solved, and the
obtained results are compared with those of the minimization problem. Through these results,
the value range of the fuel consumption model was investigated and, with the percentage
difference of the two solutions being large (220% in the scenario examined) it can be
concluded that the presented simplified fuel consumption approaches are highly efficient.

In summary, this work has delivered two main contributions:

• It proposed a highly efficient (fractions of a second) numerical approach for the solution
of the accurate fuel minimization problem (Approach 2).

• It demonstrated in a variety of ways that simpler approaches (Approach 1-a) deliver
excellent approximations of the accurate solution.
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Chapter 3

Optimization-Based Path-Planning for
Connected and non-Connected
Automated Vehicles

3.1 Abstract

A path-planning algorithm for connected and non-connected automated road vehicles on
multilane motorways is derived from the opportune formulation of an optimal control
problem. In this framework, the objective function to be minimized contains appropriate
respective terms to reflect: the goals of vehicle advancement; passenger comfort; and
avoidance of collisions with other vehicles and of road departures. Connectivity implies,
within the present work, that connected vehicles can exchange with each other (V2V)
real-time information about their last generated short-term path. For the numerical solution of
the optimal control problem, an efficient feasible direction algorithm (FDA) is used. To ensure
high-quality local minima, a simplified Dynamic Programming (DP) algorithm is also
conceived to deliver the initial guess trajectory for the start of the FDA iterations. Thanks to
very low computation times, the approach is readily executable within a model predictive
control (MPC) framework. The proposed MPC-based approach is embedded within the
Aimsun microsimulation platform, which enables the evaluation of a plethora of realistic
vehicle driving and advancement scenarios under different vehicles mixes. Results obtained
on a multilane motorway stretch indicate higher efficiency of the optimally controlled vehicles
in driving closer to their desired speed, compared to ordinary manually driven vehicles.
Increased penetration rates of automated vehicles are found to increase the efficiency of the
overall traffic flow, benefiting manual vehicles as well. Moreover, connected controlled
vehicles appear to be more efficient in achieving their desired speed, compared also to the
corresponding non-connected controlled vehicles, due to the improved real-time information
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and short-term prediction achieved via V2V communication.

3.2 Introduction

In the past decade, automated driving has attracted strong interest in industry and scientific
community. This is fostered by strong technological advancements, compared to which human
driving capabilities appear limited in terms of perception of the driving environment, reaction
time, and real-time decision efficiency. In addition, variations in driving behavior from person
to person or short inattention at high speeds may result in accidents. In fact, the vast majority
of road accidents are attributed to human error on the account of, e.g., insufficient sensory
information, lack of attention, shortcomings in driving skill or reckless driving. Each year, road
accidents result in approximately 1.35 million fatalities and leave some 50 million of injured
or disabled worldwide. Road congestion is another major issue, causing excessive delays, fuel
consumption and emissions around the globe (Goniewicz et al., 2016; Montanaro et al., 2019).
On the other hand, vehicle automation is a challenging area due to the variety and complexity
of real-world environments, including avoidance of static and moving obstacles, compliance
with traffic rules and consideration of human driving behavior aspects (Gu, Dolan, 2014).

With the recent advances in vehicle communications, either vehicle-to-vehicle (V2V) or
infrastructure-to-vehicle (I2V), new communication channels, carrying a potentially wide
range of information becomes available in real time. Connected automated vehicles (CAVs)
may receive or exchange relevant information, including vehicle state, the current traffic
conditions, the next switching time of a traffic signals etc. This extended information entails
better knowledge of the driving conditions for CAVs and may be beneficial in various driving
situations concerning road safety, flow efficiency and environmental sustainability (Sjoberg
et al., 2017; Tian et al., 2018). Specifically, automated driving may improve various driving
aspects, such as lane-changing, obstacle avoidance, forming of platoons with short
inter-vehicle distances and the application of smoother acceleration or deceleration.

The development of fully automated driving algorithms is inherently related to planning
and updating a vehicle path, which should be efficient, collision-free and user-acceptable.
Planning such a path can be viewed as a trajectory generation problem, i.e., creation in real
time of a quasi-continuous sequence of states that must be tracked by the vehicle via
appropriate steering, throttle and braking actions. Inspired by earlier studies on motion
planning of robot vehicles in other contexts (e.g. (González et al., 2015)) and driven by
imminent implementations and optimistic forecasts of CAV technologies (e.g. (Gu, Hu, 2002;
Nagy, Kelly, 2001)), studies on CAV trajectory optimization in the road traffic context have
boomed in the past decade. However, path-planning for road vehicles is a difficult task, since
speeds are very high, and safety of the passengers must be guaranteed. Thus, automation on
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roads calls for sophisticated approaches, such as optimal control methods, advanced feedback
control or reinforcement learning (Claussmann et al., 2019; Haydari, Yilmaz, 2020).

In the related literature, many works exist for trajectory generation of longitudinal motion
for CAVs, considering cooperative adaptive cruise control (CACC) and platooning (Dey et al.,
2015; Wang et al., 2018b); cooperative merging at highway on-ramps (Ntousakis et al., 2016;
Rios-Torres, Malikopoulos, 2016a); speed harmonization on highways (Ghiasi et al., 2017;
Malikopoulos et al., 2018b) etc. On the other hand, there are relatively few studies on CAV
trajectory optimization considering lane-changing (Wang et al., 2018c), which indicates that
optimization of CAV trajectories in both longitudinal and lateral directions is worth additional
investigations. Some of these studies approach the problem with optimal control and model
predictive control (MPC), while avoidance of collision with other vehicles is handled through
potential-field like penalty functions (Dixit et al., 2019; Jalalmaab et al., 2015; Makantasis,
Papageorgiou, 2018; Rasekhipour et al., 2016; Wang et al., 2018a). In comparison with other
aforementioned approaches, e.g. reinforcement learning, optimal control techniques require
substantially less data as input. Moreover, depending on the numerical solution algorithms,
the execution times of the problem should be sufficiently small to enable their implementation
within a real-time MPC framework, i.e. real-time feasibility.

As far as the connectivity capabilities of the CAVs is concerned, most of the related
mentioned works consider limited knowledge of their surroundings, specifically knowledge of
the current position and speed of surrounding vehicles, e.g. thought their own sensors. Thus,
the short-term future path of the obstacles is considered as a projection of their initial states,
e.g. assuming zero acceleration and no lane change. For example, in (Sadat et al., 2020; Shao
et al., 2021), the prediction of the surrounding environment is handled through marginal
distributions of semantic occupancy over time; or considered as static region, respectively. In
the same context, (Saxena et al., 2020) studies the problem of successfully executing a safe
and comfortable merge into dense traffic, while the surrounding obstacle vehicles are handled
either as static or as constant-speed obstacles. Note that a variety of path planning approaches
that emerged in decade-long research in the Robotics domain are valuable for road vehicle
path planning as well, but there is a crucial difference in the respective requirements due to
automated highway vehicles (and dynamic obstacles) driving much faster than typically
considered autonomous robots. This important difference calls for enhanced prediction of the
obstacles behaviour, which is indeed achieved via vehicle connectivity, as considered in this
work.

Compared to approaches presented in the past by some of the authors (Makantasis,
Papageorgiou, 2018), the present work marks significant differences and advances. In that
early-stage work, a basic optimal control problem (OCP) formulation was developed,
providing a solid basis for subsequent significant advances, both in the conceptual design and
in its evaluation. Specifically, significant differences in the present work include: the newly
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designed collision avoidance term, the number of involved state variables, the prediction of the
surrounding vehicles’ paths and the comprehensive and realistic evaluation at traffic level, to
mention just the most important ones. In more detail, in the previous work, the collision
avoidance term was formulated as a non-smooth function, which may entail difficulties for
gradient-based numerical solution algorithms, such as the employed feasible direction
algorithm (FDA). Therefore, in this work, the corresponding term has been modified, and a
novel smooth function is appropriately designed. In addition, the longitudinal control variable
in this work is the jerk, instead of the acceleration, which ensures smoother trajectories and
improves the passengers’ comfort. Moreover, the specific previous work did not consider
connectivity for the vehicles, which implies that the prediction of the surrounding vehicle
paths has limited accuracy, and the impact of vehicle connectivity cannot be assessed. Finally,
compared to the previous work, which only reports on limited open-loop evaluation instances
involving just a few vehicles, without testing its applicability within a closed-loop MPC
framework, this work develops the proposed approach fully, along with the appropriate MPC
framework; and implements it within a realistic microsimulation platform (Aimsun Next,
2019) in order to comprehensively evaluate the traffic-level effects of the controlled AVs at
various demand levels and for different penetration rates of vehicle automation and
connectivity.

Compared to other works in the literature, the proposed approach delivers a very efficient
algorithm, which is readily applicable in real time due to very low computational times
(fractions of a second). Moreover, the introduction of the enhanced information of the CAVs
enables more accurate prediction of their surrounding and is demonstrated to be crucial,
particularly in scenarios of high demand levels. Finally, based on the authors’ knowledge,
there are no comparable works considering such a comprehensive OCP and MPC-based
approach within a microscopic simulator for various demand levels and, especially, for various
penetration rates; and reporting on the effects of the AVs on their own efficiency and on the
traffic environment, as the penetration rate rises.

In summary, the main contributions of this work are the following:

• A highly efficient (fractions of a second) numerical approach for the solution of the OCP
for path planning of AVs.

• The full exploitation of vehicle connectivity via asynchronous path decision exchange
that leads to more accurate prediction of the surrounding CAV behaviour.

• Comprehensive traffic-level evaluation and analysis, including the impact of lane
changes, for different penetration rates and demand levels.

In more detail, this paper explores the impact of vehicle connectivity on the efficiency of
advancement of automated vehicles (AVs) and on the efficiency of the emerging traffic flow.
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The investigations address multi-lane motorways with mixed traffic, comprising both
automated and manually driven vehicles at different penetration rates. An optimal control
problem is employed for the path-planning of AVs, comprising three main elements:

• A simple kinematic model describing the vehicle movement process.

• An objective function to be minimized, which contains respective terms to reflect
efficient vehicle advancement; passenger comfort and fuel consumption; and avoidance
of collisions with other vehicles and of road departures.

• Short-term prediction of the trajectories of other neighboring vehicles (obstacles), which
is crucial for pro-active collision avoidance.

For the numerical solution of the optimal control problem (OCP), a very efficient iterative
feasible direction algorithm (FDA) is used. To ensure high-quality local minima, a simplified
Dynamic Programming (DP) algorithm is also employed to deliver the initial guess trajectory
for the FDA. Thanks to low computation times, the overall approach is readily executable
within a MPC framework, applying updated initial state and obstacle path prediction at each
repetition. MPC has a long history of applications in control, automation, and chemical
industries (Mayne, 2014; Mayne, Michalska, 1988; Qin, Badgwell, 2003). Due to the strongly
dynamic environment of the path-planning problem for AVs, the accurate prediction of the
surrounding vehicles’ paths is crucial, particularly at high highway speeds. However, the
uncertainties related to the changing environment and to the actual vehicle advancement
inevitably increase over time. Therefore, the MPC approach is often used for online path
planning of AVs, as it is very efficient in handling the arising uncertainties due to its
re-planning ability (Claussmann et al., 2019). One possibility is to solve the OCP at each time
step, with a corresponding shift of the planning horizon (Howard et al., 2010; Murillo et al.,
2018; Nilsson et al., 2015). An alternative possibility is to update path decisions in
event-based mode (Earl, D’Andrea, 2007; Khazaeni, Cassandras, 2016), which is pursued in
the current study.

Vehicle connectivity refers here to the capability of AVs to exchange with each other, in
an asynchronous mode, real-time information about their current state (position and speed)
and their latest generated path, where the latter strongly enhances the prediction accuracy for
obstacle movement in the short-term future. The MPC-based approach is embedded within the
Aimsun micro-simulation platform (Aimsun Next, 2019), which enables driving evaluation in
countless appearing driving scenarios. Specifically, we investigate two cases, each of them at
different penetrations of AVs:
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• No connectivity: Each AV is aware of the current position and speed of obstacles (via
its own sensors). Short-term prediction of obstacle movement is based on extrapolation,
assuming zero acceleration and same-lane movement.

• Connected automated vehicles: Each AV is aware of the current position and speed of
obstacles; in addition, it receives the path-planning decisions of other automated vehicles,
which facilitates the short-term prediction of their movement.

In both cases, the short-term movement prediction for manually driven vehicles is based on
zero-acceleration and same-lane extrapolation.

Demonstration results are reported for a motorway pipeline section. The results indicate
higher efficiency of the optimally controlled vehicles in driving closer to their desired speed,
compared to non-automated vehicles. In addition, increasing penetration rates of controlled
vehicles are found to lead to more efficient traffic flow. Specifically, as the penetration rate of
controlled vehicles rises, there is a significant increase of the average speed and, consequently,
a decrease on the average delay time and travel time for all vehicles. These conclusions apply
mainly for demand levels where the controlled vehicles have space to manoeuvre.
Specifically, the proposed approach is efficient due to the fact that the controlled vehicles are
able to apply smarter manoeuvres. Also, connected controlled vehicles are more efficient than
non-connected controlled vehicles, due to the improved real-time information that enables
more pertinent obstacle movement prediction. Finally, the emerging traffic flow and even the
manually driven vehicles are found to benefit from improved operation of the AVs.

It should be noted that urban road environments are out of the scope of this work, which
focuses on vehicles moving on a highway. We believe that application of a similar approach
for urban networks is possible with appropriate modifications or extensions, but this is left to
future work.

The rest of the paper is organized as follows: Section 3.3 presents the dynamics of each
AV and the components of the objective function that lead to the OCP definition. Section 3.4,
describes the numerical solution algorithms and explains the procedure used for MPC. Section
3.5 presents the simulation results, while Section 3.6 concludes this work.

3.3 Optimal Control Problem Formulation

This section describes the proposed path-planning strategy for automated road vehicles on
motorways. At first, the simple vehicle kinematic motion dynamics and considered hard
constraints are defined. Then, an objective function is designed, which includes appropriate
terms regarding the efficient vehicle advancement, the obstacle and off-road avoidance and the
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passenger convenience. Finally, the proposed path-planning algorithm is generated based on a
combination of FDA and Dynamic Programming techniques.

3.3.1 Problem Variables, State-Equations and Constraints

We consider a straight road on a two-dimensional plane, and the vehicle’s position on this
plane is expressed in global Euclidean coordinates. Each controlled vehicle is described by five
state equations, corresponding to the equations of motion, which are expressed in discrete time,
assuming time-steps of length T , as follows:

x(k+1) = x(k)+ vx(k) ·T +
1
2

ax(k) ·T 2 +
1
6

jx(k) ·T 3 (3.1)

y(k+1) = y(k)+ vy(k) ·T +
1
2

ay(k) ·T 2 (3.2)

vx(k+1) = vx(k)+ax(k) ·T +
1
2

jx(k) ·T 2 (3.3)

vy(k+1) = vy(k)+ay(k) ·T (3.4)

ax(k+1) = ax(k)+ jx(k) ·T (3.5)

where x(k),y(k),vx(k),vy(k),ax(k) correspond to the longitudinal and lateral position, the
longitudinal and lateral speed and the longitudinal acceleration at time-step k, respectively;
while the control variables jx(k),ay(k) refer to the longitudinal jerk and the lateral
acceleration, respectively, which are kept constant for the duration T of each time-step k;
hence the above state equations are derived from the exact time-integration of the
corresponding continuous-time differential equations of motion. Note that the consideration of
jerk (rather than the acceleration) as a control variable for the longitudinal direction leads to
smoother vehicle trajectories, which consequently improve the convenience of the vehicle
passengers. On the other hand, for the lateral movement, such detail is not necessary, as the
lateral speed and movement is only needed for lane changing, and a lane change maneuver is
substantially less frequent compared to the continuous longitudinal motion. It should be noted
that, in contrast to other works, the proposed approach produces continuous, rather than
discrete, lateral movement, thus avoiding the usage of integer variables that increase the
computational effort for the numerical OCP solution.

In this work, the model for expressing the vehicle dynamics is a double (lateral) and triple
(longitudinal) integration model, which is quite common for the problem at hand, involving
high-speed longitudinal movement with occasional lane changes. This model considers the
lateral and longitudinal movement to be decoupled. An alternative would be the use of a so-
called bicycle model (Rajamani, 2011). However, in a lane-based highway environment, a
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vehicle mostly follows a leader or drives on its lane with its desired speed, as the lane-change
manoeuvres are not very frequent. In these conditions, explicit consideration of steering is not
deemed important.

The control variables jx(k),ay(k) are bounded according to vehicle specifications, whereby
the longitudinal upper bound and the lateral bounds are constant, while the longitudinal lower
bound is state-dependent, as follows:

jx,min(vx(k),ax(k))≤ jx(k)≤ jx,max (3.6)

ay,min ≤ ay(k)≤ ay,max (3.7)

The constant upper bound jx,max and the lateral bounds ay,min,ay,max may be set with
consideration of the vehicle capabilities and the passengers’ convenience. Furthermore, a
vehicle, having a currently non-negative longitudinal speed vx(k), should not have negative
longitudinal speed at the next time step, i.e.,

vx(k+1)≥ 0 (3.8)

should hold. To ensure this, while avoiding state constraints that may complicate the numerical
solution of the OCP, the state equation (3.3) is replaced in (3.8) and, after rearrangement, this
yields the state-dependent control constraint

jx(k)≥−
2

T 2 vx(k)−
2
T

ax(k) (3.9)

This bound may be unrealistically low (negative) at higher speeds, due to the magnitude of
the coefficients, which can be a cause of discomfort for the passengers. Note that the equation-
version of (3.9) may be interpreted as a dead-beat controller that drives the speed vx to zero in
exactly two time steps. However, the magnitude of the resulting jerk bounds can be mitigated
by choosing more moderate "controller" coefficients 0 < K1 ≤ 2/T 2 and 0 < K2 ≤ 2/T , which
would drive vx to zero asymptotically. This way, accordingly moderate lower jerk bounds are
obtained, while guaranteeing that the constraint (3.8) is always satisfied. In conclusion, the
considered lower bound on longitudinal jerk is

jx,min(vx(k),ax(k)) =−K1 · vx(k)−K2 ·ax(k) (3.10)

and (3.6) is replaced by the following state-dependent constraint to be considered in OCP

h = [ jx(k)− jx,max][ jx(k)− jx,min]≤ 0 (3.11)
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3.3.2 Optimization Objectives

3.3.2.1 Objective Function

The objective function to be minimized, in the frame of the OCP formulation, includes a
number of terms, which consider efficient, convenient and safe driving, each with a weighting
parameter to reflect the corresponding priorities. Among these terms, several safety
constraints are considered as soft constraints, so as to drastically speed up the numerical
solution. Although alternative approaches may indeed lead to respect of the safety constraints
in a more direct way, our indirect approach (using soft constraints) also satisfies these
constraints and fulfils this task to the full, while featuring very low CPU times, which make it
readily applicable in real time.

The optimisation criterion, which extends over a time horizon of K steps in the future, reads

J =
K−1

∑
k=0

[
w1 j2

x(k)+w2a2
x(k)+w3a2

y(k)+w4[vx(k)− vd,x]
2

+w5[vy(k)− vd,y]
2 +w6 fr(y(k))+w7

n

∑
i=1

[
ci(x(k),y(k))

]] (3.12)

where w1, . . . ,w7 are non-negative penalty parameters.
The first three quadratic penalty terms concern the comfort of the passengers, which is

related to the magnitude of lateral and longitudinal acceleration, as well as of the longitudinal
jerk. Note that the quadratic penalty term of longitudinal acceleration acts also as a good
proxy for deriving fuel-minimizing vehicle trajectories (Typaldos et al., 2020b). More
specifically, it has been demonstrated that the simple square-of-acceleration term delivers
excellent approximation of fuel-optimal vehicle trajectories, when compared with the use of
complex and realistic fuel consumption models in the objective function.

The fourth and fifth penalty terms reflect the vehicle advancing goals. These terms account
for pre-specified desired longitudinal and lateral speeds by penalizing speed deviations from
those values. In the current work, vd,x has a positive value, corresponding to the vehicle type
or driver choice of desired longitudinal speed; while vd,y is set to zero to suppress unnecessary
lateral movements. Note that, vd,y can be set to non-zero values in case, for example, a vehicle
is bound to exit the motorway at a downstream off-ramp or in emergency cases, where the
controlled vehicles should create appropriate space, e.g., for an ambulance or a fire truck to
pass.

The two last penalty terms, which are related to the lateral road boundaries and the obstacle
avoidance, respectively, are described in detail in the following.
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Figure 3.1: The penalty function of road boundaries.

3.3.2.2 Road Boundaries Term

The penalty function for the road boundaries must be designed so as to disallow the automated
vehicle (AV) to depart from the road. To this end, the following smooth quadratic function,
dependent on the width w of the road, is adopted, which is equal to zero when the vehicle
moves within the road boundaries; while its value increases the more the vehicle would depart
from the boundaries

fr =


(y−d)2 ,y < d
0 ,d ≤ y≤ w−d
(y+d−w)2 ,y > w−d

(3.13)

where the small positive parameter d is used to prevent the ego vehicle from moving too close
to the road boundaries; and w is the road width. Fig. 3.1 displays the penalty function generated
for the road boundaries for a three-lane motorway with w = 9 m and d = 1.5 m.

3.3.2.3 Collision Avoidance Term

Crash avoidance is an absolute necessity in vehicle path planning, that may be achieved in
different ways. Note that crash avoidance is closely related to the highest deceleration
available, not just the way (hard or soft) of considering the related constraints. Thus, it is
crucial that deceleration vis-à-vis an obstacle is applied timely, so as to avoid the need for
harsh or infeasible deceleration eventually; and this is indeed a feature enabled via OCP with
future time horizon (that helps anticipate imminent crash risks) and soft constraints (that exert
timely smooth repulsion while the controlled vehicle is approaching obstacles).

The penalty function (similar to potential field functions) for obstacle avoidance should
feature high values at the gross obstacle space, so that the ego vehicle is repulsed, and
potentially unsafe trajectories are suppressed; and low (or virtually vanishing) values outside
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of that space. To this end, we adopt, for each obstacle, an ellipsoid penalty function, which is
best understood in its one-dimensional form f (x) = (1+ (x/a)p1)−1. This smooth function
has a maximum of 1 for x = 0; for |x| < a, the function retains values close to 1 (the
maximum), while for |x| > a, it reduces to very small values or virtually zero. The even
integer parameter p1 influences the sharpness of the smooth transition of function values from
1 (for |x|< a) and 0 (for |x|> a).

For the present needs, the function is generalised to two dimensions, and its two respective
arguments δx and δy reflect the longitudinal and lateral distances between the ego vehicle and
each obstacle i, while the respective counterparts of parameter a should be selected based on
the vehicle dimensions, taking into account also the vehicle and obstacle speeds for safe car-
following distances. Thus, in two dimensions, the following ellipsoid penalty function for each
obstacle i is used

ci(x,y) =
1(

δx+s
0.5·rx

)p1 +
(

δy
0.5·ry

)p2 +1
(3.14)

where p1 and p2 are positive even integers, δx = x− xi and δy = y− yi are the longitudinal
and lateral distances from obstacle i, rx and ry determine the dimensions of the ellipse, and the
term s introduces a shift of the ellipse’s longitudinal centre position, as will be explained in the
following.

For safety, the width of the ellipse, ry, should be equal to the width of a motorway lane, W ,
to avoid lateral intrusion of the ego vehicle into a lane occupied by an obstacle. On the other
hand, the length of the ellipse, rx, should consider, beyond the physical vehicle length, a safe
space gap in front and behind of each obstacle i. In case the ego vehicle is behind the obstacle,
a safe space-gap, equal to ω ·vx, should be maintained between the two vehicles, where ω is the
time-gap parameter (Rajamani, 2011). On the other hand, when the ego vehicle is in front of the
obstacle, a safe space-gap, equal to ω · vi, should be considered, with vi being the longitudinal
speed of the obstacle. Moreover, the physical dimensions of both ego and obstacle vehicles,
Li = (µe +µo,i)/2, with µe, µo,i being the ego and obstacle’s i lengths, respectively, should be
considered as a minimum safe space-gap in case of zero speeds. Thus, the longitudinal ellipsoid
dimension is defined as

rx = ω · vx +ω · vi +Li (3.15)

Due to the difference in the longitudinal speeds of the ego vehicle and the obstacle, the
above space gaps in front of and behind the obstacle are accordingly different, hence the ellipse
is longitudinally asymmetric with respect to the physical centre of the obstacle. Therefore,
the ellipse centre must be appropriately shifted, depending on ego vehicle and obstacle speeds
difference. Specifically, the position of the ellipse centre is expressed as the summation of δx
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(a) ω = 0 s or (vx = 0 m/s and vi = 0 m/s)

(b) ω = 1.2 s, vx = 0 m/s and vi = 20 m/s (c) ω = 1.2 s, vx = 5 m/s and vi = 20 m/s

(d) ω = 1.2 s, vx = 10 m/s and vi = 20 m/s (e) ω = 1.2 s, vx = 15 m/s and vi = 20 m/s

(f) ω = 1.2 s, vx = 20 m/s and vi = 20 m/s (g) ω = 1.2 s, vx = 25 m/s and vi = 20 m/s

Figure 3.2: Illustration of the collision avoidance term (orange ellipsoid),
ci(x,y), for different ego vehicle speeds with time gap ω = 1.2 s and obstacle
speed vi = 20 m/s, compared to the corresponding space gap of the constant
time gap policy (red rectangle). The lateral dashed line indicates the physical

vehicle centre location.

and the shift term s given by

s =
ω · (vx− vi)

2
(3.16)

For safe car-following, the longitudinal size of the ellipse depends on the controlled
vehicle’s and obstacle’s speeds, as well as the time-gap value employed. Thus, the size is not
fixed, but changes over time according to the mentioned variables. For example, when the
vehicles are stopped (zero speed), the ellipse’s longitudinal dimension equals the average
length of the controlled vehicle and the leading vehicle, in both sides of the ellipse; while, as
the speed of both vehicles increases, the dimension of the ellipse increases accordingly.

In Figs. 3.2a-3.2g, different cases for the proposed ellipsoid are displayed for illustration.
We assume an obstacle with its centre point at 50 m. The ellipsoids in each case are displayed
in orange color and are contrasted to the corresponding space gaps resulting from the constant
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time-gap policy (red rectangle) (Rajamani, 2011). In Fig. 3.2a, both the ego vehicle and the
obstacle have zero speed, leading to a symmetric ellipse shape around the obstacle centre, as
both the front and the back part around the vehicle centre (dashed black line) are equal to Li.
Note that the shape of the ellipse is close to a rectangle due to the use of high values for both
exponents p1 and p2 in (8) (e.g. p1 = p2 = 18). In Figs. 3.2b-3.2g, using a time-gap value
ω = 1.2 s and a longitudinal obstacle speed vi = 20 m/s, it is observed how the ellipse shape
changes, and the ellipse centre shifts in dependence of the ego vehicle speed. Specifically,
when the ego vehicle has zero speed (3.2b), the centre of the ellipse is shifted to upstream to
accommodate a back space-gap equal to the average length of both vehicles; while the front
part of the ellipse equals the space-gap, which depends on the speed of the obstacle. For higher
ego vehicle speeds, it can be observed that the length of the ellipse increases, and, at the same
time, its centre shifts downstream. In the specific representation, the length of the front part of
the ellipse does not change, as the obstacle speed remains constant.

Potential obstacles, to be considered in the sum of the collision avoidance term in (3.12),
are all vehicles around the ego vehicle that might appear on its way, causing potentially a crash
risk, during the considered planning horizon. Thus, all vehicles within a longitudinal zone in
front and behind the ego vehicle should be considered as potential obstacles, and the length of
this zone is taken proportional to the ego vehicle’s desired longitudinal speed times the time
horizon.

3.3.3 Problem Formulation

In conclusion, the path-planning problem may be formulated as OCP. The difference equations
(3.1)-(3.5) may be organised in the following vector form

xxx(k+1) = fff [xxx(k),uuu(k),k], k = 0, . . . ,K−1 (3.17)

where xxx and uuu are the system states and control variable vectors, respectively. With known
initial state xxx(0) = xxx0 and obstacle trajectories, the optimal control problem consists in
minimizing the objective function (3.12) subject to (3.17) and control bounds

hhh = [uuu(k)−uuumax][uuu(k)−uuumin]≤ 000, k = 0, . . . ,K−1 (3.18)

which reflect constraints (3.7) and (3.11) in a unified way.
The general form of the objective function (3.12) is given by

J =
K−1

∑
k=0

φ [xxx(k),uuu(k)] (3.19)
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and then, the Hamiltonian function is given by (see (Papageorgiou et al., 2015, 2016))

H[xxx(k),uuu(k),λλλ (k+1),k] = φ [xxx(k),uuu(k)]+λλλ (k+1)T f [xxx(k),uuu(k),k]

+µµµ(k)T hhh[xxx(k),uuu(k)]
(3.20)

where λ (k + 1) stands for the co-state vector (equivalent to Lagrange multipliers) for the
corresponding state equations.

The following conditions of optimality for the discrete-time OCP must be satisfied for
k = 0, . . . ,K−1 (notation: zw = ∂ z/∂w)

xxx(k+1) = Hλλλ (k+1) = f [xxx(k),uuu(k),k] (3.21a)

λλλ (k) = Hxxx(k) = φxxx(k)+ f T
xxx(k)λλλ (k+1)+hT

xxx(k)µµµ(k) (3.21b)

Huuu(k) = φuuu(k)+ f T
uuu(k)λλλ (k+1)+hT

uuu(k)µµµ(k) = 0 (3.21c)

Equations (3.21a) and (3.21b) are the state and co-state difference equations, respectively,
while (3.21c) specifies the optimal control variables. Furthermore, the following boundary
conditions must be satisfied

xxx(0) = xxx0

λλλ (K) = 000.
(3.22)

Although expressing a dynamical process, the above minimization problem is, from a
mathematical point of view, a Nonlinear Programming Problem (NLP) due to the
discrete-time nature of the involved process model, see (Papageorgiou et al., 2015, 2016).
However, thanks to the structure of the state equation (3.17), which allows for the state
variables to be efficiently eliminated as functions of the control variables, the optimisation
problem may be solved, by use of reduced gradients, in the reduced space of the control
variables much more efficiently, compared to a general NLP problem with full dimension.

3.4 Numerical Solution and Model Predictive Control

3.4.1 Feasible Direction Algorithm (FDA)

The solution of the formulated OCP is computed by use of the very efficient feasible direction
algorithm (FDA) (Papageorgiou et al., 2016; Typaldos et al., 2020b), which exploits the
structure of the state equations to map the OCP into an NLP problem in the reduced space of
control variables. Thus, the algorithm attempts the calculation of a control trajectory
uuu(k),k = 0, . . . ,K − 1, which corresponds to a local minimum of the cost function, in the
mK-dimensional space, where m is the number of control variables. This marks a substantial
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reduction of the problem dimension, as the state variables are eliminated. More specifically,

FDA exploits the fact that g(k) = [
∂ f

∂u(k)
]T λ (k + 1)+

∂φ

∂u(k)
equals the reduced gradient in

the mK-dimensional reduced space of the control, if the states and co-states involved in the
partial derivatives satisfy the state and co-state equations. The details about this fact may be
read in optimal control textbooks (e.g. (Papageorgiou et al., 2015)).

The algorithm is iterative, starting with an initial-guess feasible control trajectory; feasible
meaning that it satisfies all state equations and control inequality constraints. The multipliers
of the inequality constraints that define bounds are calculated, using (3.21c), as
µµµ(k) = −ggg(k)/[∂hhh/∂uuu(k)] for active constraints and µµµ(k) = 0 for inactive constraints. At
each iteration, using reduced gradient information, a descent search direction in the (reduced)
mK-dimensional control space is calculated based on conjugate gradients (or quasi-Newton).
Subsequently, a line-search procedure delivers the optimal step along the search direction, and
this optimal step leads to an enhanced feasible control trajectory, with improved objective
function value. This enhanced trajectory is fed to the next iteration; and so forth, until a
sufficiently low reduced-gradient norm is obtained, which marks convergence to a virtually
optimal control trajectory. The algorithm guarantees improved objective values at each
iteration and features global convergence, from any starting control trajectory, to a local
minimum.

The algorithmic steps of FDA are presented below (superscripts (i) indicate the iteration
index);

1: Receive initial state values.
2: Guess an initial control trajectory uuu(0)(k),k = 0, . . . ,K−1
3: Calculate states xxx(0)(k)
4: In a unique loop: calculate ggg(0)(k),µµµ(0)(k) and co-states λλλ

(0)(k) for k = K − 1, . . . ,0,
starting with λλλ

(0)(K).
5: Set iteration index i = 0.
6: while i <max_iterations do
7: Specify a descent direction sss(i)(k),k = 0, . . . ,K−1.
8: Specify an optimal scalar step ξ (i) > 0 through line optimization.
9: Calculate uuu(i+1)(k) = uuu(i)(k) + ξ (i)sss(i)(k),k = 0, . . . ,K − 1 and xxx(i+1)(k) for

k = 0, . . . ,K−1 (apply bounds on control)
10: In a unique loop: calculate ggg(i+1)(k),µµµ(i+1)(k) and co-states λλλ

(i+1)(k) for k = K −
1, . . . ,0, starting with λλλ

(i+1)(K).
11: Calculate projected gradient when the control bounds are applied.
12: if not converged then
13: index increment, i := i+1
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14: continue
15: else
16: break
17: end if
18: end while
19: Generate optimal control input uuu(k),k = 0, ...,K−1

3.4.2 Dynamic Programming (DP)

As the OCP at hand is non-convex, FDA may converge to a local minimum. Note that, each
single-lane vehicle path can give raise to a local minimum, even though lane changing could
possibly improve the cost function. More precisely, gradient-based algorithms search, in each
iteration, for descent directions for the control variables. However, in the specific problem,
due to the penalisation of lateral acceleration and the rectangular shape of the ellipse in the
collision avoidance term (3.14), a controlled path on a lane may feature positive gradients
w.r.t. the lateral control, i.e. any lateral deviation from the current path would locally increase
the objective value. Thus, if there is no lateral movement in the initial control trajectory, the
controlled vehicle will remain in the same lane for the whole time horizon (local minimum),
e.g. trapped behind an obstacle on the same lane.

In order to overcome this difficulty and to enhance the quality of the optimal paths
delivered by the gradient-based FDA, Dynamic Programming (DP) is first used appropriately
to deliver an initial guess trajectory. Despite the involvement of DP in an initial problem
solution phase, the overall required computation time for the optimal path generation remains
extremely low and certainly real-time feasible. The DP methodology is known to deliver a
globally optimal solution trajectory for optimal control problems. However, DP is
characterized by computational cost, which increases exponentially with the problem
dimensions; and this cost is indeed too high in the present application for efficient real-time
path-planning. However, DP is not considered here stand-alone, as it is not real-time feasible
for the original path-planning problem. Instead, a simplified problem is solved through DP in
very short time, in order to be used as a good initial guess for FDA. Using this combination of
methods, the weaknesses of both, i.e. FDA leading to bad local minima and DP being
infeasible in real time due to the curse of dimensionality, are strongly mitigated, resulting in
good vehicle paths within very short computation times.

In particular, such rough, but globally optimal solutions of the DP simplified problem were
found to include lane changes in driving situations where a lane change is indeed beneficial.
Note again that the DP algorithm is only used to deliver the initial trajectory for the FDA.
Therefore, sacrificing some accuracy due to the simplifications is not important, as the FDA has
the final responsibility to deliver an optimal path that satisfies all vehicle tasks and constraints.
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The simplifications introduced in the DP problem are:

• A larger step size T (1 s) is used, versus the four times smaller time step (0.25 s) used in
FDA and deemed appropriate for path-planning of AVs. As a consequence, the number
K of time steps within each planning horizon decreases accordingly.

• The state equation (3.5) is dropped, and the longitudinal acceleration ax is used as a
control variable instead of the jerk.

• The lateral vehicle motion is also simplified by dropping state equation (3.4) and
modifying equation (3.2) assuming that the vehicle’s lateral position is discrete and
lane-based. Specifically, the lateral control is limited to three distinct values at each time
step, namely {−1,0,1}, meaning that the vehicle can only apply a lane change towards
the adjacent left or right lanes or stay on the same lane.

• Only one lane change is allowed at each planning horizon, in order to reduce the amount
of options to be explored by DP.

• The longitudinal acceleration is also roughly discretised and may obtain one out of three
values, namely {−3,0,3} m/s2.

Given the above modifications and the fact that state constraints may be directly handled
by the DP algorithm, the cost function used with DP is simpler than the corresponding cost
function of the OCP and is described as follows

JDP =
K−1

∑
k=0

[w1a2
x(k)+w2u2

y(k)+w3(vx(k)− vd)
2] (3.23)

where ax and uy are the control variables, corresponding to the longitudinal acceleration and the
discrete lateral movement, which reflects the lane changes. Collision avoidance, road departure
avoidance and suppression of negative speeds are taken care by the DP algorithm directly, as
will be discussed later.

In more detail, the vehicle kinematics (with bigger time step T ) in the simplified DP
problem are considered as follows

x(k+1) = x(k)+ vx(k)T +
1
2

ax(k)T 2 (3.24)

y(k+1) = y(k)+uy(k) (3.25)

vx(k+1) = vx(k)+ax(k)T (3.26)



Chapter 3. Optimization-Based Path-Planning for Connected and non-Connected
Automated Vehicles

57

where x(k),y(k),vx(k) correspond to the state variables of the simplified problem and reflect the
vehicle’s longitudinal position, lane and speed at discrete times k = 0, . . . ,K− 1, respectively.
The control variables ax,uy reflect the longitudinal acceleration and lateral change of lane, as
mentioned. The state and control variables are bounded within the following feasible regions

xxx(k) ∈ XXX (3.27)

uuu(k) ∈UUU (3.28)

where the admissible state region XXX does not allow for road departures, vehicle interference
or negative longitudinal speeds; while the admissible control region UUU contains the mentioned
discrete values of the control variables in the simplified problem, i.e. ax ∈ {−3,0,3} m/s2 and
uy ∈ {−1,0,1}.

After discretisation of the longitudinal position, speed and acceleration with consistent
respective increments, the standard discrete DP algorithm is designed as follows. The
algorithm starts with time step K−1 and advances backward, step-by-step. At every step k, all
discrete states are branched into all possible transitions (reflecting all combinations of the
discrete ax and uy values), whereby infeasible transitions (road departure, obstacle collision,
negative longitudinal speed) are ignored. For each feasible discrete state, the corresponding
optimal controls, along with the corresponding optimal cost-to-go value, are stored. The
algorithm ends, when the initial state at k = 0 has been evaluated. Eventually, starting from the
given initial state and progressing forward step-by-step by following the respective optimal
controls at each encountered discrete state, the optimal trajectories are obtained.

In view of the positive semi-definite nature of the objective function (3.23), alternative
forward-branching procedures can be employed for the solution of the simplified DP problem,
such as branch-and-bound or DFS (Depth-First-Search)-based approaches (Cormen et al.,
2001). In the current work, in addition to the aforementioned standard DP, a
forward-branching procedure, which employs DFS-based branching (Bar-Yehuda et al., 1989;
Cho, Shaw, 1997), was also tested. In this approach, states xxx(k) are considered as nodes that
can be branched, by application of discrete control combinations, to corresponding subsequent
nodes xxx(k + 1), whereby transitions that lead to infeasible states (nodes) are ignored. The
initial state (root) xxx(0) is first branched towards one single (feasible) transition (i.e. using a
specific control combination) all the way, until a state (node) xxx(K) of the final time K is
reached. The cost of this path (trajectory) is provisionally stored as the current optimal cost.
Then, the algorithm backtracks continuously, according to the DFS procedure, and creates
new paths to the final time K if the arrival cost of all intermediate nodes is lower than the
provisional optimal cost. In case a new complete path from k = 0 to K is found, which has
lower cost, the previous optimal cost is replaced. The algorithm ends when all open (not
branched) nodes have a higher arrival cost than the current optimal cost. Thus, the algorithm
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may leave many feasible nodes unvisited, which leads to corresponding reduction of the
computational effort, without affecting the optimality of the solution. Remarkably, this
DFS-based procedure, which leads to identical solutions as the standard DP algorithm, was
found to take a computation time ten times lower, on average, compared to the standard DP
algorithm for the problem at hand. Specific run times for all employed algorithms are reported
in the next section.

More formally, the algorithmic steps of the forward-branching procedure are as follows:
1: Initialize: root vertex p (initial state), JBest = ∞,k = 0
2: Call DFS algorithm for traversing, recursively:
3: procedure DFS(p)
4: label p as visited
5: if k > K or p == infeasible then
6: return
7: end if
8: if k == K and JDP,p ≤ JBest then
9: JBest = JDP,p

10: else if JDP,p ≥ JBest then
11: return
12: end if
13: for each child q (combination of uuu ∈UUU) of p do
14: if q is undiscovered then
15: calculate x(k+1),y(k+1),v(k+1) and JDP,q

16: if xxx /∈ XXX then
17: flag q as infeasible
18: end if
19: k = k+1
20: call DFS(q)
21: end if
22: end for
23: end procedure
where p is the parent nodes, q are the children nodes of a parent p, JDP,q is the cost obtained at
a node q and JBest is the optimal cost.

The complexity of both DP algorithms can be considered to be known beforehand and
constant, due to the fact that the dimensions of the problem are fixed. Specifically, the problem
is solved for fixed time-horizon, which means that the dimensions of the control and state
variables are not changing. Of course, the actual execution complexity is reduced due to a
number of factors, such as: surrounding vehicle density (affecting the amount of feasible
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states), current lane (one or both lateral movements possible), the size of a time step, the
time-horizon length.

Due to the introduced simplifications, the resulting DP optimal control trajectories have
to be processed appropriately, before being used as an initial control trajectory for FDA, so
as to be consistent with FDA control inputs. More specifically, the longitudinal acceleration
resulting from the DP procedure is transformed to the corresponding jerk via simple Euler
differentiation; while any lane changing delivered by the DP procedure is transformed into a
lateral acceleration trajectory that leads to the intended lane change also in the FDA settings.

3.4.3 Safety Override

The proposed optimal control approach, with the use of a penalty function (3.14) for collision
avoidance does not absolutely guarantee crash-free path generation. Although in the vast
majority of cases, the solution of the optimization problem produces trajectories that do not
include crashes, thanks to the selected high value of the corresponding weighting parameter,
there are very rare cases where, due to the conflicting goals of the collision avoidance term
versus the desired speed term, a trajectory including a crash may result. These two terms may
be conflicting, as the first term may be striving to decrease the ego vehicle speed, in presence
of a slower leading obstacle, while the second term is striving to increase the speed towards
the desired speed. A balance between these two terms is typically reached (through the
corresponding penalty weights in (3.12)), which guarantees efficient vehicle advancement
while suppressing collisions. However, under extreme conditions, e.g. in high density
scenarios, the possibility of a collision cannot be utterly excluded.

In order to avoid such decisions and ensure safety, an emergency rule is activated if the
solution procedure produces an unsafe path. In this case, the just generated path is dropped,
and a new one is generated, with reduced desired speed and planning horizon. Specifically, the
desired speed is set equal to a percentage of the leading obstacle’s speed (e.g. 95% of obstacle’s
current speed) and the planning horizon is reduced by half. Both these measures reduce the
size of the desired-speed term and enable crash-free vehicle advancement. In particular, the
reduction of the planning horizon is helpful because the objective function (3.12) is additive
over the time steps; thus, in some rare driving scenarios, it may appear less costly to crash
with the leading vehicle for the first few time steps and then achieve all goals for the rest of
the planning horizon; instead of avoiding the collision and bearing a high cost each time step
due to the desired-speed deviation. Factually, these actions definitely suppress collisions, as the
desired speed term is not competing with the collision avoidance term anymore.
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3.4.4 Model Predictive Control

Summarising, the presented numerical solution approach requires, as input data, the current
(initial) ego vehicle (EV) state, as well as the current and future positions and speeds of
obstacle vehicles (OVs); to produce optimal EV controls and states over a future time horizon
KT . This is an open-loop solution, and, given the dynamic environment (moving OVs), the
time horizon should be long enough to anticipate and prepare for future situations and avoid
myopic control actions. On the other hand, as time advances, the uncertainties related to the
changing environment (actual versus predicted OV movement) and to the actual vehicle
advancement (versus the open-loop solution) increase, as increasing deviations from the
assumed predictions are inevitable. To address these uncertainties, the open-loop solution
procedure is cast in a model predictive control (MPC) frame, whereby the solution is
re-computed online, using the same horizon KT (rolling or receding horizon), whenever
substantial changes regarding the initial predictions are detected at any time before the end of
the time horizon. The new computation uses updated initial states and updated predictions
about the movement of OVs. This calls for computation times smaller than the path update
period, something that is indeed satisfied by the presented efficient solution procedure.

Considering traffic flow with many vehicles, as considered in the subsequent simulation
investigations, three types of vehicles are distinguished:

1. Manually driven vehicles, which, in the simulation investigations, are navigated by the
employed microscopic simulator (Aimsun).

2. Automated vehicles without V2V communication capabilities, which are navigated
according to the presented procedure. Such vehicles rely only on their own sensors to
sense the current position and speed of other surrounding vehicles of any type, whose
paths are predicted simply by assuming that they will keep their current lane and speed
fixed over the EV planning horizon KT .

3. Connected automated vehicles (with V2V communication capabilities), which are also
navigated according to the presented procedure. However, such vehicles broadcast their
latest path decision to other surrounding connected vehicles; and can receive the latest
path decisions of surrounding connected vehicles. Note that this information is
broadcasted asynchronously, i.e. a path-planning decision by a vehicle is broadcasted as
soon as it is produced. Thus, connected AVs rely also on their own sensors to sense the
current position and speed of other surrounding vehicles; but, in addition, they receive
the latest path planning decision by other surrounding vehicles of the same type.

In the scenarios tested in this work, two cases of AV connectivity are considered:
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• Non-connected automated vehicles

• Connected automated vehicles.

Both cases are tested for different penetration rates, along with manually driven vehicles,
which are guided by the microsimulation platform.

As evidenced by the above statements, for manually driven vehicles and non-connected
AVs, no enhanced information is available, i.e. the non-connected AVs have information about
the surrounding vehicles only through their sensors. Consequently, they only know the initial
position and speed of the obstacles. So, in order to predict their surrounding vehicles path, the
AVs assume that all the obstacles keep their speed and lane fixed over the planning horizon.

On the other hand, connected AVs, having some obstacles of the same type, enjoy enhanced
information exchange with such obstacles. Specifically, connected obstacle vehicles (which
are also controlled by the proposed approach) send their last generated path to other connected
AVs around them. Thus, whenever a connected AV needs to generate a path, it requests the
last generated paths of its surrounding connected obstacles, which contains not only the initial
position and speed, but also the acceleration and the lane information over the planning horizon.
Note that the communication between the connected vehicles is asynchronous, which means
that each controlled vehicle generates its path independently, in terms of time, of the other
vehicles. Thus, the time a surrounding connected OV last generated its path may deviate from
the time that the EV is calculating its own path, e.g., the EV is calculating at time k, while the
OV had calculated its path at time k− n. For this reason, the available decided path for each
connected OV extends up to time k+K−n, where K is the time horizon, and must be extended
for the n− 1 missing time steps. This is done by considering that the OV speed and lane, for
these remaining time-steps, remain constant and equal to the last communicated values (of time
k−n+K).

As mentioned earlier, the EV path is re-generated in real time to address evolving deviations
from the last predicted driving conditions. More specifically, a new updated path is generated
in the following cases:

• The EV has driven for the duration of half planning horizon (KT/2) according to the
last generated trajectory. The plan is then updated, even if no deviations are observed,
because application of the second half of the last path may lead to myopic actions.

• One or more surrounding vehicles deviate substantially from their predicted paths, e.g. an
OV changed lane or changed its speed significantly, compared to its predicted movement.

• A new vehicle enters into the planning zone around the EV, corresponding to a new OV
that was not accounted for in the last EV planning.
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• The controlled vehicle cannot track the produced path (e.g. when certain safety-related
lane-changing restrictions are violated in the microscopic simulation environment).

It may be useful to highlight that the pursued OCP approach aims at minimising an objective
function, which reflects the various vehicle tasks, the successful fulfillment of which may entail
complex vehicle manoeuvres. In other words, the goal of the vehicle movement strategy is not
to track a pre-specified vehicle path, but to create an opportune path; therefore, classic stability
is not a major issue here, the main interest focussing on the quality (in terms of the degree of
task fulfillment) of the created path.

3.5 Simulation Testing and Results

3.5.1 Simulation Environment

In order to evaluate the proposed path-planning approach, including its MPC-based application,
in realistic environments, the procedure was implemented in the Aimsun’s (Aimsun Next, 2019)
micro-simulation platform with the use of both provided API and SDK tools to integrate the
developed path-planning procedures in the traffic context. This implementation enables the
investigation of how vehicles, guided by our path-planning approach, interact with each other
and with manually driven vehicles, that emulate human driving, in countless driving situations
occurring for a variety of traffic conditions. Due to the discrete nature of the micro-simulator
with respect to lateral vehicle movement, the produced path of each AV must be modified
appropriately to enable its application within the simulator. Specifically, Aimsun does not allow
for continuous lateral vehicle positioning or movement, other than discrete lane assignment
and instantaneous (vertical) lane changing. Therefore, the continuous lateral AV movements,
produced by the path-planning approach, must be translated appropriately in terms of Aimsun
lane positioning. For example, in a three-lane motorway section with each lane being 3 m wide,
Aimsun assumes that the right-most lane is lane 1, the middle lane is lane 2 and the left-most
lane is lane 3. Thus, for Aimsun usage, the lateral AV position at any time must belong to one of
these lanes. On the other hand, in the proposed path-planning approach, lateral vehicle position
is continuous (as in real conditions), hence, the AV assignment to a discrete lane in the simulator
is effectuated according to the AV lateral position: if the AV lateral position is within a range [0,
3] m, the AV is assigned to the right-most lane; if it is within range [3, 6] m, it is assigned to the
middle lane; and for range [6, 9] m, the AV is assigned to the left-most lane. The same applies
also in case the AV is executing a lane change, leading to a “vertical” lane change, as required
by Aimsun, according to Fig. 3.3. This issue is not part of the proposed vehicle movement
strategy, which, in a real application, would produce a continuous path. It is only for the needs
of the commercial micro-simulation platform (Aimsun) that this discretisation is introduced, so
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the procedure is deemed to be of minor importance for the designed movement strategy, but is
necessary to enable usage of Aimsun for the comprehensive traffic-level evaluation.

In fact, whether a controlled vehicle will apply a lane change or not, depends on the time
the OCP decided this lane change to happen. As already mentioned in the previous section, the
OCP is solved for a fixed time horizon, K, but only half of this horizon is applied (at most).
Thus, if a lane change was decided during the first K/2 period, then the vehicle actually applies
the lane change manoeuvre; otherwise, the vehicle just stays at its current lane, with its lateral
position being the middle of this lane. Note that, in a lane-based highway environment, a
vehicle mostly follows a leader or drives on its lane with its desired speed, as the lane-change
manoeuvres are not frequent; therefore explicit consideration of wheel steering is not important.
On the other hand, when a lane-change manoeuvre is decided, the vehicle must safely drive
from the centre of a lane to the centre of an adjacent lane. This lane change manoeuvre, in real
application, can be carried out by following pre-fixed lane-change. For example, the following
procedure can be followed in real conditions:

• The algorithm decides about when and where to effectuate a lane-change within a time
horizon.

• Whenever a lane change is decided, a pre-fixed lane-change trajectory can be applied,
e.g. simply using a sigmoid function from the centre of the vehicle’s lane to the centre of
the target lane (Claussmann et al., 2015).

For the simulation investigations, two cases were considered, each of them at different
penetrations of AVs:

• No connectivity: Each AV is aware only of the current position and speed of obstacles
(via its own sensors).

• Connected automated vehicles: Each AV is aware of the current position and speed of
obstacles; in addition, it receives the path-planning decisions of other AVs, which
facilitates more accurate short-term prediction of their movement.

In both cases, manually driven vehicles are moved according to Aimsun’s Gipps (lane-
changing) (Gipps, 1986) and IDM (car-following) (Treiber, Kesting, 2013) models.

All investigations use as a testbed a homogeneous motorway section of 3 km in length,
with three lanes (each lane being 3 m wide). Two different levels of inflow, 3.000 veh/h and
5.000 veh/h, into this section are simulated, and vehicle trajectories and traffic conditions are
monitored over a simulation horizon of 60 min. Entering vehicles are randomly assigned their
characteristics (type of vehicle, dimensions, desired speed, initial lane and time gap). In
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Figure 3.3: AV lateral position trajectory (blue line) and its mapping into
Aimsun lanes (orange lines).

particular, vehicle type is selected randomly, according to the examined penetration rate of
AVs. All vehicles are "passenger cars" with dimensions selected randomly, from a default
range, by the Aimsun simulator. The desired speed of each vehicle (of both types) is selected
randomly, with uniform distribution, from a range [80, 120] km/h. The constant time gap, ω ,
for both automated and manually driven vehicles, is also selected randomly, with uniform
distribution, from a range [0.8, 1.8] s (Spiliopoulou et al., 2018).

For AVs, a planning horizon of 8 s is used, with a path-planning step of T = 0.25 s. Thus,
each plan consists of controls jx(k),ay(k) for K = 32 time steps. However, as mentioned earlier,
half planning horizon is applied at most, which corresponds to 4 s, before a re-plan. The
control bounds have been set to jx ∈ [−4.0,4.0] and ay ∈ [−1.5,1.5] for longitudinal and lateral
controls, respectively, but it should be noted that high (absolute) control values are virtually
never reached. In (3.13) d = 1.4; and in (3.14) p1 = p2 = 18, which lead to rectangular-like
ellipses.

In an initial offline trial-and-error procedure, where many different driving situations were
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tested, the penalty weights in (3.12) were set to
[w1,w2,w3,w4,w5,w6,w7] = [1.5,1.0,1.5,0.05,1.0,15.0,15.0]. The choice of the penalty
weights does not depend on the vehicle class or the infrastructure. Problems with multiple
sub-objectives, reflected in corresponding weighted penalty terms, have a long history in
optimisation. The appropriate specification of weights, so as to reflect the desired relative
importance of the sub-objectives, is not a trivial task and is usually addressed via
trial-and-error, i.e. by running experiments and evaluating their outcome. This typical
trial-and-error procedure was pursued also in this work. Starting from an initial estimate about
the appropriate weight values, the following steps were executed:

(a) Run a simulation involving many different driving circumstances for the AVs.

(b) Evaluate the AV behaviour during the simulation (e.g. crashes, road departures, travel
time etc.).

(c) If the vehicle behaviour is not satisfactory with respect to some sub-objectives, modify
the weights accordingly and go to a).

(d) Else appropriate weights have been found.

3.5.2 Results

Fig. 3.4 displays the trajectories of several representative AVs, extracted from a simulation
scenario with low inflow (3,000 veh/h) and 50% penetration of connected AVs. The trajectories
refer to the longitudinal and lateral acceleration and speed; the longitudinal jerk; and the lateral
continuous position, produced by FDA, along with the mapping based on lanes, required by
the Aimsun microsimulation environment. In Fig. 3.4a, it is observed that the AV cannot
reach its desired speed (orange lines). This happens because there is no space to overtake and,
consequently, it simply follows the leader by adapting its longitudinal speed in a car-following
mode. In Fig. 3.4b, the AV starts with a longitudinal speed equal to its desired speed. In this
case, it can be seen that the vehicle needed to slow down and apply lane changes twice, in order
to maintain its desired speed. Finally, Figs. 3.4c, 3.4d, combine both first two simpler cases,
as the corresponding AVs are manoeuvring through the surrounding slower traffic, managing
to achieve their desired speeds for small parts of their trip, while for the rest part they simply
follow their leaders, waiting to find appropriate space to overtake, as human drivers would also
do. As far as the longitudinal jerk and the longitudinal and lateral accelerations are concerned,
the magnitudes are limited and quite smooth, which is good for passenger comfort and fuel
consumption.

Figs. 3.5 and 3.6 present results obtained for the two different demand levels, namely for
3.000 veh/h and 5.000 veh/h, respectively. Each figure contains results of different penetration
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(a) (b)

(c) (d)

Figure 3.4: Trajectories of several representative AVs during the simulation,
displaying longitudinal and lateral speeds (orange line is the longitudinal
desired speed) and accelerations, longitudinal jerk, and lateral continuous
position produced by FDA (blue lines), along with the corresponding mapping

on lanes (orange lines).

rates of AVs. In addition, each figure displays and contrasts results corresponding to the two
evaluated cases of AV connectivity: connected AVs (green lines) and non-connected AVs
(blue lines). For each case, the solid lines reflect on the average results of the whole vehicle
population, including both automated and manually driven vehicles, while the dense-dashed
and sparse-dashed lines reflect on the average results of automated and manually driven
vehicles, respectively. These summarized results concern the average delay time; the average
speed; the average number of lane changes; and the average deviation from the desired speed.

Under both considered demand levels, the online path-planning approach appears to be
more efficient in navigating AV speeds closer to the respective desired speeds, compared to
manually driven vehicles. Apparently, the suggested approach is more successful at exploiting
gaps through traffic and applies "smarter" maneuvers; which leads not only to better
performance of each AV, but also to increased overall traffic performance. Specifically, in both
Figs. 3.5 and 3.6, as the penetration rate of AVs rises, an increase of the average speed, and
consequently a significant decrease of the delay, for the whole traffic, is observed. Note that,
this improvement also affects the manually driven vehicles, which appear to also benefit from
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(a) (b)

(c) (d)

Figure 3.5: Average delay time, speed, deviation from target speed and number
of lane changes for: i) connected (green lines); and ii) non-connected (blue
lines) AVs; for a demand of 3.000 veh/h. Solid lines represent the average
of the whole section, while dense-dashed and sparse-dashed lines reflect on

average results for automated and manually driven vehicles, respectively.

the AVs presence and decisions.
In terms of lane changing, the number of lane changes of all vehicles, in the lower demand

level (Fig. 3.5c), is higher compared to the higher demand level (Fig. 3.6c). This is due to the
density prevailing in each case, where, for the lower demand levels there is more space for the
vehicles to apply a lane change in order to overtake slower traffic. Moreover, in Fig. 3.5c, it can
be observed that the number of lane changes of AVs is decreasing as their penetration rate rises.
This happens as, for low penetration rates, the AVs need to overtake slower traffic, including
other slower AVs or manually driven vehicles, which do not have the same capability to achieve
their target speed; while for higher penetration rates, the need for overtaking is reduced, as the
increased number of AVs ensures speeds closer to the target speed of each vehicle; thus, it is
less probable for a vehicle entering the section to face a slower one. On the other hand, in higher
demand levels (Fig. 3.6), the number of lane changes of AVs is increasing with their increasing
penetration. In this case, where traffic is denser, it is harder, for both the manually driven
vehicles and the AVs to overtake. Thus, as the penetration rate of AVs rises, there are more
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(a) (b)

(c) (d)

Figure 3.6: Average delay time, speed, deviation from target speed and number
of lane changes for: i) connected (green lines); and ii) non-connected (blue
lines) AVs; for a demand of 5.000 veh/h. Solid lines represent the average
of the whole section, while dense-dashed and sparse-dashed lines reflect on

average results for automated and manually driven vehicles, respectively.

overtakes from AVs, which exploit the available space better, helping to maintain increased
speed and consequently create spaces for the following traffic. In both demand levels, the AVs
efficient maneuvering behavior allows for the manually driven vehicles to increase their lane
changes as well.

Contrasting the two types of AVs, the results in Fig. 3.5 indicate only small differences,
with connected vehicles being able to achieve slightly better performance in higher
penetration rates. This similar outcome is due to the fact that, in lower demand levels, driving
space is ample for an AV to maneuver efficiently, which is also evident from Fig. 3.5c, where
the difference in the average number of lane changes is moderate. For the same reason, all
vehicles (manually driven and automated) do not need to change their speed frequently or
strongly, hence the added value of receiving improved information (last path decision) from
the surrounding AVs, through the connectivity with other vehicles, is not significant. On the
other hand, in Fig. 3.6, where the demand level is higher, vehicle connectivity is seen to have a
high impact on the vehicles performance. In this scenario, it is noticed that, although both
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types of vehicles manage to achieve improved performance, connected AVs outperform the
non-connected ones, as the penetration rate increases, with most noticeable differences in the
area of 75%-100%. This is explained as, in denser conditions, the enhanced information that
the AVs have about the surrounding traffic enable them to achieve better reactions in need of a
lane change. That means, that the connected AVs are able to apply few lane changes due to
better timing, compared to the non-connected ones, which also leads to keeping their speed
closer to the desired speed.

Finally, Fig. 3.7 reports on the average number of plans (and re-plans) of the two types of
AVs, in dependence of the penetration rates and for both demand levels. In Fig. 3.7a, it is
noticed that both types of AVs have approximately the same average number of (re-)plans. In
this low demand case, all AVs are able to navigate close to their desired speeds, with no
significant changes to their predicted paths. The slightly reduced values for the connected AVs
are due to their enhanced information, specifically the knowledge of the lane changes that
other neighboring AVs have planned to apply. On the other hand, in Fig. 3.7b, where the
higher demand level case is presented, it is observed that, as the penetration rate increases,
there is an increase of plan numbers for both types of AVs. As also mentioned above for the
lane changing behavior, this is because in this case, for low penetration rates, the surroundings
of each AV do not change much, hence there are few deviations from the predicted paths for
the obstacles. However, as the penetration rate rises, the AVs are more capable in maneuvering
through traffic, which increases the need for re-plans. In these conditions, the number of lane
changes increases, vehicles may accelerate or decelerate after an overtake or may reach a
vehicle downstream, which was not included in their initial prediction. This increase of the
average number of plans is different for the two types of AVs, with connected AVs demanding
less re-plans compared to the non-connected ones, as their enhanced knowledge allows them
to have more accurate view of the surrounding traffic, including the intended lane changes and
the tendency of other AVs to accelerate or decelerate.

Regarding computation times, the average CPU-time per planning of an AV path during
the simulation is 0.1 s for the DP, 0.01 s for forward-branching DP and 0.01 s for FDA, with
the corresponding maximum values during a whole simulation being 0.2 s for DP, 0.06 s for
forward-branching DP and 0.2 s for FDA, which indicates that the proposed approach is clearly
real-time feasible. In addition, in Table 3.1, the average execution times of the three algorithms,
for different planning horizons are reported, which verify their polynomial increase against
the time-horizon length; and the real-time applicability of the proposed approach, even for
increased time horizons.

Demonstration of the vehicle movements in Aimsun micro-simulation platform is
available as videos at https://bit.ly/3m2nPa2. Specifically, there are three videos,
showing the connected AVs’ behavior in both demand levels, i.e. 3.000 veh/h (video-1) and
5.000 veh/h (video-2 and video-3), both for 100% penetration rate. It is evident from the

https://bit.ly/3m2nPa2
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(a) (b)

Figure 3.7: Average number of (re-)plans for different penetration rates of the
two evaluated cases: non-connected AVs (blue); and connected AVs (green)

and for different demand levels: a) 3.000 and b) 5.000 veh/h

videos that the above OCP formulation is conceived for American freeway traffic rules,
whereby vehicles may use any lane at any speed and may overtake on the left or right.
Adoption of European driving rules, where overtaking is only from left, may be easily
accommodated according to (Makantasis, Papageorgiou, 2018).

3.6 Conclusions

Automated vehicle path-planning has been expressed as an optimal control problem. A
combination of DP and NLP techniques allows obtaining good local minima for this
non-convex optimization problem efficiently. This efficiency facilitates an online MPC-based
(re-)planning approach, by observing or receiving information (according to the connectivity
features) and predicting the trajectory of the surrounding vehicles and adapting the EV path
accordingly. The proposed MPC-based approach is embedded within the Aimsun
micro-simulation platform, enabling us to thoroughly examine the behavior of the approach in

Table 3.1: Average execution times of the three proposed algorithms, FDA,
DP and Forward DP, for different planning horizons.

Time Horizon (KT )
Average CPU time

FDA DP Forward DP

6 s 0.002 0.04 0.001
8 s 0.010 0.09 0.010
10 s 0.020 0.12 0.015
12 s 0.035 0.17 0.018
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presence of vehicles emulating human driving behavior and in a plethora of realistic driving
instances. For the simulation investigations, two cases were considered, each of them at
different penetration rates of AVs: i) non-connected vehicles, where each AV is aware only of
the current states of obstacles, which are either manually driven or automated; and ii)
connected AVs, where each AV is aware of the current states of obstacles, but, in addition, it
receives (asynchronously) the path-planning decisions of other AVs.

Demonstration results are reported for a homogeneous motorway stretch and different
lane-capacity utilizations. Based on the results, it is concluded that the introduction of AVs,
guided by the suggested approach, benefits the overall traffic performance. Specifically, in all
scenarios, as the penetration of AVs rises, an increase of the average speed and consequently a
decrease of the average delay of both automated and manually driven vehicles are observed.
AVs appear to be more effective to navigate closer to their desired speed compared to the
manually driven vehicles in all tested scenarios. Specifically, in the case of lower demand
level, both non-connected and connected AVs manage to improve their average delay time by
44%, with the speed being increased by 4% compared to the manually driven vehicles. On the
other hand, for the higher demand level scenario, the improvement of the average delay time
was 38% and 69% for the non-connected and the connected AVs respectively; while the
average speed was increased by 6% and 10%, respectively. The improved performance of
controlled vehicles stems from their ability to apply smarter manoeuvers, while in very high
density or congested cases, the performance of both controlled and non-controlled vehicles is
expected to be similar, due to very limited or no space to exploit. Of course, further
investigation, in such cases, is required, which is part of future work. As far as the AVs are
concerned, in lower demand levels both connected and non-connected AVs perform similarly,
due to sufficient space for maneuvering. The superiority of connectivity becomes evident in
higher demand levels, as the enhanced information about the surrounding traffic is crucial, and
connected AVs appear more efficient at increased penetration rates, due to the improved
real-time information that enables more pertinent obstacle movement prediction.

Current and future work is focused on:

• Investigation of scenarios, which feature very high demand levels and congested areas.

• Consideration of platooning and multiple vehicle coordination and study of the
synergistic effects and impact on the overall traffic flow.

• Application of a similar approach for urban road networks.

• Introducing on-ramps, off-ramps and emergency cases, e.g. controlled vehicles need to
create appropriate space for an ambulance.
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Chapter 4

Vehicle Trajectory Specification in
Presence of Traffic Lights with Known
or Uncertain Switching Times

4.1 Abstract

The main purpose of this work is to generate optimal trajectories for vehicles crossing a
signalized junction, with traffic signals operated in either fixed-time or real-time (adaptive)
mode. In the latter case, the next switching time is decided in real time based on the prevailing
traffic conditions and is therefore uncertain in advance. The GLOSA (Green Light Optimal
Speed Advisory) problem is addressed by using traffic lights information and calculating a
trajectory and velocity profile for the vehicle based on the vehicle’s initial state (position and
speed) and a fixed final destination state. At first, an appropriate optimal control problem is
formulated and solved analytically via Pontryagin’s Minimum Principle (PMP) for the case of
known switching times. Subsequently, for the case of real-time signals, availability of a
time-window of possible signal switching times, along with the corresponding probability
distribution, is assumed, and the problem is cast in the format of a stochastic optimal control
problem and is solved numerically using Stochastic Dynamic Programming (SDP) techniques.
Application results, for various driving scenarios, of the deterministic approach, which
considers the case of known switching times; and a comprehensive comparison of the
stochastic GLOSA approach with a sub-optimal approach are presented. In particular, it is
demonstrated that the proposed SDP approach achieves better average performance compared
to the sub-optimal approach due to the better (probabilistic) information on the traffic light
switching time.



Chapter 4. Vehicle Trajectory Specification in Presence of Traffic Lights with Known
or Uncertain Switching Times

74

4.2 Introduction

In view of cheap energy resources shortage and excessive environmental pollution, it is
necessary for transportation systems to operate with increased fuel efficiency. In the case of
road vehicles, fuel efficiency relates to economic aspects, as fuel economy means less
expenses for the driver, but also to the protection of the environment in an era of climate crisis.
Indeed, a wide range of technologies have been developed in recent years to decrease fuel
consumption of vehicles, including efficient engines, adjusted vehicle designs and lighter
chassis. Furthermore, considerable efforts in the development and deployment of efficient
intelligent transportation systems (including real-time traffic signals) lead to reduced
congestion and fuel consumption.

Traffic signals guarantee, in the first place, the safe crossing of vehicles at urban junctions
in cities around the world. Clearly, enforcing safety via traffic lights implies that some
vehicles will have to stop in front of a red light; and then accelerate after the traffic light
switching to green; something that affects the fuel consumption of concerned vehicles. To
reduce the resulting vehicle delays and number of stops, several algorithms have been
proposed and deployed over the past decades, aiming at optimizing the traffic signals
operation, see (Hounsell, McDonald, 2001; Papageorgiou et al., 2003) for overviews.
Fixed-time signal plans are derived off-line for respective times-of-day (e.g., morning peak
hour, off-peak etc.) by use of appropriate optimization codes, based on historical constant
demands; and are applied without deviations; this implies that switching times of the traffic
lights are always known in advance. In contrast, real-time (or traffic-responsive or adaptive)
signal control strategies make use of real-time measurements to calculate in real time suitable
signal settings. Depending on the employed signal control strategy, the control update period
may range from one second to one signal cycle; clearly, for real-time signals, the next
switching time is not known before the switching decision is actually made. It should be noted
that real-time strategies are deemed to be more advanced and potentially more efficient than
fixed signal operation. Fuel consumption is increasingly considered as an optimization or
evaluation criterion while developing and deploying signal control systems (Jamshidnejad
et al., 2017).

Consider a vehicle approaching a red traffic light at a given speed. If the vehicle continues
driving at that speed, it may reach the traffic light after it has switched to green, in which case
no fuel-intensive acceleration needs to be applied; however, the constant-speed vehicle might
also reach the traffic light before the green switch, in which case it will have to stop and
accelerate to a higher speed after the green switch. On the other hand, if the vehicle
decelerates smoothly in view of the red light, this may prove beneficial or not, depending on
the time of the green switch. This dilemma of vehicle movement towards a red traffic signal
may be addressed by appropriately designed systems. Some early such systems (Van Leersum,
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1985) were displaying on road-side dynamic advisory speed signs the speed that would allow
a vehicle to cross the downstream signalized junction at green. With recent and emerging
advances in vehicle communications, the current state and timing of a traffic signal can be
transmitted to equipped vehicles (or apps therein) to enable sensible approaching speed
decisions. Based on signal information, it is possible to guide the driver (or an automated
vehicle) all the way from the current state to the traffic signal by giving speed advice, which
ensures that, by the time the vehicle reaches the traffic signal, it will be green; or, more
specifically, that the fuel consumption and emissions will be minimized. Systems (or apps)
optimizing the vehicle approach to traffic lights are often referred to as Green Light Optimal
Speed Advisory (GLOSA) systems (Stahlmann et al., 2016).

In the case of fixed signals and prior knowledge of the next switching time, e.g. via
broadcasting of corresponding messages by the signal controller, the problem of how to
optimize the approach to traffic signals has been addressed in different ways. In (Richter,
2005), speed profiles have been compared to their energy demand; however, only a limited set
of profiles has been considered, and, more generally, there is a lack of mathematical
justification that the derived speed profile is indeed optimal. Rule-based algorithms have been
employed in various works to produce advisory speeds for vehicles approaching traffic
signals, so as to reduce fuel consumption and emissions, see e.g. (Katsaros et al., 2011; Ma
et al., 2018; Sanchez et al., 2006); clearly, rule-based algorithms may deliver sub-optimal
results, in particular when the dynamic vehicle kinematics are not accounted for, i.e. when no
vehicle acceleration, but only the vehicle speed, is involved. Optimal control approaches,
considering explicitly the vehicle kinematics, are, by their nature, more pertinent in producing
fuel-optimal speed profiles for vehicles approaching fixed traffic signals. Such an approach is
proposed in (Lawitzky et al., 2013), attempting the minimization of vehicle’s physical work;
the resulting optimal control problem is solved analytically via Pontryagin’s Minimum
Principle (PMP). This paper also presents an optimal control approach for fuel minimization
with more pertinent final state conditions for the vehicle, consisting of a final position
sufficiently downstream of the signals and a high final speed, so as to avoid distorted or
non-comparable vehicle trajectories.

The situation becomes more complicated when real-time signals with very short (e.g.
second-by-second) control update periods are present, in which case exact prior knowledge of
the next switching time is not available even with the signal controller. In this case, the best
available knowledge about the next signal switching can be presented as an estimate or as a
probabilistic distribution. A system called SignalGure (Koukoumidis et al., 2011) does not
require communication to the infrastructure, but relies solely on a collection of mobile phone
data to detect and predict the traffic signal timing. The mobile phones detect current traffic
signals with their cameras, collaboratively communicate and learn traffic signal timing
patterns, and predict their future timing. Reportedly (Koukoumidis et al., 2011), SignalGuru’s
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estimates come on average within 0.66 s for fixed traffic signals; and within 2.45 s for
real-time traffic signals; of the actual switching times. Such an estimate of the next switching
time may then be used as a proxy for any of the GLOSA approaches that need a known
switching time, possibly with appropriate extensions to account for the consequences of
estimation inaccuracy.

Richer probabilistic information than a single estimate for the next signal switching time
can be produced in form of a probability distribution for the next switching time within a
short-term future time-window by use of statistics from previous signal operations over a
sufficiently long rolling horizon. Such an approach to produce probability distribution for the
next switching time, based on past signal switching, is proposed in (Mahler, Vahidi, 2012);
however, the available probability distribution is used heuristically (rather than optimally), to
accordingly time-weigh the objective function, within a deterministic optimal control problem
that is solved via a Dynamic Programming algorithm. An appropriate utilization of the
available probabilistic distribution of the next signal switching time within a stochastic
optimal control problem is proposed in (Lawitzky et al., 2013), and the problem is solved via a
discrete Stochastic Dynamic Programming (SDP) algorithm; however, the formulated optimal
control problem extends only up the point in time where the next switching time becomes
known, thus neglecting the cost incurred after this time until the vehicle’s final state is reached,
something that may lead to non-commensurable vehicle trajectories and skewed solutions.

This paper considers the problem of producing fuel-optimal vehicle trajectories for a
vehicle approaching a traffic signal (GLOSA) for both cases of known and probabilistic
switching times. For the first case, the problem is formulated as an optimal control problem
with pertinent final state for the vehicle and is solved analytically via PMP. Subsequently, the
case where the traffic light’s switching time is stochastic, with known probability distribution,
is addressed, and the problem is cast in the format of a stochastic optimal control problem,
which is solved numerically using SDP techniques. In contrast to previous works, the
stochastic optimal control problem is designed to extend up to the vehicle’s final state by
exploiting appropriately the analytic solution of the fixed switching time problem derived
earlier, something that guarantees that the obtained solution is consistent, independently of the
actual switching time occurrence. The presented approach may be readily generalized to allow
for switching time decisions to be taken at any time in advance of the actual switching time,
not necessarily only within the last time period prior to the actual switching time.

The remainder of the paper is organized as follows: in Sections 4.3 and 4.4 the optimal
control problems with known signal switching time and uncertain signal switching time,
respectively, are formulated and solved. Several demonstration and comparison results of the
deterministic and the stochastic GLOSA are presented in Section 4.5; while Section 4.6
concludes this work.
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4.3 Optimal Control Problem with Known Signal Switching Time

This section describes in detail the proposed GLOSA approach when the signal switching time
is known beforehand. An efficient path-planning procedure for a vehicle starting from an initial
state to reach a final state within a free time horizon, with the interference of a traffic light at a
given position is designed.

4.3.1 Problem Formulation

More specifically, the vehicle starts from an initial state x0 = [x0,v0]
T , where x0 is a given

initial position and v0 a given initial speed of the vehicle; and aims at reaching a fixed final
state xe = [xe,ve]

T within a free (but weighted) time horizon te, with xe and ve being the final
position and speed of the vehicle, respectively; with the restriction that the vehicle cannot pass
through the traffic signal position x1 before the known time t1, which is the time that the traffic
light turns green from red. The implicit assumption here is that a red light is active when the
vehicle appears on the link (at time 0), which is the typical case; however, the generalization
to cases where the traffic signal is green at the initial time is easy and will be mentioned later.
The objective of the vehicle is to appropriately adjust its acceleration (control variable), so as to
minimize fuel consumption, while satisfying the initial and final conditions x0 and xe, as well
as the intermediate (traffic signal) constraint.

Note that fixing the final position xe to be sufficiently (e.g. some 50 m) downstream of the
traffic signal; and the final speed ve to be sufficiently (e.g. some 12 m/s) high, guarantee that
the problem will not be myopic and will select the optimal trajectory among all relevant and
commensurable ones. In fact, if we would set xe = x1, as in some other works (Lawitzky et al.,
2013), i.e. if we would fix the final vehicle position at the traffic signal location, then:

• If we also fix a final speed, this would exclude trajectories that may be fuel-optimal in
hindsight, but feature a different speed at the time of crossing the traffic signal;

• If we do not fix the final speed, we would have non-comparable trajectory candidates, i.e.
some with low speed at the traffic signal (that would call for fuel-consuming acceleration
eventually); and others with higher speed (that are lower-cost in hindsight).

It should be noted that an even less myopic policy may result if we consider two, instead
of one, downstream traffic lights, which calls for substantial extension of the present approach
and is the subject of current investigations.
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The minimization problem outlined above is formulated as an optimal control problem.
which accounts for the vehicle kinematics via the following state equations:

ẋ = v (4.1)

v̇ = a (4.2)

where a is the vehicle acceleration which assumes the role of a control variable. The objective
is to drive the system from the given initial condition x0 = [x0,v0]

T to the fixed final condition
xe = [xe,ve]

T within time te, while minimizing the criterion

J = w · te +
1
2

∫ te

0
a2dt. (4.3)

In addition, the green-light constraint, tS ≥ t1, must be fulfilled, where tS is the time at
which the vehicle crosses from the signal position x1, i.e. x(ts) = x1. Note that the utilized
acceleration cost term a2 in the cost criterion was demonstrated in (Typaldos et al., 2020b) to
be an excellent proxy for deriving fuel-minimizing vehicle trajectories. More specifically, it
has been shown that the simple square-of-acceleration term delivers excellent approximation
of vehicle trajectories when compared to more sophisticated optimization methods that use a
complex fuel-consumption model in the objective function. Note also that the final time te
is free, but penalized with the parameter w. The reason for leaving the final time te free, is
because we want to have a flexible problem formulation that applies to a multitude of specific
instances of initial positions (far and close to the traffic signal), initial speeds (low or high) and
signal switching times; in fact, it would be too rigid to fix for all these instances the same final
time te. On the other hand, there may be problem instances that lead to excessive final time,
if the latter is not accounted for in the cost criterion. The larger the value of w is, the lower
the value of the resulting te will be. This, consequently, affects the acceleration cost, which,
for higher values of w, will also have increased values in general, e.g. because the vehicle will
need to reach the final position sooner. Our purpose is to penalize the free final time in order to
avoid excessive final times, but without affecting the fuel-consumption goal too much with high
values of w. Fig. 4.1 reflects how the free final time is affected according to w for a specific
but typical problem instance (that will be specified later). Clearly, the lowest acceleration cost
is achieved for w = 0; while, increasing w, leads to moderately increasing acceleration cost
and decreasing te. A value w = 0.1 was found to deliver a reasonable trade-off for a variety of
examined problem instances.

If necessary, upper and lower bounds may be applied to speed v and acceleration a. Such
constraints would limit the speed between zero and a maximum value; and the acceleration
between minimum and maximum values.
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Figure 4.1: Optimal final time te (blue dotted marks) and acceleration cost (red
star marks) versus the weight w.

4.3.2 Analytical Solution

In order to present the necessary condition and proceed with the analytical solution of the
problem, it is customary to use the Hamiltonian function (Papageorgiou et al., 2015;
Pontryagin, 2018)

H(xxx,λλλ ) = φ(xxx,aaa)+λλλ
T fff (xxx,aaa) (4.4)

where λλλ stands for the co-state vector for the corresponding state equations, and φ(x,a) =
1
2

a2 is the running cost in the objective function (4.3). For the specific problem, we have the
Hamiltonian function

H(v,a,λ1,λ2) =
1
2

a2 +λ1v+λ2a. (4.5)
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Then we have the following necessary conditions of optimality

ẋ =
∂H
∂λ1

= v (4.6)

v̇ =
∂H
∂λ2

= a (4.7)

λ̇1 =
∂H
∂x

= 0 (4.8)

λ̇2 =
∂H
∂v

=−λ1 (4.9)

∂H
∂a

= 0 (4.10)

These equations must be satisfied, along with the initial and final state conditions for a
specific problem. In addition, due to the free final time te, we have an additional boundary
condition for optimality (Papageorgiou et al., 2015; Pontryagin, 2018)

H(te)+w = 0. (4.11)

Let us first consider the "unconstrained" problem (UP), i.e. without the intermediate
green-light constraint. Equations (4.8)-(4.10) readily yield an analytic linear-in-time optimal
acceleration solution for UP (Ntousakis et al., 2016; Rios-Torres, Malikopoulos, 2016b)

a(t) = c1t + c2 (4.12)

and, after integration according to (4.6), (4.7), also the corresponding speed and position
solutions

v(t) =
1
2

c1t2 + c2t + c3 (4.13)

x(t) =
1
6

c1t3 +
1
2

c2t2 + c3t + c4 (4.14)

where c1, . . . ,c4 are four integration constants, which, along with the optimal final time te, may
be specified as the solution of a system of five algebraic equations, comprising the initial and
final states and the final time condition (4.11).

We now proceed with a "constrained" problem (CP), wherein we require the vehicle
position at some given time tc to be at the traffic signal, i.e. x(tc) = x1. In this case, all
necessary conditions (4.6)-(4.11) remain the same, but there is an additional necessary
condition that must be satisfied (see (Papageorgiou et al., 2015), Chapter 10.5.2), which, for
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the present problem, implies that the co-state λ1(t) may be dis-continuous at the intermediate
time tc. This and (4.8)-(4.10) then yield a continuous two-branch piece-wise linear optimal
acceleration solution for CP as follows

a(t) =

{
c1t + c2 0≤ t ≤ t−c
c5t ′+ c6 t+c ≤ t ≤ te

(4.15)

and, after integration according to (4.6), (4.7), also the corresponding speed and position
solutions

v(t) =


1
2

c1t2 + c2t + c3 0≤ t ≤ t−c
1
2

c5t ′2 + c6t ′+ c7 t+c ≤ t ≤ te
(4.16)

x(t) =


1
6

c1t3 +
1
2

c2t2 + c3t + c4 0≤ t ≤ t−c
1
6

c5t ′3 +
1
2

c6t ′2 + c7t ′+ c8 t+c ≤ t ≤ te
(4.17)

where t
′
= t− tc and c1, . . . ,c8 are eight integration constants, which, along with the optimal

final time te, may be specified as the solution of a system of nine algebraic equations,
comprising: the initial and final states; the final time condition (4.11); the continuity
conditions for control and states a(t−c ) = a(t+c ),v(t−c ) = v(t+c ),x(t−c ) = x(t+c ); and the
intermediate condition x(tc) = x1.

We denote JCP(tc) the optimal objective value of CP as a function of tc and JUP the optimal
objective value of UP. Since CP was obtained by additional constraining of UP, we have
JCP(tc)≥ JUP∀tc, and, in fact, JCP(tc) obtains its minimum value for tc(S,UP) , where t(S,UP) is the
time when the UP position trajectory reaches the traffic signal position x1. It was also found
that, as expected, the function JCP(tc) increases monotonically for tc ≥ t(S,UP). These findings
suggest the following procedure for finding the solution of the original GLOSA problem in
presence of a traffic signal at x1 and switching time to green t1:

1. Solve UP; if t(S,UP) ≥ t1, the GLOSA problem is solved, as the UP solution does not
violate the green-light constraint; else

2. Solve CP with tc1 to obtain the GLOSA solution.

As mentioned, the solution of UP or CP for a specific problem instance calls for the solution
of a corresponding system of five or nine, respectively, algebraic equations. Such solutions
were obtained analytically (yielding lengthy formulas) using symbolic differentiation tools (e.g.
Mathematica (Wolfram Research, Inc., 2016)). The numerical execution of those analytical
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formulas to obtain the solution of UP or CP, and hence of the GLOSA problem for a specific
problem instance, takes only fractions of a second of computation time and may therefore take
place within the vehicle (or app) once the next switching time becomes known. Note that it
may be reasonable to continuously update the vehicle trajectory (in a model predictive control
(MPC) loop) to account for possible deviations from the first calculated vehicle trajectory,
which may occur due to a variety of disturbances, including a slower vehicle ahead.

For a given junction, the final state is the same for any initial vehicle state x0 and any
switching time t1. Hence, the optimal value of criterion (4.3) of the deterministic GLOSA
problem depends on these variables, and we denote it J∗DG(x0, t1) for later use.

In the above formulation, there is an implicit assumption that a red light is active when the
vehicle appears on the link (at time 0), which is the typical case. The approach, however, can
be easily generalized to the case where the traffic signal is green at the initial time. In this
case, we also need to know the switching time, say T1, from green to red. Note that, for similar
reasons as above, the function JCP(tc) increases monotonically also for tc ≤ tS,UP, hence the
above mentioned procedure is generalized as follows for the case of green initial light:

1. Solve UP; if t(S,UP) ≥ t1 or t(S,UP) ≤ T1, the GLOSA problem is solved, as the UP
solution does not violate the green-light constraint; else

2. Solve CP twice, first with tc1 and second with tc1 ; yielding the respective optimal values
JCP1) and JCP1). The solution with the smaller objective value is the GLOSA solution of
the generalized problem.

4.4 Stochastic Optimal Control Problem with Uncertain Signal
Switching Time

The traffic light switching time may not be known or be subject to short-term decisions in
dependence of the prevailing traffic conditions because of real-time signals. In this case, based
on appropriate statistics from past signal switching activity, availability of a time-window of
possible signal switching times, along with the corresponding probability distribution, may be
assumed, in which case the problem can be cast in the format of a stochastic optimal control
problem, which may be solved numerically using SDP techniques. To this end, the analytical
solution of the deterministic GLOSA optimal control problem derived in the previous section
is used within the stochastic approach, as will be explained in this section.



Chapter 4. Vehicle Trajectory Specification in Presence of Traffic Lights with Known
or Uncertain Switching Times

83

4.4.1 Problem Variables and State Equations

Since SDP algorithms require a discrete-time system, the discrete-time version of the vehicle
kinematics with time-step T is considered, as follows (Bertsekas, 1995)

x(k+1) = x(k)+ v(k)T +
1
2

a(k)T 2 (4.18)

v(k+1) = v(k)+a(k)T (4.19)

where x(k),v(k) correspond to the vehicle position and speed at discrete times k = 0,1, . . .
(where kT = t, while the control variable a(k) reflects the acceleration that remains constant
over each time period k. The state and control variables are bounded within the following
feasible regions

xxx(k) ∈ XXX = [xxxmin,xxxmax] (4.20)

a(k) ∈U = [amin,amax] (4.21)

with xxxmin;xxxmax and amin;amax being the lower and upper bounds of the states and acceleration,
respectively. The traffic light’s switching time k1 is not known, but it is assumed that a known
range kmin≤ k1≤ kmax of possible switching times exists, with kmin and kmax being the minimum
and maximum possible switching times. Note that real-time signal control strategies must
typically respect pre-fixed minimum and maximum bounds for each signal phase, which may
be the reason for having the mentioned time-window.

For proper problem formulation, a virtual state x̃(k) is introduced, that reflects formally the
stochasticity of traffic light switching

x̃(k+1) = x̃(k) · z(k)
x̃(0) = 1

(4.22)

where z(k) is a discrete stochastic variable defined as

z(k) =

{
0 if traffic light switches at time k+1
1 else

(4.23)

With (4.22) and (4.23), the virtual state x̃(k) is either equal to 1, if the traffic light has not
yet switched until time k− 1, or equal to zero if switching occurred at time k or earlier. The
virtual state x̃(k) is assumed measurable, which means that the system knows at each time kT
if switching has taken place or not within the last time period [(k−1)T,kT ].

The stochastic variable z(k) is independent from its previous values z(k− 1),z(k− 2), . . .
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and takes values according to a time-dependent probability distribution p(z|k). Based on the
statistics of previous signal switching activity, availability of an a-priori discrete probability
distribution P(k),kmin ≤ k1 ≤ kmax is assumed, for signal switching within the time-window,
where ∑

kmax
k=kmin

P(k) = 1. Since no switching takes place for k ≤ kmin−1, then

p(0|k) = 0 for k < kmin−1. (4.24)

For k = kmin, signal switching may occur with a-priori probability P(kmin), therefore

p(0|kmin−1) = P(kmin). (4.25)

If the traffic light has not switched at time k = kmin, then the probabilities of switching at
some later time within the time-window are increased, compared with the respective a-priori
distribution, and the updated probabilities may be calculated via "crop-and-scale", meaning
that the a-priori probability P(kmin) distributed analogously to increase the probabilities of the
remaining discrete times within the time-window (Lawitzky et al., 2013). By the same
argument, the crop-and-scale procedure for updating the switching probabilities must be
executed at each consecutive time step, as long as the switching has not occurred. This update
may be done by use of the following crop-and-scale formula that applies for
kmin ≤ k ≤ kmax−1 and for any a-priori distribution P(k)

p(0|k) = P(k+1)[1+
∑

k
κ=kmin

P(κ)

∑
kmax
κ=k+1 P(κ)

] (4.26)

where the term in brackets reflects the crop-and-scale update.

4.4.2 Objective Criterion

The cost criterion of the stochastic problem is the same as in the deterministic case (4.3).
However, in the stochastic case, the exact value of the criterion depends on the stochastic
variable’s realization, and therefore its expected value is minimized

J = E{w · te +
1
2

∫ te

0
a2dt} (4.27)

where the expectation refers to the stochastic variable z(k),k = 0, . . . ,kmax−1. Note that, when
the switching time becomes known at time k1, while the vehicle is at state x(k1), advancing
toward the traffic signal, the problem instantly becomes a deterministic GLOSA problem, and
the corresponding optimal cost-to-go is J∗DG[xxx(k1),k1], which will be denoted as the escape cost.
After introducing discrete-time notation, it is possible to obtain from (4.27), by the principle of



Chapter 4. Vehicle Trajectory Specification in Presence of Traffic Lights with Known
or Uncertain Switching Times

85

optimality (Bellman, 1966),

J = E{1
2

k1−1

∑
k=0

a(k)2 + J∗DG[xxx(k1),k1]} (4.28)

To obtain a formally proper cost criterion, the stochastic variable z(k) and the virtual
variable x̃(k) introduced earlier are used, and the state x(k1) from the state equations (4.18)
and (4.19) is replaced as a function of the state and control of the previous time period
(Bertsekas, 1995). This yields the objective function in the required form, as follows

J = E{x̃(k)
kmax−1

∑
k=0

[
1
2

a(k)2 +[1− z(k)]J∗DG[xxx(k),a(k),k+1]]} (4.29)

Equations (4.18)-(4.26), and (4.29) constitute an ordinary stochastic optimal control
problem. Denoting the corresponding optimal cost-to-go function by V [xxx(k), x̃,k], the
recursive Bellman equation (Bertsekas, 1995) for 0≤ k ≤ kmax−1 reads

V [xxx(k), x̃,k] = min
a(k)∈U

{E{1
2

a(k)2 +[1− z(k)]J∗DG[xxx(k),a(k),k+1]

+V [xxx(k+1), x̃(k)z(k),k+1]}}

= min
a(k)∈U

{1
2

a(k)2 + p(0|k) · J∗DG[xxx(k),a(k),k+1]

+ [1− p(0|k)] ·V [xxx(k+1), x̃(k)z(k),k+1]}

(4.30)

with boundary condition V [xxx(kmax),1,kmax]. Note that the minimum is required with respect to
a(k) ∈U only, as typical in dynamic programming, which facilitates the numerical solution.

In this formulation, it has been assumed that the decision on traffic light switching is taken
within the last time period before the actual switching. The generalization to the case of taking
a switching decision κ time periods in advance of the actual switching is easy. To this end, the
time k1 and the definition of the stochastic variable z(k) reflect the decision time (rather than the
switching time), and the only change required in the above equations is that the escape function
JDG must include as an argument for the switching time k+κ instead of k+1.

4.4.3 Numerical Solution Algorithm

For application of the discrete SDP algorithm for numerical solution of the problem, the state
and control variables must be discretized. The level of discretization has a significant impact
on computational time and memory requirements, but also on the accuracy of the computed
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solution. Therefore, an appropriate trade-off should be specified between reasonable
computation requirements versus achievable solution quality.

For the discretization, the discrete time interval, T , is set equal to 1 s, which is a
reasonable choice for the problem at hand. Then, a general discretization interval ∆ for the
problem variables is assumed, and the discretization interval of acceleration is set as ∆a = ∆.
From (4.19), it can be noticed that the speed and acceleration intervals are equivalent, and,
therefore, the discretization interval of speed can also assume the same value (∆v = ∆a = ∆).
Likewise, in view of (4.18), the discretization interval for the position is set as

∆x =
1
2

∆ ·T 2 (4.31)

Based on these settings, it can be proved that, if x(k),v(k),a(k) are discrete points, then
x(k + 1) and v(k + 1) resulting from (4.18) and (4.19) are also discrete points. To this end,
assume that

x(k) = n∆x (4.32)

v(k) = m∆v = m∆ (4.33)

a(k) = l∆a = l∆ (4.34)

where n,m, l are positive integers. Using (4.18) gives

x(k+1) = n∆x+m∆ ·T +
1
2

l∆ ·T 2 =

=
1
2

n∆ ·T 2 +m∆ ·T +
1
2

l∆ ·T 2 =

=
1
2

∆ ·T 2(n+
2
T

m+ l) = ∆(n+2m+ l)

(4.35)

which proves that x(k + 1) is indeed a discrete point, and the same holds trivially true for
v(k+1) as well in view of (4.19).

It is now straightforward to apply the discrete SDP algorithm to obtain an optimal closed-
loop control law a(k)∗ = R[x(k),k], which, for any given vehicle state x(k) and time k, delivers
the optimal acceleration a(k). A full vehicle trajectory may also be obtained by starting at an
initial state and time and following the optimal encountered acceleration values, until the final
state is reached. For illustration, the SDP algorithm may be visualized to run in a 3-D grid, as
shown in Fig. 4.2. The grid extends in time over the horizon [0,kmax] and the two-dimensional
state space with position x in [xmin,xmax] and speed v in [vmin,vmax]. Each node corresponds
to a discrete state point of x(k), and each connecting line corresponds to a discrete control
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Figure 4.2: Illustration of the 3-D grid of time and state space.

a(k) that leads from x(k) to x(k + 1) according to the state equations. The SDP algorithm
executes essentially (4.30), and the algorithmic steps are summarized below. Note that the
algorithm needs to consider only the case x̃(k) = 1, therefore any arguments pertaining to x̃(k)
are suppressed for convenience.

The SDP algorithm is described as follows:
1: V [xxx(kmax),kmax)]← 0 ∀xxx(kmax) ∈ XXX
2: for each k = kmax−1, . . . ,0 do
3: for each discrete state xxx(k) ∈ XXX do
4: for each discrete control a(k) ∈U do
5: Calculate x(k+1),v(k+1)
6: if xxx(k+1) ̸∈ XXX then
7: V [xxx(k),a(k),k]← ∞

8: continue
9: end if

10: V [xxx(k),a(k),k]← 1
2 a(k)2 + p(0|k) · J∗DG[xxx(k),a(k),k]

+[1− p(0|k)] ·V [xxx(k+1),k+1]
11: end for
12: V [xxx(k),k]←minJ[xxx(k),a(k),k] ∀a(k) ∈U
13: R[xxx(k),k] = a(k)∗← arg min

a(k)∈U
{V [xxx(k),a(k),k]},
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14: with a(k)∗ the optimal control of point [xxx(k),k]
15: end for
16: end for

4.4.4 Discussion

In the above formulation, there is again (as in the deterministic case) an implicit assumption
that a red light is active when the vehicle first appears on the link (at time 0), which is the
typical case. The approach, however, can be generalized to the case where the traffic signal is
green at the initial time, and its duration is uncertain, but probabilistic information is available
regarding the switching time from green to red. The generalized problem (and its solution) may
be built in a similar way as in this section, albeit using a longer time horizon, which includes
two periods of switching uncertainty: one from red to green (as in the solution above), and an
earlier one, reflecting the uncertain switching from green to red. The corresponding details will
be published at a future occasion.

As will be reported in the next section, the SDP algorithm may take several minutes to
execute in an ordinary PC. This implies that this solution cannot be obtained on the vehicle
side in real time. However, the SDP solution is very comprehensive, as it provides optimal
acceleration for all feasible vehicle positions and speeds. Therefore, the SDP algorithm may
be executed off-line on the infrastructure side, and the signal controller may communicate to
approaching vehicles optimal trajectories according to their current position and speed. More
specifically, each time a vehicle approaches the traffic signal, several communication
messages need to be exchanged between the vehicle and the signal controller, as follows.
First, the vehicle sends to the signal controller its position and speed; given this information,
the controller sends back the optimal trajectory that the vehicle should follow. This procedure
can be applied repeatedly if substantial deviations occur with respect to the vehicle’s
trajectory, for example, in case of impeding traffic or other disturbances, in such cases, the
vehicle may send a new message to the controller with its new position and speed to receive an
updated trajectory. At last, when the traffic signal turns green, the vehicle applies the
deterministic solution to reach the final state, which can be calculated online in the vehicle. As
an alternative approach, the authors are working on alternative solution algorithms, which
would just deliver optimal trajectories for each vehicle by solving only a small portion of the
above problem (just for the specific vehicle) in much shorter computation time; such
algorithms would then be executable in real time, even in an MPC mode, on the vehicle side,
similarly to the deterministic GLOSA.
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4.5 Results

4.5.1 Investigated Scenarios

In this section, typical application results of the deterministic and the stochastic GLOSA
approaches that were discussed in the previous sections are presented. Several scenarios, with
different initial and terminal conditions have been tested (Kalogianni, 2018). However,
because of limited space, only two scenarios will be presented here, with the respective setups
provided below. In both scenarios, the initial and final position and the traffic signal position
and switching time are the same, but the initial vehicle speed differs. As a consequence, in
Scenario 1, the vehicle’s optimal trajectory resulting from UP does not interfere with the
red-light phase, while, in Scenario 2, the UP solution violates the green-light constraint,
therefore the CP solution delivers the vehicle trajectory, which guides the vehicle to pass the
traffic signal location exactly by the time that the traffic light turns green from red.

Scenario 1. x0 = 0 m, x1 = 150 m, xe = 220 m, v0 = 5 m/s, ve = 11 m/s, t1 = 18 s, w = 0.1

Scenario 2. x0 = 0 m, x1 = 150 m, xe = 220 m, v0 = 11 m/s, ve = 11 m/s, t1 = 18 s, w = 0.1

4.5.2 Deterministic GLOSA

The resulting trajectories of acceleration, speed, and position of the vehicle for both Scenarios
1 and 2, are presented in Fig. 4.3, a and b. In Scenario 1, the initial speed is lower than the
targeted final speed, so the vehicle needs to accelerate to fulfill the final condition. In this
scenario, the optimal trajectories resulting from UP happen to lead the vehicle to reach the
traffic light during the green phase, therefore there is no need to re-adjust the trajectories via
solution of CP. On the other hand, in Scenario 2, the initial and final speeds are the same, which
means that the only reasons to change the vehicle speed are:

• increase and eventually decrease the speed to reach the fixed final position earlier, that is,
decrease the optimal final time; or

• decrease and eventually increase the speed because, with the given initial speed, the
vehicle would cross the traffic signal during the red phase.

It may be seen in Fig. 4.3, a and b, that the solution of UP behaves according to the first
reason, but fails to satisfy the green-light constraint. In contrast, the CP solution recognizes
the second reason and leads the vehicle to decelerate, to pass the traffic light optimally by the
time the traffic light turns green, and then accelerate again to fulfill the final conditions. In
both scenarios, the target speed ve and the target position xe are achieved at the final time te as
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(a)

(b)

Figure 4.3: Graphical representation of the optimal trajectories for: (a)
Scenario 1 and (b) Scenario 2 (blue lines), along with the corresponding
trajectories of the UP solution (red dotted lines). Also, the traffic light
phases are represented as thick red and green lines for red and green phases,

respectively.

requested, and the traffic light constraint is not violated. The resulting optimal final time and
cost for the two scenarios are 26.9 s and 2.02 for Scenario 1 and 25.1 s and 2.54 for Scenario
2, respectively. Note also that the trade-off curves displayed in Fig. 4.1 resulted with the set-up
of Scenario 1 and may be used to assess the impact of the weight w.

4.5.3 Stochastic GLOSA

The results of the proposed SDP approach are presented in this section. For this case, Scenario
2 is considered, and, in addition, a variation of this scenario (Scenario 2a) is also considered,
where the initial position is changed to x0 = 50 m, that is, considering the vehicle closer to the
traffic signal. The states and control bounds are set to [xmin,xmax] = [0,150] m, [vmin,vmax] =
[0,16] m/s, [amin,amax] = [−3,3] m/s2, respectively. The time step T is 1 s, which verifies the
discretization properties mentioned earlier. The switching time range for the traffic light is
[kmin,kmax] = [10,30] with uniform a-priori probability distribution.

As far as the discretization is concerned, ∆ = ∆a = ∆v = 0.125 is used, which leads to
∆x = 0.0625 m. The choice of the discretization can be justified by the results of various



Chapter 4. Vehicle Trajectory Specification in Presence of Traffic Lights with Known
or Uncertain Switching Times

91

Figure 4.4: Cost (red dotted line) and execution time (blue line) versus
discretization interval ∆.

different discretization intervals reported in Fig. 4.4. It can be observed that, as expected, as
the discretization interval is reduced, the obtained optimal cost is reducing, but the CPU-time is
increasing, since the number of grid points and the number of grid point connections increases
accordingly. For the discretization interval ∆ = 0.125, the cost has virtually converged to the
best achievable outcome, while the CPU-time in not prohibitive (588 s).

For comparison, an alternative (sub-optimal) GLOSA approach for the uncertain switching
time case is also investigated, which is as follows:

• Solve the deterministic GLOSA problem under the pessimistic assumption that the traffic
light will switch at the latest possible time, that is, at t1 = T kmax, so as to be on the
safe side. (For consistency, the deterministic GLOSA problem was solved here using
deterministic dynamic programming, rather than using the analytical solution.)

• Let the vehicle drive accordingly.

• When the switching time t1 becomes known, switch (on the fly) to the corresponding
deterministic GLOSA solution.

Fig. 4.5, present the optimal trajectories of states and control obtained by the SDP approach,
compared with the sub-optimal approach described above, for Scenario 2 (see Fig. 4.5a) and
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Scenario 2a (see Fig. 4.5b). The trajectories shown are for a single realization of traffic light
switching, namely that the traffic light switches from red to green at the latest possible time,
which is kmax. Clearly, this is the worst possible case for the SDP approach (which expects in
vain that the traffic light might switch earlier), and the best possible case for the sub-optimal
approach, which, for this particular realization, turns out to be in fact optimal.

As can be seen in Fig. 4.5, a and b, for both Scenarios 2 and 2a, the SDP vehicle starts
moving closer to the traffic signal short before the time kmin. This behavior is rational, as the
stochastic approach is aware that there is a probability for the traffic light to switch earlier,
therefore the vehicle moves to positions closer to the traffic signal; of course, this behavior
entails the risk to have worse transition cost if the traffic light switches late, as in the presented
realization. This is even more pronounced for Scenario 2a, in which the SDP vehicle even stops
for a short while at the traffic light, which is still red (against the anticipated probabilities).

Despite the outcome of this specific realization, the SDP approach is better informed, as it
incorporates all the available knowledge, including the probabilistic distribution of the
switching time and its updates over time, as well as the actual traffic light switching being
communicated to the vehicle when decided. The SDP approach optimizes the expected
performance subject to all this information, but this of course implies that, in specific
realizations, its performance cannot be superior to a hypothetical deterministic solution that
has exact knowledge of the switching time. The superiority of the SDP approach becomes
evident from the bottom-right diagrams in Fig. 4.5, a and b, each of which displays two pairs
of curves. The first couple of curves represents the square-of-acceleration cost resulting from
each of the two approaches (stochastic-optimal and sub-optimal approaches) versus the actual
switching time in the range kmin,kmax. The second couple of curves represents the
corresponding fuel consumption for the two approaches, calculated with the well-known
Australian Road Research Board (ARRB) fuel consumption model (Akçelik, Biggs, 1987).
Specifically, the displayed acceleration cost and fuel consumption values comprise the
acceleration cost and fuel consumed from the initial time up to the actual switching time, plus
the escape cost and the corresponding fuel consumption thereafter—in dependence of the
actual switching time. It may be seen that the SDP approach achieves the best possible
outcome and the biggest improvement over the sub-optimal approach for actual switching at
kmin. This improvement gradually diminishes as the actual switching time increases, and there
is a cross-point toward bigger switching times, beyond which the sub-optimal approach
becomes better, as the switching time approaches the assumption of that approach. The
biggest difference in favor of the sub-optimal approach occurs, as expected, at kmax, where, as
mentioned, the sub-optimal approach is deterministically optimal. Overall, given the uniform
probabilistic distribution, it is evident by inspection of both couples of curves, that the SDP
approach is superior (in fact, optimal on average) as the inter-curve surface before the
cross-point of both curves is clearly bigger than after, and this applies to both curve couples.
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(a)

(b)

Figure 4.5: Optimal states and control trajectories of SDP (blue lines)
compared with those of the sub-optimal approach (red lines) for: (a) Scenario
2 and (b) Scenario 2a. The traffic light phases are represented as a straight
line which is red for the red phase, yellow for the stochastic switching period,
and green for the rest. The bottom-right diagram in each scenario displays the
resulting square-of-acceleration cost (blue lines) and the fuel consumption (red
lines), the latter based on the Australian Road Research Board (ARRB) model,
for each approach (continuous lines for the SDP and dashed lines for the sub-

optimal approach) versus the actual switching time in the range [kmin,kmax].

The general superiority of the SDP approach is verified in Fig. 4.6a, which displays the
average percentage difference of fuel consumption (calculated with the ARRB model) of SDP
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versus the sub-optimal approach for different initial state values x0,v0. It can be seen that SPD
achieves always a (smaller or bigger) fuel reduction, compared with the sub-optimal approach.
Specifically, for the setup of Scenario 2 (Fig. 4.6a), the average percentage difference is quite
noticeable either when the vehicle is far from the traffic signal with high initial speed; or close
to the traffic light with low speed; while it is insignificant when the vehicle starts closer to the
traffic light with high speed values. This observation is rational as, in the first case, the vehicle
has the space and time to move closer to traffic signal as advised; while in the second case,
where the space is limited, the trajectories of the two approaches are quite similar. Fig. 4.6b
displays the results of another problem setting, which differs from the previous one in that the
time-window of possible switching times is enlarged to [40, 60] s; in addition, a bigger time
horizon and larger distance from the traffic light are considered in the figure. It may be seen
that even higher percentage differences are achieved in this case for some initial states.

(a) (b)

Figure 4.6: Average percentage difference of fuel consumption of SDP versus
the sub-optimal approach, calculated with the ARRB fuel consumption model,
for different initial state values x0 (in m), v0 (in m/s) for: (a) the setup of
Scenario 2 and (b) same setup but different time-window of switching times
(kmin,kmax = [40,60]) with extended time horizon and distance from the traffic

signal (xmax = 300).
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4.6 Conclusion

A deterministic and a stochastic GLOSA methodology were developed, as well as a
sub-optimal base-case approach for the stochastic case, by optimizing vehicles’ kinematic
trajectories subject to the intermediate traffic signal constraints and with a fixed final state that
allows for commensurable consideration of all possible trajectories before picking the optimal
one. The GLOSA problem was formulated as an optimal control problem and solved, firstly,
analytically, for the case of known switching time of the traffic light, and then numerically
through SDP techniques, for the case of uncertain switching time. In the latter case, the traffic
light’s switching time is assumed to be stochastic, with a given a-priori probability distribution
within a known time range [kmin,kmax], which is appropriately updated as time progresses. The
SDP approach takes advantage of the analytical solution, as it solves the problem up to the
time that the traffic light switches to green, and then uses the analytical solution to compute
the rest of the trajectory up to the vehicle’s final state downstream the traffic light. By this, the
advantages of the SDP and the analytical solution are combined to reduce the complexity and
the computational time.

Demonstration results confirm that vehicles guided by the proposed SDP approach achieve
better average performance compared with the vehicles guided by the sub-optimal approach,
which assumes first that the traffic light switching time is the maximum one and switches
eventually to an escape path, when the traffic light switches to green. The superiority of the
SDP approach is because it is better informed, incorporating all the available knowledge,
including the probabilistic distribution and its update for the traffic light switching time, as
well as knowledge that the traffic light switching will be communicated to the system in real
time. It should be noted that the average superiority of the SDP approach does not exclude
specific instances for which the sub-optimal approach performs better.

The computation of the SDP solution for the whole state-time area of a junction takes some
minutes, but may take place off-line, as it produces a complete closed-loop solution that may
be used to determine any optimal vehicle trajectories in that area. Ongoing work addresses
the solution of parts of the SDP problem, which may reduce the related computation time
sufficiently to enable its execution within the vehicle in real time.
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Chapter 5

Modified Dynamic Programming
Algorithms for GLOSA Systems with
Stochastic Signal Switching Times

5.1 Abstract

A discrete-time stochastic optimal control problem was recently proposed to address the
GLOSA (Green Light Optimal Speed Advisory) problem in cases where the next signal
switching time is decided in real time and is therefore uncertain in advance. The
corresponding numerical solution via SDP (Stochastic Dynamic Programming) calls for
substantial computation time, which excludes problem solution in the vehicle’s on-board
computer in real time. To overcome the computation time bottleneck, as a first attempt, a
modified version of Dynamic Programming, known as Discrete Differential Dynamic
Programming (DDDP) was recently employed for the numerical solution of the stochastic
optimal control problem. The DDDP algorithm was demonstrated to achieve results
equivalent to those obtained with the ordinary SDP algorithm, albeit with significantly
reduced computation times. The present work considers a different modified version of
Dynamic Programming, known as Differential Dynamic Programming (DDP). For the
stochastic GLOSA problem, it is demonstrated that DDP achieves quasi-instantaneous
(extremely fast) solutions in terms of CPU times, which allows for the proposed approach to
be readily executable online, in an MPC (Model Predictive Control) framework, in the
vehicle’s on-board computer. The approach is demonstrated by use of realistic examples. It
should be noted that DDP does not require discretization of variables, hence the obtained
solutions may be slightly superior to the standard SDP solutions.
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5.2 Introduction

In an era of climate crisis, actions toward environment protection are due in Transportation
systems, which have a significant impact on environmental pollution and energy resources
shortage. Improved fuel efficiency in road vehicles implies reduced fuel consumption,
emissions and expenses for the driver. Efficient intelligent transportation systems, including
real-time traffic signals, contribute to this effort. Traffic lights were introduced, in the first
place, as a measure to ensure safe crossing of antagonistic streams of vehicles, cyclists and
pedestrians at urban junctions. However, enforcing safety via traffic lights affects the fuel
consumption, as some vehicles are obliged to fully stop in front of a red light; and then
accelerate, after the traffic light switching to green. To reduce the resulting vehicle delays and
number of stops, several algorithms have been proposed and deployed over the past decades,
aiming at optimizing the traffic signals operation (Hounsell, McDonald, 2001; Kosmatopoulos
et al., 2006; Papageorgiou et al., 2003). In this context, fuel consumption is increasingly
considered as an optimization or evaluation criterion, while developing and deploying signal
control systems (Jamshidnejad et al., 2017).

Fixed-time signal plans are derived offline based on historical constant demands; and are
applied without deviations. This implies that switching times of the traffic lights are known in
advance. In contrast, real-time signal control strategies make use of real-time measurements
to compute in real time suitable signal settings. Depending on the employed signal control
strategy, the control update period may range from one second to one signal cycle. Clearly, for
real-time signals, the next switching time is not known before the switching decision has been
actually made.

A common dilemma, for a vehicle approaching a red traffic light, is whether it should slow
down or maintain its speed at risk to stop if the traffic light has not switched to green at arrival.
This dilemma may be addressed by appropriately designed on-board systems, which receive
the current state and timing of the traffic signal and guide the driver (or an automated vehicle),
while approaching the traffic light, by giving speed advice that ensures that the vehicle will
cross the traffic signal at green and with minimum fuel consumption and emissions. Systems
(or apps) optimizing the vehicle approach to traffic lights are often referred to as Green Light
Optimal Speed Advisory (GLOSA) systems (Stahlmann et al., 2016).

In the case of fixed signals, and hence prior knowledge of the next switching time, a
corresponding message is broadcasted by the signal controller well before switching. Under
these conditions, the problem of how to optimize the approach to traffic signals has been
addressed in different ways, including rule-based algorithms (Katsaros et al., 2011; Ma et al.,
2018; Sanchez et al., 2006) and optimal control approaches, which consider explicitly the
vehicle kinematics and are, by their nature, more efficient in producing fuel-optimal speed
profiles (Lawitzky et al., 2013; Typaldos et al., 2020a). Some of these works take into
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consideration additional factors, such as the car waiting queue. In (Yang et al., 2016), an
eco-CACC (Cooperative Adaptive Cruise Control) scheme was developed, where optimal
speed trajectories were calculated by minimizing fuel-consumption and ensuring that the
vehicles arrive at the intersection as soon as the last queued vehicle is discharged. An
extension of this work for the case of multiple signalized intersections is presented in (Yang
et al., 2020). In the literature, most existing GLOSA problems are focusing on developing
strategies for a single vehicle, however, there are few works that approach the problem in case
of platoons of vehicles in mixed traffic environment. In (Zhao et al., 2018), a model predictive
control (MPC) approach was proposed that minimizes the fuel-consumption of a platoon of
mixed vehicles (automated and human-driven vehicles) while crossing an intersection during
the green phase.

On the other hand, the case of real-time signals with very short (e.g., second-by-second)
control update periods is more complicated, as there is no exact prior knowledge of the next
switching time. In this case, the best available knowledge can be presented as an estimate or as
a probabilistic distribution for the next switching time within a short-term future time-window.
A comparison of several signal control methods with respect to traffic efficiency, plan stability
and the resulting GLOSA performance is presented in (Blokpoel, Lu, 2017). In (Koukoumidis
et al., 2011), a system called SignalGuru was developed, which detects and predicts the traffic
signal timing using a collection of mobile phone data. Instead of a single estimate, Mahler,
Vahidi (2012) produced a probability distribution for the next switching time based on past
signal statistics. However, the available probability distribution is used heuristically (rather
than optimally) to accordingly time-weigh the objective function within a deterministic
optimal control problem that is solved via a dynamic programming (DP) algorithm. In (Sun
et al., 2020), the uncertainty of traffic signal timing is considered as a data-driven
chance-constrained robust optimization problem, where the red-light duration is defined as a
random variable. A data-driven approach is adopted to formulate chance constraints, based on
empirical sample data, and Dynamic Programming is employed to solve the optimization
problem. In (Lawitzky et al., 2013), a stochastic optimal control problem was proposed, which
uses a probabilistic distribution of the next signal switching time, and the problem is solved
using a discrete stochastic dynamic programming (SDP) algorithm.

In (Typaldos et al., 2020a), the problem of producing fuel-optimal vehicle trajectories for a
vehicle approaching a traffic signal was considered for both cases of known and stochastic
switching times. For the first case, an optimal control problem was formulated and solved
analytically via PMP (Pontryagin’s Maximum Principle). Subsequently, the case of stochastic
switching time with known probability distribution was also addressed in the format of a
stochastic optimal control problem, which was solved numerically using SDP. The proposed
SDP algorithm may take several minutes to execute, which implies that the solution is not
real-time feasible and can therefore not be obtained on-board the vehicle, but must be
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executed offline, on the infrastructure side, and be communicated to approaching vehicles
according to their current states. To substantially reduce the computation time and memory
requirements for the solution of the stochastic GLOSA problem and enable its solution
on-board the vehicle, Typaldos et al. (2021) employed a Discrete Differential Dynamic
Programming (DDDP) algorithm (Heidari et al., 1971). DDDP is an iterative algorithm, each
iteration receiving a feasible (but non-optimal) trajectory and transforming it to an enhanced
one, to be used in the next iteration, and so forth, until convergence to the overall solution is
achieved. Each iteration uses the conventional DP algorithm to solve the problem within a
strongly reduced state domain around the received state trajectory of the previous iteration.
The computational time required for each iteration is far lower compared to that of the
one-shot full problem solution, due to the strongly reduced space domain considered. Thus,
the problem may be solved by use of DDDP very fast (around 1 s CPU time or less) (Typaldos
et al., 2021). It should be noted that, in contrast to deterministic optimal control problems,
general stochastic optimal control problems do not feature a solution trajectory, even for given
initial states, due to the uncertainty of system evolution created by the included stochastic
variables. However, in the specific stochastic GLOSA problem, such a trajectory is indeed
present in the problem solution, and this allows for application of the DDDP algorithm.

As an attempt to further reduce the computation time for the solution of the stochastic
GLOSA problem and enable its solution on-board the vehicle, a Differential Dynamic
Programming (DDP) algorithm is employed in the current work. DDP was first introduced in
(Jacobson, Mayne, 1970), while several extensions and applications were eventually
conducted by Murray, Yakowitz (1979, 1984). DDP is also used in robotics (Budhiraja et al.,
2018; Tassa et al., 2014) and unmanned aerial vehicles (UAV) (Xie et al., 2017). DDP is also
an iterative algorithm, which starts with a user-defined feasible trajectory to be used in the first
iteration. Each iteration produces an improved trajectory, to be used in the subsequent
iteration; until convergence to the solution of the original optimal control problem is achieved.
Each iteration solves, for each time-step separately, a quadratic-linear approximation of the
stochastic recursive Bellman equation; the approximation being computed around the initial
trajectory of the iteration. It should be noted that, in contrast to the standard DP and DDDP
algorithms, DDP requires no discretization of the state and control spaces, hence it may result
in better solutions compared with discretised-value formulations. Moreover, DDP is found to
deliver solutions quasi-instantaneously, which enables the approach to be readily
implementable in an MPC (model predictive control) framework online, on the vehicle’s
computer. Note that communication between vehicles and traffic signals (V2I) is crucial in
GLOSA problems (Lu et al., 2020), however in this work we focus on the methodological part
of such systems.

The remainder of the paper is organized as follows: in Section 5.3, the optimal control
problems with known signal switching time and uncertain signal switching time, as proposed
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Figure 5.1: A vehicle starting from a given initial state (x0,v0) aims to reach a
fixed final state (xe,ve) in presence of a traffic signal at a given position x1 that

switches to green at time t1.

in (Typaldos et al., 2020a) are briefly presented for completeness. Section 5.4 presents the
DDDP algorithm, along the lines of (Typaldos et al., 2021). Section 5.5 presents the DDP-based
GLOSA problem algorithm, while demonstration results for the DDP algorithm’s performance
and comparison with the one-shot stochastic GLOSA and the DDDP results are presented in
Section 5.6. Finally, Section 5.7 concludes this work, summarizing its contributions.

5.3 Optimal Control-Based GLOSA with Known or Unknown
Signal Switching Time

This section outlines, for completeness, the deterministic and stochastic GLOSA optimal
control problems, for the cases of known and unknown signal switching time, respectively, as
well as the SDP solution algorithm for the latter, following (Typaldos et al., 2020a).

5.3.1 Known Signal Switching Time - Deterministic GLOSA

Consider a vehicle traveling from an initial state xxx0 = [x0,v0]
T , x0 being a given initial position

and v0 a given initial speed, with the purpose to reach a fixed final state xxxe = [xe,ve]
T within

a free (but weighted) time horizon te. Between the initial and final positions, there is a traffic
signal, and hence the additional restriction that the vehicle must not pass the signal position
x1 before the known time t1, when the traffic light turns green from red (see Fig. 5.1). The
implicit assumption here is that a red light is active when the vehicle appears on the link (at
time 0), but a generalisation, which includes the case where the vehicle appears when the traffic
light is green, is given in (Typaldos et al., 2020a). The vehicle task is to appropriately adjust its
acceleration (control variable), so as to minimize fuel consumption, while satisfying the initial
and final conditions xxx0 and xxxe, as well as the intermediate (traffic signal) constraint.
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The minimization problem outlined above is formulated as an optimal control problem,
which accounts for the vehicle kinematics via the following state equations:

ẋ = v (5.1)

v̇ = a (5.2)

where a is the vehicle acceleration, which assumes the role of the control variable. The
objective criterion to be minimized reads

J = w · te +
1
2

∫ te

0
a2dt (5.3)

The utilized acceleration cost term a2 in the criterion was demonstrated to be an excellent
proxy for deriving fuel-minimizing vehicle trajectories (Typaldos et al., 2020b). The final time
te is free but penalized with the weight w. For higher values of w, the resulting te will be lower
and vice versa. This, consequently, affects the acceleration cost, which, depending on higher
or lower w value, will also have increased or decreased values (for more details, see (Typaldos
et al., 2020a)). In addition, the green-light constraint, tS ≥ t1, must be fulfilled, where tS is the
time at which the vehicle crosses the signal position x1, that is, x(tS) = x1. If necessary, upper
and lower bounds may be applied to speed v and acceleration a.

The solution of this problem was addressed in (Typaldos et al., 2020a) and can be obtained
analytically using symbolic differentiation tools. Thus, the numerical solution of the
deterministic GLOSA problem, for a specific problem instance, takes only fractions of a
second of computation time and can be executed in real time on-board for each approaching
vehicle. Note that it may be reasonable to continuously update the vehicle trajectory (in a
model predictive control (MPC) loop) to account for possible deviations from the first
calculated vehicle trajectory, which may occur because of a variety of disturbances, including
a slower vehicle ahead.

For a given junction, the final state is the same for any initial vehicle state xxx0 and any
switching time t1. Therefore, the optimal value of criterion (5.3) of the deterministic GLOSA
solution depends only on the initial state and the switching time and is denoted J∗DG(xxx0, t1) for
later use.

5.3.2 Uncertain Signal Switching Time Problem – Stochastic GLOSA

The traffic light switching time may be subject to short-term decisions in dependence of the
prevailing traffic conditions in cases of real-time signals. In such cases, we typically have
minimum and maximum admissible switching times; hence, based on statistics from past
signal switching activity, we may derive a probability distribution of switching times within
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the admissible time-window of possible signal switching times. Thus, the problem can be cast
in the format of a stochastic optimal control problem, which may be solved numerically using
SDP techniques. To this end, the analytical solution of the deterministic GLOSA optimal
control problem is used within the stochastic approach, as will be explained in this section (for
more details, see (Typaldos et al., 2020a)).

For the stochastic optimal control problem and the SDP algorithm (Bertsekas, 2012), the
discrete-time version of the vehicle kinematics, with time step T , is considered, as follows:

x(k+1) = x(k)+ v(k)T +
1
2

a(k)T 2 (5.4)

v(k+1) = v(k)+a(k)T (5.5)

where x(k) and v(k) correspond to the vehicle position and speed, respectively, at discrete
times k = 0,1, . . . (where kT = t), while the control variable a(k) reflects the acceleration that
remains constant over each time period k. The state and control variables are bounded within
the following feasible regions

xxx(k) ∈ XXX = [xxxmin,xxxmax] (5.6)

a(k) ∈U = [amin,amax] (5.7)

with xxxmin,xxxmax and amin,amax being the lower and upper bounds of the states and acceleration,
respectively. The traffic light’s discrete switching time k1 is not known, but it is assumed that
a known range kmin ≤ k1 ≤ kmax of possible switching times exists, kmin and kmax being the
minimum and maximum possible switching times, respectively.

For proper problem formulation, a virtual state x̃(k) is introduced, that reflects formally the
stochasticity of traffic light switching

x̃(k+1) = x̃(k) · z(k)
x̃(0) = 1

(5.8)

where z(k) is a binary stochastic variable defined as

z(k) =

{
0 if traffic light switches at time k+1
1 else

(5.9)

with (5.8) and (5.9), the virtual state x̃(k) is either equal to 1 if the traffic light has not yet
switched until time k− 1; or equal to 0 if switching occurred at time k or earlier. The virtual
state x̃ is assumed measurable, which means that the system knows at each time kT if switching
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has taken place or not within the last time period [(k−1)T,kT ].
The stochastic variable z(k) is independent of its previous values and takes values according

to a time-dependent probability distribution p(z|k). Based on the statistics of previous signal
switching activity, availability of an a-priori discrete probability distribution P(k),kmin ≤ k1 ≤
kmax, is assumed, for signal switching within the time-window, where ∑

kmax
k=kmin

P(k) = 1. Since
no switching takes place for k ≤ kmin−1, we have

p(0|k) = 0 for k < kmin−1 (5.10)

For k ≥ kmin, the probability distribution p(z|k), is obtained by use of "crop-and-scale",
meaning that the a-priori probabilities of previous time steps, where switching did not take
place, are distributed analogously to increase the probabilities of the remaining discrete times
within the time-window (Lawitzky et al., 2013). As shown in (Typaldos et al., 2020a), this
update may be done by use of the following crop-and-scale formula that applies for kmin ≤ k ≤
kmax−1 and for any a-priori distribution P(k)

p(0|k) = P(k+1)

∑
kmax
κ=k+1 P(κ)

(5.11)

The cost criterion of the stochastic problem is essentially the same as (5.3) in the
deterministic case. However, in the stochastic case, the exact value of the criterion depends on
the stochastic variable’s realization, and therefore we consider minimisation of the expected
value. As shown in (Typaldos et al., 2020a), the cost criterion in discrete time becomes

J = E

{
1
2

k1−1

∑
k=0

a(k)2 + J∗DG[xxx(k1),k1]

}
(5.12)

where the expectation refers to the stochastic variable z(k),k = 0, . . . ,kmax− 1. This criterion
captures the quadratic acceleration cost up until the stochastic switching time k1, when the
vehicle is at state xxx(k1). After the signal switching, the problem instantly becomes a
deterministic GLOSA problem (Section 5.3.1), and the corresponding optimal cost-to-go is
J∗DG[xxx(k1),k1], which will be denoted as the "escape cost".

To obtain a formally proper cost criterion, the stochastic variable z(k) and the virtual
variable x̃(k), introduced earlier, are used, and, as shown in (Typaldos et al., 2020a), this yields
the objective function in the required form, as follows

J = E

{
x̃(k)

kmax−1

∑
k=0

[
1
2

a(k)2 +[1− z(k)]J∗DG[xxx(k),a(k),k+1]
]}

(5.13)



Chapter 5. Modified Dynamic Programming Algorithms for GLOSA Systems with
Stochastic Signal Switching Times

104

where, for notational simplicity, J∗DG[xxx(k),a(k),k+ 1] = J∗DG[xxx(k+ 1),k+ 1] when xxx(k+ 1) is
replaced via the state equations (5.4), (5.5) as a function of xxx(k),a(k).

Equations (5.4)-(5.13) constitute an ordinary stochastic optimal control problem
(Bertsekas, 2012). Denoting the corresponding optimal cost-to-go function by V [xxx(k), x̃(k),k],
the recursive Bellman equation for 0≤ k ≤ kmax−1 reads

V [xxx(k), x̃(k),k] = min
a(k)∈U

{
E
{1

2
a(k)2 +[1− z(k)]J∗DG[xxx(k),a(k),k+1]

+V [xxx(k+1), x̃(k)z(k),k+1]
}}

= min
a(k)∈U

{
1
2

a(k)2 + p(0|k) · J∗DG[xxx(k),a(k),k+1] (5.14)

+[1− p(0|k)] ·V [xxx(k+1),1,k+1]
}

with boundary condition V [xxx(kmax),1,kmax] = 0. Note that, the minimum is required with
respect to the control of time k only, i.e., a(k) ∈U , as typical in dynamic programming, which
facilitates the numerical solution.

In this formulation, it has been assumed that the decision on the traffic light switching is
taken within the last time period before the actual switching. The generalization to the case
of taking a switching decision κ time periods in advance of the actual switching is easy and is
mentioned in (Typaldos et al., 2020a).

5.3.3 Discrete SDP Numerical Solution Algorithm

For the numerical solution of the stochastic problem, using the SDP algorithm, the state and
control variables must be discretised. As the discretization level has a significant impact on
computational time and memory requirements, but also on the accuracy of the computed
solution, an appropriate trade-off must be specified between reasonable computation
requirements versus achievable solution quality. For the discretization, the discrete time
interval T is set equal to 1 s, which is a reasonable choice for the problem at hand. Then, a
general discretization interval ∆ for the problem variables is assumed, and the discretization
interval of acceleration is set ∆a = ∆. From (5.5), the discretization interval of speed assumes
the same value (∆v = ∆a = ∆). Likewise, in view of (5.4), the discretization interval for the
position is

∆x =
1
2

∆ ·T 2 (5.15)

Based on these settings, it was shown in (Typaldos et al., 2020a) that, if x(k),v(k),a(k) are
discrete points, then x(k+1) and v(k+1) resulting from (5.4) and (5.5) are also discrete points.
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It is now straightforward to apply the discrete SDP algorithm to obtain a globally optimal
closed-loop control law a∗(k) = R[xxx(k),k], which, for any given vehicle state xxx(k) ∈ XXX and
time k, delivers the corresponding optimal acceleration a∗(k). The SDP algorithmic steps are
summarized below. Note that the algorithm needs to consider only the case x̃(k) = 1, therefore
any arguments pertaining to x̃(k) are suppressed for convenience.

The SDP algorithm is as follows:
1: V [xxx(kmax),kmax)]← 0 ∀xxx(kmax) ∈ XXX
2: for each k = kmax−1, . . . ,0 do
3: for each discrete state xxx(k) ∈ XXX do
4: for each discrete control a(k) ∈U do
5: Calculate x(k+1),v(k+1)
6: if xxx(k+1) ̸∈ XXX then
7: Φ[xxx(k),a(k),k+1]← ∞

8: continue
9: end if

10: Φ[xxx(k),a(k),k+1]← 1
2 a(k)2 + p(0|k) · J∗DG[xxx(k),a(k),k+1]

+[1− p(0|k)] ·V [xxx(k+1),k+1]
11: end for
12: V [xxx(k),k]←minΦ[xxx(k),a(k),k+1] ∀a(k) ∈U
13: R[xxx(k),k] = a∗(k)← arg min

a(k)∈U
{Φ[xxx(k),a(k),k+1]},

14: with a∗(k) the optimal control of point [xxx(k),k]
15: end for
16: end for

As mentioned, this algorithm delivers a globally optimal control law a∗(k) = R[xxx(k),k]
for the full state domain XXX . Note that general stochastic optimal control problems do not
possess a solution trajectory for specific initial states xxx0, because the state evolution is uncertain
in presence of the stochastic variables. However, in the specific stochastic GLOSA problem
addressed here, the evolution of the vehicle states (5.4) and (5.5) is not affected by the stochastic
variable z(k), which concerns only the signal switching time. Thus, for a given initial state, i.e.,
vehicle position and speed at time 0, the optimal control law may be used to produce an optimal
vehicle trajectory that the vehicle should pursue; until the signal switching actually occurs, in
which case the vehicle must instantly behave according to the deterministic GLOSA solution.

Note that the SDP algorithm may take several minutes to execute in an ordinary PC, as will
be reported in Section 5.6. This implies that the solution cannot be obtained on the vehicle side
in real time.
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5.4 Discrete Differential Dynamic Programming (DDDP)

In (Typaldos et al., 2021), a modified DP algorithm called DDDP was employed for the
stochastic GLOSA problem in order to address the major disadvantage of the discrete (S)DP
algorithm, which is the high computation time required for the numerical solution of the
optimal control problem, which increases exponentially with the number of state and control
variables (Papageorgiou et al., 2015). The DDDP algorithm was proposed in (Heidari et al.,
1971) for deterministic optimal control problems. The method can nevertheless be applied
here, because an optimal vehicle trajectory may be derived for the stochastic GLOSA
problem, despite its stochastic character, as mentioned in the previous section. The DDDP
approach to the stochastic GLOSA problem is presented in this paper in more detail and with
more comprehensive testing and comparison results, compared to the conference article
(Typaldos et al., 2021).

DDDP is an iterative algorithm, calling for a feasible starting state trajectory to be specified
externally. Each iteration l receives a feasible (but non-optimal) state trajectory xxx(l−1)(k), and
transforms it to an enhanced one xxx(l)(k), to be used in the next iteration. To this end, each
iteration solves a discrete SDP problem by use of the standard SDP algorithm presented above.
What changes at each iteration l is the considered state domain

XXX (l)
C =

{
xxx(k)

∣∣ |xxx(k)− xxx(l−1)(k)| ≤ ∆∆∆
(l)
C ∧ xxx(k) ∈ XXX

}
(5.16)

which is a strongly reduced subdomain of the original state domain XXX in (5.6). In other words,
the discretized SDP problem is solved in each iteration l within a corridor with width ∆∆∆

(l)
C

around the received state trajectory xxx(l−1)(k) of the previous iteration, to produce a solution
trajectory xxx(l)(k) for use in the next iteration. The corridor width ∆∆∆

(l)
C , as well as the

discretisation intervals ∆a(l),∆xxx(l), can vary in each iteration, typically at a decreasing rate.
The iterations stops when a termination criterion is satisfied.

In the proposed GLOSA application (Typaldos et al., 2021), the starting trajectory for the
first iteration of DDDP is the optimal solution of the deterministic GLOSA problem, assuming
the "pessimistic" case where the traffic light will switch from red to green at the latest possible
time, that is, at k1 = kmax, so as to cover the whole time range and be not too far from the
stochastic optimal trajectory; see (Typaldos et al., 2020a). The discretisation intervals
∆a(l),∆xxx(l) for the first iteration are also given. The intervals are reduced by half, each time
there is no solution improvement at two subsequent iterations. The corridor width is taken as

∆∆∆
(l)
C =CCC ·∆a(l) (5.17)

where CCC = [Cx,Cv] are constant given values specifying the state corridor width. Thus, the
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corridor’s initial width is defined through the chosen values for CCC and ∆a(l). In the following
iterations, whenever the discrete interval is reduced, there is an analogous reduction of the
corridor width. Consequently, we have a constant number of feasible discrete points in all
iterations, which facilitates the algorithm’s fine-tuning, so as to improve its computational
efficiency. Note that, Cx and Cv values may differ, as the magnitude of the two respective state
variables differs.

The admissible control region U (see (5.7)) is kept the same at each iteration, although many
related state transitions cannot be considered in view of the reduced state variables domain. The
algorithm terminates whenever there is no improvement of the produced solution trajectory
even after a reduction of the discretisation interval; or when the ∆a(l) value becomes less than
0.125, which was found in (Typaldos et al., 2020a) to lead to sufficiently accurate results.

It should be noted that there is no general guarantee that the DDDP iterations will actually
converge to the full-domain SDP solution. In particular, if the state sub-domains XXX (l)

C
considered in the iterations are too small, the obtained DDDP solution may actually differ
from the overall SDP solution. On the other hand, if the state sub-domains are selected large,
the required number of iterations may decrease, but the computation time required to find the
solution at each iteration increases accordingly. In conclusion, some fine-tuning regarding the
size of sub-domains is necessary to ensure convergence to the overall SDP solution with
minimum overall (all iterations) computation time.

5.5 Differential Dynamic Programming (DDP)

DDP is an iterative algorithm, which requires a given initial feasible trajectory (of states and
controls) to be used in the first iteration. At each iteration and time step, a quadratic-linear
approximation of the recursive Bellman equation (5.14), around the initial trajectory of the
iteration, is solved, leading to an improved trajectory. The improved trajectory is then used
as initial trajectory in the next iteration, and the procedure continues until convergence to the
solution of the original optimal control problem is achieved. The method was developed for
deterministic optimal control problems; and it is not applicable to general stochastic problems,
which do not feature solution trajectories (Bertsekas, 2012). However, as explained earlier,
the specific stochastic GLOSA problem admits feasible solution trajectories for specific initial
states, hence DDP may be applied.

5.5.1 General Constrained DDP

The standard DDP method (Jacobson, Mayne, 1970) does not account for constraints, so, for
the needs of the problem presented in this work, extensions of DDP, proposed by Murray,
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Yakowitz (1979) for linear constraints and by Yakowitz (1986) for nonlinear constraints, is
utilized.

Consider a discrete-time optimal control problem with states xxx and controls aaa with the
recursive Bellman equation V (xxx(k),k) = min{φ(xxx,aaa,k) + V ( fff (xxx,aaa,k),k + 1)}, for
k = K − 1, . . . ,0, where V is the optimal cost function, φ is the objective function of the
optimal control problem, fff is the right-hand side of the state equation, and the minimisation
must be carried out for all feasible controls aaa(k) that satisfy any inequality constraints present.
The DDP procedure undertakes, at each time step of each iteration, a quadratic approximation
of the term to be minimized in the recursive Bellman equation, i.e., of
φ(xxx,aaa,k) + V ( fff (xxx,aaa,k),k + 1). The quadratic approximation is taken around nominal
trajectories (x̄xx(k), āaa(k)), which are the initial trajectories of each iteration. Define δxxx = xxx− x̄xx
and δaaa = aaa− āaa. The aim is to find the optimal control law for δaaa, which minimizes the
quadratic approximation, subject to some inequality constraints. The procedure of the DDP
algorithm for each iteration is described in brief as follows, see (Murray, Yakowitz, 1979;
Yakowitz, 1986) for more details.

For k = K − 1, . . . ,0, the quadratic approximation Q(xxx,aaa,k) of the term
φ(xxx,aaa,k) +V ( fff (xxx,aaa,k),k + 1) around a nominal point (x̄xx(k), āaa(k)), is required and can be
expressed as follows (for simplicity, the indexes k are omitted)

Q(xxx,aaa) =
1
2

δxxxT AAAδxxx+δxxxT BBBδaaa+
1
2

δaaaTCCCδaaa+DDDT
δaaa+EEET

δxxx (5.18)

where the zero-order constant term is omitted, as it does not influence the minimisation; and
AAA,BBB,CCC,DDD,EEE are matrices with appropriate dimensions and with elements that may depend on
(x̄xx(k), āaa(k)).

Furthermore, we assume the general inequality constraints for the optimal control problem

ccc(xxx,aaa)≤ 000 (5.19)

and we denote as c̃cc(xxx,aaa) its linear approximation around the nominal trajectories (x̄xx, āaa).
For the solution of the resulting Quadratic Programming (QP) problem, Fletcher’s active

set algorithm is used (Fletcher, 1971). The critical issue here is that the minimization in the
recursive Bellman equation should be executed in a parametrized way, i.e., deliver δaaa as a
function of δxxx, which is not compatible with a numerical solution procedure. Therefore, in the
QP problem formulation, we replace xxx with x̄xx (i.e. we set δxxx = 0) in (5.18) and c̃(xxx,aaa), and
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solve the following QP problem to obtain a numerical value for δaaa

minQ(x̄xx, āaa+δaaa)

s.t

c̃cc(x̄xx, āaa+δaaa)≤ 000

(5.20)

After solving the QP problem, the index set of the active constraints, denoted as S, leads to
the linear system of equations

c̃i (x̄xx, āaa+δaaa) = 0, i ∈ S (5.21)

and expressing (5.21) in matrix form, we have

UUUδaaa−WWW = 000 (5.22)

where UUU has rank equal to the number of indexes in S. This solution of the QP problem satisfies
the necessary conditions of optimality for the Lagrangian (Fletcher, 1971)

L(aaa,λλλ ) =
1
2

δaaaTCCCδaaa+DDDT
δaaa+λλλ

T (UUUT
δaaa−WWW

)
(5.23)

where λλλ is the Lagrange multiplier vector. These necessary conditions may be obtained by
differentiating L with respect to δaaa and λλλ , which yields the following linear system of equations[

CCC UUU
UUUT 000

][
δaaa
λλλ

]
=

[
−DDD
WWW

]
(5.24)

In order to re-introduce δxxx, i.e. the variablity of state variables, we consider that the
constraints that are active while we assumed xxx = x̄xx, remain active for other xxx, i.e.

c̃i (x̄xx+δxxx, āaa+δaaa) = 0, i ∈ S (5.25)

which in matrix form reads
UUUδaaa−WWW −XXXδxxx = 000 (5.26)

Then, we may derive a control law, i.e. δaaa as a function of δxxx by solving analytically the
accordingly extended version of (5.24), i.e.[

CCC UUU
UUUT 000

][
δaaa
λλλ

]
=

[
−DDD−BBBδxxx
WWW +XXXδxxx

]
(5.27)
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which yields the following linear control law with readily computed vector ααα and matrix βββ

δaaa(xxx) = ααα +βββδxxx (5.28)

This minimisation outcome is substituted in the quadratic approximation Q to obtain, from
the Bellman equation, the approximate optimal cost function

V (xxx(k),k) = Q(xxx(k),ααα(k)+βββ (k)δxxx(k),k) (5.29)

which must be stored for use at the next time step k− 1 within the same iteration. Note that
this approximate cost function is quadratic by construction, which facilitates the quadratic
approximation in the Bellman equation at the next time step k−1.

Given δaaa(δxxx,k), from (5.28), the nominal trajectories for the next iteration are calculated
as follows for k = 0, . . . ,K−1

aaa(k) = āaa(k)+ ε[ααα(k)+βββ (k)δxxx(k)] (5.30)

xxx(k+1) = f (xxx(k),aaa(k),k) (5.31)

xxx(0) = xxx0 (5.32)

where 0 < ε ≤ 1 is used to ensure the convergence of the algorithm. Specifically, ε values
smaller than 1 may facilitate convergence if needed; but may decrease the convergence rate
if selected too small. The algorithm terminates whenever the following convergence test is
satisfied (K−1

∑
k=0

[(
aaa(k)− āaa(k)

)2])1/2

< ε1 (5.33)

where ε1 is a small positive number.
In contrast to the SDP and DDDP algorithms, DDP does not apply any discrete DP

procedures, hence no discretization of the state and control domains is necessary. As a result,
the required computation time is independent of any discretization intervals, and the obtained
solution trajectories are value-continuous, hence potentially better than those obtained by the
other algorithms, even when using fine discretization.

5.5.2 Constrained DDP for the GLOSA Problem

To apply the DDP algorithm to the GLOSA stochastic optimal control problem described in
Section 5.3.2, the quadratic approximation of the right-hand side of (5.14) around a nominal
trajectory (x̄xx(k), ā(k)) is first required. Note that only the J∗DG term needs to be approximated,
as the rest terms are already quadratic. For the approximation, the LOESS (locally estimated
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scatterplot smoothing) method was utilized (Cleveland et al., 2017). Specifically, a number of
(x,v) points are specified around the nominal trajectory at each iteration, and the corresponding
values of J∗DG(xxx(k),kT ) are computed. It was found that some 4 such points per time step are
sufficient for a good fit. Then, LOESS fits the following smooth function to the data set

p(x,v) = p1δx2 + p2δv2 + p3δxδv+ p4δx+ p5δv+ p6 (5.34)

where p1, . . . , p6 are the coefficients of fitting. The resulting fitted function (5.34), along with
the other quadratic terms of (5.14), can be easily expressed in the form of (5.18). It was verified
that the resulting quadratic function (5.18) is always convex, something that was expected from
the physical background of the problem.

The nominal trajectory of the first iteration is taken to be the optimal solution of the
deterministic GLOSA problem, assuming the "pessimistic" case where the traffic light
switches from red to green at the latest possible time, i.e., k1 = kmax.

For the state constraints (5.6), we may replace the state equations (5.4), (5.5) therein, hence,
for the admissible region of the SDP (5.6) and (5.7), we have the equivalent constraints

2(xmin− x(k)− v(k)T )
T 2 ≤ a(k)≤ 2(xmax− x(k)− v(k)T )

T 2

vmin− v(k)
T

≤ a(k)≤ vmax− v(k)
T

amin ≤ a(k)≤ amax

(5.35)

which can be written in terms of δx and δa as follows



1
−1

1
−1

1
−1

δa−



2(xmax− x̄(k+1))
T 2

−2(xmin− x̄(k+1))
T 2

(vmax− v̄(k+1))
T

−(vmin− v̄(k+1))
T

(amax− ā(k))
−(amin− ā(k))


−δxxx≤



0
0
0
0
0
0

 (5.36)

Having the quadratic approximation of the recursive Bellman equation and the linear
inequality constraints (5.35), the resulting QP is as described in the previous subsection. In
fact, the resulting QP problem for the stochastic GLOSA application is simpler than the
general case of Section 5.5.1. After setting δxxx = 0 in (5.36), we have only one decision
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variable, δa, with constant upper and lower bounds. Thus, for the solution of the QP problem,
it suffices to first compute analytically the value of δa that minimises the quadratic function.
If this value does not violate any of the upper or lower bounds, then the QP solution is given
by that value; else, the QP solution equals the activated bound. All further procedures are as
explained in Section 5.5.1.

5.6 Demonstration Results and Comparison

In this section, the performance of the proposed approaches is tested, demonstrated and
compared. Specifically, the DDDP and DDP algorithms are applied to realistic scenarios and
evaluated regarding the quality of their solution compared to the standard SDP, as well as the
computational time needed for each algorithm to converge to the optimal solution.

5.6.1 Scenarios Setup

For the evaluation, several scenarios have been considered in various situations, such as cases
where the vehicle needs to accelerate or decelerate before or after the traffic signal; or cases
where the vehicle is forced to fully stop and wait until the traffic light switches from red to
green. For this paper, three scenarios have been chosen for demonstration with full illustration
of state and control trajectories, according to Table 1. For consistency, the chosen scenarios
are the same as in previous related works (Typaldos et al., 2020a, 2021). All scenarios concern
mixed acceleration-deceleration cases. However, in Scenario 1, the vehicle starts with low
initial speed and needs to mostly accelerate in order to optimally pass the traffic signal. On the
other hand, in Scenarios 2 and 3, the vehicle starts at higher speed, hence it needs to mostly
decelerate to avoid a full stop at the traffic signal. Compared to Scenarios 1 and 2, in Scenario
3 the vehicle starts closer to the traffic light, which leads to a full stop for few time steps before
the traffic signal switches from red to green.

Table 5.1: Investigated scenarios.

x0 (m) v0 (m/s) xe (m) ve (m/s) x1 (m)
Scenario 1 0 5 220 11 150
Scenario 2 0 111111 220 11 150
Scenario 3 555000 111111 220 11 150

For all evaluated scenarios, the weight parameter w in (5.3) is equal to 0.1. The bounds for
the states and control are set to [xmin,xmax] = [0,150] m, [vmin,vmax] = [0,16] m/s and
[amin,amax] = [−3,3] m/s2, respectively. The time step T is 1 s and the switching time window
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for the traffic signal is [kmin,kmax] = [10,30] s with uniform a-priori probability distribution.
Regarding DDDP, for the initial discretization, ∆a = ∆v = 0.5 is used, which leads to
∆x = 0.25 m according to (5.15); and the initial corridor width in (5.17) is set CCC = [20,4], i.e.,
we have Cx = 5 ·Cv. The choice of the initial discretization and corridor width value will be
justified later in this section. For the DDP algorithm, parameters ε in (5.30) and ε1 in (5.33)
are set equal to 1 and 10−4, respectively.

5.6.2 DDDP Algorithm Results

Fig. 5.2 (Scenario 1) and Figs. 5.6 and 5.7 (for Scenarios 2 and 3, respectively, see Appendix
A) display the optimal state (speed) and control (acceleration) trajectories over each iteration
of the DDDP algorithm. Note that, position trajectories are not included, as the differences in
those trajectories, at each iteration, are small and barely visible. In each iteration, we consider
a corridor ∆

(l)
C = [−CCC ·∆a(l),CCC ·∆a(l)] around the respective received state trajectories, which

cannot of course extend out of the full state bounds.
In all Figs 5.2, 5.6 and 5.7, the dashed blue lines represent, for each iteration, the received

trajectory, the solid orange lines represent the optimal trajectories derived, and the red dashed
lines reflect the corresponding corridor bounds. For Scenario 1 (Fig. 5.2), it can be observed
that, starting with the initial chosen discretization, the first DDDP iteration improves the initial
trajectory, leading to a better solution, which is optimal within the considered sub-domain. In
the second iteration, no further improvement can be achieved within the new sub-domain
bounds, which means that, with the current discretization values, the best achievable solution
has been reached. By reducing the discretization at the 3rd iteration, a reduction in the
corridor width is observed, but the number of discrete points remains the same. This reduction
enables further improvement of the solution, which remains the same in iteration 4; hence the
discretisation is further reduced, leading to further improvement in iteration 5; and the
procedure continues with iteration 6, where no further improvement is reached and the
algorithm terminates, as the discretisation has reached the minimum required value. Similar
behaviour is observed for Scenarios 2 and 3, where 10 iterations are required for convergence,
and the respective Figs. 5.6 and 5.7 display a subset thereof. Table 5.2 contains the values of
the objective function for each iteration of the DDDP algorithm for all scenarios, assuming
∆a = 0.5 and CCC = [20,4], where the choice of these values will be explained in the following.

The DDDP has been evaluated for different corridor Cv and initial discretization ∆a values,
for the three investigated scenarios (see Table 5.4 in Appendix A). It can be seen that, for all
presented initial discretization values, the obtained optimal solution at convergence reaches the
same globally optimal solution, if the corridor width is sufficiently large, specifically for Cv ≥ 4
(or lower, in some cases). This is because, for very small values of Cv, DDDP does not have
sufficient flexibility to improve the solution at each iteration due to the extremely limited state
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Iteration 1 Iteration 2 Iteration 3

Iteration 4 Iteration 5 Iteration 6

(a)

Iteration 1 Iteration 2 Iteration 3

Iteration 4 Iteration 5 Iteration 6

(b)

Figure 5.2: Received (blue dashed line) and optimal (orange line) (a)
acceleration and (b) speed trajectories of DDDP algorithm in each iteration

for Scenario 1.
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Table 5.2: Optimal cost evolution and descretization change in each iteration
of DDDP algorithm.

Scenario 1 Scenario 2 Scenario 3
Iter. ∆a = ∆v ∆x Cost ∆a = ∆v ∆x Cost ∆a = ∆v ∆x Cost

1 0.5 0.25 1.357 0.5 0.25 4.311 0.5 0.25 6.6218
2 0.5 0.25 1.357 0.5 0.25 4.231 0.5 0.25 6.6218
3 0.25 0.125 1.223 0.5 0.25 4.231 0.25 0.125 6.4532
4 0.25 0.125 1.223 0.25 0.125 4.012 0.25 0.125 6.4346
5 0.125 0.0625 1.175 0.25 0.125 3.988 0.25 0.125 6.4208
6 0.125 0.0625 1.175 0.25 0.125 3.958 0.25 0.125 6.4091
7 0.25 0.125 3.940 0.25 0.125 6.4091
8 0.25 0.125 3.940 0.125 0.0625 6.3583
9 0.125 0.0625 3.906 0.125 0.0625 6.3582

10 0.125 0.0625 3.906 0.125 0.0625 6.3582

space, something that may lead to a local optimum of the overall problem at convergence. At
the same time, a reduction of the number of DDDP iterations is obtained for larger corridors.
This behaviour is expected, as the bigger corridors, i.e., bigger admissible sub-regions, lead
to potentially better solutions at each iteration, and hence to fewer iterations to converge to
the optimal solution. On the other hand, despite the decrease on the number of iterations, the
overall computation time may increase due to the higher computation time required at each
iteration, which in turn, is due to more feasible discrete state points included in each iteration’s
sub-region. Based on these observations, the selection of the values CCC = [20,4] and ∆a = 0.5
seems to be a reasonable choice.

The accuracy of the DDDP algorithm compared to the full one-shot SDP solution may be
assessed by contrasting the optimal cost and the optimal states and control trajectories, obtained
in the last respective DDDP iterations of the three scenarios, to the corresponding optimal
trajectories derived from the full-range SDP with a discretisation of ∆a = 0.125. As a matter
of fact, DDDP manages, in all cases, to converge to the exact same optimal solution as the full-
range SDP. The obtained optimal costs of both approaches, for the three scenarios, are 1.175,
3.906 and 6.3582, respectively, while the computation time differences are remarkable, as the
one-shot SDP needs approximately 613 s to obtain the solution (same for all scenarios), while
DDDP needs only 0.69, 1.24 and 1.12 s for the respective three scenarios. More importantly,
this big reduction in computation time enables the DDDP algorithm to be executable in real
time, even in an MPC mode, on the vehicle side, similarly to the deterministic GLOSA.
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5.6.3 DDP Algorithm Results

Fig. 5.3 (Scenario 1) and Figs. 5.8 and 5.9 (for Scenarios 2 and 3, respectively, see Appendix
A) illustrate the evolution of the state (speed) and control (acceleration) trajectories produced
by the DDP algorithm at each iteration. In all figures, blue dashed lines represent the initial
trajectories, and solid orange lines the derived trajectories of each iteration. From the figures,
it can be seen that the DDP algorithm, starting from the pessimistic deterministic GLOSA
solution, converges to the overall optimal solution. It can also be observed that, at each
iteration, starting from the initial (received) trajectory, the algorithm results in an improved
one, which leads to an improved solution. The DDP algorithm is seen to converge very fast to
the optimal solution, with the improvement being more profound at the first iterations, as the
change between the nominal and the produced trajectories are more noticeable. On the other
hand, in the last iterations, the improvement is smaller, as the algorithm is already very close
to the optimal solution. As mentioned earlier, all intermediate DDP solutions at each iteration
are continuous due to the nature of DDP, which is operating on a continuous-value basis for all
involved variables.

Fig. 5.4 demonstrates the accuracy of the DDP solutions compared to the one-shot discrete
SDP solutions for the three scenarios. In this figure, the optimal state (speed) and control
(acceleration) trajectories obtained from DDP algorithm at convergence are contrasted to those
obtained from the full-range SDP algorithm with discretization ∆a = 0.125 m/s2. The two
solutions, in all scenarios, are quite close to each other, with a slight advantage for the DDP
solution, which is not bound to a fine, but still visible value-discretization of the state and
control, as it is the case for the one-shot discrete SDP algorithm.

5.6.4 Summarized Results

Table 5.3 contains the summarized information of the number of iterations until convergence,
CPU time and the optimal obtained cost of the one-shot SDP, the iterative DDDP and the
iterative, but non-discrete DDP algorithms for Scenarios 1, 2 and 3. Based on the results
reported in the table, it can be verified that DDP’s optimal solution is slightly better compared
to the other two approaches. However, the most striking difference of DDP is the computational
time needed to solve the problem, which is extremely small.

In order to explore the robustness of the DDDP and DDP algorithms and to further
emphasize their superiority compared to the one-shot (S)DP, in terms of computation times, a
more excessive analysis was conducted and is presented in Fig. 5.5. Specifically, Fig. 5.5
illustrates the required CPU times until convergence for both proposed algorithms for a
plethora of different initial conditions, i.e., initial speeds and positions (distance from the
traffic signal) of a vehicle. From both Fig. 5.5a and Fig. 5.5b it can be seen that, for all
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Iteration 1 Iteration 2 Iteration 3

(a)

Iteration 1 Iteration 2 Iteration 3

(b)

Figure 5.3: Received (blue dashed line) and computed (orange line)
trajectories of (a) acceleration and (b) speed at each iteration of DDP algorithm

for Scenario 1.

Table 5.3: Comparison of iterations, CPU times until convergence and
obtained optimal cost of SDP, DDDP and DDP

Scenario 1 Scenario 2 Scenario 3

Iter.
CPU

Times (s) Cost Iter.
CPU

Times (s) Cost Iter.
CPU

Times (s) Cost

One-shot
SDP - 631 1.175 - 631 3.906 - 631 6.358

DDDP 6 0.692 1.175 10 1.246 3.906 10 1.128 6.358
DDP 3 0.0005 1.162 4 0.0007 3.892 4 0.0007 6.353

evaluated initial conditions, the CPU times of both DDDP and DDP are similarly low as for
the above three scenarios, with average times of 1.4 s and 0.001 s, respectively, the
corresponding maximum and minimum times being 6.3 s and 0.2 s for DDDP and 0.006 s and
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Iteration 3 Iteration 4 Iteration 4

Iteration 3

(a)

Iteration 4

(b)

Iteration 4

(c)

Figure 5.4: Optimal acceleration and speed trajectories (orange lines) of DDP,
compared with the corresponding optimal trajectories of the one-shot SDP

(blue dashed lines) of (a) Scenario 1, (b) Scenario 2 and (c) Scenario 3.

0.0005 s for DDP, respectively. These findings lead to the conclusion that, even though DDDP
reduces the CPU time significantly compared to the one-shot SDP, the DDP algorithm
achieves almost instantaneous solutions, which enables the DDP approach to be used, within
an MPC framework, in the vehicle’s on-board computer.

5.7 Conclusions

In recent works (Typaldos et al., 2020a, 2021), a stochastic GLOSA methodology was
developed, by optimizing, using SDP and DDDP techniques, respectively, the vehicle
kinematic trajectories subject to the intermediate stochastic traffic signal switching constraint
and with a fixed final state. As an extension to these works, an iterative Differential Dynamic
Programming (DDP) algorithm was employed in this paper. Within each iteration, DDP
solves, for each time-step separately, a quadratic-linear approximation of the recursive
Bellman equation. Demonstration and comparison results indicate that the DDP algorithm
strongly outperforms both the full-range SDP and the DDDP algorithms in terms of
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(a) (b)

Figure 5.5: Computation times until convergence of: (a) DDDP and (b) DDP
algorithms for different initial conditions.

computation time; and even delivers a slightly better optimal solutions due to lack of
discretisation. This enables the DDP algorithm to be readily executable within a model
predictive control framework in real time on-board approaching vehicles.

Current and future work is focused on:

• Generalization of the current GLOSA problem by considering uncertain switching times
for both green and red phases.

• Testing of the approach performance in presence of multiple (equipped and not equipped)
vehicles, while traversing multiple subsequent intersections.
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Appendix A

Iteration 1 Iteration 3 Iteration 5

Iteration 7 Iteration 9 Iteration 10

(a)

Iteration 1 Iteration 3 Iteration 5

Iteration 7 Iteration 9 Iteration 10

(b)

Figure 5.6: Received (blue dashed line) and optimal (orange line) (a)
acceleration and (b) speed trajectories of DDDP algorithm in each iteration

for Scenario 2.
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Iteration 1 Iteration 3 Iteration 5

Iteration 7 Iteration 9 Iteration 10

(a)

Iteration 1 Iteration 3 Iteration 5

Iteration 7 Iteration 9 Iteration 10

(b)

Figure 5.7: Received (blue dashed line) and optimal (orange line) (a)
acceleration and (b) speed trajectories of DDDP algorithm in each iteration

for Scenario 3.
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Iteration 1 Iteration 2 Iteration 3 Iteration 4

(a)

Iteration 1 Iteration 2 Iteration 3 Iteration 4

(b)

Figure 5.8: Received (blue dashed line) and computed (orange line)
trajectories of (a) acceleration and (b) speed at each iteration of DDP algorithm

for Scenario 2.

Iteration 1 Iteration 2 Iteration 3 Iteration 4

(a)

Iteration 1 Iteration 2 Iteration 3 Iteration 4

(b)

Figure 5.9: Received (blue dashed line) and computed (orange line)
trajectories of (a) acceleration and (b) speed at each iteration of DDP algorithm

for Scenario 3.
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Table 5.4: Performance of DDDP algorithm in terms of CPU-time and optimal
cost for different initial values of CCC and ∆a.

Scenario 1
∆a = 1.0 ∆a = 0.5 ∆a = 0.25 ∆a = 0.125

Cv Iter.
CPU

Times
(s)

Cost Iter.
CPU

Times
(s)

Cost Iter.
CPU

Times
(s)

Cost Iter.
CPU

Times
(s)

Cost

2 19 0.648 1.199 20 0.612 1.193 10 0.326 1.193 5 0.280 1.193
3 19 1.296 1.177 8 0.552 1.175 6 0.469 1.179 5 0.443 1.179
4 15 111...666555555 1.175 6 000...666999222 1.175 7 000...888666777 1.175 5 000...777666222 1.175
5 12 1.839 1.175 6 1.052 1.175 6 1.111 1.175 4 0.885 1.175
6 10 2.298 1.175 6 1.451 1.175 5 1.291 1.175 3 0.967 1.175

Scenario 2
∆a = 1.0 ∆a = 0.5 ∆a = 0.25 ∆a = 0.125

Cv Iter.
CPU

Times
(s)

Cost Iter.
CPU

Times
(s)

Cost Iter.
CPU

Times
(s)

Cost Iter.
CPU

Times
(s)

Cost

2 29 1.212 3.909 18 0.790 3.909 16 0.729 3.909 21 1.014 3.909
3 22 1.656 3.906 14 1.093 3.906 12 0.966 3.906 18 1.568 3.906
4 13 111...555777888 3.906 10 111...222444666 3.906 9 111...111444999 3.906 13 111...777444000 3.906
5 11 1.920 3.906 7 1.273 3.906 8 1.514 3.906 11 2.178 3.906
6 14 3.324 3.906 10 2.471 3.906 7 1.823 3.906 9 2.457 3.906

Scenario 3
∆a = 1.0 ∆a = 0.5 ∆a = 0.25 ∆a = 0.125

2 28 1.152 6.3583 20 0.868 6.3583 18 0.815 6.3583 21 0.998 6.3644
3 21 1.543 6.3582 16 1.192 6.3582 14 1.098 6.3582 17 1.419 6.3639
4 14 111...555000666 6.3582 10 111...111222888 6.3582 10 111...111777999 6.3582 14 111...888333444 6.3582
5 12 1.777 6.3582 8 1.253 6.3582 8 1.400 6.3582 11 2.101 6.3582
6 11 2.050 6.3582 7 1.368 6.3582 7 1.553 6.3582 9 2.328 6.3582
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Chapter 6

GLOSA System with Uncertain Green
and Red Signal Phases

6.1 Abstract

A discrete-time stochastic optimal control problem was recently proposed to address the
GLOSA (Green Light Optimal Speed Advisory) problem in cases where the next signal
switching time is decided in real-time and is therefore uncertain in advance. However, there
was an assumption that the traffic signal is initially red and turns to green, which means that
only half traffic light cycle was considered. In this work, the aforementioned problem is
extended considering a full traffic light cycle, consisting of four phases: a certain green phase,
during which the vehicle can freely pass; an uncertain green phase, in which there is a
probability that the traffic light will extend its duration or turn to red at any time; a certain red
phase during which the vehicle cannot pass; and an uncertain red phase, in which there is a
probability that the red signal may be extended or turn to green at any time. It is demonstrated,
based on preliminary results, that the proposed SDP (Stochastic Dynamic Programming)
approach achieves better average performance, in terms of fuel consumption, compared to the
IDM (Intelligent Driver Model), which emulates human driving behavior.

6.2 Introduction

A common dilemma for a vehicle approaching a traffic light, is whether it should maintain
its speed or should accelerate to cross (if the current signal is green) or decelerate to avoid
stopping (if the current signal is red). To this end, many systems have been developed which
aim at guiding the driver (or the automated vehicles) by giving speed advise which ensures
that the vehicle will cross the traffic signal during the green phase and with minimum fuel
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consumption and emissions. Such systems are often referred to as Green Light Optimal Speed
Advisory (GLOSA) systems (Stahlmann et al., 2016).

In the case of fixed signals and hence prior knowledge of the next switching time, the
signal controller may broadcast a corresponding message to approaching vehicles. Under
these conditions, the problem of how to optimize the approach to the traffic signals has been
addressed in different ways (Katsaros et al., 2011; Lawitzky et al., 2013; Sanchez et al., 2006).
The situation becomes more complicated when real-time signals with very short (e.g.,
second-by-second) control update periods are present, in which case exact prior knowledge of
the next switching time is not available. In this case, the best available knowledge can be
presented as an estimate (Koukoumidis et al., 2011) or as a probabilistic distribution for the
next switching time within a future time-window; such a distribution may be obtained by use
of statistics from previous signal operation (Lawitzky et al., 2013; Mahler, Vahidi, 2012; Sun
et al., 2020).

In (Typaldos et al., 2020a), the problem of producing fuel-optimal vehicle trajectories for a
vehicle approaching a traffic signal, for both cases of known and stochastic switching times,
was considered. For the first case, the problem was formulated as an optimal control problem
and was solved analytically via PMP (Pontryagin’s Maximum Principle). Subsequently, the
case of stochastic switching time with known probability distribution was also addressed, and
the problem was cast in the format of a stochastic optimal control problem, which was solved
numerically using SDP (Stochastic Dynamic Programming). However, there was an
assumption that the traffic signal is initially red and turns to green, which means that only the
half traffic light cycle was considered.

The present work delivers an extension of the problem by considering a full traffic light
cycle. Specifically, the signal’s cycle consists of four phases, i.e., a certain-switching green
phase, an uncertain-switching green phase, a certain-switching red phase, and an uncertain-
switching red phase (see Fig. 6.1). As mentioned, in our previous work, the vehicle was
assumed to appear during the last two phases (certain red and uncertain red), where the certain
red phase has a fixed and known switching time, followed by the uncertain red phase, in which
there is at any time a probability that red will be extended, or that it will turn to green. The
addition of the two green phases completes the handling of the GLOSA problem, as the vehicle
may now appear at any of the four phases, with the certain-green phase having a fixed and
known switching time, followed by the uncertain green phase, in which there is again at any
time a probability that the traffic light may extend or turn red. Preliminary results demonstrate
that the proposed SDP approach achieves better performance, in terms of fuel consumption and
passenger comfort, compared to the base case of IDM (Treiber, Kesting, 2013), which emulates
the driving behavior of a manually driven vehicle.
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6.3 Problem Formulation and Solution

The proposed stochastic GLOSA approach aims at guiding a vehicle, starting from an initial
state xxx0 (comprising initial vehicle position and speed), to cross a traffic signal, located at
position x1, at green; and reach a fixed final state xxxe, within a free (but penalized) time horizon
te (Fig. 6.1). The final state xxxe comprises a specified position xe downstream of the traffic signal
and a specified, reasonably high speed ve. Note that the SDP algorithm solves the problem
for vehicle positions up to the traffic signal position, i.e., for x0 ≤ x1; however, the use of a
deterministic GLOSA solution is included in the problem formulation and enables the vehicle
to "escape" to the final state (Typaldos et al., 2020a). Note also that the solution of the problem
via SDP delivers an optimal feedback law, i.e., for every admissible state xxx(k), we get the
corresponding optimal control (acceleration) a(k).

For the stochastic optimal control problem, the vehicle kinematics in discrete-time, with
time step T , are described as follows:

x(k+1) = x(k)+ v(k)T +
1
2

a(k)T 2 (6.1)

v(k+1) = v(k)+a(k)T (6.2)

where x(k),v(k) correspond to the vehicle position and speed at discrete times k = 0,1, . . .
(where kT = t), while the control variable a(k) is the acceleration that remains constant over
each time period k. The state and control variables are bounded within the following admissible
regions

xxx(k) ∈ XXX = [xxxmin,xxxmax] (6.3)

a(k) ∈U = [amin,amax] (6.4)

with xxxmin,xxxmax and amin,amax the lower and upper bounds of the states and acceleration,
respectively. We consider the upper bound of the position, xmax, to be the traffic light position
x1.

A full signal cycle comprises four phases (see Fig. 6.1): certain-switching green, lasting
[0,kG

min − 1]; uncertain-switching green, starting at kG
min and lasting at most until kG

max − 1;
certain-switching red, lasting from its (uncertain) initial time until kR

min − 1; and
uncertain-switching red, starting at kR

min and lasting at most until kR
max. We consider the case of

fixed kG
min and kR

min, whereby any uncertain green portion that was not used, due to green-red
switching at k < kG

max, is added to the certain-red phase, hence the uncertain-red window
[kR

min,k
R
max] does not change due to "early" green-red switching; and the same applies when we

have an "early" red-green switching. The case where the certain-red or certain-green time
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durations are fixed, and hence the cycle duration reduces in case of "early" green-red or
red-green switchings, may be treated similarly.

Figure 6.1: Traffic light phases.

A vehicle may appear at any time during a signal cycle, at an admissible initial state xxx0,
and be guided optimally to the final state xxxe. The green-red or red-green switching times are
not known beforehand, but, when they actually occur, this is communicated to the approaching
vehicles.

The total time horizon [0,kR
max] is subdivided in four parts as follows:

• Part 1: [0,kG
min−1] (certain green)

• Part 2: [kG
min,k

G
max−1] (uncertain green extension)

• Part 3: [kG
max,k

R
min−1] (certain red)

• Part 4: [kR
min,k

R
max] (uncertain red extension).

To formally address the uncertainty in Parts 2 and 4, i.e., the uncertain green and uncertain
red phases, we consider binary stochastic variables zG(k) and zR(k), respectively. The binary
variables are equal to 0 if the traffic light switches to red or green, respectively, at time k+ 1;
or 1 else. We introduce virtual state variables xG(k) and xR(k), with initial values 1 and 0,
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respectively, and respective state equations

xG(k+1) = xG(k)zG(k) (6.5)

xR(k+1) =

{
1− zG(k) if xR(k) = 0
xR(k)zR(k) else

(6.6)

hence

xG(k) =

{
1 if the green light has not yet switched until time k−1
0 if switching occurred at time k or earlier

(6.7)

xR(k) =


0 if the green light has not yet switched until time k−1

1 if the green light has switched, but the red light has
not yet switched until time k−1

0 if red - green switching occurred at time k or earlier

(6.8)

The virtual states xG(k),xR(k) are assumed measurable, which means that the system
knows, at each time kT , if switching has taken place or not within the last time-period
[(k− 1)T,kT ]. Note in particular for Part 2 (green extension) that the vehicle is allowed to
cross the traffic light position during any time period [(k − 1)T,kT ], during which the
switching may occur, since the vehicle decided its last acceleration at time (k− 1)T , i.e.,
before the switching occurred. In other words, we may have x(k)> xmax if zG(k−1) = 0. This
convention is not expected to jeopardise traffic safety, as time steps are short and accelerations
and speeds are bounded.

The stochastic variables zG(k) and zR(k) are independent of their previous values and take
values according to time-dependent probability distributions pG(z|k) and pR(z|k) respectively.
Based on the statistics of previous signal switching activity, availability of a-priori discrete
probability distributions PG(k),kG

min ≤ k ≤ kG
max and PR(k),kR

min ≤ k ≤ kR
max, is assumed, with

the involved probabilities summing up to 1. Based on these probabilities, we can calculate,
using crop-and-scale, the required probabilities pG(z|k) and pR(z|k) for the stochastic variables
zG(k) and zR(k) (Typaldos et al., 2020a).

The cost criterion of the stochastic problem is the same as in the deterministic GLOSA
problem in (Typaldos et al., 2020a). However, in the stochastic case, the exact value of the
criterion depends on the stochastic variables’ realizations, and therefore we consider
minimization of the expected value

J = E
{

w · te +
1
2

∫ te

0
a2dt

}
(6.9)
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where the expectation refers to the stochastic variables zG(k),zR(k),k = 0, . . . ,kmax− 1. Note
that, when the vehicle crosses the traffic signal at state xxx(k), the problem instantly becomes
a deterministic GLOSA problem, and the corresponding optimal cost-to-go is J∗DG(xxx(k),k), as
described in (Typaldos et al., 2020a).

To obtain a formally proper cost criterion, the stochastic variables zG(k),zR(k) and virtual
variables xG(k),xR(k) are used, and, similarly to (Typaldos et al., 2020a), this yields the
objective function as follows

J = E
{ kmax−1

∑
k=0

[1
2

a(k)2 +
(

xG(k)+
(
1− zR(k)

)
xR(k)

)
· Jσ∗

DG[xxx(k),a(k),k+1]
]}

(6.10)

The recursive Stochastic Bellman Equation (SBE) has four corresponding parts. Starting
from kR

max, we need to move backwards, calculating the function V (optimal cost-to-go) step-
by-step. The SBE for the generalized problem reads as follows

V [xxx(k),xG(k),xR(k),k] =

= min
a(k)∈U

{
E
{

1
2

a(k)2 +(xg(k)+(1− zR(k))xR(k)) · Jσ∗
DG(xxx(k+1),k+1)

+V [xxx(k+1),xG(k+1),xR(k+1),k+1]
}}

=

= min
a(k)∈U

{
E
{

1
2

a(k)2 +(xg(k)+(1− zR(k))xR(k)) · Jσ∗
DG(xxx(k+1),k+1)

+V [xxx(k),a(k),xG(k)zG(k),xR(k)xR(k),k+1]
}}

=

= min
a(k)∈U

{
1
2

a(k)2 +(xg(k)+ pR(k)xR(k)) · Jσ∗
DG(xxx(k+1),k+1)

+(pG(k)xG(k)+(1− pR(k))xR(k))V [xxx(k),a(k),0,1,k+1]}}=

+((1− pG(k))xG(k))V [xxx(k),a(k),1,0,k+1]

}

(6.11)

where
Jσ∗

DG(xxx(k+1),k+1) = σ(xxx(k+1)) · J∗DG(xxx(k+1),k+1) (6.12)
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σ(xxx(k+1)) =



1 if x(k+1)> 0 and v(k+1)≤ vmax and k < kG
max

∞ if x(k+1)> 0 and v(k+1)> vmax and k < kG
max

1 if xxx(k+1) ∈ XXX and k ≥ kG
max

∞ if xxx(k+1) /∈ XXX and k ≥ kG
max

0 else

(6.13)

The details of SBE for each traffic signal phase are not explained here, due to limited space.

6.4 Preliminary Results and Discussion

In this section, preliminary results of the proposed generalized GLOSA problem considering
both green and red phases are reported. Two scenarios are considered, and the obtained results
are compared with those derived from IDM. The two scenarios differ in the actual switching
time of the uncertain green phase, i.e., in Scenario 1 the uncertain green is extended until the
latest possible time, while in Scenario 2 the green switches to red earlier. The scenarios
chosen have the following set up: x0 = 0 m, v0 = 5 m/s, xe = 370 m, ve = 11 m/s and x1 = 300
m. Moreover, the bounds for the states and control are set to [xmin,xmax] = [0,300] m,
[vmin,vmax] = [0,16] m/s and [amin,amax] = [−2,1] m/s2 s. The time step T is 1 s and the
switching time windows for the traffic signal are [kG

min,k
G
max] = [10,30] s and

[kR
min,k

R
max] = [40,60] s with uniform a-priori probability distributions. The switching from

green to red for Scenarios 1 and 2 occurs at k = kG
max and k = 20, respectively. The switching

from red to green at the uncertain red phase is considered to be at kR
max, for both scenarios.

Fig. 6.2 displays the state (position and speed) and control (acceleration) trajectories
resulting from the SDP algorithm (blue lines) and the obtained trajectories using IDM
(magenta lines), for both Scenarios 1 and 2. In Fig. 6.2a-6.2c (Scenario 1), both vehicles,
guided by the SDP and the IDM, cross the traffic signal before the red phase. On the other
hand, in Fig. 6.2d-6.2f (Scenario 2), the vehicles do not have the time to cross before the
switching and they wait until the end of the uncertain red phase. In both scenarios, the SDP
algorithm, is more conservative, as it incorporates all the available knowledge, including the
probabilistic distribution of the switching times and its updates over time. The proposed
approach performs better in terms of fuel consumption compared to IDM, as the fuel
consumption derived from the ARRB fuel consumption model (Akçelik, Biggs, 1987) is 44.2
ml. and 46.3 ml. for the SDP and IDM, respectively, for Scenario 1; and 65.3 ml. and 75.4 ml.
for Scenario 2. This outcome is expected, especially in Scenario 2, where, in contrast to IDM,
SDP avoids the full stop at the traffic light position. The resulting final times are te = 35.2 s
and 32.0 s and te = 68.5 s and 74.0 s for SDP and IDM for Scenarios 1 and 2, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Optimal state and control trajectories of SDP (blue lines) versus
IDM (magenta lines). In (a) and (d), the actual switching times are indicated

with vertical dashed lines for Scenarios 1 and 2, respectively.

6.5 Conclusions

In recent work (Typaldos et al., 2020), a stochastic GLOSA methodology was developed, by
optimizing, using SDP techniques, the vehicle kinematic trajectories subject to the stochastic
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traffic signal switching, with fixed final state and free final time. However, the problem
considered only half traffic light cycle, i.e., the traffic signal is initially red and turns to green.
As an extension to that work, we consider here a full traffic light cycle, which consists of four
phases, consisting of a certain green phase, an uncertain green phase, a certain red phase, and
an uncertain red phase. Preliminary results illustrate the superiority of the proposed stochastic
GLOSA on average, when compared with any other approach, e.g., the IDM.

Future work:

• Investigation of scenarios with multiple consecutive traffic lights and different switching
times,

• Implementation of different Dynamic Programming algorithms which enable faster
solutions.

• Compare the proposed SDP approach with more sophisticated approached than IDM.
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Chapter 7

Conclusion

In the near future, the automated vehicles’ (AVs) market is expected to grow exponentially.
The potential benefits of AVs are substantial, ranging from social, economic, and
environmental to safety aspects. The current work contributes by delivering several
methodologies and algorithms regarding the path-planning problem of AVs moving in both
highway and urban environments. These contributions explore the impact of AVs on the traffic
flow, while indicating their efficiency in terms of safe, comfortable and fuel-efficient driving.

Concerning the eco-driving problem, all the proposed works contribute towards the
reduction of fuel consumption by minimizing the acceleration of the vehicles. Although
square-of-acceleration term is commonly used for eco-driving problems, it is questionable
how accurate may be, compared to more complex fuel-consumption models. To explore the
effectiveness of this simple term, an optimal control problem formulation, which minimizes
the fuel consumption of a vehicle, by optimizing its kinematic trajectories was proposed. For
the fuel consumption estimation, a number of alternatives are employed. Initially, a realistic,
but nonlinear and non-smooth formula from the literature is considered. Simple smoothing
procedures are then applied, so as to enable the application of powerful numerical algorithms
for the efficient solution of the resulting nonlinear optimal control problem. Furthermore,
suitable quadratic approximations of the nonlinear formula are also considered, which enable
analytical problem solutions. A comprehensive comparison of each alternative approach in
various driving scenarios demonstrates that the square-of-acceleration term delivers excellent
approximations for fuel minimizing trajectories in the present setting.

In order to investigate the effect of CAVs in freeway environments, a path-planning
algorithm for connected and non-connected automated road vehicles on multilane motorways
was derived from the opportune formulation of an optimal control problem. For the numerical
solution of the non-convex optimization problem, a combination of NLP and DP techniques
was utilized, which enables high-quality local minima. Thanks to very low computation times,
the approach is readily executable within a model predictive control (MPC) framework. The
proposed MPC-based approach is embedded within the Aimsun micro-simulation platform,
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enabling us to thoroughly examine the behaviour of the approach in presence of vehicles
emulating human driving behaviour and in a plethora of realistic driving instances.
Demonstration results indicate higher efficiency of the optimally controlled vehicles in driving
closer to their desired speed, compared to non-automated vehicles. In addition, increasing
penetration rates of controlled vehicles are found to lead to more efficient traffic flow.
Specifically, as the penetration rate of controlled vehicles rises, there is a significant increase
of the average speed and, consequently, a decrease on the average delay time and travel time
for all vehicles. Also, connected controlled vehicles are more efficient than non-connected
controlled vehicles, due to the improved real-time information that enables more pertinent
obstacle movement prediction.

To address a common dilemma raised whenever a vehicle approaches a traffic signal, i.e,
whether to maintain speed or accelerate/decelerate, a deterministic and a stochastic GLOSA
methodologies, by optimizing vehicles’ kinematic trajectories subject to the intermediate
traffic signal constraints and with a fixed final state, were proposed. For the first case, the
problem was formulated as an optimal control problem and was solved analytically via PMP
(Pontryagin’s Maximum Principle). Subsequently, the case of stochastic switching time with
known probability distribution was also addressed, and the problem was cast in the format of a
stochastic optimal control problem, which was solved numerically using SDP (Stochastic
Dynamic Programming). The proposed SDP algorithm may take several minutes to execute,
which implies that the solution is not real-time feasible and can therefore not be obtained
on-board the vehicle, but must be executed offline, at the infrastructure side, and be
communicated to approaching vehicles according to their current state. As an extension of the
SDP problem, a Dynamic Programming (DDDP) algorithm was developed, which solves the
original SDP problem iteratively, each time considering a reduced state space. Demonstration
results demonstrate that the DDDP algorithm delivers the same optimal solutions as the full
range SDP, but features significantly reduced computation time. Subsequently, as an attempt
to further reduce the computation times, an iterative Differential Dynamic Programming
(DDP) algorithm was employed. Within each iteration, DDP solves, for each time-step
separately, a quadratic-linear approximation of the recursive Bellman equation.
Demonstration results indicate that the DDP algorithm strongly outperforms, both the
full-range SDP and the DDDP algorithms in terms of computation time; and even delivers a
slightly better optimal solution due to lack of discretisation. The implicit assumption in all
pre-mentioned works, regarding the GLOSA problem, was that the traffic signal is initially red
and turns to green, representing only half of the traffic signal cycle. Thus, an extension of
GLOSA problem was developed, which considers a full traffic light cycle, i.e. a certain green
phase; an uncertain green phase; a certain red phase; and an uncertain red phase.

In conclusion, this thesis have proposed several contributions regarding the path-planning
of CAVs in both highway and urban environments. Specifically, the proposed approaches
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could be beneficial to crucial aspects of road transportation, such as fuel-efficiency, safety and
traffic performance. Furthermore, this work could be a good base for current and future
developments and applications as, some the addressed topics are currently in an early stage, i.e
the development of speed advisory systems for adaptive traffic signal; while the
methodologies can be, readily, extended to be applied in potential forthcoming innovative
concepts, e.g., path-planning problems for lane-free environments (Papageorgiou et al., 2021;
Yanumula et al., 2021).
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