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"Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ 

ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, 

αποθήκευση και διανομή για μη κερδοσκοπικό σκοπό, εκπαιδευτικού ή ερευνητικού 

χαρακτήρα, με την προϋπόθεση να αναφέρεται η πηγή προέλευσης. Ερωτήματα που 

αφορούν τη χρήση της εργασίας για άλλη χρήση θα πρέπει να απευθύνονται προς το 

συγγραφέα. Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο 

εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις 

επίσημες θέσεις του Πολυτεχνείου Κρήτης". 

 

“Coping, distributing and downloading the current work, in whole or parts of it, for 

commercial purposes is strictly prohibited. Reprinting, downloading and distributing for 

non-profit purposes is allowed, including educational of research purposes, given that 

the source is cited. Questions referring to the use of this paper for other uses must be 

directed to the author. All opinions and conclusions in this document expressed by the 

author do not represent the official standing of the Technical University of Crete.” 
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Περίληψη 

 Ο στόχος αυτής της εργασίας είναι η διερεύνηση της συνδυασμένης εφαρμογής 

απλού Kriging και αλγόριθμου Αυτoοργανώμενων Χαρτών στην υδρογεωλογία. Το 

απλό Kriging χρησιμοποιήθηκε για την πρόβλεψη του υδραυλικού ύψους στην περιοχή 

μελέτης. Η χρήση των Αυτoοργανώμενων Χαρτών έχει σαν σκοπό την ομαδοποίηση 

των παρατηρήσεων εντός της περιοχής μελέτης, πάνω στις οποίες εφαρμόζεται το 

Kriging. Η περιοχή μελέτης που εξετάστηκε η μεθοδολογία είναι ο υδροφόρος του 

Τυμπακίου στην Κρήτη. Ο υδροφόρος του Τυμπακίου είναι γενικά πορώδης 

ομοιογενής με μερικές διαφοροποιήσεις στις υδραυλικές του ιδιότητες. Η σύζευξη των 

αλγορίθμων αξιολογείτε βάσει των ακόλουθων κριτηρίων επικύρωσης Mean Absolute 

Error, Maximum Absolute Error, Root Mean Square Error και Correlation Coefficient. 

Κάθε ομάδα παρατηρήσεων ονομάζεται συστάδα (cluster) και ένα ολόκληρο σύνολο 

συστάδων ονομάζεται τοπολογία. Διερευνήθηκαν διαφορετικές διαμορφώσεις 

συστάδων για την επιλογή της τοπολογίας με την καλύτερη απόδοση. Προκειμένου να 

αξιολογηθεί η βελτίωση της πρόβλεψης χρησιμοποιώντας τον αλγόριθμο Αυτo-

Οργανώμενων Χαρτών, πραγματοποιήθηκε η πρόβλεψη απλού Kriging με τα 

ακόλουθα αποτελέσματα: Mean Absolute Error 6.9 m, Maximum Absolute Error 56.5 

m, Root Mean Square Error 11.7 m and Correlation Coefficient 92%. Η τοπολογία με 

τις καλύτερες επιδόσεις αποτελούνταν από 6 ομάδες παρατηρήσεων, οι οποίες 

διαφοροποιήθηκαν με βάση τη θέση και τις υδραυλικές ιδιότητες τους. Η τοπολογία με 

τις καλύτερες επιδόσεις παρήγαγε τα ακόλουθα εύρη κριτηρίων επικύρωσης: Mean 

Absolute Error 0.39-2 m, Maximum Absolute Error 1.7-33 m, Root Mean Square Error 

0.7-8.7 m and Correlation Coefficient 81-93%, με μια ακραία τιμή -14% που αποδίδεται 

σε γραμμική και όχι στοχαστική πρόβλεψη. Επιπλέον, η ομαδοποίηση παρείχε 

πληροφορίες σχετικά με τις ιδιότητες των ετερογενειών της μελέτης περίπτωσης. Η 

προτεινόμενη μεθοδολογία απέδωσε βελτιωμένα αποτελέσματα, ακόμη και στις 

πρώτες διαμορφώσεις ενώ η γενική μορφή της μεθοδολογίας, την καθιστά εφαρμόσιμη 

για άλλες περιοχές μελέτης με μικρές τροποποιήσεις. 
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Abstract 

 The main objective of this work is to investigate the pairing of Self-Organizing 

Maps with Ordinary Kriging techniques as applied to hydrogeology. Ordinary Kriging 

predicts the values of hydraulic head in a case study. The use of Self-Organizing Maps 

aims to create groups of observations in the case study, to which Ordinary Kriging is 

applied. The implementation of the proposed methodology was carried out on the case 

study of the aquifer of Tympaki, Crete. The Tympaki aquifer is a generally homogenous 

porous aquifer with local differences in hydraulic properties. The pairing is evaluated 

using the following validation criteria: mean absolute error, maximum absolute error, 

root mean square error and correlation coefficient. Each group of observations is called 

a cluster and a whole set of clusters is called a topology. Different configurations of 

clusters were investigated to select the best topology. In order to assess the 

improvement of prediction using the Self-Organizing Map algorithm the Ordinary 

Kriging prediction was performed with the following results: Mean Absolute Error 6.9 

m, Maximum Absolute Error 56.5 m, Root Mean Square Error 11.7 m and Correlation 

Coefficient 92%. The best performing topology consisted of 6 observation groups 

divided by location and hydraulic properties by the Self-Organizing Map algorithm. The 

best topology resulted in the following ranges of validation criteria: Mean absolute error 

0.39-2 m, maximum absolute error 1.7-33 m, root mean square error 0.7-8.7 m and 

correlation coefficient 81-93% with an outlier of -14% due to linear and non-stochastic 

prediction. In addition, the grouping provided insight on the properties of the 

heterogeneities of the case study. The proposed methodology yielded improved 

results, even in the initial configurations and it applicable to other case studies with 

very few modifications due to its generic structure.  
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1 Introduction 

1.1 Scope of Thesis 
This thesis was conducted in the framework of the requirements of the 

postgraduate master studies “Sustainable Engineering and Climate Change” with 

specialization in sustainable water and wastewater management. The scope of this 

thesis is to explore the pairing of standard geostatistical method with artificial 

intelligence, in hydrogeological applications. The goal was to reduce the geostatistical 

error by applying a given method in subgroups of observations, rather than the entire 

dataset. The geostatistical method used was Ordinary Kriging, which was selected 

after an extensive literature review. Self-Organizing Maps were used as the artificial 

intelligence algorithm since they have been applied several times in the field of 

environmental engineering. The proposed method was applied to the hydrogeological 

basin of Tympaki, Crete. After the application of the proposed methodology multiple 

maps are yielded predicting the hydraulic head value in subsections of a case study. 

By performing Kriging in subsections of the study area elected by the Self-Organizing 

Map, the performance metrics of Kriging are improved thus the error of prediction is 

reduced. An added benefit of this methodology is that, compared to other models, such 

as finite element models, the data required exclude the temporal aspect of the 

phenomenon. As a consequence, the prediction yielded describe a mean state of the 

groundwater in a case study. For case studies with dispersed and not consistent 

recordings of hydraulic head values the proposed methodology facilitates accurate 

predictions that could be the basis for groundwater resources management plans and 

best practices in the agricultural sector. 

1.2 Theoretical Background 

1.2.1 Basic Concepts of Ordinary Kriging 
Kriging has been synonymous with geostatistical interpolation since its inception 

in the 1950’s by mining engineer D.G. Krige. Its main original and most important 

application concerns reserve estimates, but over the decades it has found use in other 

fields such as hydrogeology. The standard version of kriging is called Kriging and is 

the predictive model used in this work. 

 𝑍(𝑠) = 𝜇 + 𝜀′(𝑠) 1 

𝑠: the spatial location of a variable 

𝑍(𝑠): the probabilistic value of a variable 

𝜇: the global mean 

𝜀′(𝑠): the spatially correlated stochastic part of variable 

 As it can be seen, the model consists of a probabilistic process that correlates 

the values of a variable with its spatial distribution in a 2D, 3D or even 4D plane. From 

this Kriging can be viewed as a refined inverse distance interpolation given the 

following prediction equation. 

 
𝑧̂𝑂𝐾(𝑠0) = ∑ 𝑤𝑖(𝑠0) ∙ 𝑧(𝑠𝑖)

𝑛

𝑖=1

= 𝜆0
𝛵 ∙ 𝑧 2 

𝜆0: the vector of Kriging weight 𝑤𝑖 

𝑧: the vector of 𝑛 observations 

 From the above expression arises the question of the values that each weight 

should have. Semivariance (𝛾(ℎ)) is introduced into the methodology as a means of 

estimating the weights to reflect their spatial autocorrelation structure.  
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𝛾(ℎ) =

1

2
𝐸 [(𝑧(𝑠𝑖) − 𝑧(𝑠𝑖 + ℎ))

2
] 3 

𝑧(𝑠𝑖): the value of a variable at a sample point 

𝑧(𝑠𝑖 + ℎ): the value of a neighbor at the distance 𝑠𝑖 + ℎ 

 With 𝑛 observations there are, 𝑛 ∙ (𝑛 − 1)/2 pairs for which the semivariance 

can be calculated. Plotting all semivariences versus their distance yields a variogram 

cloud. For a standard distance, the semivariences are averaged, these averages are 

called lags, and when plotted against the mentioned distances the experimental 

variogram is obtained. The typical image of a variogram is an increasing curve at small 

distance, that stabilizing at a plateau at greater distance. The mathematical 

interpretation of this image states that the values of a variable become more similar at 

short distance, up to a certain point. This is known as the spatial auto-correlation effect, 

which can describe the stochastic components of a system that can otherwise be 

described by a deterministic function(Hengl et al., 2007; Zimmerman and Stein, 2010). 

 After an experimental variogram is calculated, it is fitted to a variogram model. 

Typical models are linear, spherical, exponential, circular, etc. Fitting is usually done 

by an iterative, reweighted least squares estimation. The weights are deterministic in 

nature being estimated by the number of pairs in a lag squared divided by the distance 

𝑁2/ℎ. This means that higher weight values can be expected in small, crowded areas 

of the record. The variable can be defined as stationary if multiple variograms are 

similar to each other. If a sampled variogram is stationary, the target variable can be 

called covariance stationary. In the Kriging method the main assumption is that the 

variable is stationary. The three empirical parameters define the properties of a 

variogram the nugget, sill and range. The nugget indicates the measurement error and 

in ideal conditions should be zero, the sill indicates the sampled variance, and range 

parameter is 10% defined by the spatial extent of the data. The range parameter must 

be distinguished from the practical range or the range of spatial dependence (i.e., the 

distance at which the semivariance is close to 95% of the sill). The sill parameter (𝐶1) 

is different from the sill variation (𝐶1 + 𝐶0), which includes the nugget. There can also 

be variograms that show no spatial correlation and are defined only by the nugget 

parameter. Finally, the unbound variograms indicate that the lags projected cannot 

produce a sill, which in turn means that either more data are need in order to create 

more lags or that all lags correlated strongly with each other. Either way the results 

produced from those variograms are similar to those of an inverse distance 

interpolation. All the topics discussed in this sections are graphically represented in 

the figure below (Hengl et al., 2007; Zimmerman and Stein, 2010). 
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Figure 1.1: Basic variogram consepts (Hengl et al., 2007) 

 After estimating the variogram, it is possible to create semivariances at all 

locations and determine the corresponding Kriging weights. The Ordinary Kriging 

(OK) weights are solved as follows: 

 𝜆0 = 𝐶−1 ∙ 𝑐0 ; 
4 

 C(|h| = 0) = C0 + 𝐶1 

C: the covariance matrix derived from 𝑛 × 𝑛 observations 

𝑐0: the vector of covariances at new locations 

𝜆0: the vector of Kriging weight 

 The relation between covariance and semivariance is as shown below: 

 𝐶(ℎ) = 𝐶0 + 𝐶1 − 𝛾(ℎ) 5 
𝐶(ℎ): the covariance function 

𝛾(ℎ): the semivarience function 

 Another assumption of Ordinary Kriging is that the data do not follow a trend 

(Zimmerman and Stein, 2010). In groundwater there is almost a trend indicating either 

a general increase or decrease in hydraulic head temporally or spatially, or a seasonal 

pattern (Σπυρόπουλος, 2021; Στεργιου, 2021). These trends can be described 

deterministically as a polynomial or harmonic equation resulting from the analysis of 

the recorded data. For a spatial analysis, as performed in this work, only spatial trends 

can be determined. The first order polynomial trend surface model is as follows: 

 𝜇(𝑠; 𝛽) = 𝛽0 + 𝛽1𝑠1 + 𝛽2𝑠2 6 
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𝑠: the coordinates of the surface model 

𝜇: the mean value at 𝑠1 and 𝑠2 coordinates 

𝛽: the unrestricted parameters 

1.2.1.1 Semivariogram Models 

A list of the most used theoretical semivariograms is presented below, including 

the spherical, Gaussian, exponential, power law and linear functions.  

 Exponential: 𝛾𝑧(𝒓) = 𝜎𝑧
2 [1 − exp (−

|𝒓|

𝜉
)] 7 

 
Spherical: 𝛾𝑧(𝒓) = 𝜎𝑧

2 [
1.5|𝒓|

𝜉
− 0.5 (

|𝒓|

𝜉
)

3
] 𝜃(𝜉 − |𝒓|) 

     𝑖𝑓 𝜉 − |𝒓| < 0, 𝜃 = 0, 𝑒𝑙𝑠𝑒 𝑖𝑓 𝜉 − |𝒓| > 0, 𝜃 = 1 
8 

 Gaussian: 𝛾𝑧(𝒓) = 𝜎𝑧
2 [1 − exp (−

𝒓2

𝜉2)] 9 

 Power-law: 𝛾𝑧(𝒓) = 𝑐|𝒓|2𝐻 ,0 < 𝐻 < 1 
𝑐 is the coefficient and H the Hurst exponent. 

10 

𝜎𝑧
2: the variance 

|𝒓|: the Euclidean norm of the lag vector 𝒓 

𝜉: the characteristic length.(Goovaerts et al., 2005) 

1.2.2 Basic Concepts of Self-Organizing Maps 

Self-Organizing Maps or Kohonen maps were developed by Teuvo Kohonen as 

an alternative architecture to more traditional artificial network architectures. The main 

application related to this work is the spatial partitioning and organization of responses 

into topologically related subsets (Kohonen, 1990). Self-organizing maps have a large 

capacity for abstract classification, which can find application in hydrogeology due to 

the high level of abstraction in such physical problems (Nourani et al., 2016). The basis 

for the development of this type of networks is competitive learning. In this process, an 

observed set (𝑥(𝑖)) and a randomly (or semi-randomly) generated simulated set (𝑚(𝑖)) 

are iteratively compared, with the end result of the process being the best fitting 

simulated set that has the least distance from the observed set. A species proposed 

for the optimal placement of a 𝑚(𝑖) minimizes the expected rth power of the 

reconstruction error (Kohonen, 1990): 

 
𝐸 = ∫||𝑥 − 𝑚𝑐||

𝑟
𝑝(𝑥)𝑑𝑥 11 

𝐸: the expected rth power of the reconstruction error 

𝑥: the vectorial input of observations 

𝑚𝑐: the reference vector 

𝑝(𝑥): the approximation to a continuous probability density function of 𝑥 

𝑑𝑥: the volumetric distance  

𝑐: the index indicating the best fitting vector 

1.2.3 Description of the Study Area 
The study area includes the municipality of Tympaki, which is part of the 

Prefecture of Heraklion in Crete, Greece. The boundaries of the case study aligned 

with the boarders of the municipality, which has a permanent population of about 

10.000 residents. The neighboring basin of Messara is one of the most agricultural 

areas of Crete. In order to meet irrigation needs, the Faneromenis Dam was built in 

2005 in the eastern part of the case study. To the west of the case study lies the Libyan 

Sea, to the east the foot of Mt. Dikti,s to the north the mountain range of Psiloritis and 

to the south the much smaller mountain range of Asterousia. Finally, the case study is 

crossed by the rivers Koutsoylitis and Mageras. 
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In the study area the agricultural sector is quite developed and the intensity of 

production requires large amounts of irrigation water. Due to the geographical position 

of the area, the cultivation of olives, grains, fruits and vegetables, and citrus fruits is 

favorable. The cultivated area is about 4800 acres, most of which is dry cultivation of 

olive trees, which do not require irrigation water, since the needs are met by 

precipitation. The growing season of the crops begins around February and usually 

ends in the fall. It can be assumed that there is a high demand for water during the 

summer season. This demand is to a considerable extent by pumping groundwater 

(Stathatou, 2011). 

 

Figure 1.2: General map of the case study 

 Figure 1.1 above contains all case study information directly relevant to this 

work. The black dots represent all observation points (348 observations) used in this 

work. The hydraulic head value for each well is the mean hydraulic head value derived 

from two measurements, one during the wet season and one during the dry season of 

the hydrological year. Within the study area there are three distinct hydrogeological 

formations that comprise the hydrological basin. All formations within the study area 

are porous with varying percentages of infiltration. In general, most of the observation 

points are located near the coastal front of the study area where there is a plain with 

agricultural activities. The remaining observation points are scattered throughout the 

study area. They can be divided into smaller groups based on their location, which is 

influenced by local hydrogeological characteristics. In the southern part, there are 

subgroups influenced by the river discharge. In the northern part, the subgroups are 

influenced by the different hydrogeological formations, with all three different groups 

present. Additionally, the steep changes in altitude affect the hydraulic head values 

since all aquifers are unconfined. Finally, the subgroups can be differentiated by the 

location of the observation points in the study area. The exact definition of these 

subgroups is done with the algorithm of Self-Organizing map. 
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1.2.3.1 Geological Characteristics 

The geology of Crete is characterized by the leptoid development of several 

tectonic sections resulting from processes that reached their peak the Tertiary period 

with the dipping of the African plate under the Eurasian plate. The lower geologic 

section consists of an indigenous system that includes plates of semi-transformed 

limestone slabs, underlying limestones, dolomites and shale intrusions. This is 

followed by a section of Neogenic and Quaternary deposits and sediments 

(Κριτσωτάκης, 2009). 

 

Figure 1.3: Geologic Map of Tympaki, the dotted lines show Phestos ridge (Panagopoulos et al., 2017) 

 The wider area of the Messara Plain is characterized by very heterogeneous 

alluvial formations with alternating horizontal and vertical silty and sandy cobblestones. 

However, in the case study the alluvial formations are spatially limited along the flow 

of Geropotamos River. In the lowlands of the area, a Pleistocene formation with 

fluctuating water permeability predominates. The sea level was at a lower level than 

today after the deposition of the Pleistocene formations, so new trenches were formed 

bythe erosion of the Geropotamos watercourse. The maximum depth of these trenches 

was found to be 75 m below the present sea level in the Moires area and the maximum 

depth found in the wider area is 80 m in the Platy area (adjacent basin west of 

Tympaki). The depth of the ditch is of the order of 100 m from the ground surface, 

decreasing upstream and at the Phaistos ridge it is 60 m from the ground surface 

(Κριτσωτάκης, 2009). Below this system are several ditches that may cause variations, 

in recorded water depth in nearby wells. The case study contains 10 trenches most of 

which are located above some inland pumping wells, as shown below, which could 

locally affect hydraulic head locally (Panagopoulos et al., 2017). TO the east is 

Quaternary layer of plistogenic deposits mainly composed of marl with some 

proportions of sand and cobble stones, characterized by high water conductivity.To 

the north is a layer of myogenic deposits consisting of marl with low water conductivity. 

Outside the boundaries of the case study, to the northeast there is an impermeable 

flysch that belongs to the geological formation of the Pindos Mountains. In the 
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northeast of the case study there are myogenic deposits of cobblestone while outside 

the southern part there are myogenic deposits of marl.  

 

Figure 1.4: Map of the upper layer of neogenic deposits and trenches in Tympaki basin. (The legend 
indicates absolute altitude in meters) (Panagopoulos et al., 2017) 

1.2.3.2 Hydrogeological Characteristics 

In the wider area of Messara a change in the consumption of water resources was 

observed during the hydrological years 1973 to 2005, due to human intervention. The 

water demand in the south of the area is largely met by pumping groundwater along 

the watercourse that crosses the alluvial aquifer in the western part of Messara plain. 

To the southwest of the area is the Moira aquifer, which is fed by the Geropotamos 

and whose lower reaches feed the Pleistocene aquifer within the study area through 

the Phaistos Strait. The Messara alluvial basin is not hydrologically connected to the 

Tympaki basin in any other way. In addition, the formations outside the study area the 

north and south further isolate the study area hydrogeologically (Κριτσωτάκης, 2009).  

The hydraulic profile height is well known from previous case study work. The 

higher values of hydraulic head are measured in the northern part, near the permeable 

formation which recharges the aquifers (Σπυρόπουλος, 2021; Στεργιου, 2021). 

Specifically, the case study can be broadly divided into 2 major formations consisting 

of alluvial material. At the seafront side the alluvial aquifer consists of broad material 

that has higher values of water conductivity. In addition to the minor changes in ground 

elevation, the hydraulic head appears to decrease slowly from west to east. The other 

formation consists of fine-grained material, with low values of hydraulic conductivity. 

As a result of this, the hydraulic head profile is steep the contours are closer to each 

other, as shown below (Dokou et al., 2017). 
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Figure 1.5: Hydraulic head contours the wet and dry period for the Tympaki aquifer (Dokou et al., 2017) 

On the coastal front, salinization phenomena were observed due to agricultural 

activities in the area that mainly includes the Pleistocenic aquifer (Kourgialas et al., 

2016). In another study the salinization front in the northern part was found to have 

penetrated further into the aquifer (2-3 km from the seafront) than the larger body of 

the intrusion zone (1 km from the seafront) (Vafidis et al., 2016). In the southern part, 

on the other hand, the saltwater intrusion zone appears to converge toward the 

seafront at the lower boundaries of the study area. This can be attributed to the semi-

constant recharge of the aquifer by the Geropotamos River (Lollino et al., 2015) 
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Figure 1.6: Salination intrusion zone in the coastal front of Tympaki, with three representative slices of the 
aquifer (Kourgialas et al., 2016) 
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Figure 1.7: Map of mass concentration of chlorides (contours represent concentration mg/L) (Lollino et 
al., 2015) 

 In the case study, a fluctuation of precipitation is observed on an annual basis, 

with high values in winter and low to none in summer. There are also fluctuations in 

precipitation due to the topology of the study area. The northern part of the case study 

has the highest values. High values are also recorded in the southern part compared 

to precipitation in the valley, but lower than in the northern part. Both regions with high 

values can be explained by the distinctive morphology of Psiloritis Mountain and 

Phaistos Ridge (Paparrizos et al., 2016). 

 

Figure 1.8: Yearly cumilative rainfall for the Geropotamos basin (greater area of Tympaki region) for the 

years 1981-2000 (Paparrizos et al., 2016) 
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1.3 Literature Review 
Self-organizing maps (SOMs) have shown promising results in clustering 

observations using multi factor parameters. Such clustering has applications in 

numerous environmental disciplines. For example classifying areas covered by a 

particular vegetation using SOMs (Filippi and Jensen, 2006) or discriminating fish 

communities based on spatial distributions, land cover, environmental gradients and 

water quality (Kwon et al., 2012). From the cases presented above, it can be inferred 

that SOMs are capable of successfully classifying seemingly complex environmental 

datasets. With respect to hydrogeology, SOMs have found numerous applications in 

predicting groundwater quantity and quality. In the hydrogeochemical evolution of an 

aquifer, chemical concentration is strongly correlated with spatial distribution and 

SOMs can produce maps with different ranges of possible concentrations (Yu et al., 

2018). SOMs can have inputs of spatial coordinates and concentrations, but can also 

include other factors such as water flow, geologic and hydrogeologic background and 

environmental stresses (Li et al., 2020; Zhu et al., 2020). Even more specific attributes 

can be added as inputs ,such as well depth or corresponding groundwater level and 

aquifer type (confined or unconfined) (Nakagawa et al., 2020). 

Hydrogeologic applications of SOMs may include as inputs both quantitative data 

from field measurements and qualitative data that help characterize and define the 

system in question. For classification, quantitative inputs, such as ion concentration 

can be related to water salinity. By creating three classes foe water salinity (freshwater, 

moderate salinity and high salinity) the coastal aquifer case study was divided into 

different sections, allowing for better water use practices with relatively few 

observations (35 in total) (Belkhiri et al., 2018). In coastal aquifers, salinity 

concentration varies throughout the hydrologic year, and SOMs provide accurate 

concertation clustering for both wet and dry periods with no overlap between clusters 

(Amiri and Nakagawa, 2021). The lack of overlap on a spatial and temporal basis can 

result in clusters with well-defined characteristics and properties, even though they are 

being part of a larger connected system, such as an aquifer. Compared to other forms 

of clustering SOMs appear to outperform the more common k-means clustering and 

have  similar results to fuzzy c-means (Lee et al., 2019). High-precision clustering has 

been used to pre-classify data inputs to other hydrologic and hydrogeologic models. In 

SWAT (Soil and Water Assessment Tool), SOMs can be used in defining Hydrologic 

Response Units (HRUs), by providing finely classified data for soil properties (Rivas-

Tabares et al., 2020). In the DRASTIC models (Depth to water, net Recharge, Aquifer 

media, Soil media, Topography, Impact of vadose zone, and hydraulic Conductivity), 

SOMs clustering followed by Kriging extrapolation increased overall accuracy. Kriging 

extrapolation was used as means to validate clustering through the variograms 

generated, which ultimately defined the affection zone of each cluster(Rezaei et al., 

2017). SOMs can also be used as surrogate models for hydraulic conductivity 

predictions that can be extrapolated to the entire case study by applying Kriging (Jiang 

et al., 2021). In addition, preclassification using SOMs can improve groundwater level 

predictions, when coupled with backpropagation network models for multiple sites in a 

case study. It is also important to note that the required inputs are spatial coordinates 

and groundwater level parameters that are easy to obtain (Chen et al., 2011). Methods 

that combine AI with Kriging can be applied to simulations of groundwater level and 

quality, not only in porous media but also in karstic springs(Canion et al., 2019). 

SOMs can also explain the spatiotemporal relationship between surface and 

groundwater, by classifying data of groundwater flow, surface water flow and rainfall, 
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the generated maps describe the relationships among the above parameters (Chen et 

al., 2018). In a combination of SOMs and Kriging  for groundwater level prediction, 

clustering was performed using the groundwater level observations from the well, then 

Kriging was performed for each cluster, and finally the best-fitting cluster was selected 

(Chang et al., 2016). The main difference between the aforementioned work and the 

present project is that Kriging is performed for the entire case study area even though 

the well data are clustered, while Kriging is performed separately for each cluster in 

this work. AI is well suited for nonlinear problems such as groundwater simulations, 

but in cases of contaminant concentrations with clear trends Kriging or deterministic 

approaches are more appropriate (Chowdhury et al., 2010). In groundwater 

contamination simulations, a multiple layer backpropagation network was used to 

classify danger zones and was compared to a single Kriging variogram (Kavusi et al., 

2020). Artificial Neural Networks have also been used to compensate for the 

uncertainty of the semivariogram in Kriging methods (Senoro et al., 2021). 

Kriging can be a robust method for predicting and monitoring groundwater levels 

or quality, from OK which is the most common technique to Co-Kriging which is the 

multivariable equivalent of OK (Belkhiri et al., 2020). Spatiotemporal analysis with 

Kriging is achieved by performing several different Kriging analysis at different 

timeframes, the results of this technique create multiple maps that can show the 

evolution of a phenomenon and as before multiple Kriging techniques when used 

together can provide more accurate results (Rostami et al., 2020). While OK has many 

applications for spatiotemporal analysis, it is also appropriate in regions with declining 

trends in groundwater levels (Hasan et al., 2021). In addition, OK can be used to 

monitor groundwater quality. In a case study, it was coupled with sequential Gaussian 

simulation for smoothing purposes, an issue that OK faces (Aryafar et al., 2020). In 

terms of quality, Indicator Kriging was applied, where a threshold for detection is set, 

resulting in reliable neighbors (Kechiched et al., 2020). In another work, Ordinary and 

Indicator Kriging were used to simulate arsenic contamination, with OK performing 

better than IK despite sample heterogeneity (Liang et al., 2018). However, IK is not 

applicable in modeling groundwater levels because there is no detection threshold and 

even negative values contain important information about the heterogeneity of the 

system under study. Finally, Empirical Bayesian Kriging is a technique that replicates 

and partitions observed data and can compensate for uncertainty in semivariogram, 

making it an ideal technique for modeling small data sets; sometimes it outperforms 

OK (Bouhout et al., 2022; Senoro et al., 2021). 

In summary, AI is a promising tool for improving Kriging methods. In particular 

SOMs have shown promising results in several different methods, although most of 

their applications are a stage of classification after performing Kriging. Moreover, pre-

classification of datasets enhances the performance of Kriging methods, but this rarely 

happens when SOMs are used. In this work, pre-classification with SOMs aims to form 

classes whose distinguishing features are spatial coordinates and groundwater level. 

The intention behind this, is to create of possible neighborhoods where observations 

are more correlated compared to the correlation between all observation points 

throughout the case study area. Finally, regarding the Kriging techniques studied, OK 

seems to be the most commonly used in the literature. Although it is the simplest, it 

has reliably shown robust results commensurate with other more complex techniques. 

Considering this and the fact that the proposed methodology combines the two tools 

in a previously unexplored way, OK is considered the most appropriate technique for 

the purposes of this work.  
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2 Methodology 

 

Figure 2.1: Flowchart of the Proposed Methodology 
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 In this work the main data set consists of 341 observations containing X-Y 

coordinates and hydraulic head value. The objective of this work is to define sub-

datasets that will improve the Ordinary Kriging results. The proposed methodology 

proceeds as follows: Performing OK on the entire dataset, investigating different pre-

classification arrangements (topologies) and evaluating the performance of OK for 

each topology. This rudimentary analysis of the methodology is explained in more 

detail below. 

 The first step of the algorithm is to read and format the required data. The data 

are organized in a table format to facilitate calculations in MATLAB. They are formatted 

into coordinates and hydraulic head values, which are generally the inputs to both SOM 

and OK.  

The initial topology is set to 1x1 which is the baseline for evaluating all the 

different topologies. 

 The SOM algorithm forms the pre-classification part of the methodology. The 

inputs of the SOM model are the X-Y coordinates and the value of the hydraulic head. 

The outputs are the same values but classified in clusters. This selection ensures that 

the classification is based on the location of the observations in the field and the 

various hydraulic properties or conditions that are correlated to the hydraulic head 

value. In this use of SOM each observation is assigned to a single cluster, and OK is 

applied to each cluster separately. There is a possibility of overlapping predictions from 

OK, but only for small areas at the boundaries of each cluster (Amiri and Nakagawa, 

2021). It is worth noting that a cluster that underperforms compared to the original 

topology has no effect on a cluster that performs acceptably or better than the original 

topology. Each different combination of clusters constitutes a topology, e.g., the first 

topology for which Kriging is performed is 1x1, i.e., a single cluster, i.e., the entire 

dataset; therefore, SOM is not required for this topology. Adding another cluster results 

in two more possible topologies,1x2 and 2x1 since it is possible that the classification 

results in a cluster with different observations in each cluster. Both of them are 

investigated. In the 2x2 topology, this problem does not exist. In 2x3 and 3x2 the 

process is the same as above, and again they are examined last. In more granulated 

topologies it is not guaranteed that each cluster will contain a viable amount of 

observations for OK to be performed. In summary the SOM algorithm either classifies 

correlated observations among themselves or exclude uncorrelated observations and 

overall refines the inputs from OK. 

 The preliminary studies refer to the hydraulic head values. The statistical 

parameters determined are minimum value, maximum value, median value, mean 

value, standard deviation, skewness and kurtosis. These tests are important to 

determine if a subset of data follows the normal distribution, which is one of the main 

assumptions of Kriging (Hengl et al., 2007). In this work, it is validated by plotting and 

comparing the empirical and gaussian cumulative probability density functions. 

Voronoi polygons are created as an indicator of the possible Kriging prediction. 

 Variography in Ordinary Kriging requires detrended data sets. In all clusters, 

the only trend in the hydraulic head value was a linear decrease in correlation with 

altitude, i.e., from inland to coastal front. Trend prediction is evaluated by the 

Correlation Coefficient and Mean Absolute Error between the linear trend model and 

the data. By removing the trend from the data set the hydraulic head values are 

converted to variations in hydraulic head. Empirical isotropic variograms were created 

for all clusters and then compared to 4 different theoretical variogram models. These 
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were an exponential, a spherical, a gaussian and a power law, of which the power law 

was generally considered the most appropriate. If a cluster could not produce a 

variogram that matched one of the theoretical models and the relationship between all 

clusters was not completely linear, the variogram from the 1x1 topology was used to 

determine the input parameters for Kriging. 

 The Kriging technique was used in this work is Ordinary Kriging. OK requires 

as input the X-Y coordinates, the derived values of the hydraulic head (fluctuations), 

the range obtained from the variography, the theoretical model estimated from the 

variography and the radius of the neighborhoods. Validation of the estimates is 

performed by measuring the Mean Error, Mean Absolute Error, Root Mean Squared 

Error and Correlation Coefficient between the estimated and derived values. Finally, 

two maps are produced for each cluster containing the estimates at the validation 

points and the standard deviation at the validation point.  

 The predictions are a result of an iterative process requiring multiple tests, in 

order to secure that the assumptions taken by Kriging are satisfied. The results of those 

test are presented in the Kriging Results chapter and are repeated for each topology. 

In this section, the graphs yielded from each topology are briefly presented. The first 

graph is the spatial distribution of observations in each cluster produced by the SOM 

algorithm. The second graph contains a histogram with the all the hydraulic head 

values in the cluster and the empirical cumulative probability curve. The third graph 

utilizes the empirical cumulative probability curve to fit it to a gaussian theoretical 

curve, this step is one the most important step in the process, since for the performance 

of Kriging; the empirical and gaussian theoretical cumulative probability curves should 

be approximate to each other. The following set of graphs describe the process of 

detrending the subsets of data, starting from the fourth graph which is the Voronoi 

polygons for each cluster. This graph is not required but is an added test to confirm 

that the fifth graph which is the linear trend of hydraulic head values in each cluster is 

correct. After the detrending, variography is performed as described above, in each 

cluster. The sixth graph contains the variograms, in which the observations are fitted 

to one of the theoretical models mentioned in the semivariogram models’ section. This 

step requires trial and error to some extent, since there is no reliable technique to 

predetermine the best fitting model, in the results section the best fitting models are 

presented. The seventh graph depicts the frequency of the values of cross validation 

errors from the Kriging estimation. The eighth graph contains the Ordinary Kriging (OK) 

estimation of hydraulic head values within the domain of each cluster. Finally, the ninth 

graph contains the OK standard error deviation which is an additional visual metric for 

the assessment of uncertainty of the prediction. 
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2.1 Validation Criteria 

2.1.1 Error  
 𝐸𝑟𝑟𝑜𝑟 = 𝑌𝑖

𝑜𝑏𝑠 − 𝑌𝑖
𝑠𝑖𝑚 12 

 

2.1.2 Mean Absolute Error (MEA) 
 

𝑀𝐸𝐴 = ∑
|𝑌𝑖

𝑜𝑏𝑠 − 𝑌𝑖
𝑠𝑖𝑚|

𝑛

𝑛

𝑖=1

 
13 

2.1.3 Root Mean Squared Error (RMSE) 
 

𝑅𝑀𝑆𝐸 = √∑
(𝑌𝑖

𝑜𝑏𝑠 − 𝑌𝑖
𝑠𝑖𝑚)2

𝑛

𝑛

𝑖=1
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2.1.4 Correlation Coefficient (CC) 
 

𝐶𝐶 =
𝑛 ∑ 𝑌𝑖

𝑜𝑏𝑠 ∙ 𝑛
𝑖=1 𝑌𝑖

𝑠𝑖𝑚 − ∑ 𝑌𝑖
𝑜𝑏𝑠 ∙ 𝑛

𝑖=1 ∑ 𝑌𝑖
𝑠𝑖𝑚𝑛

𝑖=1

√[𝑛 ∑ 𝑌𝑖
𝑜𝑏𝑠 𝑛

𝑖=1

2
− (∑ 𝑌𝑖

𝑜𝑏𝑠 𝑛
𝑖=1 )

2
] ∙ [𝑛 ∑ 𝑌𝑖

𝑠𝑖𝑚 𝑛
𝑖=1

2
− (∑ 𝑌𝑖

𝑠𝑖𝑚 𝑛
𝑖=1 )

2
]
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𝑌𝑖
𝑜𝑏𝑠: the observed value 

𝑌𝑖
𝑠𝑖𝑚: the simulated value 

3 Results 

3.1 Self-Organizing Map Results 

3.1.1 Topology 1x2 

 

Figure 3.1: Distribution of observations in clusters 1-2 
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Figure 3.2: Spatial distributions of observations and their related cluster 

3.1.2 Topology 2x1 

 

Figure 3.3: Distribution of obsevrations in clusters 1-2 
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Figure 3.4:Spatial distributions of observations and their related cluster 

3.1.3 Topology 2x2 

 

Figure 3.5: Distribution of obsevrations in clusters 1-2, 3-4 (bottom to top) 
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Figure 3.6: Spatial distributions of observations and their related cluster 

3.1.4 Topology 2x3 

 

Figure 3.7: Distribution of obsevrations in clusters 1-2, 3-4, 5-6 (bottom to top) 
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Figure 3.8: Spatial distributions of observations and their related cluster 

3.1.5 Topology 3x2 

 

Figure 3.9: Distribution of obsevrations in clusters 1-2-3,4-5-6 (bottom to top) 
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Figure 3.10: Spatial distributions of observations and their related cluster 

3.2 Kriging Results 

3.2.1 Topology 1x1 

 

Figure 3.11: Spatial distribution of observation points in the whole case study 
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Figure 3.12: Histogram and probability curve for all hydraulic head values 

 

Figure 3.13: Cumulative Probability curve empirical and theoretical gaussian over all hydraulic head 
values 
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Figure 3.14: Voronoi polygons for hydraulic head observation points in the whole case study  

 

Figure 3.15: Linear trend over the case study 
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Figure 3.16: Global Variogram 

 

Figure 3.17: Cross Validation errors for all estimations of topology 1x1 



 

 σελ. 32 

 

Figure 3.18: Ordinary Kriging estimation for the whole case study 

 

 

Figure 3.19: Kriging error standard deviation the whole case study 
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3.2.2 Topology 1x2 

  
Figure 3.20: Spatial distribution of observation points for clusters 1-2 

  
Figure 3.21: Histogram and probability curve for clusters 1-2 

  
Figure 3.22: Cumulative Probability curve empirical and theoretical gaussian for clusters 1-2 
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Figure 3.23: Voronoi polygons for hydraulic head observation points for clusters 1-2 

  
Figure 3.24: Linear trend for clusters 1-2 

  
Figure 3.25: Variograms for clusters 1-2 
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Figure 3.26: Cross Validation errors for estimations of clusters 1-2 

  

Figure 3.27: Ordinary Kriging estimation for clusters 1-2 

  
Figure 3.28: Kriging error standard deviation for clusters 1-2 
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3.2.3 Topology 2x1 

  
Figure 3.29:Spatial distribution of observation points for clusters 1-2 

  
Figure 3.30: Histogram and probability curve for clusters 1-2 

  
Figure 3.31: Cumulative Probability curve empirical and theoretical gaussian for clusters 1-2 
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Figure 3.32: Voronoi polygons for hydraulic head observation points for clusters 1-2 

  
Figure 3.33: Linear trend for clusters 1-2 

  
Figure 3.34: Variograms for clusters 1-2 
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Figure 3.35: Cross Validation error for estimations of clusters 1-2 

  
Figure 3.36: Ordinary Kriging estimation for clusters 1-2 

  
Figure 3.37: Kriging error standard deviation for clusters 1-2 
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3.2.4 Topology 2x2 

  

  
Figure 3.38: Spatial distribution of observation points for cluster 1-2, 3-4 
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Figure 3.39: Histogram and probability curve for clusters 1-2, 3-4 

  

  
Figure 3.40: Cumulative Probability curve empirical and theoretical gaussian for clusters 1-2, 3-4 
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Figure 3.41: Voronoi polygons for hydraulic head observation points for clusters 1-2, 3-4 
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Figure 3.42: Linear trend for clusters 1-2, 3-4 

  

  
Figure 3.43: Variograms for clusters 1-2, 3-4 
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Figure 3.44: Cross Validation error for estimations of clusters 1-2, 3-4 

 

 

 

  
Figure 3.45: Ordinary Kriging estimation for clusters 1-2, 3-4 
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Figure 3.46: Kriging error standard deviation for clusters 1-2, 3-4 

3.2.5 Topology 2x3 
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Figure 3.47: Spatial distribution of observation points for clusters 1-2, 3-4, 5-6 
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Figure 3.48: Cumulative Probability curve empirical and theoretical gaussian for clusters 1-2, 3-4, 5-6 

  

  

  
Figure 3.49: Cumulative Probability curve empirical and theoretical gaussian for clusters 1-2, 3-4, 5-6 
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Figure 3.50: Voronoi polygons for hydraulic head observation points for clusters 1-2, 3-4, 5-6 
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Figure 3.51: Linear trend for clusters 1-2, 3-4, 5-6 
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Figure 3.52: Variograms for clusters 1-2, 3-4, 5-6 

  



 

 σελ. 50 

 

  

  

 
 

Figure 3.53:Cross Validation error for estimations of clusters 1-2, 3-4, 5-6 
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Figure 3.54: Ordinary Kriging estimation for clusters 1-2, 3-4, 5-6 
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Figure 3.55: Kriging error standard deviation for clusters 1-2, 3-4, 5-6 
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3.2.6 Topology 3x2 

  

  

  
Figure 3.56: Spatial distribution of observation points for clusters 1-2, 3-4, 5-6 
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Figure 3.57: Cumulative Probability curve empirical and theoretical gaussian for clusters 1-2, 3-4, 5-6. 
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Figure 3.58: Cumulative Probability curve empirical and theoretical gaussian for clusters 1-2, 3-4, 5-6 
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Figure 3.59: Voronoi polygons for hydraulic head observation for cluster 1-2,3-4,5-6 
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Figure 3.60: Linear trend for cluster 1-2,3-4,5-6 
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Figure 3.61: Variographs for cluster 1-2,3-4,5-6 
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Figure 3.62: Cross Validation error for estimations of clusters 1-2, 3-4, 5-6 
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Figure 3.63: Ordinary Kriging estimation for clusters 1-2, 3-4, 5-6 
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Figure 3.64: Kriging error standard deviation for clusters 1-2, 3-4, 5-6 
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3.3 Validation Criteria Results 

 

Figure 3.65: Correlation Coefficient for Different Clusters/Topologies 

 

Figure 3.66: Mean Absolute Error for Different Clusters/Topologies 

 

Figure 3.67: Maximum Absolute Error for Different Clusters/Topologies 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1X1 1X2 2X1 2X2 2X3 3X2

C
o

rr
el

at
io

n
 C

o
ef

fi
ci

en
t 

(m
) 

Topology

Correlation Coefficient for Different Clusters/Topologies

1

2

3

4

5

6

0

2

4

6

8

10

12

14

16

18

20

1X1 1X2 2X1 2X2 2X3 3X2

M
ea

n
 A

b
so

lu
te

 E
rr

o
r 

 (
m

) 

Topology

Mean Absolute Error for Different Clusters/Topologies

1

2

3

4

5

6

0

20

40

60

80

100

120

140

1X1 1X2 2X1 2X2 2X3 3X2M
ax

im
u

m
 A

b
so

lu
te

 E
rr

o
r 

(m
) 

Topology

Maximum Absolute Error for Different Clusters/Topologies

1

2

3

4

5

6



 

 σελ. 63 

 

Figure 3.68: Root Mean Squared Error for Different Clusters/Topologies 

4 Discussion 

4.1 Topology 1x1 
For the topology 1x1 the SOM algorithm was not used. In Figure 3.12 there can 

be seen that the sample of observations has a range of values from 0 to 350 m. The 

most common values for hydraulic head values are between 0 to 50 m. This range of 

values follows the normal probability curve. The remaining observations in the sample 

have a wider range of hydraulic head values, but the frequency of theιr occurrence is 

much lower. According to Figure 3.13, the cumulative probability curve of the gaussian 

variogram and the empirical variogram indicate that the observation sample as a whole 

does not follow the normal probability distribution to its totality. As can be seen in 

Figure 3.14, there is a clear distinction between the observations. They are separated 

by an axis from northwest to southeast. Most of the observation points with values (0 

to 50 m) seem to be located near the coastal front, while the remaining points are 

scattered in the rest of the study area with different hydraulic head values. This is 

confirmed by Figure 3.15, where the linear trend is from the northeast to southwest so 

the differentiation shown above is valid. Examination of the variogram in Figure 3.16, 

shows that the power law is the best-fitting theoretical model. As mentioned earlier, 

the unbound variogram implies either a lack of sufficient observations or a strong 

correlation between the lags. Of the two possible interpretations, the second seems to 

be the more plausible. Since the case study is quite small and the hydrogeologic 

system studied, is generally a homogeneous porous aquifer system despite its 

discontinuities. The Kriging estimate, shown in Figure 3.18, is similar to the linear trend, 

with changes following the morphology of the study area. The error standard deviation 

maps (Figure 3.19) indicate a low error throughout the area, but this is also due to the 

high density of observations, particularly on the coastal front. Figure 3.17 provides 

additional insight: Αalthough, there is a high frequency of simple errors in the -10 to 10 

m range, there are outliers that can reach as high as -60 m. The validation criteria 

indicate reasonable performance of the OK technique, i.e., Mean Absolute Error 6.90 

m, Root Mean Square Error 11.7 m, Maximum Absolute Error 56.5 m and Correlation 

Coefficient 0.92% (Figures 3.65-68). The problem with this estimate is the high 

Maximum Absolute Error value which indicates either extended generalization of the 

prediction. This can be attributed to the fact that the areas with the highest density of 

observations have similar hydraulic head values, while the less dense areas have a 

wider range of values. In the following topology configurations, the creation of groups 
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(clusters) of observations aims to create subsections of the study area where the 

validation criteria may exceed to some extent those presented here. 

4.2 Topology 1x2 
The 1X2 topology resulted in 2 clusters, with the first cluster containing 69 

observations and the second 279, as shown in Figure 3.1. As expected, the 

observations were partitioned in the same way as described in the previous section. 

This is a consequence of the structure of the input data. The X-Y coordinates 

correspond to weight 1 and weight 2 in Figure 3.2 and appear to strongly influence the 

classification for this topology. The hydraulic head value is the third weight and does 

not significantly affect the clusters. This is the result of the correlation between 

hydraulic head and altitude mentioned earlier. In general, the observation points were 

grouped into a coastal front group with low hydraulic head values, and small distance 

between them, all belonging to the same hydrogeological substructure. On the other 

hand, the other group had a large variation in hydraulic head values and the 

observation points were scattered in the rest of the area and belonged to all three 

hydrogeological substructures. 

The two resulting clusters are shown in Figure 3.20. For the first cluster, the 

normal probability curve appears to approach the theoretical line, while for the second 

cluster there appear to be some extreme values (Figure 3.21). For both clusters the 

empirical cumulative probability curve approaches the gaussian curve similar to the 

previous topology (Figure 3.22, Figure 3.13). The Voronoi polygons (Figure 3.23) for 

both clusters show the same general trend as before. However, the linear trend plot 

(Figure 3.24) there appears to be a skewing of the trend near the costal front. Both 

variograms conform to the theoretical power law model and are unbound, further 

indicating a strong correlation between the lags (Figure 3.25). An improvement in the 

cross-validation error is shown in Figure 3.26, for both clusters. The Ok estimate is 

more detailed and in Figure 3.27 the gradient in hydraulic head is particularly evident 

in cluster 2. The Kriging error standard deviation map in Figure 3.28 shows high error 

values for extrapolation outside the range of observation points. The validation criteria 

of the OK procedure for cluster 1, i.e., Mean Absolute Error 0.69 m, Root Mean Square 

Error 1.46 m, Maximum Absolute Error 12.5 m and Correlation Coefficient 0.98%, 

represent an almost 10-fold improvement in the error criteria. This is in contrast to 

cluster 2 which did not appear to improve as all error metrics appeared to increase with 

the exception of maximum absolute error. Cluster 2 is formed by the coastal front 

observations which means that further subgrouping is required.  

4.3 Topology 2x1 
The difference between the 1x2 and 2x1 topology according to Figure 3.3 is the 

arrangement of the clusters and an observation is transferred from cluster 2 to cluster 

1. In general, the spatial distribution of observations in each cluster follows the same 

pattern as in the 1x2 topology (Figure 3.4). This also confirms the statements made in 

the section on topology 1x2. 

The clusters in this topology have the same behavior as the previous one as 

shown in Figure 3.29. The same as from Figure 3.30 to Figure 3.37. However, it should 

be noted that the change of an observation from one cluster to another gave some 

unexpected results. Looking at Figures 3.65 to 3.68, it can be seen that no change 

occurred in cluster 1, which had already improved compared to topology 1x1. Cluster 

2 showed improvement in some validation criteria, i.e., Mean Absolute Error 6.84 m, 

Root Mean Square Error 12.2 m, Maximum Absolute Error 64.5 m and Correlation 
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Coefficient 0.91%. This difference between the two seemingly identical clusters 

(cluster 2 from topologies 1x2 and 2x1) first confirms the hypothesis that all possible 

topology configurations must be investigated to obtain an optimal result. In addition, it 

is partially confirmed that the inclusion of all observation points strangulates the Kriging 

estimation. This can be attributed to the high density of observation points in one area 

compared to other areas in the case study. So does as the granularity of the grid 

created for the Kriging estimation. In the dense observation areas, a grid square may 

contain more than one observation, while in the less dense areas, several grid squares 

maybe empty. Subdividing the study area increases the granularity of the grids without 

requiring additional computational power. Although the margin of error may increase, 

the validation criteria indicate an overall in the estimates. 

4.4 Topology 2x2 
The 2x2 topology yields 4 clusters, cluster 1 contains 31 observations, cluster 2 

contains 36, cluster 3 contains 67 and cluster 4 contains 214 (Figure 3.5). Cluster 1 

contains observations in the northeastern part of the study area (Figure 3.38). They 

are located over the area of the porous aquifer characterized by 25% infiltration of 

25%. Cluster 2 contains observations in the northern part of the case study (Figure 

3.38). They are located over the domain of all three aquifers, but the hydraulic heads 

are similar. Cluster 3 contains observations located in the southern part of the coastal 

front (Figure 3.38). Finally, cluster 4 contains the majority of observations located on 

the coastal front (Figure 3.38). According to Figure 3.6, the four subclusters are 

subdivided based on position and hydraulic head value. As mentioned earlier, cluster 

1 and cluster 2 have different hydrologic characteristics despite their proximity to each 

other. Cluster 3 and cluster 4 have similar hydrogeologic characteristics, but the river 

that discharges in the southern part of the case study and the agricultural activity in 

the northern part of the coastal front, create different hydrogeologic conditions. 

 Figure 3.39 shows that the classification of observations in each cluster follows 

a normal distribution. This is also confirmed by Figure 3.40, in which all empirical 

cumulative probability curves approximate the theoretical gaussian cumulative 

probability curve. Figure 3.41 and Figure 3.42 continue to show the same decreasing 

trend of hydraulic head toward the northeast with to southwest, with the exception of 

cluster 1. The difference in the direction of the trend can be attributed to the different 

hydrogeologic characteristics of the formation. The empirical variograms were fitted to 

the theoretical power law mode, except for cluster 2. The variogram of cluster 2was 

fitted to the spherical variogram which has a clear and well-defined range. This can be 

attributed to the heterogeneity of hydraulic head values and hydrogeologic properties 

of the formations in this cluster, which distinguishes cluster 2 from the other clusters. 

Cross-validation errors appear to have greatly decreased as only cluster 1 has four 

outliers and cluster 2 has only one (Figure 3.44). These two clusters \ have different 

values of hydraulic head, as mentioned earlier, so this is an expected result. The 

Kriging estimates show even greater granularity compared to previous results (Figure 

3.45) and the piezometric lines appear to follow the patterns of the study area 

morphology the (Figure 1.1). The Kriging error standard deviation maps show a 

decrease in the range of error standard deviation, especially in cluster 4 the error 

standard deviation is 1.3 m in the whole domain (Figure 3.46). The correlation 

coefficient shows an improvement in clusters 2 and 3, but a steep decrease in clusters 

1 and 4 (Figure 3.65). A Correlation coefficient that approaches zero indicates that the 

deterministic part of the methodology prevails in the estimation, in this case the linear 

trend. The Mean Absolute Error and Root Mean Square Error have been decreased 



 

 σελ. 66 

significantly for clusters 2 and 3. For cluster 1 has MEA and RMSE are close to the 

values for the 1x1 topology, while for cluster 4 there is a sharp increase in both errors 

(Figures 3.66 and 3.68). For cluster 4, the linear part of the estimate is more dominant, 

implying that outliers in the observation strongly influence the estimate, which can be 

confirmed by Figure 3.67, which shows a twofold increase compared to topology 1x1. 

This could be improved by further clustering to isolate the observations that show a 

clear linear trend. 

4.5 Topology 2x3 
The 2x3 topology yielded 6 clusters, cluster 1 contained 19 observations, cluster 

2 contained 32, cluster 3 contained 23, cluster 4 contained 92, cluster 5 contained 53 

and cluster 129 (Figure 3.7). Cluster 1 contains the observations in the northwestern 

part of the study area (Figure 3.8, Figure 3.47), all of which are on the porous aquifer 

with 25% infiltration (Figure 1.1.). Cluster 2 contains the observations in the 

southwestern part of the study area (Figure 3.8, Figure 3.47) on the porous aquifer 

with 20% infiltration. Cluster 3 spans through the central portion of the study area and 

contains observations from all three aquifers similar to cluster 3 in the previous 

topology (Figure 3.8, Figure 3.47). Cluster 4 contains the northern portion of the dense 

coastal front observations (Figure 3.8, Figure 3.47). The division of this area can be 

attributed to the different values of hydraulic head due to the steep decrease in altitude. 

Cluster 5 includes the rest of the observations in the remaining part of the northern 

coastal front. Finally, cluster 6 contain observations in the southern part of the coastal 

front (Figure 3.8, Figure 3.47). 

In terms of observations conforming to the normal distribution, all clusters meet 

the criteria adequately with only cluster 6 showing some outliers (Figure 3.48, Figure 

49). Similarly, the downward trends show the same behavior as the previous 

topologies, i.e., southward to the northern part and southwestward to the rest of the 

study area (Figure 3.50, Figure 3.51). All variograms were fitted to the theoretical 

power law l model, except for the variogram of cluster 1 (Figure 3.52). As prescribed 

in the methodology the global variogram was used for Kriging estimation. Cross 

validation showed an improvement in all clusters except cluster 1 (Figure 3.53). This 

may be due to model truncation it this cluster, as seen in Figures 3.54 and 3.55, where 

the maps produced overfit the observations. It is possible that by reconfiguring the 

topology, the overfitted observations could be distributed to different clusters. In Figure 

3.55, cluster 6 appears to contain the smallest error standard deviation. The correlation 

coefficient for clusters 3 through 5 appears to be comparable to 1x1 topology. For 

clusters 1 and 2, the correlation coefficient approach zero and for cluster 6 it decreases 

but is still acceptable (Figure 3.65). As before, the low correlation coefficient of cluster 

2 indicates strong linearity, while the results of cluster 1 are considered overfitting and 

thus not worth evaluating them. Mean Absolute Error and Root Mean Square Error 

show similar patterns in all clusters, with cluster 6 having the higher values for both 

criteria (Figure 3.66, Figure 3.68). The high error values of cluster 6 must be attributed 

to an outlier, which is confirmed by the high value of the Maximum Absolute Error 

(Figure 3.67). Despite an overall improvement in most of the clusters the overfitting of 

cluster 1 indicates that the proposed methodology for this case study has reached its 

limits. 

4.6 Topology 3x2 
 The clustering in this topology is quite different from the previous topology 

(Figure 3.9). Cluster 1 contains 17 observations, cluster 2 contains 23, cluster 3 

contains 31, cluster 4 contains 53, cluster 5 contains130 and cluster 6 contains 94. All 
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clusters span the same sub-areas as described in the previous section, but because 

of the different topology configuration, the observations have been assigned to 

different clusters and the cluster numbering is different (Figure 3.56). As shown 

previously for the 1x2 and 2x1 topologies, assigning fewer observations between 

clusters can greatly improve the final results of the model. Cluster 1 is located in the 

northern part of the study area as described previously. Cluster 2 is located in the cross 

section of the 3 porous formations in the middle of the case study. Cluster 3 is the bulk 

of the observed dense portion of the coastal front. Cluster 4 extend over the southern 

portion of the coastal front affected by the river discharge and a small portion of the 

inland affected by the river discharge. Cluster 5 extends across the southeastern 

portion of the case study at the intersection of two formations at relatively high altitude. 

Cluster 6 is located in the northern portion of the coastal front. From Figures 3.57 and 

3.58, all clusters appear to conform to the normal distribution, with some outliers in 

clusters 3,5 and 6. The Voronoi diagrams (Figure 3.59) for each cluster showed that 

the ranges of hydraulic head values are significantly restricted. The linear trends in all 

clusters are as previous described, except for cluster 6 (Figure 3.60). The area that 

makes up cluster 6 is associated with an aquifer with higher infiltration which increases 

water flux compared to the water flux in the rest of the coastal front. Higher values of 

hydraulic head are expected in this location especially when altitude change is 

considered change. All variograms were fitted to the theoretical power law model with 

moderate success (Figure 3.61). Cross-validation errors show the same outliers in 

clusters 1 and 2, but given the variability in hydraulic head values at these locations 

this is acceptable (Figure 3.62). Figure 3.63 shows that kriging estimates appear to be 

possible except for a small area in cluster 4, but this irregularity can also be attributed 

to water fluxes from the river. In Figure 3.64, the standard deviation shows variation in 

most maps. The standard error deviation of cluster1, despite its apparent affectedness, 

is a reasonable approximation considering that the said cluster has a range of values 

from 50 m to more than 300 m. On the other hand, clusters 3 and 5 seem to be 

overfitted but the validation criteria argue against. The correlation coefficient is above 

80% for all clusters except for cluster 1 with a value of -14% suggesting a strong 

deterministic linearity. Mean Absolute Error and Root Mean Squared Error behave 

similarly with errors in clusters 2 to 6 not exceeding 2 m and 3 m respectively. Cluster 

1 does not perform as well as the other clusters but shows improvement over the 1x1 

topology in all cases, even in Maximum Absolute Error which is almost halved (Figure 

3.67). 
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5 Conclusions 
As general remarks, it could be stated that the assumption that the Ordinary 

Kriging technique is able to describe the conditions of groundwater is verified, since all 

mathematical assumptions have been satisfied. In all cases of differing topologies, the 

results were adequate, with varying success. In addition, both from the literature and 

the results of this work, it has been verified that subdividing the sample of observations 

to smaller groups greatly improves the OK estimations. Given the different 

configurations of clusters, it could be stated that subgrouping arbitrarily could yield 

some results but in more complex systems than the current case study, this practice 

will be detrimental to the results. SOM is a promising algorithm for performing 

clustering by utilizing additional information such as hydraulic head value to spatial 

coordinates. Clustering as a technique of reducing the error of prediction has its 

restrictions. An upper bound to this technique is the data driven nature of Kriging 

methodologies. There is no definable number of observations within a cluster because 

of the specific hydrogeological conditions of each domain. Elaborating further, a small 

cluster area with high heterogeneity might require more observation for the 

performance of Kriging compared to a large homogenous area. The mechanistic 

clustering, as proposed from the methodology, should be applied within the context of 

the physical problem, i.e., geological, hydrogeological background and water 

extraction. In this case study, six clusters were elected with a higher configuration not 

yielding any results due to lack of observations within the clusters. In conclusion, the 

coupling of OK with SOM yields more accurate results compared to simple use of OK 

but is a data intensive process that in this point requires semi-manual optimization due 

to multiple tests that are required to be performed. 

Regarding the model results, Topology’s 1x1 performance was considered 

adequate, although it had a high error rate. OK can describe the hydrogeologic 

conditions of the case study, but by classifying the observations, OK can provide more 

accurate results. The use of SOMs can greatly improve predictions even for simple 

topologies such as 1x2 and 2x1. Small differences can greatly affect the results of 

Kriging as can be seen when comparing the two topologies. This means that the 

configuration of the topology is important and related to the physical problem at hand. 

Topologies 1x2 and 2x1 divided the study area into two groups based on the location 

of the observations and the change in the linear trend of the hydraulic head. In topology 

2x2 the subgroups were subdivided in even greater detail, taking into account the 

hydrogeologic characteristics of each group. In topologies 2x3 and 3x2 the groups 

were subdivided in more detail, and this subdivision led to different results. In topology 

2x3 the model was strangulated and did not provide acceptable results for a cluster, 

while topology 3x2 provided the most accurate and best results compared to topology 

1x1. Topology 3x2 was selected as the best fit for this case study based in all metrics. 

In cluster 1 of mentioned topology, the correlation coefficient approached zero, but this 

indicates that the cluster can only be described by the deterministic linear trend. 

However, the low correlation coefficient score though does not affect the robustness 

of the prediction since all other error values outperform the original topology. For the 

optimal description of the hydrogeological conditions of the case study, 6 groups were 

defined. The first group is located in the northwestern part of the study area, on the 

porous aquifer with 25% infiltration. The second group is located in the cross section 

of the 3 porous formations in the middle of the case study. The third group consists of 

the coastal front with the most intensive agricultural activity. The fourth group is located 

in the northern part of the case study influenced by the river discharge. The fifth group 

is located on the mainland in a cross-sectional area of high-altitude aquifers. The last 
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group is located on the coastal front but differs from the other coastal groups due to its 

different morphology. Clustering performed with SOM provided detailed granularity in 

grouping with what appeared to be reductive inputs. Coordinate inputs had the greatest 

influence on grouping in the 1x2 and 2x1 topologies. In other topologies where there 

was more room for diversification, the hydraulic head value strongly influenced the 

grouping results. There are two explanations for this: First as a numerical input, the 

SOM algorithm grouped observations that were in close proximity to each other and 

had similar hydraulic head values. Second, the hydraulic head value is strongly 

correlated with secondary parameters such as hydraulic conductivity or altitude. 

Altitude is easily extracted as information, but measurements of hydraulic conductivity 

are rare and subject to uncertainty. Thus, hydraulic head an input contains secondary 

information that the SOM algorithm can use for improved grouping. In conclusion, the 

pairing of SOM-enhanced OK can provide highly defined and accurate results 

compared to a simple OK technique. The proposed method is generic meaning that it 

can be applied to different case studies by simply changing the inputs as described 

above and testing different topology configurations. This work provides spatial 

predictions, future development of the proposed methodology aims to include the 

temporal aspect of hydrogeologic conditions in a case study. 
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Appendix I (Validation Criteria) 
 

Topology Cluster  MAE RMSE Rho MaxAE 

1X1 1 6.8919 11.6996 0.9207 56.4664 

1X2 1 0.6943 1.4599 0.9845 12.466 

1X2 2 10.539 14.9232 0.7093 41.9752 

2X1 1 0.6943 1.4599 0.9845 12.466 

2X1 2 6.8428 12.2325 0.9148 64.5159 

2X2 1 6.1563 8.6636 -0.1405 33.844 

2X2 2 1.8896 5.9893 0.9665 73.2067 

2X2 3 0.5932 1.1743 0.9698 9.3454 

2X2 4 18.9308 33.9562 -0.3423 115.3863 

2X3 1 6.0106 7.8618 0.3614 20.1747 

2X3 2 4.6657 6.0692 0.269 13.4004 

2X3 3 0.9879 1.966 0.9433 13.4916 

2X3 4 0.977 1.5051 0.9059 5.681 

2X3 5 0.341 0.5069 0.9758 1.7339 

2X3 6 10.539 14.9232 0.7093 41.9752 

3X2 1 6.1563 8.6636 -0.1405 33.844 

3X2 2 0.4346 0.7138 0.9191 2.9375 

3X2 3 0.8383 1.374 0.8751 5.0426 

3X2 4 0.3874 0.5819 0.9381 1.7296 

3X2 5 1.9819 3.0933 0.815 15.316 

3X2 6 1.9263 3.0267 0.8312 15.5042 

 


