
THE SPARQL-RW FRAMEWORK

MAPPING MODELING AND QUERY REWRITING FOR
ONTOLOGY BASED MEDIATORS

By

Konstantinos E. Makris

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN ELECTRONIC & COMPUTER ENGINEERING

at the

SCHOOL OF ELECTRONIC & COMPUTER ENGINEERING

TECHNICAL UNIVERSITY OF CRETE

2014



c© 2014 Konstantinos E. Makris

I hereby declare that I am the sole author of this thesis.

I authorize the Technical University of Crete to lend this thesis to other institutions or individuals
for the purpose of scholarly research.

I further authorize the Technical University of Crete to reproduce this thesis by photocopying or by
other means, in total or in part, at the request of other institutions or individuals for the purpose of
scholarly research.

Konstantinos E. Makris
Technical University of Crete
May 2014



Abstract

The Web of Data is an open environment consisting of heterogeneous, distributed and highly struc-
tured information sources. Uniform information access in this kind of setting is of major importance
for data consumer applications and end users. To this end, ontology based mediator systems sup-
porting transparent query access over federated data sources are considered essential. In this thesis
we present SPARQL–RW, a Framework supporting mapping modeling and query rewriting in the
context of ontology based mediator architectures. SPARQL–RW provides a formal model for de-
scribing mappings between ontology schemas, as well as a generic method for SPARQL 1.1 query
rewriting, with respect to a set of predefined ontology mappings and data source endpoints. The
mapping model supports a set of rich and flexible mapping types based on Description Logic se-
mantics, as well as notable mapping formalisms, including Global-As-View (GAV), Local-As-View
(LAV), and Global-and-Local-As-View (GLAV). Additionally, it defines a mapping language capable
of representing all the supported types of inter-schema correspondences. The Framework provides
functionality for performing mapping inference and for identifying inconsistencies in a given set of
mappings and ontology schemas. Regarding query rewriting, the proposed algorithms are proved
to provide semantics preserving queries with respect to the GAV mapping types supported by the
model. The reformulated queries can be executed directly on any SPARQL federated query engine,
or exploited as logical query plans by any ontology based mediator system. SPARQL–RW has been
implemented, formally evaluated and tested in a prototype mediator system integrating several data
providers from the biodiversity community along with DBpedia.
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Chapter 1

Introduction

The Web of Data is an environment that allows publishing data on the Web, in structured, linked,
and standardized ways. It is comprised by a large number of inter-linked RDF datasets from differ-
ent domains, and initiatives like Linked Open Data, Open Government and Linked Life Data have
played a major role towards its development.

In this environment, it is common for independent institutions and organizations to expose data
of the same or overlapping domain using different conceptualizations and not a globally shared
ontological scheme. A plethora of such examples can be given, starting from the DBpedia [9],
YAGO [86] and Freebase [10] cross-domain datasets, ACM, IEEE, DBLP and ePrints in the domain
of publications, PubMed, GeneID, Drug Bank and Gen Bank in life science, as well as GeoNames,
Linked GeoData and Geo Linked Data in the geographic domain. Numerous other examples can be
obtained from the Web of Data graph. Attempts to find agreements for common conceptualizations
often result in semantically weak minimum consensus schemes, like Dublin Core [48], or models
with extensive and complex semantics, like CIDOC/CRM [22]. Moreover, in many cases cooperat-
ing institutions and organizations have their own proprietary conceptualizations and it is not often
feasible for them to agree on a certain model or apply an existing standard.

Considering that information retrieval from RDF data sources needs to take into account the
data semantics at the conceptual level, it becomes obvious that systems supporting transparent
querying over distributed and federated datasets are essential components for a great number of Web
of Data applications. Although many state of the art systems, like LDIF [79], SPARQL++ [69],
and Mosto [75], are focused on the RDF data exchange/transformation problem, to the best of our
knowledge, there is no system supporting transparent querying over multiple mapped RDF data
sources. Such systems are usually employed by mediator based architectures [91], offering a single
point for querying access to the integrated data sources and requiring from the end-users to be only
aware of the mediator schema.

In this thesis, we present the SPARQL–RW Framework. SPARQL–RW provides a formal model
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for describing mappings between OWL ontology schemas, as well as a generic method for SPARQL
1.1 query rewriting, with respect to a set of predefined ontology mappings and data source end-
points. The mapping model supports a set of rich and flexible mapping types based on Description
Logic (DL) [5] semantics, as well as notable mapping formalisms, including: (a) Global-As-View
(GAV) [29], which is based on the idea that the mediator schema is described as a set of views over
the source schemas, (b) Local-As-View (LAV) [52], in which the source schemas are described as
views over the mediator schema, and (c) Global-and-Local-As-View (GLAV) [54], which combines
both GAV and LAV. Additionally, the mapping model defines a language capable of representing
all the supported types of inter-schema correspondences. The Framework provides functionality
for performing mapping inference and for identifying inconsistencies in a given set of mappings
and ontology schemas. Regarding query rewriting, the proposed algorithms are proved to provide
semantics preserving queries with respect to the GAV mapping types supported by the model. The
reformulated queries can be executed directly on any SPARQL federated query engine, or exploited
as logical query plans by any ontology based mediator system.

Formally, let G be a global ontology schema, let S̄ = {S1, . . . , Sn} be n data source ontology
schemas, and let M̄ be a set of mappings betweenG and S̄. SPARQL–RW takes as input a SPARQL
query QG expressed over G, and rewrites it to a semantically correspondent query QS̄ , expressed
over S̄, with respect to M̄ . Subsequently, considering a set of endpoints Ē = {E1, . . . , Em}, and
a set of relations <S̄, Ē>, specifying the available endpoints for each integrated ontology schema,
SPARQL–RW transforms the reformulated query QS̄ to a federated one, expressed over Ē.

In more detail, the aim and the objectives of this thesis are to: (a) determine the types of ontology
mappings that can be exploited in the SPARQL query rewriting process, (b) specify a mapping
model supporting well-known mapping formalisms and providing the basic constructs to describe
ontology mappings of certain types, (c) investigate inferencing of new ontology mappings and study
the identification of mapping inconsistencies in a given set of mappings and ontology schemas,
(d) define a method for the rewriting of SPARQL 1.1 queries based on the mapping types and
formalisms supported by the specified mapping model, and finally (e) evaluate the query rewriting
method in terms of soundness, completeness and efficiency.

1.1 Summary of Contributions

In this thesis we present a Framework for supporting mapping modeling and query rewriting in the
context of ontology based mediator architectures.

In more detail, we propose a model for the expression of mappings between ontology schemas.
The mapping model consists of a grammar describing the mapping types which can be exploited in
SPARQL query rewriting, as well as a specification of the mapping type semantics. It is based on
Description Logics and it is able to support a great variety of mappings between OWL ontologies,
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providing high flexibility and satisfying different system requirements and user needs. Furthermore,
it is able to support a variety of mapping formalisms, including GAV, LAV, and GLAV, satisfying
strong data integration requirements for query rewriting efficiency and extensibility to new sources.
To the best of our knowledge, there is no system supporting these formalisms in the field of ontology
based mediators.

Additionally to the mapping model, we define a language based on XML syntax, being able
to represent the discussed mapping types and formalisms. The mapping language combines a set
of criteria including simplicity, expressiveness, executability, and schema language agnosticism.
Furthermore, the use of XML Schema in mapping language definition: (a) provides exceptional
validation capabilities, (b) supports easy mapping serialization and deserialization, and (c) enables
interoperability with external systems and applications.

We support the maintenance of mappings conforming to the SPARQL–RW mapping model by
providing a method for identifying mapping inconsistencies in a given set of mappings and ontology
schemas. Moreover, in order to assist the mapping definition process we exploit the DL semantics
of the SPARQL–RW mapping model for performing mapping inference through the use of well-
known reasoning techniques.

Regarding query rewriting, we provide a formal method for the reformulation of SPARQL 1.1
queries posed over the mediator, into federated SPARQL queries referring to the integrated data
sources. The query rewriting process is mainly based on a complete set of inference rules and
recursive transformation functions, as well as on the exploitation of ontology mappings described
using the SPARQL–RW mapping model. The provided algorithms and transformation functions are
formally evaluated for their soundness and completeness, and are proved to provide semantics pre-
serving queries with respect to the GAV inter-schema correspondences supported by the model. To
the extent of our knowledge, there is no system performing SPARQL 1.1 query rewriting in gen-
eral, or SPARQL query rewriting by exploiting well-known mapping formalisms in the context of
ontology based mediators.

Finally, the SPARQL–RW Framework has been fully implemented and evaluated in terms of its
query rewriting efficiency, measuring the time required for the reformulation of queries of different
size and type, using mappings of varying complexity. Furthermore, it has been tested in the Seman-
tic Query Mediation Prototype Infrastructure that we have developed, supporting the integration
of DBpedia [9] and several biodiversity data providers from the Natural Europe project [1]. This
infrastructure enables the execution of highly sophisticated queries combining specimen and media
object information persisted in the Natural Europe repositories with species information available in
DBpedia. External applications and end-users are able to interact with a single ontology schema and
endpoint, without having to be aware of the schemas and SPARQL endpoints of the integrated data
sources. As a result, highly complex queries, combining information from multiple data sources,
can be expressed in a few triples, reducing drastically the effort of query composition.
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1.2 Reader’s Guide

Apart from the introduction, the preliminaries, the related work, and the conclusion, this thesis can
be divided into three parts. In the first part, we define the mapping model and language, as well as
investigate mapping inference and inconsistency identification. In the second part, we describe our
query rewriting method, by providing certain algorithms and transformation functions, considering
input queries executed either on data or schema. Finally, the third part discusses the implementation
of the specified mapping model and query rewriting algorithms, as well as the evaluation and testing
of the proposed Framework. More precisely, this thesis is structured as follows:

• Chapter 2 presents the most relevant research to the issues addressed in this thesis. It de-
scribes their approach and discusses their advantages or disadvantages compared to ours.

• Chapter 3 provides a brief overview of the RDF data model and OWL, the standard language
for defining and instantiating Web ontologies. Moreover, it introduces SPARQL focusing on
the language syntax and semantics.

• Chapter 4 specifies the abstract syntax and semantics of the SPARQL–RW mapping model
and discusses the supported mapping formalisms. In addition, it provides an analysis of
the mapping model expressiveness by comparing its features to well-known knowledge and
mapping representation languages. Finally, it describes methods for performing mapping
inference and inconsistency identification, and defines a mapping representation language by
providing its general structure along with illustrative mapping examples.

• Chapter 5 presents the developed algorithms for performing SPARQL 1.1 query rewriting
using GAV ontology mappings supported by the SPARQL–RW mapping model. The provided
algorithms are based on a complete set of inference rules and recursive DL to SPARQL
transformation functions and consider both data and schema queries.

• Chapter 6 discusses the experimental evaluation conducted on SPARQL–RW in terms of its
query rewriting efficiency and provides the obtained results. Moreover, it presents the Seman-
tic Query Mediation Prototype Infrastructure that we have developed in order to demonstrate
the applicability of the SPARQL–RW Framework in a real data integration scenario, involving
DBpedia and several biodiversity data providers.

• Chapter 7 summarizes and reviews the presented work, and sketches some perspectives for
future research.



Chapter 2

Related Work

The Web of Data is an open environment consisting of heterogeneous, distributed and highly struc-
tured information sources. Establishing uniform information access in this kind of setting has
become a major research challenge and several data integration approaches [65, 41, 89, 85, 84, 79],
or query execution strategies [35, 36, 87, 31, 74] have been proposed. In this thesis we examine
certain aspects of data integration in the Semantic Web, including: (a) ontology mapping, (b) map-
ping inference, (c) identification of mapping inconsistencies, and (d) SPARQL query rewriting in
the context of ontology based mediator architectures. In what follows, we present the most relevant
research to the issues addressed in our work.

2.1 Ontology Mapping

Ontology mapping, is the task of relating the vocabulary of two ontologies by specifying a set of
correspondences and axioms between ontology terms. Apart from the trivial case, several mapping
formalisms involving multiple schemas and adopting different strategies have been proposed in
the context of mediator based architectures [50, 51, 21]. The most well-known formalisms in this
field are the (a) Global-As-View, (b) Local-As-View, and (c) Global-and-Local-As-View, while the
selection of the best depends solely on system requirements.

The Global-As-View (GAV) [29, 21] approach is based on the idea that each element of the
mediator ontology schema should be characterized in terms of a view over the integrated data
source ontologies. In some sense, the mapping explicitly instructs the system how to retrieve the
data when evaluating the various elements of the mediator ontology schema. GAV approach is
effective whenever the data integration system is based on a set of sources that is stable. Extending
the system with a new data source, may have an impact on the mapping definition of the various
global ontology elements, whose associated views need to be redefined.

The Local-As-View (LAV) [52, 21] formalism takes the opposite approach to GAV. It is based
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on the idea that each element of the integrated data source ontology schemas should be character-
ized in terms of a view over the mediator ontology. LAV approach is effective whenever the data
integration system is based on a global ontology schema that is stable and well-established in the
organization. Extending the system with a new source simply means the enrichment of mapping
with new assertions (without performing any other changes).

The Global-and-Local-As-View (GLAV) [54, 21] approach is a combination of the GAV and
LAV formalisms. It offers the expressive power of both techniques, aiming to overcome their
limitations. GLAV is based on the idea that a view over the integrated data source ontology schemas
should be characterized in terms of a view over the mediator ontology.

To the best of our knowledge, there is no system supporting these formalisms in the context
of ontology based mediator architectures. SPARQL–RW aiming to satisfy different system require-
ments and user needs, supports all three aforementioned mapping formalisms by providing a model
and a language for the expression of complex ontology mappings.

Mapping discovery is a task that can be achieved either manually, automatically, or semi-
automatically. Many recent strategies [17, 3, 27] and tools related to automatic or semi-automatic
mapping discovery have been proposed and have their performance analyzed [26, 43, 90, 18, 81, 7].
Although these techniques provide satisfactory results, the quality of auto-generated mappings can-
not be compared with manually specified ones. Manual mapping specification is undoubtedly a
difficult process, however, it is able to provide declarative and highly expressive correspondences
by exploiting domain knowledge expertise.

SPARQL–RW supports a set of rich and flexible mappings types between ontology schemas.
Therefore, manual mapping definition and discovery are considered essential for exploiting the
mapping model capabilities in their full potential. To assist the mapping discovery task, we have
implemented a deductive method for performing mapping inference based on [12, 61, 58, 59]. The
method exploits model-theoretic semantics and requires an initial set of mappings to be provided in
order to perform effectively. It is based on reasoning over the mediator ontology schema, the inte-
grated ontology schemas and the initial mapping set, exploiting any underlying semantics. To this
end, the fact that the SPARQL–RW mapping model is based on Description Logics (DL) is consid-
ered crucial. To the best of our knowledge only one system [42] implements a similar approach for
diagnosing and repairing alignments. Complementary to the adopted method, mappings generated
by ontology matching systems can be used effectively after limited post-processing.

Barring a few exceptions [77, 47, 60] the problem of identifying and eliminating mapping
inconsistencies has received limited attention in the literature. SPARQL–RW provides built-in func-
tionality for performing inconsistency identification in terms of mapping formalism violations and
semantic contradictions. Regarding the latter, it is performed using a similar approach to mapping
inference, exploiting the underlying mapping and schema semantics.

For the mapping representation task, several different languages have been proposed, including
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OWL [57], C-OWL [11], SWRL [40], MAFRA [55], the Alignment Format [25] and its EDOAL
extension [20]. However, only some of them combine and satisfy the core criteria required for
data integration systems; that is, simplicity, expressiveness, executability, and schema language
agnosticism. Furthermore, to the extent of our knowledge, none of the above languages considers
the use of formalisms in mapping representation, while few of them are capable of describing
mappings that involve multiple ontology schemas. A thorough comparison of these languages for
the task of mapping specification in the context of data integration is available in [26].

2.2 SPARQL Query Rewriting

Query rewriting is a well-known technique, extensively used for addressing various issues includ-
ing query optimization, query answering, and performing information integration. Although, this
method has been studied extensively in databases, it has received limited attention by the Semantic
Web community especially for performing query mediation tasks in the context of data integration.
To the extent of our knowledge, there is no system performing SPARQL 1.1 query rewriting in gen-
eral, or SPARQL query rewriting by exploiting any well-known mapping formalism in the context
of ontology based mediator architectures.

SPARQL–RW provides a query rewriting method, based on ontology mappings, for performing
query mediation over diverse, in terms of schema, federated RDF data sources. Our approach
is motivated by view-based query answering techniques [33, 32], applied in databases. While
these techniques were exploiting materialized views, SPARQL–RW uses mappings between virtual
views; that is, mappings between complex DL based expressions involving schema terms. Virtual
views were preferred since they require no additional space and, unlike materialized views, can be
modified at any time without any additional cost.

The use of DL semantics in the SPARQL–RW mapping model was inspired by previous ap-
proaches [6, 16, 15] dealing with query answering using views in Description Logics. While map-
pings based on DL require a more complex query rewriting strategy (involving DL to SPARQL
translation), their DL nature enables inconsistency identification and mapping inference through
the use of reasoning techniques.

Recent studies in the field of query rewriting [45, 46] propose the use of graph based algorithms
for achieving scalability in view-based conjunctive query answering. However, these approaches
focus on the development of algorithms for improving the rewriting performance when dealing with
thousands of views, and do not consider neither ontology mappings or a specific query language.
On the contrary, Le et al. [49] presented a native SPARQL query rewriting method for performing
view-based query answering. Apart from transferring the problem of view-based query answering
from relational databases to RDF, they do not consider certain aspects related to view definition,
maintenance and query mediation over diverse federated RDF data sources.



2.2. SPARQL Query Rewriting 8

An approach which comes closer to ours, was presented recently by Correndo et al. [19]. Cor-
rendo et al. propose a SPARQL query rewriting method for implementing data integration over
linked data using mappings between graphs. Although their method looks promising, the use of
mappings between graphs seems to restrict the supported query types especially in case of filter
expressions containing ontology terms. Furthermore, this choice results to limited mapping expres-
siveness, weak semantics and high difficulty in mapping definition. In contrast to our proposal,
mappings generated by ontology matching systems need heavy post-processing in order to be used
in query rewriting.

Lopes et al. [53] presented an approach for rewriting SPARQL queries using heterogeneous
mappings. The provided method adopts a rule-based formalism for mapping definition and deals
with structural and concept-based heterogeneities, in terms of supporting mappings between a class
and a property. However, they do not supply any information about the supported mapping types
or their level of complexity, even by comparing the mapping capabilities of their method to others.
Furthermore, apart from the fact that they do not provide any proof about the soundness and com-
pleteness of their algorithms, their technique seems to consider only data queries and not schema.
On the contrary, SPARQL–RW considers both data and schema queries, while it is proved to provide
semantics preserving queries with respect to the mapping types supported by the mapping model.

It is worth to note that both previous techniques are limited in exploiting mappings between two
ontologies and do not consider any mapping formalism for achieving data integration over multiple
data sources. Regarding query rewriting, both methods consider exclusively the case of rewriting a
SPARQL query posed over a source ontology ontology, in terms of a target ontology. As a result, in
order for these approaches to be used effectively in a data integration scenario that involves multiple
data sources, several adaptations need to be made.

Other approaches in the field of query rewriting include those presented by Fujino et al. [28]
and Zheng et al. [92]. Fujino et al. study SPARQL query rewriting using incomplete ontology
mappings between two ontologies. Nevertheless, the exploited mappings are auto-generated using
ontology matching techniques, and therefore, provide limited expressiveness. On the other hand,
Zheng et al. proposed a system performing SPARQL query mediation over RDF data sources
with disparate contexts. Their query rewriting approach is based exclusively on the exploitation
of context mappings, resolving different assumptions on property value interpretations among data
sources. To this end, they mainly exploit value transformation functions.



Chapter 3

Background

This chapter presents a brief overview of the standards and technologies used in this thesis. Sec-
tion 3.1 describes RDF, the main data model for representing information about resources in the
World Wide Web. Section 3.2 presents OWL, the standard language for defining and instantiating
Web ontologies. Finally, Section 3.3 describes SPARQL, the standard query language for RDF.

3.1 The RDF Data Model

The Resource Description Framework (RDF) [56, 13, 37] is the standard data model for represent-
ing information about resources in the World Wide Web. RDF is based on the idea of identifying
things using Web identifiers (called Internationalized Resource Identifiers, or IRIs [23]), and de-
scribing resources in terms of simple properties and property values. The atomic constructs of RDF
are statements represented as triples of the form subject-predicate-object. The subject represents
the described resource, the predicate represents a property and the object a property value.

Resources in RDF may also be anonymous and not identified by an IRI. Such resources are
called blank nodes and can be used both in the subject and object part of an RDF triple. Data values,
on the other hand, are represented by the so-called literals and can be used only as property values in
the object part. The value of every literal is generally described by a sequence of characters, while
the interpretation of such sequences is determined based on a datatype URI, usually combined with
the actual data value.

Definition 3.1 (RDF triple). Let I be the set of IRIs, L the set of RDF Literals, and B the set of
blank nodes. A triple (s, p, o) ∈ (I∪B)×I×(I∪B∪L) is called an RDF triple or RDF statement,
where s, p, and o are a subject, predicate, and object, respectively. �

Graphically, an RDF triple (s, p, o) is represented by a labeled edge s
p−→ o, while a collection

of RDF triples can be intuitively understood as a directed labeled graph, where resources are nodes
and statements are arcs connecting the nodes. A relational data model is easily mapped into this
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form, with a node corresponding to a table row or primitive value, and an arc corresponding to a
column identifier.

Definition 3.2 (RDF graph). An RDF graph or RDF dataset is a finite set of RDF triples. An RDF
graph is ground if it has no blank nodes. �

RDF provides a way to express simple statements about resources, using named properties
and values. However, RDF user communities also need the ability to define the vocabularies they
intend to use in those statements, specifically, to indicate that they are describing specific kinds (or
classes) of resources, and use specific properties in describing those resources. RDF itself provides
no means for defining such application-specific classes and properties. Instead, such classes and
properties are described as an RDF vocabulary, using extensions to RDF provided by the RDF
Schema.

RDF Schema (RDFS) [13], is an extension of RDF designed to describe resources, relationships
between them and properties (traditional attribute-value pairs). It does not provide a vocabulary of
application-specific classes, but the facilities needed to describe such classes and properties, and to
indicate how properties and classes are intended to be used together in RDF data. In other words,
RDF Schema provides a type system for RDF. The RDF Schema type system is similar in some
respects to the type systems of object-oriented programming languages.

An RDF class corresponds to the generic concept of a type and can be used to represent almost
any category of resources. The elements of a class are known as instances of that class. An
RDF property, on the other hand, can be used to characterize a class (or classes) and describe the
relation between subject resources and object resources. Information regarding how properties and
classes are intended to be used together is supplied by exploiting constructs that define the domain
and range of a property through the use of classes. Moreover, both classes and properties can be
organized in hierarchies providing a simple notion of inheritance based on set inclusion.

Finally, the RDF Schema offers a number of built-in properties which can be used to provide
documentation and general information about instances. RDF Schema facilities are themselves
provided in the form of an RDF vocabulary; that is, as a specialized set of predefined RDF resources
with their own special meanings. It is worth to note that RDF semantics is expressed through the
mechanism of inferencing; that is, the meaning of any construct in RDF is given by the inferences
that can be derived from it. For a detailed description of the RDF semantics refer to [37].

3.2 Web Ontology Language (OWL)

The Web Ontology Language (OWL) [57, 64, 63] is the standard language for defining and in-
stantiating Web ontologies. OWL is defined as a vocabulary, such as RDF and RDF Schema, but
offers stronger syntax, richer semantics and greater machine interpretability. It was based on De-
scription Logics (DLs), a family of formal knowledge representation languages with attractive and
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well-understood computational properties. The initial OWL specification defines three increasingly
expressive sublanguages (species) designed for use by specific communities of implementers and
users. Each of these languages is an extension of its simpler predecessor, both in what can be
legally expressed and in what can be validly concluded.

• OWL Lite supports those users primarily needing a classification hierarchy and simple con-
straints. It has lower formal complexity compared to OWL DL.

• OWL DL supports those users who want the maximum expressiveness while retaining com-
putational completeness (all conclusions are guaranteed to be computable) and decidability
(all computations will finish in finite time). OWL DL provides all OWL language constructs,
under certain restrictions.

• OWL Full is meant for users who want maximum expressiveness and the syntactic freedom
of RDF with no computational guarantees.

Generally, OWL provides constructs for creating classes, properties, defining instances, as
well as applying various operations on them. Minor syntactic differences and construct limitations
between the above mentioned sublanguages, are extensively discussed on [57, 38].

An OWL individual or instance is an object that corresponds to a DL individual. It may belong
to none, one or more OWL classes. OWL provides mechanisms in order to declare two individuals
to be identical or different, using certain constructors.

An OWL class represents a set of individuals that share common properties. It corresponds to
a DL concept and may contain any number of individuals, instances of the class. A class may be
defined to be subclass of another, inheriting characteristics from its parent superclass. This corre-
sponds to logical subsumption and DL concept inclusion. Similarly, two classes may be defined
to be equivalent, indicating that they describe precisely the same instances. This corresponds to
logical equivalence and DL concept equality. OWL provides additional constructors which can be
used to define complex classes, the so-called class expressions. To this end, it supports the basic set
operations, namely union, intersection and complement. Additionally, classes can be enumerated
by specifying explicitly the instance members of a class; that is, the class extension. Note that it is
possible to assert that class extensions must be disjoint.

A property is a directed binary relation that specifies class characteristics and corresponds to a
DL role. Unlike RDF Schema, OWL distinguishes the properties whose range is a set of individuals
from the properties whose range is a set of data values. Thus, OWL object properties are relations
between class instances, while OWL datatype properties are relations between class instances and
RDF literals or XML Schema datatypes. A property may be defined to be subproperty of another,
inheriting characteristics from its parent superproperty. Similarly, two properties may be defined
to be equivalent, indicating that they describe the same binary relations. Properties may possess
logical capabilities such as being transitive, symmetric, inverse and functional. Furthermore, apart
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from being able to specify the domain and range of a property, it is possible to constrain a property
range in specific contexts using either cardinality or value restrictions. For a detailed description
of the OWL semantics refer to [66].

3.2.1 The OWL 2 Standard

The OWL 2 Web Ontology Language (OWL 2) [64, 63] is an extension and revision of the initial
Web Ontology Language specification (referred to hereafter as OWL 1). OWL 2 is a W3C rec-
ommendation since October 2009. It provides a very similar overall structure with OWL 1, and is
backwards compatible with it.

OWL 2 introduces a plethora of new features, some of which are referred as syntactic sugar,
since they do not change the expressiveness or the semantics of OWL 1; they have been introduced
in order to make some common statements easier to be constructed like disjoint union of classes.
On the other hand, some other OWL 2 features offer significant expressiveness, including: keys;
property chains; richer datatypes and data ranges; qualified cardinality restrictions; asymmetric,
reflexive, and disjoint properties; and enhanced annotation capabilities.

OWL 2 defines three new profiles (commonly called fragments or sublanguages in computa-
tional logic); that is, trimmed down versions of OWL 2 trading some expressive power for the
efficiency of reasoning.

• OWL 2 EL is particularly useful in applications employing ontologies that contain very large
numbers of properties and/or classes. It allows polynomial time algorithms for all standard
inference types, such as satisfiability checking, classification, and instance checking.

• OWL 2 QL is aimed at applications that use very large volumes of instance data, and where
query answering is the most important reasoning task. It features polynomial time algorithms
for all standard inference types.

• OWL 2 RL is aimed at applications that require scalable reasoning without sacrificing too
much expressive power. The ontology consistency, class expression satisfiability and sub-
sumption, instance checking, and conjunctive query answering problems can be solved in
polynomial time with respect to the size of the ontology.

The OWL 2 profiles are defined by placing restrictions on the structure of OWL 2 ontologies
and are extensively described on [63]. Finally, it is worth to note that in the OWL 2 specification
some of the restrictions applicable to OWL DL have been relaxed; as a result, the set of RDF Graphs
that can be handled by DL reasoners is slightly larger in OWL 2.
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3.3 SPARQL Query Language

The SPARQL Query Language [73] is the standard language for querying RDF data. The main
body of the query, is a complex RDF graph pattern expression that may include RDF triples with
variables, conjunctions, disjunctions, optional parts, and constraints over the values of the variables.
The head of the query, is an expression that indicates how to construct the answer to the query. The
evaluation of a SPARQL query over an RDF dataset is based on graph pattern matching.

In what follows, we provide an overview of the core syntax (Section 3.3.1) and semantics
(Section 3.3.2) of SPARQL. Moreover, Section 3.3.3 presents the SPARQL 1.1 Standard, while
Table 3.1 summarizes the notation that we adopt, along with a brief description.

Table 3.1: The notation used in the definition of SPARQL syntax and semantics.

Notation Description

I The set of IRIs.
L The set of RDF Literals.
B The set of blank nodes.
V The set of variables.
ω A graph pattern solution (or simply solution) ω : V → (I ∪B ∪ L).
dom(ω) The domain of a graph pattern solution ω (subset of V ).
var(x) The variables occurring in a graph pattern or built-in condition x.
ω(P ) The graph obtained by replacing the variables in graph pattern P ac-

cording to a graph pattern solution ω (abusing notation).
ω |= R A graph pattern solution ω satisfies a built-in condition R.
[[·]] Evaluation function.
|><| Join operator.
d|><| Left outer join operator.
\ Difference operator.
π{... } Projection operator.
∪ Union operator.
∩ Intersection operator.
bound SPARQL unary predicate.
AND Binary operator that corresponds to the SPARQL conjunction construct.
OPT Binary operator that corresponds to the SPARQL OPTIONAL construct.
UNION Binary operator that corresponds to the SPARQL UNION construct.
FILTER Binary operator that corresponds to the SPARQL FILTER construct.
¬, ∨, ∧ Logical not, or, and.
<, ≤, ≥, >, = Inequality/equality operators.

3.3.1 Syntax of SPARQL

In this section we present an overview of the SPARQL syntax. Let V be an infinite set of variables
disjoint from the sets of IRIs (I), RDF Literals (L) and blank nodes (B). We assume that the
elements from V are prefixed by the symbol ’?’.
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Definition 3.3 (Triple pattern). A triple (s, p, o) ∈ (I ∪L∪V )× (I ∪V )× (I ∪L∪V ) is called a
triple pattern, where s, p, and o are a subject, predicate, and object, respectively. For a given triple
pattern t we use var(t) to denote the set of variables occurring in the components of t. �

Let AND, OPT, UNION and FILTER be binary operators that correspond to SPARQL conjunc-
tion, OPTIONAL, UNION, and FILTER constructs, respectively.

Definition 3.4 (Built-in condition). A SPARQL built-in condition is a boolean expression com-
posed by logical connectives (¬, ∨, ∧), inequality/equality symbols (<, ≤, ≥, >, =), and unary
predicates like bound, isBlank, and isIRI , over constants and elements of the set I ∪L∪ V . For
a given built-in condition R we use var(R) to denote the set of variables occurring in R. �

Definition 3.5 (Filter expression). The built-in condition used alongside a FILTER construct in
order to restrict the query solutions is called filter expression. �

Definition 3.6 (Graph pattern). A SPARQL graph pattern expression is defined recursively as
follows:

• A triple pattern is a graph pattern.
• If P1 and P2 are graph patterns, then the expressions P1 AND P2, P1 OPT P2, and P1 UNION

P2 are graph patterns (conjunction graph pattern, optional graph pattern, and union graph
pattern, respectively).

• If P is a graph pattern and R is a built-in condition, then the expression P FILTERR is a
graph pattern (a filter graph pattern).

For a given graph pattern P , var(P ) denotes the set of variables occurring in P . �

Definition 3.7 (Basic graph pattern). A finite sequence of conjunctive triple patterns and possible
filters is called basic graph pattern. �

SPARQL allows four query types: SELECT, ASK, CONSTRUCT and DESCRIBE. These query types
use the solutions provided from pattern matching to form result sets or RDF graphs.

Definition 3.8 (Basic SELECT query form). Let P be a graph pattern and (v1, . . . , vn) ⊆ var(P )

an ordered list of variables. The basic syntax of a SPARQL SELECT query is defined as follows:
SELECT (v1, . . . , vn) WHERE (P ). �

The SELECT query form returns a solution sequence; that is, a sequence of variables along with
their bindings. The ASK query form returns no information about the possible query solutions, just
whether or not a solution exists. The CONSTRUCT query form returns an RDF graph structured
according to a provided graph pattern template, while the DESCRIBE query form returns an RDF
graph providing a “description” of the matching resources.
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Example 3.1 (Select Query, Conjunct./Optional Graph Pattern, Filter). Assume the following
RDF dataset providing information about books, authors and publishers.

@prefix ns: <http://example.org/books#> .

_:a ns:title "Database Systems" .

_:a ns:author _:e .

_:a ns:publisher "Prentice Hall".

_:b ns:title "CS Foundations" .

_:b ns:author _:e .

_:c ns:title "Compilers: Principles and Techniques" .

_:d ns:title "Introduction to Algorithms" .

_:d ns:author _:f .

_:e ns:name "Jeffrey D. Ullman" .

_:f ns:name "Thomas H. Cormen" .

Moreover, consider the following query: “Return book titles written by Jeffrey D. Ullman and
optionally their publisher.”. The SPARQL syntax of this query is depicted below.

@PREFIX ns: <http://example.org/books#>

SELECT ?title ?publisher

WHERE {

?book ns:title ?title .

?book ns:author ?author .

?author ns:name ?name .

OPTIONAL {?book ns:publisher ?publisher}

FILTER (?name = "Jeffrey D. Ullman")

}

The query combines a sequence of conjunctive triple patterns followed by an optional graph pattern
and a filter restriction on author names. After evaluating the query over the aforementioned RDF
dataset, we retrieve the results presented in the following table.

?title ?publisher

"Database Systems" "Prentice Hall"

"CS Foundations"

Consider that in an optional match, either the optional graph pattern matches a graph, thereby
defining and adding bindings to one or more solutions (this is the case of the first query solu-
tion), or it leaves a solution unchanged without adding any additional bindings (this is the case of
the second query solution). The book "Compilers: Principles and Techniques" has been
discarded from the results since there is no information regarding its author, and thus no match
for the second triple pattern of the query. On the other hand, although the book "Introduction
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to Algorithms" provides information about its author, thus matching the three conjunctive triple
patterns, it has been discarded since its author’s name value fails to satisfy the filter restriction. �

SPARQL provides various solution sequence modifiers which can be applied on the initial so-
lution sequence. The supported solution sequence modifiers are: DISTINCT, REDUCED, LIMIT,
OFFSET, and ORDER BY. The DISTINCT modifier ensures that duplicate solutions are eliminated
from the solution set. On the other hand, REDUCED simply allows duplicate solutions to be reduced.
The LIMIT modifier is used to put an upper bound on the number of solutions returned, while
OFFSET causes the generated solutions to start after a specified number of solutions. Finally, ORDER
BY is used to establish the order of a solution sequence.

Example 3.2 (Select Query, Union Graph Pattern, Sequence Modifiers). Assume the following
RDF dataset that provides information about books, categories and citations.

@prefix ns: <http://example.org/books#> .

_:a ns:title "Database Systems" .

_:a ns:category ns:DM .

_:a ns:citations 1257 .

_:b ns:title "Introduction to IR" .

_:b ns:category ns:DM .

_:b ns:citations 1175 .

_:c ns:title "AI: A Modern Approach" .

_:c ns:category ns:AI .

_:c ns:citations 950 .

_:d ns:title "The Description Logic Handbook" .

_:d ns:category ns:AI .

_:d ns:citations 1342 .

_:e ns:title "Modern Operating Systems" .

_:e ns:category ns:OS .

_:e ns:citations 3195 .

Moreover, consider the following query: “Return the 3 most cited books in Data Management (DM)
and Artificial Intelligence (AI) along with the number of their bibliographic citations. The results
should be distinct and formed in descending order based on citation values.”. The SPARQL syntax
of this query is depicted below.

@PREFIX ns: <http://example.org/books#>

SELECT DISTINCT ?title ?citations

WHERE {

?book ns:title ?title .

?book ns:citations ?citations .

{?book ns:category ns:DM}
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UNION

{?book ns:category ns:AI}

} ORDER BY DESC (?citations) LIMIT 3

The query combines a sequence of conjunctive triple patterns followed by a union graph pattern
that matches book instances in the Data Management and Artificial Intelligence categories. It also
contains several solution sequence modifiers including DISTINCT, ORDER BY and LIMIT. After
evaluating the query over the aforementioned RDF dataset, we retrieve the results presented in the
following table.

?title ?citations

"Database Systems" 1342

"The Description Logic Handbook" 1257

"Introduction to IR" 1175

Consider that solution sequence modifiers are applied after the evaluation of the query’s graph
pattern over the RDF dataset. As a result, although the RDF graph of book "AI: A Modern

Approach" matches the query graph pattern and qualifies to the initial solution sequence, it is
discarded after sorting the solutions and restricting their number to 3. On the other hand, the RDF
graph of book "Modern Operating Systems" failed to match the query graph pattern, and thus
qualify to the initial solution sequence, since it does not contain any property ns:category with
values ns:DM or ns:AI. Finally, note that the DISTINCT modifier ensures that solutions in the se-
quence are unique. �

For a detailed description of the SPARQL syntax, as well as a complete set of illustrative ex-
amples, refer to [73].

3.3.2 Semantics of SPARQL

In this section we provide an overview of the semantics of SPARQL based on [67], considering a
function-based representation of a SPARQL graph pattern solution.

Definition 3.9 (Graph pattern solution). A graph pattern solution ω : V → (I ∪ B ∪ L) is a
partial function that assigns RDF terms of an RDF dataset to variables of a SPARQL graph pattern.
The domain of ω, dom(ω), is the subset of V where ω is defined. The empty graph pattern solution
ω∅ is the graph pattern solution with empty domain. The result of the evaluation of a SPARQL
graph pattern over an RDF dataset is a set Ω of graph pattern solutions ω. �

Two graph pattern solutions ω1 and ω2 are compatible when for all x ∈ dom(ω1) ∩ dom(ω2),
it is the case that ω1(x) = ω2(x). Furthermore, two graph pattern solutions with disjoint domains
are always compatible, and the empty graph pattern solution ω∅ is compatible with any other graph
pattern solution.
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Let Ω1 and Ω2 be sets of graph pattern solutions and J be a set of variables. The join, union,
difference, projection and left outer join operations between Ω1 and Ω2 are defined as follows:

Ω1 |><| Ω2 = {ω1 ∪ ω2 | ω1 ∈ Ω1, ω2 ∈ Ω2 are compatible graph pattern solutions}
Ω1 ∪ Ω2 = {ω | ω ∈ Ω1 or ω ∈ Ω2}
Ω1 \ Ω2 = {ω ∈ Ω1 | for all ω′ ∈ Ω2, ω and ω′ are not compatible}
πJ (Ω1) = {ω | ω′ ∈ Ω1, dom(ω) = dom(ω′) ∩ J , ∀x ∈ dom(ω) : ω(x) = ω′(x)}
Ω1 d|><| Ω2 = (Ω1 |><| Ω2) ∪ (Ω1 \ Ω2)

The semantics of SPARQL is defined as a function [[·]]D which takes a graph pattern expression
or a SPARQL query and an RDF dataset D and returns a set of graph pattern solutions. Defini-
tion 3.10 specifies the satisfiability of a filter expression, while Definitions 3.11 and 3.12 specify
the evaluation of a graph pattern expression and a basic SELECT SPARQL query, respectively, over
an RDF dataset.

Definition 3.10 (Filter expression satisfiability). Let v1, v2 be variables, c a constant or an element
of the set I ∪ L ∪ V , and � a symbol of the set {<,≤,≥, >,=}. Given a graph pattern solution ω
and a built-in condition R, we say that ω satisfies R, denoted by ω |= R, if:

1. R is of type bound(v1) and v1 ∈ dom(ω);

2. R is of type (v1 � c), v1 ∈ dom(ω) and ω(v1) � c;
3. R is of type (v1 � v2), v1 ∈ dom(ω), v2 ∈ dom(ω) and ω(v1) � ω(v2);

4. R is of type (¬R1), R1 is a built-in condition, and it is not the case that ω |= R1;

5. R is of type (R1 ∨R2), R1, R2 are built-in conditions, and ω |= R1 or ω |= R2;

6. R is of type (R1 ∧R2), R1, R2 are built-in conditions, ω |= R1 and ω |= R2. �

Definition 3.11 (Graph pattern evaluation). Let D be an RDF dataset over I ∪ B ∪ L, t a triple
pattern, P , P1, P2 graph patterns and R a filter expression. The evaluation of a graph pattern over
D, denoted by [[·]]D, is defined recursively as follows:

1. [[t]]D = {ω | dom(ω) = var(t) and ω(t) ∈ D}
2. [[(P1 AND P2)]]D = [[P1]]D |><| [[P2]]D

3. [[(P1 OPT P2)]]D = [[P1]]D d|><| [[P2]]D

4. [[(P1 UNION P2)]]D = [[P1]]D ∪ [[P2]]D

5. [[(P FILTER R)]]D = {ω ∈ [[P ]]D | ω |= R} �

Definition 3.12 (Basic SELECT query evaluation). Let P be a SPARQL graph pattern and let
(v1, . . . , vn) ⊆ var(P ) be an ordered list of variables. The evaluation of a basic SPARQL SELECT

query Q over D, denoted by [[·]]D, is defined as follows:

6. [[Q]]D = [[SELECT (v1, . . . , vn) WHERE (P )]]D = πv1,...,vn([[P ]]D) �
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For a detailed description of SPARQL semantics and for a complete set of illustrative examples
related to the evaluation of a graph pattern, refer to [67, 68].

3.3.3 The SPARQL 1.1 Standard

The SPARQL 1.1 Standard is the result of the W3C SPARQL Working Group on the extension of the
SPARQL Query Language in several aspects. To this end, SPARQL 1.1 can be considered as a set
of specifications that provide languages and protocols to query and manipulate RDF graph content
on the Web or in an RDF store. The standard comprises, among others, the Query Language, the
Federated Query, and the Update Language specifications which are briefly described below.

The SPARQL 1.1 Query Language [34, 4] adds a number of new features to the previous
SPARQL specification (referred to hereafter as SPARQL 1.0) including path expressions, aggregate
functions, value assignment and nested queries.

Path expressions or property paths are possible routes through a graph between two graph
nodes. They allow for more concise expressions for some SPARQL basic graph patterns and they
also add the ability to match connectivity of two resources by an arbitrary length path. Property
paths are formed using IRIs or prefixed names along with binary operators (/, |), unary operators
(�, *, +, ?, !) and brackets for specifying complex group paths. Table 3.2 presents the semantics of
the aforementioned operators and the supported property path syntax forms.

Table 3.2: SPARQL 1.1 property path syntax. Consider elt as a path element, which may itself be composed
of path constructs.

Syntax Form Matches

iri An IRI. A path of length one.
�elt Inverse path (object to subject).
elt1/elt2 A sequence path of elt1 followed by elt2.
elt1|elt2 A alternative path of elt1 or elt2 (all possibilities are tried).
elt* A path that connects the subject and object of the path by zero

or more matches of elt.
elt+ A path that connects the subject and object of the path by one or

more matches of elt.
elt? A path that connects the subject and object of the path by zero

or one matches of elt.
!iri or Negated property or negated property set. An IRI

which is not one of irii. !iri is short for !(iri).
Negated properties where the excluded matches are
based on reversed paths may also appear (!�iri).

!(iri1|...|irin)

(elt) A group path elt, brackets control precedence.

Aggregates apply expressions over groups of solutions. By default a solution set consists of
a single group, containing all solutions. Groupings may be specified using the GROUP BY syntax,
while the supported aggregates include: COUNT, SUM, MIN, MAX, AVG, GROUP_CONCAT, and SAMPLE.
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Value assignment allows the value of an expression to be added to a solution mapping by bind-
ing a new variable to the value of the expression. The variable can then be used in the query and
also can be returned in results. Value assignment has the form (expression AS ?var) and can be
applied in the SELECT clause, in the GROUP BY clause, or in the query graph pattern using the BIND
keyword. If the evaluation of the expression produces an error, the variable remains unbound for
that solution but the query evaluation continues. Data can also be directly included in a query using
VALUES for inline data.

Example 3.3 (Select Query, Property Paths, Value Assignment). Consider the following query:
“Return book titles written by Franz Baader along with their prices after taking into account the
discount.”. The SPARQL syntax of this query is depicted below.

@PREFIX ns: <http://example.org/books#>

SELECT ?title (?p*(1-?discount) AS ?price)

WHERE {

?book ns:title ?title .

?book ns:price ?p .

?book ns:discount ?discount .

?book ns:author/ns:name ?name .

FILTER (?name = "Franz Baader")

}

This example demonstrates both the use of property paths and value assignment. A property path
expression is used to connect directly book instances and author names in order for the later to
be restricted to "Franz Baader" values. This could have been expressed using a conjunction of
two triple patterns, connecting books with authors and then authors with names, as shown in the
Example 3.1. Finally, value assignment is used in the SELECT clause, where final book prices are
calculated, and subsequently binded to a new variable. �

Nested queries or sub-queries can be considered as a way to embed queries within other queries
in order to tackle certain cases, such as limiting the number of results from some sub-expression
within the query. Due to the bottom-up nature of SPARQL query evaluation, sub-queries are eval-
uated logically first, and the results are projected up to the outer query.

Moreover, it is worth to note that SPARQL 1.1 incorporates two styles of negation by introduc-
ing the NOT EXISTS and MINUS operators. NOT EXISTS is based on the idea of testing whether a
pattern exists in the data, given the bindings already determined by the query pattern. On the other
hand, MINUS relies on removing matches based on the evaluation of two patterns.

Example 3.4 (Select Query, Nested Queries, Aggregates, Value Assignment, Sequence Modi-
fiers). Consider the following query: “Return the 10 most cited authors along with their number of
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bibliographic citations. The results should be formed in descending order based on total citation
values.”. The SPARQL syntax of this query is depicted below.

@PREFIX ns: <http://example.org/books#>

SELECT ?name ?total

WHERE {

?author ns:name ?name .

{

SELECT ?author (SUM(?citations) AS ?total)

WHERE {

?book ns:author ?author .

?book ns:citations ?citations .

} GROUP BY ?author

}

} ORDER BY DESC (?total) LIMIT 10

The inner query calculates total citations per author, after taking into consideration authors’ indi-
vidual book citations. Subsequently, the outer query enriches the retrieved solution sequence with
author names and sorts the solutions in descending order based on the total citation value. The
number of solutions in the final solution sequence is restricted to 10. In aggregate queries and sub-
queries, variables that appear in the query pattern, but are not in the GROUP BY clause, can only be
projected or used in select expressions if they are aggregated. That is, any variables that are not
aggregated must appear inside a GROUP BY clause. Finally, note that only variables projected out
of the sub-query are visible, or in scope, to the outer query. �

The SPARQL 1.1 Federated Query [72, 14] is an extension of the SPARQL 1.1 Query Lan-
guage for executing queries distributed over different SPARQL endpoints. The growing number of
SPARQL query services offer data consumers an opportunity to merge data distributed across the
Web. Using the SERVICE keyword extension, a user or an application may instruct the federated
query processor to invoke a portion of a SPARQL query against a remote SPARQL endpoint. Re-
sults are returned to the federated query processor and are combined with results from the rest of
the query.

Finally, the SPARQL 1.1 Update [30] is a companion language and envisaged to be used in
conjunction with the SPARQL 1.1 Query Language. It provides several facilities for specifying and
executing updates to RDF graphs in a graph store, including operators to: (a) insert new triples into
an RDF graph, (b) delete triples from an RDF graph, (c) load an RDF graph into the graph store,
(d) clear an RDF graph in the graph store, (e) create a new RDF graph, (f ) drop an RDF graph,
(g) copy, move, or add the content of one RDF graph to another, and (h) perform a group of update
operations as a single action.

Example 3.5 (Select Query, Federated Query). Consider the following query: “Return the authors
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of the book Database Systems, as well as information about their nationality and optionally their
institution.”. The SPARQL syntax of this query is depicted below.

@PREFIX ns: <http://example.org/books#>

@PREFIX dbpedia: <http://dbpedia.org/ontology/>

SELECT ?name ?nationality ?institution

FROM <http://example.org/books.rdf>

WHERE {

?book ns:title ?title .

?book ns:author ?author .

?author ns:name ?name .

FILTER (?title = "Database Systems")

SERVICE <http://dbpedia.org/sparql> {

?author dbpedia:nationality ?nationality .

OPTIONAL {?author dbpedia:institution ?institution}

}

}

Note that the query accesses a remote SPARQL endpoint, using the SERVICE keyword, in order to
obtain information about author’s nationality and institution, since this kind of data are not available
in the local RDF dataset. The results returned from the remote SPARQL endpoint are joined with
the data from the local RDF dataset in order to form the final query answer. �



Chapter 4

Mapping Model

In data integration systems, schema mappings are extensively used for performing various tasks
under different contexts. In mediator based architectures, for example, schema mappings describe
the relationship between the mediated schema and the schemas of the integrated sources. When a
query is formulated in terms of the mediated schema, the mediator uses the mappings to reformulate
the query into appropriate queries on the sources. Similarly, in data exchange and data warehousing,
schema mappings express the relationship between the source and the target database or warehouse.
In this context, schema mappings are used to interpret the transmitted data, and in some cases to
transform them in order to conform to a single schema; that is, the warehouse schema.

In this chapter, we present the model adopted by the SPARQL–RW Framework for the expression
of mappings between ontology schemas in the field of ontology based mediator architectures. In
this context, any mapping model, apart from supporting the mapping definition and query rewriting
processes, needs to satisfy a number of strong requirements including mapping expressiveness,
mapping maintenance, query rewriting efficiency, and extensibility to new sources.

Mapping requirements vary from one data integration system to another. Systems integrating
highly overlapping sources, in terms of their schema and their underlying data, generally require
greater mapping expressiveness compared to systems with minor overlap. Similarly, systems fo-
cusing in providing exact and complete answers in client queries, need higher mapping flexibility
compared to systems focusing in complete results or approximations.

On the other hand, mapping maintenance is an extremely painful process, especially for systems
integrating volatile sources in terms of their schema. To this end, several approaches have been
proposed, including automatic identification of mapping inconsistencies and mapping inference
through reasoning techniques. The trade-off in using them is that highly expressive mappings
cannot be supported, since they may lead to undecidability (computations are not guaranteed to
finish in finite time).

Regarding the query rewriting efficiency, it is directly dependent on the soundness and com-
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pleteness of the provided algorithms. Since query rewriting in data integration systems is performed
through mapping exploitation, the properties characterizing a rewriting algorithm are based on the
adopted mapping formalisms and the supported mapping relationships (equivalence/subsumption).
Moreover, this requirement is often at odds with that of expressiveness, because more expressive
mappings are typically harder to reason about.

Additionally to the aforementioned issues, extensibility to new sources is a basic requirement
for data integration systems that are not always based on a stable set of sources. Therefore, support-
ing mapping formalisms that make the addition/removal of a data source easy, without requiring
the inspection of all the other sources, is fundamental for certain cases.

The SPARQL–RW mapping model addresses the above requirements by supporting a set of
rich and flexible mapping types between OWL ontologies, as well as notable mapping formalisms,
including Global-As-View (GAV), Local-As-View (LAV), and Global-and-Local-As-View (GLAV).
Furthermore, it defines a mapping language capable of representing all the specified types of inter-
schema correspondences. The model is based on Description Logic semantics, enabling mapping
inference and inconsistency identification in a given set of mappings and ontology schemas.

Description Logics (DL) [5] is a well-known family of knowledge representation languages
that can be used to represent the knowledge of an application domain in a structured and formally
well-understood way. It has been selected as the basis of the SPARQL–RW mapping model since
it provides high expressiveness, well-defined semantics, and inference capabilities. These features
are highly important for any mapping model aiming to support an ontology based mediator system,
in terms of mapping definition, mapping maintenance, and query rewriting.

Mapping definition is supported by the fact that OWL ontology languages build upon the basic
elements, constructs and axioms of DL. To this end, serving as the basis of highly expressive lan-
guages like OWL 2, DL is capable of describing any relation between complex ontology constructs.
Moreover, it provides the means for performing mapping inference and automatic identification of
mapping inconsistencies, through the application of reasoning techniques. Both these features are
considered invaluable for supporting mapping maintenance and providing assistance in mapping
definition. Regarding query rewriting, DL expressions can be directly transformed to SPARQL
graph patterns. Therefore, ontology mappings based on DL constructs can be easily exploited by
any SPARQL query rewriting algorithm.

Section 4.1 provides the abstract syntax and semantics of the mapping types supported by the
SPARQL–RW mapping model. Similarly, Section 4.2 presents the supported mapping formalisms.
Section 4.3 demonstrates the expressiveness of SPARQL–RW mapping model by providing a feature
comparison with common knowledge representation languages. Sections 4.4 and 4.5 propose meth-
ods for performing mapping inference and inconsistency identification in the context of SPARQL–

RW mapping model. Finally, Section 4.6 defines the language used for mapping specification and
provides several mapping representation examples.
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4.1 Abstract Syntax and Semantics

In this section, we present the abstract syntax and semantics of the mapping types supported by the
SPARQL–RW mapping model. To this end, we use well-known Description Logic constructors and
axioms that deal with concepts, roles and individuals.

The mapping types supported by the SPARQL–RW mapping model build upon elements of
four basic types extensively used in ontology schema definition: (a) classes, (b) object properties,
(c) datatype properties, and (d) individuals. These element types comprise the basic notions of
OWL, the standard language for defining and instantiating Web ontologies. We treat ontology
classes as DL concepts, ontology properties as DL roles and class instances as DL individuals.

Moreover, we utilize concrete domains for illustrating mappings that involve restrictions on
property values. In Description Logics, concrete domains are used for defining value domains and
functions operating upon them. A concrete domain D consists of a set of values ∆D, the domain of
D, and a set pred(D), the predicate names of D. Each predicate name P ∈ pred(D) is associated
with an arity n, and an n-ary predicate PD ⊆ (∆D)n.

In order to assign meaning and define the semantics of symbols used in the context of the
SPARQL–RW mapping model, we assume an interpretation I consisting of two non-empty sets:
(a) ∆I , the domain of individuals, and (b) ∆ID, the domain of data values. Moreover, we consider
an interpretation function which assigns: (a) to every class C a set CI ⊆ ∆I , (b) to every data
range D a set DD ⊆ ∆ID, (c) to every object property R a binary relation RI ⊆ ∆I ×∆I , (d) to
every datatype property U a binary relation UI ⊆ ∆I ×∆ID, (e) to every individual o an element
oI ∈ ∆I , and (f ) to every data value v an element vI = vD.

Tables 4.1, 4.2 and 4.3 provide the syntax and semantics of class and property constructors
used in mapping type definition. Similarly, Table 4.4 presents the supported concrete domains and
built-in data ranges, along with the binary and unary predicates operating on their values. Apart
from built-in data ranges, the SPARQL–RW mapping model allows the specification of custom data
ranges and the use of value transformations in mapping definition. Table 4.5 provides an overview
of the supported value transformations.

Definition 4.1 (Data Range). A data rangeD is a set of data values. In the context of the SPARQL–

RW mapping model it is defined by specifying either a built-in data range along with an optional
complex value condition cond (using and -∧, or -∨, not - ! operators), or a complex value condition
alone. The built-in data ranges supported by the model are presented in Table 4.4. Let dr be a built-
in data range and P a unary predicate. A custom data range is recursively defined as follows:

D → dr | dr(cond) | (cond) (4.1)

cond→ P | cond ∧ cond | cond ∨ cond | ! cond (4.2)
�
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Table 4.1: Class constructors used in mapping definition.

Name Syntax Semantics

Atomic C CI ⊆ ∆I

Intersection C1 u C2 CI1 ∩ CI2
Union C1 t C2 CI1 ∪ CI2
Difference C1 − C2 CI1 \ CI2
Existential ∃R.C {α ∈ ∆I | ∃b. (α, b) ∈ RI ∧ b ∈ CI}

quantific. ∃U.D {α ∈ ∆I | ∃b. (α, b) ∈ UI ∧ b ∈ DD}
Existential ∃(R1, R2).P {α ∈ ∆I | ∃b1, b2. (α, b1) ∈ RI1 ∧ (α, b2) ∈ RI2∧

predicate ∧(b1, b2) ∈ PD}
restriction ∃(U1, U2).P {α ∈ ∆I | ∃b1, b2. (α, b1) ∈ UI1 ∧ (α, b2) ∈ UI2 ∧

∧(b1, b2) ∈ PD}
Unqualified ≥ n R {α ∈ ∆I | |{b ∈ ∆I | (α, b) ∈ RI}| ≥ n}

number ≤ n R {α ∈ ∆I | |{b ∈ ∆I | (α, b) ∈ RI}| ≤ n}
restriction = n R {α ∈ ∆I | |{b ∈ ∆I | (α, b) ∈ RI}| = n}

≥ n U {α ∈ ∆I | |{b ∈ ∆D | (α, b) ∈ UI}| ≥ n}
≤ n U {α ∈ ∆I | |{b ∈ ∆D | (α, b) ∈ UI}| ≤ n}
= n U {α ∈ ∆I | |{b ∈ ∆D | (α, b) ∈ UI}| = n}

Qualified ≥ n R.C {α ∈ ∆I | |{b ∈ ∆I | (α, b) ∈ RI ∧ b ∈ CI}| ≥ n}
number ≤ n R.C {α ∈ ∆I | |{b ∈ ∆I | (α, b) ∈ RI ∧ b ∈ CI}| ≤ n}
restriction = n R.C {α ∈ ∆I | |{b ∈ ∆I | (α, b) ∈ RI ∧ b ∈ CI}| = n}

≥ n U.D {α ∈ ∆I | |{b ∈ ∆D | (α, b) ∈ UI ∧ b ∈ DD}| ≥ n}
≤ n U.D {α ∈ ∆I | |{b ∈ ∆D | (α, b) ∈ UI ∧ b ∈ DD}| ≤ n}
= n U.D {α ∈ ∆I | |{b ∈ ∆D | (α, b) ∈ UI ∧ b ∈ DD}| = n}

Nominal o oI ⊆ ∆I with | oI |= 1

Table 4.2: Object property constructors used in mapping definition.

Name Syntax Semantics

Atomic R RI ⊆ ∆I ×∆I

Intersection R1 uR2 RI1 ∩RI2
Union R1 tR2 RI1 ∪RI2
Difference R1 −R2 RI1 \ RI2
Composition R1 ◦R2 {(α, c) ∈ ∆I ×∆I | ∃b. (α, b) ∈ RI1 ∧ (b, c) ∈ RI2 }
Inversion R− {(b, α) ∈ ∆I ×∆I | (α, b) ∈ RI}
Transitive R+

⋃
n≥1(RI)n

closure R∗
⋃

n≥0(RI)n

Existential ∃(R1)(R2).P {(α, b) ∈ ∆I ×∆I | ∃c1, c2. (α, c1) ∈ RI1∧
predicate ∧(b, c2) ∈ RI2 ∧ (c1, c2) ∈ PD}
restriction ∃(U1)(U2).P {(α, b) ∈ ∆I ×∆I | ∃c1, c2. (α, c1) ∈ UI1 ∧

∧(b, c2) ∈ UI2 ∧ (c1, c2) ∈ PD}
Domain restr. R � C {(α, b) ∈ ∆I ×∆I | (α, b) ∈ RI ∧ α ∈ CI}
Range restr. R � C {(α, b) ∈ ∆I ×∆I | (α, b) ∈ RI ∧ b ∈ CI}



4.1. Abstract Syntax and Semantics 27

Table 4.3: Datatype property constructors used in mapping definition.

Name Syntax Semantics

Atomic U UI ⊆ ∆I ×∆ID
Intersection U1 u U2 UI1 ∩ UI2
Union U1 t U2 UI1 ∪ UI2
Difference U1 − U2 UI1 \ UI2
Composition R ◦ U {(α, c) ∈ ∆I ×∆ID | ∃b. (α, b) ∈ RI ∧ (b, c) ∈ UI}
Domain restriction U � C {(α, b) ∈ ∆I ×∆ID | (α, b) ∈ UI ∧ α ∈ CI}
Range restriction U � D {(α, b) ∈ ∆I ×∆ID | (α, b) ∈ UI ∧ b ∈ DD}
Transformation trans(U) {(α, c) ∈ ∆I ×∆ID | ∃b. (α, b) ∈ UI ∧ c = trans(b)}

Table 4.4: The supported concrete domains (D) and built-in data ranges (∆D), along with the binary and
unary predicates operating on their values. Consider a value n ∈ ∆D.

Concrete Domain Data Range Binary Predicates Unary Predicates

Numeric values: integer, decimal,
float, double.

=, 6=, ≤, ≥, <, > =n, 6=n, ≤n, ≥n, <n, >n

String values: string =, 6= =n, 6=n

Boolean values: boolean =, 6= =n, 6=n

Datetime values: dateTime =, 6=, ≤, ≥, <, > =n, 6=n, ≤n, ≥n, <n, >n

IRI values: IRIs =, 6= =n, 6=n

Table 4.5: The supported value transformations.

From/To String Float Double Decimal Integer Datetime Boolean

String X ◦ ◦ ◦ ◦ ◦ ◦
Float X X X ◦ ◦ × X

Double X X X ◦ ◦ × X

Decimal X X X X X × X

Integer X X X X X × X

Datetime X × × × × X ×
Boolean X X X X X × X

X Fully supported. ◦ Supported, transformation depends on the lexical value. × Not supported.
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Definition 4.2 (Class Expression). Let c be a class (URI reference), R an object property ex-
pression (Definition 4.3), U a datatype property expression (Definition 4.4), D a data range, P
a binary or unary predicate, and o1, . . . , on individuals. A class expression C is a class or any
complex expression between classes, properties, individuals, and data ranges that describes a set of
class instances. Such an expression may involve set operations, value restrictions and cardinality
constraints, and it is recursively defined as follows:

C → c | C u C | C t C | C − C | ∃R.C | ∃U.D | ∃R.P | ∃U.P | ∃(R,R).P

| ∃(U,U).P | T n R | T n U | T n R.C | T n U.D | {o1, . . . , on}
(4.3)
�

Definition 4.3 (Object Property Expression). Let r be an object property (URI reference), C
a class expression (Definition 4.2), U a datatype property expression (Definition 4.4), and P a
binary predicate. An object property expression R is an object property or any complex expression
between properties and classes that describes a set of binary relations between class instances.
Such an expression may involve set operations and value restrictions, and it is recursively defined
as follows:

R→ r | R uR | R tR | R−R | R ◦R | R− | R+

| ∃(R)(R).P | ∃(U)(U).P | R � C | R � C
(4.4)
�

Definition 4.4 (Datatype Property Expression). Let u be an datatype property (URI reference),R
an object property expression (Definition 4.3),C a class expression (Definition 4.2),D a data range,
and tranf a value transformation function based on Table 4.5. A datatype property expression U
is a datatype property or any complex expression between properties, classes, and data ranges that
describes a set of binary relations between class instances and data values. Such an expression may
involve set operations and value restrictions, and it is recursively defined as follows:

U → u | U u U | U t U | U − U | R ◦ U | U � C | U � D | trans(U) (4.5)
�

Table 4.6: Terminological axioms used in mapping definition.

Name Syntax Semantics

Class inclusion C1 v C2 CI1 ⊆ CI2
Object property inclusion R1 v R2 RI1 ⊆ RI2
Datatype property inclusion U1 v U2 UI1 ⊆ UI2
Class equality C1 ≡ C2 CI1 = CI2
Object property equality R1 ≡ R2 RI1 = RI2
Datatype property equality U1 ≡ U2 UI1 = UI2
Individual equality o1 ≡ o2 oI1 = oI2
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Below we present the mapping types supported by the SPARQL–RW mapping model and deal
with class expressions, property expressions and individuals. To this end, Table 4.6 presents the
terminological axioms adopted for the formal expression of mapping relationships.

Class Mapping. A class expression C1 can be mapped to a class expression C2 using an equiv-
alence or subsumption relationship.

C1 ≡ C2, C1 v C2, C1 w C2 (4.6)

Object Property Mapping. An object property expression R1 can be mapped to an object
property expression R2 using an equivalence or subsumption relationship.

R1 ≡ R2, R1 v R2, R1 w R2 (4.7)

Datatype Property Mapping. A datatype property expression U1 can be mapped to a datatype
property expression U2 using an equivalence or subsumption relationship.

U1 ≡ U2, U1 v U2, U1 w U2 (4.8)

Individual Mapping. An individual o1 can mapped to an individual o2 using an equivalence
relationship.

o1 ≡ o2 (4.9)

Remark 4.1. Mappings involving subsumption relationships (v, w) make the open-world as-
sumption. That is, the expression on the left/right part of the mapping describes/computes in-
stances or binary relations that are assumed to be incomplete compared to the instances or binary
relations described/computed by the expression on the right/left part.

Remark 4.2. Mappings involving equivalence relationships (≡) make the closed-world assump-
tion. That is, the expression on the left/right part of the mapping describes/computes instances
or binary relations are assumed to be complete compared to the instances or binary relations
described/computed by the expression on the right/left part.

Remark 4.3. Equivalence or subsumption relationship between property expressions, implies
equivalence or subsumption between the domains and ranges of the property expressions re-
spectively.

4.2 Supported Mapping Formalisms

As previously mentioned, in the context of data integration, a mapping model need to have the
ability to support systems with different requirements in terms of mapping expressiveness, map-
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ping maintenance, query rewriting efficiency, and extensibility to new sources. To this end, various
mapping formalisms have been proposed, mainly focusing in supporting data integration over rela-
tional data sources. The predominant schema mapping classes in this field are the Global-As-View,
Local-As-View, and Global-and-Local-As-View.

The SPARQL–RW mapping model, aiming to assist ontology based mediators employing differ-
ent system requirements, supports all three aforementioned formalisms. Due to the fact that these
schema mapping classes have been introduced in the context of integrating relational data sources
and not RDF, several adaptations have been performed. The following sections explain the Global-
As-View, Local-As-View, and Global-and-Local-As-View approaches, considering RDF as the main
data model and SPARQL as the main query language.

4.2.1 Global-As-View (GAV)

The Global-As-View (GAV) [50, 29, 51, 21] approach is based on the idea that each element of the
mediator ontology schema should be characterized in terms of a view (complex element expression)
over the integrated data source ontologies. The mediator ontology schema is often referred to as
the global schema, hence the name of the formalism.

Mapping definition in GAV requires high familiarity with all the integrated data sources, as well
as deep knowledge of their schemas. However, the main advantage of this approach is its conceptual
simplicity. In order to reformulate a query posed over the global ontology schema, the mediator
needs to unfold the query using the views specified in the mappings. In some sense, the mapping
explicitly instructs the system how to retrieve the data when evaluating the various elements of the
mediator ontology schema. Generally, quality depends on how well the designer has compiled the
sources into the global schema through the mapping.

Definition 4.5 (GAV Ontology Mapping). Let G be a mediator ontology schema, and let S̄ =

{S1, . . . , Sn} be n data source ontology schemas. A Global-As-View ontology mapping M̄ is a set
of expressions of the form Gi(X̄) w Q(S̄) or Gi(X̄) ≡ Q(S̄), where:

• Gi is an ontology term (i.e., class, property, individual) in G, and appears in at most one
expression in M̄ , and
• Q(S̄) is a view (complex element expression) over the ontology terms in S̄. �

Definition 4.6 (GAV Semantics). Let M̄ = M1, . . . ,Ml be a GAV ontology mapping between
G and S̄ = {S1, . . . , Sn}, where Mi is of the form Gi(X̄) w Q(S̄) or Gi(X̄) ≡ Q(S̄). Let g
be an instance of the mediated ontology schema G and gi be the set of tuples for the ontology
term Gi in g. Let s̄ = s1, . . . , sn be instances of S1, . . . , Sn, respectively. The tuple of instances
(g, s1, . . . , sn) is in MR if for every 1 6 i 6 l, the following hold:

• If Mi is a ≡ expression, then gi is equal to the result of evaluating Qi on s̄.
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• If Mi is a w expression, then gi subsumes the result of evaluating Qi on s̄. �

The following example illustrates various GAV-type mappings in a data integration scenario.
It specifies mappings, involving classes and properties, between the mediator ontology and the
ontologies of the integrated data sources in a hypothetical data integration system. The mappings
presented in this example serve also as an indicator for the expressiveness of the SPARQL–RW

mapping model.

Example 4.1. Suppose the data integration scenario illustrated in Figure 4.1. The mediator on-
tology G describes the schema of a mediator that integrates two data sources storing information
about different types of product items including books, films, and music. More specifically, the
first data source preserves information about book volumes, while the other preserves information
about movies and textbooks. The schemas of the integrated data sources are provided by the source
ontologies S1, S2 respectively.

Figure 4.1: An example data integration scenario based on GAV approach.

In this kind of setting several GAV-type mappings involving classes, properties and individuals can
be identified. For instance, the class Science of the mediator ontology can be mapped to the union
of the class Mathematics, of the source ontology S1, with the difference of classes Textbook and
Novel of the source ontology S2. This mapping emerges from the fact that the class Science

seems to describe both Mathematics and Textbook individuals with the exception of Novels.

ScienceG ≡ MathematicsS1 t (TextbookS2 − NovelS2)
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Similarly, the mediator class Autobiography can be mapped to class Biography, of the source
ontology S1, restricted on the values of the properties creator and topic. This mapping is derived
from the fact that the class Autobiography seems to describe Biography individuals having the
same value for these two properties.

AutobiographyG ≡ BiographyS1 u ∃(creatorS1, topicS1). =

Mediator class ShortFilm can be mapped to the existential quantification of datatype property
runtime of the source ontology S2, since the class ShortFilm describes films that have duration
less than or equal to 40.

ShortF ilmG ≡ ∃runtimeS2. 640

Moreover, the mediator class CrossGenre can be mapped to the set of individuals providing more
than one values for the property genre of the source ontology S2. This mapping emerges from the
fact that the class CrossGenre describes individuals of multiple genres.

CrossGenreG ≡> 2 genreS2

Apart from class mappings adopting the GAV formalism, several property mappings can be identi-
fied. For instance, the object property longerThan of the mediator ontology can be mapped to the
binary relations described by applying an existential predicate restriction on the property runtime

of the source ontology S2. The restriction to be performed needs to include binary relations on
which the individuals of the left part of the expression have greater duration compared to the indi-
viduals of the right part.

longerThanG ≡ ∃(runtimeS2)(runtimeS2). >

The datatype property name of the mediator ontology can be mapped to the union of the datatype
properties title, of the source ontology S1, and label, of the source ontology S2. This mapping
emerges from the fact that the binary relations described by the property name correspond with the
binary relations described by the properties title and label.

nameG w titleS1 t labelS2

Similarly, the datatype property author of the mediator ontology can be mapped to the composition
of the object property creator with the datatype property fullname of the source ontology S1.
This mapping is derived from the fact that the binary relations described by the datatype property
author correspond with the binary relations provided by connecting the Volume individuals to the
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fullname property of the class Person.

authorG w creatorS1 ◦ fullnameS1 �

Although query reformulation looks easier, the GAV approach is effective whenever the data
integration system is based on a set of sources that is stable. Extending the system with a new data
source, may have an impact on the mapping definition of the various global ontology elements,
whose associated views need to be redefined. The same holds for data source withdrawals, as well
as for any changes in the schema of an integrated source. Mapping/view redefinition for any data
source change comes to be added to the fact that this process, in order to be performed, requires
deep schema knowledge of all the integrated data sources. As a result, a system integrating volatile
data sources (in terms of their number or schema) it is unlikely to scale for a large number of
sources.

4.2.2 Local-As-View (LAV)

The Local-As-View (LAV) [50, 52, 51, 21] formalism takes the opposite approach to GAV. It is
based on the idea that each element of the integrated data source ontology schemas should be
characterized in terms of a view (complex element expression) over the mediator ontology. In
other words, instead of specifying how to compute answers of the mediator ontology schema, LAV
focuses on describing each data source as precisely as possible and independently of any other
sources. Generally, quality depends on how well the designer has characterized the sources in
terms of the mediator schema.

The main advantage of LAV is the fact that data sources are described in isolation and the
system (not the designer) is responsible for finding ways of combining data from multiple sources.
As a result, the mapping definition task is easier (compared to GAV) and does not require from
the designer deep schema knowledge of all the integrated data sources in order to specify a single
mapping.

Definition 4.7 (LAV Ontology Mapping). LetG be a mediated schema, and let S̄ = {S1, . . . , Sn}
be n data source ontology schemas. A Local-As-View ontology mapping M is a set of expressions
of the form Si(X̄) v Qi(G) or Si(X̄) ≡ Qi(G), where:

• Qi is a query (expression) over the mediated ontology G, and
• Si is an ontology term from a data source schema in S̄ and appears in at most one expression

in M . �

Definition 4.8 (LAV Semantics). Let M̄ = M1, . . . ,Ml be a LAV ontology mapping between G
and S̄ = {S1, . . . , Sn}, where Mi is of the form Si(X̄) v Qi(G) or Si(X̄) ≡ Qi(G). Let g be
an instance of the mediated ontology schema G and let s̄ = s1, . . . , sn be instances of S1, . . . , Sn
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respectively. The tuple of instances (g, s1, . . . , sn) is in MR if for every 1 6 i 6 l, the following
hold:

• If Mi is a ≡ expression, then the result of evaluating Qi over g is equal to si.
• If Mi is a v expression, then the result of evaluating Qi over g subsumes si. �

The following example illustrates various LAV-type mappings in a data integration scenario. It
specifies mappings, involving classes, properties and individuals, between the ontologies of the in-
tegrated data sources and the mediator ontology in a hypothetical data integration system. The map-
pings presented in this example serve also as an indicator for the expressiveness of the SPARQL–RW

mapping model.

Example 4.2. Suppose the data integration scenario illustrated in Figure 4.2, introducing some mi-
nor ontology changes to the scenario presented in Figure 4.1. The mediator ontology G describes
the schema of a mediator that integrates two data sources storing information about different types
of product items including books, films, and music. More specifically, the first data source pre-
serves information about book volumes, while the other preserves information about movies and
textbooks. The schemas of the integrated data sources are provided by the source ontologies S1 and
S2 respectively.

Figure 4.2: An example data integration scenario based on LAV approach.

In this kind of setting several LAV mappings involving classes, properties and individuals can be
identified. For instance, the class NewRelease of the source ontology S1 can be mapped to the
intersection of the classes Book and NewArrival of the mediator ontology. This mapping emerges
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from the fact that the class NewRelease seems to describe Book individuals which are also of type
NewArrival.

NewReleaseS1 w BookG u NewArrivalG

Moreover, the object property publishes of the source ontology S1 can be mapped to the inverse
of the object property publisher of the mediator ontology. This mapping emerges from the fact
that the binary relations described by the object property publishes correspond with the inverse
binary relations of property publisher.

publishesS1 w publisher−G

The datatype property score of the source ontology S1 can be mapped to the datatype property
rating of the mediator ontology after restricting the rating property on its domain values and
transforming its range values from decimal to float. This mapping is derived from the fact that the
property score describes book ratings only, while the property rating describes ratings of various
item types. Thus, the domain of property rating has to be restricted on Book individuals in order
to match the domain of property score. Moreover, the range values of property rating have to be
transformed from decimal to float in order to match the score datatype.

scoreS1 v decimal2float(ratingG � BookG)

The individual Pearson of the source ontology S1 can be mapped to the individual PearsonPLC
of the mediator ontology as they seem to describe the same Publisher.

PearsonS1 ≡ PearsonPLCG

Apart from mappings between the source ontology S1 and the mediator ontology, several mappings
between the source ontology S2 and the mediator ontology can be identified. For instance, the class
Subject of the source ontology S2 can be mapped to the enumeration of individuals Friendship,
Nature and Conquest of the mediator ontology. This mapping is derived from the fact that the
class Subject characterizes only the aforementioned three types of movies.

SubjectS2 ≡ {FrienshipG, NatureG, ConquestG}

Similarly, the object property related of the source ontology S2 can be mapped to the transitive
closure of the object property similar of the mediator ontology. This mapping emerges from the
fact that the binary relations described by the object property related correspond to the binary
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relations described by the transitive closure of the object property similar.

relatedS2 v similar+
G

Finally, the datatype property critique of the source ontology S2 can be mapped to the datatype
property review of the mediator ontology restricted on its domain property values. More specifi-
cally, the domain of the property review should be restricted to Book and Film individuals in order
to match the domain of the property critique.

critiqueS2 v reviewG � (BookG t FilmG) �

LAV approach is effective whenever the data integration system is based on a global ontology
schema that is stable and well-established in the organization. Changes in the global ontology
schema may have an impact on the mapping definition of the various source ontology elements,
whose associated views need to be redefined. On the other hand, extending the system with a
new source simply means the enrichment of mapping with new assertions (without performing any
other changes), while data source withdrawals result simply to mapping deletion. This offers high
modularity and extensibility to any data integration system adopting the LAV formalism.

Although mapping definition looks easier in LAV, query processing needs reasoning and re-
quires the development of complex query rewriting algorithms. Finding all certain answers has
been proven to be co-NP-hard in the size of the data if the queries include unions or negated pred-
icates. The added flexibility of LAV is the reason for the increased computational complexity of
answering queries. Fundamentally, the cause is that LAV enables expressing incomplete informa-
tion. In contrast, the complexity of query answering in GAV is similar to that of query evaluation
over a database.

4.2.3 Global-and-Local-As-View (GLAV)

The Global-and-Local-As-View (GLAV) [54, 50, 21] approach is a combination of the GAV and
LAV formalisms. It offers the expressive power of both techniques, aiming to overcome their limi-
tations. GLAV is based on the idea that a view (complex element expression) over the data source
ontology schemas should be characterized in terms of a view over the mediator ontology. Query
reformulation in data integration systems supporting this formalism is performed by composing the
LAV techniques with the GAV techniques.

Definition 4.9 (GLAV Ontology Mapping). Let G be a mediated schema, and S̄ = {S1, . . . , Sn}
be n data source ontology schemas. A Global-and-Local-As-View ontology mapping M is a set of
expressions of the form QS(X̄) v QG(X̄) or QS(X̄) ≡ QG(X̄), where:

• QG is a query over the mediated ontology G whose head variables are X̄ , and
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• QS is a query over the data sources whose head variables are also X̄ . �

Definition 4.10 (GLAV Semantics). Let M̄ = M1, . . . ,Ml be a GLAV ontology mapping between
G and S̄ = {S1, . . . , Sn}, where Mi is of the form QS(X̄) v QG(X̄) or QS(X̄) ≡ QG(X̄).
Let g be an instance of the mediated ontology schema G, and let s̄ = s1, . . . , sn be instances of
S1, . . . , Sn respectively. The tuple of instances (g, s1, . . . , sn) is in MR if for every 1 6 i 6 l, the
following hold:

• If Mi is a ≡ expression, then Si(s̄) = Qi(g).
• If Mi is a ⊆ expression, then Si(s̄) v Qi(g). �

The following example illustrates various GLAV-type mappings in a data integration scenario.
It specifies mappings, involving classes and properties between the ontologies of the integrated
data sources and the mediator ontology in a hypothetical data integration system. The mappings
presented in this example serve also as an indicator for the expressiveness of the SPARQL–RW

mapping model.

Example 4.3. Suppose the data integration scenario illustrated in Figure 4.3, introducing some
minor ontology changes to the scenarios presented in the previous examples. The mediator ontology
G describes the schema of a mediator integrating two data sources that store information about
different types of product items including books, films, and music.

Figure 4.3: An example data integration scenario based on GLAV approach.

In this kind of setting several GLAV mappings involving classes and properties can be identified.
For instance, suppose that data source S1 is known to have only popular books regarding the subject
of mathematics and biology. Therefore, the union of classes Mathematics and Biology of the



4.3. Expressive Power 38

source ontology S1 can be mapped to the intersection of classes Science and Bestseller of the
mediator ontology.

MathematicsS1 tBiologyS1 w ScienceG u BestsellerG

Moreover, the composition of properties creator and fullname, of the source ontology S1, can be
mapped to the datatype property author, of the mediator ontology, restricted on its domain values.
More specifically, the domain of the property author should be restricted to the Computing and
Electronics individuals in order to match the domain of the object property creator.

creatorS1 ◦ fullnameS1 w authorG � (ComputingG t ElectronicsG)

Apart from mappings between the source ontology S1 and the mediator ontology, several mappings
between the source ontology S2 and the mediator ontology can be identified. For instance, the
datatype property critique, of the source ontology S2, restricted to have Textbook individuals
on its domain, can be mapped to the datatype property review, of the mediator ontology, restricted
to have Science and Literature individuals on its domain.

critiqueS2 � TextbookS2 ≡ reviewG � (ScienceG t LiteratureG)

Finally, the Textbook individuals of the source ontology S2 having height and width less than 15
can be mapped to the intersection of class Pocket, of the mediator ontology, with the union of
classes Science and Literature. This mapping emerges from the fact that the class Pocket of
the mediator ontology describes pocket-sized books and the Textbook individuals of the source
ontology S2 are either literary or scientific.

(∃heightS2. 615) u (∃widthS2. 615) v PocketG u (ScienceG t LiteratureG) �

4.3 Expressive Power

The SPARQL–RW mapping model allows the specification of highly expressive ontology mappings
in the context of ontology based mediator architectures. Offering constructs and axioms based on
DL semantics, it enables the definition of a great variety of expressions that build upon named
classes, properties and individuals of the mediator ontology and the integrated ontology schemas.
It is able to support mappings between views over multiple data sources, adopting formalisms
extensively used in the field of data integration.

Common constructs like intersection, union, difference, enumeration, composition, inversion
and transitivity enable the definition of complex class and property expressions. On the other
hand, existential quantification as well as cardinality and existential predicate restrictions enable
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the creation of classes out of named properties. Similarly, domain and range restrictions are used
for minimizing the binary relations described by a named property or property expression. All the
aforementioned features are familiar to users dealing with the representation of specific domain
knowledge and ontology management. In the context of the SPARQL–RW mapping model they are
used for specifying the expressions on the left and right part of a mapping.

It is worth to mention that the SPARQL–RW mapping model does not deal with ontology map-
pings in general. It has been developed to support the query rewriting process in ontology based
mediator architectures and therefore, the mapping capabilities of the model are highly dependent on
the SPARQL expressiveness. For example, universal quantification is a well-known class feature
in knowledge representation languages and fully supported by the OWL–DL and OWL 2 speci-
fications. Although, this feature is extensively used for the definition of classes in the context of
ontology management, it cannot be used for the definition of class mappings in the SPARQL–RW

Framework since it is not exploitable by the SPARQL query rewriting process. The current spec-
ification of SPARQL misses certain aggregate functions and therefore, constructs that build upon
features like universal quantification cannot be materialized.

Table 4.7 provides a feature comparison between the SPARQL–RW mapping model, the OWL-
DL and OWL 2 knowledge representation languages and EDOAL. EDOAL (Expressive and Declar-
ative Ontology Alignment Language) [20] is a highly expressive and serializable language which
is used for mapping representation. It builds upon the Alignment Format [25], a well-known spec-
ification extensively used for representing alignments in ontology matching tasks.

Compared to OWL–DL mapping type capabilities, the SPARQL–RW mapping model misses
features like class complementarity and universal quantification. Such constructs have not been
taken into consideration since, as noted before, they cannot be exploited by the SPARQL query
rewriting process. On the contrary, the SPARQL–RW mapping model offers many important fea-
tures, not supported by the specification of OWL–DL, including existential predicate and qualified
number restrictions for classes, intersection, union, difference and composition of properties, as
well as datatype property value transformations.

On the other hand, OWL 2 has fewer differences compared to the SPARQL–RW mapping model.
Unlike OWL–DL, it supports existential predicate restrictions and qualified number restrictions for
classes, as well as object property composition. However, it still misses property intersection, union
and difference, as well as property composition between an object and a datatype property.

Finally, as shown in Table 4.7, EDOAL is a feature full mapping representation language sup-
porting a great variety of class and property constructs. It has been developed to describe ontology
mappings in general and therefore, it does not take into account SPARQL limitations as in our case.
Even by this fact, EDOAL predominates the SPARQL–RW mapping model only in class comple-
mentarity, while it does not support instance enumeration.
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Table 4.7: Feature comparison of the SPARQL–RW mapping model, OWL–DL, OWL 2, and EDOAL.

Basic Features SPARQL–RW OWL–DL OWL 2 EDOAL

Atomic (URI reference) • • • •
Intersection • • • •
Union • • • •
Difference • ◦ ◦ •
Complement • • •
Enumeration • • •
Universal quantification • •
Existential quantification • • • •
Existential predicate restriction • • •
Unqualified number restriction • • • •
Qualified number restriction • • •
Inclusion • • • •

C
la

ss

Equality • • • •
Atomic (URI reference) • • • •
Intersection • •
Union • •
Difference • •
Composition • • •
Inversion • • • •
Transitive closure • • • •
Existential predicate restriction • •
Domain restriction • • • •
Range restriction • • • •
Inclusion • • • •

O
bj

ec
tP

ro
pe

rt
y

Equality • • • •
Atomic (URI reference) • • • •
Intersection • •
Union • •
Difference • •
Composition • •
Domain restriction • • • •
Range restriction • • • •
Transformation • •
Inclusion • • • •D

at
at

yp
e

Pr
op

er
ty

Equality • • • •
Atomic (URI reference) • • • •
Equality • • • •

In
di

vi
du

al

• Directly supported. ◦ Indirectly supported using other constructs.
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4.4 Mapping Inference

Mapping discovery is a task that can be achieved in three ways: (a) manually, defined by an expert
who has a very good understanding of the ontologies to be mapped, (b) automatically, using various
matching algorithms and techniques which compute similarity measures between different ontology
terms, and (c) semi-automatically, using matching algorithms and techniques along with constant
user feedback.

Several methods [17, 3, 27] and tools related to automatic or semi-automatic mapping discov-
ery have been proposed and have their performance analyzed [26, 43, 90, 18, 81, 7]. Although
these techniques provide satisfactory results, the quality of auto-generated mappings cannot be
compared with manually specified ones. Manual mapping specification is undoubtedly a difficult
process, however, it is able to provide declarative and highly expressive correspondences by ex-
ploiting domain knowledge expertise.

The SPARQL–RW mapping model does not provide any limitation regarding the mapping dis-
covery task. To this end, mapping discovery can be performed either manually, automatically, or
semi-automatically, reflecting the expressiveness of the generated mappings and subsequently the
results of the query rewriting process. Supporting, however, a set of rich and flexible mappings
types, it is without doubt that manual mapping definition and discovery are essential for exploit-
ing the mapping model capabilities in their full potential. To assist the mapping discovery task,
we have implemented a deductive method for performing mapping inference. The method exploits
model-theoretic semantics and requires an initial set of mappings to be provided in order to perform
effectively. It is based on reasoning over the mediator ontology schema, the integrated ontology
schemas and the initial mapping set, exploiting any underlying semantics. To this end, the fact that
the SPARQL–RW mapping model is based on Description Logic semantics is considered crucial.

Example 4.4 (Description Logic Relation Inference). Let S1, S2 be two minimal DL ontologies
describing information about books. More specifically, consider that ontology S1 contains the
following statement:

S1 : TextbookS1 ≡ MathematicsS1 t TechnologyS1 t BiographyS1

meaning that the class Textbook contains exactly Mathematics, Technology and Biography

books. In addition, consider that ontology S2 defines book instances using the class Book. Having
an initial mapping m expressed in DL syntax, stating that the class Textbook from ontology S1 is
equivalent to the class Book from ontology S2:

m : TextbookS1 ≡ BookS2

we can easily derive that the classes Mathematics, Technology and Biography from ontology
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S1 are subclasses of the class Book from ontology S2, or even that their union is equivalent to the
class Book.

MathematicsS1, T echnologyS1, BiographyS1 v BookS2

MathematicsS1 t TechnologyS1 t BiographyS1 ≡ BookS2

The above statements are obviously entailed by the mapping m and the S1 ontology schema infor-
mation. �

Algorithm 4.1 presents the method adopted by SPARQL–RW for performing mapping inference.
It takes as input the mediator ontology schema G, the ontology schemas of the integrated data
sources S̄, an initial mapping set M̄ and the adopted formalism f in a data integration scenario.
All the specified axioms in the aforementioned schemas, along with the axioms provided by the
initial mapping set are merged in a new ontology schema K. After reasoning over K, the resulted
inferential content is stored in a separate ontology schemaR. For every unmapped ontology term in
G or S̄ (depending on the formalism f ), the algorithm searches for possible mappings (equivalence
or subsumption axioms) in R. The new mappings are sorted based on the relationship type and
subsequently, those not specified in M̄ and not violating the mapping formalism f are returned.

Algorithm 4.1: Mapping Inference

1 Function MappingInference(G, S̄, M̄ , f)
Input: A mediator ontology schema G, the integrated data source ontology schemas S̄,

a set of mappings M̄ , and the adopted formalism f .
Output: A set of possible new relations M .

2 let K, R be empty ontology schemas;
3 let T be an empty set of ontology terms;
4 K = axioms specified in G, S̄, M̄ ;
5 perform reasoning over the ontology schema K;
6 R = new inferential content in K;
7 T = unmapped terms of G or S̄ (depending on f ) based on M̄ ;
8 foreach unmapped term t ∈ T do
9 let M ′ be an empty mapping set;

10 M ′ = search for possible mappings of t in R;
11 sort mappings in M ′ based on relationship type (order: ≡, w, v);
12 foreach possible mapping m ∈M ′ do
13 if m /∈ M̄ and obeys the formalism f then
14 add the new mapping m to the mapping set M ;
15 end
16 end
17 end
18 return M ;
19 end
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Mapping inference in SPARQL–RW is totally based on the specified schema axioms, on the
initially provided mapping set and on reasoner capabilities. Any DL based reasoner can be used in
order to perform this task, while the choice depends solely on the supported DL expressivity. It is
worth to note that, currently, there is no reasoner supporting the full SPARQL–RW mapping model
specification. However, most reasoners are able to support OWL 2 expressivity, and therefore, a
great part of the SPARQL–RW mapping model features. Any mappings, in the initial mapping set,
containing unsupported reasoner features are skipped.

As an indication for the supported expressivity of current DL based reasoners, the proposed
mapping inference algorithm was implemented in SPARQL–RW using Pellet. Pellet [82] sup-
ports the full expressivity of OWL-DL (SHOIN (D)) and is extended to support the OWL 2
(SROIQ(D)) specification also. Apart from trivial constructs and axioms, it is able to deal with
features including: qualified cardinality restrictions, complex subproperty axioms, local reflexiv-
ity restrictions, reflexive, irreflexive, symmetric, and anti-symmetric properties, disjoint properties,
negative property assertions, and user-defined dataranges. Furthermore, Pellet provides reasoning
support for inverse functional datatype properties which is an OWL Full feature.

Example 4.5 (Description Logic Relation Inference). Let S1, S2 be two minimal DL ontologies
describing information about books. More specifically, consider that ontology S1 contains the
following statement:

S1 : AutobiographyS1 ≡ BiographyS1 u ∃(creatorS1, topicS1). =

meaning that Autobiography books are actually Biography books having the same creator and
topic. In addition, consider that ontology S2 contains the following axiom:

S2 : MemoirS2 v BookS2

meaning that all instances of class Memoir are instances of class Book, but not vice versa. Having an
initial mappingm expressed in DL, stating that class Biography from the ontology S1 is equivalent
to the class Memoir from the ontology S2:

m : BiographyS1 ≡ MemoirS2

we can easily derive that the class Autobiography from ontology S1 is a subclass of class Memoir
from the ontology S2.

AutobiographyS1 v MemoirS2

The above statement is obviously entailed by the mapping m and the S1, S2 ontology schema
information. �
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Example 4.6 (Description Logic Relation Inference). Let S1, S2 be two minimal DL ontologies
describing information about product items including books and films. More specifically, consider
that ontology S1 contains the following statement:

S1 : ItemS1 ≡ TextbookS1 t MovieS1

meaning that the class Item describes product items of type Textbook and Movie. In addition,
consider that ontology S2, apart from defining book instances using the class Book, contains the
following axiom:

S2 : ShortF ilmS2 ≡ FilmS2 u ∃runtimeS2. 640

meaning that the instances of class ShortFilm are exactly those of type Film with duration less
than or equal to 40. Having two initial mappings m1, m2 expressed in DL syntax, stating that class
Textbook from the ontology S1 is equivalent to the class Book from the ontology S2, and class
Movie from the ontology S1 is equivalent to the class Film:

m1 : TextbookS1 ≡ BookS2, m2 : MovieS1 ≡ FilmS2

we can easily derive that the class Item from ontology S1 is equivalent to the union of classes Book
and Film from the ontology S2, as well as the class ShortFilm from the ontology S2 is subclass
of Movie from the ontology S1.

ItemS1 ≡ BookS2 u FilmS2, ShortF ilmS2 v MovieS1

The above statements are obviously entailed by the mappings m1, m2 and the S1, S2 ontology
schema information. �

The adopted deductive method can be characterized semantics-based since model-theoretic se-
mantics are exploited in order to compute the results. Query rewriting algorithms based on ontology
mapping exploitation, need undoubtedly a mapping for every mediator ontology term in order to be
able to reformulate any query posed over the mediator. Therefore, methods like the one adopted by
the SPARQL–RW are considered invaluable especially when dealing with large, highly structured
ontology schemas that need to be effectively integrated.

4.5 Inconsistency Identification

Mapping maintenance and correctness are extremely important tasks, especially for systems inte-
grating volatile sources in terms of their number or schema. SPARQL–RW aiming to assist these pro-
cesses, provides built-in functionality for performing inconsistency identification checks in terms
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of mapping formalism violations and semantic contradictions. Regarding the latter, it is performed
using a similar approach to mapping inference, exploiting the underlying mapping semantics.

Mapping formalism violations include multiple mapping definitions for a specific ontology
term, as well as other basic errors like for example the presence of a source ontology term in the left-
side expression of a GAV mapping. On the other hand, semantic contradictions include mistreated
ontology terms or mappings that violate the mediator or source ontology schema axioms.

Algorithm 4.2 presents the method adopted by SPARQL–RW for identifying mapping incon-
sistencies. Similarly to the Algorithm 4.1, it takes as input the mediator ontology schema G, the
ontology schemas of the integrated data sources S̄, a mapping set M̄ and the adopted formalism f

in a data integration scenario. All the specified axioms in the aforementioned schemas, along with
the axioms provided by the mapping set are merged in a new ontology schema K. After reasoning
over K, the initial axioms of K, along with the resulted inferential content are stored in a separate
ontology schema R. Every mapping in M̄ is checked both for formalism violations and semantic
contradictions in terms of R. Any mappings identified as inconsistent are returned.

Algorithm 4.2: Inconsistency Identification

1 Function IdentifyInconsistencies(G, S̄, M̄ , f)
Input: A mediator ontology schema G, the integrated data source ontology schemas S̄,

a set of mappings M̄ , and the adopted formalism f .
Output: A set of mappings M identified as inconsistent in terms of the ontology

schemas or formalism.
2 let K, R be empty ontology schemas;
3 K = axioms specified in G, S̄, M̄ ;
4 perform reasoning over the ontology schema K;
5 R = initial axioms of K, along with any resulted inferential content;
6 foreach mapping m ∈ M̄ do
7 if m violates the formalism f then
8 add mapping m to the mapping set M ;
9 end

10 if m is inconsistent in terms of R then
11 add mapping m to the mapping set M ;
12 end
13 end
14 return M ;
15 end

Regarding semantic contradictions, they are totally based on the specified schema axioms, on
the provided mapping set and on reasoner capabilities. Likewise mapping inference the majority of
the DL reasoners can be used in order to perform this task. However, in this case the choice does
not depend solely on the supported DL expressivity but also on the provided inference services.
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Pellet [82, 44] for instance, provides services for consistency checking and concept satisfiability.
Such services are important for checking the satisfiability of the provided schemas and the set
of inter-schema correspondences. For any unsatisfiable term, the inter-schema correspondences
should be reconsidered.

Semantic techniques are invaluable for finding mappings that lead to semantic inconsistencies.
With the improvement of deductive tools, more and more systems adopt them, since they are con-
sidered a good starting base to the development of a more general approach to revision and update
in mappings and networks of ontologies.

Example 4.7 (Mapping Formalism Violations). Suppose a GAV data integration scenario. The
mediator ontology G describes the schema of a mediator that integrates two data sources storing
information about different types of product items including books, films, and music. Let the
schemas of the integrated data sources be provided by the source ontologies S1 and S2 respectively.
In this kind of setting, consider the following set of mappings:

m1 : AutobiographyG v TextbookS2

m2 : AutobiographyG ≡ BiographyS1 u ∃(creatorS1, topicS1). =

The mappings m1 and m2 state that the mediator ontology class Autobiography is subclass of
Textbook from the source ontology S2, as well as equivalent to the class Biography, of the source
ontology S1, restricted on creator and topic property values. This results to a formalism viola-
tion, since GAV allows only one mapping for each mediator ontology term. Similarly, consider the
following mapping:

m3 : ScienceG u BestsellerG v MathematicsS1 tBiologyS1

Mapping m3 contains a complex expression involving multiple mediator ontology terms on the
left-side expression. Taking into account that GAV allows each element of the mediator to be char-
acterized in terms of a view over the integrated data source ontologies, mapping m3 is considered
invalid. Finally, assume the following mapping rule, stating that the class NewRelease of the source
ontology S1 is superclass of the intersection of mediator ontology classes Book and NewArrival:

m4 : NewReleaseS1 w BookG u NewArrivalG

Having specified NewRelease from the source ontology S1 in the left-side expression, the GAV
mapping formalism is violated and the mapping cannot be used in the query rewriting process. �

Example 4.8 (Semantic Contradictions). Let S1, S2 be two minimal DL ontologies describing in-
formation about product items including books and films. More specifically, consider that ontology
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S1 contains the following statement:

S1 : TextbookS1 v ¬MovieS1

meaning that all the instances of class Textbook are not instances of class Movie. In addition,
consider that ontology S2 contains the following axioms:

S2 : BookS2 ≡ ScienceS2 t LiteratureS2

meaning that all instances of class Book are books of type Science or Literature and vice versa.
Having two mappings m1 and m2 expressed in DL syntax, stating that class Textbook from on-
tology S1 is equivalent to the class Book from ontology S2, and the union of classes Science and
Literature from ontology S2 is subsumed by the class Movie from ontology S1:

m1 : TextbookS1 ≡ BookS2, m2 : MovieS1 w ScienceS2 t LiteratureS2

we can easily derive that the mapping m2 is inconsistent in terms of ontology S1, since by com-
bining the S1, S2 ontology schema information along with the specified mappings m1, m2 we
conclude that TextbookS1 v ¬MovieS1 and at the same time TextbookS1 v MovieS1. �

4.6 Mapping Language

Mapping representation is a very important issue for any system implementing a data integration
scenario. Several languages have been proposed for this task including OWL [57], C-OWL [11],
SWRL [40], MAFRA [55], the Alignment Format [25] and its EDOAL extension [20]. However,
only some of them combine and satisfy core criteria including simplicity, expressiveness, exe-
cutability, and schema language agnosticism. Furthermore, to the extent of our knowledge, none
of the above languages considers the use of formalisms in mapping representation, while few of
them are capable of describing mappings that involve views over multiple ontology schemas. A
thorough comparison of these languages for the task of mapping specification in the context of data
integration is available in [26].

SPARQL–RW provides a mapping representation language able to support all the mapping for-
malisms and features adopted by the SPARQL–RW mapping model. The general structure of the
SPARQL–RW mapping language is presented in Section 4.6.1, while several mapping representa-
tion examples are provided in Section 4.6.2.



4.6. Mapping Language 48

4.6.1 General Structure

In order to implement the SPARQL–RW Framework the need for a serializable language, able to
support all the constructs and formalisms described by the SPARQL–RW mapping model, is of
major importance. To this end, this section presents the general structure of the language adopted
for mapping representation. It is based on XML syntax and the default namespace applying to the
constructs in the grammar description is http://www.music.tuc.gr/sparql-rw#.

In the SPARQL–RW Framework, the mappings are described using the construct model which
is presented below. Apart from the mappings, the construct contains information regarding the
adopted mapping formalism, the mediator ontology (global ontology), as well as the ontologies of
the integrated data sources (local ontologies). The construct ontology is used for describing basic
ontology information including the uri, name, and description.

model::= <model uri="uri">

<formalism> (GAV | LAV | GLAV) </formalism>

<global> ontology </global>

<locals> (ontology)+ </locals>

<mappings> (mapping)+ </mappings>

</model>

ontology::= <ontology uri="uri">

(<name> string </name>)?

(<description> string </description>)?

(<schemaLocation> uri </schemaLocation>)?

</ontology>

The mappings in the SPARQL–RW Framework consist of four basic types: (a) class mappings,
mappings between class expressions specified using the cmapping construct, (b) object property
mappings, mappings between object property expressions specified using the opmapping construct,
(c) datatype property mappings, mappings between datatype property expressions specified using
the dpmapping construct, and (d) individual mappings, mappings between individuals specified
using the imapping construct. The mapping relationship in class or property mapping can be
equivalence, subsumption or unspecified and is described by the construct relation. Regarding
mappings between individuals, the only available mapping relationship is equivalence.

mapping::= cmapping | opmapping | dpmapping | imapping

cmapping::= <cmapping uri="uri">

<expr1> cexpr </expr1>

http://www.music.tuc.gr/sparql-rw#
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<expr2> cexpr </expr2>

<relation> relation </relation>

</cmapping>

opmapping::= <opmapping uri="uri">

<expr1> opexpr </expr1>

<expr2> opexpr </expr2>

<relation> relation </relation>

</opmapping>

dpmapping::= <dpmapping uri="uri">

<expr1> dpexpr </expr1>

<expr2> dpexpr </expr2>

<relation> relation </relation>

</dpmapping>

imapping::= <imapping uri="uri">

<expr1> individual </expr1>

<expr2> individual </expr2>

<relation> EQUIVALENT </relation>

</imapping>

relation::= EQUIVALENT | SUBSUMES | SUBSUMED | UNSPECIFIED

A class expression is specified using the construct cexpr and follows the abstract syntax pre-
sented in Definition 4.2. It can be either a simple class identified by its URI (resource) or a
complex expression between classes, properties, individuals and data ranges that describes a set
of class instances. Union, intersection, difference and enumeration operations are specified us-
ing the constructs union, intersection, difference and enumeration, respectively. On the
other hand, existential quantification is specified by existquant, existential predicate restriction
by existpred and cardinality restriction by cardinality.

cexpr::= <class> cconstruct </class>

cconstruct::= <resource uri="uri"/>

| <union> cexpr (cexpr)+ </union>

| <intersection> cexpr (cexpr)+ </intersection>

| <difference> cexpr (cexpr)+ </difference>
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| <enumeration> (individual)+ </enumeration>

| <existquant>

<onOProperty> opexpr

<quantifier> cexpr </quantifier>

</onOProperty>

| <onDProperty> dpexpr

<quantifier> datatype </quantifier>

</onDProperty>

</existquant>

| <existpred>

<onOProperty>

opexpr upred

</onOProperty>

| <onDProperty>

dpexpr upred

</onDProperty>

| <onOProperties>

opexpr opexpr bpred

</onOProperties>

| <onDProperties>

dpexpr dpexpr bpred

</onDProperties>

</existpred>

| <cardinality>

<onOProperty> opexpr upred

(<quantifier> cexpr </quantifier>)?

</onOProperty>

| <onDProperty> dpexpr upred

(<quantifier> datatype </quantifier>)?

</onDProperty>

</cardinality>

On the aforementioned constructs, property constraints are introduced using the onOProperty,
onDProperty, onOProperties, and onDProperties constructs, in conjunction with predicates
and property quantifiers specifying the applied restrictions. To this end, binary and unary predicates
are introduced using the constructs bpred and upred respectively. Both constructs are based on
basic relation operators (operator) including =, 6=, ≤, ≥, <, >, while for the case of unary
predicates an additional value, specifying the actual value restriction, is required.
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bpred::= <predicate>

<operator> operator </operator>

</predicate>

upred::= <predicate>

<operator> operator </operator>

<value> value </value>

</predicate>

operator::= EQUAL | NOT_EQUAL | GREATER | GREATER_EQUAL | LESS | LESS_EQUAL

value::= individual

| <data type="base"> datavalue </data>

Property quantifiers are specified using the construct quantifier and may describe either a
class expression (in case of an object property restriction) or a datatype (in case of a datatype
property restriction). A datatype is introduced using the construct datatype and it can be either a
simple XML Schema datatype (base) or a simple datatype restricted on a specific value condition.
Value conditions are described using the construct condition and can be either simple or complex
using the basic, and, or, and not constructs.

datatype::= <datatype base="base"> (condition)? </datatype>

base::= INTEGER | DECIMAL | FLOAT | DOUBLE | STRING | BOOLEAN | DATETIME

condition::= <condition> condconstruct </condition>

condconstruct::= <basic>

<operator> operator </operator>

<value> value </value>

</basic>

| <and> condition (condition)+ </and>

| <or> condition (condition)+ </or>

| <not> condition </not>

An object property expression is specified using the construct opexpr and follows the abstract
syntax presented in Definition 4.3. It can be either a simple object property identified by its URI
(resource) or a complex expression between properties and classes that describes a set of binary
relations between class instances. Union, intersection, difference and existential predicate restric-
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tions are specified similarly to class expressions using the union, intersection, difference
and existpred constructs. The composition operation is introduced by composition, inversion
by inverse, and transitivity by the construct transitive. In all cases, an object property expres-
sion can be restricted on its domain and/or range values, using the construct restrict. Domain
and range restrictions are defined using the constructs domain and range respectively, along with
a class expression specifying the applied constraints.

opexpr::= <oproperty> opconstruct </oproperty>

opconstruct::= <resource uri="uri"/>

| <union> opexpr (opexpr)+ </union>

| <intersection> opexpr (opexpr)+ </intersection>

| <difference> opexpr (opexpr)+ </difference>

| <composition> opexpr (opexpr)+ </composition>

| <inverse> opexpr </inverse>

| <transitive> opexpr </transitive>

| <existpred>

<onOProperties>

opexpr opexpr bpred

</onOProperties>

| <onDProperties>

dpexpr dpexpr bpred

</onDProperties>

</existpred>

| <restrict> opexpr

(<domain> cexpr </domain>)?

(<range> cexpr </range>)?

</restrict>

A datatype property expression is specified using the construct dpexpr and follows the abstract
syntax presented in Definition 4.4. It can be either a simple datatype property identified by its URI
(resource) or a complex expression between properties, classes and data ranges that describes a
set of binary relations between class instances and data values. Most datatype property operations
are specified similarly to object property expressions, with the exception of range restrictions where
the applied constraint is on a datatype and not on a class expression.

dpexpr::= <dproperty> dpconstruct </dproperty>

dpconstruct::= <resource uri="uri"/>
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| <union> dpexpr (dpexpr)+ </union>

| <intersection> dpexpr (dpexpr)+ </intersection>

| <difference> dpexpr (dpexpr)+ </difference>

| <composition> (opexpr)+ dpexpr </composition>

| <transform to="base"> dpexpr </transform>

| <restrict> dpexpr

(<domain> cexpr </domain>)?

(<range> datatype </range>)?

</restrict>

Finally, an individual is specified using the construct individual and it can be a simple URI.

individual::= <individual>

<resource uri="uri"/>

</individual>

Appendix B describes the aforementioned structure by providing the XML Schema of the map-
ping language. This introduces some control to the language vocabulary and makes the SPARQL–

RW Framework interoperable with external applications.

4.6.2 Mapping Examples

This section provides some mapping representation examples using the syntax described in the
previous section. In order to present various mapping cases, adopting all the specified formalisms
(i.e., GAV, LAV and GLAV), the mappings are based on the Examples 4.1, 4.2, and 4.3. A more
comprehensive example, showing the complete set of mappings which have been specified in the
Examples 4.1 is available in Appendix C.

Example 4.9. Suppose the data integration scenario illustrated in Example 4.1. The GAV mapping
of the mediator class Science:

ScienceG ≡ MathematicsS1 t (TextbookS2 − NovelS2)

specifying that the class Science is equivalent to the union of the class Mathematics, of the source
ontology S1, with the difference of classes Textbook and Novel of the source ontology S2, can be
described in XML syntax as follows:

<cmapping uri="MappingRule_a">

<expr1>

<class><resource uri="G:Science"/></class>

</expr1>
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<expr2>

<class>

<union>

<class><resource uri="S1:Mathematics"/></class>

<class>

<difference>

<class><resource uri="S2:Textbook"/></class>

<class><resource uri="S2:Novel"/></class>

</difference>

</class>

</union>

</class>

</expr2>

<relation>EQUIVALENT</relation>

</cmapping>

Similarly, the GAV mapping of the object property longerThan from the mediator ontology:

longerThanG ≡ ∃(runtimeS2)(runtimeS2). >

specifying that the object property longerThan is equivalent to the existential predicate restriction
applied on the property runtime of the source ontology S2 (using the binary predicate ">"), can
be described in XML syntax as follows:

<opmapping uri="MappingRule_b">

<expr1>

<oproperty><resource uri="G:longerThan"/></oproperty>

</expr1>

<expr2>

<oproperty>

<existpred>

<onDProperties>

<dproperty><resource uri="S2:runtime"/></dproperty>

<dproperty><resource uri="S2:runtime"/></dproperty>

<predicate>

<operator>GREATER</operator>

</predicate>

</onDProperties>

</existpred>

</oproperty>

</expr2>

<relation>EQUIVALENT</relation>

</opmapping>

Example 4.10. Suppose the data integration scenario illustrated in Example 4.2. The LAV mapping
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of class Subject from the source ontology S2:

SubjectS2 ≡ {FrienshipG, NatureG, ConquestG}

specifying that the class Subject is equivalent to the enumeration of the Friendship, Nature and
Conquest class instances of the mediator ontology, can be described in XML syntax as follows:

<cmapping uri="MappingRule_c">

<expr1>

<class><resource uri="S2:Subject"/></class>

</expr1>

<expr2>

<class>

<enumeration>

<individual><resource uri="G:Frienship"/></individual>

<individual><resource uri="G:Nature"/></individual>

<individual><resource uri="G:Conquest"/></individual>

</enumeration>

</class>

</expr2>

<relation>EQUIVALENT</relation>

</cmapping>

Similarly, the LAV mapping of the datatype property critique from the source ontology S2:

critiqueS2 v reviewG � (BookG t FilmG)

specifying that the property critique subsumes the datatype property review of the mediator
ontology restricted on its domain property values (Book and Film individuals), can be described in
XML syntax as follows:

<dpmapping uri="MappingRule_d">

<expr1>

<dproperty><resource uri="S2:critique"/></dproperty>

</expr1>

<expr2>

<dproperty>

<restrict>

<dproperty><resource uri="G:review"/></dproperty>

<domain>

<class>

<union>

<class><resource uri="G:Book"/></class>

<class><resource uri="G:Film"/></class>

</union>

</class>
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</domain>

</restrict>

</dproperty>

</expr2>

<relation>SUBSUMED</relation>

</dpmapping>

Finally, the LAV mapping of the class instance Pearson from the source ontology S1:

PearsonS1 ≡ PearsonPLCG

specifying that the class instance Pearson is equivalent to the individual PearsonPLC of the medi-
ator ontology, can be described in XML syntax as follows:

<imapping uri="MappingRule_e">

<expr1>

<individual><resource uri="S1:Pearson"/></individual>

</expr1>

<expr2>

<individual><resource uri="G:PearsonPLC"/></individual>

</expr2>

<relation>EQUIVALENT</relation>

</imapping>

Example 4.11. Suppose the data integration scenario illustrated in Example 4.3. The GLAV map-
ping of classes Mathematics and Biology from the source ontology S1:

MathematicsS1 tBiologyS1 w ScienceG u BestsellerG

specifying that the union of classes Mathematics and Biology subsumes the intersection of classes
Science and Bestseller of the mediator ontology, can be described in XML syntax as follows:

<cmapping uri="MappingRule_f">

<expr1>

<class>

<union>

<class><resource uri="S1:Mathematics"/></class>

<class><resource uri="S1:Biology"/></class>

</union>

</class>

</expr1>

<expr2>

<class>

<intersection>

<class><resource uri="G:Science"/></class>



4.7. Summary 57

<class><resource uri="G:Bestseller"/></class>

</intersection>

</class>

</expr2>

<relation>SUBSUMES</relation>

</cmapping>

Similarly, the GLAV mapping of the properties creator and fullname of the source ontology S1:

creatorS1 ◦ fullnameS1 w authorG � (ComputingG t ElectronicsG)

specifying that the composition of properties creator and fullname is equivalent to the property
author, of the mediator ontology, restricted on its domain values (Computing and Electronics

individuals), can be described in XML syntax as follows:

<dpmapping uri="MappingRule_g">

<expr1>

<dproperty>

<composition>

<oproperty><resource uri="S1:creator"/></oproperty>

<dproperty><resource uri="S1:fullname"/></dproperty>

</composition>

</dproperty>

</expr1>

<expr2>

<dproperty>

<restrict>

<dproperty><resource uri="G:author"/></dproperty>

<domain>

<class>

<union>

<class><resource uri="G:Computing"/></class>

<class><resource uri="G:Electronics"/></class>

</union>

</class>

</domain>

</restrict>

</dproperty>

</expr2>

<relation>SUBSUMES</relation>

</dpmapping>

4.7 Summary

In this chapter we presented the SPARQL–RW mapping model, a model for the expression of map-
pings between ontology schemas in the context of ontology based mediators. It consists of a gram-



4.7. Summary 58

mar defining the mapping types which can be exploited in SPARQL query rewriting, as well as a
specification of the mapping type semantics. Furthermore, it is based on Description Logics and
it is capable of describing a great variety of mapping types between OWL ontologies, providing
high flexibility and satisfying different system requirements and user needs. The mapping model is
able to support well-known mapping formalisms, including GAV, LAV, and GLAV, satisfying strong
data integration requirements for query rewriting efficiency and extensibility to new sources. The
expressiveness of the SPARQL–RW mapping model has been demonstrated by providing a feature
comparison with common knowledge and mapping representation languages.

Additionally to the mapping model, we defined a mapping language based on XML syntax,
being able to represent all the discussed types of inter-schema correspondences and mapping for-
malisms. The language combines a set of criteria including simplicity, expressiveness, executabil-
ity, and schema language agnosticism. Furthermore, the use of XML Schema in mapping language
definition: (a) provides exceptional validation capabilities, (b) supports easy mapping serialization
and deserialization, and (c) enables interoperability with external systems and applications.

Finally, aiming to assist the mapping definition process and support the maintenance of map-
pings conforming to the SPARQL–RW mapping model, we provided methods for performing map-
ping inference and identifying inconsistencies in a given set of mappings and ontology schemas.
Both methods exploit the underlying DL semantics of the SPARQL–RW mapping model and are
based on the use of well-known reasoning techniques.



Chapter 5

Query Rewriting

Query rewriting is a well-known technique, extensively used for addressing various issues includ-
ing query optimization, query answering, and performing information integration. Although, this
method has been studied extensively in databases, it has received limited attention by the Semantic
Web community especially for performing query mediation tasks in the context of data integration.
To the extent of our knowledge, there is no system performing SPARQL 1.1 query rewriting in gen-
eral, or SPARQL query rewriting by exploiting any well-known mapping formalism in the context
of ontology based mediator architectures.

SPARQL–RW provides a SPARQL 1.1 query rewriting method, based on GAV ontology map-
pings, for performing query mediation over diverse, in terms of schema, federated RDF data
sources. The proposed query rewriting algorithms are proved to provide semantics preserving
queries with respect to the GAV mapping types supported by the model. The reformulated queries
can be executed directly on any SPARQL federated query engine, or exploited as logical query
plans by any ontology based mediator system.

Formally, let G be a global ontology schema, let S̄ = {S1, . . . , Sn} be n data source ontology
schemas, and let M̄ be a set of mappings betweenG and S̄. SPARQL–RW takes as input a SPARQL
query QG expressed over G, and rewrites it to a semantically correspondent query QS̄ , expressed
over S̄, with respect to M̄ . Subsequently, considering a set of endpoints Ē = {E1, . . . , Em}, and
a set of relations <S̄, Ē>, specifying the available endpoints for each integrated ontology schema,
SPARQL–RW transforms the reformulated query QS̄ to a federated one, expressed over Ē.

This chapter presents the developed query rewriting algorithms, based on a set of inference rules
and recursive DL to SPARQL transformation functions, using GAV ontology mappings supported
by the model (see Chapter 4). Our method is not only useful for ontology based mediator systems,
but also for any system supporting transparent query access over federated RDF data sources. Query
rewriting based on LAV and GLAV approaches can be performed by combining the proposed rules
and transformation functions with already existing algorithms including Bucket [52], Minicon [71,



5.1. Overview 60

70] and Inverse-Rules [24].
Section 5.1 provides an overview of the query rewriting process. Sections 5.2 and 5.3 present

the functions and rules adopted for the rewriting of triple patterns that refer to data and schema
respectively. Finally, Section 5.4 proposes a set of algorithms for performing SPARQL 1.1 graph
pattern rewriting based on a set of predefined ontology mappings and data source endpoints.

5.1 Overview

The proposed query rewriting method is based on the reformulation of the input query graph pattern
by exploiting a set of predefined ontology mappings and data source endpoints. The graph pattern
is the main body of a SPARQL query and consists mainly of triple patterns, conjunctions, disjunc-
tions, optional parts, constraints over triple pattern variables, and nested queries. To consider the
importance of the graph pattern part, note that other query constructs like solution sequence modi-
fiers and aggregates are applied on the solutions provided by matching the query graph pattern over
the queried RDF dataset.

More specifically, the result of the query rewriting process is generated by replacing the graph
pattern of the input query with the reformulated graph pattern, generated by the rewriting algorithm.
Therefore, the method is independent of the query type, the solution sequence modifiers and aggre-
gates. Furthermore, note that ontology schema terms appear only in triple patterns and infrequently
in filter expressions also. Considering that our approach is based on the exploitation of ontology
mappings, the provided graph pattern rewriting algorithm depends directly on triple pattern and
filter expression rewriting. Thus, any graph operators appearing in the input query graph pattern do
not affect the rewriting procedure.

The query rewriting algorithm proceeds by traversing the query execution tree in a bottom-
up manner, starting by rewriting the innermost nested query graph pattern, and more specifically
its triple patterns and filter expressions. Similarly the algorithm continues until the total input
query has been reformulated using the predefined ontology mappings. Then, the resulted triple pat-
terns and filter expressions of the reformulated graph pattern are grouped and enclosed in SERVICE

clauses based on the appearing ontology terms and the integrated data source endpoints. The gener-
ated result is a federated SPARQL 1.1 query, referring to the integrated data source ontologies, able
to be executed in any SPARQL federated query engine [2, 80, 78, 62, 76]. The rewriting process is
not dependent on mapping relationships like equivalence and subsumption. Mapping relationships
affect only the results of evaluating the reformulated query over the integrated RDF data sources.

Note that triple pattern rewriting is not a trivial process. Considering that a triple pattern has
three parts; that is, subject-predicate-object, the provided triple pattern rewriting algorithm consists
of three-steps. For any ontology term appearing in any triple pattern position, the triple pattern is
reformulated using an already specified mapping for this term. The result of this process is a graph
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pattern, which is subsequently reformulated triple pattern by triple pattern, in terms of the rest triple
pattern parts. Any variables, blank nodes, and literal constants appearing in the input triple pattern
remain intact after the rewriting process.

Unlike other query languages such as SQL and XQuery, SPARQL allows both data and schema
queries. In order to do so, the language does not provide any specific construct but permits the use
of triple patterns containing any RDF, RDFS, or OWL vocabulary term. Data triple patterns refer to
information about instances and data values, while schema triple patterns refer to information about
class/property hierarchies, property domains/ranges, etc. Having as input a set of inter-schema
correspondences, data and schema triple patterns cannot be reformulated in the same way. A factor
that can used in order to determine whether a triple pattern refers to data or schema is the term
appearing in the triple pattern’s predicate position. Since triple pattern rewriting depends on the
triple pattern type, triple patterns containing a variable in the predicate position are not supported
by our method.

Regarding filter expressions, the SPARQL–RW query rewriting method is able to exploit only
1:1 cardinality mappings. Variables, literal constants, operators and built-in functions appearing
inside an input query’s filter expression, remain intact after the rewriting process.

5.2 Data Triple Pattern Rewriting

This section presents the set of functions and rules adopted for the rewriting of data triple pat-
terns; that is, the triple patterns referring to information about instances and data values. Con-
sidering that the rewriting of a triple pattern is a three-step procedure, involving mappings for its
subject-predicate-object parts, the provided functions ensure that each step of the rewriting process
preserves the exploited mapping type semantics.

Definition 5.1 (Data Triple Pattern). Let I be the set of IRIs, L the set of RDF Literals, and V the
set of variables. Considering that a triple pattern is a tuple (s, p, o) ∈ (I∪V )×(I∪V )×(I∪L∪V ),
a data triple pattern is a triple pattern, where:

• No variable is used in the predicate position.
• Each property used in the predicate position is either an ontology object/datatype property or

one of the following built-in properties: rdf:type, owl:sameAs, owl:differentFrom.
• If rdf:type is used in the predicate position, an ontology class is used in the object position.

�

Definition 5.2 (Semantics Preserving Rewriting). Let G be a mediator ontology schema, let S̄ =

{S1, . . . , Sn} be n data source ontology schemas, and let M̄ be a complete set of sound GAV
mappings betweenG and S̄. Assuming an RDF dataset DS that combinesG, S̄, M̄ , along with the
respective datasets of G and S̄, we state that the rewriting of a triple pattern t to a graph pattern g,
using a mapping m ∈ M̄ , is semantics preserving if and only if :
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• Given a variable set J = var(t), the evaluation of t and g (projected on J ) over the RDF
dataset DS preserve the exploited mapping’s relationship; that is:

– If mapping m is of type equivalence (≡), then: [[t]]DS ≡ πJ
(
[[g]]DS

)
.

– If mapping m is of type subsumption (v), then: [[t]]DS v πJ
(
[[g]]DS

)
.

– If mapping m is of type subsumption (w), then: [[t]]DS w πJ
(
[[g]]DS

)
. �

From this point forward, we adopt the notation presented in Chapter 4; that is, C for class ex-
pressions,R for object property expressions, U for datatype property expressions, o for individuals,
P for unary/binary predicates and D for data ranges. Table 5.1 provides the function definitions
of Tu(P, x), Tb(P, x, y) and Td(D,x), that transform unary/binary predicate and data range restric-
tions to filter expressions. These basic transformation functions are used by the main data triple
pattern rewriting methods, especially, when dealing with mappings that involve value restrictions.

Table 5.1: Predicate and data range restriction transformations. Functions Tu(P, x), Tb(P, x, y) and
Td(D,x) transform unary/binary predicate and data range restrictions to filter expressions.

If predicate P is of type: then Tu(P, x) =

=n (x = n)
6=n (x! = n)
≤n (x <= n)
≥n (x >= n)
<n (x < n)
>n (x > n)

If predicate P is of type: then Tb(P, x, y) =

= (x = y)
6= (x ! = y)
≤ (x <= y)
≥ (x >= y)
< (x < y)
> (x > y)

If data range D is of type: then Td(D,x) =

dr: built-in data range (datatype(x) = dr)
dr(cond) Td(dr, x) && Td(cond, x)
(P ) Tu(P, x)
(cond1 ∧ cond2) Td(cond1, x) && Td(cond2, x)
(cond1 ∨ cond2) Td(cond1, x) || Td(cond2, x)
(! cond) ! Td(cond, x)

Table 5.2 presents the function Ds(t,m) for the rewriting of a data triple pattern t using a map-
ping m for the term appearing in the subject position of t. By definition, when a class or property
is used on the subject position of a triple pattern, the predicate position cannot contain an object/
datatype property, or the built-in properties owl:sameAs and owl:differentFrom. Thus, relying
on the data triple pattern definition (Definition 5.1), the only case mentioned for the rewriting of a
data triple pattern based on a mapping of its subject part concerns only individuals.
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Table 5.2: Data triple pattern rewriting based on subject part. Function Ds(t,m) rewrites a triple pattern t
using a mapping m for the term appearing in the subject position of t.

If t is of type: and m is of type: then Ds(t,m) =

(o1, pred, ob) o1 → o2 (o2, pred, ob)

Similarly, Tables 5.3 and 5.4 present the functions Dp(t,m) and Do(t,m) for the rewriting
of a data triple pattern t using a mapping m for the term appearing in the predicate and object
position of t, respectively. Since neither classes or individuals can be used in the predicate position
of a triple pattern, only property mappings can be exploited in the rewriting of a triple pattern
based on its predicate part. On the other hand, when a property is used on the object position of
a triple pattern, the predicate position cannot contain an object/datatype property, or the built-in
properties rdf:type, owl:sameAs and owl:differentFrom. Thus, relying on the data triple
pattern definition, the only cases mentioned for the rewriting of a data triple pattern based on a
mapping of its object part concern: (a) individuals, and (b) classes, with the precondition that the
triple pattern’s predicate position contains the rdf:type property.

As already mentioned, in order to fully rewrite a triple pattern, any proposed algorithm must use
a mapping for each ontology term appearing in it. Thus, the functions presented in Tables 5.2, 5.3
and 5.4 can be considered as rewriting steps in the process of triple pattern rewriting. Appendix A
proves that all the provided rewriting functions preserve the exploited mapping type semantics.

Lemma 5.1. Let t be a data triple pattern andm a predefined mapping for the term appearing in the
subject position of t. Triple pattern t can be reformulated based on its subject part by invoking the
function Ds(t,m), presented in Table 5.2. Considering the semantics of the initial triple pattern, as
well as the semantics of the resulted graph pattern, this rewriting step is guaranteed to preserve the
semantics of the exploited mapping m. The proof is available in the Appendix A.1. �

Lemma 5.2. Let t be a data triple pattern andm a predefined mapping for the term appearing in the
predicate position of t. Triple pattern t can be reformulated based on its predicate part by invoking
the functionDp(t,m), presented in Table 5.3. Considering the semantics of the initial triple pattern,
as well as the semantics of the resulted graph pattern, this rewriting step is guaranteed to preserve
the semantics of the exploited mapping m. The proof is available in the Appendix A.2. �

Lemma 5.3. Let t be a data triple pattern and m a predefined mapping for the term appearing in
the object position of t. Triple pattern t can be reformulated based on its object part by invoking the
function Do(t,m), presented in Table 5.4. Considering the semantics of the initial triple pattern, as
well as the semantics of the resulted graph pattern, this rewriting step is guaranteed to preserve the
semantics of the exploited mapping m. The proof is available in the Appendix A.3. �
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Table 5.3: Data triple pattern rewriting based on predicate part. Function Dp(t,m) rewrites a triple pattern
t using a mapping m for the property appearing in the predicate position of t.

If t is of type: and m is of type: then Dp(t,m) =

(sub,R1, ob) R1 → r1 (sub, r1, ob)

R1 → R2 uR3 Dp

(
t, R1 → R2

)
AND Dp

(
t, R1 → R3

)
R1 → R2 tR3 Dp

(
t, R1 → R2

)
UNION Dp

(
t, R1 → R3

)
R1 → R2 −R3 Dp

(
t, R1 → R2

)
MINUS Dp

(
t, R1 → R3

)
R1 → R2 ◦R3 Dp

(
(sub,R, ?v), R→ R2

)
AND

Dp

(
(?v,R, ob), R→ R3

)
R1 → R−2 Dp

(
(ob,R, sub), R→ R2

)
R1 → R+

2 Dp

(
t, R1 → R2

)
UNION

Dp

(
t, R1 → R2 ◦R2

)
R1 → ∃(R2)(R3).P1 Dp

(
(sub,R, ?v1), R→ R2

)
AND

Dp

(
(ob,R, ?v2), R→ R3

)
FILTER

Tb
(
P1, ?v1, ?v2

)
R1 → ∃(U1)(U2).P1 Dp

(
(sub, U, ?v1), U → U1

)
AND

Dp

(
(ob, U, ?v2), U → U2

)
FILTER

Tb
(
P1, ?v1, ?v2

)
R1 → R2 � C1 Dp

(
t, R1 → R2

)
AND

Do

(
(sub, rdf :type, C), C → C1

)
R1 → R2 � C1 Dp

(
t, R1 → R2

)
AND

Do

(
(ob, rdf :type, C), C → C1

)
(sub, U1, ob) U1 → u1 (sub, u1, ob)

U1 → U2 u U3 Dp

(
t, U1 → U2

)
AND Dp

(
t, U1 → U3

)
U1 → U2 t U3 Dp

(
t, U1 → U2

)
UNION Dp

(
t, U1 → U3

)
U1 → U2 − U3 Dp

(
t, U1 → U2

)
MINUS Dp

(
t, U1 → U3

)
U1 → R1 ◦ U2 Dp

(
(sub,R, ?v), R→ R1

)
AND

Dp

(
(?v, U, ob), U → U2

)
U1 → U2 � C1 Dp

(
t, U1 → U2

)
AND

Do

(
(sub, rdf :type, C), C → C1

)
U1 → U2 � D1 Dp

(
t, U1 → U2

)
FILTER Td

(
D1, ob

)
U1 → trans(U2) SELECT

(
sub, trans(?v) AS ob

)
WHERE

(
Dp

(
(sub, U, ?v), U → U2

))
Note: FunctionDo(t,m) is defined in Table 5.4 and functions Tb(P, x, y), Td(D, x) are defined in Table 5.1.
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Table 5.4: Data triple pattern rewriting based on object part. Function Do(t,m) rewrites a triple pattern t
using a mapping m for the term appearing in the object position of t.

If t is of type: and m is of type: then Do(t,m) =

(sub, rdf :type, C1) C1 → c1 (sub, rdf :type, c1)

C1 → C2 u C3 Do

(
t, C1 → C2

)
AND Do

(
t, C1 → C3

)
C1 → C2 t C3 Do

(
t, C1 → C2

)
UNION Do

(
t, C1 → C3

)
C1 → C2 − C3 Do

(
t, C1 → C2

)
MINUS Do

(
t, C1 → C3

)
C1 → ∃R1.C2 Dp

(
(sub,R, ?v), R→ R1 � C2

)
C1 → ∃U1.D1 Dp

(
(sub, U, ?v), U → U1 � D1

)
C1 → ∃R1.P1 Dp

(
(sub,R, ?v), R→ R1

)
FILTER Tu

(
P1, ?v

)
C1 → ∃U1.P1 Dp

(
(sub, U, ?v), U → U1

)
FILTER Tu

(
P1, ?v

)
C1 → ∃(R1, R2).P1 Dp

(
(sub,R, ?v1), R→ R1

)
AND

Dp

(
(sub,R, ?v2), R→ R2

)
FILTER

Tb
(
P1, ?v1, ?v2

)
C1 → ∃(U1, U2).P1 Dp

(
(sub, U, ?v1), U → U1

)
AND

Dp

(
(sub, U, ?v2), U → U2

)
FILTER

Tb
(
P1, ?v1, ?v2

)
C1 → T n R1 SELECT DISTINCT (sub)

WHERE
(
Dp

(
(sub,R, ?v), R→ R1

))
GROUP BY (sub)

HAVING
(
COUNT (DISTINCT ?v) T n

)
C1 → T n U1 SELECT DISTINCT (sub)

WHERE
(
Dp

(
(sub, U, ?v), U → U1

))
GROUP BY (sub)

HAVING
(
COUNT (DISTINCT ?v) T n

)
C1 → T n R1.C2 SELECT DISTINCT (sub)

WHERE
(
Dp

(
(sub,R, ?v), R→ R1 � C2

))
GROUP BY (sub)

HAVING
(
COUNT (DISTINCT ?v) T n

)
C1 → T n U1.D1 SELECT DISTINCT (sub)

WHERE
(
Dp

(
(sub, U, ?v), U → U1 � D1

))
GROUP BY (sub)

HAVING
(
COUNT (DISTINCT ?v) T n

)
C1 → {o1, . . . , on} VALUES (sub) (o1 . . . on)

(sub, pred, o1) o1 → o2 (sub, pred, o2)

Note: Function Dp(t,m) is defined in Table 5.3, while functions Tu(P, x), Tb(P, x, y) are defined in Table 5.1.
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Example 5.1 (Triple Pattern Rewriting by Subject). Consider a triple pattern t = (PearsonPLC,

owl:sameAs, ?x) and a mapping m : PearsonPLC ≡ Pearson for the individual PearsonPLC
appearing in the subject position of t. Based on Table 5.2 and the fact that m is of type o1 → o2,
the data triple pattern t can be reformulated by its subject part as follows:

Ds(t,m) = (Pearson, owl:sameAs, ?x) �

Example 5.2 (Triple Pattern Rewriting by Predicate). Consider a triple pattern t = (?x, author,

?y) and a mappingm : author w creator◦fullname for the datatype property author appearing
in the predicate position of t. Based on Table 5.3 and the fact that m is of type U1 → R1 ◦ U2, the
data triple pattern t can be reformulated by its predicate part as follows:

Dp(t,m) = Dp

(
(?x,R, ?v), R→ creator

)
AND Dp

(
(?v, U, ?y), U → fullname

)
= (?x, creator, ?v) AND (?v, fullname, ?y)

�

Example 5.3 (Triple Pattern Rewriting by Predicate). Consider a data triple pattern t = (?x,

longerThan, ?y) and a mapping m : longerThan ≡ ∃(runtime)(runtime).> for the object
property longerThan appearing in the predicate position of t. Based on Table 5.3 and the fact that
m is of type R1 → ∃(U1)(U2).P1, the data triple pattern t can be reformulated by its predicate part
as follows:

Dp(t,m) = Dp

(
(?x, U, ?v1), U → runtime

)
AND Dp

(
(?y, U, ?v2), U → runtime

)
FILTER Tb(>, ?v1, ?v2)

= (?x, runtime, ?v1) AND (?y, runtime, ?v2) FILTER (?v1 >?v2)

�

Example 5.4 (Triple Pattern Rewriting by Predicate). Consider a triple pattern t = (?x, review,

?y) and a mapping m : review w critique � (Movie t Textbook) for the datatype property
review appearing in the predicate position of t. Based on Table 5.3 and the fact that m is of type
U1 → U2 � C1, the data triple pattern t can be reformulated by its predicate part as follows:

Dp(t,m) = Dp(t, review → critique) AND Do

(
(?x, rdf :type, C), C →Movie t Textbook

)
= (?x, critique, ?y) AND

(
(?x, rdf :type,Movie) UNION (?x, rdf :type, Textbook)

)
Note that mappingm′ : C →MovietTextbook is of type C1 → C2tC3, and therefore t′ = (?x,

rdf :type, C) is reformulated by its object part as follows:

Do(t
′,m′) = Do(t

′, C →Movie) UNION Do(t
′, C → Textbook)

= (?x, rdf :type,Movie) UNION (?x, rdf :type, Textbook)
�
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Example 5.5 (Triple Pattern Rewriting by Object). Consider a triple pattern t = (?x, rdf :type,

Science) and a mapping m : Science ≡ Mathematics t (Textbook − Novel) for the class
Science appearing in the object position of t. Based on Table 5.4 and the fact that m is of type
C1 → C2 t C3, the data triple pattern t can be reformulated by its object part as follows:

Do(t,m) = Do(t, Science→Mathematics) UNION Do(t, Science→ Textbook −Novel)
= (?x, rdf :type,Mathematics) UNION

(
(?x, rdf :type, Textbook) MINUS

(?x, rdf :type,Novel)
)

Note that mapping m′ : Science→ Textbook −Novel is of type C1 → C2 − C3, and therefore:

Do(t,m
′) = Do(t, Science→ Textbook) MINUS Do(t, Science→ Novel)

= (?x, rdf :type, Textbook) MINUS (?x, rdf :type,Novel)
�

Example 5.6 (Triple Pattern Rewriting by Object). Consider a triple pattern t = (?x, rdf :type,

Autobiography) and a mapping m : Autobiography w Biographyu∃(creator, topic).= for the
class Autobiography appearing in the object position of t. Based on Table 5.4 and the fact that m
is of type C1 → C2 uC3, the data triple pattern t can be reformulated by its object part as follows:

Do(t,m) = Do(t, Autobiography → Biography) AND

Do

(
t, Autobiography → ∃(creator, topic).=

)
= (?x, rdf :type,Biography) AND (?x, creator, ?v1) AND (?x, topic, ?v2)

FILTER (?v1 =?v2)

Note that mapping m′ : Autobiography → ∃(creator, topic).= is of type C1 → ∃(R1, R2).P1,
and therefore:

Do(t,m
′) = Dp

(
(?x,R, ?v1), R→ creator

)
AND Dp

(
(?x,R, ?v2), R→ topic

)
FILTER Tb(=, ?v1, ?v2)

= (?x, creator, ?v1) AND (?x, topic, ?v2) FILTER (?v1 =?v2)

�

5.3 Schema Triple Pattern Rewriting

This section presents the set of functions and rules adopted for the rewriting of schema triple pat-
terns; that is, the triple patterns referring to class/property hierarchies, property domains/ranges
and other schema information. Similarly to the previous section, we adopt the notation presented
in Chapter 4; that is, C for class expressions, R for object property expressions, U for datatype
property expressions, o for individuals, P for unary/binary predicates and D for data ranges.
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Definition 5.3 (Schema Triple Pattern). Let I be the set of IRIs, L the set of RDF Literals, and V
the set of variables. Considering that a triple pattern is a tuple (s, p, o) ∈ (I ∪ V )× (I ∪ V )× (I ∪
L ∪ V ), a schema triple pattern is a triple pattern, where:

• No variable is used in the predicate position.
• Each property used in the predicate position is an RDF, RDFS, or OWL built-in property with

the exception of: owl:sameAs, owl:differentFrom.
• If rdf:type is used in the predicate position, either a class instance is used in the subject

position, or an RDF, RDFS, or OWL built-in vocabulary term is used in the object position.
�

Compared to data triple pattern rewriting, schema triple pattern rewriting introduces several
difficulties in mapping exploitation since it needs to take into account the exact triple pattern se-
mantics. Typically, data sources and ontologies provide schema information about named classes,
properties and individuals. However, mappings are formed by relating unnamed expressions that
describe class instances or binary relations, and it is unlikely for any data source to provide schema
information about them. In order to deal with this issue, the proposed schema triple pattern rewrit-
ing method is based on a set of deductive rules and on the exploitation of any potential schema
information about the named ontology terms appearing in the input mapping.

The supported schema triple patterns, able to be reformulated effectively through the use of
inference, are those having on their predicate position one of the following built-in properties:
rdf:type, rdfs:subClassOf, rdfs:subPropertyOf, owl:equivalentClass, owl:equiva-
lentProperty, owl:complementOf, and owl:disjointWith. The rest schema triple patterns
can be reformulated only in case of a given 1:1 cardinality mapping. Tables 5.5, 5.6 and 5.7 provide
the deductive rules that form the basis of the proposed schema triple pattern rewriting method.

Note that due to the high expressiveness of the SPARQL–RW mapping model, an input mapping
may need to be simplified in order to be used by any inference based method. The operations that
determine whether a mapping should be transformed are: enumeration, existential quantification,
existential predicate restriction, (un)qualified number restriction, property inversion, composition,
transitivity, transformation and property domain/range restriction. Mappings containing such op-
erations need to have them removed and also their mapping relationship modified respectively.

Definition 5.4 (Simplified Class Expression). Let c be a named class. A simplified class ex-
pression C is a class expression having any enumeration, existential quantifications, existential
predicate restrictions, and (un)qualified number restrictions removed:

C → c | C u C | C t C | C − C (5.1)
�
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Table 5.5: Deductive rules based on class axioms.

Premise No.1 Premise No.2 Conclusion Axiom Type

C1 ≡ C2 C ′ v C2 C ′ v C1 Subsumption

C1 w C2

C1 ≡ C2 u C3 C ′ v C2 and C ′ v C3

C1 w C2 u C3

C1 ≡ C2 t C3 C ′ v C2 or C ′ v C3

C1 w C2 t C3

C1 ≡ C2 C ′ w C2 C ′ w C1

C1 v C2

C1 ≡ C2 u C3 C ′ w C2 or C ′ w C3

C1 v C2 u C3

C1 ≡ C2 t C3 C ′ w C2 and C ′ w C3

C1 v C2 t C3

C1 ≡ C2 − C3 C ′ w C2

C1 v C2 − C3

C1 ≡ C2 C ′ ≡ C2 C ′ ≡ C1 Equivalence

C1 ≡ C2 u C3 C ′ ≡ C2 and C ′ ≡ C3

C1 ≡ C2 t C3 C ′ ≡ C2 and C ′ ≡ C3

C1 ≡ C2 C ′ ≡ Cc
2 C ′ ≡ Cc

1 Complementarity

C1 ≡ C2 u C3 C ′ ≡ Cc
2 and C ′ ≡ Cc

3

C1 ≡ C2 t C3 C ′ ≡ Cc
2 and C ′ ≡ Cc

3

C1 ≡ C2 C ′ u C2 = ∅ C ′ u C1 = ∅ Disjointness

C1 v C2

C1 ≡ C2 u C3 C ′ u C2 = ∅ and C ′ u C3 = ∅
C1 v C2 u C3

C1 ≡ C2 t C3 C ′ u C2 = ∅ and C ′ u C3 = ∅
C1 v C2 t C3

C1 ≡ C2 − C3 C ′ u C2 = ∅
C1 v C2 − C3
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Table 5.6: Deductive rules based on object property axioms.

Premise No.1 Premise No.2 Conclusion Axiom Type

R1 ≡ R2 R′ v R2 R′ v R1 Subsumption

R1 w R2

R1 ≡ R2 uR3 R′ v R2 and R′ v R3

R1 w R2 uR3

R1 ≡ R2 tR3 R′ v R2 or R′ v R3

R1 w R2 tR3

R1 ≡ R2 R′ w R2 R′ w R1

R1 v R2

R1 ≡ R2 uR3 R′ w R2 or R′ w R3

R1 v R2 uR3

R1 ≡ R2 tR3 R′ w R2 and R′ w R3

R1 v R2 tR3

R1 ≡ R2 −R3 R′ w R2

R1 v R2 −R3

R1 ≡ R2 R′ ≡ R2 R′ ≡ R1 Equivalence

R1 ≡ R2 uR3 R′ ≡ R2 and R′ ≡ R3

R1 ≡ R2 tR3 R′ ≡ R2 and R′ ≡ R3

Definition 5.5 (Simplified Object Property Expression). Let r be a named object property. A
simplified object property expressionR is an object property expression having any inversion, com-
position, transitivity and domain/range restrictions removed:

R→ r | R uR | R tR | R−R (5.2)
�

Definition 5.6 (Simplified Datatype Property Expression). Let u be a named datatype property.
A simplified datatype property expression U is a datatype property expression having any compo-
sition, transformation and domain/range restrictions removed:

U → u | U u U | U t U | U − U (5.3)
�

Tables 5.8, 5.9 and 5.10 present the relationship transformation rules applied after simplifying
an input class, object property and datatype property mapping; that is, after removing any mapped
expression parts that involve the aforementioned unsupported operations. Certainly, not all mapping
types can be effectively transformed. For instance, any simplification on a mapping between a
property and a property composition will have the composition operation removed, and therefore,
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Table 5.7: Deductive rules based on datatype property axioms.

Premise No.1 Premise No.2 Conclusion Axiom Type

U1 ≡ U2 U ′ v U2 U ′ v U1 Subsumption

U1 w U2

U1 ≡ U2 u U3 U ′ v U2 and U ′ v U3

U1 w U2 u U3

U1 ≡ U2 t U3 U ′ v U2 or U ′ v U3

U1 w U2 t U3

U1 ≡ U2 U ′ w U2 U ′ w U1

U1 v U2

U1 ≡ U2 u U3 U ′ w U2 or U ′ w U3

U1 v U2 u U3

U1 ≡ U2 t U3 U ′ w U2 and U ′ w U3

U1 v U2 t U3

U1 ≡ U2 − U3 U ′ w U2

U1 v U2 − U3

U1 ≡ U2 U ′ ≡ U2 U ′ ≡ U1 Equivalence

U1 ≡ U2 u U3 U ′ ≡ U2 and U ′ ≡ U3

U1 ≡ U2 t U3 U ′ ≡ U2 and U ′ ≡ U3

the entire mapped expression erased. In these cases the mapping cannot be used for the rewriting
of a schema triple pattern. Note that mappings between individuals do not need to be simplified in
order to be used in the schema triple pattern rewriting process.

Table 5.8: Relationship transformation rules for class mapping simplification.

Mapping Type Condition Transformed Mapping Type

C1 ≡ C2 u C3 C2 or C3 removed/simplified C1 v C2 u C3 or C1 v C2 or C1 v C3

C1 ≡ C2 t C3 C2 or C3 removed/simplified C1 w C2 t C3 or C1 w C2 or C1 w C3

C1 ≡ C2 − C3 C3 removed/simplified C1 v C2 − C3 or C1 v C2

C1 v C2 u C3 C2 or C3 removed/simplified C1 v C2 u C3 or C1 v C2 or C1 v C3

C1 v C2 t C3 C2 or C3 removed/simplified C1 → C2 t C3 or C1 → C2 or C1 → C3

C1 v C2 − C3 C3 removed/simplified C1 v C2 − C3 or C1 v C2

C1 w C2 u C3 C2 or C3 removed/simplified C1 → C2 u C3 or C1 → C2 or C1 → C3

C1 w C2 t C3 C2 or C3 removed/simplified C1 w C2 t C3 or C1 w C2 or C1 w C3

C1 w C2 − C3 C3 removed/simplified C1 → C2 − C3 or C1 → C2

→ Unspecified relationship.
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Table 5.9: Relationship transformation rules for object property mapping simplification.

Mapping Type Condition Transformed Mapping Type

R1 ≡ R2 uR3 R2 or R3 removed/simplified R1 v R2 uR3 or R1 v R2 or R1 v R3

R1 ≡ R2 tR3 R2 or R3 removed/simplified R1 w R2 tR3 or R1 w R2 or R1 w R3

R1 ≡ R2 −R3 R3 removed/simplified R1 v R2 −R3 or R1 v R2

R1 ≡ R2 � C1 C1 removed R1 v R2

R1 ≡ R2 � C1 C1 removed R1 v R2

R1 v R2 uR3 R2 or R3 removed/simplified R1 v R2 uR3 or R1 v R2 or R1 v R3

R1 v R2 tR3 R2 or R3 removed/simplified R1 → R2 tR3 or R1 → R2 or R1 → R3

R1 v R2 −R3 R3 removed/simplified R1 v R2 −R3 or R1 v R2

R1 v R2 � C1 C1 removed R1 v R2

R1 v R2 � C1 C1 removed R1 v R2

R1 w R2 uR3 R2 or R3 removed/simplified R1 → R2 uR3 or R1 → R2 or R1 → R3

R1 w R2 tR3 R2 or R3 removed/simplified R1 w R2 tR3 or R1 w R2 or R1 w R3

R1 w R2 −R3 R3 removed/simplified R1 → R2 −R3 or R1 → R2

R1 w R2 � C1 C1 removed R1 → R2

R1 w R2 � C1 C1 removed R1 → R2

→ Unspecified relationship.

Table 5.10: Relationship transformation rules for datatype property mapping simplification.

Mapping Type Condition Transformed Mapping Type

U1 ≡ U2 u U3 U2 or U3 removed/simplified U1 v U2 u U3 or U1 v U2 or U1 v U3

U1 ≡ U2 t U3 U2 or U3 removed/simplified U1 w U2 t U3 or U1 w U2 or U1 w U3

U1 ≡ U2 − U3 U3 removed/simplified U1 v U2 − U3 or U1 v U2

U1 ≡ U2 � C1 C1 removed U1 v U2

U1 ≡ U2 � D1 D1 removed U1 v U2

U1 v U2 u U3 U2 or U3 removed/simplified U1 v U2 u U3 or U1 v U2 or U1 v U3

U1 v U2 t U3 U2 or U3 removed/simplified U1 → U2 t U3 or U1 → U2 or U1 → U3

U1 v U2 − U3 U3 removed/simplified U1 v U2 − U3 or U1 v U2

U1 v U2 � C1 C1 removed U1 v U2

U1 v U2 � D1 D1 removed U1 v U2

U1 w U2 u U3 U2 or U3 removed/simplified U1 → U2 u U3 or U1 → U2 or U1 → U3

U1 w U2 t U3 U2 or U3 removed/simplified U1 w U2 t U3 or U1 w U2 or U1 w U3

U1 w U2 − U3 U3 removed/simplified U1 → U2 − U3 or U1 → U2

U1 w U2 � C1 C1 removed U1 → U2

U1 w U2 � D1 D1 removed U1 → U2

→ Unspecified relationship.
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Example 5.7 (Mapping Simplification). Consider a class mappingAutobiography v Biography
u ∃(creator, topic).= between the class Autobiography and the class Biography restricted on
the values of the properties creator and topic. In order for this mapping to be exploitable by
the schema triple pattern rewriting process, the existential predicate restriction in the right side
expression has to be removed. Therefore, based on the rules presented in Table 5.8 the initial
mapping is transformed to: Autobiography v Biography. �

Example 5.8 (Mapping Simplification). Consider a property mapping review ≡ critique �

(MovietTextbook) between the datatype property review and the property critique restricted
on its domain values. In order for this mapping to be exploitable by the schema triple pattern rewrit-
ing process, the domain restriction in the right side expression has to be removed. Therefore, based
on the rules presented in Table 5.10 the initial mapping is transformed to: review v critique. �

Tables 5.11 and 5.12 present the functions Ss(t,m) and So(t,m) for the rewriting of a schema
triple pattern t using a mapping m for the term appearing in the subject and object position of t,
respectively. Unlike data triple patterns, the subject and object positions of a schema triple pattern
may contain both classes and properties. Regarding schema triple pattern rewriting based on the
predicate part, no functions are provided since the RDF, RDFS, and OWL properties appearing in
that position do not affect the rewriting process, and thus remain intact.

Example 5.9 (Triple Pattern Rewriting by Subject). Consider a triple pattern t = (PearsonPLC,

rdf :type, ?x) and a mapping m : PearsonPLC ≡ Pearson for the individual PearsonPLC ap-
pearing in the subject position of t. Based on Table 5.11 and the fact that m is of type o1 → o2, the
schema triple pattern t can be reformulated by its subject part as follows:

Ss(t,m) = (Pearson, rdf :type, ?x) �

Example 5.10 (Triple Pattern Rewriting by Subject). Consider a triple pattern t = (Bestseller,

rdfs:subClassOf, ?x), as well as a mappingm : Bestseller ≡ TextbookuPopular for the class
Bestseller appearing in the subject position of t. Based on Table 5.11 and the fact that m is of
type C1 → C2 u C3, the schema triple pattern t can be reformulated by its subject part as follows:

Ss(t,m) = Ss(t, Bestseller → Textbook) UNION Ss(t, Bestseller → Popular)

= (Textbook, rdfs:subClassOf, ?x) UNION (Popular, rdfs:subClassOf, ?x)
�

Example 5.11 (Triple Pattern Rewriting by Subject). Consider a schema triple pattern t = (name,

rdfs:subPropertyOf, ?x) and a mapping m : name ≡ title t label for the datatype property
name appearing in the subject position of t. Based on Table 5.11 and the fact that m is of type
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Table 5.11: Schema triple pattern rewriting based on subject part. Function Ss(t,m) rewrites a triple pattern
t using a mapping m for the term appearing in the subject position of t.

If t is of type: m is of type: and t’s predicate ∈: then Ss(t,m) =

(C1, pred, ob) C1 → c1 any built-in property (c1, pred, ob)

C1 → C2 u C3 rdfs:subClassOf Ss
(
t, C1 → C2

)
UNION

Ss
(
t, C1 → C3

)
rdf:type, Ss

(
t, C1 → C2

)
AND

owl:equivalentClass, Ss
(
t, C1 → C3

)
owl:complementOf,
owl:disjointWith

C1 → C2 t C3 rdf:type,
rdfs:subClassOf,
owl:equivalentClass,
owl:complementOf,
owl:disjointWith

C1 → C2 − C3 rdf:type

rdfs:subClassOf, Ss
(
t, C1 → C2

)
owl:disjointWith

(R1, pred, ob) R1 → r1 any built-in property (r1, pred, ob)

R1 → R2 uR3 rdfs:subPropertyOf Ss
(
t, R1 → R2

)
UNION

Ss
(
t, R1 → R3

)
rdf:type, Ss

(
t, R1 → R2

)
AND

owl:equivalentProperty Ss
(
t, R1 → R3

)
R1 → R2 tR3 rdf:type,

rdfs:subPropertyOf,
owl:equivalentProperty

R1 → R2 −R3 rdf:type

rdfs:subPropertyOf Ss
(
t, R1 → R2

)
(U1, pred, ob) U1 → u1 any built-in property (u1, pred, ob)

U1 → U2 u U3 rdfs:subPropertyOf Ss
(
t, U1 → U2

)
UNION

Ss
(
t, U1 → U3

)
rdf:type, Ss

(
t, U1 → U2

)
AND

owl:equivalentProperty Ss
(
t, U1 → U3

)
U1 → U2 t U3 rdf:type,

rdfs:subPropertyOf,
owl:equivalentProperty

U1 → U2 − U3 rdf:type

rdfs:subPropertyOf Ss
(
t, U1 → U2

)
(o1, pred, ob) o1 → o2 any built-in property (o2, pred, ob)
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Table 5.12: Schema triple pattern rewriting based on object part. Function So(t,m) rewrites a triple pattern
t using a mapping m for the term appearing in the object position of t.

If t is of type: m is of type: and t’s predicate ∈: then Ss(t,m) =

(sub, pred, C1) C1 → c1 any built-in property (sub, pred, c1)

C1 → C2 u C3 rdf:type, So
(
t, C1 → C2

)
AND

rdfs:subClassOf, So
(
t, C1 → C3

)
owl:equivalentClass,
owl:complementOf,
owl:disjointWith

C1 → C2 t C3 rdfs:subClassOf So
(
t, C1 → C2

)
UNION

So
(
t, C1 → C3

)
rdf:type, So

(
t, C1 → C2

)
AND

owl:equivalentClass, So
(
t, C1 → C3

)
owl:complementOf,
owl:disjointWith

C1 → C2 − C3 rdf:type

owl:disjointWith So
(
t, C1 → C2

)
(sub, pred,R1) R1 → r1 any built-in property (sub, pred, r1)

R1 → R2 uR3 rdf:type, So
(
t, R1 → R2

)
AND

rdfs:subPropertyOf, So
(
t, R1 → R3

)
owl:equivalentProperty

R1 → R2 tR3 rdfs:subPropertyOf So
(
t, R1 → R2

)
UNION

So
(
t, R1 → R3

)
rdf:type, So

(
t, R1 → R2

)
AND

owl:equivalentProperty So
(
t, R1 → R3

)
R1 → R2 −R3 rdf:type

(sub, pred, U1) U1 → u1 any built-in property (sub, pred, u1)

U1 → U2 u U3 rdf:type, So
(
t, U1 → U2

)
AND

rdfs:subPropertyOf, So
(
t, U1 → U3

)
owl:equivalentProperty

U1 → U2 t U3 rdfs:subPropertyOf So
(
t, U1 → U2

)
UNION

So
(
t, U1 → U3

)
rdf:type, So

(
t, U1 → U2

)
AND

owl:equivalentProperty So
(
t, U1 → U3

)
U1 → U2 − U3 rdf:type

(sub, pred, o1) o1 → o2 any built-in property (sub, pred, o2)
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U1 → U2 t U3, the triple pattern t can be reformulated by its subject part as follows:

Ss(t,m) = Ss(t, name→ title) AND Ss(t, name→ label)

= (title, rdfs:subPropertyOf, ?x) AND (label, rdfs:subPropertyOf, ?x)
�

Example 5.12 (Triple Pattern Rewriting by Object). Consider a schema triple pattern t = (?x,

rdfs:subClassOf,Bestseller) and a mapping m : Bestseller ≡ Textbook u Popular for the
class Bestseller appearing in the object position of t. Based on Table 5.12 and the fact that m is
of type C1 → C2 u C3, the triple pattern t can be reformulated by its object part as follows:

So(t,m) = So(t, Bestseller → Textbook) AND So(t, Bestseller → Popular)

= (?x, rdfs:subClassOf, Textbook) AND (?x, rdfs:subClassOf, Popular)
�

Example 5.13 (Triple Pattern Rewriting by Object). Consider a schema triple pattern t = (?x,

rdfs:subPropertyOf, name) and a mapping m : name ≡ title t label for the datatype property
name appearing in the object position of t. Based on Table 5.12 and the fact that m is of type
U1 → U2 t U3, the triple pattern t can be reformulated by its object part as follows:

So(t,m) = So(t, name→ title) UNION So(t, name→ label)

= (?x, rdfs:subPropertyOf, title) UNION (?x, rdfs:subPropertyOf, label)
�

Example 5.14 (Triple Pattern Rewriting by Object). Consider a schema triple pattern t = (?x,

owl:disjointWith, Science), as well as a mappingm : Science ≡Mathematicst(Textbook−
Novel) for the class Science appearing in the object position of t. Based on Table 5.12 and the
fact that m is of type C1 → C2 t C3, the triple pattern t can be reformulated by its object part as
follows:

So(t,m) = So(t, Science→Mathematics) AND So(t, Science→ Textbook −Novel)
= (?x, owl:disjointWith,Mathematics) AND (?x, owl:disjointWith, Textbook)

Note that mapping m′ : Science→ Textbook −Novel is of type C1 → C2 − C3, and therefore:

So(t,m′) = So(t, Science→ Textbook) = (?x, owl:disjointWith, Textbook) �

5.4 Graph Pattern Rewriting

The SPARQL–RW query rewriting method is based on the reformulation of the input query graph
pattern by exploiting a set of predefined ontology mappings and data source endpoints. This section
presents the set of algorithms which have been developed for performing SPARQL 1.1 graph pattern
rewriting, based on a set of GAV ontology mappings. All the provided algorithms depend directly
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on triple pattern and filter expression rewriting, and therefore, the rules and functions presented in
the previous sections are extensively used. After the rewriting of a query graph pattern, the resulted
triple patterns and filter expressions need to be grouped and enclosed in SERVICE clauses based on
the appearing ontology terms and the integrated data source endpoints. The generated result is a
federated SPARQL 1.1 query, referring to the integrated data source ontologies, able to be executed
in any SPARQL federated query engine [2, 80, 78, 62, 76].

Algorithm 5.1 is the main algorithm in the process of graph pattern rewriting. It takes as input a
graph patternG, a set of GAV ontology mappings M̄ , as well as a set of relations <S̄, Ē> specifying
the available endpoints for each integrated ontology schema. The algorithm uses recursion and
traverses the input graph pattern in a bottom-up manner, starting by rewriting the innermost basic
graph patterns of any nested queries and complex graph patterns (lines 24-33). Upon identifying
a basic graph pattern the algorithm begins by rewriting its filter expressions (lines 3-8). For each
expression it exploits 1-1 cardinality mappings to replace global ontology terms with local ones.

Following the filter expression rewriting, the algorithm proceeds with the rewriting of every
triple pattern in the basic graph pattern (lines 9-22). Any triple patterns containing property paths
in their predicate position are firstly transformed into graph patterns consisted exclusively of simple
triple patterns; that is, triple patterns having a single property IRI in their predicate position. The
transformation is performed using the functionP(t), presented in Table 5.13, and the resulted graph
patterns are subsequently reformulated using recursion (line 13). On the other hand, simple triple
patterns are directly reformulated using the Algorithms 5.2 and 5.3 based on the triple pattern type.

After triple pattern rewriting, the resulted graph pattern replaces the initial triple pattern (line
21) and the algorithm continues until the total input graph pattern G has been reformulated. The
final graph pattern is passed to Algorithm 5.4 in order to be decomposed with the use of SERVICE

clauses. Then, the decomposed graph pattern is ready to replace the input query graph pattern, and
transform the query into a federated one referring to the integrated data sources.

Table 5.13: Property path transformations. Function P(t) transforms a triple pattern t containing a property
path in its predicate position, into an equivalent graph pattern consisted of simple triple patterns.

If t of type: then P(t) =

(sub, iri, ob) (sub, iri, ob)

(sub, !iri, ob) unsupported

(sub, ˆpath, ob) P
(
(ob, path, sub)

)
(sub, path1/path2, ob) P

(
(sub, path1, ?v)

)
AND P

(
(?v, path2, ob)

)
(sub, path1|path2, ob) P

(
(sub, path1, ob)

)
UNION P

(
(sub, path2, ob)

)
(sub, path∗, ob) P

(
(sub, path, ob)

)
(sub, path+, ob)

(sub, path?, ob)(
sub, (path), ob

)
P
(
(sub, path, ob)

)
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Algorithm 5.1: Graph Pattern Rewriting

1 Function GraphPatternRW(G, M̄ , <S̄, Ē>)
Input: A graph pattern G, a set of mappings M̄ , as well as a set of relations <S̄, Ē>

specifying the available endpoints for each integrated ontology schema.
Output: The reformulated graph pattern G.

2 if G is basic graph pattern then
/* rewrite filter expressions */

3 foreach filter expression f ∈ G do
4 foreach ontology term o ∈ f do
5 let m ∈ M̄ be a 1-1 cardinality mapping for o;
6 use m to replace o with the mapped ontology term;
7 end
8 end

/* rewrite triple patterns */

9 foreach triple pattern t ∈ G do
10 let G′ be an empty graph pattern;
11 if t contains property path then
12 G′ = P(t) ; /* refer to Table 5.13 */

13 G′ = GraphPatternRW(g, M̄);
14 else
15 if t is data triple pattern then
16 G′ = DataTripleRW(G, M̄);
17 else
18 G′ = SchemaTripleRW(G, M̄);
19 end
20 end
21 replace t with the reformulated graph pattern G′;
22 end
23 else
24 let G′ be an empty graph pattern;
25 foreach sub-query q ∈ G do
26 let g be the graph pattern of q;
27 G′ = GraphPatternRW(g, M̄);
28 replace the graph pattern of q with G′;
29 end
30 foreach graph pattern g ∈ G do
31 G′ = GraphPatternRW(g, M̄);
32 replace g with the reformulated graph pattern G′;
33 end
34 end
35 G = GraphPatternDecomposition(G, <S̄, Ē>);
36 return G;
37 end
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Algorithm 5.2: Data Triple Pattern Rewriting

1 Function DataTripleRW(G, M̄)

Input: A graph pattern G, and a set of mappings M̄ .
Output: The reformulated graph pattern G.

2 let V , B, L, Ib be the sets of variables, blank nodes, literals and built-in IRIs;
3 if G is basic graph pattern then
4 foreach triple pattern t ∈ G do
5 let G′ be an empty graph pattern;

/* triple pattern rewriting by predicate */

6 if predicate(t) /∈ {Ib} and ∃m ∈ M̄ for predicate(t) then
7 G′ = Dp(t,m) ; /* refer to Table 5.3 */

8 G′ = DataTripleRW(G′, M̄);
/* triple pattern rewriting by subject */

9 else if subject(t) /∈ {V,B} and ∃m ∈ M̄ for subject(t) then
10 G′ = Ds(t,m) ; /* refer to Table 5.2 */

11 G′ = DataTripleRW(G′, M̄);
/* triple pattern rewriting by object */

12 else if object(t) /∈ {V,B,L} and ∃m ∈ M̄ for object(t) then
13 G′ = Do(t,m) ; /* refer to Table 5.4 */

14 else
15 G′ = t;
16 end
17 replace t with the reformulated graph pattern G′;
18 end
19 else
20 let G′ be an empty graph pattern;

/* rewrite existing sub-queries */

21 foreach sub-query q ∈ G do
22 let g be the graph pattern of q;
23 G′ = DataTripleRW(g, M̄);
24 replace the graph pattern of q with G′;
25 end

/* rewrite existing sub-graph patterns */

26 foreach graph pattern g ∈ G do
27 G′ = DataTripleRW(g, M̄);
28 replace g with the reformulated graph pattern G′;
29 end
30 end
31 return G;
32 end
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Algorithm 5.2 performs data triple pattern rewriting on a given graph pattern, using the rules
and functions presented in Section 5.2. It takes as input a graph pattern G containing data triple
patterns, as well as a set of GAV ontology mappings M̄ . The algorithm uses recursion and traverses
the input graph pattern in a bottom-up manner, starting by rewriting the innermost basic graph
patterns of any possible nested queries and complex graph patterns (lines 20-29). Every identified
basic graph pattern is reformulated triple pattern by triple pattern using mappings for any ontology
terms appearing in the subject, predicate and object triple pattern positions (lines 4-18).

Algorithm 5.3: Schema Triple Pattern Rewriting

1 Function SchemaTripleRW(G, M̄)

Input: A graph pattern G, and a set of mappings M̄ .
Output: The reformulated graph pattern G.

2 let V , B be the sets of variables and blank nodes;
3 if G is basic graph pattern then
4 foreach triple pattern t ∈ G do
5 let G′ be an empty graph pattern;

/* triple pattern rewriting by subject */

6 if subject(t) /∈ {V,B} and ∃m ∈ M̄ for subject(t) then
7 m = simplify(m);
8 G′ = Ss(t,m) ; /* refer to Table 5.11 */

9 G′ = SchemaTripleRW(G′, M̄);
/* triple pattern rewriting by object */

10 else if object(t) /∈ {V,B} and ∃m ∈ M̄ for object(t) then
11 m = simplify(m);
12 G′ = So(t,m) ; /* refer to Table 5.12 */

13 else
14 G′ = t;
15 end
16 replace t with the reformulated graph pattern G′;
17 end
18 else
19 let G′ be an empty graph pattern;

/* rewrite existing sub-graph patterns */

20 foreach graph pattern g ∈ G do
21 G′ = SchemaTripleRW(g, M̄);
22 replace g with the reformulated graph pattern G′;
23 end
24 end
25 return G;
26 end
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Algorithm 5.4: Graph Pattern Decomposition

1 Function GraphPatternDecomposition(G, <S̄, Ē>)
Input: A graph pattern G, as well as a set of relations <S̄, Ē> specifying the available

endpoints for each integrated ontology schema.
Output: The transformed graph pattern G.

2 if G is basic graph pattern then
3 let G′ be an empty group graph pattern;
4 G′ = use <S̄, Ē> to organize the triple patterns and filter expressions of G into

element groups that have to be executed over the same endpoints, based on the origin
(ontology schema) of the appearing ontology terms;

5 foreach graph pattern g ∈ G′ do
6 let E be the set of endpoints where g has to be executed;
7 if |E| = 0 then
8 E = all the integrated data source endpoints;
9 end

10 if |E| > 1 then
11 let g′ be an empty union graph pattern;
12 foreach endpoint e ∈ E do
13 add a copy of g to g′ and enclose it in a SERVICE clause;
14 specify e as the endpoint of the SERVICE clause;
15 end
16 replace g with g′;
17 else
18 enclose g in a SERVICE clause;
19 specify the only element of E as the SERVICE clause endpoint;
20 end
21 end
22 replace G with the transformed graph pattern G′;
23 else
24 let G′ be an empty graph pattern;
25 foreach sub-query q ∈ G do
26 let g be the graph pattern of q;
27 G′ = GraphPatternDecomposition(g, <S̄, Ē>);
28 replace the graph pattern of q with G′;
29 end
30 foreach graph pattern g ∈ G do
31 G′ = GraphPatternDecomposition(g, <S̄, Ē>);
32 replace g with the transformed graph pattern G′;
33 end
34 end
35 return G;
36 end
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Note that data triple pattern rewriting based on the predicate part and on property mappings
involving inversions, results in the swapping of the subject and object parts of the input triple
pattern. Therefore, for not skipping the rewriting of any global ontology term, the algorithm starts
triple pattern rewriting by exploiting a mapping for the triple pattern’s predicate part (line 7). The
result of this process is a graph pattern, which is subsequently recursively reformulated in terms of
the rest triple pattern parts (line 8). The resulted graph pattern replaces the initial triple pattern (line
17) and the algorithm continues until the total input graph pattern G has been reformulated.

On the other hand, Algorithm 5.3 performs schema triple pattern rewriting on a given graph
pattern, using the rules and functions presented in Section 5.3. It takes as input a graph pattern
G containing schema triple patterns, as well as a set of GAV ontology mappings M̄ . Similarly
to Algorithm 5.2, it uses recursion and traverses the input graph pattern in a bottom-up manner,
starting by rewriting the innermost basic graph patterns of any nested graph patterns (lines 19-23).
Every identified basic graph pattern is reformulated triple pattern by triple pattern using mappings
for any ontology terms appearing in the subject and object triple pattern positions (lines 4-18). Note
that before being used the mappings are firstly simplified (lines 7 and 11) based on the Definitions
5.4, 5.5, 5.6, and the transformation rules of Tables 5.8, 5.9, 5.10.

The algorithm starts the rewriting of a triple pattern based on a mapping of its subject part (line
8). The result of this process is a graph pattern, which is subsequently recursively reformulated
in terms of the object triple pattern part (line 9). The resulted graph pattern replaces the initial
triple pattern (line 16) and the algorithm continues until the total input graph pattern G has been
reformulated. Note that in both Algorithms 5.2 and 5.3, the variables and blank nodes appearing in
the input graph pattern are being preserved by the rewriting process.

Algorithm 5.4 is responsible for the decomposition of the reformulated graph pattern with the
use of SERVICE clauses indicating the SPARQL endpoint where each graph pattern part is to be
executed. It takes as input an already reformulated graph pattern G, as well as a set of relations
<S̄, Ē> specifying the available endpoints for each integrated ontology schema. Similarly to the
previously presented algorithms, Algorithm 5.4 uses recursion and traverses the input graph pattern
in a bottom-up manner, starting by the innermost basic graph patterns of any possible nested queries
and complex graph patterns (lines 24-33). Upon identifying a basic graph pattern the algorithm
proceeds by organizing its triple patterns and filter expressions into element groups that have to be
executed over the same endpoints, based on the origin (ontology schema) of the appearing ontology
terms. Subsequently, the groups are enclosed in SERVICE clauses based on the endpoints where
they have to be executed. Note that for triple patterns whose origin cannot be identified, the adopted
strategy is to execute them over all the integrated data source endpoints. The resulted graph pattern
replaces the initial one (line 22) and the algorithm continues until the total input graph pattern G
has been decomposed.
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The examples that follow illustrate the query rewriting process in detail. To this end, con-
sider the data integration scenario presented in Figure 5.1. The mediator ontology G describes the
schema of a mediator that integrates two data sources storing information about different types of
product items including books, films, and music. More specifically, the first data source preserves
information about book volumes, while the other preserves information about movies and text-
books. The schemas of the integrated data sources are provided by the source ontologies S1 and
S2, while their SPARQL endpoints are considered to be E1 and E2 respectively.

Figure 5.1: A full data integration scenario based on GAV approach.
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Example 5.15. Consider the following query expressed in terms of the mediator ontology of Fig-
ure 5.1: “Return book titles written by Jeffrey D. Ullman, along with their publisher.”. The
SPARQL syntax of this query is depicted below.

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@PREFIX G: <http://example.org/mediator#>

SELECT DISTINCT ?title ?publisher

WHERE {

?item G:name ?title .

?item rdf:type G:Book .

?item G:author ?author .

?item G:publisher ?publisher .

FILTER (?author = "Jeffrey D. Ullman")

}

Additionally, let M̄ be a set of predefined GAV ontology mappings between the mediator ontology
and the integrated data sources S1 and S2, consisted of the following mappings:

m1 : nameG w titleS1 t labelS2

m2 : BookG w V olumeS1 t TextbookS2

m3 : authorG w creatorS1 ◦ fullnameS1

m4 : publisherG w publishes−S1

In order to rewrite the input query for being executed over the integrated data sources, it suffices
to reformulate the query graph pattern using the mapping set M̄ and the Algorithm 5.1. Apart
from the initial query graph pattern and the mapping set M̄ , Algorithm 5.1 takes as input the
ontology schemas S̄ = {S1, S2} and the SPARQL endpoints Ē = {E1, E2} of the integrated
data sources. Since the input query graph pattern consists basically of a basic graph pattern, the
algorithm proceeds directly with the rewriting of its filter expressions and triple patterns.

Regarding the filter expression, it remains unchanged since it does not contain any global ontology
term. On the other hand, Figure 5.2 presents an overview of the triple pattern rewriting process,
skipping reformulation based on the subject part since the input triple patterns contain variables
in this position. Note that the triple patterns of the input query graph pattern refer to data and
therefore, the Algorithm 5.2 is used for their reformulation.

After the rewriting of filter expressions and triple patterns, the resulted graph pattern has to be
decomposed, with the use of SERVICE clauses, based on the origin (ontology schema) of the ap-
pearing ontology terms. To this end, the algorithm passes the resulted graph pattern, along with the
ontology schemas S̄ and the SPARQL endpoints Ē to the Algorithm 5.4. The decomposed graph
pattern substitutes the initial query graph pattern and the resulted query is depicted below.
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Figure 5.2: Triple pattern rewriting in the query graph pattern of Example 5.15. The parameters in the left
side of the arrows denote the mappings exploited by the rewriting process.

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@PREFIX S1: <http://example.org/source1#>

@PREFIX S2: <http://example.org/source2#>

SELECT DISTINCT ?title ?publisher

WHERE {

{SERVICE <E1> {?item S1:title ?title}}

UNION

{SERVICE <E2> {?item S2:label ?title}}

{SERVICE <E1> {?item rdf:type S1:Volume}}

UNION

{SERVICE <E2> {?item rdf:type S2:Textbook}}

SERVICE <E1> {

?item S1:creator ?v .

?v S1:fullname ?author .

?publisher S1:publishes ?item .

FILTER (?author = "Jeffrey D. Ullman")

}

}

Example 5.16. Consider the following query expressed in terms of the mediator ontology of Fig-
ure 5.1: “Return bestselling scientific or autobiography book titles.”. The SPARQL syntax of this
query is depicted below.

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@PREFIX G: <http://example.org/mediator#>

SELECT DISTINCT ?title

WHERE {

?item G:name ?title .

?item rdf:type G:Bestseller .

{?item rdf:type G:Science}

UNION



5.4. Graph Pattern Rewriting 86

{?item rdf:type G:Autobiography}

}

Additionally, let M̄ be a set of predefined GAV ontology mappings between the mediator ontology
and the integrated data sources S1 and S2, consisted of the following mappings:

m1 : nameG w titleS1 t labelS2

m2 : BestsellerG v PopularS2

m3 : ScienceG ≡ MathematicsS1 t (TextbookS2 − NovelS2)

m4 : AutobiographyG ≡ BiographyS1 u ∃(creatorS1, topicS1). =

Similarly to the previous example, in order to rewrite the input query for being executed over the
integrated data sources, it suffices to reformulate the query graph pattern using the mapping set M̄
and the Algorithm 5.1. In this case, the input query graph pattern consists of two triple patterns
and a union graph pattern. The algorithm proceeds in a bottom-up approach and rewrites any triple
patterns in the input graph pattern. Figure 5.3 presents an overview of the triple pattern rewriting
process, skipping reformulation based on the subject part since the input triple patterns contain
variables in this position. Note that the triple patterns of the input query graph pattern refer to data
and therefore, the Algorithm 5.2 is used for their reformulation.

Figure 5.3: Triple pattern rewriting in the query graph pattern of Example 5.16. The parameters in the left
side of the arrows denote the mappings exploited by the rewriting process.

After triple pattern rewriting, the resulted graph pattern is decomposed using the Algorithm 5.4,
based on the origin (ontology schema) of the appearing ontology terms. The final query is formed
by substituting the initial query graph pattern with the decomposed graph pattern. Considering E1

andE2 as the SPARQL endpoints of the integrated data sources S1 and S2 respectively, the resulted
query is depicted below.
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@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@PREFIX S1: <http://example.org/source1#>

@PREFIX S2: <http://example.org/source2#>

SELECT DISTINCT ?title

WHERE {

{SERVICE <E1> {?item S1:title ?title}}

UNION

{SERVICE <E2> {?item S2:label ?title}}

SERVICE <E2> {?item rdf:type S2:Popular}

{

{SERVICE <E1> {?item rdf:type S1:Mathematics}}

UNION

{{SERVICE <E2> {?item rdf:type S2:Textbook}}

MINUS

{SERVICE <E2> {?item rdf:type S2:Novel}}}

}

UNION

{

SERVICE <E1> {

?item rdf:type S1:Biography .

?item S1:creator ?v1 .

?item S1:topic ?v2 .

FILTER (?v1 = ?v2)

}

}

}

Example 5.17. Consider the following query expressed in terms of the mediator ontology of Fig-
ure 5.1: “Return at most 10 cross-genre short films. The results should be formed in descending
order based on their title values”. The SPARQL syntax of this query is depicted below.

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@PREFIX G: <http://example.org/mediator#>

SELECT DISTINCT ?title

WHERE {

?item G:name ?title .

?item rdf:type G:CrossGenre .

?item rdf:type G:ShortFilm .

} ORDER BY DESC (?title) LIMIT 10

Additionally, let M̄ be a set of predefined GAV ontology mappings between the mediator ontology
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and the integrated data sources S1 and S2, consisted of the following mappings:

m1 : nameG w titleS1 t labelS2

m2 : CrossGenreG ≡> 2 genreS2

m3 : ShortF ilmG ≡ ∃runtimeS2. 640

Similarly to the previous examples, in order to rewrite the input query for being executed over the
integrated data sources, it suffices to reformulate the query graph pattern using the mapping set
M̄ and the Algorithm 5.1. Since the input query graph pattern consists basically of a basic graph
pattern, the algorithm proceeds directly with the rewriting of its triple patterns. Figure 5.4 presents
an overview of the triple pattern rewriting process, skipping reformulation based on the subject
part since the input triple patterns contain variables in this position. Note that the triple patterns
of the input query graph pattern refer to data and therefore, the Algorithm 5.2 is used for their
reformulation.

Figure 5.4: Triple pattern rewriting in the query graph pattern of Example 5.17. The parameters in the left
side of the arrows denote the mappings exploited by the rewriting process.

After triple pattern rewriting, the resulted graph pattern is decomposed using the Algorithm 5.4,
based on the origin (ontology schema) of the appearing ontology terms. The final query is formed
by substituting the initial query graph pattern with the decomposed graph pattern. Considering E1

andE2 as the SPARQL endpoints of the integrated data sources S1 and S2 respectively, the resulted
query is depicted below.

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@PREFIX S1: <http://example.org/source1#>

@PREFIX S2: <http://example.org/source2#>

SELECT DISTINCT ?title

WHERE {

{SERVICE <E1> {?item S1:title ?title}}

UNION

{SERVICE <E2> {?item S2:label ?title}}
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{SELECT ?item

WHERE {SERVICE <E2> {?item S2:genre ?v1}}

GROUP BY (?item)

HAVING (COUNT(DISTINCT ?v1) >= 2)}

SERVICE <E2> {

?item S2:runtime ?v2 .

FILTER (?v2 <= 40)

}

} ORDER BY DESC (?title) LIMIT 10

5.5 Summary

In this chapter we presented the SPARQL–RW query rewriting method, a formal method for per-
forming query mediation over diverse, in terms of schema, federated RDF data sources. It con-
siders the SPARQL 1.1 specification and it is able to handle both data and schema queries. The
proposed query rewriting strategy is based on the reformulation of the input query graph pattern
and it is independent of the query type, the solution sequence modifiers and aggregates.

The presented query rewriting algorithms rely on triple pattern and filter expression rewriting
using a set of predefined GAV ontology mappings between the mediator ontology schema and the
integrated data source ontology schemas. Triple pattern rewriting is based on a complete set of
inference rules and recursive transformation functions considering all types of GAV inter-schema
correspondences supported by the model. On the other hand, filter expression rewriting is based on
ontology term substitution using 1:1 cardinality mappings. Mapping relationships like equivalence
and subsumption do not affect the query rewriting process but the evaluation results obtained by
executing the reformulated query over the integrated RDF data sources.

After the rewriting of the input query graph pattern using the predefined ontology mappings,
the algorithm performs query decomposition by grouping the resulted triple patterns and filter ex-
pressions and enclosing them in SERVICE clauses based on the appearing ontology terms and the
integrated data source endpoints. The resulted federated queries can be executed directly on any
federated query engine, or exploited as logical query plans by any ontology based mediator system.

The presented query rewriting algorithms and transformation functions have been evaluated for
their soundness and completeness, and are proved to provide semantics preserving queries with
respect to the GAV mapping types supported by the mapping model. Existing LAV/GLAV query
rewriting algorithms, like Bucket [52], Minicon [71, 70] and Inverse-Rules [24], can be relatively
easily adapted using the proposed inference rules and recursive transformation functions.



Chapter 6

Evaluation and Use

The SPARQL–RW Framework has been fully implemented using J2SE as a software platform, OWL
API [39] for supporting the mapping inference and inconsistency identification tasks, and Jena
ARQ1 for SPARQL query parsing and manipulation. In this chapter we describe the experimental
evaluation conducted on SPARQL–RW in terms of its query rewriting efficiency and we discuss the
obtained results. Moreover, we present the Semantic Query Mediation Prototype Infrastructure that
we have developed in order to demonstrate the applicability of the SPARQL–RW Framework in a
real data integration scenario, involving DBpedia and several biodiversity data providers.

6.1 Experimental Evaluation

Query rewriting efficiency is a strong requirement for any system performing query mediation.
Compared to mapping inference and inconsistency identification which are mainly carried out on
system setup and/or in a regular scheduled basis, query rewriting needs to be performed on every
query submission in the mediator. In this section we describe the experimental evaluation conducted
on SPARQL–RW and we discuss the efficiency of its query rewriting algorithms.

Considering that SPARQL queries are mainly consisted of triple patterns and much less filter
expressions, the query rewriting time depends on two factors: (a) the number of triple patterns
in the input query, and (b) the number of operations and ontology terms (nodes) in the exploited
mappings. The number of the integrated data sources is directly reflected in the size and complexity
of the exploited GAV mappings, and thus, it is not considered as an additional factor. To evaluate
the efficiency of the rewriting process, we measured the time required by SPARQL–RW to rewrite
input queries of different size and type, using mappings of varying complexity in a hypothetical
data integration scenario. The evaluation was performed on an Intel Core i7 processor at 2.67GHz,
with 4GB RAM, running Linux and Java 1.7.

1Jena ARQ: https://jena.apache.org/documentation/query/index.html

https://jena.apache.org/documentation/query/index.html
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In our experiment, we created 20 different SPARQL queries by modifying the number and type
of the triple patterns appearing in their graph pattern. 10 out of the 20 queries were consisted of data
triple patterns, while the rest were consisted of schema triple patterns. Additionally, we generated
several mappings of different complexity by varying the number of the appearing operations and
ontology terms (nodes). Aiming to measure the rewriting time of the worst case scenario, the
generated mappings did not contain any unsupported schema operations, ensuring that mapping
simplification in schema triple pattern rewriting would not lead to shorter mappings.

Table 6.1 presents the time required for the rewriting of every generated query using map-
pings of different size (1, 3, 5, 7, 10, 15, 25, 40 nodes). Similarly, Figure 6.1 presents the rewriting
times of data triple pattern queries in the form of a diagram. Considering the obtained results, the
SPARQL–RW rewriting method is proved to be fast, even for highly complex queries and ontology
mappings. More specifically, the algorithm requires less than 70 msec to rewrite queries consisted
of 50 triple patterns, using mappings of size 40 nodes. Additionally, note that the rewriting time
increases linearly for mappings of the same complexity and input queries of increasing size.

Table 6.1: Query rewriting time (in milliseconds), varying the input query size and mapping complexity.

Number of Number of Nodes in the Exploited Mappings

Triple Patterns 1 3 5 7 10 15 25 40

5 0.467 0.766 1.08 1.414 1.845 2.571 4.171 6.6

10 0.847 1.445 2.084 2.728 3.619 5.118 8.19 13.035

15 1.233 2.195 3.102 3.993 5.38 7.676 12.348 19.655

20 1.617 2.88 4.113 5.305 7.133 10.26 16.428 26.21

25 2.046 3.569 5.133 6.636 8.905 12.771 20.489 32.747

30 2.389 4.27 6.116 7.984 10.773 15.407 24.653 39.162

35 2.826 4.951 7.121 9.244 12.568 17.946 28.756 45.881

40 3.21 5.665 8.123 10.558 14.21 20.381 32.695 52.396

45 3.556 6.415 9.16 11.919 15.879 23.125 36.768 58.671D
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50 3.978 7.09 10.164 13.285 17.573 25.576 41.08 64.73

5 0.493 0.8 1.083 1.393 1.84 2.612 4.145 6.562

10 0.863 1.471 2.093 2.705 3.636 5.162 8.167 13.107

15 1.26 2.195 3.111 4.029 5.388 7.654 12.157 19.701

20 1.642 2.898 4.095 5.333 7.182 10.226 16.143 26.192

25 2.033 3.58 5.129 6.681 8.932 12.818 20.384 32.794

30 2.424 4.308 6.147 7.997 10.746 15.36 24.434 39.329

35 2.816 5.023 7.204 9.237 12.514 17.898 28.379 45.9

40 3.217 5.677 8.163 10.533 14.266 20.445 32.574 52.383

45 3.61 6.399 9.218 11.914 16.065 23.014 36.653 58.74Sc
he

m
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n
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es

50 3.994 7.107 10.111 13.29 17.858 25.619 40.722 65.26
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(a) n = 1 (b) n = 3

(c) n = 5 (d) n = 7

(e) n = 10 (f) n = 15

(g) n = 25 (h) n = 40

Figure 6.1: Rewriting time vs. query size for queries consisting of data triple patterns and mappings con-
taining n = 1, 3, 5, 7, 10, 15, 25 and 40 nodes (operations and ontology terms).
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Figure 6.2 shows the data and schema triple pattern rewriting times, for queries of different
sizes and mappings consisted of 50 nodes (both operations and ontology terms). As expected,
the use of different rules and transformation functions in the rewriting of data and schema queries
had no noticeable effect in the query rewriting time. Finally, Figure 6.3 presents the impact of
increasing the complexity of the exploited mappings for queries of different sizes consisting of data
triple patterns. As shown in the diagram, the increase in mapping complexity is reflected in the
query rewriting time, not only for large but for smaller queries also. Considering, however, that an
average SPARQL query is consisted of 10− 15 triple patterns, an increase in mapping complexity
by 5 operations and ontology terms affects the rewriting time only by 1.5−2.4 msec (see Table 6.1).

Figure 6.2: Data vs. schema triple pattern rewriting times, for queries of different sizes and mappings
consisting of 50 nodes (operations and ontology terms).

Figure 6.3: The impact of increasing the mapping complexity (n = 1, 7, 15, 25 and 40 operations/ontology
terms), for queries of different sizes consisting of data triple patterns.
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6.2 The Semantic Query Mediation Prototype Infrastructure

This section presents the Semantic Query Mediation Prototype Infrastructure that we have devel-
oped in order to demonstrate the applicability of the SPARQL–RW Framework. The Semantic Query
Mediation Prototype Infrastructure (SQMPI) is a mediator system offering transparent query ac-
cess over federated RDF data sources. It is able to answer SPARQL queries expressed in terms of
a global ontology schema, using information from a set of integrated data sources. The SQMPI
functionality is exposed through a web application, implemented using the Spring MVC Frame-
work. Figure 6.4 presents the system architecture focusing on the server-side modules and on their
communication with the integrated data sources.

Figure 6.4: The SQMPI architecture.

SQMPI employs SPARQL–RW both for mapping management, as well as for the rewriting and
decomposition of SPARQL queries submitted to the mediator. Query rewriting is based on a set
of predefined GAV ontology mappings between the global (mediator) schema and the schemas of
the integrated data sources, while query decomposition relies on the available data source end-
points. The module is initialized during the system’s start-up using configuration files indicating
the available mappings and SPARQL endpoints.

For query execution and results merging, SQMPI employs ANAPSID. ANAPSID [2] is an open
source query engine for SPARQL endpoints, developed at Universidad Simón Bolívar. ANAPSID
adapts query execution schedulers to data availability and run-time conditions. It provides phys-
ical SPARQL operators that detect when a source becomes blocked or data traffic is bursty, and
opportunistically, the operators produce results as quickly as data arrives from the sources.
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Due to the fact that ANAPSID has been implemented in Python, we developed a Java Wrapper
on top of it, encapsulating the ANAPSID’s internal functionality. The ANAPSID Java Wrapper
exposes services for query submission and result set streaming. Both SPARQL–RW and ANAPSID
Java Wrapper are administered by the Application Manager module. Application Manager acts as a
centralized point of control, being responsible for the analysis of the received requests in the server
side and handling the communication between the aforementioned modules.

At run time, when a SPARQL query is submitted to the mediator, it is processed, reformulated
and decomposed by SPARQL–RW. The resulted query is subsequently passed to the ANAPSID Java
Wrapper through the Application Manager. The ANAPSID Java Wrapper transfers the reformu-
lated federated query to ANAPSID in order to be executed over the integrated data sources. The
returned results are merged by ANAPSID and returned to the Application Manager through the
ANAPSID Java Wrapper. Finally, the Application Manager forwards the results to the client side
for presentation purposes.

6.2.1 Case Study: Integrating Natural Europe and DBpedia

The Semantic Query Mediation Prototype Infrastructure has been successfully deployed and tested
in a real data integration scenario involving DBpedia, as well as 6 biodiversity data providers
from the Natural Europe project. The prototype mediator system is currently available at http:
//kostasmakris.com/sparql-rw, while Figures 6.5, 6.6 and 6.7 present some indicative screen-
shots of the system’s graphical user interface.

Natural Europe [1] is a project co-funded by EC under the ICT-PSP programme offering, among
others, appropriate tools and services that allow natural history museums (NHMs) to: (a) uniformly
describe and semantically annotate their content according to international standards and specifi-
cations, (b) interconnect their digital libraries, and (c) expose their scientific collections to cultural
and biodiversity networks, as well as to the Linked Data community [83]. The Natural Europe
infrastructure has been currently deployed in 6 European museums, allowing curators to publish,
semantically describe, manage and disseminate a large volume of cultural heritage objects (CHOs),
including animal, plant and mineral specimens. All the contributed CHO descriptions have been
published as Linked Data, in separate Virtuoso servers, conforming to the Natural Europe Ontol-
ogy2 and can be accessed through 6 SPARQL endpoints. Table 6.2 presents the current number of
CHOs and RDF triples, published in each federated museum node.

DBpedia [9], on the other hand, is a knowledge base currently describing about 4.0 million
things including 832, 000 persons, 639, 000 places, and 226, 000 species. The dataset has been
created by extracting structured data from Wikipedia and has been classified in a consistent cross-
domain ontology3. Apart from web services, data can be accessed through a SPARQL endpoint.

2Natural Europe Ontology: http://natural-europe.tuc.gr/ne-ontology-v01.owl
3DBpedia Ontology: http://wiki.dbpedia.org/Ontology39?v=g9b

http://kostasmakris.com/sparql-rw
http://kostasmakris.com/sparql-rw
http://natural-europe.tuc.gr/ne-ontology-v01.owl
http://wiki.dbpedia.org/Ontology39?v=g9b


6.2. The Semantic Query Mediation Prototype Infrastructure 96

Figure 6.5: Screenshot presenting the graphical user interface of the SQMPI web application (1/3).

Figure 6.6: Screenshot presenting the graphical user interface of the SQMPI web application (2/3).
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Figure 6.7: Screenshot presenting the graphical user interface of the SQMPI web application (3/3).

Table 6.2: The current number of cultural heritage objects (CHOs) and RDF triples, published in each
Natural Europe federated museum node.

Natural Europe Federated Data Sources CHO Number RDF Triples

Natural History Museum of Crete (NHMC) 4, 010 195, 905

National Museum of Natural History of Lisbon (MNHNL) 2, 686 115, 913

Jura-Museum Eichstätt (JME) 1, 658 60, 371

Arctic Center (AC) 480 18, 715

Hungarian Natural History Museum (HNHM) 4, 244 154, 543

Estonian Museum of Natural History (TNHM) 1, 972 85, 773

Total 15, 050 631, 220
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The integration of the Natural Europe federated data sources and DBpedia, under a common
conceptualization, allows uniform information access and enables the execution of highly sophis-
ticated queries combining the persisted knowledge. As an example, specimen and media object
information persisted in the Natural Europe repositories can be combined with DBpedia species
conservation status information, in order to answer queries like the following: “Find photos of Nat-
ural Europe specimens whose species have been characterized as near threatened”. Furthermore,
external applications and end-users are able to interact with a single ontology schema and endpoint,
without having to be aware of the schemas and SPARQL endpoints of the integrated data sources.
As a result, highly complex queries, combining information from multiple data sources, can be
expressed in a few triples, reducing drastically the effort of query composition.

6.3 Summary

In this chapter we described the experimental evaluation conducted on SPARQL–RW in terms of
its query rewriting efficiency and we discussed the obtained results. To evaluate the efficiency
of the rewriting process, we measured the time required by SPARQL–RW to rewrite input queries
of different size and type, using mappings of varying complexity. The experimental evaluation
proved that the SPARQL–RW query rewriting method is extremely fast, even for highly complex
queries and ontology mappings. The rewriting time increases linearly for mappings of the same
complexity and input queries of increasing size. Furthermore, as expected, the use of different
rules and transformation functions in the rewriting of data and schema queries has no noticeable
effect in the query rewriting time.

Additionally to the experimental evaluation, this chapter presented the Semantic Query Media-
tion Prototype Infrastructure that we have developed in order to demonstrate the applicability of the
SPARQL–RW Framework in a real data integration scenario. Our prototype mediator system inte-
grates DBpedia, as well as 6 biodiversity data providers from the Natural Europe project. It is based
on SPARQL–RW for mapping management, query rewriting and query decomposition, and enables
the execution of highly sophisticated queries. External applications and end-users are able to in-
teract with a single ontology schema and endpoint, and thus, highly complex queries, combining
information from multiple data sources, can be expressed in a few triples.
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Conclusions and Future Research

In the recent years establishing interoperability and supporting data integration has become a major
research challenge for the Web of Data. Uniform information access of heterogeneous sources is
of major importance for Semantic Web applications and end users. In this thesis we presented
SPARQL–RW, a Framework providing transparent query access over mapped RDF data sources by
supporting mapping modeling and query rewriting in the context of ontology based mediators.

In more detail, we proposed a model for the expression of mappings between ontology schemas.
The mapping model consists of a grammar defining the mapping types which can be exploited in
SPARQL query rewriting, as well as a specification of the mapping type semantics. It is based on
Description Logics and it is capable of describing a great variety of OWL inter-schema correspon-
dences providing high flexibility and satisfying different system requirements and user needs. Fur-
thermore, it is able to support well-known mapping formalisms, including GAV, LAV, and GLAV,
satisfying strong data integration requirements for query rewriting efficiency and extensibility to
new sources. To the best of our knowledge, there is no system supporting these formalisms in the
context of ontology based mediator architectures.

Additionally to the mapping model, we defined a language based on XML syntax, being able
to represent the discussed mapping types and formalisms. The mapping language combines a set
of criteria including simplicity, expressiveness, executability, and schema language agnosticism.
Furthermore, the use of XML Schema in mapping language definition: (a) provides exceptional
validation capabilities, (b) supports easy mapping serialization and deserialization, and (c) enables
interoperability with external systems and applications.

Aiming to assist the mapping definition process and support the maintenance of mappings con-
forming to the SPARQL–RW mapping model, we provided methods for performing mapping in-
ference and identifying inconsistencies in a given set of mappings and ontology schemas. Both
methods exploit the underlying DL semantics of the SPARQL–RW mapping model and are based
on the use of well-known reasoning techniques.
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Regarding query rewriting, we provided a formal method for the reformulation of SPARQL
queries posed over the mediator, into federated queries referring to the integrated data sources. The
method considers the SPARQL 1.1 specification and it is able to handle both data and schema
queries. The proposed query rewriting strategy is based on a complete set of inference rules and
recursive transformation functions, and relies on the reformulation of the input query graph pattern
using a set of predefined GAV ontology mappings and data source endpoints. The resulted queries
can be executed directly on any federated query engine, or exploited as logical query plans by
any ontology based mediator system. The provided algorithms and transformation functions have
been formally evaluated for their soundness and completeness, and are proved to provide semantics
preserving queries with respect to the GAV inter-schema correspondences supported by the model.
To the extent of our knowledge, there is no system performing SPARQL 1.1 query rewriting in
general, or SPARQL query rewriting by exploiting well-known mapping formalisms in the field of
ontology based mediators.

The SPARQL–RW Framework has been fully implemented and evaluated in terms of its query
rewriting efficiency, measuring the time required for the reformulation of queries of different size
and type, using mappings of varying complexity. The experimental evaluation proved that the
SPARQL–RW query rewriting process is extremely fast, even for highly complex queries and on-
tology mappings. Furthermore, the Framework has been tested in a prototype mediator system
that we have developed, supporting the integration of DBpedia [9] and several biodiversity data
providers from the Natural Europe project [1]. This infrastructure enables the execution of highly
sophisticated queries combining specimen and media object information persisted in the Natural
Europe repositories with species information available in DBpedia. External applications and end-
users are able to interact with a single ontology schema and endpoint, without having to be aware
of the schemas and SPARQL endpoints of the integrated data sources. As a result, highly com-
plex queries, combining information from multiple data sources, can be expressed in a few triples,
reducing drastically the effort of query composition.

Our current research focuses on the development of LAV and GLAV query rewriting methods,
combining the SPARQL–RW query rewriting rules and transformation functions with well-known
algorithms such as Bucket [52], Minicon [71, 70] and Inverse-Rules [24]. Furthermore, we aim
to develop an interactive graphical tool supporting the specification of mappings conforming to
the SPARQL–RW mapping model. The tool will be using the SPARQL–RW mapping inference
and inconsistency identification techniques for automating mapping generation and supporting
mapping maintenance. Mapping representation and serialization will be based on the SPARQL–

RW mapping language. Finally, we plan to integrate SPARQL–RW with the XS2OWL [88] and
SPARQL2XQuery [8] Frameworks, in order to enable access to heterogeneous web repositories.



Bibliography

[1] Natural Europe. http://www.natural-europe.eu/.

[2] M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus. ANAPSID: An Adaptive
Query Processing Engine for SPARQL Endpoints. In Proceedings of the 10th International
Conference on The Semantic Web - Volume Part I, ISWC’11, pages 18–34, Berlin, Heidelberg,
2011. Springer-Verlag.

[3] B. Alexe, B. ten Cate, P. G. Kolaitis, and W.-C. Tan. Designing and Refining Schema Map-
pings via Data Examples. In Proceedings of the 2011 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’11, pages 133–144, New York, NY, USA, 2011.
ACM.

[4] M. Arenas and J. Pérez. Querying Semantic Web Data with SPARQL. In Proceedings of the
30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS
’11, pages 305–316, New York, NY, USA, 2011. ACM.

[5] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider. The De-
scription Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press, 2003.

[6] C. Beeri, A. Y. Levy, and M.-C. Rousset. Rewriting Queries Using Views in Description Log-
ics. In Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, PODS ’97, pages 99–108, New York, NY, USA, 1997. ACM.

[7] Z. Bellahsene, A. Bonifati, and E. Rahm, editors. Schema Matching and Mapping. Springer,
2011.

[8] N. Bikakis, C. Tsinaraki, I. Stavrakantonakis, N. Gioldasis, and S. Christodoulakis. The
SPARQL2XQuery Interoperability Framework. CoRR, 2013.

[9] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hellmann.
DBpedia - A Crystallization Point for the Web of Data. Web Semantics: Science, Services and
Agents on the World Wide Web, 7(3):154–165, 2009.

http://www.natural-europe.eu/


Bibliography 102

[10] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: A Collaboratively
Created Graph Database for Structuring Human Knowledge. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’08, pages 1247–
1250, New York, NY, USA, 2008. ACM.

[11] P. Bouquet, F. Giunchiglia, F. Harmelen, L. Serafini, and H. Stuckenschmidt. C-OWL: Con-
textualizing Ontologies. In Proceedings of the 2nd International Semantic Web Conference,
volume 2870 of ISWC ’03, pages 164–179. Springer, Berlin–Heidelberg, Germany, 2003.

[12] P. Bouquet, L. Serafini, S. Zanobini, and S. Sceffer. Bootstrapping Semantics on the Web:
Meaning Elicitation from Schemas. In Proceedings of the 15th International Conference on
World Wide Web, WWW ’06, pages 505–512, New York, NY, USA, 2006. ACM.

[13] D. Brickley and R. V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema. W3C
Recommendation, 10, 2004.

[14] C. Buil-Aranda, M. Arenas, O. Corcho, and A. Polleres. Federating Queries in SPARQL 1.1:
Syntax, Semantics and Evaluation. Web Semant., 18(1):1–17, Jan. 2013.

[15] D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. View-based Query Answering
in Description Logics: Semantics and Complexity. J. Comput. Syst. Sci., 78(1):26–46, Jan.
2012.

[16] D. Calvanese, G. D. Giacomo, and M. Lenzerini. Answering Queries Using Views over
Description Logics Knowledge Bases. In Proceedings of the 17th National Conference on
Artificial Intelligence, AAAI ’00, pages 386–391. AAAI Press, 2000.

[17] B. T. Cate, V. Dalmau, and P. G. Kolaitis. Learning Schema Mappings. ACM Trans. Database
Syst., 38(4):28:1–28:31, Dec. 2013.

[18] N. Choi, I.-Y. Song, and H. Han. A Survey on Ontology Mapping. SIGMOD Rec., 35(3):34–
41, Sept. 2006.

[19] G. Correndo, M. Salvadores, I. Millard, H. Glaser, and N. Shadbolt. SPARQL Query Rewrit-
ing for Implementing Data Integration over Linked Data. In Proceedings of the 1st Inter-
national Workshop on Data Semantics, DataSem ’10, pages 4:1–4:11, New York, NY, USA,
2010. ACM.

[20] J. David, J. Euzenat, F. Scharffe, and C. Trojahn dos Santos. The Alignment API 4.0. Semant.
web, 2(1):3–10, Jan. 2011.

[21] A. Doan, A. Halevy, and Z. Ives. Principles of Data Integration. Morgan Kaufmann Publish-
ers Inc., 1st edition, July 2012.



Bibliography 103

[22] M. Doerr, C.-E. Ore, and S. Stead. The CIDOC Conceptual Reference Model: A New Stan-
dard for Knowledge Sharing. In Tutorials, Posters, Panels and Industrial Contributions at the
26th International Conference on Conceptual Modeling, volume 83 of ER ’07, pages 51–56,
Darlinghurst, Australia, Australia, 2007. Australian Computer Society, Inc.

[23] M. J. Dürst and M. Suignard. Internationalized Resource Identifiers (IRIs). Internet RFC
3987, January 2005.

[24] O. M. Duschka and M. R. Genesereth. Answering Recursive Queries Using Views. In Pro-
ceedings of the 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, PODS ’97, pages 109–116, New York, NY, USA, 1997. ACM.

[25] J. Euzenat. An API for Ontology Alignment. In Proceedings of the 3rd International Semantic
Web Conference, volume 3298 of ISWC ’04, pages 698–712, Berlin, Heidelberg, Nov. 2004.
Springer.

[26] J. Euzenat and P. Shvaiko. Ontology Matching. Springer-Verlag, Berlin-Heidelberg, 2 edition,
2013.

[27] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Schema Mapping Evolution Through Com-
position and Inversion. In Z. Bellahsene, A. Bonifati, and E. Rahm, editors, Schema Matching
and Mapping, pages 191–222. Springer, 2011.

[28] T. Fujino and N. Fukuta. A SPARQL Query Rewriting Approach on Heterogeneous Ontolo-
gies with Mapping Reliability. In Proceedings of the 2012 IIAI International Conference on
Advanced Applied Informatics, IIAI-AAI ’12, pages 230–235, Washington, DC, USA, 2012.
IEEE Computer Society.

[29] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and
J. Widom. The TSIMMIS project: Integation of Heterogeneous Information Sources. Journal
of Intelligent Information Systems, 8(2):117–132, 1997.

[30] P. Gearon, A. Passant, and A. Polleres. SPARQL 1.1 Update. W3C Recommendation, March
2013.

[31] O. Görlitz and S. Staab. Federated Data Management and Query Optimization for Linked
Open Data. In New Directions in Web Data Management 1, volume 331 of Studies in Com-
putational Intelligence, pages 109–137. 2011.

[32] A. Halevy. Answering Queries using Views – A Survey. VLDB Journal, 10(4):270–294,
2001.



Bibliography 104

[33] A. Y. Halevy. Theory of Answering Queries Using Views. SIGMOD Rec., 29:40–47, Decem-
ber 2000.

[34] S. Harris and A. Seaborne. SPARQL 1.1 Query Language. W3C Recommendation, March
2013.

[35] O. Hartig. An Overview on Execution Strategies for Linked Data Queries. Datenbank-
Spektrum, 13(2):89–99, 2013.

[36] O. Hartig, C. Bizer, and J.-C. Freytag. Executing SPARQL Queries over the Web of Linked
Data. In Proceedings of the 8th International Semantic Web Conference, ISWC ’09, pages
293–309, Berlin, Heidelberg, 2009. Springer-Verlag.

[37] P. Hayes. RDF Semantics. W3C Recommendation, February 2004.

[38] P. Hitzler, M. Krötzsch, and S. Rudolph. Foundations of Semantic Web Technologies. CRC
Press, 2010.

[39] M. Horridge and S. Bechhofer. The OWL API: A Java API for OWL Ontologies. Semant.
web, 2(1):11–21, Jan. 2011.

[40] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. SWRL: A
Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission,
May 2004.

[41] Z. G. Ives, A. Y. Halevy, P. Mork, and I. Tatarinov. Piazza: mediation and integration infras-
tructure for Semantic Web data. J. Web Sem., 1(2):155–175, 2004.

[42] E. Jiménez-Ruiz, B. Cuenca Grau, I. Horrocks, and R. Berlanga. Ontology Integration Using
Mappings: Towards Getting the Right Logical Consequences. In Proceedings of the 6th Eu-
ropean Semantic Web Conference on The Semantic Web: Research and Applications, ESWC
’09, pages 173–187, Berlin, Heidelberg, 2009. Springer-Verlag.

[43] Y. Kalfoglou and M. Schorlemmer. Ontology Mapping: The State of the Art. Knowledge
Engineering Review, 18(1):1–31, Jan. 2003.

[44] A. Kalyanpur, B. Parsia, E. Sirin, and J. Hendler. Debugging Unsatisfiable Classes in OWL
Ontologies. Web Semant., 3(4):268–293, Dec. 2005.

[45] G. Konstantinidis and J. L. Ambite. Scalable Query Rewriting: A Graph-based Approach. In
Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’11, pages 97–108, New York, NY, USA, 2011. ACM.



Bibliography 105

[46] G. Konstantinidis and J. L. Ambite. Optimizing Query Rewriting for Multiple Queries. In
Proceedings of the 9th International Workshop on Information Integration on the Web, IIWeb
’12, pages 7:1–7:6, New York, NY, USA, 2012. ACM.

[47] N. Koul and V. Honavar. Learning in Presence of Ontology Mapping Errors. In Proceedings of
the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent
Technology, WI-IAT ’10, pages 291–296, Washington, DC, USA, 2010. IEEE Computer So-
ciety.

[48] J. Kunze and T. Baker. The Dublin Core Metadata Element Set. RFC 5013, August 2007.

[49] W. Le, S. Duan, A. Kementsietsidis, F. Li, and M. Wang. Rewriting Queries on SPARQL
Views. In Proceedings of the 20th International Conference on World Wide Web, WWW ’11,
pages 655–664, New York, NY, USA, 2011. ACM.

[50] M. Lenzerini. Data Integration: A Theoretical Perspective. In Proceedings of the 21st ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’02, pages
233–246, New York, NY, USA, 2002. ACM.

[51] A. Y. Levy. Logic-Based Techniques in Data Integration, pages 575–595. Kluwer Academic
Publishers, Norwell, MA, USA, 2000.

[52] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying Heterogeneous Information Sources Us-
ing Source Descriptions. In Proceedings of the 22th International Conference on Very Large
Data Bases, VLDB ’96, pages 251–262, San Francisco, CA, USA, 1996. Morgan Kaufmann
Publishers Inc.

[53] F. L. R. Lopes, E. R. Sacramento, and B. F. Loscio. Using Heterogeneous Mappings for
Rewriting SPARQL Queries. In Proceedings of the 23rd International Workshop on Database
and Expert Systems Applications, DEXA ’12, pages 267–271, Washington, DC, USA, 2012.
IEEE Computer Society.

[54] J. Madhavan and A. Y. Halevy. Composing Mappings Among Data Sources. In Proceedings
of the 29th International Conference on Very Large Data Bases, VLDB ’03, pages 572–583.
VLDB Endowment, 2003.

[55] A. Maedche, B. Motik, N. Silva, and R. Volz. MAFRA - A MApping FRAmework for Dis-
tributed Ontologies. In Proceedings of the 13th International Conference on Knowledge En-
gineering and Knowledge Management. Ontologies and the Semantic Web, EKAW ’02, pages
235–250, London, UK, UK, 2002. Springer-Verlag.

[56] F. Manola and E. Miller. RDF Primer. W3C Recommendation, 10:1–107, 2004.



Bibliography 106

[57] D. L. McGuinness and F. Van Harmelen. OWL Web Ontology Language Overview. W3C
Recommendation, 10:1–19, 2004.

[58] C. Meilicke. The Relevance of Reasoning and Alignment Incoherence in Ontology Match-
ing. In Proceedings of the 6th European Semantic Web Conference on The Semantic Web:
Research and Applications, ESWC ’09, pages 934–938, Berlin, Heidelberg, 2009. Springer-
Verlag.

[59] C. Meilicke, H. Stuckenschmidt, and A. Tamilin. Improving Automatically Created Mappings
Using Logical Reasoning. In Proceedings of the 2006 International Workshop on Ontology
Matching, volume 225 of OM ’06. CEUR-WS.org, 2006.

[60] C. Meilicke, H. Stuckenschmidt, and A. Tamilin. Repairing Ontology Mappings. In Proceed-
ings of the 22nd National Conference on Artificial Intelligence, AAAI’07, pages 1408–1413.
AAAI Press, 2007.

[61] C. Meilicke, H. Stuckenschmidt, and A. Tamilin. Reasoning Support for Mapping Revision.
J. Log. and Comput., 19(5):807–829, Oct. 2009.

[62] G. Montoya, M.-E. Vidal, O. Corcho, E. Ruckhaus, and C. Buil-Aranda. Benchmarking
Federated SPARQL Query Engines: Are Existing Testbeds Enough? In Proceedings of the
11th International Conference on The Semantic Web - Volume Part II, ISWC’12, pages 313–
324, Berlin, Heidelberg, 2012. Springer-Verlag.

[63] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. OWL 2 Web Ontology
Language: Profiles. W3C Recommendation, 2009.

[64] B. Motik, P. F. Patel-Schneider, B. Parsia, C. Bock, A. Fokoue, P. Haase, R. Hoekstra, I. Hor-
rocks, A. Ruttenberg, U. Sattler, and M. Smith. OWL 2 Web Ontology Language: Structural
Specification and Functional-Style Syntax. W3C Recommendation, 2009.

[65] N. F. Noy. Semantic Integration: A Survey of Ontology-based Approaches. SIGMOD Rec.,
33(4):65–70, Dec. 2004.

[66] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language Semantics
and Abstract Syntax. W3C Recommendation, February 2004.

[67] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and Complexity of SPARQL. ACM Trans.
Database Syst., 34(3):16:1–16:45, Sept. 2009.

[68] A. Polleres. From SPARQL to Rules (and Back). In Proceedings of the 16th International
Conference on World Wide Web, WWW ’07, pages 787–796, New York, NY, USA, 2007.
ACM.



Bibliography 107

[69] A. Polleres, F. Scharffe, and R. Schindlauer. SPARQL++ for Mapping Between RDF Vocab-
ularies. In Proceedings of the 2007 OTM Confederated International Conference on On the
Move to Meaningful Internet Systems: CoopIS, DOA, ODBASE, GADA, and IS - Volume Part
I, OTM’07, pages 878–896, Berlin, Heidelberg, 2007. Springer-Verlag.

[70] R. Pottinger and A. Halevy. MiniCon: A Scalable Algorithm for Answering Queries Using
Views. The VLDB Journal, 10(2-3):182–198, Sept. 2001.

[71] R. Pottinger and A. Y. Levy. A Scalable Algorithm for Answering Queries Using Views.
In Proceedings of the 26th International Conference on Very Large Data Bases, VLDB ’00,
pages 484–495, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[72] E. Prud’hommeaux and C. Buil-Aranda. SPARQL 1.1 Federation Extensions. W3C Recom-
mendation, March 2013.

[73] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. W3C Recommen-
dation, 4:1–106, 2008.

[74] B. Quilitz and U. Leser. Querying Distributed RDF Data Sources with SPARQL. In Pro-
ceedings of the 5th European Semantic Web Conference on The Semantic Web: Research and
Applications, ESWC’08, pages 524–538, Berlin, Heidelberg, 2008. Springer-Verlag.

[75] C. R. Rivero, I. Hernández, D. Ruiz, and R. Corchuelo. Mosto: Generating SPARQL Exe-
cutable Mappings Between Ontologies. In Proceedings of the 30th International Conference
on Advances in Conceptual Modeling: Recent Developments and New Directions, ER’11,
pages 345–348, Berlin, Heidelberg, 2011. Springer-Verlag.

[76] M. Saleem, Y. Khan, A. Hasnain, I. Ermilov, and A.-C. Ngonga Ngomo. A Fine-Grained
Evaluation of SPARQL Endpoint Federation Systems. Under-review: Semantic Web Journal,
2014.

[77] B. Sanghvi, N. Koul, and V. Honavar. Identifying and Eliminating Inconsistencies in Map-
pings Across Hierarchical Ontologies. In Proceedings of the 2010 International Conference
on On the Move to Meaningful Internet Systems: Part II, OTM’10, pages 999–1008, Berlin,
Heidelberg, 2010. Springer-Verlag.

[78] M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, and T. Tran. FedBench: A Bench-
mark Suite for Federated Semantic Data Query Processing. In Proceedings of the 10th Inter-
national Conference on The Semantic Web - Volume Part I, ISWC’11, pages 585–600, Berlin,
Heidelberg, 2011. Springer-Verlag.



Bibliography 108

[79] A. Schultz, A. Matteini, R. Isele, P. Mendes, C. Bizer, and C. Becker. LDIF - A Framework
for Large-Scale Linked Data Integration. In Proceedings of the 21st International World Wide
Web Conference, WWW ’12, 2012.

[80] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. FedX: Optimization Tech-
niques for Federated Query Processing on Linked Data. In Proceedings of the 10th Interna-
tional Conference on The Semantic Web - Volume Part I, ISWC’11, pages 601–616, Berlin,
Heidelberg, 2011. Springer-Verlag.

[81] P. Shvaiko and J. Euzenat. Ontology Matching: State of the Art and Future Challenges. IEEE
Trans. Knowl. Data Eng., 25(1):158–176, 2013.

[82] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A Practical OWL-DL
Reasoner. Web Semant., 5(2):51–53, June 2007.

[83] G. Skevakis, K. Makris, V. Kalokyri, P. Arapi, and S. Christodoulakis. Metadata Manage-
ment, Interoperability and Linked Data Publishing Support for Natural History Museums.
International Journal on Digital Libraries, Apr. 2014.

[84] M. Stollberg, E. Cimpian, A. Mocan, and D. Fensel. A Semantic Web Mediation Architecture.
In Proceedings of the 1st Canadian Semantic Web Working Symposium, volume 2 of CSWWS
’06, pages 3–22. Springer, 2006.

[85] H. Stuckenschmidt, R. Vdovjak, G.-J. Houben, and J. Broekstra. Index Structures and Algo-
rithms for Querying Distributed RDF Repositories. In Proceedings of the 13th International
Conference on World Wide Web, WWW ’04, pages 631–639, New York, NY, USA, 2004.
ACM.

[86] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A Large Ontology from Wikipedia and
WordNet. Web Semantics: Science, Services and Agents on the World Wide Web, 6(3):203–
217, 2008.

[87] T. Tran, H. Wang, and P. Haase. Hermes: Data Web Search on a Pay-as-you-go Integration
Infrastructure. Web Semant., 7(3):189–203, Sept. 2009.

[88] C. Tsinaraki and S. Christodoulakis. Interoperability of XML Schema Applications with
OWL Domain Knowledge and Semantic Web Tools. In Proceedings of the 2007 OTM Con-
federated International Conference on On the Move to Meaningful Internet Systems: CoopIS,
DOA, ODBASE, GADA, and IS - Volume Part I, OTM’07, pages 850–869, Berlin, Heidelberg,
2007. Springer-Verlag.

[89] Y. Tzitzikas, N. Spyratos, and P. Constantopoulos. Mediators over Taxonomy-based Informa-
tion Sources. The VLDB Journal, 14(1):112–136, Mar. 2005.



Bibliography 109

[90] H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann, and S. Hübner.
Ontology-Based Integration of Information - A Survey of Existing Approaches. In H. Stuck-
enschmidt, editor, Proceedings of the 17th International Joint Conference on Artificial Intel-
ligence , IJCAI ’01, pages 108–117, 2001.

[91] G. Wiederhold. Mediators in the Architecture of Future Information Systems. Computer,
25(3):38–49, Mar. 1992.

[92] X. Zheng, S. E. Madnick, and X. Li. SPARQL Query Mediation over RDF Data Sources with
Disparate Contexts. In Proceedings of the 5th Linked Data on the Web Workshop, volume 937
of LDOW ’12. CEUR-WS.org, 2012.



Appendix A

Semantics Preservation of Query
Rewriting: Proofs

This appendix provides the proofs for the semantics preservation of the data triple pattern rewriting
rules and functions presented in Section 5.2. For readability reasons, Definition A.1 restates the
notion of semantics preserving rewriting. Refer to Section 3.3 for the adopted notation and the
SPARQL graph pattern semantics, since they are used extensively in the remainder of this appendix.
Additionally, note that we consider mappings of type equivalence and we do not provide the proofs
for the other mapping types since they follow a similar approach.

Definition A.1 (Semantics Preserving Rewriting). Let G be a mediator ontology schema, let
S̄ = {S1, . . . , Sn} be n data source ontology schemas, and let M̄ be a complete set of sound GAV
mappings betweenG and S̄. Assuming an RDF dataset DS that combinesG, S̄, M̄ , along with the
respective datasets of G and S̄, we state that the rewriting of a triple pattern t to a graph pattern g,
using a mapping m ∈ M̄ , is semantics preserving if and only if :

• Given a variable set J = var(t), the evaluation of t and g (projected on J ) over the RDF
dataset DS preserve the exploited mapping’s relationship; that is:

– If mapping m is of type equivalence (≡), then: [[t]]DS ≡ πJ
(
[[g]]DS

)
.

– If mapping m is of type subsumption (v), then: [[t]]DS v πJ
(
[[g]]DS

)
.

– If mapping m is of type subsumption (w), then: [[t]]DS w πJ
(
[[g]]DS

)
. �

In what follows, let I be the interpretation of the RDF dataset DS (specified in the Defini-
tion A.1) consisting of two non-empty sets: (a) ∆I , the domain of individuals, and (b) ∆ID, the
domain of data values. Moreover, consider an interpretation function which assigns: (a) to every
class C a set CI ⊆ ∆I , (b) to every data range D a set DD ⊆ ∆ID, (c) to every object property R a
binary relationRI ⊆ ∆I×∆I , (d) to every datatype property U a binary relation UI ⊆ ∆I×∆ID,
(e) to every individual o an element oI ∈ ∆I , and (f ) to every data value v an element vI = vD.
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Proof Method Overview. Consider the ontology schemas G, S̄, the mapping set M̄ and the
RDF dataset DS which have been specified in the Definition A.1. Given a triple pattern t

consisted of a variable set J , let g be the resulted graph pattern after rewriting t with respect to
a mapping m ∈ M̄ of type equivalence for its subject, predicate, or object part.

The proof method starts by showing that every solution in the evaluation of t overDS is also
a solution in the evaluation of g over DS. To this end, we use SPARQL graph pattern semantics
along with the semantics of mapping m, exploited by the rewriting process, and we prove that:

[[t]]DS v πJ
(
[[g]]DS

)
(A.1)

Recall that the triple pattern rewriting process preserves the variables of the input triple
pattern. Therefore, every variable of t should also appear in g, or in other words, J is the
common variable set between t and g. The method continues by showing that every solution in
the evaluation of g over the RDF dataset DS is also a solution in the evaluation of t over DS
for the common variable set J :

[[t]]DS w πJ
(
[[g]]DS

)
(A.2)

From (A.1) and (A.2) we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
. Since the mapping m, ex-

ploited by the rewriting process, is also of type equivalence we conclude the proof. Similarly,
for mappings of type subsumption (v, w) we reach either (A.1) or (A.2), proving that the triple
pattern rewriting process is semantics preserving; that is, preserves the exploited mapping type
semantics.

A.1 Semantics Preservation of Function Ds(t,m)

The function Ds(t,m) was presented in Table 5.2 and it is used for the rewriting of a data triple
pattern t based on a mapping m for its subject part. Following the Ds function definition, in order
to prove that the triple pattern rewriting process preserves the exploited mapping type semantics, it
suffices to consider only the case of triple patterns containing an individual in their subject position.

To this end, let o1, o2 be individuals, let t = (o1, pred, ob) be a data triple pattern and let J be
the set of variables appearing in t. Given a mapping m of type o1 ≡ o2, stating that oI1 = oI2 , the
triple pattern t is reformulated as follows:

Ds(t,m) = (o2, pred, ob) = g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset DS
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(specified in the Definition A.1) applies that:

[[g]]DS = [[(o2, pred, ob)]]DS

Based on the semantics of the input triple pattern t, the mapping type m and the graph pattern g,
we consider the following premises:

1. ∀ solutionω ∈ [[t]]DS : ∃x,∃y, such that (o1, x, y) ∈ DS. Taking into account that oI1 = oI2
we conclude that (o2, x, y) ∈ DS, and therefore, ω ∈ πJ

(
[[g]]DS

)
.

2. ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x,∃y, such that (o2, x, y) ∈ DS. Taking into account that

oI1 = oI2 we conclude that (o1, x, y) ∈ DS, and therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
. This concludes the proof that

the function Ds preserves the exploited mapping type semantics.

A.2 Semantics Preservation of Function Dp(t,m)

The function Dp(t,m) was presented in Table 5.3 and it is used for the rewriting of a data triple
pattern t based on a mapping m for its predicate part. Following the Dp function definition, in
order to prove that the rewriting process preserves the exploited mapping type semantics, it suffices
to consider the cases of triple patterns containing either an object or a datatype property in their
predicate position.

To begin with, we prove that data triple pattern rewriting based on object property mappings and
function Dp is semantics preserving. To this end, let R1 be an object property, let t = (sub,R1, ob)

be a data triple pattern and let J be the set of variables appearing in t. For the different types of
object property mappings, we consider the following cases:

1. Given a named object property r1 and a mapping m of type R1 ≡ r1, stating that RI1 = rI1 ,
the triple pattern t is reformulated as follows:

Dp(t,m) = (sub, r1, ob) = g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[(sub, r1, ob)]]DS

Based on the semantics of the input triple pattern t, the mapping typem and the graph pattern
g, we consider the following premises:
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(a) ∀ solution ω ∈ [[t]]DS : ∃x,∃y, such that (x,R1, y) ∈ DS, and thus (x, y) ∈ RI1 .
Taking into account that RI1 = rI1 we conclude that (x, y) ∈ rI1 and (x, r1, y) ∈ DS.
Therefore, ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x, ∃y, such that (x, r1, y) ∈ DS, and thus (x, y) ∈ rI1 .

Taking into account that RI1 = rI1 we conclude that (x, y) ∈ RI1 and (x,R1, y) ∈ DS.
Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

2. Given two object property expressions R2, R3 and a mapping m of type R1 ≡ R2 u R3,
stating that RI1 = RI2 ∩RI3 , the triple pattern t is reformulated as follows:

Dp(t,m) = Dp

(
t, R1 → R2

)
AND Dp

(
t, R1 → R3

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
t, R1 → R2

)
AND Dp

(
t, R1 → R3

)
]]DS

= [[Dp

(
t, R1 → R2

)
]]DS |><| [[Dp

(
t, R1 → R3

)
]]DS

Abusively treating the object property expressions R2, R3 as simple object properties, and
based on the semantics of the input triple pattern t, the mapping typem and the graph pattern
g, we consider the following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x,∃y, such that (x,R1, y) ∈ DS, and thus (x, y) ∈ RI1 .
Taking into account that RI1 = RI2 ∩ RI3 we conclude that (x,R2, y) ∈ DS and
(x,R3, y) ∈ DS. Therefore, ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x,∃y, such that (x,R2, y), (x,R3, y) ∈ DS, and

thus (x, y) ∈ RI2 ∩ RI3 . Taking into account that RI1 = RI2 ∩ RI3 we conclude that
(x, y) ∈ RI1 and (x,R1, y) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

3. Given two object property expressions R2, R3 and a mapping m of type R1 ≡ R2 t R3,
stating that RI1 = RI2 ∪RI3 , the triple pattern t is reformulated as follows:

Dp(t,m) = Dp

(
t, R1 → R2

)
UNION Dp

(
t, R1 → R3

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
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DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
t, R1 → R2

)
UNION Dp

(
t, R1 → R3

)
]]DS

= [[Dp

(
t, R1 → R2

)
]]DS ∪ [[Dp

(
t, R1 → R3

)
]]DS

Abusively treating the object property expressions R2, R3 as simple object properties, and
based on the semantics of the input triple pattern t, the mapping typem and the graph pattern
g, we consider the following premises:

(a) ∀ solutionω ∈ [[t]]DS : ∃x,∃y, such that (x,R1, y) ∈ DS, and thus (x, y) ∈ RI1 . Tak-
ing into account that RI1 = RI2 ∪RI3 we conclude that (x,R2, y) ∈ DS or (x,R3, y) ∈
DS. Therefore, ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x,∃y, such that (x,R2, y) ∈ DS or (x,R3, y) ∈ DS,

and thus (x, y) ∈ RI2 ∪RI3 . Taking into account that RI1 = RI2 ∪RI3 we conclude that
(x, y) ∈ RI1 and (x,R1, y) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

4. Given two object property expressions R2, R3 and a mapping m of type R1 ≡ R2 − R3,
stating that RI1 = RI2 \RI3 , the triple pattern t is reformulated as follows:

Dp(t,m) = Dp

(
t, R1 → R2

)
MINUS Dp

(
t, R1 → R3

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
t, R1 → R2

)
MINUS Dp

(
t, R1 → R3

)
]]DS

= [[Dp

(
t, R1 → R2

)
]]DS \ [[Dp

(
t, R1 → R3

)
]]DS

Abusively treating the object property expressions R2, R3 as simple object properties, and
based on the semantics of the input triple pattern t, the mapping typem and the graph pattern
g, we consider the following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x,∃y, such that (x,R1, y) ∈ DS, and thus (x, y) ∈ RI1 .
Taking into account that RI1 = RI2 \ RI3 we conclude that (x,R2, y) ∈ DS and
(x,R3, y) /∈ DS. Therefore, ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solutionω ∈ πJ
(
[[g]]DS

)
: ∃x, ∃y, such that both (x,R2, y) ∈ DS and (x,R3, y) /∈

DS. Thus, (x, y) ∈ RI2 \ RI3 . Taking into account that RI1 = RI2 \ RI3 we conclude
that (x, y) ∈ RI1 and (x,R1, y) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.
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5. Given two object property expressions R2, R3 and a mapping m of type R1 ≡ R2 ◦ R3,
stating that RI1 = L = {(α, c) ∈ ∆I × ∆I | ∃b. (α, b) ∈ RI2 ∧ (b, c) ∈ RI3}, the triple
pattern t is reformulated as follows:

Dp(t,m) = Dp

(
(sub,R, ?v), R→ R2

)
AND Dp

(
(?v,R, ob), R→ R3

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
(sub,R, ?v), R→ R2

)
AND Dp

(
(?v,R, ob), R→ R3

)
]]DS

= [[Dp

(
(sub,R, ?v), R→ R2

)
]]DS |><| [[Dp

(
(?v,R, ob), R→ R3

)
]]DS

Abusively treating the object property expressions R2, R3 as simple object properties, and
based on the semantics of the input triple pattern t, the mapping typem and the graph pattern
g, we consider the following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x,∃y, such that (x,R1, y) ∈ DS, and thus (x, y) ∈ RI1 .
Taking into account that RI1 = L we conclude that ∃z such that (x,R2, z) ∈ DS and
(z,R3, y) ∈ DS. Therefore, ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x,∃y,∃z, so that (x,R2, z), (z,R3, y) ∈ DS, and

thus (x, y) ∈ L. Taking into account that RI1 = L we conclude that (x, y) ∈ RI1 and
(x,R1, y) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

6. Given an object property expression R2 and a mapping m of type R1 ≡ R−2 , stating that
RI1 = L = {(b, α) ∈ ∆I × ∆I | (α, b) ∈ RI2}, the triple pattern t is reformulated as
follows:

Dp(t,m) = Dp

(
(ob,R, sub), R→ R2

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
(ob,R, sub), R→ R2

)
]]DS

Abusively treating the object property expression R2 as a simple object property, and based
on the semantics of the input triple pattern t, the mapping type m and the graph pattern g, we
consider the following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x, ∃y, such that (x,R1, y) ∈ DS, and thus (x, y) ∈ RI1 .
Taking into account that RI1 = L we conclude that (y,R2, x) ∈ DS. Therefore,
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ω ∈ πJ
(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x,∃y, such that (x,R2, y) ∈ DS, and thus (x, y) ∈ L.

Taking into account that RI1 = L we conclude that (y, x) ∈ RI1 and (y,R1, x) ∈ DS.
Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

7. Given an object property expression R2 and a mapping m of type R1 ≡ R+
2 , stating that

RI1 = L =
⋃

n≥1(RI2 )n, the triple pattern t is reformulated as follows:

Dp(t,m) = Dp

(
t, R1 → R2

)
UNION Dp

(
t, R1 → R2 ◦R2

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
t, R1 → R2

)
UNION Dp

(
t, R1 → R2 ◦R2

)
]]DS

= [[Dp

(
t, R1 → R2

)
]]DS ∪ [[Dp

(
t, R1 → R2 ◦R2

)
]]DS

Abusively treating the object property expression R2 as a simple object property, and based
on the semantics of the input triple pattern t, the mapping type m and the graph pattern g, we
consider the following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x,∃y, such that (x,R1, y) ∈ DS, and thus (x, y) ∈ RI1 .
Taking into account that RI1 = L we conclude that (x,R2, y) ∈ DS. Therefore,
ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x, ∃y, such that (x,R2, y) ∈ DS, or ∃z so that

(x,R2, z), (z,R2, y) ∈ DS. Thus, (x, y) ∈ L. Taking into account that RI1 = L
we conclude that (x, y) ∈ RI1 and (x,R1, y) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

8. Given two object property expressions R2 and R3, as well as a mapping m of type R1 ≡
∃(R2)(R3).P1, stating thatRI1 = L = {(α, b) ∈ ∆I×∆I | ∃c1, c2.(α, c1) ∈ RI2 ∧(b, c2) ∈
RI3 ∧ (c1, c2) ∈ PD1 }, the triple pattern t is reformulated as follows:

Dp(t,m) = Dp

(
(sub,R, ?v1), R→ R2

)
AND Dp

(
(ob,R, ?v2), R→ R3

)
FILTER Tb

(
P1, ?v1, ?v2

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
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DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
(sub,R, ?v1), R→ R2

)
AND Dp

(
(ob,R, ?v2), R→ R3

)
FILTER Tb

(
P1, ?v1, ?v2

)
]]DS

= {ω ∈ [[Dp

(
(sub,R, ?v1), R→ R2

)
]]DS |><| [[Dp

(
(ob,R, ?v2),

R→ R3

)
]]DS | ω |= Tb

(
P1, ?v1, ?v2

)
}

Abusively treating the object property expressions R2, R3 as simple object properties, and
based on the semantics of the input triple pattern t, the mapping typem and the graph pattern
g, we consider the following premises:

(a) ∀ solutionω ∈ [[t]]DS : ∃x,∃y, such that (x,R1, y) ∈ DS, and thus (x, y) ∈ RI1 . Tak-
ing into account that RI1 = L we conclude that ∃z1, ∃z2 so that (x,R2, z1), (y,R3, z2)

∈ DS and (z1, z2) ∈ PD1 . Therefore, ω ∈ πJ
(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x,∃y,∃z1, ∃z2, so that (x,R2, z1) ∈ DS, (y,R3, z2)

∈ DS and (z1, z2) ∈ PD1 . Thus, (x, y) ∈ L. Taking into account that RI1 = L we
conclude that (x, y) ∈ RI1 and (x,R1, y) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

9. Given two datatype property expressions U1, U2 as well as a mapping m of type R1 ≡
∃(U1)(U2).P1, stating that RI1 = L = {(α, b) ∈ ∆I×∆I | ∃c1, c2. (α, c1) ∈ UI1 ∧ (b, c2) ∈
UI2 ∧ (c1, c2) ∈ PD1 }, the triple pattern t is reformulated as follows:

Dp(t,m) = Dp

(
(sub, U, ?v1), U → U1

)
AND Dp

(
(ob, U, ?v2), U → U2

)
FILTER Tb

(
P1, ?v1, ?v2

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
(sub, U, ?v1), U → U1

)
AND Dp

(
(ob, U, ?v2), U → U2

)
FILTER Tb

(
P1, ?v1, ?v2

)
]]DS

= {ω ∈ [[Dp

(
(sub, U, ?v1), U → U1

)
]]DS |><| [[Dp

(
(ob, U, ?v2),

U → U2

)
]]DS | ω |= Tb

(
P1, ?v1, ?v2

)
}

Abusively treating the datatype property expressions U1, U2 as simple datatype properties,
and based on the semantics of the input triple pattern t, the mapping type m and the graph
pattern g, we consider the following premises:

(a) ∀ solutionω ∈ [[t]]DS : ∃x,∃y, such that (x,R1, y) ∈ DS, and thus (x, y) ∈ RI1 . Tak-
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ing into account that RI1 = L we conclude that ∃z1, ∃z2 so that (x, U1, z1), (y, U2, z2)

∈ DS and (z1, z2) ∈ PD1 . Therefore, ω ∈ πJ
(
[[g]]DS

)
.

(b) ∀ solutionω ∈ πJ
(
[[g]]DS

)
: ∃x,∃y,∃z1, ∃z2, such that (x, U1, z1) ∈ DS, (y, U2, z2)

∈ DS and (z1, z2) ∈ PD1 . Thus, (x, y) ∈ L. Taking into account that RI1 = L we
conclude that (x, y) ∈ RI1 and (x,R1, y) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

10. Given an object property expression R2, a class expression C1 and a mapping m of type
R1 ≡ R2 � C1, stating that RI1 = L = {(α, b) ∈ ∆I ×∆I | (α, b) ∈ RI2 ∧ α ∈ CI1 }, the
triple pattern t is reformulated as follows:

Dp(t,m) = Dp

(
t, R1 → R2

)
AND Do

(
(sub, rdf :type, C), C → C1

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
t, R1 → R2

)
AND Do

(
(sub, rdf :type, C), C → C1

)
]]DS

= [[Dp

(
t, R1 → R2

)
]]DS |><| [[Do

(
(sub, rdf :type, C), C → C1

)
]]DS

Abusively treating the expressions R2, C1 as simple property and class respectively, and
based on the semantics of the input triple pattern t, the mapping typem and the graph pattern
g, we consider the following premises:

(a) ∀ solutionω ∈ [[t]]DS : ∃x,∃y, such that (x,R1, y) ∈ DS, and thus (x, y) ∈ RI1 . Tak-
ing into account that RI1 = L we conclude that (x,R2, y) ∈ DS and (x, rdf :type, C1)

∈ DS. Therefore, ω ∈ πJ
(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x,∃y, so that (x,R2, y), (x, rdf :type, C1) ∈ DS, and

thus (x, y) ∈ L. Taking into account that RI1 = L we conclude that (x, y) ∈ RI1 and
(x,R1, y) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

11. Given an object property expression R2, a class expression C1 and a mapping m of type
R1 ≡ R2 � C1, stating that RI1 = L = {(α, b) ∈ ∆I ×∆I | (α, b) ∈ RI2 ∧ b ∈ CI1 }, the
triple pattern t is reformulated as follows:

Dp(t,m) = Dp

(
t, R1 → R2

)
AND Do

(
(ob, rdf :type, C), C → C1

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
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DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
t, R1 → R2

)
AND Do

(
(ob, rdf :type, C), C → C1

)
]]DS

= [[Dp

(
t, R1 → R2

)
]]DS |><| [[Do

(
(ob, rdf :type, C), C → C1

)
]]DS

Abusively treating the expressions R2, C1 as simple property and class respectively, and
based on the semantics of the input triple pattern t, the mapping typem and the graph pattern
g, we consider the following premises:

(a) ∀ solutionω ∈ [[t]]DS : ∃x,∃y, such that (x,R1, y) ∈ DS, and thus (x, y) ∈ RI1 . Tak-
ing into account that RI1 = L we conclude that (x,R2, y) ∈ DS and (y, rdf :type, C1)

∈ DS. Therefore, ω ∈ πJ
(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x, ∃y, so that (x,R2, y), (y, rdf :type, C1) ∈ DS, and

thus (x, y) ∈ L. Taking into account that RI1 = L we conclude that (x, y) ∈ RI1 and
(x,R1, y) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

Similarly, we prove that data triple pattern rewriting using the function Dp along with a datatype
property mapping is semantics preserving. To this end, let U1 be a datatype property, let t =

(sub, U1, ob) be a data triple pattern and let J be the set of variables appearing in t. For the
different types of datatype property mappings, we consider the following cases:

1. Given a named datatype property u1 and a mappingm of typeU1 ≡ u1, stating thatUI1 = uI1 ,
the triple pattern t is reformulated as follows:

Dp(t,m) = (sub, u1, ob) = g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[(sub, u1, ob)]]DS

Based on the semantics of the input triple pattern t, the mapping typem and the graph pattern
g, we consider the following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x,∃y, such that (x, U1, y) ∈ DS, and thus (x, y) ∈ UI1 .
Taking into account that UI1 = uI1 we conclude that (x, y) ∈ uI1 and (x, u1, y) ∈ DS.
Therefore, ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solutionω ∈ πJ
(
[[g]]DS

)
: ∃x,∃y, such that (x, u1, y) ∈ DS, and thus (x, y) ∈ uI1 .

Taking into account that UI1 = uI1 we conclude that (x, y) ∈ UI1 and (x, U1, y) ∈ DS.
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Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

2. Given two datatype property expressions U2, U3 and a mapping m of type U1 ≡ U2 u U3,
stating that UI1 = UI2 ∩ UI3 , the triple pattern t is reformulated as follows:

Dp(t,m) = Dp

(
t, U1 → U2

)
AND Dp

(
t, U1 → U3

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
t, U1 → U2

)
AND Dp

(
t, U1 → U3

)
]]DS

= [[Dp

(
t, U1 → U2

)
]]DS |><| [[Dp

(
t, U1 → U3

)
]]DS

Abusively treating the datatype property expressions U2, U3 as simple datatype properties,
and based on the semantics of the input triple pattern t, the mapping type m and the graph
pattern g, we consider the following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x, ∃y, such that (x, U1, y) ∈ DS, and thus (x, y) ∈ UI1 .
Taking into account that UI1 = UI2 ∩ UI3 we conclude that (x, U2, y) ∈ DS and
(x, U3, y) ∈ DS. Therefore, ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x,∃y, such that (x, U2, y), (x, U3, y) ∈ DS, and thus

(x, y) ∈ UI2 ∩ UI3 . Taking into account that UI1 = UI2 ∩ UI3 we conclude that (x, y) ∈
UI1 and (x, U1, y) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

3. Given two datatype property expressions U2, U3 and a mapping m of type U1 ≡ U2 t U3,
stating that UI1 = UI2 ∪ UI3 , the triple pattern t is reformulated as follows:

Dp(t,m) = Dp

(
t, U1 → U2

)
UNION Dp

(
t, U1 → U3

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
t, U1 → U2

)
UNION Dp

(
t, U1 → U3

)
]]DS

= [[Dp

(
t, U1 → U2

)
]]DS ∪ [[Dp

(
t, U1 → U3

)
]]DS

Abusively treating the datatype property expressions U2, U3 as simple datatype properties,
and based on the semantics of the input triple pattern t, the mapping type m and the graph
pattern g, we consider the following premises:
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(a) ∀ solutionω ∈ [[t]]DS : ∃x,∃y, such that (x, U1, y) ∈ DS, and thus (x, y) ∈ UI1 . Tak-
ing into account that UI1 = UI2 ∪UI3 we conclude that (x, U2, y) ∈ DS or (x, U3, y) ∈
DS. Therefore, ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x,∃y, such that (x, U2, y) ∈ DS or (x, U3, y) ∈ DS,

and thus (x, y) ∈ UI2 ∪ UI3 . Taking into account that UI1 = UI2 ∪ UI3 we conclude that
(x, y) ∈ UI1 and (x, U1, y) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

4. Given two datatype property expressions U2, U3 and a mapping m of type U1 ≡ U2 − U3,
stating that UI1 = UI2 \ UI3 , the triple pattern t is reformulated as follows:

Dp(t,m) = Dp

(
t, U1 → U2

)
MINUS Dp

(
t, U1 → U3

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
t, U1 → U2

)
MINUS Dp

(
t, U1 → U3

)
]]DS

= [[Dp

(
t, U1 → U2

)
]]DS \ [[Dp

(
t, U1 → U3

)
]]DS

Abusively treating the datatype property expressions U2, U3 as simple datatype properties,
and based on the semantics of the input triple pattern t, the mapping type m and the graph
pattern g, we consider the following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x, ∃y, such that (x, U1, y) ∈ DS, and thus (x, y) ∈ UI1 .
Taking into account that UI1 = UI2 \ UI3 we conclude that (x, U2, y) ∈ DS and
(x, U3, y) /∈ DS. Therefore, ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x, ∃y, such that (x, U2, y) ∈ DS and (x, U3, y) /∈ D.

Thus (x, y) ∈ UI2 \ UI3 . Taking into account that UI1 = UI2 \ UI3 we conclude that
(x, y) ∈ UI1 and (x, U1, y) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

5. Given an object property expressionR1, a datatype property expression U2 and a mappingm
of type U1 ≡ R1◦U2, stating that UI1 = L = {(α, c) ∈ ∆I×∆ID | ∃b.(α, b) ∈ RI1 ∧(b, c) ∈
UI2 }, the triple pattern t is reformulated as follows:

Dp(t,m) = Dp

(
(sub,R, ?v), R→ R1

)
AND Dp

(
(?v, U, ob), U → U2

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
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DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
(sub,R, ?v), R→ R1

)
AND Dp

(
(?v, U, ob), U → U2

)
]]DS

= [[Dp

(
(sub,R, ?v), R→ R1

)
]]DS |><| [[Dp

(
(?v, U, ob), U → U2

)
]]DS

Abusively treating the property expressions R1, U2 as simple properties, and based on the
semantics of the input triple pattern t, the mapping type m and the graph pattern g, we
consider the following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x,∃y, such that (x, U1, y) ∈ DS, and thus (x, y) ∈ UI1 .
Taking into account that UI1 = L we conclude that ∃z such that (x,R1, z) ∈ DS and
(z, U2, y) ∈ DS. Therefore, ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x, ∃y,∃z, so that (x,R1, z), (z, U2, y) ∈ DS, and

thus (x, y) ∈ L. Taking into account that UI1 = L we conclude that (x, y) ∈ UI1 and
(x, U1, y) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

6. Given a datatype property expression U2, a class expression C1 and a mapping m of type
U1 ≡ U2 � C1, stating that UI1 = L = {(α, b) ∈ ∆I ×∆ID | (α, b) ∈ UI2 ∧ α ∈ CI1 }, the
triple pattern t is reformulated as follows:

Dp(t,m) = Dp

(
t, U1 → U2

)
AND Do

(
(sub, rdf :type, C), C → C1

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
t, U1 → U2

)
AND Do

(
(sub, rdf :type, C), C → C1

)
]]DS

= [[Dp

(
t, U1 → U2

)
]]DS |><| [[Do

(
(sub, rdf :type, C), C → C1

)
]]DS

Abusively treating the expressions U2, C1 as simple property and class respectively, and
based on the semantics of the input triple pattern t, the mapping typem and the graph pattern
g, we consider the following premises:

(a) ∀ solutionω ∈ [[t]]DS : ∃x, ∃y, such that (x, U1, y) ∈ DS, and thus (x, y) ∈ UI1 . Tak-
ing into account that UI1 = L we conclude that (x, U2, y) ∈ DS and (x, rdf :type, C1)

∈ DS. Therefore, ω ∈ πJ
(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x,∃y, so that (x, U2, y), (x, rdf :type, C1) ∈ DS, and

thus (x, y) ∈ L. Taking into account that UI1 = L we conclude that (x, y) ∈ UI1 and
(x, U1, y) ∈ DS. Therefore, ω ∈ [[t]]DS .
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From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

7. Given a datatype property expression U2, a data range D1 and a mapping m of type U1 ≡
U2 � D1, stating that UI1 = L = {(α, b) ∈ ∆I ×∆ID | (α, b) ∈ UI2 ∧ b ∈ DD1 }, the triple
pattern t is reformulated as follows:

Dp(t,m) = Dp

(
t, U1 → U2

)
FILTER Td

(
D1, ob

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
t, U1 → U2

)
FILTER Td

(
D1, ob

)
]]DS

= {ω ∈ [[Dp

(
t, U1 → U2

)
]]DS | ω |= Td

(
D1, ob

)
}

Abusively treating the datatype property expression U2 as a simple datatype property respec-
tively, and based on the semantics of the input triple pattern t, the mapping type m and the
graph pattern g, we consider the following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x,∃y, such that (x, U1, y) ∈ DS, and thus (x, y) ∈ UI1 .
Taking into account that UI1 = L we conclude that (x, U2, y) ∈ DS and y ∈ DD1 .
Therefore, ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x and ∃y ∈ DD1 , such that (x, U2, y) ∈ DS, and

thus (x, y) ∈ L. Taking into account that UI1 = L we conclude that (x, y) ∈ UI1 and
(x, U1, y) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

8. Given a datatype property expression U2 along with a mapping m of type U1 ≡ trans(U2),
stating that UI1 = trans(UI2 ), the triple pattern t is reformulated as follows:

Dp(t,m) = SELECT
(
sub, trans(?v) AS ob

)
WHERE

(
Dp

(
(sub, U, ?v), U → U2

))
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[SELECT
(
sub, trans(?v) AS ob

)
WHERE

(
Dp

(
(sub, U, ?v), U → U2

))
]]DS

= πsub, ob: trans(?v)[[Dp

(
(sub, U, ?v), U → U2

)
]]DS

Abusively treating the datatype property expressions U2, U3 as simple datatype properties,
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and based on the semantics of the input triple pattern t, the mapping type m and the graph
pattern g, we consider the following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x,∃y, such that (x, U1, y) ∈ DS, and thus (x, y) ∈ UI1 .
Taking into account that UI1 = trans(UI2 ) we conclude that ∃z such that (x, U2, z) ∈
DS and y = trans(z). Therefore, ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x, ∃y,∃z, so that (x, U2, z) ∈ DS and y = trans(z).

Thus, (x, y) ∈ trans(UI2 ). Taking into account that UI1 = trans(UI2 ) we conclude
that (x, y) ∈ UI1 and (x, U1, y) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

This concludes the proof that the function Dp preserves the exploited mapping type semantics.

A.3 Semantics Preservation of Function Do(t,m)

The function Do(t,m) was presented in Table 5.4 and it is used for the rewriting of a data triple
pattern t based on a mapping m for its object part. Following the Do function definition, in order
to prove that the rewriting process preserves the exploited mapping type semantics, it suffices to
consider the cases of triple patterns containing either a class or an individual in their object position.

To begin with, we prove that data triple pattern rewriting based on class mappings and function
Do is semantics preserving. To this end, letC1 be a class, let t = (sub, rdf :type, C1) be a data triple
pattern and let J be the set of variables appearing in t. For the different types of class mappings,
we consider the following cases:

1. Given a named class c1 and a mapping m of type C1 ≡ c1, stating that CI1 = cI1 , the triple
pattern t is reformulated as follows:

Do(t,m) = (sub, rdf :type, c1) = g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[(sub, rdf :type, c1)]]DS

Based on the semantics of the input triple pattern t, the mapping typem and the graph pattern
g, we consider the following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x, such that (x, rdf :type, C1) ∈ DS, and thus x ∈ CI1 .
Taking into account thatCI1 = cI1 we conclude that x ∈ cI1 and (x, rdf :type, c1) ∈ DS.
Therefore, ω ∈ πJ

(
[[g]]DS

)
.
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(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x, such that (x, rdf :type, c1) ∈ DS, and thus x ∈ cI1 .

Taking into account that CI1 = cI1 we conclude that x ∈ CI1 and (x, rdf :type, C1) ∈
DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

2. Given two class expressions C2, C3 and a mapping m of type C1 ≡ C2 u C3, stating that
CI1 = CI2 ∩ CI3 , the triple pattern t is reformulated as follows:

Do(t,m) = Do

(
t, C1 → C2

)
AND Do

(
t, C1 → C3

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Do

(
t, C1 → C2

)
AND Do

(
t, C1 → C3

)
]]DS

= [[Do

(
t, C1 → C2

)
]]DS |><| [[Do

(
t, C1 → C3

)
]]DS

Abusively treating the class expressionsC2, C3 as simple classes, and based on the semantics
of the input triple pattern t, the mapping type m and the graph pattern g, we consider the
following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x, such that (x, rdf :type, C1) ∈ DS, and thus x ∈ CI1 .
Taking into account that CI1 = CI2 ∩CI3 we conclude that (x, rdf :type, C2) ∈ DS and
(x, rdf :type, C3) ∈ DS. To this end, ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x, so that both (x, rdf :type, C2), (x, rdf :type, C3)

∈ DS, and thus x ∈ CI2 ∩ CI3 . Taking into account that CI1 = CI2 ∩ CI3 we conclude
that x ∈ CI1 and (x, rdf :type, C1) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

3. Given two class expressions C2, C3 and a mapping m of type C1 ≡ C2 t C3, stating that
CI1 = CI2 ∪ CI3 , the triple pattern t is reformulated as follows:

Do(t,m) = Do

(
t, C1 → C2

)
UNION Do

(
t, C1 → C3

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Do

(
t, C1 → C2

)
UNION Do

(
t, C1 → C3

)
]]DS

= [[Do

(
t, C1 → C2

)
]]DS ∪ [[Do

(
t, C1 → C3

)
]]DS

Abusively treating the class expressionsC2, C3 as simple classes, and based on the semantics
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of the input triple pattern t, the mapping type m and the graph pattern g, we consider the
following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x, such that (x, rdf :type, C1) ∈ DS, and thus x ∈ CI1 .
Taking into account that CI1 = CI2 ∪ CI3 we conclude that (x, rdf :type, C2) ∈ DS or
(x, rdf :type, C3) ∈ DS. To this end, ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solutionω ∈ πJ
(
[[g]]DS

)
: ∃x, so that (x, rdf :type, C2) ∈ DS or (x, rdf :type, C3)

∈ DS, and thus x ∈ CI2 ∪ CI3 . Taking into account that CI1 = CI2 ∪ CI3 we conclude
that x ∈ CI1 and (x, rdf :type, C1) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

4. Given two class expressions C2, C3 and a mapping m of type C1 ≡ C2 − C3, stating that
CI1 = CI2 \ CI3 , the triple pattern t is reformulated as follows:

Do(t,m) = Do

(
t, C1 → C2

)
MINUS Do

(
t, C1 → C3

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Do

(
t, C1 → C2

)
MINUS Do

(
t, C1 → C3

)
]]DS

= [[Do

(
t, C1 → C2

)
]]DS \ [[Do

(
t, C1 → C3

)
]]DS

Abusively treating the class expressionsC2, C3 as simple classes, and based on the semantics
of the input triple pattern t, the mapping type m and the graph pattern g, we consider the
following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x, such that (x, rdf :type, C1) ∈ DS, and thus x ∈ CI1 .
Taking into account that CI1 = CI2 \CI3 we conclude that (x, rdf :type, C2) ∈ DS and
(x, rdf :type, C3) /∈ DS. To this end, ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solutionω ∈ πJ
(
[[g]]DS

)
: ∃x, such that (x, rdf :type, C2) ∈ DS and (x, rdf :type,

C3) /∈ DS. Thus, x ∈ CI2 \ CI3 . Taking into account that CI1 = CI2 \ CI3 we conclude
that x ∈ CI1 and (x, rdf :type, C1) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

5. Given an object property expression R1, a class expression C2 and a mapping m of type
C1 ≡ ∃R1.C2, stating that CI1 = L = {α ∈ ∆I | ∃b. (α, b) ∈ RI1 ∧ b ∈ CI2 }, the triple
pattern t is reformulated as follows:

Do(t,m) = Dp

(
(sub,R, ?v), R→ R1 � C2

)
= g
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Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
(sub,R, ?v), R→ R1 � C2

)
]]DS

Abusively treating the expressions R1, C2 as simple property and class respectively, and
based on the semantics of the input triple pattern t, the mapping typem and the graph pattern
g, we consider the following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x, such that (x, rdf :type, C1) ∈ DS, and thus x ∈ CI1 .
Taking into account that CI1 = L we conclude that ∃y such that (x,R1, y) ∈ DS and
(y, rdf :type, C2) ∈ DS. To this end, ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x, ∃y, so that (x,R1, y), (y, rdf :type, C2) ∈ DS,

and thus x ∈ L. Taking into account that CI1 = L we conclude that x ∈ CI1 and
(x, rdf :type, C1) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

6. Given a datatype property expression U1, a data range D1 and a mapping m of type C1 ≡
∃U1.D1, stating that CI1 = L = {α ∈ ∆I | ∃b. (α, b) ∈ UI1 ∧ b ∈ DD1 }, the triple pattern t
is reformulated as follows:

Do(t,m) = Dp

(
(sub, U, ?v), U → U1 � D1

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
(sub, U, ?v), U → U1 � D1

)
]]DS

Abusively treating the datatype property expression U1 as a simple datatype property, and
based on the semantics of the input triple pattern t, the mapping typem and the graph pattern
g, we consider the following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x, such that (x, rdf :type, C1) ∈ DS, and thus x ∈ CI1 .
Taking into account thatCI1 = Lwe conclude that ∃y ∈ DD1 such that (x, U1, y) ∈ DS.
To this end, ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x and ∃y ∈ DD1 , such that (x, U1, y) ∈ DS, and

thus x ∈ L. Taking into account that CI1 = L we conclude that x ∈ CI1 and
(x, rdf :type, C1) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.
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7. Given an object property expression R1 and a mapping m of type C1 ≡ ∃R1.P1, stating that
CI1 = L = {α ∈ ∆I | ∃b. (α, b) ∈ RI1 ∧ b ∈ PD1 }, the triple pattern t is reformulated as
follows:

Do(t,m) = Dp

(
(sub,R, ?v), R→ R1

)
FILTER Tu

(
P1, ?v

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
(sub,R, ?v), R→ R1

)
FILTER Tu

(
P1, ?v

)
]]DS

= {ω ∈ [[Dp

(
(sub,R, ?v), R→ R1

)
]]DS | ω |= Tu

(
P1, ?v

)
}

Abusively treating the object property expression R1 as a simple object property, and based
on the semantics of the input triple pattern t, the mapping type m and the graph pattern g, we
consider the following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x, such that (x, rdf :type, C1) ∈ DS, and thus x ∈ CI1 .
Taking into account thatCI1 = Lwe conclude that ∃y ∈ PD1 such that (x,R1, y) ∈ DS.
To this end, ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x and ∃y ∈ PD1 , such that (x,R1, y) ∈ DS, and

thus x ∈ L. Taking into account that CI1 = L we conclude that x ∈ CI1 and
(x, rdf :type, C1) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

8. Given a datatype property expression U1 and a mappingm of type C1 ≡ ∃U1.P1, stating that
CI1 = L = {α ∈ ∆I | ∃b. (α, b) ∈ UI1 ∧ b ∈ PD1 }, the triple pattern t is reformulated as
follows:

Do(t,m) = Dp

(
(sub, U, ?v), U → U1

)
FILTER Tu

(
P1, ?v

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
(sub, U, ?v), U → U1

)
FILTER Tu

(
P1, ?v

)
]]DS

= {ω ∈ [[Dp

(
(sub, U, ?v), U → U1

)
]]DS | ω |= Tu

(
P1, ?v

)
}

Abusively treating the datatype property expression U1 as a simple datatype property, and
based on the semantics of the input triple pattern t, the mapping typem and the graph pattern
g, we consider the following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x, such that (x, rdf :type, C1) ∈ DS, and thus x ∈ CI1 .
Taking into account thatCI1 = Lwe conclude that ∃y ∈ PD1 such that (x, U1, y) ∈ DS.
To this end, ω ∈ πJ

(
[[g]]DS

)
.
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(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x and ∃y ∈ PD1 , such that (x, U1, y) ∈ DS, and

thus x ∈ L. Taking into account that CI1 = L we conclude that x ∈ CI1 and
(x, rdf :type, C1) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

9. Given two object property expressionsR1,R2 and a mappingm of type C1 ≡ ∃(R1, R2).P1,
stating that CI1 = L = {α ∈ ∆I | ∃b1, b2. (α, b1) ∈ RI1 ∧ (α, b2) ∈ RI2 ∧ (b1, b2) ∈ PD1 },
the triple pattern t is reformulated as follows:

Do(t,m) = Dp

(
(sub,R, ?v1), R→ R1

)
AND Dp

(
(sub,R, ?v2), R→ R2

)
FILTER Tb

(
P1, ?v1, ?v2

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
(sub,R, ?v1), R→ R1

)
AND Dp

(
(sub,R, ?v2), R→ R2

)
FILTER Tb

(
P1, ?v1, ?v2

)
]]DS

= {ω ∈ [[Dp

(
(sub,R, ?v1), R→ R1

)
]]DS |><| [[Dp

(
(sub,R, ?v2),

R→ R2

)
]]DS | ω |= Tb

(
P1, ?v1, ?v2

)
}

Abusively treating the object property expressions R1, R2 as simple object properties, and
based on the semantics of the input triple pattern t, the mapping typem and the graph pattern
g, we consider the following premises:

(a) ∀ solutionω ∈ [[t]]DS : ∃x, such that (x, rdf :type, C1) ∈ DS, and thus x ∈ CI1 . Tak-
ing into account that CI1 = L we conclude that ∃y1,∃y2 so that (x,R1, y1), (x,R2, y2)

∈ DS and (y1, y2) ∈ PD1 . To this end, ω ∈ πJ
(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x, ∃y1, ∃y2, such that (x,R1, y1) ∈ DS, (x,R2, y2) ∈

DS and (y1, y2) ∈ PD1 . Thus, x ∈ L. Taking into account that CI1 = L we conclude
that x ∈ CI1 and (x, rdf :type, C1) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

10. Given two datatype property expressions U1, U2, as well as a mapping m of type C1 ≡
∃(U1, U2).P1, stating that CI1 = L = {α ∈ ∆I | ∃b1, b2. (α, b1) ∈ UI1 ∧ (α, b2) ∈
UI2 ∧ (b1, b2) ∈ PD1 }, the triple pattern t is reformulated as follows:

Do(t,m) = Dp

(
(sub, U, ?v1), U → U1

)
AND Dp

(
(sub, U, ?v2), U → U2

)
FILTER Tb

(
P1, ?v1, ?v2

)
= g
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Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[Dp

(
(sub, U, ?v1), U → U1

)
AND Dp

(
(sub, U, ?v2), U → U2

)
FILTER Tb

(
P1, ?v1, ?v2

)
]]DS

= {ω ∈ [[Dp

(
(sub, U, ?v1), U → U1

)
]]DS |><| [[Dp

(
(sub, U, ?v2),

U → U2

)
]]DS | ω |= Tb

(
P1, ?v1, ?v2

)
}

Abusively treating the datatype property expressions U1, U2 as simple datatype properties,
and based on the semantics of the input triple pattern t, the mapping type m and the graph
pattern g, we consider the following premises:

(a) ∀ solutionω ∈ [[t]]DS : ∃x, such that (x, rdf :type, C1) ∈ DS, and thus x ∈ CI1 . Tak-
ing into account that CI1 = L we conclude that ∃y1,∃y2 so that (x, U1, y1), (x, U2, y2)

∈ DS and (y1, y2) ∈ PD1 . To this end, ω ∈ πJ
(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x,∃y1, ∃y2, such that (x, U1, y1) ∈ DS, (x, U2, y2) ∈

DS and (y1, y2) ∈ PD1 . Thus, x ∈ L. Taking into account that CI1 = L we conclude
that x ∈ CI1 and (x, rdf :type, C1) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

11. Given an object property expression R1 and a mapping m of type C1 ≡ T n R1, stating that
CI1 = L = {α ∈ ∆I | | {b ∈ ∆I | (α, b) ∈ RI1} | T n}, the triple pattern t is reformulated
as follows:

Do(t,m) = SELECT DISTINCT (sub) WHERE
(
Dp

(
(sub,R, ?v), R→ R1

))
GROUP BY (sub) HAVING

(
COUNT (DISTINCT ?v) T n

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[SELECT DISTINCT (sub) WHERE
(
Dp

(
(sub,R, ?v), R→ R1

))
GROUP BY (sub) HAVING

(
COUNT (DISTINCT ?v) T n

)
]]DS

Abusively treating the object property expression R1 as a simple object property, and based
on the semantics of the input triple pattern t, the mapping type m and the graph pattern g, we
consider the following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x, such that (x, rdf :type, C1) ∈ DS, and thus x ∈ CI1 .
Taking into account that CI1 = L we conclude that there exist T n values of y so
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that for each different value of y applies that (x,R1, y) ∈ DS. To this end, ω ∈
πJ
(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x, and also exist T n values of y so that for each

different value of y applies that (x,R1, y) ∈ DS. Thus, x ∈ L. Taking into account
that CI1 = L we conclude that x ∈ CI1 and (x, rdf :type, C1) ∈ DS. Therefore,
ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

12. Given an datatype property expression U1 and a mapping m of type C1 ≡ T n U1, stating
that CI1 = L = {α ∈ ∆I | | {b ∈ ∆I | (α, b) ∈ UI1 } | T n}, the triple pattern t is
reformulated as follows:

Do(t,m) = SELECT DISTINCT (sub) WHERE
(
Dp

(
(sub, U, ?v), U → U1

))
GROUP BY (sub) HAVING

(
COUNT (DISTINCT ?v) T n

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[SELECT DISTINCT (sub) WHERE
(
Dp

(
(sub, U, ?v), U → U1

))
GROUP BY (sub) HAVING

(
COUNT (DISTINCT ?v) T n

)
]]DS

Abusively treating the datatype property expression U1 as a simple datatype property, and
based on the semantics of the input triple pattern t, the mapping typem and the graph pattern
g, we consider the following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x, such that (x, rdf :type, C1) ∈ DS, and thus x ∈ CI1 .
Taking into account that CI1 = L we conclude that there exist T n values of y so
that for each different value of y applies that (x, U1, y) ∈ DS. To this end, ω ∈
πJ
(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x, and also exist T n values of y so that for each

different value of y applies that (x, U1, y) ∈ DS. Thus, x ∈ L. Taking into account
that CI1 = L we conclude that x ∈ CI1 and (x, rdf :type, C1) ∈ DS. Therefore,
ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

13. Given an object property expression R1, a class expression C2 and a mapping m of type
C1 ≡ T n R1.C2, stating that CI1 = L = {α ∈ ∆I | |{b ∈ ∆I | (α, b) ∈ RI1 ∧ b ∈ CI2 }| ≥
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n}, the triple pattern t is reformulated as follows:

Do(t,m) = SELECT DISTINCT(sub) WHERE
(
Dp

(
(sub,R, ?v), R→ R1�C2

))
GROUP BY (sub) HAVING

(
COUNT (DISTINCT ?v) T n

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[SELECT DISTINCT (sub) WHERE
(
Dp

(
(sub,R, ?v), R→ R1�C2

))
GROUP BY (sub) HAVING

(
COUNT (DISTINCT ?v) T n

)
]]DS

Abusively treating the expressions R1, C2 as simple property and class respectively, and
based on the semantics of the input triple pattern t, the mapping typem and the graph pattern
g, we consider the following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x, such that (x, rdf :type, C1) ∈ DS, and thus x ∈ CI1 .
Taking into account that CI1 = L we conclude that there exist T n values of y so that
for each different value of y applies that (x,R1, y) ∈ DS and (y, rdf :type, C2) ∈ DS.
To this end, ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x, and also exist T n values of y so that for each

different value of y applies that both (x,R1, y) ∈ DS and (y, rdf :type, C2) ∈ DS.
Thus, x ∈ L. Taking into account that CI1 = L we conclude that x ∈ CI1 and
(x, rdf :type, C1) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

14. Given a datatype property expression U1, a data range D1 and a mapping m of type C1 ≡ T
n U1.D1, stating that CI1 = L = {α ∈ ∆I | |{b ∈ ∆D | (α, b) ∈ UI1 ∧ b ∈ DD1 }| ≥ n}, the
triple pattern t is reformulated as follows:

Do(t,m) = SELECT DISTINCT(sub) WHERE
(
Dp

(
(sub, U, ?v), U → U1�D1

))
GROUP BY (sub) HAVING

(
COUNT (DISTINCT ?v) T n

)
= g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[SELECT DISTINCT (sub) WHERE
(
Dp

(
(sub, U, ?v), U → U1�D1

))
GROUP BY (sub) HAVING

(
COUNT (DISTINCT ?v) T n

)
]]DS

Abusively treating the datatype property expression U1 as a simple datatype property, and
based on the semantics of the input triple pattern t, the mapping typem and the graph pattern
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g, we consider the following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x, such that (x, rdf :type, C1) ∈ DS, and thus x ∈ CI1 .
Taking into account that CI1 = L we conclude that there exist T n values of y so that
for each different value of y applies that (x, U1, y) ∈ DS and y ∈ DD1 . To this end,
ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x, and also exist T n values of y so that for each

different value of y applies that (x, U1, y) ∈ DS and y ∈ DD1 . Thus, x ∈ L. Taking
into account that CI1 = L we conclude that x ∈ CI1 and (x, rdf :type, C1) ∈ DS.
Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

15. Given the individuals o1, . . . , on and a mapping m of type C1 ≡ {o1, . . . , on}, stating that
CI1 = {o1, . . . , on}I , the triple pattern t is reformulated as follows:

Do(t,m) = VALUES (sub) (o1 . . . on) = g

Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset
DS (specified in the Definition A.1) applies that:

[[g]]DS = [[VALUES (sub) (o1 . . . on)]]DS

= {ω | dom(ω) = sub, ω(sub) = {o1, . . . , on}}

Based on the semantics of the input triple pattern t, the mapping typem and the graph pattern
g, we consider the following premises:

(a) ∀ solution ω ∈ [[t]]DS : ∃x, such that (x, rdf :type, C1) ∈ DS, and thus x ∈ CI1 .
Taking into account that CI1 = {o1, . . . , on}I we conclude that x ∈ {o1, . . . , on}I .
Therefore, ω ∈ πJ

(
[[g]]DS

)
.

(b) ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x, such that dom(ω) = x and ω(x) ∈ {o1, . . . , on}I .

Taking into account that CI1 = {o1, . . . , on}I , we derive that x ∈ CI1 , as well as the
fact that (x, rdf :type, C1) ∈ DS. Therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
.

Similarly, we prove that data triple pattern rewriting using the function Do along with an individual
mapping is semantics preserving. To this end, let o1, o2 be individuals, let t = (sub, pred, o1) be
a data triple pattern and let J be the set of variables appearing in t. Given a mapping m of type
o1 ≡ o2, stating that oI1 = oI2 , the triple pattern t is reformulated as follows:

Do(t,m) = (sub, pred, o2) = g
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Furthermore, regarding the evaluation of the resulted graph pattern g over the RDF dataset DS
(specified in the Definition A.1) applies that:

[[g]]DS = [[(sub, pred, o2)]]DS

Based on the semantics of the input triple pattern t, the mapping type m and the graph pattern g,
we consider the following premises:

1. ∀ solutionω ∈ [[t]]DS : ∃x,∃y, such that (x, y, o1) ∈ DS. Taking into account that oI1 = oI2
we conclude that (x, y, o2) ∈ DS, and therefore, ω ∈ πJ

(
[[g]]DS

)
.

2. ∀ solution ω ∈ πJ
(
[[g]]DS

)
: ∃x, ∃y, such that (x, y, o2) ∈ DS. Taking into account that

oI1 = oI2 we conclude that (x, y, o1) ∈ DS, and therefore, ω ∈ [[t]]DS .

From the two premises above, we derive that [[t]]DS ≡ πJ
(
[[g]]DS

)
. This concludes the proof that

the function Do preserves the exploited mapping type semantics.



Appendix B

Mapping Language: Schema

This appendix provides the XML Schema of the language which is used for the mapping repre-
sentation in the context of the SPARQL–RW Framework. The schema is based on the grammar
presented in Section 4.6, defining the core constructs of the model in XML format. It introduces
language constraints and provides control over the type of data that can be assigned to the vari-
ous elements and attributes. Furthermore, the use of XML and XML Schema in describing the
SPARQL–RW mapping language: (a) provides exceptional validation capabilities, (b) supports easy
mapping serialization and deserialization, and (c) enables interoperability with external systems
and applications.

<xs:schema version="1.0"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://www.music.tuc.gr/sparqlrw"

targetNamespace="http://www.music.tuc.gr/sparqlrw"

elementFormDefault="qualified">

<!-- SPARQL-RW Mapping Model -->

<xs:element name="model">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:formalism"/>

<xs:element name="global">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:ontology"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="locals">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:ontology"
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maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="mappings">

<xs:complexType>

<xs:sequence maxOccurs="unbounded">

<xs:choice>

<xs:element ref="tns:cmapping"/>

<xs:element ref="tns:opmapping"/>

<xs:element ref="tns:dpmapping"/>

<xs:element ref="tns:imapping"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<!-- Ontology -->

<xs:element name="ontology">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="description" type="xs:string"/>

</xs:sequence>

<xs:attribute ref="tns:uri" use="required"/>

</xs:complexType>

</xs:element>

<!-- Class Mapping -->

<xs:element name="cmapping">

<xs:complexType>

<xs:sequence>

<xs:element name="expr1">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:class"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="expr2">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:class"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element ref="tns:relation"/>
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</xs:sequence>

<xs:attribute ref="tns:uri" use="required"/>

</xs:complexType>

</xs:element>

<!-- Object Property Mapping -->

<xs:element name="opmapping">

<xs:complexType>

<xs:sequence>

<xs:element name="expr1">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:oproperty"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="expr2">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:oproperty"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element ref="tns:relation"/>

</xs:sequence>

<xs:attribute ref="tns:uri" use="required"/>

</xs:complexType>

</xs:element>

<!-- Datatype Property Mapping -->

<xs:element name="dpmapping">

<xs:complexType>

<xs:sequence>

<xs:element name="expr1">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:dproperty"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="expr2">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:dproperty"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element ref="tns:relation"/>

</xs:sequence>
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<xs:attribute ref="tns:uri" use="required"/>

</xs:complexType>

</xs:element>

<!-- Individual Mapping -->

<xs:element name="imapping">

<xs:complexType>

<xs:sequence>

<xs:element name="expr1">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:individual"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="expr2">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:individual"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element ref="tns:relation"/>

</xs:sequence>

<xs:attribute ref="tns:uri" use="required"/>

</xs:complexType>

</xs:element>

<!-- Class -->

<xs:element name="class">

<xs:complexType>

<xs:choice>

<xs:element ref="tns:resource"/>

<xs:element name="union">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:class" minOccurs="2"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="intersection">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:class" minOccurs="2"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="difference">



139

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:class" minOccurs="2"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="enumeration">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:individual"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="existquant">

<xs:complexType>

<xs:choice>

<xs:element name="onOProperty">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:oproperty"/>

<xs:element name="quantifier">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:class"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="onDProperty">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:dproperty"/>

<xs:element name="quantifier">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:datatype"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:choice>

</xs:complexType>

</xs:element>
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<xs:element name="existpred">

<xs:complexType>

<xs:choice>

<xs:element name="onOProperty">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:oproperty"/>

<xs:element name="predicate"

type="tns:UPredicateType"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="onDProperty">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:dproperty"/>

<xs:element name="predicate"

type="tns:UPredicateType"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="onOProperties">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:oproperty"

minOccurs="2"

maxOccurs="2"/>

<xs:element name="predicate"

type="tns:BPredicateType"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="onDProperties">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:dproperty"

minOccurs="2"

maxOccurs="2"/>

<xs:element name="predicate"

type="tns:BPredicateType"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:choice>

</xs:complexType>

</xs:element>

<xs:element name="cardinality">

<xs:complexType>

<xs:choice>
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<xs:element name="onOProperty">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:oproperty"/>

<xs:element name="predicate"

type="tns:UPredicateType"/>

<xs:element name="quantifier"

minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:class"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="onDProperty">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:dproperty"/>

<xs:element name="predicate"

type="tns:UPredicateType"/>

<xs:element name="quantifier"

minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:datatype"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:choice>

</xs:complexType>

</xs:element>

</xs:choice>

</xs:complexType>

</xs:element>

<!-- Object Property -->

<xs:element name="oproperty">

<xs:complexType>

<xs:choice>

<xs:element ref="tns:resource"/>

<xs:element name="union">

<xs:complexType>

<xs:sequence>
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<xs:element ref="tns:oproperty" minOccurs="2"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="intersection">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:oproperty" minOccurs="2"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="difference">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:oproperty" minOccurs="2"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="composition">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:oproperty" minOccurs="2"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="inverse">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:oproperty"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="transitive">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:oproperty"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="existpred">

<xs:complexType>

<xs:choice>

<xs:element name="onOProperties">

<xs:complexType>

<xs:sequence>
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<xs:element ref="tns:oproperty"

minOccurs="2"

maxOccurs="2"/>

<xs:element name="predicate"

type="tns:BPredicateType"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="onDProperties">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:dproperty"

minOccurs="2"

maxOccurs="2"/>

<xs:element name="predicate"

type="tns:BPredicateType"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:choice>

</xs:complexType>

</xs:element>

<xs:element name="restrict">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:oproperty"/>

<xs:element name="domain" minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:class"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="range" minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:class"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:choice>

</xs:complexType>

</xs:element>

<!-- Datatype Property -->

<xs:element name="dproperty">
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<xs:complexType>

<xs:choice>

<xs:element ref="tns:resource"/>

<xs:element name="union">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:dproperty" minOccurs="2"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="intersection">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:dproperty" minOccurs="2"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="difference">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:dproperty" minOccurs="2"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="composition">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:oproperty"

maxOccurs="unbounded"/>

<xs:element ref="tns:dproperty"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="transform">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:dproperty"/>

</xs:sequence>

<xs:attribute ref="tns:to" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="restrict">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:dproperty"/>

<xs:element name="domain" minOccurs="0">
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<xs:complexType>

<xs:sequence>

<xs:element ref="tns:class"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="range" minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:datatype"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:choice>

</xs:complexType>

</xs:element>

<!-- Value -->

<xs:element name="value">

<xs:complexType>

<xs:choice>

<xs:element ref="tns:individual"/>

<xs:element ref="tns:data"/>

</xs:choice>

</xs:complexType>

</xs:element>

<!-- Individual -->

<xs:element name="individual">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:resource"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<!-- Data Value -->

<xs:element name="data">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute ref="tns:type" use="required"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>
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<!-- Condition -->

<xs:element name="condition">

<xs:complexType>

<xs:choice>

<xs:element name="basic" type="tns:UPredicateType"/>

<xs:element name="and">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:condition" minOccurs="2"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="or">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:condition" minOccurs="2"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="not">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:condition"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:choice>

</xs:complexType>

</xs:element>

<!-- Formalism -->

<xs:element name="formalism">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="GAV"/>

<xs:enumeration value="LAV"/>

<xs:enumeration value="GLAV"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<!-- Relation -->

<xs:element name="relation">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="EQUIVALENT"/>

<xs:enumeration value="SUBSUMES"/>

<xs:enumeration value="SUBSUMED"/>
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<xs:enumeration value="UNSPECIFIED"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<!-- Relational Operator -->

<xs:element name="operator">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="EQUAL"/>

<xs:enumeration value="NOT_EQUAL"/>

<xs:enumeration value="GREATER"/>

<xs:enumeration value="GREATER_EQUAL"/>

<xs:enumeration value="LESS"/>

<xs:enumeration value="LESS_EQUAL"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<!-- Datatype -->

<xs:element name="datatype">

<xs:complexType>

<xs:sequence>

<xs:element ref="tns:condition" minOccurs="0"/>

</xs:sequence>

<xs:attribute ref="tns:base"/>

</xs:complexType>

</xs:element>

<!-- Resource -->

<xs:element name="resource">

<xs:complexType>

<xs:attribute ref="tns:uri" use="required"/>

</xs:complexType>

</xs:element>

<xs:attribute name="uri" type="xs:anyURI"/>

<xs:attribute name="base" type="tns:BaseDatatype"/>

<xs:attribute name="type" type="tns:BaseDatatype"/>

<xs:attribute name="to" type="tns:BaseDatatype"/>

<!--*****************************************

* Useful Types *

******************************************-->

<!-- Binary Predicate -->

<xs:complexType name="BPredicateType">
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<xs:sequence>

<xs:element ref="tns:operator"/>

</xs:sequence>

</xs:complexType>

<!-- Unary Predicate -->

<xs:complexType name="UPredicateType">

<xs:sequence>

<xs:element ref="tns:operator"/>

<xs:element ref="tns:value"/>

</xs:sequence>

</xs:complexType>

<!-- Datatype -->

<xs:simpleType name="BaseDatatype">

<xs:restriction base="xs:string">

<xs:enumeration value="INTEGER"/>

<xs:enumeration value="DECIMAL"/>

<xs:enumeration value="FLOAT"/>

<xs:enumeration value="DOUBLE"/>

<xs:enumeration value="STRING"/>

<xs:enumeration value="BOOLEAN"/>

<xs:enumeration value="DATETIME"/>

</xs:restriction>

</xs:simpleType>

</xs:schema>



Appendix C

Mapping Language: Example

This appendix provides a total mapping representation example for the data integration scenario
presented in Example 4.1. In this example several GAV type mappings were identified and are
presented here in XML format adopting the XML Schema of the Appendix B.

<model xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.music.tuc.gr/sparqlrw"

xmlns:ns="http://www.music.tuc.gr/sparqlrw">

<formalism>GAV</formalism>

<global>

<ontology ns:uri="G">

<name>Mediator Ontology</name>

<description>The Mediator Ontology</description>

</ontology>

</global>

<locals>

<ontology ns:uri="S1">

<name>Source Ontology 1</name>

<description>The Source Ontology 1</description>

</ontology>

<ontology ns:uri="S2">

<name>Source Ontology 2</name>

<description>The Source Ontology 2</description>

</ontology>

</locals>

<mappings>

<cmapping ns:uri="mapping:rule:a">

<expr1>

<class>

<resource ns:uri="G:Science"/>

</class>

</expr1>

<expr2>

<class>
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<union>

<class>

<resource ns:uri="S1:Mathematics"/>

</class>

<class>

<difference>

<class>

<resource ns:uri="S2:Textbook"/>

</class>

<class>

<resource ns:uri="S2:Novel"/>

</class>

</difference>

</class>

</union>

</class>

</expr2>

<relation>EQUIVALENT</relation>

</cmapping>

<cmapping ns:uri="mapping:rule:b">

<expr1>

<class>

<resource ns:uri="G:Autobiography"/>

</class>

</expr1>

<expr2>

<class>

<intersection>

<class>

<resource ns:uri="S1:Biography"/>

</class>

<class>

<existpred>

<onOProperties>

<oproperty>

<resource ns:uri="S1:creator"/>

</oproperty>

<oproperty>

<resource ns:uri="S1:topic"/>

</oproperty>

<predicate>

<operator>EQUAL</operator>

</predicate>

</onOProperties>

</existpred>

</class>

</intersection>

</class>

</expr2>

<relation>EQUIVALENT</relation>
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</cmapping>

<cmapping ns:uri="mapping:rule:c">

<expr1>

<class>

<resource ns:uri="G:ShortFilm"/>

</class>

</expr1>

<expr2>

<class>

<existquant>

<onDProperty>

<dproperty>

<resource ns:uri="S2:runtime"/>

</dproperty>

<quantifier>

<datatype>

<condition>

<basic>

<operator>LESS_EQUAL</operator>

<value>

<data ns:type="INTEGER">40</data>

</value>

</basic>

</condition>

</datatype>

</quantifier>

</onDProperty>

</existquant>

</class>

</expr2>

<relation>EQUIVALENT</relation>

</cmapping>

<cmapping ns:uri="mapping:rule:d">

<expr1>

<class>

<resource ns:uri="G:CrossGenre"/>

</class>

</expr1>

<expr2>

<class>

<cardinality>

<onOProperty>

<oproperty>

<resource ns:uri="S2:genre"/>

</oproperty>

<predicate>

<operator>GREATER_EQUAL</operator>

<value>

<data ns:type="INTEGER">2</data>

</value>



152

</predicate>

</onOProperty>

</cardinality>

</class>

</expr2>

<relation>EQUIVALENT</relation>

</cmapping>

<opmapping ns:uri="mapping:rule:e">

<expr1>

<oproperty>

<resource ns:uri="G:longerThan"/>

</oproperty>

</expr1>

<expr2>

<oproperty>

<existpred>

<onDProperties>

<dproperty>

<resource ns:uri="S2:runtime"/>

</dproperty>

<dproperty>

<resource ns:uri="S2:runtime"/>

</dproperty>

<predicate>

<operator>GREATER</operator>

</predicate>

</onDProperties>

</existpred>

</oproperty>

</expr2>

<relation>EQUIVALENT</relation>

</opmapping>

<dpmapping ns:uri="mapping:rule:f">

<expr1>

<dproperty>

<resource ns:uri="G:name"/>

</dproperty>

</expr1>

<expr2>

<dproperty>

<union>

<dproperty>

<resource ns:uri="S1:title"/>

</dproperty>

<dproperty>

<resource ns:uri="S2:label"/>

</dproperty>

</union>

</dproperty>
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</expr2>

<relation>SUBSUMES</relation>

</dpmapping>

<dpmapping ns:uri="mapping:rule:g">

<expr1>

<dproperty>

<resource ns:uri="G:author"/>

</dproperty>

</expr1>

<expr2>

<dproperty>

<composition>

<oproperty>

<resource ns:uri="S1:creator"/>

</oproperty>

<dproperty>

<resource ns:uri="S1:fullname"/>

</dproperty>

</composition>

</dproperty>

</expr2>

<relation>SUBSUMES</relation>

</dpmapping>

</mappings>

</model>
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