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Abstract

A novel numerical approach for the approximation of several, widely applied, macroscopic traf-
fic flow models is presented. A relaxation-type approximation of second-order non-equilibrium
models, written in conservation or balance law form, is considered. Using the relaxation approxi-
mation, the nonlinear equations are transformed to a semi-linear diagonilizable problem with linear
characteristic variables and stiff source terms. To discretize the resulting relaxation system, low-
and high-resolution reconstructions in space and implicit-explicit Runge-Kutta time integration
schemes are considered. The family of spatial discretizations includes a second-order MUSCL
scheme and a fifth-order WENO scheme, and a detailed formulation of the scheme is presented.
Emphasis is given on the WENO scheme and its performance for solving the different traffic mod-
els. To demonstrate the effectiveness of the proposed approach, extensive numerical tests are per-
formed for the different models. The computations reported here demonstrate the simplicity and
versatility of relaxation schemes as solvers for macroscopic traffic flow models.

Keywords: Second-order traffic flow models; Numerical modeling; Relaxation schemes;
High-resolution

1. Introduction

Traffic flow modeling has attracted a rapidly growing interest over the past years, due to the
need for optimization of the usage of existing traffic infrastructure and the design of new struc-
tures, the growing economic/environmental cost of traffic jams, their impact on the quality of life,
the need to assess and optimize new driver assistance devices, and (from a scientific point of view)
the existence of complicated non-linear dynamical phenomena associated with traffic flow and the
characteristics of vehicles and drivers’ behavior. The effective modeling of such phenomena, like
traffic jams, stop-and-go traffic and ”synchronized” congested traffic [27], call for the develop-
ment of accurate theoretical models which should reproduce, at least qualitatively, all traffic states
with the minimum number of parameters [25] and the corresponding computational procedures,
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which should be numerically efficient (in terms of computational time and memory requirements),
accurate and robust, to allow for their use in real-world simulation and optimization scenarios.

Several approaches have been followed over the past years to model the dynamics of traffic
flow, the most successful being cellular automata, microscopic car-following models, gas-kinetic
models, and macroscopic traffic models. Comprehensive descriptions of such models can be found,
for example, in [25, 31, 7, 56]. Macroscopic models consider the traffic as an anisotropic fluid
(continuum), where vehicle dynamics are described in terms of spatial vehicle density and average
velocity, as functions of location and time. Some of the advantages of the macroscopic models
are (a) their numerical efficiency (compared to microscopic ones), (b) their good agreement with
empirical data, (c) their suitability for analytical investigations, (d) the simple treatment of inflows,
and (e) the possibility to simulate multi-lane flows by effective one-lane models, we refer, for
example, to [25] and [27] for thorough discussions.

The main motivation behind this work is the development of a common numerical framework
for the macroscopic simulation of traffic flow networks, transparent to the traffic flow model used
(only second-order non-equilibrium traffic flow models are considered in this work). New models,
especially for Adaptive Cruise Control (ACC) and Cooperative Adaptive Cruise Control (CACC)
simulations, may be straightforwardly introduced in this framework and thus, compared and tested
under common conditions. The requirement for the use of different macroscopic models (existing
or new developments) under the same environment, imposes the avoidance of developing new
complex numerical solvers. For example, the adoption of a numerical approach based on Godunov-
type schemes with (exact or approximate) Riemann solvers would require the development of new
different solver for each new model introduced to the framework, as for example in [10, 23, 57].
The second objective is to explore and exploit the advantages of high-order numerical schemes for
space and time discretization, in terms of computational efficiency and accuracy, to evaluate such
schemes and to compare them to lower-order ones for different second-order traffic flow models.

The approach that is followed here includes the adoption of the relaxation approach proposed
in [34] and is based on Finite Volume numerical discretizations of a linearized system of dif-
ferential equations, which renders the methodology independent of the use of Riemann solvers
(approximate or not). Within this approach, the differences between the various traffic flow mod-
els are taken into account through the corresponding flux and source term functions, plus their
different parameters and upper bounds of the corresponding eigenvalues of the flux’s Jacobian.
Different spatial discretization schemes are incorporated in a common computational framework; a
first-order upwind scheme, a second-order Monotone Upstream-centered Scheme for Conservation
Laws (MUSCL) and a fifth-order weighted essentially non-oscillatory (WENO) scheme are intro-
duced and thoroughly tested. Higher-order implicit-explicit (IMEX) Runge-Kutta (RK) schemes
are also introduced for time discretization. The computational framework is formulated as to have
a generalized description of variables and fluxes and to deal with different traffic flow models and
future modifications.

Although low-order finite volume schemes have been successfully applied to macroscopic traf-
fic flow modeling (we refer, for example, to [24, 44, 8, 45]), high-order schemes are able of re-
ducing the numerical dissipation and producing sharper resolution in the numerical solutions. As a
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result, fewer discretization points are needed for a desired accuracy and the computation becomes
much more efficient, compared to first-order discretization schemes. Moreover, as it will be demon-
strated in following sections, specific features of the solution for some problems can be obtained
only if high-order schemes are implemented. Important traffic flow conditions, such as shock waves
corresponding, for instance, to queue tails, stop-and-go phenomena and cluster formations, should
be accurately reproduced by a numerical scheme.

WENO schemes have been applied, mainly, to the Lighthill-Whitham-Richards (LWR), [39,
49], first-order macroscopic flow model and its variants, and by very few research groups so far.
The fifth-order Finite Difference WENO scheme of [32], with Lax-Friedrichs flux splitting for
each equation in the system, was applied in [62] to solve the multi-class extension, proposed in
[59], of the LWR model (MCLWR) with heterogeneous drivers. An extension to this work was
presented in [64] to approximate an MCLWR model, modified to deal with inhomogeneous road
conditions; a fifth-order accurate component-wise WENO scheme was used, which applies the Lax-
Friedrichs numerical flux in the Finite Volume method and the flux splitting in the Finite Difference
method. An extension of the work from [62] was presented in [65], where better estimation of the
minimal characteristic speed of the MCLWR model was provided, thus improving the numerical
results. In [9] a family of numerical schemes was proposed for multi-species kinematic flows with
discontinuous fluxes, including an MCLWR traffic flow model. These first-order schemes can be
upgraded to higher-order accuracy by employing MUSCL-type techniques.

The relaxation approach introduced in [34], has found wide application in fluid dynamics prob-
lems, we refer for example to [4, 6, 13, 18, 20, 19, 21, 22, 36, 50, 51, 52, 5], among others. The
main advantage of such schemes is that neither Riemann solvers, nor the computation of eigenval-
ues are needed, which renders this methodology ideal for problems where an analytic expression
for the eigenvalues of the systems’ Jacobian matrix may not be possible or is computationally te-
dious to obtain, or the Riemann problems are difficult to approximate [53]. However, the work
on relaxation schemes for traffic flow problems includes, thus far, very few works on second- or
higher-order schemes on the LWR (and variants) and low-order schemes on standard second-order
traffic flow models such as the Aw and Rascle (AR)[2] and the Aw-Rascle-Zhang (ARZ) models
[60].

In [53] a multi-lane LWR model was used as a test model for evaluating a relaxation scheme,
developed in Eulerian and Lagrangian (characteristic) frameworks, using IMEX Runge-Kutta (RK)
schemes for time integration. In the Eulerian framework a second-order MUSCL scheme was de-
veloped, and compared to the characteristic scheme and to a simple upwind one, providing in
general the sharpest results. In [30] relaxation schemes, utilizing a second-order central WENO
scheme for spatial discretization and a third-order IMEX RK method, were used to approximate
simple discrete-velocity models of traffic flows, which reduce to the LWR model in the small
relaxation limit. A relaxation scheme for the MCLWR model with heterogeneous drivers was
presented in [14]. As an extension to this work, a high-resolution relaxed scheme, based on a
fifth-order WENO reconstruction was presented in [15] for the MCLWR model on an inhomoge-
neous highway, combined with a third-order strong stability preserving (SSP) RK method for time
discretization. In [1] a relaxation scheme was used, combined with a first-order upwind scheme,
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and a second-order MUSCL scheme for spatial discretization along with a second-order IMEX
RK scheme for temporal discretization. The schemes are used for the simulation of first-order
(LWR) and second-order (AR, ARZ) traffic flow models in various Riemann problems, where the
superiority of the MUSCL scheme over the first-order one was demonstrated.

The contribution of the present work includes the following: (a) utilization of a relaxation
scheme for the numerical solution of different second-order traffic flow models; (b) utilization of
high-order spatial and temporal numerical discretization schemes; (c) generalized formulation of
the numerical procedure transparent to the traffic flow model - different second-order traffic flow
models can be simulated under the same framework; (d) testing of the procedure for a large number
of representative test cases and evaluation of the advantages of the high-order numerical discretiza-
tions relative to low-order ones (in terms of accuracy and computational efficiency). The rest of
the paper is organized as follows: In Section 2 the second-order macroscopic traffic flow models
used in this work are presented. In Section 3 the adopted relaxation model for the 1-D systems
of conservation laws is described in detail. Section 4 contains the details of numerical discretiza-
tion in space and time; the first-order upwind scheme, the second-order MUSCL scheme and the
fifth-order WENO scheme used are presented, along with the high-order IMEX RK methods for
time discretization. Details on the implementation of the initial and boundary conditions are also
discussed. Section 5 contains an extensive numerical evaluation and comparison of the proposed
schemes for all the considered traffic flow models in representative test cases. The work is con-
cluded in Section 6.

2. Macroscopic traffic flow models

We consider the numerical approximation of macroscopic non-equilibrium two-equation traffic
flow models, with a possible source term present, all written in as nonlinear systems of conservation
laws in one space dimension, with initial data, as

∂tu + ∂xf(u) = s(u),

u(x, 0) = u0(x),
(1)

where the functions u, f(u) and s(u) ∈ R2. When the source term s(u) is present system, (1) is
called a balance law. In what follows, we will denote, as functions in space x and time t, ρ(x, t) the
car or traffic density (number of cars per unit area), u(x, t) the average speed and f (ρ, u) ≡ q = ρu
the traffic flow rate.

Systems in the form of (1) can be rewritten in quasi-linear form

∂tu + J(u)∂xu = s(u), (2)

where J(u) =
∂f
∂u

is the Jacobian matrix of the system. Solving for the eigenvalues (characteristic
speeds) from det[J(u)−λI] = 0, certain realistic characteristics of the traffic models can be verified
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or not, e.g. the anisotropic nature of traffic flow. Real and distinct eigenvalues λ1,2 guarantee hyper-
bolicity (and linearly independent right eigenvectors). The solutions related to the k−th eigenvalue
are called k−family wave solutions.

Of particular interest, also in this work, is the case where the initial data is given as a Riemann
problem. That is, with the following piecewise constant initial data having a single discontinuity
around location x̄,

u0(x) =

ul for x < x̄,
ur for x > x̄.

(3)

Depending on the model equations and by the relationship between left, ul, and right, ur, states,
different k−families of elementary wave solutions exist. These elementary wave solutions are con-
stituted by shock waves, rarefaction waves and contact discontinuities. The correct numerical rep-
resentation of these elementary solutions is a requirement by any numerical scheme approximating
(1).

2.1. The PW model

The Payne-Whitham (PW) model, proposed independently in [47] and [58], is one of the first
non-equilibrium traffic models and is given in conservation law form as

∂tρ + ∂x(ρu) = 0;

∂t(ρu) + ∂x
(
ρu2 + P(ρ)

)
= ρ

(
Ve(ρ) − u

τ

)
(4)

where P(ρ) = C2
0ρ is the pressure-like term of the flow, with C0 being the anticipation parameter

that describes the macroscopic response of the driver to the traffic density. The model also includes
a traffic relaxation term that keeps speed concentration in equilibrium, with Ve(ρ) being the equi-
librium speed (maximum out-of danger velocity meant to mimic driver’s behavior) and τ being
a relaxation time. In addition, with f e(ρ,Ve) = ρVe(ρ) we can denote the so-called fundamental
diagram.

For this model the general form of the balance law (1) is satisfied for u = [ρ, ρu]T, f(u) =

[ρu, ρu2 + P(ρ)]T and s(u) = [0, (ρVe(ρ) − ρu) /τ]T. Solving for the eigenvalues, we get two
distinct and real ones

λ1,2 = u ±C0.

These second-order wave speeds are usually called frozen ”characteristic speeds”. Further, the PW
model has a sub-characteristic wave speed (relative to the road), λ? = Ve(ρ) + ρVe′(ρ), which is
actually the wave speed of the LWR model. It should be noted that, as τ → 0, system (4) admits
as its limit the viscous LWR model. The PW model can be considered as a system of hyperbolic
conservation laws with relaxation in the sense of Whitham [58] and Liu [40]. In [58] it was shown
that the stability condition for the linearized system with relaxation is

λ1 < λ? < λ2
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This model has a major drawback that researchers (see for example [17] and [16]) have been
concerned about, mainly, that this model strongly follows the fluid flow theory. The anisotropic
nature of traffic is not preserved, since the vehicles are allowed to move with negative speed i.e.
against the flow. This is clear from the eigenvalues, where one is always greater than the vehicle
speed u. Thus, information from behind affects the behavior of the driver. This is not necessarily
a physical contradiction since u is an average of vehicle and freeway-lane speeds [46, 63], see also
[28]. Therefore, we consider this model here since and are interested in its numerical solution and
its behavior to the proposed numerical schemed presented later on. For P(ρ), various expressions
have been propose, we refer to [41] for an overview. Here we use the model parameters given in
[33, 29, 35, 61], i.e., Ve(ρ) = 5.0461

[(
1 + exp ((ρ − 0.25)/0.06)

)−1
− 3.72 · 10−6

]
l̃/τ̃, with l̃ and τ̃

being the unit of length and time, respectively, and C0 = 2.48445l̃/τ̃.

2.2. The Aw-Rascle (AR) and the Aw-Rascle-Zang (ARZ) models

Aw and Rascle [2] proposed a new two-equation traffic flow model that improved the PW
and related models and addressed the concerns raised by moving away of fluids and toward the
anisotropic property of the traffic. They suggested that the correct dependence must involve the
total derivative of the pressure-like terms. Thus, the AR model in conservation law form reads as∂tρ + ∂x(ρu) = 0;

∂t (ρ(u + P(ρ))) + ∂x (ρu(u + P(ρ)) = 0,
(5)

where now P(ρ) is an increasing function of density, so as to insure that the model caries the
anisotropic property, given as

P(ρ) = C2
0ρ

γ, γ > 0.

Indeed, solving for the eigenvalues two distinct and real ones can be found

λ1 = u − ρP′(ρ) and λ2 = u,

except for ρ = 0, i.e. at vacuum. The system is strictly hyperbolic, except for ρ = 0, and since the
”pressure” is an increasing function, it is guaranteed that λ1 < λ2. In this work, we use the values
C0 = 1 and γ = 2.

A model similar to the AR model above was proposed in [60] but with its second equation
derived from a microscopic car-following model. Hence, a micro-to-macro link is established for
this model. The basic ARZ model, in its conservative form, is given as

∂tρ + ∂x
(
χ + ρVe(ρ)

)
= 0;

∂tχ + ∂x

(
χ2

ρ
− χVe(ρ)

)
= 0, χ = ρ

(
u − Ve(ρ)

)
,

where Ve(ρ) is the equilibrium velocity and variable χ can be considered to be the difference be-
tween the actual flow (q = ρu) and equilibrium flow (qe = ρVe). In this work, for the sake of
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brevity, only Greenshield’s model for the equilibrium velocity is implemented, given as,

Ve(ρ) = umax

(
1 −

ρ

ρmax

)
where umax is the free flow speed and ρmax is the maximum (jam) density.

Finally, by solving for the eigenvalues we find two distinct and real eigenvalues

λ1 = u + ρ(Ve)′ and λ2 = u

therefore this system is again strictly hyperbolic and since (Ve)′ is negative, the maximum the
information can travel is equal to the vehicle speed u.

We point out here that, both the AR and ARZ models are strictly hyperbolic except for ρ = 0
i.e., at vacuums, where their two eigenvalues are equal. This case may constitute a particular
challenge for a numerical scheme, which should correctly resolve this case.

2.3. The non-local Gas-Kinetic based traffic model

In [55] (see also [26] and [56]) a macroscopic gas-kinetic-based traffic flow model (GKT
model) was proposed, derived from microscopic vehicle dynamics.

In conservation law (balance law) form this model is written as
∂tρ + ∂x(ρu) = 0,

∂t (ρu) + ∂x
(
ρu2 + Θρ

)
= ρ

(
Ve(ρ) − u

τ

)
,

(6)

where Θ = A(ρ)u2, with A(ρ) being a density dependent variance factor, given as:

A(ρ) = A0 + δA
[
1 + tanh

(
ρ − ρcr

δρ

)]
in which ρcr is the critical density, reflecting the division between the free flow and congested traffic
situation. The constants A0, δA and δρ are given in Table 1, along with other typical values for this
model following [55, 26]. Ve(ρ, u, ρa, ua) denotes again the (non-local and dynamic) equilibrium
speed, which now depends not only on the local density ρ and mean speed u but also on the non-
local density ρa and mean speed ua, and is defined as

Ve(ρ, u, ρa, ua) = vmax

1 − A(ρ)
2A(ρmax)

(
ρaTu

1 − ρa/ρmax

)2

B(δu)

 . (7)

According to (7), Ve is given by the maximum (desired) velocity umax, reduced by a term that
reflects necessary deceleration maneuvers. Both ρa and ua are computed at location xa = x +

γ(1/ρmax+T ·u) with T being the safe time headway and γ a scale parameter with γ ∈ [1, 2]. Finally,
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B is a so-called Boltzmann (interaction) factor, and with δu =
u − ua
√

2Θ
this factor is determined as

B(z) = 2

ze−z2/2
√

2π
+ (1 + z2)

∫ z

−∞

e−y2/2
√

2π
dy


and describes the dependence of the braking interaction on the dimensionless velocity difference
δu between the actual location x and interaction location xa.

The main difference between the GKT model and other macroscopic traffic models is its non-
local character. The non-local term in (7) has smoothing properties similar to those of a viscosity
term, but its effect is forwardly directed and, therefore, more realistic. The Jacobian of the model
(6) has two distinct eigenvalues λ1,2 = u ±C where C =

√
∂Θ/∂ρ which indicate that the model is

also strictly hyperbolic.

Parameters Units Value
Free speed, umax km/h 110
Jam density, ρmax vehicle/km 160

Critical density, ρcr vehicle /km 0.27ρmax
Time headway, T s 1.8
Scaled factor, γ 1.2

Relaxation time, τ s 3.2
A0 0.008
δA 2.5A0
δρ vehicle /km 0.05 ρmax

Table 1: Typical model parameters used for the GKT traffic model (6)

3. The relaxation model for 1-D systems of conservation laws

In this section we briefly present the class of relaxation models introduced in [34]. Consider an
extended (with a general source term present) nonlinear system of conservation laws in one space
dimension (1D), with initial data,

∂tu + ∂xf(u) = s(u),

u(x, 0) = u0(x),
(8)
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where the functions u and f(u) ∈ Rn. Introducing the artificial variable v (relaxation variable), the
corresponding relaxation system is then given by

∂tu + ∂xv = s(u),

∂tv + C2∂xu = −
1
ε

(v − f(u)) ,
(9)

with initial data
u(x, 0) = u0(x),

v(x, 0) = v0(x) = f(u0(x)),

where the small parameter ε is the relaxation rate (0 < ε � 1) and

C2 = diag{c2
1, c

2
2, . . . , c

2
n}

is a positive diagonal matrix to be chosen.
For small ε, applying the Chapman-Enskog expansion in the relaxation system (9), see for

example [11, 12, 34], we can derive the following approximation for u

∂tu + ∂xf(u) = s(u) + ε∂x
[
f′(u)s(u)

]
+ ε∂x

[(
C2 − f′(u)2

)
∂xu

]
+ O(ε2), (10)

where f′(u) symbolizes the Jacobian matrix of the flux f. Equation (10) governs the first-order
behavior of the relaxation system (9), with the third term on the right-hand side being an O(ε)
dominant dissipation term in the model and

(
C2 − f′(u)2

)
being the diffusion coefficient matrix.

Model (9) is well-posed only if
(
C2 − f′(u)2

)
is positive semi-definite for all u. This requirement

on the diffusion coefficient matrix is the well-known sub-characteristic condition, [34], i.e.

C2 − f′(u)2 ≥ 0, ∀u, (11)

which ensures the dissipative nature of (10). In 1D, it is equivalent to

λ2 ≤ c2, where λ = max
1≤i≤n

|λi| and c = min
1≤i≤n

|ci|. (12)

It is clear that for u varying in a bounded domain, equation (11) can always be satisfied by choos-
ing sufficiently large values for the diagonal elements in C2. However, because of the stability
constraints on a numerical scheme, it is desirable to obtain the smallest values for C2 meeting the
criterion (11). Details of the choice of C2 are given in Section 4.4.

The, now, linear system (9) can be further written as:[
∂tu
∂tv

]
+

[
0 I

C2 0

] [
∂xu
∂xv

]
=

 s(u)

−
1
ε

(
v − f(u)

)  . (13)
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By eliminating v from (13) we can obtain the following regularization of the original system

∂tu + ∂xf(u) = s(u) + ε∂ts(u) − ε(∂2
ttu − C2∂2

xxu), (14)

that introduces a higher order wave type regularization of the original conservation law and the
additional term ε∂ts(u).

The rigorous theory of relaxation approximation for solutions with shocks is well developed
when the limit equation is scalar. In [11, 12, 43] it was shown that solutions of the relaxation model
(9) converge strongly to the unique entropy solution of the original conservation laws. The relax-
ation model provides a subtle dissipative mechanism against the destabilizing effect of nonlinear
response, as well as a damping mechanism on oscillations.

4. Numerical Discretizations

Assuming for the moment that s(u) = 0, and considering the relaxation system (13) this can be
further re-written as

∂tW + M∂xW = H (15)

where

W =

[
u
v

]
, M =

[
0 I

C2 0

]
and H =

 0

−
1
ε

(
v − f(u)

)  . (16)

Since system (15) is hyperbolic, matrix M can be diagonalized as

M = SΛS−1 or Λ = S−1MS

where S is the matrix of the right eigenvectors of M, and Λ is the diagonal matrix with the diagonal
elements being the eigenvalues of M. By introducing characteristic variables, the relaxation system
can be de-coupled. By defining the characteristic variables as

G = S−1M

the following de-coupled diagonal system is obtained

∂tG + Λ∂xG = S−1H. (17)

After some simple algebraic manipulations, system (17) can be written as

[
∂t(Cu + v)
∂t(Cu − v)

]
+ Λ

[
∂x(Cu + v)
∂x(Cu − v)

]
=

 −
1
ε

(
v − f(u)

)
1
ε

(
v − f(u)

)
 , (18)

with Λ = diag{(c1, c2, . . . , cn,−c1,−c2, . . . ,−cn}. Thus, the left-hand side of the above decoupled
hyperbolic equations is linear with constant wave speeds neatly split into positive and negative
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parts. So, the solution of (17) has the property that it propagates at finite speeds along linear
characteristic curves. Systems (17) and (15) are equivalent such that a discretization of each one
of them leads essentially to the discretization of the other. From (18) and by setting g1,2 = v ±Cu,
the following expressions can be obtained for u and v:

u =
1
2

C−1 (g1 − g2) and v =
1
2

(g1 + g2) , (19)

thus, the original variables of the relaxation system, u and v, can be recovered. As noted in the
previous sections, the main advantage of numerically solving the relaxation system over the original
conservation law lies in this special structure of the linear characteristic fields. Constructing an
upwind scheme for the above system is much simpler compared to the task of developing an upwind
scheme for the original nonlinear conservation laws.

To discretize the system, let xi = i∆x, xi± 1
2

= (i± 1
2 )∆x, where, for simplicity, we assume that ∆x

is a uniform spatial step. The approximate cell average of the variable u in the cell Ii = [xi− 1
2
, xi+ 1

2
]

at time t is denoted as ui(t), i.e.,

ui(t) =
1

∆x

∫
Ii

u(x, t)dx,

and the approximate value of u at (xi+ 1
2
, t) by ui+ 1

2
(t). Integrating (9) and keeping the time contin-

uous, the semi-discrete relaxation system is given as

∂

∂t
ui +

1
∆x

(
vi+ 1

2
− vi− 1

2

)
= s(u)i,

∂

∂t
vi +

C2

∆x

(
ui+ 1

2
− ui− 1

2

)
= −

1
ε

(vi − f(u)i).
(20)

where s(u)i and f(u)i are space averages of the source term and flux function, respectively. To
complete the spatial discretization, it is necessary to evaluate the flux values ui± 1

2
and vi± 1

2
.

Remark 1. One can further consider the so-called relaxed system, [34], resulting from system (20)
in the limit ε → 0, which is given by

∂

∂t
ui +

1
∆x

(
vi+ 1

2
− vi− 1

2

)
= s(u)i,

vi = f(ui).
(21)

System (21) is independent of the small relaxation rate and the artificial relaxation variables. How-
ever, we do not consider this approach in this presentation since it will be reported in future work.

Since system (9) has linear characteristics, with constant characteristic speeds, +ck and −ck,
upwind schemes can be implemented relatively straightforwardly. For example, the first-order
upwind scheme, [34, 18], applied to g1 and g2 gives

g1i+ 1
2

= g1i and g2i+ 1
2

= g2i+1 . (22)
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A second-order scheme, in space, is achieved by applying van Leer’s MUSCL scheme to the
k−th components of g1 and g2 as

g(k)
1i+ 1

2

= g(k)
1i

+
1
2

∆xs+
i (23)

g(k)
2i+ 1

2

= g(k)
2i+1
−

1
2

∆xs−i+1 (24)

where s+
i and s−i are respectively, the slopes of g(k)

1 and g(k)
2 on the control volume Ii. These slopes

are defined as

s±i =
1

∆x

(
g(k)

1,2i+1
− g(k)

1,2i

)
φ(θ±i ), θ±i =

g(k)
1,2i
− g(k)

1,2i−1

g(k)
1,2i+1

− g(k)
1,2i

(25)

where φ(θ) defines the van Leer’s slope limiter function

φ =
|θ| + θ

1 + |θ|
. (26)

Other limiter functions can also be applied in the sense of [54]. Note that, in the case the slopes
s± = 0 or φ = 0, the MUSCL scheme reduces to the first-order upwind scheme. Once the g1i± 1

2
and g2i± 1

2
values have been computed, the numerical fluxes for ui± 1

2
and vi± 1

2
can be obtained from

(19).

4.1. WENO reconstruction for spatial discretization

Next, we apply the well known WENO-type interpolant approach where the approximate so-
lution is reconstructed by higher-order polynomials, compared to the linear ones in the MUSCL
approach. Applying this reconstruction directly to the k−th components of the characteristic vari-
ables g1,2 = v ± Cu gives a non-oscillatory higher-order discretization in space. In the present
work, we apply the improved fifth-order WENO reconstruction proposed in [8]. For this scheme,
the discrete values of each component of g1i+ 1

2
and g2i+ 1

2
, at a cell boundary i + 1

2 , are defined as left

and right extrapolated values gL
1i+ 1

2

and gR
2i+ 1

2

i.e.

g1i+ 1
2

= gL
1i+ 1

2

end g2i+ 1
2

= gR
2i+ 1

2

. (27)

For a generic function ψ(x) the fifth-order accurate left boundary extrapolated value ψL
i+ 1

2
is

defined as

ψL
i+ 1

2
=

2∑
r=0

ω−r h−r (28)

where h−r are extrapolated values obtained from cell averages in the rth stencil (i−r, i−r+1, i−r+2)
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as

h−0 =
1
3
ψi +

5
6
ψi+1 −

1
6
ψi+2;

h−1 = −
1
6
ψi−1 +

5
6
ψi +

1
3
ψi+1;

h−2 =
1
3
ψi−2 −

7
6
ψi−1 +

11
6
ψi,

and ω−r , r = 0, 1, 2 are non-linear WENO weights given by

ω−r =
ar∑2
l=0 al

, ar = Cr

(
1 +

η5

IS −r + ε

)
, r = 0, 1, 2 (29)

with C0 = 3/10,C1 = 3/5,C2 = 1/10, and ε is a very small number introduced to guarantee that
the denominator does not vanish and is set to ε = 10−40 in our numerical simulations, as suggested
in [8]. The smoothness indicators IS −r are given by

IS −0 =
13
12

(ψi − 2ψi+1 + ψi+2)2 +
1
4

(3ψi − 4ψi+1 + ψi+2)2;

IS −1 =
13
12

(ψi−1 − 2ψi + ψi+1)2 +
1
4

(ψi−1 − ψi+1)2;

IS −2 =
13
12

(ψi−2 − 2ψi−1 + ψi)2 +
1
4

(ψi−2 − 4ψi−1 + 3ψi)2.

The expression η5 is given in terms of the smoothness indicators as

η5 = |IS −0 − IS −2 |.

The right face value ψR
i+ 1

2
is given by symmetry as

ψR
i+ 1

2
=

2∑
r=0

ω+
r h+

r (30)

where now

h+
0 =

1
3
ψi+3 −

7
6
ψi+2 +

11
6
ψi+1;

h+
1 = −

1
6
ψi+2 +

5
6
ψi+1 +

1
3
ψi;

h+
2 =

1
3
ψi+1 +

5
6
ψi −

1
6
ψi−1.
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The corresponding weights ω+
r and smoothness indicators are given by (29) with

IS +
0 =

13
12

(ψi+1 − 2ψi+2 + ψi+3)2 +
1
4

(3ψi+1 − 4ψi+2 + ψi+3)2;

IS +
1 =

13
12

(ψi − 2ψi+1 + ψi+2)2 +
1
4

(ψi − ψi+2)2;

IS +
2 =

13
12

(ψi−1 − 2ψi + ψi+1)2 +
1
4

(ψi−1 − 4ψi + 3ψi+1)2.

Once the above reconstructions (28) and (30) have been applied to each component of the
characteristic variables form (27) (and in a similar way for the face values a cell boundary i − 1

2 ),
the numerical fluxes for ui± 1

2
and vi± 1

2
are obtained from (19), as for the lower-order cases.

Remark 2. A small modification on the formula of the weights (29) has been proposed in [8] to
recover fifth-order accuracy at a first-order critical point. The new weights are defined as

ω−r =
ar∑2
l=0 al

, ar = Cr

(
1 +

(
η5

IS −r + ε

)q)
, r = 0, 1, 2 (31)

and with q = 2 fifth-order is achieved at a first-order critical point. From a practical point of view,
increasing q decreases the relative importance of the discontinuous stencil, making the scheme
slightly more dissipative. Moreover, we have found that this may also have a stabilizing effect in
critical points on discontinuities as can be seen, for example, in Fig 1. However, in the numerical
results presented in subsequent sections, q = 1 has been implemented, unless otherwise stated.

Figure 1: Comparison of using the different weight values from (29) and (31)

Remark 3. The approximations of the flux function f(u)i and source term s(u)i in (20) can be

14



performed by using Simpson’s quadrature rule as in [50, 14], for example. However, for small
values of the relaxation rate ε, it suffices to project f(u)i and s(u)i into the local equilibriums f(ui)
and s(ui), respectively.

4.2. Implicit-explicit methods for time integration

The semi-discrete relaxation system (20) can be reformulated as a system of autonomous ordi-
nary differential equations as

dY
dt

= F (Y) −
1
ε
G(Y), (32)

with the time-dependent vector functions given as

Y =

(
ui

vi

)
, F (Y) =

(
s(u)i −Dxvi

−C2Dxui

)
and G(Y) =

(
0

vi − f(u)i

)
,

with

Dxvi =
vi+ 1

2
− vi− 1

2

∆x
and Dxui =

ui+ 1
2
− ui− 1

2

∆x
.

When ε → 0, system (32) becomes stiff and an explicit treatment of the right-hand side will
require small time steps that may restrict application to any long time simulations. Integrating
system (32) by an implicit scheme, either linear or nonlinear algebraic equations have to be solved
at every time step of a simulation. This can be computationally demanding. To alleviate these
problems, we consider a time marching approach based on implicit-explicit (IMEX) Runge-Kutta
(RK) splitting. The non-stiff stage of the splitting in F (Y) in treated by an explicit RK scheme,
while the stiff stage for G(Y) by a diagonally implicit RK (DIRK) scheme, we refer to [3, 48] for
more details.

By denoting with ∆tn the current time step and Yn the approximate solution at time t = tn, the
implementation of the s−stage IMEX method to solve (32) can be carried out as follows

Yk = Yn + ∆tn
k−1∑
m=1

ãkmF (Ym) −
∆tn

ε

s∑
m=1

akmG(Ym), k = 1, 2, . . . , s (33)

Yn+1 = Yn + ∆tn
s∑

k=1

b̃kF (Yk) −
∆tn

ε

s∑
k=1

bkG(Yk). (34)

The s×s matrices Ã = [ãkm], ãkm for m ≥ k and Ã = [akm] are chosen such that the resulting splitting
is explicit inF (Y) and implicit inG(Y). The s−vectors b̃ and b are the canonical coefficients which
characterize the IMEX RK scheme [48]. They can be given in a standard double tableau in Butcher
notation as

c̃ Ã

b̃T
and

c A

bT
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where c̃ and c are the s−vectiors used in the context of non-autonomous systems. The left and right
tables are associated with the explicit and implicit RK schemes, respectively.

For second-order time integration (combined with the MUSCL scheme) the tables are given by

0 0 0
1 1 0

1
2

1
2

and
−1 −1 0
2 1 1

1
2

1
2

The splitting treats, alternatively, the stiff source terms implicitly in two steps (where due to lin-
earity of v one still solves them explicitly), and the convection terms with two explicit steps. Thus,
we have an explicit implementation of an implicit source term, with stability constraints solely
determined by the non-stiff advection terms, just as in a usual finite volume scheme.

In this work we use the third-order IMEX method studied in [3] with the WENO discretization.
Its corresponding double tableau is given as

0 0 0 0
γ γ 0 0

1-γ γ-1 2-2γ 0

0 1
2

1
2

and

0 0 0 0
γ 0 γ 0

1-γ 0 1-2γ γ

0 1
2

1
2

with γ = (3 +
√

3)/6. Similar to the previous method, using the above IMEX scheme neither
linear algebraic equations nor non-linear source terms can arise. Further, since the source terms are
treated implicitly and the advection terms are treated explicitly, the high-order relaxation schemes
are stable independently of ε, so the choice of ∆tn in each time step of a simulation is based only
on the usual CFL conditions [34],

CFL = max
(
(max

i,k
cn

k)
∆tn

∆x
,
∆tn

∆x

)
≤ 1,

for the first-order scheme, and

CFL = max
(
(max

i,k
cn

k)
∆tn

∆x
,
∆tn

∆x

)
≤

1
2
,

for the higher-order schemes where the values of the relaxation constants cn
k are evaluated in each

time step as presented in Section 4.4.
We note that, in the limit ε → 0, the time integration procedure (33)-(34) tends to a TVD time

integration scheme of the limit equations based on the explicit scheme given by the left tableau.

Remark 4. The relaxation rate ε influences both the regularization effect of the scheme and its
accuracy in smooth regions of the flow. It can be viewed as viscosity coefficient such that more nu-
merical diffusion is added for larger values of ε . Only in the case that ∆tn = O(ε) the scheme goes
unstable being inconsistent to the relaxation system (15). However, here we present a numerical
scheme that under-resolves (15) in the regime ∆tn � ε and thus will never break down in our case.
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4.3. Initial and boundary conditions

For a given initial data u0(x), we choose the initial conditions for the relaxation system pre-
sented above as

u(x, 0) = u0(x),

v(x, 0) = v0(x) ≡ f(u0(x)).

In the small relaxation limit (ε → 0+), the relaxation system presented in (15) satisfies initially
the above local equilibrium hence, in order to avoid the introduction of an initial layer through the
relaxation system, the above initial value for v is chosen.

For the boundary conditions, given a physical boundary conditions, up, that may be imposed
in a problem, we set vp = f(up) so as to avoid the introduction of artificial boundary layers. For
instance, if Dirichlet boundary conditions are imposed to the original nonlinear system, in a spatial
computational domain [a, b], as

u(a, t) = ua(t), and u(b, t) = ub(t), t > 0,

then, the boundary conditions for the relaxation variable v are given by

v(a, t) = f(ua(t)), v(b, t) = f(ub(t)), t > 0.

If instead, u satisfies the homogeneous Neumann boundary condition

∂u
∂x
|x=a = 0, and

∂u
∂x
|x=b= 0, t > 0

then, since
∂v
∂x

= f′(u)
∂u
∂x

boundary conditions for the relaxation system (15) are derived as

∂v
∂x
|x=a= 0 and

∂v
∂x
|x=b= 0, t > 0.

Periodic boundary conditions which are given by u(a, t) = u(b, t), can be easily imposed in the
relaxation variables as v(a, t) = v(b, t) = f(u(a, t)) In general, any choice that leads at the limit to
the associated boundary and initial equilibrium can be used.

From a practical point of view, and at the discrete level, an easy way to impose the boundary
conditions in the numerical schemes is to use ghost cells; that is, to extend the computational do-
main by extra grid cells along the boundaries, whose values are set, based on the imposed boundary
conditions, at the beginning of each time step (in the RK solver). We refer to [37] for a thorough
discussion of their implementation within the finite volume framework.
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4.4. On the choice of characteristic speeds

An important matter, from a practical point of view, is the choice of the relaxation character-
istic speeds in C2 so as to satisfy the criterion (11). The size of C2 has also a decisive influence
regarding the numerical dissipation associated with the numerical schemes derived from (9). For
both computational and theoretical purposes it is sometimes necessary to choose C2 to have distinct
diagonal elements so as to avoid the degeneracy in the relaxation system. The construction of C2

must then be based on rough estimates of the characteristic speeds of the original problem. Hence,
we can set, for example, every eigenvalue λ of f′(u) to satisfy |λ| ≤ cmax, where cmax = maxk ck. By
doing so we ensure that the characteristic speeds of the hyperbolic part of (9) are at least as large
as the characteristic speeds of the original problem.

In our implementation, the values of ck, k = 1, . . . , n (n = 2 for the traffic flow models), are
adjusted according to the solutions behavior by considering a global selection on every time step
∆tn. Based on the global maximum of each eigenvalue of the system’s Jacobian matrices over the
grid cells Ii, their choice is made as follows

cn
k = max

i
|λn

k | + e, k = 1, . . . , n.

where e is a small correction parameter of O(10−2), added to avoid the characteristic speeds from
vanishing. Another choice is to calculate the speeds ck locally on every cell Ii [6, 52] by setting

cn
k |i= max

k
|λn

k |i + e, k = 1, . . . , n

We note that larger values for the ck usually add more numerical viscosity, so for accuracy reasons
it is desirable to have ck as small as possible. The first choice for calculating the characteristic
speeds was proven sufficient for our calculations in the next sections.

5. Numerical results and discussion

In this section extensive numerical tests and results are presented for all traffic models presented
in Section 2. Characteristic benchmark problems are considered to asses the performance of the
proposed high-order relaxations schemes. For all numerical tests presented next, the relaxation rate
ε was set to 10−8 and all other computational parameters were those presented in Section 4.

5.1. Numerical tests for the PW traffic model

In this section we numerically solve the PW model with four different initial conditions for
the Riemann problem (3). It is well-known, see for example [61], that the PW model admits eight
types of wave solutions to the Riemann problem (RP), including four first-order waves and four
second-order waves. The four first-order wave solutions are a 1-shock wave (S 1), a 2-shock wave
(S 2), a 1-rarefaction (R1) and a 2-rarefaction (R2), each one associated with the first characteristic
and the other with the second characteristic of the model. The four second-order wave solutions
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are a S 1 − S 2 (left S 1 and right S 2), a R1 − R2 (left R1 and right R2), a R1 − S 2 (left R1 and right
S 2) wave and an S 1 − R2 (left S 1 and right R2).

Setting the unit length and time to l̃ = 10m and τ̃ = 10s, the following four initial jump
conditions are considered here in a road of length L = 8000m.

[ RP1 ] A problem that has R1 − R2 wave solutions with

ρ(x, 0) = 0.16, (35)

u(x, 0) =

ul = Ve(0.16), for x ≤ 4000,
ur = Ve(0.16) + 0.2 for x > 4000.

(36)

[ RP2 ] A problem that has R1 − S 2 wave solutions with

ρ(x, 0) =

ρl = 0.16, for x ≤ 4000,
ρr = 0.16 − 0.02, for x > 4000,

(37)

u(x, 0) = Ve(0.16). (38)

[ RP3 ] A problem that has S 1 − S 2 wave solutions with

ρ(x, 0) = 0.16, (39)

u(x, 0) =

vl = Ve(0.16), for x ≤ 4000,
ur = Ve(0.16) − 0.2, for x > 4000.

(40)

[ RP4 ] A problem that has S 1 − R2 wave solutions with

ρ(x, 0) =

ρl = 0.16, for x ≤ 4000,
ρr = 0.16 + 0.02 for x > 4000,

(41)

u(x, 0) = Ve(0.16). (42)

Two different cases are considered for each RP. Setting the final simulation time to T f = 1000s,
the first case is for relaxation time τ = 1000τ̃ and the second case for τ = 5τ̃. In the first case the
relaxation time is big enough for us to watch the evolution of the four different types of second-
order waves, which consist of two elementary waves, until time T f . In the second case, where
the relaxation time is much shorter, 2-waves relax to 1-waves and free and clustered regions are
formed, due to the effect of the source term.

In the numerical results presented next, we compare the ability of the relaxation schemes,
namely the first-order upwind, second-order MUSCL and fifth-order WENO, to describe the evo-
lution of these elementary waves, as well as the source terms effects. In all numerical results the
number of grid points used was set to npts = 400, producing a relatively sparse mesh, the CFL
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value was 0.4 for the higher-order schemes and 0.9 for the upwind one, and homogeneous Neu-
mann boundary conditions were implemented.

The numerical results obtained for RP1 are presented in Fig. 2, where the spatio-temporal
evolutions of the density and velocity until time T f are shown. In Fig. 3 a comparison of the
numerical results obtained with the different schemes for the two rarefaction waves at t = 500s is
shown. As it can be seen, the higher-order schemes are able to produce accurate solutions with
high-resolution, compared to the upwind one which is highly diffusive. Comparing the MUSCL
and WENO schemes, a better resolution of the waves can be seen for the WENO scheme.

Figure 2: PW model: R1 − R2 wave solutions for RP1 for ρ (top) and u

For RP2, results are presented in Figs 4 and 5. Again, the superiority of the high-resolution
schemes is evident, compared to the upwind one. Since this solution contains a shock, it is impor-
tant to note that, for the high-resolution schemes, no un-physical oscillations are appearing in the
numerical results, and the numerical solution remains stable in its evolution. The same observa-
tion holds for the results for RP3 and RP4 in Figs. 6 and 7, respectively. There, an S 1 − S 2 and
an S 1 − R2 solution are presented for the high-resolution schemes. Again non-oscillatory solu-
tions of the shock waves are computed for both schemes, with the WENO scheme providing better
resolution for both test cases.

Next, the second case for τ = 5τ̃ is considered for all Riemann problems. For RP1 the spatio-
temporal results for the density and velocity are shown in Fig. 8, for all schemes. In this case,
at around t = 5τ, a downstream shock S 1 forms when the traffic conditions relax to equilibrium
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Figure 3: PW model: R1 − R2 wave solutions for RP1 at t = 500s

Figure 4: PW model: R1 − S 2 wave solutions for RP2 for ρ (top) and u

(u = Ve(0.16)). After that, a free-flow region with lower density and higher travel speed is formed.
The free-flow region travels with speed λ? and eventually disappears as the waves propagate, and
the flow finally will becomes uniform. It can be observed that the fine details of the flow cannot
be predicted by the first-order scheme, while the higher-order schemes produce a sharp resolution.
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Figure 5: PW model: R1 − S 2 wave solutions for RP2 at t = 400s

The WENO scheme provides more accurate results at the initial stages of the traffic evolution. This
is also evident from Fig. 9 where the evolution of the traffic flow rate q = uρ is presented.

For RP2 the numerical solution with the high-order schemes is shown in Figs 10 and 11. In
this situation, a new R1 wave forms when the S 2 wave disappears. Both schemes can predict
this transition and the propagation of the two rarefaction waves. Similar to the previous case, the
WENO scheme can provide sharper resolution and fine details on the flow, on the same grid used.

With the initial conditions for RP3, the numerical solutions for the MUSCL and WENO schemes
are presented in Figs 12 and 13. In this situation, at around t = 5τ, the S 2 wave disappears and an
R1 wave forms. After that, a cluster with higher vehicle density is formed that travels with speed
λ?. As the waves propagate, traffic conditions become uniform in later times. The cluster formation
and propagation is well predicted by both high-order schemes which provide stable non-oscillatory
solutions. Again, the WENO resolution is moderately better than that of the MUSCL one.

The final case is for RP4 where now the R2 wave disappears and a new S 1 shock wave is
formed. The resulted numerical solutions are displayed in Figs 14 and 15. Again the formation and
propagation of the resulted waves are well resolved by the high-order schemes, with the WENO
relaxation scheme providing sharper results for the shock waves.

5.2. Numerical tests for the AR and ARZ traffic models

Contrary to the PW model, the λ2 eigenvalue for the AR and ARZ traffic models is linearly
degenerate and therefore a contact discontinuity (C2) is admissible in their elementary wave struc-
ture. Hence, depending on the data, the wave related with the first characteristic speed is either a
rarefaction R1 or shock S 1 and that related to the second speed is a contact discontinuity.

First, numerical tests and results for the AR model are presented. In all numerical results
L = 16m, T f = 6s and the number of grid points used was set to npts = 400, unless otherwise
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Figure 6: PW model: S 1 − S 2 wave solutions for RP3 for ρ (top) and u

stated. Comparison with the corresponding analytical solutions, [2], for each numerical test are
also presented.

AR: Case 1. The initial condition for this problem is

[ρ(x, 0), u(x, 0)] =

[ρl, ul] = [0.5, 0.6], for x ≤ 8,
[ρr, ur] = [0.8, 0.4], for x > 8

(43)

and the exact solution of this Riemann problem is a shock traveling with negative speed followed
by a contact discontinuity moving to the right with the speed of the leading cars ur = 0.4. The
spatio-temporal evolution of the numerical solution for the WENO scheme is presented in Fig. 16.
Comparison with the exact solution for all schemes is presented in Fig. 17. As it can be seen, all
schemes reproduce the correct solution, with the upwind one being the most diffusive, especially
in the contact discontinuity resolution, and with the WENO scheme being the most accurate one.

23



Figure 7: PW model: S 1 − R2 wave solutions for RP4 for ρ (top) and u

AR: Case 2. The initial condition for this problem is

[ρ(x, 0), u(x, 0)] =

[ρl, ul] = [0.8, 0.6], for x ≤ 8,
[ρr, ur] = [0.6, 1], for x > 8.

(44)

The exact solution here is a rarefaction wave followed by a contact discontinuity moving to the
right with maximum speed ur = 1. The spatio-temporal evolution of the numerical solution for the
MUSCL and WENO schemes is presented in Fig. 18, while comparison with the exact solution for
all schemes is presented in Fig. 19. The contact discontinuity is well resolved by the higher order
schemes with the WENO scheme, again, exhibiting the better resolution of the wave structured.
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Figure 8: PW model: Formation of a free-flow region for RP1

Figure 9: PW model: Formation of a free region for RP1, solutions’ evolution for q
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Figure 10: PW model: Formation of two rarefaction waves for RP2

Figure 11: PW model: Formation of two rarefaction waves for RP2, solutions’ evolution for q
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Figure 12: PW model: Formation of a cluster for RP3

Figure 13: PW model: Formation of a cluster for RP3, solutions’ evolution for q
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Figure 14: PW model: Formation of shock waves for RP4

Figure 15: PW model: Formation of a shock wave for RP4, solutions’ evolution for q
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Figure 16: AR model: S 1 −C2 wave solutions for at t = 6s

Figure 17: AR model: S 1 −C2 wave solutions comparison at t = 6s
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Figure 18: AR model: R1 −C2 solutions

Figure 19: AR model: R1 −C2 wave solutions comparison at t = 6s
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AR: Case 3. The initial condition for this problem is

[ρ(x, 0), u(x, 0)] =

[ρl, ul] = [0.5, 0.6], for x ≤ 8,
[ρr, ur] = [0, 1], for x > 8

(45)

and the exact solution in this case is a single rarefaction wave going to the right. The difficulty in
this problem has to do with the computation of the correct transition to the free-flow region. To
achieve this, a finer grid of npts = 1200 had to be used. In addition, a threshold parameter of
value 10−6 was introduced for density, below which the flow variables were assumed to be zero.
The time evolution of density and velocity for the MUSCL and WENO schemes are presented in
Fig. 20 and comparison with the exact solution in Fig. 21. Noticeable differences can be observed
in the transition region with the WENO scheme being in close agreement with the exact solution

Figure 20: AR model: Rarefaction solution
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Figure 21: AR model:Rarefaction wave solutions comparison at t = 6s

AR: Case 4. For this test case, the situation of faster vehicles downstream followed by slower ones
from behind is considered. The initial condition for this problem is

[ρ(x, 0), u(x, 0)] =

[ρl, ul] = [0.4, 0.1], for x ≤ 8,
[ρr, ur] = [0.1, 0.9], for x > 8.

(46)

The exact solution of this problem is now given by a rarefaction wave connected to a vacuum state,
which is followed by a contact discontinuity going downstream. This is a demanding test case
due to the appearance of the vacuum and it is a challenge for any numerical scheme to correctly
resolve the transition wave that connects the rarefaction wave to the vacuum state. In addition,
the velocity is not defined from the conserved variable ρ(v + P(ρ)) in (5). However, using again
a finer grid and the tolerance parameter as in the previous test case, a stable numerical solution
can be obtained for all scheme as shown in Fig. 22. Important observations can be made from
the results. First it is evident that the upwind scheme cannot predict the vacuum state, as can be
clearly seen from the velocity evolution, while the higher-order schemes can. Furthermore, the
WENO scheme almost perfectly predicts the appearance of the vacuum and the transition wave
that connects the rarefaction with the vacuum state. This can be also verified in the comparison
with the exact solution in Fig 23. Finally, the spatio-temporal evolution of the density and flow rate
computed with the WENO scheme is presented in Fig. 24.

Next, the application of the numerical schemes to the ARZ model are presented. For the sim-
ulations, we set ρmax = 1 and umax=1. The computational domain is of length L = 1 and is
discretized with a grid of npts = 200 points.
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Figure 22: AR model: Vacuum wave solutions for ρ (top) and u

Figure 23: AR model: Vacuum wave solutions comparison at t = 6s
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Figure 24: Vacuum solution for the AR model with the WENO relaxation scheme

ARZ: Case 1. The first scenario has the following initial condition

[ρ(x, 0), u(x, 0)] =

[ρl, ul] = [0.5, 0.7], for x ≤ 0.5,
[ρr, ur] = [0.5, 0.1], for x > 0.5,

(47)

which satisfies the condition ur ≤ ul + Ve(ρ) and according to [42] produces a solution consisting
of a shock wave followed by a contact discontinuity. The final time is T f = 0.8s in this case. The
spatio-temporal evolution for the density for the high-resolution relaxation schemes is shown in
Fig. 25. The sharper resolution of the numerical solution for the WENO scheme, especially for
the contact discontinuity is evident. Further, in Fig. 26, a comparison of the solutions for the two
schemes for all important variables is presented. The results confirm the sharper representation of
the solution by the WENO scheme. As for the previous traffic model, the solutions are stable and
non-oscillatory for both schemes.

ARZ: Case 2. The second scenario has the following initial condition

[ρ(x, 0), u(x, 0)] =

[ρl, ul] = [0.2, 0.5], for x ≤ 0.5,
[ρr, ur] = [0.9, 0.1], for x > 0.5,

(48)

which now satisfy the condition χ = ρ(u − Ve(ρ)) < 0 and according to [42] produces again
a solution consisting of a shock wave followed by a contact discontinuity. The spatio-temporal
evolution for the density for the high-resolution relaxation schemes is shown in Fig. 27, while
comparisons for density and the conserved variable χ are shown in Fig. 28. Both schemes retain
the negative values of the relative flow, and, similar to the previous case, the results confirm the
sharper representation of the solution by the WENO scheme.
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Figure 25: ARZ model: S 1 −C2 solutions’ evolution

Figure 26: ARZ model: S 1 −C2 solutions at t = 0.8s
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Figure 27: ARZ model: S 1 −C2 solution at t = 0.8s

Figure 28: ARZ model: S 1 −C2 solution at t = 0.8s
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ARZ: Case 3. The final scenario for the ARZ model has the following initial condition

[ρ(x, 0), u(x, 0)] =

[ρl, ul] = [0.2, 0.1], for x ≤ 0.5,
[ρr, ur] = [0.5, 0.7], for x > 0.5

(49)

and is similar to Case 4 for the AR model. The data in this case satisfies the condition ur − ul +

Ve(ρ) > umax. According to [42] the data produces a solution consistingof a rarefaction wave
(R1) followed by another rarefaction (R2-fake vacuum wave) and then by a contact discontinuity.
Similarly to the AR model Case 4, the difficulty in this problem has to do with the computation
of the correct transition to the free-flow region. To this end, a finer grid of npts = 1000 had to
be used along with the threshold parameter of value for density, below which the flow variables
were assumed to be zero. The time evolution of the velocity for the MUSCL and WENO schemes
is presented in Fig. 29 where the appearance of the vacuum state is evident for both schemes.
Actually, as it can be seen in Fig. 30, both schemes predict very similarly the transition region
which can also be clearly seen in Fig. 31, where the results for the density and flow rate produced by
the WENO scheme are presented. The solutions are stable and non-oscillatory for this demanding
numerical problem.

Figure 29: ARZ model: Vacuum wave solutions for u

5.3. Numerical tests for the GKT traffic model

In this section, numerical tests and results are presented for the GKT model detailed in Section
2.3. In all tests and results we concentrate on the application and performance of WENO relaxation
scheme due to its enhanced resolution as confirmed in the previous sections. Our aim here is to
compute not only basic elementary wave solutions but to expand to more realistic and complex
scenarios and to reproduce results from the literature that were obtained with different numerical
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Figure 30: ARZ model: Vacuum solutions at t = 0.4s

Figure 31: Vacuum solution for the ARZ model with the WENO relaxation scheme
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methods. Unless otherwise stated, the model parameters used are those given in Table 1. One
of the advantages of the GKT model is that coarser discretizations are possible than in most other
traffic models, allowing real-time simulations of larger systems e.g. freeways stretches up to several
thousand kilometers.

5.3.1. Traffic flow transitions
The test cases presented first are from [24] and the value of ∆A = 0.01 was used. The first test

is for transitions between free traffic at two different vehicle densities in a road with L = 6000m
and initial data given as

[ρ(x, 0), u(x, 0)] =


[5veh/km, 0km/h], for x ≤ 0.5km,
[15veh/km, 0km/h], for 0.5km < x < 3.5km,
[5veh/km, 0km/h], for x > 3.5km.

(50)

The numerical results for the upwind and WENO relaxations scheme using npts = 300 grid points
are shown in Fig. 32 for two time instances. The excessive numerical diffusion and the subsequent
smoothening of the traffic fronts for the upwind scheme is once again evident. For the WENO
results no numerical dispersion errors, which are usually associated with a slower propagation of
waves with small amplitudes and can lead to oscillations in the density behind large gradients [24],
can be observed.

Figure 32: GKT model: Transitions between free traffic at two different vehicle densities

The next case is again from [24] and is for transitions to and from congested traffic with back-
wards propagating fronts at two different vehicle densities in a road with L = 6000m. The initial
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data is given as

[ρ(x, 0), u(x, 0)] =


[15veh/km, 0km/h], for x ≤ 1km,
[125veh/km, 0km/h], for 1km < x < 3km,
[1veh/km, 0km/h], for x > 3km.

(51)

The numerical results for the upwind and WENO relaxation schemes using npts = 300 grid points
are shown in Fig. 33 for three time instances. Again the WENO results are considerer very much
accurate. For certain numerical methods nonlinear instabilities may arise at the downstream front
of the large amplitude jump or are more sensitive to it [24]. This is of practical importance since
(artificial) oscillations or numerical instabilities act like perturbations, which in turn give rise to
additional traffic jams that do not correspond to real traffic conditions. Our numerical results were
robust in all simulations performed.

Figure 33: GKT model: Transitions to and from congested traffic with backward propagating front

The next test case is similar to the one presented in [55] and [26] and presents the scenario of
propagating fronts emerging between congested and free traffic in a highway of L = 20km for a
total simulation time T f = 30min. All parameters used in the model are those in Table 1 with the
exemption of the acceleration relaxation time set to τ = 35s. The initial data for this scenario is
given by

[ρ(x, 0), q(x, 0)] =

[140veh/km, 120veh/h], for x ≤ 8.5km,
[1veh/km, 120veh/h], for x > 8.5km.

(52)

This scenario, with ρl � ρr in two homogeneous regions, corresponds to a dissolving jam, e.g. after
an accident has been cleared, with an outflow to a nearly empty road section. Here, homogeneous
Neumann boundary conditions are applied. Fig. 34 shows the spatiotemporal evolution of the
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density and flow obtained with the WENO relaxation scheme with npts = 400 grid points. The
obtained solution evolution describes accurately the expected scenario and the results agree with
those presented in [55].

Figure 34: GKT model: Spatiotemporal evolution of downstream-fronts for the density (left) and
flow (right)

5.3.2. Homogeneous Traffic with Localized Perturbations
The development of traffic instabilities, starting with almost homogeneous initial traffic, is

considered a very strict test of numerical performance. Following [55], we consider a dipole-like
initial variation of the average density ρ̄ given as

ρ(x, 0) = ρ̄ + ∆ρ

[
cosh−2

( x − x0

w+

)
−

w+

w−
cosh−2

(
x − x0 − ∆x0

w−

)]
where w+ = 201.5 and w− = 805m with ∆x0 = w+ +w−. The initial flow q(x, 0) = qe(ρ(x, 0)) = ρVe

is assumed in local equilibrium with

Ve(ρ) =
ũ2

2umax

−1 +

√
1 +

4u2
max

ṽ


ũ =

√
umax

τρA(ρ)P(ρ)
, P(ρ) =

umaxρT 2

τA(ρmax)(1 − ρ/ρmax)2 .

The initial perturbation was set to ∆ρ = 10veh/km and various tests were performed for different
densities ρ̄. In the results presented next, we assume traffic flow is in a ring of circumference of
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L = 10km, thus periodic boundary conditions were implemented, discretized with npts = 400 grid
points.

In Fig. 35, the results with the WENO relaxation scheme for the case of ρ̄ = 10 are shown.
Here, the initial perturbation dissipates, since the traffic density is sufficiently low; meaning that
homogeneous traffic is stable at low densities. When the initial density is increased, the initial
perturbation eventually leads to instabilities. This can be intuitively understood since for higher
densities a higher percentage of drivers approaching a density peak must brake, thus increasing
the density peak. Depending on increased values of ρ̄, different situations emerge. In Fig. 36,

Figure 35: GKT model: Localized Perturbations ρ̄ = 15, periodic boundary conditions

numerical results obtained with the WENO scheme for ρ̄ = 26 are shown. In this scenario a single
density cluster is formed.

Increasing ρ̄ even further to 37, a cascade of traffic jams emerges, i.e. stop-and-go traffic.
This is a case which can be difficult to resolve with a low-order scheme. Referring to Fig. 37,
the first-order relaxation scheme fails to reproduce all the stop-and-go waves when 400 grid points
were used in the numerical simulation. When massively increasing the npts to 4000 (and a grid
independent solution has been reached) all emerging waves can be captured by this scheme but,
obviously, with a high computational cost. On the other hand, applying the WENO scheme, the
correct wave structured is computed only with 400 grid points. This shows the significant advantage
that can be gained when one implements a high-resolution scheme in the simulation.

Finally, increasing density ρ̄ to 55, a stable regime is reached again. The results for this stable
congested flow obtained with the WENO scheme are shown in Fig. 38. We note here that all the
results presented in this section are in very good agreement with those presented in [55] and the
expected behavior of the GKT model was reproduced by the proposed WENO relaxation scheme.
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Figure 36: GKT model: Localized Perturbations ρ̄ = 25, periodic boundary conditions

6. Conclusions

Relaxation schemes have been studied for computing numerical solutions of various, well-
known, macroscopic two-equation traffic flow models, formulated in conservation law or balance
law forms. The main feature of the proposed approach is its accuracy, simplicity and robustness.
Finite volume shock capturing spatial discretizations, that are Riemann solver free, have been used
providing accurate resolution. To this end, higher-order schemes of second and fifth-order accuracy
have been developed The higher-order schemes outflanked the first order upwind one, with the
WENO fifth-order scheme providing the sharpest resolution and description of fine details of the
emerging wave structures in the flow even on coarse grids. The results from the approximation
of the realistic Gas-Kinetic-based model are of particular interest. Having simplicity as its main
advantage and the attractive feature that neither Riemann solvers nor characteristic decomposition
are in need, the relaxation approach can be considered as an alternative for practical applications
in macroscopic traffic flow modeling. In particular, it is only necessary to provide the flux and
source term functions and an estimate of the characteristic speeds. As relaxation is in a sense a flux
approximation, we expect to produce reasonable results for any flux function as long as the system
remains hyperbolic. Thus, considering different macroscopic models and real life simulations, the
present approach is likely to be applicable then too and can be considered for further studies and
development.
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Figure 37: GKT model: Localized Perturbations ρ̄ = 37, periodic boundary conditions
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Figure 38: GKT model: Localized Perturbations ρ̄ = 55, periodic boundary conditions
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