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Abstract 
 
 Nowadays, smart mobile devices tend to replace personal computers, such 
as desktops and laptops, in daily applications such as internet browsing, emailing, 
office and basic corporate applications. On the other hand, users still want to use 
a monitor, keyboard and mouse, as usual, when they are not on the move and the 
most common way to do that is by using a wireless docking station over a Wi-Fi 
network. High quality video transmission (for example the desktop view of a smart 
device) over Wi-Fi networks on heavily loaded environments has been proven 
problematic in terms of Quality of Service (QoS) and fair bandwidth allocation 
between users. In this thesis, we developed and tested four different modeling 
techniques for predicting the volume of video traffic that is generated by an 
average user’s computer during a day. We propose, for the first time in the 
relevant literature, to the best of our knowledge, a highly accurate video traffic 
model that is capable to predict the video frames’ sizes of the specific type of video 
traffic. Our models can be easily used as source traffic generators in order to 
facilitate the study of H.264 transmission performance over wireless networks. 
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1 Introduction and Related Work 
Smart mobile devices are becoming more powerful every day with the 

advancement of mobile computing chips from the likes of Qualcomm, NVidia and 
Intel, while at the same time major software and operating system companies 
develop their products in a single code base suitable for many platforms [1]. In 
addition, a 2013 survey [2] placed smartphones’ popularity at around 85%, 
surpassing all other kinds of computing devices. The above facts seem to point 
towards a future where smart mobile devices (such as smartphones and tablets) 
will replace computers completely, on daily and corporate environments.  

On the other hand, users still want to use a monitor, keyboard and mouse 
as usual, when they are not on the move and the most common way to do that is 
by using a wireless docking station over a Wi-Fi network. Screen mirroring is a 
very popular and demanding wireless application. People’s demand for enjoying 
any content anywhere, anytime and on any device is driving the need for reliable 
connectivity between content source and sink devices in their home, car and office. 
This fact, together with the advent of wireless communications is changing the 
enterprise environment where some offices are now looking into using the hand 
held devices as PC replacements. To provide the same experience to the employee 
using a hand held device, the device has to be connected to a Bluetooth keyboard 
and mouse and the device’s screen has to be mirrored to a bigger display. Screen 
mirroring is made possible by using a Wi-Fi direct technology called Miracast. 
Wi-Fi Direct is a technology defined by the Wi-Fi Alliance that is used in ad-hoc 
networks to connect devices directly without the need of an overlaid network. 
Miracast [3] allows devices to send video and audio files securely over a Wi-Fi 
direct link. Miracast allows the video to be encoded using H.264 which is one of 
the most popular video encoding standards that is currently used for video 
recording, compression, and streaming. H.264 is popular because it provides a 
good quality for lower bit rates than previous standards. 

This use case adds extra challenges to an already hard problem. One of 
these challenges is that the wireless connection between the video source and sink 
has to be reliable for a long time (around 8 hours) and in a very dense environment 
(one pair every 2 meters). Moreover, the required wireless bandwidth and 
acceptable delay for these connections vary greatly as the applications that the 
employees use vary and due to the fact that Wi-Fi was initially designed as a best 
effort, listen-before-talk technology intended for low utilization networks. Hence, 
Quality of Service (QoS) can be degraded significantly even for a small number of 
users and outages can be observed during video transmission. A highly accurate 
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model capable to predict the volume of video traffic generated by an average user’s 
computer, can be very helpful in dealing with congestion and providing fair 
bandwidth allocation between users in Wi-Fi networks. 

In this thesis, we develop such a model for the first time in literature (to 
the best of our knowledge). Our models can be easily used as source traffic 
generators in order to facilitate the study of H.264 transmission performance over 
wireless networks. Our work is structured in six chapters. The first chapter 
includes this introduction, the second chapter refers to the video traffic encoding 
of the data that we worked with and the third chapter describes the methods that 
we have followed in order to collect our data as well as some extra information 
about our datasets’ structure. In the fourth chapter, we present the statistical 
tests that we have used during the development and testing of our models and in 
the fifth chapter, we analyze and comment on our models as well as on their 
respective results. In the sixth and final chapter, our conclusions and ideas for 
future work can be found. 

1.1 Related Work 

There are multiple video traffic models in the literature but they all base 
their models on movies which are very different in nature than desktop 
applications. According to [4], video models which have been proposed include 
first order autoregressive (AR) models [5], discrete autoregressive (DAR) models 
[6] [7], Markov renewal processes (MRP) [8], MRP transform expand sample
(TES) [9] [10], finite state Markov chain [11] [12], and gamma beta auto regression
(GBAR) models [13] [14]. In [15] the authors analyzed a number of mobile video
streams and created a model that provides both video frame and RTP packet
generators. The model was created and verified against “The Matrix” and “Lord
of the Rings” movies. In [16], the authors create a traffic model for H.264 encoded
video that takes interdependence between different frame types into consideration
(I, P and B) and again the model was validated against “Lord of the Rings” movie.
The authors in [17] list a number of Variable Bit Rate (VBR) video traffic models
and compare these models against three video traces “Star Wars IV”, “Tokyo
Olympics” and “NBC 12 News”. They showed that some of the models work for
some videos but not the others. They could not find a universal model that works
with all types of videos.

The above-reference work models video traces that are significantly different, 
in terms of content than those created by applications used in an enterprise 
environment. Our goal in this study is to fill this gap by studying these 
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applications and the video traffic they generate, in order to build a highly accurate 
model. There is very little work done on what applications are mostly used in 
enterprise environments. In [18] the author shows that employees use Microsoft 
Outlook the most from the Microsoft Office suite. The author does not mention 
what other applications do the employees use when they are not using Microsoft 
Office. Also there is no characterization of the video generated by the Microsoft 
Office suite or similar productivity tools.



2 Video Encoding 
 

In this thesis, we worked with two different datasets. They have been 
encoded with the H.264 video coding standard. 

H.264 or MPEG-4 Part 10, AVC is a video coding standard developed by 
ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture 
Experts Group (MPEG). It is the most widely accepted video coding standard 
(since MPEG-2) and it covers a wide area of video applications ranging from 
mobile services and videoconferencing to IPTV, DTV and HD video storage [19]. 

A video trace is a sequence of still pictures displayed within short time 
intervals, in order to create the illusion of moving scene. Each distinct picture is 
named as a “frame” and the number of displayed frames per second represents the 
frame rate of the video trace and is calculated as in Equation (2.1). 

 

Frame Rate = 
x Frames
1 Second = x fps 

 
 
A graphical example for two different video traces, one with 6 fps (Trace 

A) and one with 24 fps (Trace B) is depicted in Figure (2.1). 
 

 
Figure 2.1: Graphical example of frame rate. 
 

In uncompressed video traces, each displayed frame comes from a complete 
image of the scene. In order to achieve effective transmission and storage of a 
video trace (especially in HQ video traces), use of compression methods is 
necessary and this is how a coding standard as H.264 becomes useful [20]. 

The compression techniques used in H.264 are based on inter-frame 
prediction mainly and on other techniques such as quantization and entropy 
coding secondly. H.264 uses motion compensation where image frames are broken 
up into blocks and movement is predicted based on pre-coded frames. For a block 
to be coded, prediction images are searched for the most similar block and the 

(2.1) 
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motion between these blocks is represented by a motion vector and prediction 
information [21]. 
 

2.1 Encoded Video Trace Structure 
 

According to the H.264 standard, an encoded video trace features two 
distinct characteristics: 1) Every video frame comes from one of three different 
types of frames, and 2) video frames are organized in groups with a specific 
structure. 

There are three different types of frames, I-Frames (Intra-coded Frames), 
P-Frames (Predicted Frames) and B-Frames (Bi-directional predicted Frames). 
An I-Frame is a fully specified frame (picture) of the displayed scene, like a 
conventional static image file. It is completely self-referential, it does not use any 
information from any other frame in the trace and it provides a point of access to 
the compressed video data. A P-Frame on the other hand, contains only changes 
in the picture that occurred from the previous frame. The encoder has to reference 
backwards to the previous I-Frame or P-Frames in order to retrieve redundant 
picture information and thus P-Frames are saving space. Finally, a B-Frame uses 
differences between the current frame and both preceding and following frames in 
order to specify its information (i.e., it is predicted by looking at both directions 
– bidirectional prediction). An example of the I, B and P-Frames concept is 
depicted in Figure (2.2). Regarding their size, P-Frames are smaller than I-Frames 
and B-Frames are the smallest of the three [22]. 

 

 
Figure 2.2: Graphical example of I, B and P-Frames concept. 

Video frames are grouped together in GOP structures (Group of Pictures) 
that specify the order in which intra- and inter-frames are arranged. A GOP 
pattern specifies the amount and order of P and B-Frames between two successive 
I-Frames. Every GOP contains a single I-Frame with which it starts. The GOP 
pattern is defined by the distance X between I-Frames and the distance Y between 
P-Frames or between the I-Frame and the succeeding P-Frame. For example, in 
Figure (2.3), we can observe that we have a GOP structure of 9 frames, where X 
distance equals to 8 and Y distance equals to 2. In general, according to the H.264 
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standard, the amount of B-Frames is greater than the amount of I or P-Frames 
inside a GOP structure. More details on the data collection can be found in the 
next section. 
 
 

 
Figure 2.3: Graphical example of GOP structure. 



3 Data Collection Methodology 
 
Our work is based on real user-generated data from a large enterprise, 

whose name will not be referred for reasons of anonymity. Each employee of the 
enterprise that took park in the data collection, ran trace collection scripts for 
about a month. One script polled the operating system every 33.3 msec to record 
the name of the main application that the employee was working on. Another 
script recorded the employee’s screen at 30 fps using encoding parameters that 
resembled a Miracast hardware encoder as much as possible. The actual video was 
not recorded but only the statistics of the encoded video were collected (i.e., I and 
P frame sizes). The scripts started automatically each work day at 8 A.M. and 
stopped at 7 P.M. When a user locked his/her screen the scripts would report that 
the user is idle for that duration and video traces collection would stop till the 
user unlocks his/her machine. All of the users were using Windows 7 machines. 
More details on the encodings can be found in Section 3.2. 
 

3.1 Recording Methods 
  

A recording framework was deployed on every host machine. It was running 
and logging in the background during the recording period. 
 The FFmpeg [23] program used for video traffic recording. It logged the 
compressed H.264 video information (i.e., frames sizes, GOP structure, frames’ 
time of arrival etc.) of the host’s machine desktop. The frame resolution is the 
same as the PC’s screen resolution (i.e., it is not a constant) and the frame rate 
is 30 fps. It is worth mentioning that even though FFmpeg was running 
constantly, it was capable to log video traffic information only if the host’s 
machine GPU was active (i.e., the host machine was not in hibernation, sleep or 
monitor energy saving mode). The command used for FFmpeg setup is the 
following: 
 
ffmpeg.exe -f gdigrab -video_size %CurrentHorizontalResolution%x%CurrentVerticalResolution% -
framerate 30 -an -i desktop -r 30 -t 10800 -vcodec libx264 -crf 10 -x264opts keyint=60: min-
keyint=60:no-scenecut -b 120000k -tune zerolatency -psnr -pix_fmt yuv422p -threads 0 -preset fast 
-loglevel 48 -f null null 2> tmp\videostats_%@computername%_%@filename%.txt 

 
As for active applications usage recording, a Windows PowerShell [24] 

script was used for logging the name of the application in the foreground, followed 
by the current timestamp. Windows PowerShell was programmed to log the 
application’s name every 33.3 msec (in order to keep up with FFmpeg logs, where 
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we had 1 frame every 33.3 msec). We should also note that Windows PowerShell 
is capable to report the application’s name only if the host machine is unlocked 
and the user is not logged off. 

 

3.2 Datasets Overview 
 

3.2.1 Encoding 
In this study, we worked with two different types of datasets. The main 

difference between the two datasets lies in the different encoding of video traces. 
The first dataset (Dataset 1) has been encoded with the High 4:2:2 Profile 

of the H.264 standard, which is typical for professional applications. This profile 
can generate I, P and B frames. However, in our datasets the –tune zero latency 
command was used in FFmpeg to prohibit the encoder from producing B-Frames, 
in order to minimize latency. For this dataset, we have a GOP structure of 60 
frames in length, where every GOP starts with an I-Frame and the rest 59 frames 
are of type P. 

The second dataset (Dataset 2) has been encoded with different encoding 
parameters. Those parameters try to resemble a Miracast hardware encoder as 
closely as possible. Since I-Frames size are much larger than P-Frames, Miracast 
encoders do not use I-Frames but use Periodic Intra Refresh [25] instead. This 
enables each frame (in our case each I-Frame) to be capped to the same size by 
using a column of intra blocks that move across the video trace from one side to 
the other, thereby “refreshing” the image. In effect, instead of a big keyframe (in 
our case an I-Frame), the keyframe is spread over many frames (in our case P-
Frames). For this dataset, we do not have a GOP structure. We only have P-
Frames with an exception of one I-Frame whenever the host computer starts or 
its user logs on. 
 

3.2.2 Recording Periods and Datasets Statistics 
 Our recording framework was running on different periods of time, between 
March and May 2015 for the first dataset and between June and July 2015 for the 
second dataset. We have replaced every user’s name with a different letter from 
the alphabet (i.e., UserA, UserB, UserD, UserE) for reasons of anonymity. 

In Table (3.1), we present some general statistics of our two datasets, such 
as general information about our records, as well as total, minimum, average and 
maximum sizes of our video traffic frames over all applications. In Tables (3.2) to 
(3.7), we summarize the same statistics for every application separately. 
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Table 3.1: Dataset 1 and Dataset 2 statistics over all applications. 

Dataset 1 Dataset 2
# of Recording Days 24 22

# of Users 3 4
# of Applications 29 26

# of Video Traffic Records 14932183 20892611
Total Size of Video Traffic (GBytes) 120 424

MIN Video Traffic Size (Bytes) 159 190
AVG Video Traffic Size (Bytes) 8032 20298
MAX Video Traffic Size (Bytes) 598613 422435

# of I-Frames 249061 290
Total Size of I-Frames (GBytes) 99 0,092

MIN I-Frame Size (Bytes) 3290 129932
AVG I-Frame Size (Bytes) 397525 316900
MAX I-Frame Size (Bytes) 1536577 395780

# of P-Frames 14683122 20892321
Total Size of P-Frames (GBytes) 21 423,908

MIN P-Frame Size (Bytes) 159 190
AVG P-Frame Size (Bytes) 1425 20293
MAX P-Frame Size (Bytes) 598613 422435



 
 Data Collection Methodology 19 

 

Table 3.2: Dataset 1 statistics for I and P-Frames for every application 
separately. 

 

 

Dataset 1                   
I and P Frames

# of 
Records

Total Size 
(Bytes) 

MIN 
Size 

(Bytes)

AVG 
Size 

(Bytes)

MAX 
Size 

(Bytes)
Acrobat Reader 1203240 7193455153 162 5978.40 899504
Microsoft Excel 81411 611832413 162 7515.35 739279
Foxit Reader 193312 1946742945 161 10070.47 1127390

InSite 210233 1530425284 163 7279.66 833711
Matlab 5541003 43488168101 159 7848.43 1396685

Microsoft Outlook 1501845 12338765111 160 8215.74 1444639
Microsoft PowerPoint 239325 2011160784 161 8403.47 1300609

Enterprise Device Manager 3551 30555040 162 8604.63 758180
Snipping Tool 3720 17300814 169 4650.76 385209

Microsoft Word 1020906 7166688310 161 7019.93 1343834
WinMerge 1245 9118536 161 7324.13 406078
WinSCP 78211 632606616 171 8088.46 1228935

Xwin Cygwin 1620 9345560 161 5768.86 615388
Windows Calculator 54916 445203628 161 8106.99 572823

Google Chrome 2004502 16546146863 161 8254.49 1242142
Command Line 128417 1085453712 160 8452.57 766030
Communicatior 17620 113288482 165 6429.54 640111
Mozilla Firefox 762798 8335279432 159 10927.24 1396106
Google Earth 149938 2809589467 161 18738.34 1536577

G-Simple 137239 350322699 162 2552.65 561190
Internet Explorer 958501 7661779538 161 7993.50 1092248

KDiff3 89492 986785150 161 11026.52 1275036
Kile LaTeX 40304 487629204 163 12098.78 957175

Windows Paint 65502 388890351 161 5937.08 678945
Windows Notepad 1450 4240516 170 2924.49 560425

Notepad++ 396846 3329110155 160 8388.92 1399583
Windows PowerShell 28215 238280569 162 8445.17 635763

Windows Task Manger 13206 113862120 161 8622.00 725557
VLC 3615 52046620 164 14397.41 564589
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Table 3.3: Dataset 1 statistics for I-Frames for every application separately. 

 

 

Dataset 1                   
I Frames

# of 
Records

Total Size 
(Bytes) 

MIN 
Size 

(Bytes)

AVG 
Size 

(Bytes)

MAX 
Size 

(Bytes)
Acrobat Reader 20059 6465212781 39115 322309.83 899504
Microsoft Excel 1359 538964417 63775 396588.97 739279
Foxit Reader 3212 1488990381 58592 463571.10 1127390

InSite 3518 1336711357 37245 379963.43 833711
Matlab 92347 36778295485 3380 398261.94 1396685

Microsoft Outlook 25090 10391304678 17792 414161.21 1444639
Microsoft PowerPoint 3990 1568816708 3290 393187.14 1300609

Enterprise Device Manager 55 22103241 28495 401877.11 758180
Snipping Tool 63 15154937 119253 240554.56 385209

Microsoft Word 17100 6274459767 28431 366927.47 1343834
WinMerge 20 7401594 278371 370079.70 406078
WinSCP 1305 569117856 125116 436105.64 1228935

Xwin Cygwin 26 8007678 201273 307987.62 615388
Windows Calculator 915 389945158 96604 426169.57 572823

Google Chrome 33418 13842060352 35051 414209.72 1242142
Command Line 2144 922789371 55410 430405.49 766030
Communicatior 295 96674157 138811 327709.01 640111
Mozilla Firefox 12714 5749222246 60849 452196.18 1396106
Google Earth 2498 2172024072 128526 869505.23 1536577

G-Simple 2293 291972833 46597 127332.24 561190
Internet Explorer 15987 5697199251 28619 356364.50 1092248

KDiff3 1486 716972971 101599 482485.18 1275036
Kile LaTeX 673 365887350 62498 543666.20 957175

Windows Paint 1093 316886605 96583 289923.70 678945
Windows Notepad 24 3629741 76471 151239.21 560425

Notepad++ 6627 2630747671 26787 396974.15 1399583
Windows PowerShell 471 224313034 101805 476248.48 635763

Windows Task Manger 219 95192659 71224 434669.68 725557
VLC 60 24329443 135329 405490.72 564589
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Table 3.4: Dataset 1 statistics for P-Frames for every application separately. 

 

 

  

Dataset 1                   
P Frames

# of 
Records

Total Size 
(Bytes) 

MIN 
Size 

(Bytes)

AVG 
Size 

(Bytes)

MAX 
Size 

(Bytes)
Acrobat Reader 1183181 728242372 162 615.50 407388
Microsoft Excel 80052 72867996 162 910.26 292361
Foxit Reader 190100 457752564 161 2407.96 439189

InSite 206715 193713927 163 937.11 355725
Matlab 5448656 6709872616 159 1231.47 571579

Microsoft Outlook 1476755 1947460433 160 1318.74 513768
Microsoft PowerPoint 235335 442344076 161 1879.64 408011

Enterprise Device Manager 3496 8451799 162 2417.56 279689
Snipping Tool 3657 2145877 169 586.79 45254

Microsoft Word 1003806 892228543 161 888.85 514237
WinMerge 1225 1716942 161 1401.59 224431
WinSCP 76906 63488760 171 825.54 598613

Xwin Cygwin 1594 1337882 161 839.32 96211
Windows Calculator 54001 55258470 161 1023.29 314185

Google Chrome 1971084 2704086511 161 1371.88 460425
Command Line 126273 162664341 160 1288.20 496366
Communicatior 17325 16614325 165 958.98 209845
Mozilla Firefox 750084 2586057186 159 3447.69 513537
Google Earth 147440 637565395 161 4324.24 503842

G-Simple 134946 58349866 162 432.39 202106
Internet Explorer 942514 1964580287 161 2084.40 547021

KDiff3 88006 269812179 161 3065.84 523077
Kile LaTeX 39631 121741854 163 3071.88 407035

Windows Paint 64409 72003746 161 1117.91 312623
Windows Notepad 1426 610775 170 428.31 74259

Notepad++ 390219 698362484 160 1789.67 597929
Windows PowerShell 27744 13967535 162 503.44 242113

Windows Task Manger 12987 18669461 161 1437.55 230692
VLC 3555 27717177 164 7796.67 314342
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Table 3.5: Dataset 2 statistics for I and P-Frames for every application 
separately. 

 

 

 

 

Dataset 2                   
I and P Frames

# of 
Records

Total Size 
(Bytes) 

MIN 
Size 

(Bytes)

AVG 
Size 

(Bytes)

MAX 
Size 

(Bytes)
Acrobat Reader 91191 2136792352 562 23432.05 408677
Microsoft Excel 802214 11382628974 600 14189.02 399526
Foxit Reader 150085 3859703201 547 25716.78 405206

Matlab 5338049 86952178144 446 16289.13 416726
Microsoft Outlook 3998224 86075641522 411 21528.47 411819

Microsoft PowerPoint 550143 9344958975 345 16986.42 400006
Enterprise Device Manager 2381 47255359 816 19846.85 395807

Snipping Tool 3420 56130953 1106 16412.56 369435
Microsoft Word 2440966 43708319774 558 17906.16 413769

WinMerge 620 15726092 1925 25364.66 392312
WinRAR 2505 76806323 2106 30661.21 392326

Xwin Cygwin 47593 830209970 1568 17443.95 403309
Windows Calculator 1585 23744668 3154 14980.86 41932

Google Chrome 2204967 54911911822 199 24903.73 422435
Command Line 161485 3945046228 712 24429.80 401922
Mozilla Firefox 2959650 81519056306 417 27543.48 415133

IrfanView 335731 6535872410 573 19467.59 401369
Internet Explorer 514782 9398257333 508 18256.77 403586

KDiff3 10155 313811196 1326 30902.14 399990
Windows Paint 304319 4706916493 535 15467.05 402482

Windows Notepad 16165 176375107 2111 10910.93 395659
Notepad++ 912572 16449621518 476 18025.56 407272

Windows PowerShell 6693 101359114 190 15144.05 393740
Windows Task Manger 2840 65874645 1680 23195.30 397773

VLC 23251 785190493 495 33770.18 403801
VMware Player 11025 655871597 645 59489.49 395007
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Table 3.6: Dataset 2 statistics for I-Frames for every application separately. 

 
For many applications no statistics are shown in the table above, due to 

the absence of I-Frames in Dataset 2. 

 

Dataset 2                   
I Frames

# of 
Records

Total Size 
(Bytes) 

MIN 
Size 

(Bytes)

AVG 
Size 

(Bytes)

MAX 
Size 

(Bytes)
Acrobat Reader --- --- --- --- ---
Microsoft Excel 2 697894 314583 348947.00 383311
Foxit Reader --- --- --- --- ---

Matlab 1 384098 384098 384098.00 384098
Microsoft Outlook 28 9468049 129932 338144.61 395780

Microsoft PowerPoint 6 1801799 198561 300299.83 347910
Enterprise Device Manager --- --- --- --- ---

Snipping Tool --- --- --- --- ---
Microsoft Word 9 2874354 214923 319372.67 373591

WinMerge --- --- --- --- ---
WinRAR --- --- --- --- ---

Xwin Cygwin --- --- --- --- ---
Windows Calculator --- --- --- --- ---

Google Chrome 203 63983635 256644 315190.32 364414
Command Line 1 377542 377542 377542.00 377542
Mozilla Firefox 14 4426557 151974 316182.64 388909

IrfanView --- --- --- --- ---
Internet Explorer --- --- --- --- ---

KDiff3 --- --- --- --- ---
Windows Paint --- --- --- --- ---

Windows Notepad --- --- --- --- ---
Notepad++ 2 609506 283571 304753.00 325935

Windows PowerShell 24 7277716 252290 303238.17 393740
Windows Task Manger --- --- --- --- ---

VLC --- --- --- --- ---
VMware Player --- --- --- --- ---
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Table 3.7: Dataset 2 statistics for P-Frames for every application separately. 

 

 It is worth mentioning, that the average P-Frame size in Dataset 2 is 
larger by a factor of ≈14 in comparison with the P-Frames in Dataset 1, as shown 
in Table (3.1).

Dataset 2                   
P Frames

# of 
Records

Total Size 
(Bytes) 

MIN 
Size 

(Bytes)

AVG 
Size 

(Bytes)

MAX 
Size 

(Bytes)
Acrobat Reader 91191 2136792352 562 23432.05 408677
Microsoft Excel 802212 11381931080 600 14188.18 399526
Foxit Reader 150085 3859703201 547 25716.78 405206

Matlab 5338048 86951794046 446 16289.06 416726
Microsoft Outlook 3998196 86066173473 411 21526.25 411819

Microsoft PowerPoint 550137 9343157176 345 16983.33 400006
Enterprise Device Manager 2381 47255359 816 19846.85 395807

Snipping Tool 3420 56130953 1106 16412.56 369435
Microsoft Word 2440957 43705445420 558 17905.05 413769

WinMerge 620 15726092 1925 25364.66 392312
WinRAR 2505 76806323 2106 30661.21 392326

Xwin Cygwin 47593 830209970 1568 17443.95 403309
Windows Calculator 1585 23744668 3154 14980.86 41932

Google Chrome 2204764 54847928187 199 24877.01 422435
Command Line 161484 3944668686 712 24427.61 401922
Mozilla Firefox 2959636 81514629749 417 27542.11 415133

IrfanView 335731 6535872410 573 19467.59 401369
Internet Explorer 514782 9398257333 508 18256.77 403586

KDiff3 10155 313811196 1326 30902.14 399990
Windows Paint 304319 4706916493 535 15467.05 402482

Windows Notepad 16165 176375107 2111 10910.93 395659
Notepad++ 912570 16449012012 476 18024.93 407272

Windows PowerShell 6669 94081398 190 14107.27 333654
Windows Task Manger 2840 65874645 1680 23195.30 397773

VLC 23251 785190493 495 33770.18 403801
VMware Player 11025 655871597 645 59489.49 395007



4 Statistical Tests and Evaluation 
Metrics 

 
In this thesis, we developed and tested various modeling techniques on our 

data, as we analyze further in Chapter 5. For our modeling, it was necessary to 
try to fit our data with a number of well-known distributions. These fitting 
attempts, together with the statistical tools used for assessing the accuracy of the 
fits, are presented in this chapter. We also present the metrics we utilized for 
assessing the quality of our proposed models, which will be presented in Chapter 
5. 
 

4.1 Distributions Fitting 
 
 In the following two subsections, we explain the procedure that we have 
followed in order to try to fit our data with a number of well-known distributions. 
The data fitting procedure consists of two basic steps. The first is the parameters 
estimation method for each chosen distribution. The second is the data generation 
method in order to reproduce data according to the specific distribution. 
 

4.1.1 Maximum Likelihood Estimation 
 Maximum Likelihood Estimation (MLE) is a method of parameter 
estimation in statistics [26], which we used for finding the parameters of a 
distribution, based on our data. 
 In general, given a statistical model, MLE returns estimates for the model’s 
parameters at a confidence level alpha (usually alpha=95%). In our case, the model 
is a distribution which we want to investigate on whether it underlies our data 
and we want to confirm or reject this assumption. Before that, due to the fact 
that every distribution has a vector Θ that contains its parameters, we need to 
find an estimation Θ�  of this vector, based on our data. Hence, we used the MLE 
method in order to seek a vector Θ� , which can be as close as possible to the true 
Θ and by that tried to estimate the parameters of the distribution assumed to 
underlie our data. 
 This can be done by taking the joint probability density function of the 
observations (i.e., our data) given the, unknown to us, set of true parameters Θ 
and assuming their independency. This joint probability density function is 
 

f(x1,x2,…,xn|Θ) = f(x1|Θ) ∙ f(x2|Θ) ∙ … ∙ f(xn|Θ) (4.1) 
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where n is the amount of I.I.D. observations. Now, if we fix the values xi as 
parameters of this function and consider Θ as the function’s variable, we obtain 
the likelihood function, which is 
 

ℒ(Θ;x1,x2,…,xn) = f(x1,x2,…,xn|Θ) = � f(𝑥𝑥𝑖𝑖|Θ)
𝑛𝑛

𝑖𝑖=1

 

 
where “;” denotes a simple separation. For computational convenience, it is better 
to use the logarithmic version of (4.3), called the log-likelihood function, which is 

 

lnℒ(Θ;x1,x2,…,xn)  = � ln f(𝑥𝑥𝑖𝑖|Θ)
𝑛𝑛

𝑖𝑖=1

 

 
The average log-likelihood function is 
 

e�= 
1
n lnℒ 

 
The MLE method finds the estimator Θ�  by finding a value of Θ that maximizes 
e�(Θ;x). Finally, if a maximum exists, it can be found and sometimes more than 
one estimates can be found that maximize the average log-likelihood function. For 
many models (in our case distributions) there is an explicit form to calculate the 
parameters but for many others there is not. In those cases, optimization methods 
(such as Newton’s Method) have to be used. 

We used a number of distributions that are well-known in the literature 
for various types of video traffic characterization and modeling. More specifically, 
we studied the Uniform, Exponential, Gamma, Lognormal, Geometric, Negative 
Binomial, Generalized Extreme Value (GEV), Weibull, Pearson Type V and Log-
logistic distribution. 
 In order to generate random data according to those distributions, we used 
the MLE method for the parameters estimation and the built-in Matlab functions 
for the data generation.  
 

4.2 Statistical Tests 
 
 We have used three powerful statistical tests during this thesis, in order to 
evaluate the accuracy of the distributions fits with our data. We briefly present 
the three tests below. 
 

(4.2) 

(4.3) 

(4.4) 
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4.2.1 Quantiles-Quantiles Plot 
 The Quantiles-Quantiles Plot or Q-Q Plot is a powerful Goodness of Fit 
(GoF) test [27] which compares two datasets graphically, in order to determine 
whether the datasets come from populations with a common distribution and 
statistical characteristics. If they do, the point of the plot should lie along a 45-
degree reference line approximately, which passes from the axis start point [28]. 
A Q–Q plot is a plot of the quantiles of the data versus the quantiles of the fitted 
distribution. A z-quantile of X is any value x such that P(X ≤ x) = z. In our case, 
we have plotted the quantiles of the real data versus the quantiles of the generated 
data via the distribution. 
 

4.2.2 Kolmogorov-Smirnov Test 
 In order to further verify the validity of our results, we performed the 
Kolmogorov-Smirnov test [29]. The Kolmogorov-Smirnov test or KS test tries to 
determine if two datasets differ significantly. The KS test has the advantage of 
making no assumption about the distribution of data, i.e., it is non-parametric 
and distribution free. The KS test uses the maximum vertical deviation between 
the two curves as its statistic D. As explained in [27], the use of KS test is a good 
statistical tool; however it has the drawback that KS test give the same weight to 
the difference between the actual data and the fitted distribution for all values of 
data, whereas many compared distributions differ primarily in their tails. It tests 
if the null hypothesis is accepted or rejected at an alpha significance level (usually 
alpha=5%). The null hypothesis is that the population we are testing is drawn 
from a specific distribution with 5% chance of error.  

The KS test can also be used, the way we use it in this study, as a goodness 
of fit test. This means that we do not actually expect to see if the test accepts or 
rejects a null hypothesis (even thought it would be an excellent result if the null 
hypothesis was accepted) but to see how “far” the actual data are from the fitted 
distribution. This is called Two-Sample Kolmogorov-Smirnov Test. The test 
measure is given by Equation (4.5) for two given Cumulative Distribution 
Functions (CDFs) F1 and F2. 

  
Dn,n' = sup��F1,n(x) - F2,n(x)�� 

 
The null hypothesis is rejected at the level “a” significance if 
 

Dn,n' > c(a) ∙ �
n + n'
n ∙ n'  

(4.5) 

(4.6) 
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The values of c(a) are defined for various significance levels and n and n’ 
are the number of samples. We should bear in mind that the Two-Sample 
Kolmogorov-Smirnov Test only tells us half the tale, meaning that it only tells us 
the maximum distance between two distributions and not which distribution our 
data come from. 
 Finally, we would like to mention that the KS test has two limitations. 
First, it works only with continuous distribution (and that is the reason that we 
do not have results for the Geometric and Negative Binomial distribution in 
Chapter 5) and second, it is more sensitive at the “center” of the CDFs of the 
distributions rather than the “tails” (a limitation that we try to overwhelm by 
using Anderson-Darling test in the follow). 
 

4.2.3 Anderson-Darling Test 
 The Anderson-Darling test or AD test is a modification of the KS test [30] 
that it is more sensitive at the “tails” of the CDFs of the distributions rather than 
the “center”. It belongs, like as KS test, to the family of Quadratic Empirical 
Distribution Function statistics, which measures the distance between the 
empirical CDF, Fn(x) and the hypothesized CDF, F(x) as 
 

n � (Fn(x) - F(x))2
∞

-∞

 w(x) dF(x) 

 
over the ordered sample values x1<x2<…<xn, where w(x) is a weight function 
that favors the “tails” of the CDF and n is the number of samples in the dataset. 
The weight function for the AD test is 
 

w(x) = [F(x) ∙ �1 - F(x)�]-1  
 

The AD test statistic is 
 

An
2  = -n - �

2i - 1
n  [ln�F(Xi)� + ln�1 - F(Xn+1-i)�]

n

i=1

 

 
where X1<X2<…<Xn are the ordered sample values and n is the number of 
samples in the dataset. Even though the KS test is distribution free, there is a 
form of the AD test that is not. It makes use of the specific distribution parameters 
to be evaluated. The appropriate critical values need to be selected for the 
distribution we wish to check. This allows the test to be more sensitive but it also 

(4.7) 

(4.8) 

(4.9) 
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makes it impossible to use with a large variety of distributions. Currently, tables 
of critical values exist for the Normal, Uniform, Lognormal, Exponential, Weibull, 
Extreme Value I, Generalized Pareto and Logistic distribution. In this study, we 
use the non-parametric version of the AD test because we are testing distributions 
for which no known critical values exist. 
 

4.3 Accuracy Evaluation Metrics 
 
 In this final section of this chapter, we present the three metrics that we 
used, in order to evaluate the accuracy of our models. 
 

4.3.1 Mean Absolute Percentage Error 
 The Mean Absolute Percentage Error (MAPE) [31] is a metric that shows 
the average difference (i.e., the average error) between the real values and the 
corresponding measured (in our case predicted by our models) values. It depicts, 
how large the prediction error is in a percentage form. For a set of pairs of real-
generated values in a dataset, the MAPE is calculated according to (4.10). 
 

MAPE = 
∑

|XP,i - XR,i|
XR,i

n
i=1

n  ∙ 100% 

 
where {XR,i,XP,i} is the ith pair of real and generated values in a dataset of n pairs. 
 

4.3.2 Relative Percentage Error 
 The Relative Percentage Error (RPE) [32] is a metric that shows the overall 
difference (i.e., the overall error) between the real values and the corresponding 
measured (in our case predicted by our models) values, as a percentage of the 
overall size of the real values. It depicts, how large the prediction error is relative 
to the real values, in a percentage form. For a set of pairs of real-generated values 
in a dataset, the RPE is calculated according to (4.11). 
 

RPE = 
∑ |XP,i - XR,i|n

i=1
∑ |XR,i|n

i=1
 ∙ 100% 

 
where {XR,i,XP,i} is the ith pair of real and generated values in a dataset of n pairs. 
 

(4.10) 

(4.11) 
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4.3.3 Confidence Interval 
 The Confidence Interval (CI) [33] is an indicator of measurement’s precision 
or how stable an estimation is, i.e., a measure of how close a measurement will be 
to the original estimate if the experiment were to be repeated. The procedure to 
calculate the confidence interval on the results of an experiment is the following. 
 Assume that you choose X samples from the total population of results in 
your experiment. Calculate the mean value X� of those samples and the standard 
deviation σ. Choose the desired confidence level C in percentage format and find 
the critical value Za

2�
 from the Z-table [34], where a = 1 – c and c = decimal 

format of C. Find the standard error e according to formula e = Za
2�
 ∙ σ
�|Χ|

, where 

|X| is the size of X. In the end, you can define the confidence interval as CI =
 X�  ± e. 



5 Modeling Methodology and Results 
 

In this chapter, we present, analyze and evaluate the four different 
modeling approaches (simple and more sophisticated), that we have used in this 
work. Some of them are taken from the literature, as they have been proposed or 
with tweaks that we have incorporated into them. One method is presented here 
for the first time in the relevant literature, to the best of our knowledge. This 
modeling approach is shown to be a robust and highly accurate for the prediction 
of video traffic that is generated by an average user’s computer, during a day. 
 

5.1 Application and Distribution Aware Model 
 
 The Application and Distribution Aware (ADA) Model, is the first and 
simplest approach that we have developed and tested, in order to model our data. 
It is based on the assumption that the video traffic of every unique application in 
our datasets is characterized by a distinct distribution. In the following 
subsections, we analyze the way that the ADA model works and we present our 
respective results. 
 

5.1.1 Model Analysis 
 The ADA model is capable of modeling the I-Frames and the P-Frames of 
video traffic.  

Its methodology consists of three basic steps. The first is the data 
separation into I-Frames and P-Frames according to their characterization in the 
records. The second is the parameters’ estimation of each distribution that 
possibly characterizes the application using the MLE method and the dataset. The 
third is the predicted data generation according to this specific distribution using 
the estimated parameters of the previous step. The last two steps are applied on 
the I-Frames and the P-Frames separately. Given that the distribution that best 
characterizes the application’s data is unknown, the last two steps have to be 
repeated for a wide range of well-known distributions and the ones that gives the 
lower RPE and MAPE will be selected. 
 We applied the ADA model for the set of ten well-known distributions 
presented in Subsection 4.1.1. In order to evaluate further the statistical behavior 
of our model, we applied the KS and AD test for each case and we examined if 
those tests’ results agree with those of RPE and MAPE. 
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In the beginning, we tried to model the size of the video traffic as-is (i.e., 
without separately modeling of I and P-Frames). The problem with that approach 
was the fact that the sizes of I-Frames differ significantly from the sizes of P-
Frames in terms of minimum, average, standard deviation and maximum size 
(according to Table 3.1) and due to this no distribution could serve as a competent 
model that would reproduce those wide range differences with low errors.  

Further, as explained in detail in the following subsection, the ADA model 
fails to predict the P-Frames traffic with low errors (in Dataset 1 especially). This 
fact led us to further separate P-Frames into two “partitions” (P-Frames Lower 
Partition and P-Frames Upper Partition as we named them). The rule for the 
partitioning of P-Frames was different for the 1st and the 2nd Dataset (because 
the traffic has different characteristics between those two datasets as depicted in 
Table 3.1). For the 1st Dataset, the rule is that every P-Frame with size less than 
1‰ of the largest P-Frame goes to the Lower Partition and every P-Frame with 
size greater or equal to 1‰ of the largest P-Frame goes to the Upper Partition. 
For the 2nd Dataset where we often encounter consecutive P-Frames with identical 
size, the rule is that all the P-Frames preceding the appearance of 5 consecutive 
P-Frames with the same size go to the Lower Partition and the rest go to the 
Upper Partition. Intuitively, those rules split the P-Frames into two groups. The 
first one contains small and similar sized P-Frames (Lower Partition) and the 
second one large and dissimilar sized P-Frames (i.e., our “outliers”). The usage of 
this rule in the 1st Dataset assigns ≈80% of the P-Frames in the Lower Partition 
and ≈20% in the Upper Partition and for the 2nd Dataset assigns ≈97% of the P-
Frames in the Lower Partition and ≈3% in the Upper Partition. 

We should mention that we also tried to model our data per user and per 
day of capture separately but we concluded that the improvement to our results 
was not significant to maintain this approach, given the much larger complexity 
of this approach. 

Finally, it should be emphasized that the ADA model has an inherent 
disadvantage. It does not incorporate the autocorrelation between successive or 
neighbor video frames, which is well-known to exist either for short or long-term, 
i.e., Short Range Dependence (SRD) or Long Range Dependence (LRD) [35] [36] 
[37]. Our own results, which will be presented in the following sections, confirm 
that for all traces SRD exists. Therefore, ADA is used as a first, simple approach 
and as a benchmark against which our other models will be compared. 
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5.1.2 Model Results 
 In this subsection, we are going to evaluate the ADA model by presenting 
the results from our tests. We have run our model for every distinct application 
of Dataset 1 and Dataset 2.  

There are applications in Dataset 2 without results for the I-Frames due to 
the fact that according to Dataset’s 2 encoding, we have only one I-Frame every 
time the host computer starts or its user logs on. 
 We first present the results for the I-Frames and P-Frames ADA modeling 
of Dataset 1 and Dataset 2, according to RPE, MAPE, KS and AD tests and over 
all applications. The real and predicted frame sizes are sorted in ascending order 
for comparison purposes. 
 

 
Table 5.1: ADA model results for I-Frames over all applications of Dataset 1. 

KS AD
Best Distribution Error (%) Best Distribution Error (%) Best Distribution Best Distribution

Acrobat Reader GEV 14.0934 Gamma 23.0565 LogLogistic GEV
Microsoft Excel Weibull 11.8120 GEV 12.5411 LogLogistic GEV
Foxit Reader GEV 7.2657 LogLogistic 5.5538 LogLogistic LogLogistic

InSite GEV 9.4328 GEV 13.0520 GEV GEV
Matlab LogLogistic 2.7068 LogLogistic 3.7226 LogLogistic LogLogistic

Microsoft Outlook Weibull 2.9172 NegBinomial 3.0791 Gamma GEV
Microsoft PowerPoint Weibull 2.8837 Weibull 3.7738 LogLogistic LogLogistic

Enterprise Device Manager Weibull 11.1717 Uniform 24.0001 Uniform GEV
Snipping Tool Uniform 11.9218 NegBinomial 13.3137 Gamma LogLogistic

Microsoft Word LogLogistic 3.9727 LogLogistic 3.3878 LogLogistic LogLogistic
WinMerge Weibull 2.5459 Weibull 2.6596 LogNormal Weibull
WinSCP LogLogistic 5.5527 LogLogistic 4.9612 LogLogistic LogLogistic

Xwin Cygwin GEV 14.1766 GEV 12.8750 Gamma GEV
Windows Calculator GEV 5.5712 GEV 9.0079 GEV GEV

Google Chrome Weibull 7.3737 Weibull 7.9375 LogLogistic Weibull
Command Line Weibull 4.7144 Weibull 6.7775 GEV Weibull
Communicatior PearsonV 5.4010 PearsonV 5.5730 PearsonV GEV
Mozilla Firefox LogLogistic 2.3355 LogLogistic 2.3476 LogLogistic LogLogistic
Google Earth GEV 3.2203 GEV 4.2721 GEV GEV

G-Simple GEV 20.0270 GEV 11.5566 LogLogistic GEV
Internet Explorer Weibull 3.5108 Weibull 4.0624 Weibull Weibull

KDiff3 NegBinomial 2.2392 LogLogistic 2.4725 GEV LogLogistic
Kile LaTeX GEV 3.4498 GEV 4.8836 Weibull GEV

Windows Paint NegBinomial 9.1849 NegBinomial 9.7558 PearsonV PearsonV
Windows Notepad PearsonV 29.7553 LogLogistic 23.0799 GEV GEV

Notepad++ Weibull 4.9762 GEV 5.2875 GEV Weibull
Windows PowerShell LogLogistic 3.6729 LogLogistic 4.7701 GEV LogLogistic

Windows Task Manger GEV 7.3913 GEV 10.9649 GEV GEV
VLC GEV 9.8352 GEV 16.5711 Weibull GEV

Average Error (%): 7.6935 Average Error (%): 8.8033

Application
I-Frames

RPE MAPE
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Table 5.2: ADA model results for P-Frames over all applications of Dataset 1. 

 
  From the above two tables that refer to Dataset 1, we observe that the 

ADA model achieves good accuracy on modeling I-Frames but fails in modeling 
P-Frames.  

As for the I-Frames, we can see that we have low errors (below 10%) in 
terms of RPE and MAPE for most of our applications (with some exceptions such 
as Enterprise Device Manager, G-Simple and Windows Notepad) and the average 
RPE and MAPE over all applications stays below 9%. In addition, we can see 
that our model agrees on most of the cases for the best distribution per application 
between RPE and MAPE but we cannot reach a clear conclusion from the KS 
and AD test, a fact that indicates that our data differs between the “center” and 
the “tails”. 

As for the P-Frames, we have very high errors in terms of RPE and 
significant errors in terms of MAPE. Also, we observe that MAPE, KS and AD 

KS AD
Best Distribution Error (%) Best Distribution Error (%) Best Distribution Best Distribution

Acrobat Reader GEV 65.5001 GEV 6.0566 GEV GEV
Microsoft Excel GEV 41.8876 GEV 9.9055 GEV GEV
Foxit Reader PearsonV 83.9585 GEV 15.8851 GEV GEV

InSite GEV 71.3259 GEV 11.6295 GEV GEV
Matlab GEV 79.7061 GEV 11.9074 GEV GEV

Microsoft Outlook PearsonV 80.5754 GEV 12.3231 GEV GEV
Microsoft PowerPoint PearsonV 75.6485 GEV 16.7599 GEV GEV

Enterprise Device Manager Weibull 49.7211 PearsonV 45.7621 GEV GEV
Snipping Tool GEV 35.4452 GEV 12.0030 GEV GEV

Microsoft Word GEV 72.1663 GEV 9.3328 GEV GEV
WinMerge PearsonV 79.4037 GEV 17.9503 GEV GEV
WinSCP GEV 76.8190 GEV 10.0013 LogLogistic GEV

Xwin Cygwin PearsonV 52.1366 GEV 24.0481 GEV GEV
Windows Calculator GEV 68.5243 GEV 8.7824 GEV GEV

Google Chrome GEV 73.9916 GEV 11.0672 GEV GEV
Command Line GEV 71.2440 GEV 11.1097 GEV GEV
Communicatior PearsonV 67.8365 GEV 13.9133 GEV GEV
Mozilla Firefox Weibull 80.8619 GEV 22.7592 GEV GEV
Google Earth Weibull 78.7539 LogLogistic 37.7865 GEV GEV

G-Simple GEV 51.8762 GEV 10.8519 GEV GEV
Internet Explorer GEV 85.9765 GEV 12.7529 GEV GEV

KDiff3 Weibull 81.8432 GEV 32.4424 GEV GEV
Kile LaTeX PearsonV 69.3276 GEV 26.4580 GEV GEV

Windows Paint PearsonV 60.1628 GEV 14.9701 GEV GEV
Windows Notepad GEV 23.1330 GEV 7.2919 LogNormal GEV

Notepad++ PearsonV 81.3766 GEV 14.0268 GEV GEV
Windows PowerShell GEV 53.3213 GEV 14.4497 LogLogistic GEV

Windows Task Manger GEV 66.3710 GEV 14.2695 GEV GEV
VLC Weibull 60.2636 PearsonV 36.2930 GEV GEV

Average Error (%): 66.8675 Average Error (%): 16.9927

Application
P-Frames

RPE MAPE
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test indicate for most of the applications the GEV as best distribution, a fact 
related with the high concentration of very small sized P-Frames in the Dataset 
1. 

 

 
Table 5.3: ADA model results for I-Frames over all applications of Dataset 2. 

 

 
Table 5.4: ADA model results for P-Frames over all applications of Dataset 2. 
 

From the above two tables that refer to Dataset 2, we confirm again that 
the ADA model gives highly accurate results on the modeling of I-Frames (4-5% 

KS AD
Best Distribution Error (%) Best Distribution Error (%) Best Distribution Best Distribution

Microsoft Excel NegBinomial 3.9328 NegBinomial 3.8858 Uniform LogNormal
Microsoft Outlook GEV 4.0023 GEV 5.3359 Weibull GEV

Microsoft PowerPoint Weibull 5.1782 Weibull 6.1074 Gamma Weibull
Microsoft Word NegBinomial 5.1894 NegBinomial 6.0813 GEV Weibull
Google Chrome GEV 3.5474 LogLogistic 3.4277 LogLogistic Weibull
Mozilla Firefox GEV 5.6683 GEV 8.5764 LogLogistic Weibull

Notepad++ Gamma 4.3898 Gamma 4.2871 Uniform LogNormal
Windows PowerShell LogLogistic 5.4552 LogLogistic 5.2876 Gamma GEV

Average Error (%): 4.6704 Average Error (%): 5.3736

Application
I Frames

RPE MAPE

KS AD
Best Distribution Error (%) Best Distribution Error (%) Best Distribution Best Distribution

Acrobat Reader GEV 15.5873 GEV 13.1683 LogLogistic GEV
Microsoft Excel GEV 5.1208 GEV 3.6504 LogLogistic GEV
Foxit Reader LogLogistic 20.4611 LogNormal 9.6586 LogLogistic LogLogistic

Matlab NegBinomial 7.8308 LogNormal 6.0371 LogNormal LogNormal
Microsoft Outlook NegBinomial 6.6657 NegBinomial 5.2914 Gamma Gamma

Microsoft PowerPoint NegBinomial 6.5026 LogNormal 5.0167 Gamma Gamma
Enterprise Device Manager GEV 12.8802 LogNormal 7.8266 Gamma LogNormal

Snipping Tool NegBinomial 5.6112 NegBinomial 5.4936 Gamma Gamma
Microsoft Word LogNormal 11.6892 LogNormal 4.5745 LogNormal LogNormal

WinMerge LogLogistic 30.5505 PearsonV 8.5241 PearsonV GEV
WinRAR LogLogistic 14.2884 LogNormal 8.8457 GEV LogNormal

Xwin Cygwin LogLogistic 8.1104 GEV 5.5709 LogLogistic GEV
Windows Calculator Weibull 12.8847 PearsonV 10.1943 PearsonV PearsonV

Google Chrome LogLogistic 21.8600 LogLogistic 7.2852 LogLogistic LogLogistic
Command Line Exponential 13.0109 LogNormal 10.5705 LogLogistic LogNormal
Mozilla Firefox LogLogistic 16.6754 LogNormal 7.9470 LogNormal LogNormal

IrfanView GEV 11.5825 LogNormal 5.2874 LogNormal LogNormal
Internet Explorer LogNormal 10.2767 LogNormal 4.6048 LogNormal LogNormal

KDiff3 LogLogistic 18.7731 LogNormal 11.4546 LogLogistic LogNormal
Windows Paint Gamma 6.1956 GEV 4.5473 GEV GEV

Windows Notepad GEV 11.8933 GEV 7.6194 GEV GEV
Notepad++ NegBinomial 8.6298 Gamma 6.4529 LogNormal Gamma

Windows PowerShell GEV 11.9188 NegBinomial 39.6663 GEV GEV
Windows Task Manger LogLogistic 11.1016 LogNormal 8.2597 LogNormal LogNormal

VLC LogLogistic 23.8497 LogLogistic 8.9453 LogLogistic GEV
VMware Player Weibull 35.2235 LogLogistic 28.3031 GEV PearsonV

Average Error (%): 13.8144 Average Error (%): 9.4152

P Frames
RPE MAPEApplication
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RPE and MAPE) but for this dataset is achieves decent results (RPE 13.8%, 
MAPE 9.4%) in modeling P-Frames as well.  

We also observe once again that our model agrees in most cases about the 
best distribution per application between RPE and MAPE but we cannot reach a 
clear conclusion from the KS and AD test.  

As for the P-Frames, we observe that there are enough applications for 
which RPE, MAPE, KS and AD agree for the best distribution (in almost every 
case the KS test agrees with the AD test), which indicates that the video traffic 
is more “smoothed” due to the usage of Periodic Intra Refresh in comparison with 
Dataset 1. 

In the following figures, we present the Q-Q Plots of the real and predicted 
I-Frames and P-Frames for eight major applications (Microsoft Excel, Microsoft 
Word, Microsoft PowerPoint, Microsoft Outlook, Google Chrome, Mozilla Firefox, 
Internet Explorer and Matlab) from Dataset 1 and Dataset 2. These applications 
correspond to ≈82% and ≈90% of the overall recorded video traffic in the two 
datasets, respectively. 

 

 
Figure 5.1: Q-Q Plot for Dataset’s 1 Microsoft Excel I-Frames from ADA Model. 
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Figure 5.2: Q-Q Plot for Dataset’s 1 Microsoft Excel P-Frames from ADA Model. 

 
Figure 5.3: Q-Q Plot for Dataset’s 1 Microsoft Word I-Frames from ADA Model. 
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Figure 5.4: Q-Q Plot for Dataset’s 1 Microsoft Word P-Frames from ADA 
Model. 

 

Figure 5.5: Q-Q Plot for Dataset’s 1 Microsoft PowerPoint I-Frames from ADA 
Model. 
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Figure 5.6: Q-Q Plot for Dataset’s 1 Microsoft PowerPoint P-Frames from 
ADA Model. 

 

Figure 5.7: Q-Q Plot for Dataset’s 1 Microsoft Outlook I-Frames from ADA 
Model. 
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Figure 5.8: Q-Q Plot for Dataset’s 1 Microsoft Outlook P-Frames from ADA 
Model. 

 

Figure 5.9: Q-Q Plot for Dataset’s 1 Google Chrome I-Frames from ADA Model. 
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Figure 5.10: Q-Q Plot for Dataset’s 1 Google Chrome P-Frames from ADA 
Model. 

 

Figure 5.11: Q-Q Plot for Dataset’s 1 Mozilla Firefox I-Frames from ADA 
Model. 
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Figure 5.12: Q-Q Plot for Dataset’s 1 Mozilla Firefox P-Frames from ADA 
Model. 

 

Figure 5.13: Q-Q Plot for Dataset’s 1 Internet Explorer I-Frames from ADA 
Model. 
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Figure 5.14: Q-Q Plot for Dataset’s 1 Internet Explorer P-Frames from ADA 
Model. 

 

Figure 5.15: Q-Q Plot for Dataset’s 1 Matlab I-Frames from ADA Model. 
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Figure 5.16: Q-Q Plot for Dataset’s 1 Matlab P-Frames from ADA Model. 

 

As we can see from Figures (5.1) to (5.16), the Q-Q Plots’ results confirm 
the best distribution fits that the RPE and MAPE metrics indicated for these 
eight major applications of Dataset 1 in Tables (5.1) and (5.2). 

On the other hand, we confirm again that the ADA model is not capable 
to predict with accuracy the P-Frames of Dataset 1 as depicted in the Q-Q Plots 
figures of P-Frames. The distributions curves deviate strongly from the Reference 
Line. 
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Figure 5.17: Q-Q Plot for Dataset’s 2 Microsoft Excel P-Frames from ADA 
Model. 

 

Figure 5.18: Q-Q Plot for Dataset’s 2 Microsoft Word P-Frames from ADA 
Model. 
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Figure 5.19: Q-Q Plot for Dataset’s 2 Microsoft PowerPoint P-Frames from 
ADA Model. 

 

Figure 5.20: Q-Q Plot for Dataset’s 2 Microsoft Outlook P-Frames from ADA 
Model. 
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Figure 5.21: Q-Q Plot for Dataset’s 2 Google Chrome P-Frames from ADA 
Model. 

 

Figure 5.22: Q-Q Plot for Dataset’s 2 Mozilla Firefox P-Frames from ADA 
Model. 
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Figure 5.23: Q-Q Plot for Dataset’s 2 Internet Explorer P-Frames from ADA 
Model. 

 

Figure 5.24: Q-Q Plot for Dataset’s 2 Matlab P-Frames from ADA Model. 



 
 Modeling Methodology and Results 49 

Figures (5.17) to (5.24) depict the Q-Q Plots of P-Frames for the eight 
major applications selected from Dataset 2. We plotted the Q-Q plots only for the 
P-Frames, because the amount of I-Frames in those applications was not sufficient 
to calculate the minimum amount of 100 quantiles. 

As we can see from the Figures, the Q-Q Plots confirm again the best 
distribution fits for these applications, as indicated by the RPE and MAPE results 
in Table (5.4). 

Additionally, the ADA model is shown to provide a competent model for 
most values of the P-Frames of Dataset 2, due to the fact that the distributions’ 
curves lie around the Reference Line and they deviate only for the higher quantiles 
(right hand tail). 

In the next four Tables (5.5) - (5.8), we present the results of the ADA 
model for the P-Frames of Dataset 1 and Dataset 2 with the modification of 
dividing P-Frames in Lower Partition and Upper Partition, as described in the 
Subsection 5.1.1. 

 

 
Table 5.5: ADA model results for P-Frames Lower Partition over all applications 
of Dataset 1. 

KS AD
Best Distribution Error (%) Best Distribution Error (%) Best Distribution Best Distribution

Acrobat Reader LogLogistic 4.5460 GEV 3.6724 GEV GEV
Microsoft Excel Gamma 3.2688 Gamma 3.2646 LogLogistic Weibull
Foxit Reader GEV 4.9671 GEV 3.3451 GEV GEV

InSite LogLogistic 2.3841 LogLogistic 2.2773 LogLogistic LogLogistic
Matlab GEV 9.8077 GEV 5.5186 GEV GEV

Microsoft Outlook GEV 6.4143 GEV 3.7311 GEV GEV
Microsoft PowerPoint GEV 4.5453 GEV 3.0999 GEV GEV

Enterprise Device Manager GEV 1.7522 GEV 1.5698 GEV GEV
Snipping Tool LogNormal 0.0000 LogNormal 0.0000 LogNormal Exponential

Microsoft Word GEV 4.8607 GEV 3.0223 GEV GEV
WinMerge Uniform 3.5011 Uniform 3.5130 Uniform Uniform
WinSCP GEV 8.5782 GEV 4.7537 LogLogistic GEV

Xwin Cygwin GEV 0.0000 GEV 0.0000 GEV Exponential
Windows Calculator GEV 2.5029 GEV 2.0139 GEV GEV

Google Chrome GEV 3.3469 GEV 3.0044 LogLogistic GEV
Command Line GEV 4.4136 GEV 3.4176 LogLogistic GEV
Communicatior GEV 1.3183 GEV 1.2829 LogLogistic GEV
Mozilla Firefox PearsonV 11.0848 GEV 5.9568 GEV GEV
Google Earth PearsonV 5.3180 PearsonV 5.2698 GEV GEV

G-Simple GEV 0.8572 GEV 0.8300 LogLogistic GEV
Internet Explorer GEV 4.5484 GEV 2.6751 GEV GEV

KDiff3 PearsonV 13.8654 GEV 7.7454 GEV GEV
Kile LaTeX PearsonV 6.6886 GEV 6.3088 GEV GEV

Windows Paint GEV 2.8504 GEV 2.2953 GEV GEV
Windows Notepad GEV 0.0000 GEV 0.0000 GEV Exponential

Notepad++ LogLogistic 12.4990 GEV 6.1751 GEV GEV
Windows PowerShell LogLogistic 1.5109 LogLogistic 1.6437 LogLogistic Weibull

Windows Task Manger GEV 1.2881 GEV 1.2371 GEV GEV
VLC PearsonV 4.0928 PearsonV 4.2140 GEV GEV

Average Error (%): 4.5107 Average Error (%): 3.1668

Application
P-Frames Lower Partition

RPE MAPE
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Table 5.6: ADA model results for P-Frames Upper Partition over all applications 
of Dataset 1. 

KS AD
Best Distribution Error (%) Best Distribution Error (%) Best Distribution Best Distribution

Acrobat Reader Weibull 60.4776 PearsonV 32.5618 GEV GEV
Microsoft Excel PearsonV 50.9461 GEV 13.7704 GEV GEV
Foxit Reader Weibull 45.2514 PearsonV 38.3617 GEV GEV

InSite PearsonV 49.9451 GEV 21.1021 GEV GEV
Matlab LogNormal 48.0604 PearsonV 32.4499 GEV GEV

Microsoft Outlook LogNormal 46.1978 PearsonV 30.7235 GEV GEV
Microsoft PowerPoint Weibull 52.7179 PearsonV 26.6368 GEV GEV

Enterprise Device Manager LogLogistic 25.0560 PearsonV 14.7934 PearsonV GEV
Snipping Tool GEV 41.4457 GEV 11.5825 GEV GEV

Microsoft Word LogNormal 51.5054 PearsonV 26.1108 GEV GEV
WinMerge GEV 34.1814 GEV 10.1279 GEV GEV
WinSCP LogNormal 44.0574 PearsonV 23.9251 GEV GEV

Xwin Cygwin PearsonV 56.0022 GEV 17.2010 GEV GEV
Windows Calculator Weibull 44.7858 PearsonV 29.5545 GEV GEV

Google Chrome Weibull 52.4672 PearsonV 29.5187 GEV GEV
Command Line Weibull 50.5341 PearsonV 28.6021 GEV GEV
Communicatior PearsonV 47.9485 PearsonV 15.0902 GEV GEV
Mozilla Firefox Weibull 42.7929 LogLogistic 40.2704 GEV GEV
Google Earth Weibull 46.0889 PearsonV 35.7917 PearsonV PearsonV

G-Simple PearsonV 40.0731 PearsonV 20.2602 GEV GEV
Internet Explorer Weibull 37.0877 LogLogistic 39.1273 GEV GEV

KDiff3 LogNormal 39.7987 LogLogistic 41.0339 GEV PearsonV
Kile LaTeX Weibull 44.5222 PearsonV 30.2812 GEV GEV

Windows Paint PearsonV 42.7336 GEV 6.5853 GEV GEV
Windows Notepad GEV 51.7133 GEV 7.6330 PearsonV GEV

Notepad++ LogNormal 45.1998 LogLogistic 30.9855 GEV GEV
Windows PowerShell PearsonV 53.9372 PearsonV 21.7779 PearsonV GEV

Windows Task Manger PearsonV 32.2025 PearsonV 21.5211 GEV GEV
VLC Weibull 38.6449 LogLogistic 49.7535 GEV GEV

Average Error (%): 45.3922 Average Error (%): 25.7632

Application
P-Frames Upper Partition

RPE MAPE
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Table 5.7: ADA model results for P-Frames Lower Partition over all applications 
of Dataset 2. 

 
 

 

 

KS AD
Best Distribution Error (%) Best Distribution Error (%) Best Distribution Best Distribution

Acrobat Reader GEV 14.5895 GEV 13.0332 LogLogistic GEV
Microsoft Excel GEV 4.3283 GEV 3.6577 LogLogistic GEV
Foxit Reader LogLogistic 19.2628 LogNormal 9.7199 LogLogistic LogNormal

Matlab Gamma 7.8179 LogNormal 5.9948 LogNormal LogNormal
Microsoft Outlook NegBinomial 6.6261 Gamma 5.2884 Gamma Gamma

Microsoft PowerPoint NegBinomial 4.6098 NegBinomial 4.4387 Gamma Gamma
Enterprise Device Manager Weibull 8.5183 NegBinomial 7.3615 Weibull Gamma

Snipping Tool Weibull 4.8249 Weibull 7.7939 Weibull Weibull
Microsoft Word LogNormal 11.5816 LogNormal 4.5693 LogNormal LogNormal

WinMerge NegBinomial 6.9768 NegBinomial 6.8697 LogNormal LogNormal
WinRAR Weibull 8.6363 NegBinomial 7.8179 Weibull Gamma

Xwin Cygwin GEV 2.6347 GEV 4.0272 GEV GEV
Windows Calculator LogNormal 12.0559 GEV 9.3476 PearsonV PearsonV

Google Chrome LogLogistic 21.9746 LogLogistic 7.2871 LogLogistic LogLogistic
Command Line Geometric 13.3415 LogNormal 11.1278 LogNormal LogNormal
Mozilla Firefox Weibull 5.5522 Gamma 5.0706 Weibull Gamma

IrfanView LogLogistic 15.9627 LogNormal 7.9550 LogNormal LogNormal
Internet Explorer LogNormal 8.9016 LogNormal 4.4719 LogNormal LogNormal

KDiff3 Weibull 7.4101 Weibull 9.6476 Weibull Weibull
Windows Paint NegBinomial 4.7594 GEV 4.8238 GEV GEV

Windows Notepad PearsonV 13.5467 GEV 8.4040 GEV GEV
Notepad++ NegBinomial 8.2541 Gamma 6.2593 LogNormal Gamma

Windows PowerShell GEV 7.7399 NegBinomial 42.3303 GEV GEV
Windows Task Manger Weibull 6.2510 LogNormal 8.3526 Gamma Gamma

VLC GEV 17.6615 LogLogistic 8.1691 LogLogistic GEV
VMware Player LogNormal 34.4994 LogLogistic 27.1390 PearsonV

Average Error (%): 10.7045 Average Error (%): 9.2676

Application
P-Frames Lower Partition

RPE MAPE
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Table 5.8: ADA model results for P-Frames Upper Partition over all 
applications of Dataset 2. 

 
As we can conclude from the results in Table (5.7) and Table (5.8), the 

partitioning technique works well for the P-Frames of Dataset 2 and the errors 
that we receive (RPE and MAPE) are less or at worst equal to the RPE and 
MAPE of the original approach in Table (5.4). 
 This is not the case, however, for the results of P-Frames in Dataset 1. As 
shown in Tables (5.5) and (5.6), the partitioning technique works well for the P-
Frames in the Lower Partition but the P-Frames’ modeling in the Upper Partition 
leads to high RPE and MAPE errors. 

Finally, we should mention that we also implemented the ADA model on 
both datasets without any separation of frames into I and P. As expected, the 
large differences between I and P frames’ sizes lead to much larger errors, 
especially for Dataset 1 (RPE=89.24% and MAPE=17.11%). Hence, this approach 
cannot be used, despite its simplicity.  

KS AD
Best Distribution Error (%) Best Distribution Error (%) Best Distribution Best Distribution

Acrobat Reader GEV 0.3133 GEV 0.3052 GEV GEV
Microsoft Excel GEV 2.3460 GEV 2.7062 LogLogistic Uniform
Foxit Reader Gamma 0.2139 GEV 0.2121 GEV GEV

Matlab PearsonV 0.2701 PearsonV 0.2696 GEV GEV
Microsoft Outlook GEV 0.1823 GEV 0.1798 GEV GEV

Microsoft PowerPoint LogNormal 0.9437 LogNormal 0.9512 Gamma PearsonV
Enterprise Device Manager LogLogistic 24.0784 LogLogistic 9.4353 GEV GEV

Snipping Tool PearsonV 23.6576 GEV 10.6303 GEV GEV
Microsoft Word GEV 0.1244 GEV 0.1221 GEV GEV

WinMerge PearsonV 34.1166 PearsonV 23.8990 GEV GEV
WinRAR LogNormal 20.3945 PearsonV 21.0019 GEV GEV

Xwin Cygwin Weibull 14.0928 Gamma 15.6696 LogLogistic LogLogistic
Windows Calculator Uniform 2.4916 LogNormal 2.4801 GEV GEV

Google Chrome GEV 0.1649 GEV 0.1633 GEV GEV
Command Line NegBinomial 8.5865 NegBinomial 9.9478 GEV Weibull
Mozilla Firefox GEV 1.4995 GEV 1.7232 GEV GEV

IrfanView LogLogistic 0.1521 GEV 0.1506 LogLogistic GEV
Internet Explorer PearsonV 0.4630 PearsonV 0.4677 PearsonV GEV

KDiff3 Uniform 7.5732 Gamma 14.7007 LogLogistic GEV
Windows Paint Uniform 3.4372 Uniform 3.4720 LogLogistic Uniform

Windows Notepad Weibull 14.9622 PearsonV 17.5369 GEV GEV
Notepad++ GEV 0.1505 GEV 0.1487 GEV GEV

Windows PowerShell LogLogistic 10.5642 LogLogistic 11.1121 GEV GEV
Windows Task Manger Exponential 21.2228 PearsonV 18.1400 GEV GEV

VLC PearsonV 0.3256 GEV 0.3154 GEV GEV
VMware Player GEV 0.3872 GEV 0.3738 GEV GEV

Average Error (%): 7.4121 Average Error (%): 6.3890

P-Frames Upper Partition
RPE MAPEApplication
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 In summary, the ADA model is a useful first approach for modeling our 
data. It achieves RPE and MAPE results around 8% for Dataset 1 and 5% for 
Dataset 2, on average, in the case of I-Frames. However, it fails to model the P-
Frames (especially of Dataset 1) with satisfactory results. Our goal is to find an 
accurate common model for both datasets. Hence, we continued our work with 
the models presented in the next sections. 

 

5.2 Gamma Beta Autoregressive Model 
 

The results presented in Section 5.1 revealed that no single distribution can 
provide the best fit for each application. Still, the distribution fit that provided 
the overall lowest RPE and MAPE when used for all applications was that of the 
Gamma distribution (≈12% and 9% for the I-Frames and P-Frames Lower 
Partition of Dataset 1; ≈8%, 15% and 11% for the I-Frames, P-Frames Lower 
Partition and P-Frames Upper Partition of Dataset 2). Still, the RPE for the P-
Frames Upper Partition of Dataset 1 is 67% and the respective MAPE is 116%. 

The good performance of the Gamma fit (with the latter exception) led us 
to implement and evaluate the Gamma Beta Autoregressive (GBAR) Model, 
which has been proposed previously, as a source model for VBR encoding of 
videoconferences by D. Heyman et al. [13]. The main characteristic of the GBAR 
model is that the GBAR process is calculated based on a gamma distribution with 
parameters estimated from the dataset. 
 

5.2.1 Model Analysis 
 Towards defining the GBAR model, let Ga(β, λ) denote a random variable 
with a gamma distribution with shape parameter β and scale parameter λ, that 
is, the density function is 
 

fG(t) = 
λ(λt)β

Γ(β + 1) e-λt, t > 0. 

 
Similarly, let Be(p, q) denote a random variable with a beta distribution 

with parameters p and q, that is, with density function  
 

fB(t) = 
Γ(p + q)

Γ(p + 1) Γ(q + 1)  tp-1 (1 - t)q-1, 0 < t < 1 

 
where p and q are both larger than -1. The GBAR(1) model is based on two well-
known results: the sum of independent Ga(α, λ) and Ga(β, λ) random variables is 
a Ga(α + β, λ) random variable, and the product of independent Be(α, β – α) and 

(5.1) 

(5.2) 
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Ga(β, λ) random variables is a Ga(α, λ) random variable. Thus, if Xn-1 is Ga(β, 
λ), An is Be(α, β – α), and Bn is Ga(β – α, λ), and these three are mutually 
independent, then 
 

Xn = An Xn-1 + Bn 
 
defines a stationary stochastic process {Xn} with a marginal Ga(β, λ) distribution. 
Furthermore, the autocorrelation function of this process is given by 
 

r(k) = �
α
β�

k

, k = 0, 1, 2, … 

 
The process defined by (5.3) is called the GBAR(1) process. Since the 

current value is determined by only one previous value, this is an autoregressive 
process of order 1. We also experimented with “tweaking” the model and using an 
autoregressive process of order 2, but our results (which will be presented in 
Subsection 5.2.2) did not improve with this change.  

Simulating the GBAR process only requires the ability to simulate 
independent and identically distributed gamma and beta random variables. The 
parameters β and λ can be estimated from the mean and variance of marginal 
distribution of the data as follows. The mean and variance of a Ga(β, λ) 
distribution are β/λ and β/λ2, respectively. Let m and v be the mean and variance 
of the data. Then equating moments yields the estimates 
 

λ� = 
m
v 

 
and 
 

β� = 
m
v2 

 
The parameter α can be estimated from (5.4). We used the MLE method 

to estimate β and λ. The GBAR process is used as a source model by generating 
non-integer values from Equation (5.3), and then rounding the generated values 
to the nearest integer.  

At this point, we need to point out an obstacle that we have faced and how 
we managed to overcome it. Inside a trace with video traffic records of a day, we 
have records corresponding to a variety of applications that the user was working 
with, during that day. These records are not consistent (i.e., do not correspond to 
the same application for a continuous period of time) but correspond to different 
applications depending on the user’s behavior (as the user closes and switches 
between different applications during the day) and for that reason we observe 

(5.3) 

(5.4) 

(5.5) 

(5.6) 
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time interrupts in the records of a specific application. In our case, the GBAR 
model can be continuously applied on a video traffic trace of a specific application 
after an interrupt, only when the usage scenario remains the same (i.e., the user 
minimizes the application and does not close it). During the preprocessing phase, 
where we separate the trace of a specific day per application, those interrupts 
occur and we do not know for which of those interrupts the user had closed the 
application (in order to apply the GBAR model separately, as the usage scenario 
changes) or had minimized it or switched to a different one (in order to continue 
applying the GBAR model, as the usage scenario remains the same). 

Hence, we had to define a time threshold which, when exceeded by an 
interrupt, will signify that the user closed the application; therefore, the GBAR 
model will be applied just until the interrupt. In order to define this threshold, 
we calculated the trace’s autocorrelation before and after every interrupt greater 
than 60, 90, 120, 150 and 180 seconds for every distinct application of our datasets, 
for a window of 1 GOP + 1 Frame for Dataset 1 and 61 Frames for Dataset 2 and 
for lag-1 and lag-2. The autocorrelation’s results referred to the same time interval 
and application were averaged together, in order to take an overall result. 

The results showed us that for both datasets the largest autocorrelation 
exists before and after 60-second interrupts than with any other tested time 
interval. For that reason, we set a time threshold of 60 seconds. When this is 
exceeded by an interrupt, the user is assumed to have closed the application. 
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5.2.2 Model Results 
 In this subsection, we evaluate the GBAR model by presenting the results 
from our tests. We have ran our model for every distinct application of Dataset 1 
and Dataset 2, and separately for I and P frames. 

 

 
Table 5.9: GBAR model results over all applications of Dataset 1. 

RPE (%) MAPE (%) RPE (%) MAPE (%)

Acrobat Reader 9.4642 10.7000 63.5521 114.3876
Microsoft Excel 10.8625 12.0686 78.9786 129.6888
Foxit Reader 13.1874 14.9773 79.2341 200.5665

InSite 16.1095 18.4930 67.5287 119.0524
Matlab 9.3213 10.3228 90.2057 190.2595

Microsoft Outlook 10.9923 11.6934 73.9894 156.7260
Microsoft PowerPoint 10.2097 11.2995 88.1576 186.2553

Enterprise Device Manager 18.0470 18.0709 45.6511 126.8678
Snipping Tool 2.5803 2.6052 42.4876 48.1055

Microsoft Word 8.6189 9.0612 70.6048 120.3422
WinMerge 0.3549 0.3558 59.0836 87.9919
WinSCP 10.9479 10.4257 86.8678 241.2759

Xwin Cygwin 31.0633 28.3023 42.4526 53.6665
Windows Calculator 8.2530 8.6519 84.7720 183.0306

Google Chrome 9.1101 10.1492 67.4956 124.0817
Command Line 7.9546 8.6795 56.5733 115.6246
Communicatior 9.3565 9.3141 87.7423 158.3650
Mozilla Firefox 11.1808 11.8360 80.9414 209.7440
Google Earth 13.1201 12.9532 77.4905 202.6313

G-Simple 17.3985 21.2785 53.0577 66.6445
Internet Explorer 12.1647 13.5991 74.8897 149.9265

KDiff3 9.4442 9.9702 93.7578 250.7903
Kile LaTeX 10.3123 13.3016 90.6473 233.6368

Windows Paint 18.6522 22.2498 80.4213 117.7523
Windows Notepad 14.1418 15.2191 62.0133 68.8571

Notepad++ 11.5905 13.2449 76.1578 160.3242
Windows PowerShell 0.0009 0.0009 42.9225 64.9375

Windows Task Manger 16.9339 21.6649 62.1791 119.9986
VLC 19.6761 15.9164 57.2844 124.1358

Average Error (%): 11.7603 12.6347 70.2462 142.2644

Application
I-Frames P-Frames

Lag-1
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Table 5.10: GBAR model results over all applications of Dataset 2. 

 
From the above two tables, we observe that the GBAR model offers good 

accuracy in the modeling of I-Frames (but worse from ADA model). Still, it fails 
clearly in the modeling of P-Frames.  

The reason for the failure of the model in the case of P-Frames can be 
understood by studying the autocorrelation values in Table (5.11). The lag-1 
autocorrelation of P-Frames is ≈0.3% for the 1st Dataset and for which the RPE 
and MAPE are very high. In Dataset 2, where the lag-1 autocorrelation is clearly 
higher (≈0.6) the GBAR model achieves lower errors for P-Frames than in Dataset 

RPE (%) MAPE (%) RPE (%) MAPE (%)

Acrobat Reader 22.6685 21.4522
Microsoft Excel 17.4442 18.1185
Foxit Reader 30.1714 27.9252

Matlab 17.3298 18.0293
Microsoft Outlook 18.1343 17.8578

Microsoft PowerPoint 18.7265 20.3936
Enterprise Device Manager 23.2407 28.7581

Snipping Tool 8.5492 10.1748
Microsoft Word 20.7295 18.8142

WinMerge 36.8734 53.8155
WinRAR 23.0900 21.4420

Xwin Cygwin 15.7283 14.0607
Windows Calculator 11.2782 12.3995

Google Chrome 3.4903 3.4018 18.5517 19.8051
Command Line 22.4217 23.3680
Mozilla Firefox 22.0732 20.2732

IrfanView 21.1866 22.1343
Internet Explorer 23.2647 23.8388

KDiff3 29.9645 26.3157
Windows Paint 18.6802 19.6575

Windows Notepad 22.7928 22.9972
Notepad++ 19.4063 19.3469

Windows PowerShell 9.3244 8.8772 21.9069 26.8374
Windows Task Manger 18.9469 19.3739

VLC 20.6457 21.8365
VMware Player 33.3690 40.7958

Average Error (%): 6.4074 6.1395 21.4298 22.6854

Lag-1

Application
P-FramesI-Frames
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1. In summary, the GBAR model is shown to underperform in terms of accuracy 
when compared with ADA model.  

 

 
Table 5.11: Autocorrelation of P-Frames for lag-1 and for both datasets. 

 

Acrobat Reader 0.3580 0.6778
Microsoft Excel 0.4260 0.5460
Foxit Reader 0.3181 0.6008

InSite 0.3857
Matlab 0.2022 0.7025

Microsoft Outlook 0.2886 0.6692
Microsoft PowerPoint 0.1858 0.6846

Corporate Device Manager 0.2759 0.6424
Snipping Tool 0.4847 0.7144

Microsoft Word 0.1620 0.6507
WinMerge 0.3181 0.5677
WinRAR 0.5812
WinSCP 0.0138

Xwin Cygwin 0.2088 0.4916
Windows Calculator 0.5042 0.7807

Google Chrome 0.4459 0.6919
Command Line 0.3704 0.6303
Communicatior 0.2289
Mozilla Firefox 0.3081 0.6236
Google Earth 0.5859

G-Simple 0.3669
IrfanView 0.6422

Internet Explorer 0.3598 0.6802
KDiff3 0.2123 0.4986

Kile LaTeX 0.2225
Windows Paint 0.3987 0.6760

Windows Notepad 0.3275 0.4653
Notepad++ 0.1716 0.6959

Windows PowerShell 0.6570 0.6736
Windows Task Manger 0.1488 0.4324

VLC 0.3123 0.6266
VMware Player 0.5755

Average Autocorrelation: 0.3189 0.6239

Application Dataset 1 Dataset 2

Autocorrelation Lag-1
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5.3 Linear Regression Model 
 

Linear Regression (LR) is a statistical approach for modeling the linear 
relationship between a variable Y and one or more explanatory variables X. The 
relationships are modeled using linear regression equations whose unknown model 
parameters are estimated from the data using a fitting method (the most common 
method used is the least squares error).  

A LR based model has been proposed previously, for predicting the size of 
future B-Frames of MPEG-4 encoded video traffic by L. Lanfranchi and B. Bing 
[32]. Their model is based on the fact that the B-Frames are constructed based on 
the reference frames, namely I and P-Frames or even based on previous B-Frames. 
As a consequence, the size of B-Frames may be strongly correlated with the size 
of their reference frames. So, they calculate the B-Frames correlation with their 
reference frames and the B-Frames autocorrelation, in order to locate the two 
most relevant frames per B-Frame in a GOP and by that to construct linear 
regression equations, which will be able to predict the B-Frames based on previous 
I, P or B-Frames. 
 

5.3.1 Model Analysis 
 We have followed a similar approach, in order to develop our own Linear 
Regression (LR) model, for predicting the sizes of future P-Frames of our video 
traffic in Dataset 1 and Dataset 2 (given the high accuracy of ADA model for I-
Frames’ size prediction, we focused on the more difficult problem of predicting P-
Frames’ size). The GOP size is 60 frames in Dataset 1 and we do not have a GOP 
structure in Dataset 2. Hence, in our LR model, we are based on previous I and 
P-Frames for Dataset 1 and on previous P-Frames for Dataset 2, in order to 
predict the P-Frames’ sizes. 
 We initially calculated the correlation between the 59 P-Frames and the 1 
I-Frame in a GOP for Dataset 1 (via Equation 5.7, below), the autocorrelation 
(via Equation 5.8, below) between the 59 P-Frames in a GOP for Dataset 1 and 
the autocorrelation (5.7) only between the 60 P-Frames in a Window, if we are 
modeling for Dataset 2. 
 In general, let X denote the size of each P-Frame, Y denote the size of each 
I-Frame, σX denote the standard deviation of X and σY the standard deviation of 
Y, the coefficient of correlation is calculated as 
 

ρX,Y = 
E(XY) - XY�����

σXσY
 

 
 
 

(5.7) 
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and the autocorrelation is calculated as 
 

r(k) = 
E[(Xm - X�)(Xm+k - X�)]

σX
2  

 
where m denotes the present frame and k the lag. Also, due to the fact that a 
GOP (for Dataset 1) or a Window (for Dataset 2) can correspond to more than 
one application (because users can switch or terminate applications unpredictably) 
or GOPs/Windows with less than 60 frames in size can occur (because recording 
stops immediately, when the host machine goes into sleep, hibernation or it shuts 
down), we had to preprocess our traces and keep only “clean” GOPs and Windows 
(i.e., those that refer to only one application and have a size of 60 frames exactly).  
 Then, we selected the two frames with the highest correlation for every P-
Frame position in a GOP or a Window to construct the linear regression equations 
for predicting the P-Frames’ sizes. The equations have the format of (5.9) below 
 

FP = a ∙ FP-1 + b ∙ FP-2 + cP 
 
where FP denotes the size of the current P-Frame that we want to predict and FP-

1 and FP-2 denote the size of the two previous frames with the highest correlation 
with P, which are used for the prediction. The a, b and cP model parameters are 
estimated by employing the least squares error method. Parameter cP is the 
disturbance term. 
 

5.3.2 Model Application and Results 
We have applied the LR model to the eight major applications of Dataset 

1 and Dataset 2 (Microsoft Excel, Microsoft Word, Microsoft PowerPoint, 
Microsoft Outlook, Google Chrome, Mozilla Firefox, Internet Explorer and 
Matlab). 
 Below, we present graphically the correlation values among the I and P 
frames for Dataset 1 and the autocorrelation values for Dataset 2. 
 

(5.8) 

(5.9) 
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Figure 5.25: Autocorrelation of P-Frames in a GOP for Dataset 1. 

 
 

 
Figure 5.26: Correlation Coefficient for I and P-Frames in a GOP for Dataset 1. 
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Figure 5.27: Autocorrelation of P-Frames in a Window for Dataset 2. 

 
 As shown in the figures above, the two most relevant frames in Dataset 1 
are (N-1) and (N-2) P-Frames for PowerPoint, Firefox and Matlab and the (N-1) 
and (N-59) for Excel, Word, Outlook, Chrome and Internet Explorer. As for 
Dataset 2, the (N-1) and (N-2) P-Frames are the “closest” to frame N for every 
major application with an exception for Excel, where the closest are the (N-1) and 
(N-60) P-Frames. The above observations are also clear from the three following 
tables. 
 
 

 
Table 5.12: Correlation Coefficient for I and P-Frames in a GOP for Dataset 1. 
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I vs P1 I vs P2 I vs P3 I vs P4 I vs P56 I vs P57 I vs P58 I vs P59
Microsoft Excel -0.0172 0.0077 0.0459 -0.0361 -0.0375 -0.0509 -0.0571 -0.0686
Microsoft Word 0.0465 0.0572 0.0403 0.0464 0.0049 0.0189 0.0240 0.0164

Microsoft PowerPoint 0.0580 0.0574 0.0586 0.0744 0.0364 0.0241 0.0086 0.0310
Microsoft Outlook -0.0029 0.0079 0.0041 -0.0051 0.0139 -0.0035 0.0050 0.0109
Google Chrome -0.0042 0.0164 0.0149 0.0008 0.0085 0.0049 0.0069 0.0066
Mozilla Firefox 0.0760 0.0773 0.1048 0.1018 0.0760 0.0846 0.0755 0.0739

Internet Explorer -0.0050 -0.0126 -0.0137 -0.0270 -0.0049 0.0140 -0.0182 -0.0130
Matlab 0.0365 0.0204 0.0268 0.0276 0.0306 0.0377 0.0383 0.0377

Application Correlation Coefficient of I and P-Frames - Dataset 1
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Table 5.13: Autocorrelation of P-Frames in a GOP for Dataset 1. 

 
 

 
Table 5.14: Autocorrelation of P-Frames in a Window for Dataset 2. 

 
 Having found the two “closest” frames for every P-Frame position in a GOP 
(for Dataset 1) or a Window (for Dataset 2), we can define the linear regression 
equations. These for Dataset 1 are: 
 
PowerPoint, Firefox and Matlab 
P1,t�  = a1 ∙ P59,t-1 + b1 ∙ P58,t-1 + c1 
P2,t�  = a2 ∙ P1,t + b2 ∙ P59,t-1 + c2 
P3,t�  = a3 ∙ P2,t + b3 ∙ P1,t + c3 
  ⋮ 
P59,t �= a59 ∙ P58,t + b59 ∙ P57,t + c59 
 
Excel, Word, Outlook, Chrome and Internet Explorer 
P1,t�  = a1 ∙ P59,t-1 + b1 ∙ P1,t-1 + c1 
P2,t�  = a2 ∙ P1,t + b2 ∙ P2,t-1 + c2 
P3,t�  = a3 ∙ P2,t + b3 ∙ P3,t-1 + c3   
⋮ 
P59,t�  = a59 ∙ P58,t + b59 ∙ P59,t-1 + c59 
 
where t denotes the current GOP and for Dataset 2 are: 
 

Lag-1 Lag-2 Lag-3 Lag-4 Lag-56 Lag-57 Lag-58 Lag-59
Microsoft Excel 0.4260 0.1987 0.0970 0.0700 -0.0048 0.0491 0.1566 0.2657
Microsoft Word 0.1620 0.0842 0.0532 0.0486 -0.0105 0.0016 0.0278 0.1496

Microsoft PowerPoint 0.1858 0.1599 0.1265 0.0951 0.0012 0.0150 0.0193 0.1232
Microsoft Outlook 0.2886 0.2163 0.0882 0.0922 -0.0062 0.0465 0.0780 0.2297
Google Chrome 0.4459 0.2131 0.1087 0.0701 -0.0009 0.0569 0.1688 0.3232
Mozilla Firefox 0.3081 0.2146 0.1623 0.1100 -0.0021 0.0181 0.0331 0.1086

Internet Explorer 0.3598 0.2183 0.1434 0.0759 0.0078 0.0375 0.0873 0.2382
Matlab 0.2022 0.1426 0.0891 0.0532 -0.0012 0.0224 0.0363 0.1361

Application Autocorrelation of P-Frames - Dataset 1

Lag-1 Lag-2 Lag-3 Lag-4 Lag-57 Lag-58 Lag-59 Lag-60
Microsoft Excel 0.5460 0.4077 0.3234 0.2921 0.1697 0.2039 0.2611 0.4387
Microsoft Word 0.6507 0.5207 0.4351 0.3777 0.2368 0.2512 0.2794 0.3506

Microsoft PowerPoint 0.6846 0.5095 0.3594 0.2570 0.2061 0.2571 0.3140 0.3982
Microsoft Outlook 0.6692 0.4721 0.3251 0.2546 0.1765 0.2323 0.3054 0.4032
Google Chrome 0.6919 0.5598 0.4763 0.4230 0.2374 0.2699 0.3200 0.3968
Mozilla Firefox 0.6236 0.4724 0.3701 0.3264 0.1446 0.1814 0.2355 0.3292

Internet Explorer 0.6802 0.5168 0.4186 0.3404 0.2056 0.2369 0.2898 0.3582
Matlab 0.7025 0.5649 0.4906 0.4198 0.2546 0.2830 0.3385 0.4423

Application Autocorrelation of P-Frames - Dataset 2
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Word, PowerPoint, Outlook, Chrome, Firefox, Internet Explorer and Matlab 
P1,t�  = a1 ∙ P60,t-1 + b1 ∙ P59,t-1 + c1 
P2,t�  = a2 ∙ P1,t + b2 ∙ P60,t-1 + c2 
P3,t � = a3 ∙ P2,t + b3 ∙ P1,t + c3 
  ⋮ 
P60,t �= a60 ∙ P59,t + b60∙ P58,t + c60 
 
Excel 
P1,t � = a1 ∙ P60,t-1 + b1 ∙ P1,t-1 + c1 
P2,t�  = a2 ∙ P1,t + b2 ∙ P2,t-1 + c2 
P3,t�  = a3 ∙ P2,t + b3 ∙ P3,t-1 + c3 
  ⋮ 
P60,t�  = a60 ∙ P59,t + b60 ∙ P60,t-1 + c60 
 
where t denotes the current GOP. We present the results of the LR model for the 
eight major applications of Dataset 1 and Dataset 2, in Table (5.15). It is clear 
from the results that the LR model fails to predict the P-Frames’ sizes for both 
datasets. The reason is the low correlation and autocorrelation values. 
 

 
Table 5.15: LR model results for eight major applications of both datasets. 

  

RPE (%) MAPE (%) RPE (%) MAPE (%)
Microsoft Excel 89.9809 61.6805 90.0309 83.1998
Microsoft Word 89.9981 53.9079 90.0015 82.7885

Microsoft PowerPoint 90.7187 31.0618 89.9994 84.1620
Microsoft Outlook 90.0110 37.9630 90.0413 82.6201
Google Chrome 89.9904 42.0403 90.0654 79.8477
Mozilla Firefox 91.8253 24.3955 90.0263 80.6783

Internet Explorer 89.9925 43.1415 90.1921 77.4014
Matlab 95.8905 72.5315 90.0315 78.3408

Average Error (%): 91.0509 45.8403 90.0486 81.1298

Application Dataset 1 Dataset 2



 
 Modeling Methodology and Results 65 

5.4 Markovian - Clustering Model 
 

In [38], a traffic model for layered video traffic is proposed. It is based on a 
Markovian arrival process and on a Clusters detection algorithm. Although our 
study is quite different since our traces’ traffic is not layered, we decided to use a 
conceptually similar approach with [38]. We developed a Markovian - Clustering 
(MC) model, in order to predict the sizes of P-Frames from Dataset 1 and Dataset 
2. 

We view the video trace sequence as a vector containing all the P-Frames’ 
sizes. We place all these vector’s elements as points on the 1-D plane and we then 
use the K-Means clustering algorithm [39] in order to cluster similar-sized frames. 
We selected the K-Means algorithm due to the fact that the volume of the data 
we wanted to cluster was very large (for example, Matlab in Dataset 2 contains 
over 5M P-Frames) and K-Means deals better with large datasets than other 
clustering algorithms (i.e., the Hierarchical clustering algorithm). The metric that 
we used for calculating the minimum distance of each point n from the m means 
vector, is the Cityblock Distance, which calculates the sum of absolute differences 
(i.e., the L1 distance). Even though K-Means is a powerful clustering algorithm, 
it has a significant drawback. The K amount of clusters has to be selected 
heuristically. In our case, we concluded after several experiments that the optimal 
number of clusters per tested application (i.e., the number of clusters that leads 
to the highest modeling accuracy) is the one depicted in Table (5.16). 
 

 
Table 5.16: Optimal number of clusters for every tested application and for 
both datasets. 

 
Next, we constructed a Markov chain based on the above clustering results. 

Each cluster corresponds to one state of the Markov chain. We computed the 
Transition Probability Matrix T =[Pi,j]2 for the Markov chain, which contains 
KxK elements, following the Equation (5.10) below 

Dataset 1 Dataset 2

Microsoft Excel 11 4
Microsoft Word 11 7

Microsoft PowerPoint 7 4
Microsoft Outlook 7 4
Google Chrome 11 4
Mozilla Firefox 11 7

Internet Explorer 7 7
Matlab 11 4

Application
# of Clusters
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Pi,j = 
# of jumps from state i to state j

# of jumps from state i  

 
Finally, we found the best distribution fit for the data in each cluster.  
 

5.4.1 Jaccard Index -Infused MC Model 
 The MC model described in the previous subsection, performs clustering 
on 1-D data (our P-Frames) based on the actual size of every P-Frame. We tried 
another approach by employing the concept of the Jaccard Index. 
 The Jaccard Index [40], also known as the Jaccard similarity coefficient, is 
a statistic used for comparing the similarity and diversity of two sample sets. The 
Jaccard coefficient measures similarity between finite sample sets and is defined 
in general as the size of intersection divided by the size of union of two sample 
sets, as depicted in Equation (5.11) below 
 

J(A,B) = 
|A∩B|
|A∪B| 

 
where A and B denote the two sample sets. Jaccard Index is widely used in 
regionalization and species association analyses [41]. 
 In our case, we wanted to find for every P-Frame in a GOP (for Dataset 
1) or in a Window (for Dataset 2), the two “closest” P-Frames, with an approach 
different from autocorrelation calculation (as it was shown to perform poorly). 
This approach is the use of the Jaccard Index. For every P-Frame, denoted as X, 
in a GOP or a Window, we calculate its Jaccard Index with every other P-Frame, 
denoted as Y, in the same GOP or Window. The sample sets A and B in this 
Jaccard Index calculation are the “neighboring frames” of X and the “neighboring 
frames” of Y respectively. As a “neighboring frame” P* of a P-Frame P, we define 
every P-Frame that satisfies the following two rules: 

1. The absolute difference between the sizes of P and P* does not exceed the 
standard deviation of P-Frames’ sizes. 

2. The arrival of P* does not change the autocorrelation(lag-1) of P-Frames 
in the trace, more than 10% compared to the change that occurred from 
the arrival of P (the 10% threshold is discussed in Subsection 5.4.2). 

Via this definition, we found that the two “closest neighbors” of each P-Frame 
are the previous and the following one, for all eight major applications of both 
datasets. Figures (5.28) and (5.29) present this result graphically. 
 

(5.10) 

(5.11) 
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Figure 5.28: Jaccard Index calculations for all major applications of Dataset 1. 

 
 

 
Figure 5.29: Jaccard Index calculations for all major applications of Dataset 2. 
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The x-axis and the y-axis in these figures represent the P-Frame position in a 
GOP or in a Window for Dataset 1 and Dataset 2 respectively and the z-axis 
represents the Jaccard Index value between two P-Frames defined by x and y. As 
shown in the figures, Jaccard Index has a value equals to 1 on the x=y line 
(because every frame has the same Jaccard Index with itself) and the Jaccard 
Index is getting smaller, as the distance from x=y line grows.  

We then view the video trace sequence as a vector �Rp(t), Rc(t), Rn(t)⟩, t = 2, 
3, 4, … Here Rc(t) denotes the frame size of the tth P-Frame, Rp(t) denotes the 
frame size of the P-Frame before Rc(t) (i.e., Rp(t) = Rc(t-1)) and Rn(t) denotes 
the frame size of the P-Frame after Rc(t) (i.e., Rn(t) = Rc(t+1)). We place all the 
�Rp(t), Rc(t), Rn(t)⟩ pairs as points on the 3-D plane, where Rp(t), Rc(t) and Rn(t) 
is viewed as the x-coordinate, y-coordinate and z-coordinate of the corresponding 
point respectively. Hence, each P-Frame is clustered by taking into account not 
only its own size but also the size of its adjacent frames. 

Finally, as in the MC model, we find the best distribution fit for the data in 
each cluster. We name this new model Jaccard Index –Infused MC Model (JIMC) 
and we evaluate it in the next subsection. 
 

5.4.2 Models Results 
Before presenting our results, we should mention that the usage of the K-

Means algorithm (with random selection of the initial centroids) and the usage of 
a random number generator (in order to change clusters according to the Markov 
chain’s transition probabilities) draws some fluctuations into our results. For this 
reason, we calculated the corresponding confidence intervals as described in 
Subsection 4.3.3. Every test has been executed 10 times and the results refer to 
95% confidence intervals. 
 Table (5.17) presents the results of the MC model for Dataset 1 and Dataset 
2, in terms of the model’s accuracy in predicting P-Frames’ sizes.  
 

 
Table 5.17: MC model results for major applications of both datasets. 

Microsoft Excel 5.7350 ± 1.1315 5.6017 ± 0.0778 4.0178 ± 0.0547 5.1868 ± 0.0188
Microsoft Word 3.0343 ± 0.2638 2.1478 ± 0.0106 3.1309 ± 0.1943 2.1243 ± 0.0450

Microsoft PowerPoint 4.7942 ± 0.6676 4.0129 ± 0.0359 5.6611 ± 0.7642 2.6834 ± 0.0526
Microsoft Outlook 4.7768 ± 0.2074 2.9855 ± 0.0134 4.4029 ± 0.0254 3.4546 ± 0.0173
Google Chrome 2.7862 ± 0.0801 3.9144 ± 0.0107 3.1187 ± 0.1307 3.9555 ± 0.0313
Mozilla Firefox 2.7877 ± 0.2000 2.2959 ± 0.0793 2.0283 ± 0.0579 1.8999 ± 0.0302

Internet Explorer 6.7931 ± 0.8542 6.2865 ± 0.0261 2.8832 ± 0.1577 2.2355 ± 0.0704
Matlab 2.9384 ± 0.1023 2.4950 ± 0.0085 3.2073 ± 0.0065 3.7263 ± 0.0048

Average Error (%): 4.2057 3.7175 3.5563 3.1583

Application
Dataset 1 Dataset 2

RPE (%) MAPE (%) RPE (%) MAPE (%)
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As shown from the results, the MC model succeeds in predicting the P-
Frames’ sizes for both datasets with high accuracy. The RPE and MAPE errors 
are below 5% for all applications, with an exception for Internet Explorer of 
Dataset 1, where we receive errors near 7%.  

Table (5.18) presents the results of the JIMC model for Dataset 1 and 
Dataset 2, in terms of the model’s accuracy in predicting P-Frames’ sizes. 

 
 

 
Table 5.18: JIMC model results for major applications of both datasets. 

 
As shown from the results, the JIMC model succeeds in predicting the P-

Frames’ sizes for both datasets with very high accuracy. We should mention that 
we have experimented with different values in the 2nd rule of the definition of a 
“neighboring frame” (Subsection 5.4.1); we have used values up to 20% difference 
in autocorrelation, with negligible difference in the results. The two “closest 
neighbors” to a P-Frame remained its previous and next one. 

In comparison with the MC model, JIMC is clearly better for the Miracast-
like dataset (much lower MAPE, comparable RPE) but underperforms for the 1st 
dataset. The reason is that in Dataset 2 the “ties” among P-Frames (size 
similarities, similar changes in autocorrelation) are stronger than in Dataset 1. 
The comparison between the two models is depicted in Figure (5.30) 
 

Microsoft Excel 10.5580 ± 2.5248 5.4934 ± 0.3694 3.1309 ± 0.0623 1.7473 ± 0.0613
Microsoft Word 8.7742 ± 0.8625 5.9972 ± 0.2572 4.6322 ± 0.0169 2.3566 ± 0.0201

Microsoft PowerPoint 11.8895 ± 1.3306 5.7706 ± 0.2479 3.7885 ± 0.0218 1.8679 ± 0.0174
Microsoft Outlook 10.0115 ± 1.1728 7.9895 ± 0.1753 4.1970 ± 0.0128 2.2591 ± 0.0143
Google Chrome 6.9787 ± 0.5986 4.3858 ± 0.1025 3.2603 ± 0.2130 3.0586 ± 0.0428
Mozilla Firefox 7.4168 ± 1.1337 3.2986 ± 0.2020 2.2852 ± 0.2262 1.6051 ± 0.0354

Internet Explorer 10.2065 ± 1.1802 6.9247 ± 0.2967 5.5325 ± 0.1881 2.2703 ± 0.1083
Matlab 3.4727 ± 0.3187 2.6927 ± 0.0487 3.9366 ± 0.0196 1.7462 ± 0.0220

Average Error (%): 8.6635 5.3191 3.8454 2.1139

Application
Dataset 1 Dataset 2

RPE (%) MAPE (%) RPE (%) MAPE (%)
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Figure 5.30: JIMC and MC models results comparison for both Datasets 
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6 Conclusions and Future Work 
 

In this work, we have developed and tested four different modeling 
techniques for predicting the size of video traffic that is generated by an average 
user’s computer during a day. We have worked with two different datasets of 
H.264 encoded video traffic traces, one encoded with the High 4:2:2 Profile of 
H.264 standard and the other encoded with parameters, which resemble a Miracast 
hardware encoder, since Miracast is a widely accepted screen mirroring standard.  

We have shown that a simple approach, such as the Application and 
Distribution Aware model is capable to predict I-Frames video traffic with high 
accuracy, giving us RPE below 8% and MAPE below 9% for the 1st Dataset and 
RPE below 5% and MAPE below 6% for the 2nd Dataset on average. In addition, 
we showed that approaches such as the Gamma Beta Autoregression model and 
Linear Regression model, which have provided accurate models in the past for 
other video encoding schemes, fail to predict P-Frames video traffic, due to the 
poor autocorrelation that characterizes the kind of video traffic that we worked 
with.  

We also proposed the Markovian - Clustering Model for P-Frames 
prediction, which we modified by incorporating the Jaccard Index, for the first 
time in the video traffic modeling literature. We have shown that the Markovian 
- Clustering model has excellent accuracy in P-Frames’ sizes prediction for the 1st 
Dataset with RPE below 4.5% and MAPE below 4% on average and that the 
Jaccard Index -Infused MC model has even higher accuracy in P-Frames sizes’ 
prediction for the 2nd Dataset (i.e., for prediction of Miracast-like encoded video 
traffic) with RPE below 4% and MAPE below 2.5% on average. 

Given that smart mobile devices tend to replace computers on everyday 
usage, we believe that our work provides a solid basis for future studies on 
modeling video traffic generated by real computer usage behavior. In the future, 
we intend to evaluate our models on a wider variety of corporate and daily 
computer applications. 
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