
dionysis lappas

D E V E L O P M E N T O F A C O N TA I N E R
M A N A G E M E N T T O O L F O R W E B

A P P L I C AT I O N S U S I N G D O C K E R

D E V E L O P M E N T O F A C O N TA I N E R M A N A G E M E N T
T O O L F O R W E B A P P L I C AT I O N S U S I N G D O C K E R

dionysis lappas

supervisor : vassilis samoladas

committee :
vassilis samoladas

minos garofalakis

antonios deligiannakis

Submitted to the Department of Electrical and Computer Engineering
in partial fulfilment of the requirements for the degree of Diploma in

Engineering

Technical University of Crete

Chania July 2016 –

Dionysis Lappas: Development of a Container Management Tool for
Web Applications using Docker, © July 2016

Dedicated to my family.
My father Petros, my mother Amalia and my sister

Constantina.

A B S T R A C T

In recent years, due to the rise of microservices, cloud com-
puting and now the Internet of Things (IoT) the development,
deployment and management of distributed services is more
important than ever. In order to circumvent the challenges that
arise from this evolution, we need tools that, among others, ab-
stract the inherent complexities, manage dependencies, maxi-
mize portability across systems and enhance scalability. Soft-
ware containers encapsulate many of the aforementioned fea-
tures. The Docker project, started in 2013, has enabled users
to easily build, ship and run applications based on contain-
ers, through an automated workflow. Running and managing
multi-container web applications in the cluster infrastructure
though, is not a trivial task, which requires to deal with orches-
tration, service discovery, data and configuration management,
networking e.t.c.

We designed and implemented a container management tool
for multi-container web applications, on single and multi-host
(cluster) environments for development and production. We
consider containers as components offering and requiring ser-
vices, empowering a container-agnostic design. We offer a stan-
dard way to map services for web applications into containers,
complete life-cycle management for containers and provided
services, coordination between dependent services, data man-
agement, service discovery, network isolation with per-application
custom networks, support for private container image registries
and a solution to N-to-N configuration problem between con-
tainers.

vii

Creativity can be a social contribution,
but only in so far as society is free to use the results.

— Richard Stallman

A C K N O W L E D G M E N T S

My journey in science and engineering would not have started
without the unconditional support of my family. I would like
to thank my parents Petros and Amalia whose love has always
been the constant good in my life and whose encouragement
has helped me fulfill my dreams. I cannot thank enough my
beloved sister, Constantina, who has been a beacon of light in
my life, and through her love and guidance I was shaped into
the person I am today.

Many thanks to my supervisor Vasilis Samoladas, who was
an inspiration to me throughout my under-graduate course and
helped me realize the fine connection between simplicity in sci-
ence and greatness in mind. Moreover, I want to thank him
for trusting me with this Thesis and helping me throughout
with the difficulties encountered. I would also like to thank the
members of my committee Professor Minos Garofalakis and
Associate Professor Antonios Deligiannakis.

Of course, I saved the best for the end, I want to express
my deepest gratitude towards my friends Babis, Manos, Anna-
Maria, Panos, Theo who have been by my side all those years
and through the endless conversations and the moments we
shared, good and bad, helped me become a better man and re-
alize that real friends are invaluable. Thank you all! One person
stands out, whose free spirit, good-heartedness and constant
support had a great impact on my life. Thank you Babis!

Finally, I would like to acknowledge Babis and Constantina
for reading this Thesis and helping me with corrections and
Theo for his valuable help with images.

ix

C O N T E N T S

i introduction and background 1

1 introduction 3

1.1 Container technology 3

1.1.1 Containers vs Hypervisors 6

1.1.2 Docker 7

1.2 Definition of the problem 12

1.3 Our approach 14

1.4 Thesis Overview 15

2 related work 17

2.1 Environments 17

2.1.1 Application Servers 17

2.2 Tools 20

2.2.1 Docker Compose 20

2.2.2 MaestroNG 21

2.2.3 Vamp 22

2.2.4 Capitan 23

2.2.5 Kontena 23

2.2.6 Kubernetes 24

2.2.7 Rancher 25

ii design and implementation 27

3 system design 29

3.1 Containers As Components 29

3.2 System Architecture 30

3.3 Tool Configuration 31

3.4 Web Application Description 31

3.4.1 Container Types 32

3.4.2 Container Description 33

3.5 Container Boot 34

3.6 Service Discovery 35

3.6.1 Service name 35

3.6.2 Service Dependency 35

3.6.3 Client-side Discovery Pattern 35

3.6.4 Service Discovery Mechanism 37

3.6.5 Service Metadata 37

3.7 Service Status 37

3.7.1 State transitions of service status 38

3.8 Service Coordination 39

xi

xii contents

3.9 Container Configuration 40

3.9.1 Container Environment 40

3.9.2 Host Fields 41

3.9.3 Availability And Usage 42

3.9.4 Re-configuration 43

3.10 Process Execution Mechanism 43

3.10.1 Start Process Group 44

3.10.2 Stop Process Group 46

3.11 Container Life-Cycle Management 47

3.11.1 Create 47

3.11.2 Start 49

3.11.3 Stop 49

3.11.4 Delete 50

3.12 Container Data Management 50

3.12.1 Docker Volumes 50

3.12.2 Volumes From 52

3.12.3 Copy 52

3.13 Container Networking 52

3.13.1 Container network settings 52

3.13.2 Application Defined Networks 53

3.14 Tasks 54

3.14.1 Substenv 54

3.15 Cluster Deployment 54

3.16 User Interface 55

3.17 Coordination Service 56

3.17.1 Zookeeper Design 56

3.17.2 Zookeeper Data Model 57

4 implementation 59

4.1 Libraries 59

4.1.1 Zookeeper 59

4.1.2 Docker java client 59

4.1.3 Sl4j 60

4.1.4 Log4j 60

4.1.5 JCommander 60

4.2 Contributions 60

4.3 Concepts 60

4.3.1 Handlers 60

4.4 Programming with Zookeeper 61

4.4.1 Asynchronous Pattern 61

4.4.2 Synchronous Pattern 63

4.5 XML Schema 65

4.6 Core Module 65

4.6.1 Boot 65

contents xiii

4.6.2 Cmd 66

4.6.3 Xml 66

4.6.4 Schema 66

4.6.5 Analyzers 67

4.6.6 Handlers 67

4.6.7 Serializer 68

4.6.8 Zookeeper 69

4.6.9 Docker 70

4.6.10 Broker 70

4.7 Broker Module 71

4.7.1 Boot 71

4.7.2 Env 71

4.7.3 Process 72

4.7.4 Services 75

4.7.5 Tasks 75

4.7.6 Shutdown 76

5 conclusions / future work 77

5.1 Conclusions 77

5.2 Future Work 78

5.2.1 Web User Interface 78

5.2.2 Dynamic re-configuration 78

5.2.3 Container settings 79

5.2.4 Cluster platforms 79

5.2.5 Network customization 80

5.2.6 Data management 80

iii appendix 81

a appendix 83

a.1 Fidelio Configuration File 83

a.2 Fidelio Command Line Interface 84

a.3 Container Description Format 86

bibliography 89

L I S T O F F I G U R E S

Figure 1 Containers Vs Virtual Machines 4

Figure 2 LXC Container view and user-kernel ad-
dress space 6

Figure 3 Server with Docker 8

Figure 4 Docker Architecture 8

Figure 5 Docker image layered structure 9

Figure 6 Docker and execution interfaces 10

Figure 7 Default Docker bridge network topology
with connected containers 12

Figure 8 Java EE Containers 18

Figure 9 Managed Bean life-cycle 19

Figure 10 Component abstraction 29

Figure 11 System architecture 30

Figure 12 Client-side discovery pattern 36

Figure 13 State transitions for service status. 38

Figure 14 Start process group execution flow. 46

Figure 15 Managed container life-cycle 48

Figure 16 System overview with swarm cluster. 55

Figure 17 UML diagram of EnvironmentHandler in
Broker module 72

xiv

List of Tables xv

Figure 18 The uml diagram of ProcessManager 74

L I S T O F TA B L E S

Table 1 Compariston of Containers and bare-metal
Hypervisors 7

L I S T I N G S

Listing 1 Top level elements of application descrip-
tion xml file. 32

Listing 2 Fields and attributes of the container de-
scription. 33

Listing 3 Example of <requires> tag. 35

Listing 4 Example of environment variable decla-
ration. 40

Listing 5 The <docker> tag in application descrip-
tion. 47

Listing 6 The <start> tag in application description. 49

Listing 7 The <stop> tag in application description. 50

Listing 8 Data management section in application
description. 51

Listing 9 Network settings of container in applica-
tion description. 52

Listing 10 SubstEnv task format in application de-
scription. 54

Listing 11 Pattern example for asynchronous zookeeper
getData call. 61

Listing 12 Response processing in callback. 62

Listing 13 Pattern example for synchronous zookeeper
getData call. 63

Listing 14 Exception handling with synchronous method
call. 64

Listing 15 Boot package 65

Listing 16 Cmd package 66

Listing 17 Analyzers package 67

Listing 18 Code snippet with some method signa-
tures from ContainerHandler. 68

Listing 19 Zookeeper package 69

Listing 20 Broker package 70

Listing 21 Env package of Broker module. 71

Listing 22 Process package of Broker module. 74

Listing 23 Services package of Broker module. 75

Listing 24 Tasks package of Broker module. 75

Listing 25 Shutdown package of Broker module. 76

Listing 26 Fidelio.properties file example. 84

Listing 27 Fidelio Command Line Interface. 85

Listing 28 Container description. 86

A C R O N Y M S

IoT Internet of Things

LXC Linux Containers

IP Internet Protocol

OS Operating System

DAG Directed Acyclic Graph

POJO Plain Old Java Object

ORM Object Relational Mapping

JPQL Java Persistence Query Language

JNDI Java Naming and Directory Interface

CRUD Create/Read/Update/Delete

API Application Programming Interface

JAXB Java Architecture for Xml Binding

XML Extensible Markup Language

XSD XML Schema Definitions

xvi

Part I

I N T R O D U C T I O N A N D B A C K G R O U N D

1
I N T R O D U C T I O N

A distributed system is one in which the failure of a computer you
didn’t even know existed can render your own computer unusable.

— Leslie Lamport

Distributed systems advancements have nurtured the devel-
opment of new and exciting technologies. Decentralization of
services, resources and user access have expedited the devel-
opment of distributed applications. Towards that end, new soft-
ware architectural patterns have emerged such as microservices.
Cloud computing, a new computing model for enabling ubiq-
uitous, on-demand network access to a shared pool of config-
urable computing resources, along with the advent of the In-
ternet of Things (IoT) where items in the physical world and
sensors within or attached to these items, are connected to the
Internet, show the imperative need for distributed services.

Many challenges arise when developing, deploying and man-
aging distributed applications. The most common problems
faced, usually concern the overwhelming system complexities,
service security, service discovery, resolving and managing de-
pendencies, resource manipulation and control, reliable fail-over
mechanisms guaranteeing overall stability, portability across het-
erogeneous environments and the ability to scale. Those prob-
lems are difficult in themselves. In order to address them effec-
tively, a new approach is required.

1.1 container technology

Containers offer the necessary abstractions to overcome the pre-
defined issues. They provide lightweight operating-system-level
virtualization that lets us isolate processes and resources with-
out the need to provide instruction interpretation mechanisms
and other complexities of full virtualization.[6] As a result, we
have an ideal environment for service deployment in terms of
speed, isolation and life-cycle management.

This is not a new concept. UNIX systems have had for decades
a simple form of filesystem isolation, the chroot command. Since
1998, FreeBSD has had the jail utility, which extended chroot

3

4 introduction

Figure 1: A comparative view of containers and Hypervisors. Virtualiza-
tion with hypervisors adds extra overhead which -in best
case, is a guest OS. Containers on the other hand, share the
same kernel with the underlying OS, adding no overhead in
the infrastructure.

sandboxing to processes. This Jail had access to the operating
system kernel but other than that it could only get to a very
limited set of other system resources. For example, a FreeBSD
jail typically only has access to a preassigned Internet Proto-
col Internet Protocol (IP) network address. Later in 2001, So-
laris Zones offered a containerization technology limited to the
Solaris OS while in 2005 OpenVZ, a container technology for
Linux, was open-sourced, but required a patched kernel. While
each of these technologies has matured, these solutions have
not made significant strides towards integrating their container
support into the mainstream Linux kernel.

linux containers Over time, all of these efforts have con-
solidated into the Linux Containers (LXC) project, started inLXC or Linux

Containers. 2008. With LXC, applications can run in their own container.
Each container shares a common Linux system kernel, but un-
like a Hypervisor there is no attempt made to abstract the hard-
ware (Hosted Hypervisor) nor there is any requirement for
a guest OS (Hosted and Bare-metal Hypervisor). Several com-
ponents are needed for Linux Containers to function correctly,
most of them are provided by the Linux kernel:

• namespaces (ipc, uts, mount, pid, network and user) to
ensure process isolation. A namespace wraps a global sys-
tem resource in an abstraction that makes it appear to
the processes within the namespace that they have their

1.1 container technology 5

own isolated instance of the global resource. Changes to
the global resource are visible to other processes that are
members of the namespace, but are invisible to other pro-
cesses [10].

• cgroups to control the system resources. CGroups allow
you to allocate resources - such as CPU time, system mem-
ory, network bandwidth, or combinations of these resources
- among user-defined groups of tasks (processes) running
on a system [15].

• chroots (using pivot_root) to control the location of the
file system root.

• capabilities to allocate privileges to a process for more
fine-grained security control. On UNIX family operating
systems, the traditional privilege separation scheme di-
vides processes into two categories:

1. those whose effective user ID is 0 (root), which by-
pass all privilege checks.

2. all other processes which are subject to privilege check-
ing according to their user and group IDs.

With Linux capability scheme the handling of this prob-
lem if refined. Instead of using a single privilege (i.e., ef-
fective user ID of 0 for security checks in the kernel, the
root privilege is divided into distinct units, called capabil-
ities [8].

• seccomp policies to filter system calls. A secomb policy
will allow only pre-defined system calls for a process and
reject all others.

• appArmor and SELinux profiles to assure separation be-
tween the host and the container and also between the
individual containers[2].

Using containers has been a best practice for a long time. But
manually building containers can be challenging and easy to
do incorrectly.

docker In 2013, the Docker project, offered a new automated
workflow for containers along with new functionality that fi-
nally made container technology mainstream.

6 introduction

Figure 2: LXC Container view and user-kernel address space

1.1.1 Containers vs Hypervisors

A hypervisor is a piece of software in charge of[17] :

• assigning resources from one or several physical machines
to virtual machines.

• managing the virtual machines.

There are generally two types of Hypervisors:

1. Type 1: Native or bare-metal hypervisor runs on the bare
metal of the hardware and creates a virtualization layer
below the OS layer.

2. Type 2: Hosted hypervisor runs an application of the host
OS and creates a virtualization layer above the OS layer.

1.1 container technology 7

containers hypervisors

Scope application scoped application and
operating-system
scoped

Start/Stop time very fast (ms) normal (min)

Overhead minimal from con-
tainer engine/tools

big from guest OS

Isolation strong but still un-
der heavy develop-
ment

best offered

Adoption small has not yet
matured

proven in produc-
tion

Table 1: Compariston of Containers and bare-metal Hypervisors

1.1.2 Docker

Docker is an open source project that revolutionized the con-
tainerization process for applications. Using Docker any user
can build, ship and run applications in software containers. Es-
sentially, Docker allows developers to package an application
with all of its dependencies into a standardized unit. The porta-
bility and isolation guarantees of containers ease collaboration
with other developers and operations. As a result, developers
do not have to worry for any inconsistencies when running
their code across heterogeneous environments and operations
can focus on hosting and orchestrating containers rather than
worrying about the code running inside them.

docker components The Docker platform has two dis-
tinct components:

• Docker Engine: the open source containerization platform
which is responsible for creating and running containers.

• Docker Hub: a Software-as-a-Service platform for sharing
and managing Docker containers. It provides a central-
ized resource for container image discovery and distribu-
tion.

8 introduction

Figure 3: Server with Docker

docker architecture Docker architecture is based on the
client-server model. A daemon runs in the background accept-
ing requests from local and/or remote clients, performing all
the necessary tasks to build images, run and distribute contain-
ers.

Figure 4: Docker Architecture

docker images Docker containers are based on read-only
image templates, that are build in a layered manner. By takingimages
advantage of union file systems, the layers are combined into
a single image instance forming a file system. When an image
gets updated, a new layer is built on top of the others. As a
result, there is no need to rebuild the whole image and only
the added layer is distributed as an update. Tracking changes
to image layers is accomplished with built-in Git support. New
images may be build from base images or from scratch.

1.1 container technology 9

Supporting a portable image format, Docker allowed for ap-
plication to be packaged with all their dependencies, libraries
and files they needed to run inside a container. The underlying
image file system is read-only. When a new container is started
from an image, a read-write layer is added on top of the image.
As a result, multiple containers can be spawned from the same
image without sharing changes to their file systems.

Figure 5: Docker image layered structure

docker containers A Docker container is built from an
image. The image holds all the necessary data for a process to
run in the container. As discussed earlier, when the container
starts a new read-write layer is added on top of the base-image
layers.

The supported functionality of Docker containers, is empow-
ered by the following technologies [14][13]:

1. Linux Kernel feutures:

• namespaces

– PID namespace - Process identifiers and capabil-
ities.

– UTS namespace - Host and domain name.

– MNT namespace - File system access and struc-
ture.

– IPC namespace - Process communication over shared
memory.

– NET namespace - Network access and structure.

10 introduction

– USR namespace - User names and identifiers.

• chroot() - Controls the location of the file system root.

• cgroups - Resource protection.

2. Union file systems (UnionFS). They allow files and direc-
tories of separate file systems, known as branches, to be
transparently overlaid, forming a single coherent file sys-
tem.

3. Container format or the execution interface. The default
execution interface since v0.9 is LibContainer. It is meant
to be a cross-system abstraction layer as an attempt to
standardize the way applications are packaged, delivered,
and run in isolation. This way, container features avail-
able in Linux kernel API are provided as a unique library
in a consistent way. LibContainer addresses the problem
of having an unique kernel API and several implementa-
tions. (LXC, libvirt, lmctfy e.t.c.)

Figure 6: Docker and the different execution interfaces used to access
Linux Kernel technologies.

1.1 container technology 11

docker containers vs lxc Docker used LXC as the de-
fault execution interface right from the start, taking advantage
of all the low-level capabilities offered. On top of that, it offered
a high-level tool to facilitate the containerization of software.
As the technology matured, shifted to a new execution inter-
face, named libContainer that used linux kernel technologies
like namespaces and cgroups directly. Support for LXC was
not removed (until the time of writing).

docker volumes Docker Volumes offer a means to man-
age data in and between containers. When a container starts, volumes
Docker adds a read-write layer on top of the read-only layers
of the base image. If a file is modified, it is copied out of the
read-only layer into the read-write layer where the changes are
applied. When the container is deleted, all data lying on the
writable container layer are lost (except committed to a new
image). In order to be able to persist and share data between
containers, Docker introduced the concept of volumes.

A volume is a directory/file outside of the default Union
File System that exists as normal directory/file on the host file
system.

docker networks Docker creates on the host, by default,
three networks which may be used to connect containers: networks

• none. The none network adds a container to a container-
specific network stack. That container lacks a network in-
terface.

• host. The host network adds a container on the hosts net-
work stack.

• bridge. The bridge network called docker0 is the default
network joined by containers, except specified otherwise.
This is a virtual Ethernet bridge attached to the host[14].

A user may also create a user-defined network to connect the
deployed containers, using:

• a Docker network driver. Docker provides the following
network drivers:

1. bridge

2. overlay (for cluster environments)

• a plugin network driver.

12 introduction

Finally, another option to network a container is to use the
network stack of another container.

Figure 7: The default Docker bridge network topology with con-
nected containers.

1.2 definition of the problem

Software containerization is greatly simplified with the tools
provided by the Docker platform. Packaging an application into
a container and then running it on a provisioned environment
is a simple task.

the problem : Let a multi-host environment consisted of N nodes.
Let a distributed application consisted of S = s1, s2, . . . , sn servicesproblem definition
and packaged in |S| containers. The problem we are facing is how to
deploy and manage the application that is composed of many contain-
ers to the multi-host environment. The main reason why this is a
difficult problem is because the available middleware for dis-
tributed services does not offer support for containers yet. In
the context of distributed applications, the middleware offers
general services that support distributed execution of applica-
tions [16]. We are going to analyze the multiple aspects of the
stated problem.

service discovery Service discovery is a very important
component for distributed systems, service oriented architec-
tures and microservices. It involves a directory of services, reg-
istering services in that directory and finally being able to lookup

1.2 definition of the problem 13

and connect to services from that directory. How do we accom-
plish that with containers? There are many good middleware
solutions to support a directory of services like Zookeeper -a
consistent and highly available key-value store, Consul, Etcd
e.t.c. However, this is not enough to support service discov-
ery. What we are missing is essentially the mechanism to regis-
ter containers as services, monitor container health and finally
lookup and connect to containers offering services.

container life-cycle Containerized distributed applica-
tions consist of many containers. As a result, we are faced with
the problem of manually managing the life-cycle of all the con-
tainers, which can be quite challenging. In order to manage
the life-cycle of containers in an automated way, two things are
necessary:

• a way to define a description of how containers are cre-
ated, started, stopped and deleted. The create stage in-
cludes all the characteristics the container must have. The
start and stop stages contain the processes that must be
executed in each stage, to control the provided service.
At last, the delete stage may specify to delete or not the
created resources.

• an implementation of an execution mechanism for the pre-
viously defined stages, to support operations in the de-
ployed environment.

container configuration Every container has to be ini-
tialized with some configuration in order to run a service. Usu-
ally, services are codependent and require configuration set-
tings from dependent services. If we have N containers that
require N− 1 services, then the magnitude of required config-
uration settings is proportional to N2. In that case, how do we
configure containers and how do we re-configure them? This is
a special case of the well known N− to−N problem for con-
tainer configuration.

service coordination When there are dependencies be-
tween services of an application, it is often necessary to ap-
ply coordination between the dependent services. Required ser-
vices must be started first and services depending on them
must wait for them to start and initialize, before performing
any operations. If this requirement is not satisfied, then the ap-

14 introduction

plication will crash or be in an unpredictable and/or inconsis-
tent state.

container networking The underlying network topol-
ogy for the deployed containers of an application determines
the networking isolation of the containers, along with their abil-
ity to communicate. If the containers are deployed on a cus-
tom virtual private network, an extra layer of security is added.
In multi-host environments where every container may be de-
ployed in a different host, it is essential to get container net-
working right.

container data Many services usually create data that
need to be persisted and then shared with other components.
What is more, in development it is often necessary to trans-
fer data to containers, e.g. source code and reflect to applied
changes. Such mechanisms are provided by Docker, but we
need to automate the process for all the containers of a multi-
container application.

There are tools that handle some aspects of the problem very
well and other that are more generally implemented to support
mostly the concept of environments (development, test, e.t.c.)
but not services for distributed applications.

1.3 our approach

From the previous analysis, we conclude that in order to ad-
dress the stated problem and its versatility, new tools are neces-
sary that will encapsulate the required capabilities while utiliz-
ing the available technologies from existing middleware.

In this Thesis, we designed and implemented Fidelio1, a con-Fidelio, a container
management tool

for Web apps, using
Docker.

tainer management tool for Web applications in local and cluster envi-
ronments, utilizing Docker as the underlying container platform. Our
tool transparently integrates with Apache Zookeeper, a highly
available coordination service[7][20], that is used to implement

1 Fidelio is an opera written by Ludwig van Beethoven, his only opera. Opera
(the Latin plural for opus, meaning "work") can involve many different art
forms (singing, acting, orchestral playing, scenic artistry, costume design,
lighting and dance). Accordingly, a distributed containerized application in-
volves many containers/services and Fidelio tries to manage all those com-
ponents to support the application’s execution.

1.4 thesis overview 15

service discovery, store configuration, enable re-configuration
and synchronize services for applications.

In our approach, we implement a container-agnostic design, in
order to decouple containers from their dependencies. We con-
sider containers as components that offer or require services. Con-
figuration of components is abstract and not bind to specific in-
stances. As a result, a component may be substituted by another
without having to reconfigure all its dependencies. That way,
we can manage components as a pool of dynamically changing
resources. Automatic re-configuration is supported when the
application is restarted.

We offer complete life-cycle control for containers. An ad-
vanced process execution mechanism is provided, so that the
user has full control over the execution of start and stop se-
quences for the deployed services.

An application is deployed with respect to service depen-
dencies. Declared service dependencies must form a Directed
Acyclic Graph (DAG) for that matter. Service discovery is pro-
vided along with synchronization using Zookeeper. Services
with no dependencies start first. Dependent services wait for
the required services to start and initialize. In shutdown, ser-
vices stop in reverse order to guarantee graceful application
shutdown and data consistency.

For every application a new custom network is created, using
Docker’s default network drivers for local and cluster environ-
ments to which containers connect. Network isolation offers
increased security for services.

Finally, there is support for environment variables substitu-
tion to files, data management with four different mechanisms,
private images registries and swarm cluster deployment.

1.4 thesis overview

Chapter 2 describes the related work around the defined prob-
lem. In Chapter 3 we present analytically the design of our tool
and discuss the design choices we made. In Chapter 4 we in-
spect thoroughly the implementation and describe the internal
structure of the tool. Finally, in Chapter 5 we state our conclu-
sions and suggest future work.

2
R E L AT E D W O R K

In this chapter, we will present existing technologies and tools.
We have divided our analysis into two major categories, one
concerning environments that provide services to components
which are not containers but try to resolve aspects of the same
problem and the other currently developed tools for containers.

2.1 environments

2.1.1 Application Servers

Over the years, the two-tier client-server architecture evolved
to multi-tier architecture (n-tier). Using the n-tier architecture,
applications were more flexible to write and maintain while
the overall performance of the system was increased. The most
widespread use of multi-tier architecture is the three-tier archi-
tecture. The three-tier architecture is typically composed of a
client tier, a middle tier, and a data storage tier. The middle
tier controls the application’s functionality and communicates
with the other tiers. Access to the middle tier is provided with
Application Servers.

The Application Server provides access to a set of compo-
nents through APIs, making available a set of services. Such a
component model is the EJB (Enterprise Java Bean) found on
Java Enterprise Edition. Proceeding with our analysis, we are
going to inspect the Java EE framework that defines the core
set of APIs and features of a Java EE application server.

java ee framework Java EE is a set of specifications imple-
mented by different containers. Containers, in this context, are
Java EE runtime environments hosting software components
and providing a collection of services to the components[5].
Such an environment provides execution support to hosted com-
ponents in a way that is similar to an operating system hosting
processes. Essentially, all the low-level platform specific func-
tionality to support a component is abstracted by containers
forming an in-between interface.

17

18 related work

java ee components The components supported by Java
EE platform are[3]

• application clients (client components).

• applets.

• java servlet, javaServer faces and javaServer pages (web
components).

• ejb (business components).

A component must be assembled into a standard unit and
deployed into a container, in order to be executed.

java ee containers The Java EE specification lists 4 types
of containers[5]:Java EE containers

are runtime
environments

hosting components
and providing

services.

• EJB container is responsible for managing the execution of
the enterprise java beans.

• Web container handles the execution of web components.

• Application Client container manages the execution of ap-
plication client components.

• Applet container manages the execution of applets.

Figure 8: The container types specified in Java EE.

2.1 environments 19

java ee container services The Java EE containers offer
a wide range of services to the deployed components [5][3].
Some of the most important are:

• life-cycle management. When using a Plain Old Java Object
(POJO) its life-cycle is simple: the developer creates an in-
stance of a class and then waits for the Garbage Collector
to remove it. With a Managed Bean the container handles
the life-cycle as follows: creates the instance, performs any
necessary dependency injection and invokes any method
annotated with @PostCostruct. Then, the bean is ready
for any business method invocation. At the end of the
life-cycle, the container invokes any method annotated
with @PreDestroy. The bean’s instance is then ready for
garbage collection.

Figure 9: Managed Bean life-cycle.

• service discovery. Java Naming and Directory Interface (JNDI)
is used to access naming and directory services. Objects
are bind with names and can be looked up in a directory.

• persistence. Object Relational Mapping (ORM) and Java Per-
sistence Query Language (JPQL), allow objects to be stored
and then queried from a database.

• networking. Deployed components can be invoked with
different network protocols. The supported protocols are:

1. Http

2. Https

3. RMI-IIOP

20 related work

• dependency injection. Injection of resources to managed com-
ponents. Decouples dependencies from code.

As we have seen, application servers implement a model
where an abstract unit, the component, is categorized into types
which have access to a set of services through interfaces. The
concept of managing components is extended to containers where
all the previous services are necessary in order to accomplish
container management.

2.2 tools

With the container technology on the rise, quite a few approaches
have been made to enable management of the containers for
distributed applications in single and multi-host environments.
We are going to inspect all those tools and analyze their char-
acteristics in order to understand how they attempt to resolve
the problem and what is their merit in the solution.

2.2.1 Docker Compose

Docker Compose helps the user define and run applications con-
sisted of many containers. Compose uses a .yml configuration
file, where services are defined along with networks and vol-
umes.

Starting with networks, for every application, a new network
is created (for single and multi-host), named after the project’s
name and containers join it automatically. Container names are
used as hostnames with which services are discovered. Except
from the default network, the user can specify custom networks,
creating more complex network topologies and using custom
network drivers. It is possible for a container of the network
to be updated in case a configuration change in necessary, but
it requires to remove the old container and re-deploy a new
instance with different IP under the same container name. Any
open connections to the old container will be lost and it is up
to the container to look up the name again and reconnect.

The services section is used to describe application services.
Declarations to build a new image for a service are supported,
if there is no suitable base image available. In order to start the
service a new command may be specified that overrides the one
declared in the container image. Among other configuration op-
tions, a user may declare environment variables, networks and

2.2 tools 21

volumes per service. Finally, services may declare their depen-
dencies, which will result in instructing the program to start
services in dependency order, but will not coordinate services
to wait for their dependencies to initialize first before they start.

Data for the application can be managed through volumes
and the copy command which is only supported when building
an image.

Moreover, it integrates with Swarm, the native Docker solu-
tion for clustering, enabling deployment in multi-host environ-
ments.

Compose is generally feature rich and incorporates many
configuration options for containers. However, there is no re-
liable service discovery mechanism, only the hostnames of the
services are available. Data management is still not very flexible
in development or production without a data transfer mecha-
nism where the user defines data per service to be transferred
to the container before or after it starts. Service coordination
for distributed applications is not implemented at all. Finally,
there is no standard way to control process execution to stop
the container, except for waiting for the PID 1 to be signaled to
do so.

2.2.2 MaestroNG

MaestroNG is an orchestrator of Docker-based, multi-hosts en-
vironments. MaestroNG basically takes care of two things:

• controlling the start/stop order of services, taking into
consideration the dependencies defined between services.

• passing environment variables to each container in order
to have all the information to function properly in the
environment, in particular information concerning its de-
pendencies.

The environment is described using a .yml file, it is named
and composed of three main mandatory sections:

• registries. The registries section defines authentication in-
formation about private image registries that can be used
to pull Docker images for services.

• ships. The ships section describes hosts that will run the
Docker containers.

22 related work

• services. The services section defines the services that com-
pose the environment, their dependencies and instances
of the services that the user wants to run. Each instance
must, at minimum, define the ship its container will be
placed on.

Environment variables are injected into every container in
order to discover its dependencies and configure itself properly
for the environment. After that, the start order is controlled by
the program with respect to dependencies (the stop order too).

Volumes for containers are also supported along with bind
mounts to the host to share data.

MaestroNG does not integrate with a coordination service to
support service discovery or service coordination and although
services get some basic information from the tool, this solution
cannot enable dynamic re-configuration. Furthermore, service
coordination is centralized around the program’s execution. In
addition, it does not support Docker networks for applications
and does not offer an easy way to transfer data on remote hosts.

2.2.3 Vamp

Vamp is a platform for managing (micro)service oriented ar-
chitectures based on containers. Vamp takes care of complex,
multi-step actions like canary releases, route updates, metrics
collection and service discovery.

The platform provides a model for describing microservices
and their dependencies in blueprints. There is a runtime/exe-
cution engine for deploying these blueprints.

The basic entities of Vamp are:

• Breeds: describe single services along with their depen-
dencies.

• Blueprints: describe how defined breeds work in runtime
and their properties.

• Deployments: running blueprints.

• Gateways: routing endpoint, defined by its port (incom-
ing) and routes (outgoing).

Breeds and blueprints can have a list of environment vari-
ables that will be injected into the container at runtime.

Vamp uses a service discovery pattern called server-side ser-
vice discovery. When making a request to a service, the client

2.2 tools 23

makes a request via a router (load balancer) that runs at a well
known location. The router queries a service registry, which
might be built into the router, and forwards the request to an
available service instance.

2.2.4 Capitan

Capitan is a tool for managing multiple Docker containers. The
tool provides commands that are applied to a collection of con-
tainers. Containers are described in configuration files to be
read by the program.

The order of starting containers is included in the container
configuration files. The order of stopping is the reverse of the
starting order.

Capitan allows the use of bash as hooks for commands. For
containers it allows for a custom shell command to be evaluated
at the following points for each container:

• Before/After run.

• Before/After start.

• Before/After stop.

• Before/After kill.

• Before/After remove.

2.2.5 Kontena

Kontena is an open source project for orchestrating and run-
ning containerized workloads on a cluster. Kontena system is
comprised of a number of Kontena Nodes (machines or VMs
that run containerized workloads) and a Kontena Master that
controls and monitors the Nodes.

An application can be described with Kontena Services defi-
nition. A service definition includes all the necessary informa-
tion and configuration for the service like the container image,
networking, scaling and stateful/stateless attributes. Linking of
services is supported to create a desired architecture. Each ser-
vice is automatically assigned with internal DNS address that
can be used inside an application for inter-Service communica-
tions.

The most important features of Kontena are:

24 related work

• Load-balancing for services.

• Built-in private registry for Docker images.

• Scheduler with affinity filtering.

• Log and statistics aggregation with streaming.

• Access control and roles for Kontena users.

• Remote VPN access for workload services.

Kontena supports any application that can run in a Docker
container and runs on any cloud provider or local servers.

2.2.6 Kubernetes

Kubernetes is an open source platform developed by Google.
It provides a lot of functionality for automating deployment,
scaling and operations of application containers across clus-
ters. The platform is quite broad, incorporating features usu-
ally offered from orchestration, management and deployment
container tools.

Kubernetes uses the concept of the Pod. The Pod is the small-
est deployable unit of computing that can be created and man-
aged. It is a group of containers that are deployed together and
are started, stopped and replicated as a group[13].

Some of the features provided are:

• service discovery.

• load balancing.

• environment variable injection.

• resource management.

• persistent volumes.

• replication of pods.

• rolling updates that update one pod at a time, rather than
taking down the whole service.

• health checks on container processes and user implemented
application health checks.

• secrets that store sensitive data like passwords, encryp-
tion keys e.t.c.

2.2 tools 25

2.2.7 Rancher

Rancher is an open source software platform for running con-
tainers in production. It is an all-in-one platform. Many infras-
tructure services are provided for containers to facilitate de-
ployment and management. In addition, it integrates with mul-
tiple container orchestration engines like Docker Swarm, Ku-
bernetes and Cattle.

Some of the key features of Rancher are:

• Stacks. A Stack is typically a group of services that make
up an application (the same concept as docker compose).

• Networking. Cross-host networking is supported.

• Service Discovery. When a service is linked to another within
the same stack, a DNS record mapped to each container
instance is created, enabling discovery of the required ser-
vice. For that purpose, the tool implements a distributed
DNS service by using its own DNS server. All services in
the same stack are added to the DNS service.

• Load balancing for services.

• Health checks for containers/services.

• Persistent Storage Services. Enables developer to deploy stor-
age with containerized applications.

• Service upgrades. An existing service may be upgraded,
by allowing service cloning and redirection of service re-
quests.

Part II

D E S I G N A N D I M P L E M E N TAT I O N

The following chapters present the design and im-
plementation of Fidelio in full detail.

3
S Y S T E M D E S I G N

Everyday life is like programming, I guess.
If you love something you can put beauty into it.

— Donald Knuth

In this chapter, we are going to analyze in full detail the de-
sign of Fidelio. We are going to present the general system struc-
ture and philosophy, its functions along with its usage.

3.1 containers as components

As stated earlier in Section 1.3, Fidelio is a container manage-
ment tool for multi-container Web Applications. The primary
object of interaction with the tool is a container. Therefore, it
was necessary to decide on a model that would describe the
container and its interactions with other containers.

For that purpose, we introduced the concept of the component.
Introducing this abstraction allows us to disregard all the low-
level details of the container entity and helps us concentrate on
its interactions with the environment and other components.

We consider an interaction with a component a service. A com-
ponent provides and/or requires a service. There cannot be a com-
ponent that does neither of them because that would essentially
mean that there is a service of the web application that does not
offer or require any service of the application which is invalid.

Based on those concepts, we implement a container-agnostic
design.

Figure 10: Component providing and requiring services.

29

30 system design

3.2 system architecture

We begin with a high-level view of the system’s architecture.
We follow a top-down approach on presenting all the system’s
components and their architecture as well.

Figure 11: System architecture

tool modules As we can see in Figure 11, the tool is com-
prised of two modules:

• Core. The core module is the core of the tool. A con-
figuration file is necessary to initialize the system. The
user inputs commands through the user interface and
uses an xml file, that describes a containerized web appli-
cation, for deployment. The module communicates with
Zookeeper.

• Broker. The Broker module is an agent. It runs inside the
container providing all the necessary services and com-
municates with Zookeeper.

The modules coordinate their actions through Zookeeper. The
architecture is completely distributed.

3.3 tool configuration 31

zookeeper ensemble It is necessary for our tool to use a
service for:

• maintaining configuration information.

• maintaining a service registry for service discovery.

• providing distributed synchronization.

For that purpose, we use Apache Zookeeper, a high-performance
coordination service for distributed applications [7].

docker host The Docker Host is where the containers of
the web application get deployed. It can be a single host run-
ning a Docker daemon or a Swarm cluster (see Section 3.15).

3.3 tool configuration

The tool requires a bare minimum of configuration information
to initialize. It cannot function without it. The configuration file
is logically divided into sections, with each section referring to
a different component of the system. The general structure of
the configuration is:

1. Zookeeper configuration: This section contains the necessary
information to establish communication with the Zookeeper
ensemble.

2. Xml Schema configuration: Here we specify the xml schema
file that will validate the xml application description file.
The schema is provided.

3. Docker configuration: All initialization information concern-
ing the Docker platform is specified here.

4. Logging configuration: The tool uses the log4j framework
for logging. The required settings for the framework are
set in this section.

The configuration file is presented in detail with analytic de-
scription and examples of all its fields in Section A.1.

3.4 web application description

The input data to the tool is an xml application description
file. This file provides an interface to the user to map services

32 system design

to containers, define services for discovery, define service de-
pendencies for coordination, control the life-cycle of containers,
manage container data, customize container networking, man-
age configuration and apply tasks. Overall, it describes how the
application is containerized to enable its execution.

All the rules concerning the format of the xml file are dic-
tated by an xml schema file [19] that we provide. It defines the
available fields and attributes, type of data, order and occur-
rence.

The user creates a description for the containers of a web ap-
plication using the xml file. The description is processed by the
tool that enables the deployment of the application according
to the user’s instructions.

A top-level view of the xml file is shown at Listing 1

Listing 1: Top level elements of application description xml file.

<?xml version="1.0" encoding="UTF-8"?>

<webApp>

<containers>

<webContainer> ... </webContainer>

<businessContainer> ... </businessContainer>

<dataContainer> ... </dataContainer>

</containers>

</webApp> �
3.4.1 Container Types

Web applications are multi-tiered, with the 3-tier architecture
being most widely used. A 3-tier architecture involves the fol-
lowing tiers:

• web tier.

• business tier.

• data tier.

Every service of the web application that runs on a specific
tier is packaged into a container. Consequently, we define three
container types, one for every tier, as follows:

• WebContainer type.

• BusinessContainer type.

3.4 web application description 33

• DataContainer type.

The container type is a design concept that is used to offer
a high level view of the containerized services in respect to
the 3-tier architecture. We do not differentiate the supported
functionality or the environment for the containers of different
container types in favor of flexibility. As a result, the user can
perform any customization required (see Section 3.9).

A web application description must declare at least one con-
tainer of each type (see Listing 1), with the maximum cardinal-
ity being unbounded.

3.4.2 Container Description

All the containers of an application must be described in the
application description. We have designed a specific format for
the container description. The available fields and attributes are
presented in Listing 2

Listing 2: Fields and attributes of the container description.

<ContainerType>

<serviceName>

<requires>

<docker>

<image>

<volumes>

<volumesFrom>

<bindMnt accessMode="rw/r">

<hostPath>

<containerPath>

</bindMnt>

<copy withRootDir="true/false">

<hostPath>

<containerPath>

</copy>

<publishPort protocol="tcp/udp">

<hostIp>

<hostPort>

<containerPort>

</publishPort>

<publishAllPorts>

<privileged>

</docker>

<start>

<preMain abortOnFail="true/false">

34 system design

<main>

<postMain abortOnFail="true/false">

</start>

<stop>

<preMain>

<main>

<postMain>

</stop>

<tasks>

<substEnv>

<filePath restoreOnExit="true/false">

</substEnv>

</tasks>

<env>

<host_port>

<env_declaration>

</env>

</ContainerType> �
In addition to the available fields/attributes, we need to know

which fields/attributes are required, which can be omitted, what
are the default values of attributes if they are omitted, what
is the minimum and maximum occurrence of a field, what is
the initialization format of a field -in case multiple values are
allowed and which are the accepted data values. All those con-
cepts are determined by the xml schema that we provide and
validates the xml file. In the following sections we will illustrate
those aspects and we will analyze all the fields of the descrip-
tion format.

3.5 container boot

The boot process of a container is initiated with the execution
of a boot command or a boot script. We use an agent, the Broker
module, as the boot script for all deployed containers. It runs as
the pid 1 in the container. Coordination between all the Brokers
and the Core module and between Brokers is handled through
Zookeeper.

The Broker communicates with Zookeeper in order to pro-
vide services to the container such as service discovery, service
coordination, configuration management, service life-cycle con-
trol and tasks. Brokers need to coordinate their actions to effec-
tively support many of those services.

3.6 service discovery 35

3.6 service discovery

3.6.1 Service name

Every container of an application must declare a unique name
for the service that it provides. The service name is used for dis-
covery by other services. The service name must be defined using
the <srvName> tag. This is a required field. The data type for
the service name is token.

3.6.2 Service Dependency

Containers often depend on other provided services. When a
container has service dependencies, it needs to discover the ser-
vices on which it relies on using their service names. For that
reason, we must define all the service dependencies of a con-
tainer in application description using the <requires> tag. An
example follows:

Listing 3: Example of <requires> tag.

<?xml version="1.0" encoding="UTF-8"?>

<webApp>

<containers>

<webContainer> ... </webContainer>

<businessContainer>

<requires>data</requires>

...

</businessContainer>

<dataContainer>

<srvName>data</srvName>

...

</dataContainer>

</containers>

</webApp> �
The required services must be declared as a list of space sepa-

rated elements.

3.6.3 Client-side Discovery Pattern

Dynamic service discovery is a key feature in containerized
distributed services and our system design. There are various
ways to address it. What we essentially need is:

36 system design

• a service registry.

• a mechanism to register/un-register services and monitor
service health.

• a mechanism to look up and connect to services.

There are two main service discovery patterns: server-side
discovery and client-side discovery[12][18] which is supported
in our design. When using client-side discovery, the client is
responsible for determining the endpoints of the required ser-
vices. The client queries a service registry, where all available
services are registered, uses a load-balancing algorithm to se-
lect a service instance, if there are many instances of the avail-
able service and makes a request. In Figure 12 we can see how
the client-side service discovery pattern works.

Figure 12: Client-side discovery pattern

3.7 service status 37

3.6.4 Service Discovery Mechanism

The registry service requirement for service discovery is satis-
fied by using Zookeeper. The rest of the functionality is handled
by the Broker module of the tool running inside the containers.

When a container starts, a service is registered to Zookeeper
with the declared service name and when it stops, the ser-
vice is de-registered from Zookeeper. Service registration/de-
registration is accomplished through writing/deleting meta-data
about the service to the registry. Discovery of required services
is achieved with monitoring the service registry for Create/Read-
/Update/Delete (CRUD) operations on those services. When an
operation is discovered on a required service, the service’s meta-
data are downloaded from the registry and processed.

3.6.5 Service Metadata

Service metadata are data about the service. They provide the
following information:

1. the service status.

2. the location in the Zookeeper namespace for the service
configuration.

3.7 service status

A service that is offered by a container has a status. The status
represents the current state of the container service and have on
one of the following values/states:

• not_running. The container service is not running

• not_initialized. The container service has not initialized
yet.

• initialized. A service is considered initialized when it is ready
to accept connections and no other operation has to be executed
in order to change its state or its environment (see also Sec-
tion 3.10.1).

• updated
1. The configuration of the service has changed.

Signals dynamic re-configuration.

1 although update is integrated it is not supported yet.

38 system design

The different states of the service status enable service coor-
dination. One thing to notice is that there is no running state
for the service status. The reason why we omitted this state is
that it does not give us any functionality gain.

3.7.1 State transitions of service status

The state transition diagram of service status is presented at
Figure 13.

Figure 13: State transitions for service status.

When a container starts, a service is registered to Zookeeper
with the service status set to not_initialized. This is the first
state. The state encapsulates information about the execution
of the main container service which may have started or not.
Either way, it does not make any difference.

The only next possible state from not_initialized is initial-
ized. At some point, the main container process is started. After
that, the service performs any required initialization and when
it is finally ready to accept connections and does not need any
more configuring, the status changes to initialized.

If the main container process stops, the status changes to
not_running, no matter which is the active state.

Finally, if there is an update to the configuration of the ser-
vice, the status is set to updated.

3.8 service coordination 39

3.8 service coordination

Dependent services need coordination to achieve a desired state.
Using the <requires> tag in application description, we enable
service discovery for defined services and synchronization be-
tween dependent services. All the declared service dependencies of
the application must form a DAG.

Service coordination is designed to support the following as-
pects:

• start/stop control order of services with respect to dependencies.
Services with no dependencies start first. Dependent ser-
vices wait for their dependencies to start. On the contrary,
on shutdown services which are not required by other
services stop first. Controlling the start/stop order of ser-
vices is an important first step to ensure application and
data consistency.

• initialization and complete shutdown guarantee for required ser-
vices. Starting services with respect to dependencies is not
enough to ensure consistent application execution. A re-
quired service must first initialize (see Section 3.7) in or-
der to be certain that it functions as expected. For example
if we start a database and try to connect to it right away,
without waiting to be ready to accept connections, our
application will fail, except we explicitly specify to retry
until a connection is established. Therefore, we guarantee
that any service that is required from another service will
start and initialize before it becomes available to its depen-
dencies. What is more, shutting down the services of an
application in random order could lead to data inconsis-
tencies and unpredictable errors. For that reason, services
begin to shutdown in reverse order than the one started
and are waited to shutdown completely before the ser-
vices that they depend begin the shutdown process.

• notifications for state changes and monitoring of required ser-
vices. Dependent services need to be aware of changes in
the status of services (see Section 3.7) they require. We
make sure that services are notified for that. If a service
changes multiple times between the moment a notifica-
tion is sent and until it is inspected, the service client will
always see the last one applied up until that moment.

Synchronization of services is accomplished using Zookeeper
in association with the Brokers inside the containers. Coordina-

40 system design

tion is completely decentralized relying solely on inter-container
communication through the coordination service. Containers
get deployed to the Docker Host and the ones with no declared
dependencies start their services and begin initialization. De-
pendent services query the service registry for their dependen-
cies. If they find them, they start monitoring them and wait
until they become available. If they don’t, they wait until they
are registered. When a service becomes available, its state is
processed and an action is determined depending on the cur-
rent context. Services react on all state changes of a required
service.

3.9 container configuration

Our tool offers a clean design that helps us easily setup the
configuration of containers for a distributed application. The
design decouples containers from their dependencies (see Sec-
tion 3.1) enabling the substitution of a container with another.
As a result, there is no need to re-configure the whole applica-
tion.

All the configuration of a deployed application is stored to
the Zookeeper configuration store. The application configura-
tion is read, processed and then stored to Zookeeper. When the
containers start, communicate with Zookeeper and retrieve the
configuration required.

3.9.1 Container Environment

Configuring a container for a service requires to setup its envi-
ronment. The environment empowers the user to decouple con-
figuration information from service instances. This is accom-
plished by declaring key-value pairs of configuration settings
that will substitute the hard-coded information in configura-
tion files.

For every declared key-value pair, an environment variable
is created that will become available at runtime to the executed
container processes. The environment of a container can be
fully customized by declaring any environment variables nec-
essary.

To setup the environment of a container we use the <env> tag
in the application description. In Listing 4 we see an example
of a user declaration.

3.9 container configuration 41

Listing 4: Example of environment variable declaration.

<?xml version="1.0" encoding="UTF-8"?>

<webApp>

<containers>

<webContainer>

...

<env>

<env_var>value</env_var>

</env>

</webContainer>

...

</containers>

</webApp> �
The declaration is done using lowercase letters and the un-

derscore.
If a container has any service dependencies declared, then

the environment variables of its dependencies are injected into
the container as well. We will see how we can reference and use
the environment variables in Section 3.9.3.

The Broker module handles the proper setup of the container’s
execution environment. It reads the configuration and exports
the environment variables making the available at runtime to
processes.

3.9.2 Host Fields

For every container there are two environment variables that
are designed to refer to the container:

• ${host_ip}. The host_ip environment variable does not
appear anywhere in the application description. It can be
used to obtain the ip of the container. It cannot be set by
the user. It is set and updated automatically.

• ${host_port}. The host_port environment variable must
be defined in the application description. It is a manda-
tory field that every container has to specify in its environ-
ment. It specifies the port on which the main container service
is running. If this field is not set correctly, the container
will halt.

42 system design

3.9.3 Availability And Usage

The container environment consists of all the environment vari-
ables defined in the application description for the container
along with all the environment variables of its declared depen-
dencies.

The environment variables become available to the container
processes at runtime. We can use environment variables in con-
figuration files instead of hard-coded information and then ap-
ply environment variable substitution to the configuration files
(see Section 3.14)

The general format to reference an environment variable de-
clared in the <env> tag of the container is: ${env_var}. only the
format with brackets is supported.

The general format to reference an environment variable of a
declared service dependency is: ${srv_name_env_var}, where
srv_name is the name of a service dependency.

To sum up, a container has access to environment variables
that concern:

1. the container. Those environment variables are declared
to the <env> tag of the container.

2. the dependencies of the container. Those environment vari-
ables are declared to the <env> tag of the container’s de-
pendencies.

An example illustrating the above follows.

Let three containers with dependencies as follows:

data <-- business <-- web

The environment variable declarations for every service is:

data: db_name

business: app_name

web: my_id

The created environment variables in every container are:

data: ${DB_NAME}

business: ${APP_NAME}, ${DATA_DB_NAME}

web: ${MY_ID}, ${BUSINESS_APP_NAME} �
Finally, we can use environment variables that refer to a de-

pendency as values to environment variable declarations of a
container. Example:

3.10 process execution mechanism 43

Containers with dependencies:

data <-- business

Environment variable declarations

business: db_used=${DATA_MY_DB}

data: my_db �
3.9.4 Re-configuration

Due to the fact that all the configuration of a deployed appli-
cation are managed through Zookeeper, if we stop and restart
an application the re-configuration process is handled automat-
ically and transparently by the tool.

3.10 process execution mechanism

Managing the life-cycle of a service in a container usually re-
quires the execution of multiple processes. We need to be able
to control how the service starts and how it stops.

We have designed a mechanism to handle process execution
in containers. Processes are arranged in process groups. A pro-
cess group is a set of processes that are executed together as a
unit in order to enable the container to achieve a certain state.
We define two process groups:

• start process group. The processes defined in this group exe-
cute the necessary logic to start and initialize the container
service.

• stop process group. This process group handles the shut-
down procedure of the container service.

Every process group allows for multiple process declarations.
The start group takes precedence over the stop group in all
scenarios. If the stop group is activated while the start group is
running, the stop group processes will be queued for execution
after all processes of the start group.

process We consider a process to be associated with:

• an environment. The environment is consisted of all the
necessary environment variables that will be injected into
the process in order to support its execution (see Sec-
tion 3.9.1).

44 system design

• a resource. The resource is an execution description. It con-
tains the execution command, its arguments and its prop-
erties (e.g. abortOnFail, see Section 3.10.1).

definition format The supported format to define a pro-
cess to run is:

• executable/script arg1 arg2 ... argn

Tokens are split using the space delimiter. Tokens surrounded
by double or single quotes are parsed as one. Moreover, envi-
ronment variables from the container’s environment or its de-
pendencies may be used as arguments. The declared environ-
ment variables are automatically expanded.

3.10.1 Start Process Group

The start process group is divided into three sections:

1. preMain. In this section we declare any processes that we
want to be executed before the container service starts. We
can declare as many processes as we want. Declarations
are optional.

2. main. The main section defines the execution of the main
container process which runs the container service. Un-
like the other sections, this is an one process section. A
main container process must always be defined, so that a
service is provided.

3. postMain. In this section we declare any processes that we
would like to be executed after the container service has
started and initialized. We can declare as many processes
as we want. Declarations are optional.

3.10.1.1 Order Of Execution

Declared container processes in start process group are exe-
cuted serially in the order they were declared. A process is
waited to be executed before the next declared process starts.
There is a timeout for the execution of every process to avoid
waiting for a process indefinitely.

3.10 process execution mechanism 45

3.10.1.2 Abort On Fail

In preMain and postMain processes, the user can specify per pro-
cess to ignore or halt on any errors encountered during execu-
tion. There are two main scenarios to consider:

• An error occurs on a process and we have defined to ig-
nore errors. In this case, the process execution will continue
with the next process in the sequence. This practice is gen-
erally discouraged because it may lead to data or service
inconsistencies if used unwise. It can be used though to
apply an optional feature that will not have any impact in
case it fails, such as an update.

• An error occurs on a process and we have defined to halt.
There are two sub-cases in this scenario:

– the executing process is a preMain process. All remain-
ing processes will be cancelled and the whole start se-
quence will be aborted. That includes any remaining
preMain processes, the main process and any post-
Main processes.

– the executing process is a postMain process. All re-
maining processes will be canceled and the whole
start sequence will be aborted. But in this case, there
may be only postMain processes left to run. The main
container process has already started. In order to abort
the start sequence the main process will be forced to
stop.

3.10.1.3 Main Section

The main section of the start process group provides additional
features.

As we stated earlier, in this section we define a process that
will start the container service. A service will run for an indefi-
nite amount of time and will exit only when it is stopped or an
error occurs.

When the main process starts the container service, we wait
until the service is ready to accept connections in order to continue
the process execution. We don’t wait the process to complete
its execution because that would be meaningless. We poll the
service for availability for a timeout period. If the timeout is ex-
ceeded or an error occurs the whole start sequence is aborted.
Otherwise, we continue with the execution of the postMain pro-
cesses.

46 system design

The container service is constantly monitored, in order to be
able to react in case it stops unexpectedly.

Figure 14: Start process group execution flow.

container service initialization When the start pro-
cess group executes successfully, the container service is con-
sidered to be initialized (see also Section 3.7).

3.10.2 Stop Process Group

The stop process group is divided into three sections:

1. preMain. In this section we declare any processes that we
want to be executed before the container service stops. We
can declare as many processes as we want. Declarations
are optional.

2. main. The main section defines the process that stops the
container service. Declaration is mandatory.

3.11 container life-cycle management 47

3. postMain. In this section we declare any processes that we
would like to be executed after the container service has
stopped. We can declare as many processes as we want.
Declarations are optional.

3.10.2.1 Execution

Declared container processes in stop process group are exe-
cuted serially in the order they were declared. A process is
waited to be executed before the next declared process starts.
There is a timeout for the execution of every process to avoid
waiting for a process indefinitely.

There is no abort-on-fail option (see Section 3.10.1.2) in stop
process group, in contrast with start process group, because
when the stop group is being executed the application services
need to stop and the containers cannot revert back to any other
state.

3.11 container life-cycle management

Containers have their life-cycle. A containerized web applica-
tion requires the user to control the life-cycle of many con-
tainers which is very demanding. Our tool provides life-cycle
management for the containers of a web application. It fully
automates the process of how containers are created, started,
stopped and deleted. We achieve that with a two step approach.
First, we provide a way to describe how every state is accom-
plished (see Section 3.4). Second, we introduce an execution
mechanism (see Section 3.10) to support the execution of the
described functionality.

In Figure 17 we can see the life-cycle of a container managed
by the tool.

3.11.1 Create

A container is created based on the characteristics that we have
defined using the <docker> tag. Listing 5 shows the available
fields.

Listing 5: The <docker> tag in application description.

<docker>

<image>

<!-- data settings -->

48 system design

Figure 15: Managed container life-cycle.

<volumes>

<volumesFrom>

<bindMnt>

<hostPath>

<containerPath>

</bindMnt>

<copy withRootDir="true/false">

<hostPath>

<containerPath>

</copy>

<!-- network settings -->

<publishPort protocol="tcp/udp">

<hostIp>

<hostPort>

<containerPort>

</publishPort>

<publishAllPorts>

<privileged>

</docker> �
The <image> tag is used to define the base image for the con-

tainer that holds data, binaries and libraries.
As we can see in Listing 5 there is a data section and a net-

work section. The data settings will be explained in Section 3.12

and the network setting in Section 3.13.
The user provides the create description for the containers of

the application and the tool handles the process of creating all
containers transparently.

3.11 container life-cycle management 49

3.11.2 Start

After a container is successfully created, it is automatically started.
Starting a container means to execute a process that is responsi-
ble for starting the container service. In order to run a service, a
series of actions are usually required. For that reason, we have
designed a mechanism (see Section 3.10) to facilitate process ex-
ecution in containers providing control, flexibility and a clean
interface towards that matter.

Using the <start> tag in application description as we can see
in Listing 6, we can define what processes are going to be exe-
cuted in order to start the container service and accomplish its
desired state. We will explain only in brief Listing 6 as there is
an in detail analysis regarding the design and features of the
execution mechanism in Section 3.10

Listing 6: The <start> tag in application description.

<start>

<preMain abortOnFail="true/false">

...

<main>

<postMain abortOnFail="true/false">

...

</start> �
In the main section we declare a process that will start the con-
tainer service. In the pre/post-main sections we declare processes
to run before (pre) the container service starts and after (post)
it becomes available accepting connections. We set the attribute
abortOnFail if we want to halt on any errors encountered.

Normally, a container is started right after it is created. If any
error occurs in-between, it will not change state. In this case, It
can be later deleted. The container will maintain the start state
until instructed otherwise by the tool.

3.11.3 Stop

A successful service execution concludes with a controlled and
consistent shutdown. The common practice to stop a service
running in a Docker container is to signal the service to stop,
which is unreliable, lucks flexibility, control and the ability to
guarantee data consistency. Our approach provides for con-
trolled service shutdown. In Listing 7 we can see the interface
provided.

50 system design

Listing 7: The <stop> tag in application description.

<stop>

<preMain>

...

<main>

<postMain>

...

</stop> �
The main section is mandatory. We define how to stop the

running service. We may also define processes to run before or
after we initiate the service shutdown.

A stopped container can either be re-started or deleted.

3.11.4 Delete

A container is deleted automatically when the deployed appli-
cation gets deleted. A delete request is always forced in order
to apply independently of the container state. As a result, the
container will be deleted either it is running or not.

3.12 container data management

The ephemeral nature of the containers on one side and the
inherent demand of web applications to persist and share data
on the other, mandate the need to find strategies to manage
container data.

The tool supports four different mechanisms that enable data
management in regard to the following aspects:

• persistence.

• sharing.

3.12.1 Docker Volumes

Using Docker volumes we can persist and share data. Every
volume is a mount point on the container directory tree to a
location on the Docker host directory tree [14]. Docker provides
two types of volumes and Fidelio supports both:

1. managed volumes. We only specify the mount point loca-
tion on the container directory tree while the location on

3.12 container data management 51

the host file system is managed by Docker. Managed vol-
umes have the advantage of being decoupled from spe-
cific locations on the host file system. They provide an
easy way to persist data beyond the container’s scope. We
declare managed volumes using the <volumes> tag in ap-
plication description. As we can see in Listing 8, multiple
declarations are allowed space or newline delimited.

2. bind-mount volumes. The location to the directory tree of
the host file system to which the volume points is speci-
fied by the user. We can use this type to easily share data on
the host with containers. In Listing 8, we see the general for-
mat for declaring a bind-mount volume. We can mount
a volume as read-only/read-write in the container by set-
ting the accessMode attribute.

When using bind-mount volumes, we need to keep in mind
that the binds refer to directories on the Docker host not the host
where Fidelio is running. We use bind-mount volumes on a host
that we have physical access not a remote host.

Listing 8: Data management section in application description.

<docker>

...

<volumes>

/path1/to/container

...

</volumes>

<volumesFrom>

container1

...

</volumesFrom>

<bindMnt accessMode="rw/r">

<hostPath>

<containerPath>

</bindMnt>

...

<copy withRootDir="true/false">

<hostPath>

<containerPath>

</copy>

...

</docker> �

52 system design

3.12.2 Volumes From

If we have some persistent data stored in volumes that we want
to share between containers, or want to use from non-persistent
containers, we may copy the volumes from one container to
another. For that purpose, we can use the <volumesFrom> tag in
application description. Copying of volumes is transitive, so if
we copy the volumes from a container we will also copy the
volumes that it has copied. When using this option we should
keep in mind that:

1. re-mapping of mount points is not supported.

2. volume sources that use the same mount point conflict.

3. the write permissions set on a copied volume cannot be
changed.

3.12.3 Copy

The tool provides a copy option so that we can transfer data from
a host to a container. This is useful especially when we do not
have physical access to the Docker Host such as with remote
Docker hosts or in a cluster and as a result we cannot use bind-
mount volumes to share data between the host and containers.
In Listing 8, we can see the declaration format for using this
option in application description. Multiple declarations are al-
lowed. We also provide the withRootDir attribute which if set
copies the contents of the defined resource with the root dir.

3.13 container networking

There are two ways with which Fidelio supports the network-
ing of containers. The first is through network settings that can
be defined per container in application description. The second
is by integrating with Docker networks and deploying contain-
ers in custom-created per application networks.

3.13.1 Container network settings

The available network settings for a container are listed in List-
ing 9.

Listing 9: Network settings of container in application description.

3.13 container networking 53

<publishPort protocol="tcp/udp">

<hostIp>

<hostPort>

<containerPort>

</publishPort>

<publishAllPorts> �
The <publishPort> tag binds a port on the container to the host.

We can use this option to make a container service available
to inbound network traffic by providing access to the mapped
host port. If the host port is not defined, a random high-numbered
port will be chosen. This is useful so that we avoid conflicts by
binding two container ports to the same host port. The host in-
terface on which to expose the port may also be specified. It
allows container services to be contacted through a specific ex-
ternal interface on the host machine. If no host interface is set,
the port is exposed to all interfaces.

Docker containers usually have network ports exposed. Ex-
posing a port is a means of documenting which ports provide
services. We can automatically bind all those ports to the host
using the <publishAllPorts> tag. This option uses available ran-
dom high-numbered ports and avoids conflicts.

3.13.2 Application Defined Networks

Fidelio uses Docker networks by default for container network-
ing. For every web application, the tool creates a new custom
network that all the containers join. The custom network provides
isolation for the containers which are not accessible from any
interface. If a container service needs to be exposed, we can
publish the container port and Docker will make sure to write
the required routing rules to allow network traffic.

The custom application network is created using the default
Docker driver which differs according to the deployed environ-
ment. The available options are:

• bridge. This driver is used to create networks on single-host
environments.

• overlay. Used to create networks on swarm cluster environ-
ments that span multiple hosts.

Fidelio manages the life-cycle of networks automatically. A new
network is always created in order to deploy a web application
and gets removed when the application is deleted.

54 system design

3.14 tasks

Tasks provide extra functionality by the tool so that certain ac-
tions are facilitated and automated. A task is a function of some
type. Our design allows for integrating new Tasks using the Ap-
plication Programming Interface (API). We have designed and
integrated one Task with the tool which we will inspect right
away.

3.14.1 Substenv

This task performs environment variable substitution in configura-
tion files so that the user does not have to do it manually. All the
variables that constitute the container’s environment (declared
in container’s environment description or its dependencies) are
expanded. Environment variable declarations in configuration
files must comply to the following format: ${env_var}. Substi-
tution is performed before any declared processes from the con-
tainer’s start section get executed.

In addition, the task can automatically restore the edited con-
figuration files to their previous form after the container ser-
vice stops. The action is applied after the stop section of the
container’s description is executed. In Listing 10 we can see the
declaration format of the task in application description.

Listing 10: SubstEnv task format in application description.

<tasks>

<substEnv>

<filePath restoreOnExit="true/false">/path/to/

container</filePath>

...

</substEnv>

</tasks> �
3.15 cluster deployment

Fidelio supports deployment of containers in cluster environ-
ments. The tool transparently integrates with Docker Swarm to
provide deployment in Swarm clusters. Docker Swarm is native
clustering for Docker hosts. Fidelio does not require any cus-
tom settings, other than those used with single Docker hosts,
to enable cluster deployment (see Section 3.3). In Figure 16,

3.16 user interface 55

we can see a system overview when deploying containers to
a swarm cluster.

When deploying on clusters we should use the data and net-
work settings for containers that offer support for remote hosts
(see Section 3.12, Section 3.13).

Figure 16: System overview with swarm cluster.

3.16 user interface

We have designed a simple user interface that provides basic
commands to manage the deployment of web applications with
Fidelio.

The available commands of the interface are:

• start. Starts the deployment of a web application.

• stop. Stops a deployed web application.

• restart. Restarts a deployed web application.

• delete. Deletes a deployed web application.

56 system design

All the configuration settings for the tool can be set from the
command line with command line options. The full description
of the user interface with command syntax and available com-
mand line options can be found at Section A.2.

3.17 coordination service

As stated in Section 3.2 our tool transparently integrates with
Apache Zookeeper, a distributed coordination service for dis-
tributed applications. Fidelio uses Zookeeper as:

• configuration store. All the configuration for a deployed
web application is stored in Zookeeper. Fidelio manages
the configuration of services and enables more advanced
operations.

• service registry. Services register themselves with Zookeeper
in order to be discovered.

• service for distributed coordination. Dependent services of an
application synchronize their actions through Zookeeper.

We will now give a simple and brief overview of the Zookeeper
design.

3.17.1 Zookeeper Design

The basic design features of Zookeeper are:

• simplicity. Zookeeper offers a shared hierarchical names-
pace resembling a standard file system. The namespace
uses data units called znodes. The namespace is stored in
memory and as a result each znode holds up to 1MB of
data (can be increased but is strongly advised not to).

• replication. A set of hosts over which Zookeeper is repli-
cated consist the Zookeeper ensemble. The service is avail-
able as long as a majority of the servers are available. A
client connects to a single server.

• speed. Very fast in read-dominant workloads, where reads
are more common than writes, at ratios of around 10:1.

• ordering. Every update is stamped with a number that in-
dicates the order of all Zookeeper transactions. Based on
that, synchronization primitives can be implemented.

3.17 coordination service 57

3.17.2 Zookeeper Data Model

Zookeeper provides a hierarchical namespace where every zn-
ode in the namespace is identified by a path, stores data and
can have children. Znodes can be ephemeral which means that
they exist as long as the session that created the znode is ac-
tive. Moreover, zooKeeper supports the concept of watches for
znodes which can be registered by clients. A watch will be trig-
gered and removed when the znode changes.

4
I M P L E M E N TAT I O N

In Chapter 3 we introduced the general design of our tool. In
this chapter, we will review important aspects of the implemen-
tation and inspect the internal structure of the tool.

Fidelio is a tool built to manage containerized web applica-
tions. It was developed using the Java programming language.
The tool has two modules, the core module that runs the pro-
gram and the broker module that runs inside all deployed con-
tainers of an application. It is released under the GNU General
Public License v3.0[1] and it is free software.

4.1 libraries

We will refer in brief to the software used by Fidelio. All li-
braries are GPL compatible[4].

4.1.1 Zookeeper

One of the key features of our tool is that it integrates with
Apache Zookeeper. We use the Java binding of the Zookeeper
client library. The library is used to establish communication
with the Zookeeper ensemble and issue requests. The provided
API enables us to create the required functionality to support
distributed synchronization, service discovery and configura-
tion management. The API comes in two versions: a synchronous
and an asynchronous [20][7]. We make extended use of the
asynchronous version, that does not block, implementing an
event-driven design and increasing concurrency. We also make
little use of the synchronous version when we want to dispatch
a request and process the response right away in order to con-
tinue execution. We will see in detail both programming pat-
terns in Section 4.4.

4.1.2 Docker java client

A Docker client is required so that the tool can communicate
with the Docker daemon. We use the docker-java-client for that

59

60 implementation

purpose. The client uses the remote Docker API to talk to the
Docker daemon. It handles all the interactions concerning the
Docker platform.

4.1.3 Sl4j

This library allows the end user to plug in the desired logging
framework at deployment time.

4.1.4 Log4j

Log4j is the default logging framework bundled with our soft-
ware for logging. It requires a configuration file for initializa-
tion which makes it easy to use and customize. It is also re-
quired from the Zookeeper client library.

4.1.5 JCommander

We use this library to parse command line arguments. It has a
simple interface and parsing is quite straightforward. It allows
to define options and commands for parsing with minimum
effort while giving us control over the processing. The library
supports the provided user interface.

4.2 contributions

In the process of the tool’s development we have made contribu-
tions to the docker-java-client library, which is an important unit
for our software. We have added functionality to the library,
corrected bugs and implemented unit tests for the contributed
code. The code can be found here [9].

4.3 concepts

4.3.1 Handlers

The modules of our tool are concerned with disparate resources.
We consider a resource to be an entity to which we can apply
an action. An action defines a way to manipulate a resource
towards an end. In order to apply actions we need a provider.
Therefore, we introduce the concept of the handler. A handler

4.4 programming with zookeeper 61

is a provider for actions on resources. It manipulates resources by
applying actions and performing operations.

The concept of the handler allows for a very modular de-
sign. For every resource or collection of resources we assign a
handler. As a result, the domain of resources is partitioned to
sub-domains, with each sub-domain providing knowledge that
is manipulated by a handler. The actions applied by a handler
constitute the API that is exposed to other components.

4.4 programming with zookeeper

The Zookeeper API provides both synchronous and asynchronous
methods. Our implementation is mostly event-driven and there-
fore we rely heavily on the asynchronous programming paradigm.
There are cases though, that we use synchronous methods, for
example when we want the execution to continue based on a
processed response and we do not want any concurrent actions
to happen. We are going to present the patterns used for asyn-
chronous and synchronous requests.

4.4.1 Asynchronous Pattern

The asynchronous methods of the Zookeeper API have the ad-
vantage that they do not block. A method is executed and re-
turns immediately. All the asynchronous methods have void
return types. The result of the operation is conveyed via a call-
back. A callback implementation is passed by the caller. The
callback’s method is invoked when a response is received from
ZooKeeper.

A common pattern we use with the asynchronous methods
is:

1. Make an asynchronous call.

2. Implement a callback object and pass it to the asynchronous
call.

3. If the operation requires setting a watch, then implement
a Watcher object and pass it on to the asynchronous call.

A code sample for this pattern using the getData zookeeper
method follows:

Listing 11: Pattern example for asynchronous zookeeper getData call.

62 implementation

// make synchronous method call

zk.getData("/aZnode",
getDataWatcher,

getDataCallback,

null);

Watcher getDataWatcher = new Watcher() {

public void process(WatchedEvent e) {

// process the watch event

}

}

DataCallback getDataCallback = new DataCallback() {

@Override

public void processResult (int rc, String path,

Object ctx, byte[] data, Stat stat) {

// process the result of the getData call

}

}; �
Initially, we use the getData method to make an asynchronous

call. We implement a callback and a watcher (if necessary) and
pass them to the method call. When a response is received the
callback’s method gets invoked and its code gets executed. The
watcher’s method will be invoked when an event happens.

We use this pattern extensively in our implementation.

4.4.1.1 Response Processing

Zookeeper library has a single dedicated callback thread that
processes responses to asynchronous calls. Responses are pro-
cessed in the order they are received. We do not do intensive
operations or blocking operations in a callback because if a call-
back blocks, it blocks all the callbacks that follow it.

The callback’s method that gets invoked has a return code ar-
gument which is a code that corresponds to a KeeperException
if not zero. We convert the code to an enum and use switch to
handle cases. In Listing 12 we can see the general structure.

Listing 12: Response processing in callback.

switch (KeeperException.Code.get(rc)) {

case CONNECTIONLOSS:

// make again asynchronous method call

break;

case OK:

4.4 programming with zookeeper 63

// process result

break;

default:

// default action on other error codes

LOG.error("Something went wrong: ",
KeeperException.create(KeeperException.Code.

get(rc), path));

} �
connectionloss The ConnectionLoss code is returned when
the client becomes disconnected from a ZooKeeper server be-
cause of a network partition or a failure of the server. When this
happens, the client does not know whether the request issued
was processed by the server and the response was lost or if the
request was not processed at all. The library handles the con-
nection of future requests but we need to determine whether
the request was processed or not in order to reissue it.

We handle connectionLoss by reissuing the request and pro-
cessing the result accordingly.

4.4.2 Synchronous Pattern

For every asynchronous method of the Zookeeper API there is
a synchronous equivalent. The synchronous method calls block
until a response is returned. A common pattern we use with
the synchronous methods is:

1. Make a synchronous call.

2. Implement the required logic to process the response of
the synchronous call.

3. If the operation requires setting a watch, then implement
a Watcher object and pass it on to the synchronous call.

A code sample for this pattern using the getData zookeeper
method follows:

Listing 13: Pattern example for synchronous zookeeper getData call.

// make synchronous method call

byte[] data = zk.getData(zkPath, getDataWatcher, null);

// process the result of the getData call

Watcher getDataWatcher = new Watcher() {

64 implementation

public void process(WatchedEvent e) {

// process the watch event

}

} �
4.4.2.1 Exception Handling

Processing of a response from a synchronous method call hap-
pens right after the method call, as a result of blocking and
waiting the server.

A synchronous method call throws a KeeperException and In-
terruptedException which we handle in a try/catch block.

connectionloss exception In order to handle the Con-
nectionLoss exception, we wrap the method call to a while loop,
so that we can reissue it and process it accordingly.

interrupted exception Because we use the method call
in a while loop, we catch the InterruptedException log it, set the
interrupt status and exit the loop in order to stop execution.

In Listing 14 we can see how all the above are combined.

Listing 14: Exception handling with synchronous method call.

while (true) {

try {

// make synchronous method call

byte[] data = zk.getData(zkPath, getDataWatcher,

null);

// process result

break;

} catch (InterruptedException ex) {

// log event

LOG.warn(" Interrupted . Stopping");
// set interupt flag

Thread.currentThread().interrupt();

break;

} catch (ConnectionLossException ex) {

LOG.warn("Connection loss was detected ! Retrying . . . "
);

} catch (KeeperException ex) {

LOG.error("Something went wrong { } ", ex.getMessag())

;

break;

}

4.5 xml schema 65

} �
4.5 xml schema

In order to be able to deploy and manage a containerized web
application, the tool requires a description of the web applica-
tion. The description must be provided in a document written
in Extensible Markup Language (XML) . We use an XML schema
in order to express constraints about the XML document. There
are several different schema languages. In our approach we use
W3C XML Schema Definitions (XSD).

4.6 core module

The core module has several sub-systems/packages in order
to provide its functionality. It implements a modular design
with respect to the separation of concerns [11]. Proceeding with
our analysis we will present all the sub-systems of the core
module and analyze the provided functionality along with the
components that build each unit.

4.6.1 Boot

The boot package is responsible for booting the tool. It contains
the entrypoint of the program. We also define one class with the
command line arguments to be parsed and another one to hold
the program’s configuration.

When the program boots a series of actions happen:

• the command line arguments are parsed.

• the program’s configuration is set and checked for initial-
ization.

• if no errors encountered, control is passed to the sub-
system handling commands.

In Listing 15 we see the structure of the boot package.

Listing 15: Boot package

|-- boot

| |-- cl

| |-- CliOptions.java

66 implementation

|-- Main.java

|-- ProgramConf.java �
The tool loads by default the files with the program’s configu-

ration and logging properties found in the currently executing
path.

4.6.2 Cmd

Here we specify all the commands of the tool. Every command
must extend the abstract class Command. We define a class that
handles the execution of the commands, the CommandHandler. The
handler class implements the Commandable interface which
enables the execution of the commands.

In Listing 16 we see the structure of the cmd package.

Listing 16: Cmd package

|--cmd

|-- Commandable.java

|-- CommandHandler.java

|-- Command.java

|-- DeleteCmd.java

|-- RestartCmd.java

|-- StartCmd.java

|-- StopCmd.java �
4.6.3 Xml

This is a simple sub-system that does all the xml processing for
the tool. We define an XmlProcessor that has the following re-
sponsibilities:

• validates the xml file with the application description.

• validates the xml schema file.

• validates the xml file against the xml schema.

• un-marshals the xml file to Java Objects (binding).

4.6.4 Schema

In this package we include all the classes that are generated
from the xml schema. We use Java Architecture for Xml Binding

4.6 core module 67

(JAXB) for that purpose. The classes are used for marshaling/un-
marshaling operations between xml and Java Objects.

4.6.5 Analyzers

Although we use the xml schema to express constraints on the
application description xml document, we define the analyzers
package to enable more refined restriction control that cannot be
performed using the schema.

An analyzer of some type is a class whose instances are used
to check if a condition applies. We define two analyzers:

• DependencyAnalyzer. Provides methods to verify that the
declared dependencies of a web application form a DAG.

• ContainerNameAnalyzer. Provides methods to assure the
uniqueness of container names.

Moreover, we define an Analyzer class which includes instances
of all analyzers. We create an instance of this class which pro-
vides access to all analyzers and their methods in order to check
the required conditions.

In Listing 17 we see the structure of the analyzers package.

Listing 17: Analyzers package

|-- analyzers

|-- Analyzer.java

|-- ContainerNameAnalyzer.java

|-- DependencyAnalyzer.java �
4.6.6 Handlers

In Section 4.3.1 we introduced the reader to the concept of the
handler. For the core module we define in the handlers package
two handlers:

1. ContainerHandler. This is a very important class whose in-
stances provide access to all the defined container descrip-
tions. We use it to extract and manipulate the information
stored for containers.

2. NetworkHandler. Class whose instances handle the interac-
tion with the networks for the deployed application. We
use it to manage the life-cycle of networks.

68 implementation

In Listing 18 we see a code snippet with some method signa-
tures from the API of ContainerHandler.

Listing 18: Code snippet with some method signatures from Contain-
erHandler.

/**

* Lists the available containers.

* @return the list with the available containers.

*/

List<Container> listContainers()

/**

* Lists the available containers of WebContainer type.

* @return the list with the available containers.

*/

List<WebContainer> listWebContainers()

/**

* Lists the available containers of BusinessContainer

type.

* @return the list with the available containers.

*/

List<BusinessContainer> listBusinessContainers()

/**

* Lists the available containers of DataContainer type.

* @return the list with the available containers.

*/

List<DataContainer> listDataContainers() �
4.6.7 Serializer

The serializer package handles the serialization/de-serialization
of objects to/from byte arrays. We use JAXB for all operations.

All data stored to Zookeeper are stored in bytes. As a result,
we need to serialize our objects to byte arrays in order to store
them and when we retrieve them we need to de-serialize the
byte arrays to objects so that we can use them.

We define a class the JAXBSerializer which provides the API
to handle all serialization/de-serialization operations for our
objects.

4.6 core module 69

4.6.8 Zookeeper

The Zookeeper package contains components necessary for the
interaction with Zookeeper.

First of all, we define a class ConnectionWatcher that handles
the connection to the Zookeeper servers. The class defines two
methods:

• connect. Establishes a connection with a server of the Zookeeper
ensemble.

• closeSession. Closes a client session.

Apart from that, we define the ZkConf class to:

• hold all the configuration of the application that is stored
to Zookeeper.

• store configuration that the tool needs and it is not up-
loaded to Zookeeper.

• define the application namespace that is created to Zookeeper
and initialize its data.

• create the name id with which an application is deployed.

Moreover, we use an instance of the ZkMaster class for all our
interactions with Zookeeper. The ZkMaster is responsible for:

• creating the application namespace to Zookeeper.

• cleaning the application namespace from Zookeeper.

• listing and monitoring the running services of an applica-
tion.

• providing an interface to issue requests to Zookeeper servers
for other objects.

In this package there is also the ZkNamingService class that
provides methods to facilitate the interaction with the naming
service for the application. All data for a service are stored to a
ZkNamingServiceNode.

In Listing 19 we see the structure of the zookeeper package.

Listing 19: Zookeeper package

|-- zookeeper

|-- ZkConf.java

70 implementation

|-- ZkConnectionWatcher.java

|-- ZkMaster.java

|-- ZkNamingService.java

|-- ZkNamingServiceNode.java

|-- ZkNode.java

|-- ZkSrvConf.java �
4.6.9 Docker

The Docker package defines a DockerInitializer that creates and
initializes a Docker client that is used from the tool for commu-
nication with the Docker daemon.

4.6.10 Broker

The broker package is not to be confused with the Broker mod-
ule of the tool. We define a core Broker class that is used to
interact with a container. We use a BrokerInit class to initialize,
start, manage the Brokers and invoke the appropriate methods
depending on the user command.

BrokerInit uses an executorService that runs operations of Bro-
kers on different threads. A Broker operation is wrapped to a
Future object. We wait for all operations to succeed in order to
continue execution. There is a timeout period that each task
must be executed, so that we don’t wait for a task forever. If an
unrecoverable error occurs pending operations are cancelled.

All the Brokers contact the Docker daemon to issue requests
about containers. They handle the life-cycle of the containers.
There is a Broker definition for every container type.

In Listing 20 we see the structure of the broker package.

Listing 20: Broker package

|-- broker

|-- BrokerInit.java

|-- Broker.java

|-- BusinessBroker.java

|-- ContainerLifecycle.java

|-- DataBroker.java

|-- WebBroker.java �

4.7 broker module 71

4.7 broker module

The Broker module is comprised of several sub-systems/packages
which will be described in the following sections.

4.7.1 Boot

The boot package of the Broker module contains the entrypoint
for the module. It creates an instance of a Broker class which
takes control and runs the program.

4.7.2 Env

The env package is concerned with the container environment. The
container environment consists of all the environment variables
defined in the application description for the container along
with all the environment variables of its declared dependencies.
The package defines three components/classes that support the
required functionality for the environment according to the de-
sign.

We define an EnvironmentMapper class that will map the schema
resource containing the container environment information to
a resource that is used by the tool. This mapping provides flex-
ibility in development in case there are changes in the schema
resource. As a result, the code does not break and the com-
ponents are not dependent from the low level details of the
schema resources.

We define an Environment class that represents a resource for
the tool to which the schema resource is mapped. This class en-
capsulates all the information about the container environment.

Finally, we use a EnvironmentHandler that acts on the Envi-
ronment resource. The handler creates the environment that is
injected to containers. Because the user customizes the declared
container environment at will, we do not know beforehand the
fields declared. For that reason, we use reflection to get the de-
clared name fields and then we create all the key-value pairs
for the environment variables.

In Listing 21 we see the structure of the env package.

Listing 21: Env package of Broker module.

|-- env

|-- EnvironmentHandler.java

|-- Environment.java

72 implementation

|-- EnvironmentMapper.java �
In Listing 21 we see the UML diagram of the Environmen-

tHandler.

Figure 17: UML diagram of EnvironmentHandler in Broker module.

4.7.3 Process

The process package defines all the necessary components to sup-
port the process execution mechanism of the tool. We will present
the mechanism using a bottom-up analysis.

We start by defining the class ProcessData. This class holds
all the data of a process. The data include the environment, all
the environment variables that are injected at runtime and the
execution resource, the cmd/script to execute, its arguments and
any properties.

We define the Executable interface that is used as a container
for code to be executed. It is a functional interface used to pass
lambda expressions.

We go on and define a ProcessHandler. This is an abstract tem-
plate class that provides methods to manage the life-cycle of

4.7 broker module 73

a process. The handler provides the API to handle a process
and its execution. A ProcessHandler is associated always with
a ProcessData instance and two objects of type Executable that
their code is executed upon success or failure of the process. We
provide a concrete implementation of a ProcessHandler the De-
faultProcessHandler and a more advanced for the main container
process the MainProcessHandler.

Moreover, according to the design we saw in Section 3.10 we
need two process groups. For that purpose, we define an ab-
stract template class the GroupProcessHandler which describes
how a group of processes are executed. We provide two con-
crete implementations of this class which will inspect in the
sections below.

4.7.3.1 Start

The process execution mechanism has a start group, that exe-
cutes all the required processes to start and initialize the con-
tainer service. The start package contains the classes that are nec-
essary to support the functionality of the start group. For that
purpose, we define the StartGroupProcessHandler which is a sub-
class of the GroupProcessHandler. It handles the execution of
the start process group.

The ProcessData class is also sub-classed by the MainProcess-
Data in order to define additional information necessary to the
main container process.

Apart from that, we define the MainProcMon class that pro-
vides methods to monitor the main process at all states (initial-
ization, start, stop).

4.7.3.2 Stop

In the stop package we define the StopGroupProcessHandler to en-
able the execution of the stop group processes. This section
does not require any custom logic for the main process.

4.7.3.3 Process Manager

On top of all these components is the ProcessManager class, which
is the top-level component of the process execution mechanism,
enabling the process execution of all groups. In Figure 18 we
can see the UML diagram of the ProcessManager that shows
its internal structure and the connections between its compo-
nents.

74 implementation

Figure 18: The uml diagram of ProcessManager

In Listing 22 we see the structure of the process package.

Listing 22: Process package of Broker module.

|-- process

|-- DefaultProcessHandler.java

|-- Executable.java

|-- GroupProcessHandler.java

|-- ProcessData.java

|-- ProcessHandler.java

|-- ProcessManager.java

|-- Resource.java

|-- ResourceMapper.java

|-- start

|-- MainProcessData.java

|-- MainProcessHandler.java

|-- MainProcMon.java

4.7 broker module 75

|-- StartGroupProcessHandler.java

|-- StartResMapper.java

|-- stop

|-- StopGroupProcessHandler.java

|-- StopResMapper.java �
4.7.4 Services

The services package maintains control over the services required
by the container. The container needs the configuration from
the services in order to initialize and also to ensure that the
required services are initialized (not just running) in order to
start the main container process.

We define the ServiceManager class that encapsulates all the in-
formation about the service-dependencies of the container. The
service manager is queried for information about the required
services. It maintains a configuration status that indicates if the
configuration of a dependency was processed and a service sta-
tus that indicates if the dependency is initialized.

When all required services are processed and initialized the
execution of the start process group of the container is initiated.

In Listing 23 we see the structure of the services package.

Listing 23: Services package of Broker module.

|-- services

|-- ServiceManager.java

|-- ServiceNode.java �
4.7.5 Tasks

The tasks package contains the components that provide the
functionality for tasks. We support one task that substitutes en-
vironment variables to configuration files. Edited files can also
be restored to their previous state, if we want to. We define a
TaskHandler that provides an API to add and execute defined
tasks. We provide the Task interface that must be implemented
from classes whose instances provide a task.

In Listing 24 we see the structure of the tasks package.

Listing 24: Tasks package of Broker module.

|-- tasks

76 implementation

|-- RestoreFilesTask.java

|-- SubstEnvTask.java

|-- TaskCreator.java

|-- TaskHandler.java

|-- Task.java

|-- TaskMapper.java �
4.7.6 Shutdown

The shutdown package defines an interface that must be imple-
mented from classes that need to perform shutdown operations.
The interface defines two methods:

• shutdown. Contains the logic to perform all necessary op-
erations (release resources, signal threads to terminate e.t.c.)
for normal shutdown.

• waitForShutdown. Blocks and waits for shutdown.

Moreover, we define a ShutdownNotifier class that is used to
give us more control on the shutdown process for multiple com-
ponents such as when to notify them to initiate shutdown.

In Listing 25 we see the structure of the shutdown package.

Listing 25: Shutdown package of Broker module.

|-- shutdown

|-- Shutdown.java

|-- ShutdownNotifier.java �

5
C O N C L U S I O N S / F U T U R E W O R K

Alone we can do so little;
together we can do so much.

— Helen Keller

5.1 conclusions

In this Thesis we designed and implemented a tool that enables
the user to manage multi-container web applications in single-
host and cluster environments. In Section 1.2 we analyzed thor-
oughly the complexity of such an approach along with all the
services that must be supported in order to provide a complete
and robust solution. Existing tools do not address this matter
adequately and only provide a portion of the required services
leaving the rest to be handled by the user. On the contrary, as
we have seen we have managed to offer all the capabilities that
provide for a functional solution:

• service discovery. Services are able to discover required ser-
vices, monitor their health and get the required configura-
tion to enable connectivity.

• service coordination. Synchronization between dependent
services is decentralized and handled transparently, pro-
viding high-quality guarantees to support application and
data consistency.

• configuration management. Configuring containers is facil-
itated through a container agnostic design. We provide
a fully customized environment along with automated
tasks to decouple configuration from service instances. In
addition, the application configuration is stored in a dis-
tributed configuration store which provides control and
flexibility in order to implement more advanced opera-
tions.

• integrated process execution mechanism. The life-cycle of a
container service is easily handled with an execution en-
gine which facilitates process execution and provides con-
trol at all stages.

77

78 conclusions / future work

• container life-cycle management. The life-cycle of all the con-
tainers that comprise a containerized web application is
automatically managed by our tool, providing simple com-
mands with which the user accomplishes each task.

• container data management. Containers can easily store per-
sistent data, share data with other containers or hosts and
copy data from hosts.

• container networking. Network settings for containers man-
age the exposure of a container service to the host while
containers of an application are deployed on custom net-
works for isolation.

• swarm cluster support. Deploying containers of an applica-
tion to swarm clusters is handled transparently.

5.2 future work

5.2.1 Web User Interface

The tool provides a simple command line user interface in order
to manage the containerized web applications. What is more,
the containers of a web application that we want to deploy, are
described in an xml file. However, users react better on visual-
ized information.

We propose the implementation of a web-based user inter-
face for the tool. First of all, it will facilitate the container dec-
larations for an application. The user will use the interface to
select the required fields and set data. Validating data will be
performed at the time of input and not at runtime anymore.
Furthermore, visualization of information concerning the de-
ployed containers of an application can be easily supported.
Finally, managing the life-cycle of many applications can be
greatly simplified.

5.2.2 Dynamic re-configuration

All services are initialized using configuration information. Dur-
ing their life-cycle, services often need to update their settings.
Distributed services though, usually have dependencies from
other services. As a result, they need access to the configura-
tion information of the services they depend on in order to be
able to connect and communicate or perform more advanced

5.2 future work 79

tasks. When a service updates its configuration, dependent ser-
vices must be notified, download the new configuration and
react accordingly to the change of state based on their current
context. This behavior is called dynamic re-configuration.

Fidelio provides configuration management and coordination
of distributed services but the containerized services of an ap-
plication cannot react on the updated state of a service. We pro-
pose the further design and implementation of a mechanism
that will enable dynamic re-configuration. Some necessary fea-
tures are already integrated, such as notifications and monitor-
ing of services’s state. The description of the web application
must be enriched, defining a separate section that will describe
the necessary steps the container service must take when a ser-
vice dependency is updated. In addition, the new section has
to be integrated into the process execution mechanism to en-
able its execution. Concluding, this is a very powerful feature
that will enable deployed applications to dynamically adjust on
changes in a distributed manner.

5.2.3 Container settings

The Docker platform, by leveraging the Linux Kernel technolo-
gies, provides many configuration settings for the containers in
order to create a fully customized runtime environment. Fide-
lio encapsulates a small portion of these settings, as it is not
its purpose to offer the best possible integration with all the
available container settings.

On a future approach, we propose the integration to the tool
of more container configuration settings. This can be achieved
by customizing the xml schema to support those declarations
and enabling their definition in the application description. Due
to our clean design the required additions to the code can be
easily supported.

5.2.4 Cluster platforms

Fidelio transparently supports the deployment of containers in
swarm cluster environments. Docker Swarm offers native clus-
tering for Docker hosts. However, other cluster platforms have
started to emerge such as Kubernetes and Mesos.

A future task would be to enable support for other cluster
platforms. This will increase the tool’s usefulness to the end

80 conclusions / future work

user and also provide a standard means of managing multi-
container web applications on different clusters.

5.2.5 Network customization

Docker user defined networks is a relatively new addition to
the container platform. Docker offers two drivers for user de-
fined networks and Fidelio supports both. Network plugins
have already been developed to support custom features for
container networking.

As a future addition to the tool, we propose the support of
network plugins for containers. It will enhance the network
capabilities of applications and provide users with more flex-
ibility on creating the desired network topologies and environ-
ments for their applications.

5.2.6 Data management

Fidelio supports container data management in respect to data
persistence and sharing with Docker volumes. Data manage-
ment is a very crucial aspect when deploying containerized dis-
tributed applications.

We propose to further integrate the tool with volume plugins.
This addition will account for greater flexibility on how applica-
tion data are persisted, shared and accessed providing custom
solutions to the user when required.

Part III

A P P E N D I X

A
A P P E N D I X

a.1 fidelio configuration file

The general structure of the configuration file, along with the
fields per section, is:

1. Zookeeper: This section contains the necessary information
to establish communication with the Zookeeper ensemble.
The fields are:

• zk.hosts the server list for the Zookeeper servers, in
the format ip:port,ip:port,...

• zk.session.timeout the client session timeout in ms.

2. Xml Schema: Here we specify an xml schema file that will
validate the xml application description file. The field is:

• xml.schema.path.

3. Docker: All initialization information concerning the Docker
platform is specified here. Available fields are:

• docker.host the Docker Host URL e.g. tcp://ip:port or
unix:///socket.

• docker.tls.verify (optional -default value is false if not
set) enable/disable TLS verification (switch between
http and https protocol).

• docker.cert.path (optional -required if TLS enabled) path
to the certificates needed for TLS verification.

• docker.config (optional) path for additional docker con-
figuration files (like .dockercfg).

• docker.api.version (optional) the API version e.g. 1.21.

• docker.registry.url (optional) the url of a private image
registry.

• docker.registry.username (optional) the username for
the registry (required to push containers).

• docker.registry.password (optional) the password for the
registry.

• docker.registry.mail (optional) the registry mail.

83

84 appendix

4. Logging: The tool uses the log4j framework for logging, so
a file defining a log4j configuration is expected. The field
is:

• log4j.properties.path.

An example of the program’s configuration is shown at List-
ing 26

Listing 26: Fidelio.properties file example.

----------------- Mandatory Fidelio Conf -----------------

ZOOKEEPER CONF

zk.hosts=192.168.1.6:2181

zk.session.timeout=5000

XML SCHEMA

xml.schema.path=/home/fidelio/schema.xsd

DOCKER CONF

docker.host=tcp://192.168.1.6:4376

LOG CONF

log4j.properties.path=/home/fidelio/log4j.properties

----------------- Optional Fidelio Conf -----------------

enable/disable TLS verification

docker.tls.verify=true

Path to the certificates needed for TLS verification

docker.cert.path=/home/fidelio/certs

path to additional docker conf files (like .dockercfg)

docker.config=

The API version, e.g. 1.21.

docker.api.version=1.22

Your registry’s address.

docker.registry.url=http://192.168.1.6:5000

Your registry username (required to push containers).

docker.registry.username=user

Your registry password.

docker.registry.password=pass

Your registry email.

docker.registry.email=mail �
a.2 fidelio command line interface

Below we present the command line interface of Fidelio:

A.2 fidelio command line interface 85

Listing 27: Fidelio Command Line Interface.

Usage: fidelio [options] [command] [command options]

Options:

-c, --conf

<program conf> Path to .properties file with program

configuration.

-d, --dockerOpts[]

Docker options [host=<tcp://ip or unix:///socket>,tls

=<true to enable

https>,cert=<path to certs for tls>,config=<path to

config like .dockercfg>,api=<api

version>,regUrl=<registry url>,regUser=<regisrty

username>,regPass=<registry

password>,regEmail=<registry email>]

-h, --help

Show this help message :).

-l, --log

<log4j properties> Path to log4j.properties file with

log configuration.

-v, --version

Show program version.

-z, --zkOpts[]

Zookeeper options [hosts=<host1:port1,host2:port

2...>,timeout=<zk client

session timeout>]

Commands:

start Start application deployment.

Usage: start [options]

Options:

-h, --help

Help for start command.

-x, --xmlFile

<app xml file> Path to application description

xml file.

-s, --xmlSchema

<schema file> Path to xml schema file.

stop Stop deployed application.

Usage: stop [options] <app id> The id of the deployed

application to stop.

Options:

-h, --help

Help for stop command.

restart Restart deployed application.

86 appendix

Usage: restart [options] <app id> The id of the

deployed application to restart.

Options:

-h, --help

Help for restart command.

delete Delete deployed application (zookeeper

namespace and docker containers).

Usage: delete [options] <app id> The id of the

deployed application to delete.

Options:

-h, --help

Help for delete command. �
a.3 container description format

A container description follows the following format.

Listing 28: Container description.

<ContainerType>

<serviceName>

<requires>

<docker>

<image>

<volumes>

<volumesFrom>

<bindMnt accessMode="rw/r">

<hostPath>

<containerPath>

</bindMnt>

<copy withRootDir="true/false">

<hostPath>

<containerPath>

</copy>

<publishPort protocol="tcp/udp">

<hostIp>

<hostPort>

<containerPort>

</publishPort>

<publishAllPorts>

<privileged>

</docker>

<start>

<preMain abortOnFail="true/false">

A.3 container description format 87

<main>

<postMain abortOnFail="true/false">

</start>

<stop>

<preMain>

<main>

<postMain>

</stop>

<tasks>

<substEnv>

<filePath restoreOnExit="true/false">

</substEnv>

</tasks>

<env>

<host_port>

<env_declaration>

</env>

</ContainerType> �

B I B L I O G R A P H Y

[1] Gnu general public license, version 3. URL http://www.

gnu.org/licenses/gpl.html.

[2] Jonathan Corbet. Seccomp and sandboxing, May 2009.
URL https://lwn.net/Articles/332974/.

[3] Jendrock Eric, Cervera-Navarro Ricardo, Evans Ian, Haase
Kim, and Markito William. Java Platform, Enter-
prise Edition: The Java EE Tutorial, Release 7, Septem-
ber 2014. URL https://docs.oracle.com/javaee/7/

tutorial/overview003.htm.

[4] Free Software Foundation. What does it mean to say that
two licenses are “compatible”? URL https://www.gnu.

org/licenses/gpl-faq.html#WhatDoesCompatMean.

[5] Antonio Goncalves. Beginning Java EE 7. Books for
professionals by professionals. Apress, 2013. ISBN
9781430246268.

[6] Matt Helsley. LXC: Linux container tools, Febru-
ary 2009. URL http://www.ibm.com/developerworks/

library/l-lxc-containers.

[7] F. Junqueira and B. Reed. ZooKeeper: Distributed Process
Coordination. O’Reilly Media, 2013. ISBN 9781449361266.

[8] M. Kerrisk. The Linux Programming Interface. No Starch
Press Series. No Starch Press, 2010. ISBN 9781593272203.

[9] Dionysis Lappas. Code constributions. URL
https://github.com/denlap007/docker-java/commits?

author=denlap007.

[10] The Linux man-pages project. Namespaces - overview of
linux namespaces, March 2016. URL http://man7.org/

linux/man-pages/man7/namespaces.7.html.

[11] R.C. Martin. Clean Code: A Handbook of Agile Software Crafts-
manship. Pearson Education, 2008. ISBN 9780136083252.

89

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
https://lwn.net/Articles/332974/
https://docs.oracle.com/javaee/7/tutorial/overview003.htm
https://docs.oracle.com/javaee/7/tutorial/overview003.htm
https://www.gnu.org/licenses/gpl-faq.html#WhatDoesCompatMean
https://www.gnu.org/licenses/gpl-faq.html#WhatDoesCompatMean
http://www.ibm.com/developerworks/library/l-lxc-containers
http://www.ibm.com/developerworks/library/l-lxc-containers
https://github.com/denlap007/docker-java/commits?author=denlap007
https://github.com/denlap007/docker-java/commits?author=denlap007
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html

90 bibliography

[12] K. Morris. Infrastructure As Code: Managing Servers in the
Cloud. Oreilly & Associates Incorporated, 2016. ISBN
9781491924358.

[13] Adrian Mouat. Using Docker. O’Reilly Media, 2016. ISBN
9781491915769.

[14] J. Nickoloff. Docker in Action. Manning Publications Com-
pany, 2016. ISBN 9781633430235.

[15] Ondrejka Peter, Majoršinová Eva, Prpič Martin, Landmann
Rüdiger, and Silas Douglas. Resource management guide,
2016. URL https://access.redhat.com/documentation/

en-US/Red_Hat_Enterprise_Linux/6/html/Resource_

Management_Guide/index.html.

[16] A. Puder, K. Römer, and F. Pilhofer. Distributed Systems
Architecture: A Middleware Approach. The MK/OMG Press.
Elsevier Science, 2011. ISBN 9780080454702.

[17] Flavien Quesnel. Scheduling of Large-scale Virtualized Infras-
tructures: Toward Cooperative Management. FOCUS Series.
Wiley, 2014. ISBN 9781118790106.

[18] Chris Richardson. Service Discovery in a Microservices
Architecture, October 2015. URL http://www.ibm.com/

developerworks/library/l-lxc-containers. [Online; ac-
cessed 02-June-2016].

[19] J. Sebastian. The Art of XSD: SQL Server XML Schema Col-
lections. High performance SQL server. Red Gate Books,
2009. ISBN 9781906434175.

[20] T. White. Hadoop: The Definitive Guide. O’Reilly Media,
2015. ISBN 9781491901700.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html
http://www.ibm.com/developerworks/library/l-lxc-containers
http://www.ibm.com/developerworks/library/l-lxc-containers

	Dedication
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction and Background
	1 Introduction
	1.1 Container technology
	1.1.1 Containers vs Hypervisors
	1.1.2 Docker

	1.2 Definition of the problem
	1.3 Our approach
	1.4 Thesis Overview

	2 Related Work
	2.1 Environments
	2.1.1 Application Servers

	2.2 Tools
	2.2.1 Docker Compose
	2.2.2 MaestroNG
	2.2.3 Vamp
	2.2.4 Capitan
	2.2.5 Kontena
	2.2.6 Kubernetes
	2.2.7 Rancher

	Design and Implementation
	3 System Design
	3.1 Containers As Components
	3.2 System Architecture
	3.3 Tool Configuration
	3.4 Web Application Description
	3.4.1 Container Types
	3.4.2 Container Description

	3.5 Container Boot
	3.6 Service Discovery
	3.6.1 Service name
	3.6.2 Service Dependency
	3.6.3 Client-side Discovery Pattern
	3.6.4 Service Discovery Mechanism
	3.6.5 Service Metadata

	3.7 Service Status
	3.7.1 State transitions of service status

	3.8 Service Coordination
	3.9 Container Configuration
	3.9.1 Container Environment
	3.9.2 Host Fields
	3.9.3 Availability And Usage
	3.9.4 Re-configuration

	3.10 Process Execution Mechanism
	3.10.1 Start Process Group
	3.10.2 Stop Process Group

	3.11 Container Life-Cycle Management
	3.11.1 Create
	3.11.2 Start
	3.11.3 Stop
	3.11.4 Delete

	3.12 Container Data Management
	3.12.1 Docker Volumes
	3.12.2 Volumes From
	3.12.3 Copy

	3.13 Container Networking
	3.13.1 Container network settings
	3.13.2 Application Defined Networks

	3.14 Tasks
	3.14.1 Substenv

	3.15 Cluster Deployment
	3.16 User Interface
	3.17 Coordination Service
	3.17.1 Zookeeper Design
	3.17.2 Zookeeper Data Model

	4 Implementation
	4.1 Libraries
	4.1.1 Zookeeper
	4.1.2 Docker java client
	4.1.3 Sl4j
	4.1.4 Log4j
	4.1.5 JCommander

	4.2 Contributions
	4.3 Concepts
	4.3.1 Handlers

	4.4 Programming with Zookeeper
	4.4.1 Asynchronous Pattern
	4.4.2 Synchronous Pattern

	4.5 XML Schema
	4.6 Core Module
	4.6.1 Boot
	4.6.2 Cmd
	4.6.3 Xml
	4.6.4 Schema
	4.6.5 Analyzers
	4.6.6 Handlers
	4.6.7 Serializer
	4.6.8 Zookeeper
	4.6.9 Docker
	4.6.10 Broker

	4.7 Broker Module
	4.7.1 Boot
	4.7.2 Env
	4.7.3 Process
	4.7.4 Services
	4.7.5 Tasks
	4.7.6 Shutdown

	5 Conclusions / Future Work
	5.1 Conclusions
	5.2 Future Work
	5.2.1 Web User Interface
	5.2.2 Dynamic re-configuration
	5.2.3 Container settings
	5.2.4 Cluster platforms
	5.2.5 Network customization
	5.2.6 Data management

	Appendix
	A Appendix
	A.1 Fidelio Configuration File
	A.2 Fidelio Command Line Interface
	A.3 Container Description Format

	Bibliography

