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Abstract 
 

The opening of the unmanned aircraft system (UAS) market to civil applications has expanded 

the research interest in the unmanned aviation field. Under a common airspace where multiple 

and various types of UAS should be airworthy, the use of advanced control for full autonomy 

is mandatory· conflicts between UAS are a safety hazard to their surrounding environment, 

including civilians.  

A lot of research has been conducted in conflict (collision) detection and avoidance in mobile 

robots but there is little application in the UAS sector. This is because of the complexity of the 

surrounding environment, the non-segregated airspace, the variety in UAS, both from a 

software and hardware prospective, and the wide use of UAS in civil applications.  

The purpose of this project is to extend the functionality of a famous open-source SDK for 

open-platform UAS, Dronekit, in the advanced control spectrum. The infrastructure for a 

decentralized solution for cooperative conflict detection has been developed, containing 

support for inter-UAS communication, prioritization and mission save/restore in a resource-

conscious and developer-friendly API. 

The software developed undergoes both laboratory and field testing for evaluation purposes. 

The results are thoroughly discussed and the advantages of the system, along with its 

limitations, are presented.  
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Glossary 
*Note: The terminology that satisfies the scope of this thesis, although not used for the first time by 

the authors, is mostly obtained by the (ICAO, 2011) and (Angelov, 2012) writings. Any terms that do 

not have a reference are written by the author of this thesis.  

Autopilot. Commercial off-the-shelf (COTS) flight control system which provides the core 

functionality that enables autonomous flight. (Angelov, 2012) 

Conflict. The term, although not clearly defined in the aviation domain, is used when the flight 

trajectory of an aircraft, conventional or unmanned, is blocked by other aircrafts or physical 

barriers. 

Cooperative collision avoidance. The procedure during which a conflict, between two or 

more subjects, takes place and all the subjects have the ability to exchange their state 

parameters as input for their collision avoidance functionality. 

Full autonomous UAS. The capacity of the UA to achieve its entire mission without 

considering any intervention of the human flight crew. Obviously, with this architecture the 

SAA must be performed exclusively by on-board means. Nevertheless, these kinds of operation 

are still not contemplated by any regulatory body in the world. (Angelov, 2012) 

Open-source software. Software with source code that anyone can inspect, modify, and 

enhance. (RedHat, 2012) 

Remote-pilot aircraft system(RPAS). A set of configurable elements consisting of a remotely-

piloted aircraft, its associated remote pilot station(s), the required command and control links 

and any other system elements as may be required, at any point during flight operation. (ICAO, 

2011) 

See and Avoid. The capability to physically see conflicting traffic or other hazards and 

take the appropriate action to comply with the applicable rules of flight.  (ICAO, 2011) 

Segregated airspace. Airspace of specified dimensions allocated for exclusive use to a specific 

user(s). (ICAO, 2011) 

Sense and Avoid. The capability to sense, with electronic equipment (sensors), conflicting 

traffic or other hazards and take the appropriate action to comply with the applicable rules of 

flight. (ICAO, 2011) 

Unmanned aerial vehicle(UAV). A pilotless aircraft, a flying machine without an on-board 

human pilot or passengers. Control functions for unmanned aircraft may be either on-board 

or off-board (remote control). This term differentiates from UAS. See Unmanned Aircraft 

System(UAS) for more information. (Angelov, 2012) 

Unmanned aircraft system(UAS). The official term of an airworthy system with the absence 

of an on-board pilot, consisting also of a ground control station, communication links and 

launch and retrieval systems. (Angelov, 2012) 
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1.  Introduction 

1.1 History 

Before ICAO’s Circular No.328 which was published in 2011, there were no organizations of 

international impact to publish or even define the terminology and operations of UAS. The 

main reason was the military nature of such technologies. The first steps towards unmanned 

aircrafts, as they are known today, were done by the U.S Army during World War I. Even 

though the results were disappointing, the technology continued to evolve so that, in 1995, the 

first UAS – military drone was in the production line (Whittle, 2013): The MQ-1 Predator is 

still used for dangerous military operations and the project currently costs more than two billion 

U.S. dollars (United States Special Operations, 2011). 

Along with the first successful steps in the 1990s, of the U.S. Department of Defense (DoD) 

for unmanned aviation in the military, the National Aeronautics and Space Administration 

(NASA) started the research for UAS in civil applications. The first outcome was the Proteus 

model, after the Greek god Proteus – who, according to the mythology was a shapeshifter. 

Proteus was designed to accomplish a wide variety of missions, some of which include 

commercial imaging, reconnaissance/surveillance and high-altitude, long-duration 

telecommunications relay platform etc. (Gibbs, 2009). (Nonami, et al., 2010) 

 

 

Figure 1.2 Proteus NASA (Gibbs, 2009) 

 

The development of the first reliable unmanned aircrafts, both in military and civil operations, 

along with the invention of vertical take-off and landing (VTOL) aircrafts, like the helicopter, 

naturally brought the scientific community to the development of VTOL UAS. Japan and the 

U.S. have made great contributions to the development of such multi-rotor aircrafts, like rotary-

wing and quad tilt rotor (QTR) UAS (Nonami, et al., 2010, p. 19). 

Transitioning to the twenty-first century, someone could state that Unmanned Aviation is 

characterized by multi-rotor technology. UAS exploiting this technology combine ease-of-use 

with countless applications both in civil (telecommunications, environment, agriculture, 

geospatial data, commercial, public safety) and military (agility, heighten element of surprise, 

maneuverability, precision firing) applications (Defense Science Board (DSB) Task Force, 

2007). 

Figure 1.1 MQ-1 Predator General Atomics (U.S. Air 

Force, n.d.) 
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Rapid development of UAS technology has created an exponential increase in flight hours of 

UAS through the years, starting from 1996. With the increase of the flight hours, the need to 

integrate UAS to the U.S. National Airspace System (NAS) and worldwide, was getting 

stronger. Due to this, UA should gain access into the non-segregated airspace “in support of 

their operational, training and test and evaluation missions” (UAS Task Force, Airspace 

Integration Integrated Product Team, 2011). (Spriesterbach, et al., 2013) 

The need for integration to the non-segregated airspace, as mentioned by numerous authors 

through the years: (UAS Task Force, Airspace Integration Integrated Product Team, 2004), 

(Lacher, et al., 2010), (UAS Task Force, Airspace Integration Integrated Product Team, 2011), 

(Anon., 2013) to mention a few, combined with the development of multi-rotor unmanned 

aircrafts, has created an  even stronger potential of unmanned aviation to widespread use. 

 

 

1.2 Unmanned aircraft systems (UAS) 

According to the International Civil Aviation Organization (ICAO), UAS are pilotless aircrafts 

that operate without a pilot-in-command on-board (International Civil Aviation Organization, 

2011, p. 17). They are called systems because they consist of three main segments: Air, Ground 

and Communications segment. On each segment, there are different subsystems responsible 

for certain functions (Angelov, 2012): 

In the air segment, there is the unmanned aircraft: the airframe, avionics and propulsion 

system. Each component is cooperating for the airworthiness of the UA. Additionally, there 

are the interfaces for the communication between the other two segments and extra hardware 

for specific operations by the user. The last is also called payload and usually consists of 

sensors and imaging components. Included in the payload of the air segment, a computer can 

provide extra processing power as an onboard companion computer. The onboard computer 

may provide advanced control functionality. This can be a high-level autonomous flight with 

sense and avoid (S&A) capability and/or a special mission requiring onboard advanced image 

acquisition and processing. Usually, a UAS is characterized by its gross weight. 

The ground segment, or ground control station (GCS), is involved in the higher-level 

operations of the air segment. All the required equipment for flight planning and mission 

monitoring belongs to the ground segment (Angelov, 2012).  

Figure 1.3 Scout Datron (Crane, 2012) 
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The communications segment is responsible for transferring mission-related (Payload) data, 

messages (External Communications) and commands (Command &Control) between the air 

and the ground segment.  

 

1.3 Autonomous operations of UAS 

A UAS is autonomous when there must be no need for human intervention during a mission. 

This can be the successful execution of a flight plan where the UAS must fly over certain 

waypoints. The (fully) autonomous UAS must also be responsible of handling unexpected 

events and potential hazards during its mission. (Gundlach, 2012) 

An unexpected event could be an object or another UA blocking the UAS’ trajectory. Or, since 

the missions of a UAS are usually characterized by the three D’s: Dull, Dirty, Dangerous, a 

potential hazard could be a really toxic or hot physical environment (e.g. telemetry mission 

over an active volcano). For this reason, a UAS with higher level of autonomy, apart from the 

necessary avionics that ensure the airworthiness of the UA (flight control computer, inertial 

navigation system), must communicate with a set of real-time sensors (barometer, GPS, 

temperature) that provides feedback of the surrounding environment. The UAS then should use 

the data to take actions for the prevention of a potential system failure.  

A subject of autonomous flight is collision avoidance. Since there is no human pilot or crew 

onboard, the avoidance of conflicts must be relied either on a remote human pilot (see and 

avoid) or, in case of an autonomous UAS, a detection system (sense and avoid – S&A). An 

S&A system uses real-time sensors, processes their output, decides a new, conflict-free flight 

path and gives the command to the autopilot to execute it. This procedure happens continuously 

at a specified frequency, according to the airspace management rules (such as groundspeed, 

altitude, safety zone limitations). 

The set of sensors can either be onboard the UAS, thus having airborne-based S&A, or in a 

base station (ground-based). Ground-based sense and avoid (GBSAA) is usually a procedure 

where data from multiple UAS is acquired by a ground sensor (e.g. a radar). Then the base 

station processes the received data and transfers the new flight plan back to the UASs. 

(Spriesterbach, et al., 2013) 

In airborne-based sense and avoid (ABSAA), external information acquired by sensors or the 

communication segment is processed onboard every UAS and, after it is decided that a collision 

is about to happen, the system commands the autopilot to execute then new flight plan, as 

shown in Figure 1.4. 

 

Figure 1.4 The structure of S&A functionality in UASs (Yu & Zhang, 2015) 
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Either airborne- or ground-based, S&A functionality can also be divided into two other 

families: cooperative and non-cooperative. During non-cooperative S&A, the UAS can deduce 

the existence of other UAS or physical barrier through sensors (e.g. sonar, lidar) and follow the 

rest of the S&A datapath.  

In S&A’s cooperative counterpart, UAS have the ability to exchange state parameters with 

others and make decisions based on the data exchanged. Information exchange can happen 

either with a direct communications link or via a base station. 

Each mix of methods, see and avoid or sense and avoid, cooperative or non-cooperative, 

airborne-based or ground-based have their own applications, advantages and disadvantages in 

autonomous flight. This thesis will develop and test a cooperative, sense and avoid, airborne-

based method and analyze its advantages and disadvantages. 

 

1.4 Problem addressed 

Widespread use of multi-rotor UAS into the non-segregated airspace induces high risk of 

conflict between the like and manned aircraft as well. The first complete set of rules and 

regulations for the flight of small UAS (weight less than 25kg) in the U.S. NAS was published 

by the Federal Aviation Administration (FAA) on 29th August 2016, rule 107 (FAA, 2016). 

Among the statements of rule 107, there is a particular limitation which must be addressed in 

the future, if we want full autonomy in a UAS: “Visual line-of-sight (VLOS) only; the 

unmanned aircraft must remain within VLOS of the remote pilot in command and the person 

manipulating the flight controls of the small UAS. Alternatively, the unmanned aircraft must 

remain within VLOS of the visual observer” (FAA, 2016). This means that, even if a small 

UAS is programmed to perform an operation autonomously, the responsible person for 

programming the UAS operation is obliged to physically watch over the UAS while performing 

its mission. 

The reason of existence of the aforementioned limitation is the lack of technology that, during 

a mission, can reduce the safety risk to acceptable levels “in the presence of anomalies” 

(Atkins, n.d.). One great “anomaly” is the case of a conflict. 

The term conflict, although not clearly defined in the aviation domain, is used when the flight 

trajectory of an aircraft, conventional or unmanned, is blocked by other aircrafts or physical 

barriers. If technology could provide conflict-free autonomous flight in the international 

airspace, with an acceptable -or no at all- risk, then the aforementioned limitation of FAA’s 

part 107 should be withdrawn. 

So far, conflict (or collision) avoidance between conventional aircrafts is being held by the 

traffic collision avoidance system (TCAS), often combined with an S&A satellite-based 

system, the Automatic dependent surveillance – broadcast (ADS-B). The installation of the 

related hardware to the aircraft is being carried out by professionals and has a four to five figure 

price range. What is more, a global ground station infrastructure that works as a radar is in 

place, which naturally has great build and maintenance costs. 

The option to adopt the ADS-B system by UAS is studied (B., et al., 2013), (Y. & S., 2015), 

(Lin & Lai, 2015) and the industry (uAvionix, 2016), (Trimble, 2015) tries to produce small-
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scale and cheap ADS-B transponders. FAA’s “NextGen” program makes it compulsory for any 

airborne system in the NAS to have ADS-B transponders by 2020, as well  (FAA, 2016). 

The disadvantages of integrating the ADS-B though are important: UAS need extra hardware 

and interfaces applied globally, if there is a need for ground controllers, then these base stations 

will have high maintenance cost and can have fatal downtime due to extreme scaling of UAS 

populations. 

Another approach in airborne-based S&A systems in cooperative collision avoidance is 

exploiting hardware that is already in the payload of a UAS. Each UAS with minimum 

hardware requirements can be able to establish a certain communication link with other UAS 

and perform the necessary actions. The only prerequisite is up-to-date software. Later through 

the chapters, the advantages and disadvantages of this approach will be explained in detail. 

The purpose of this thesis is to develop an API that aids in cooperative, airborne-based sense 

and avoid (ABSAA), conflict-free, autonomous flights between small UAS of different 

architectures (heterogeneous) in the non-segregated airspace. For this reason, an extension of 

an open-source UAS flight controller is developed, that increases its capabilities in cooperative 

ABSAA, and tested. The newly developed libraries introduce functionality on top of the 

already developed open-source flight controller. The key milestones of the development go as 

follow: 

 Creation of interfaces for network communication between different UAS. 

This step is the most important since different UAS were not able to communicate with 

each other before. This is the starting point when implementing a system for 

cooperative ABSAA. Since the writing of this thesis, having as minimum requirement 

a Wi-Fi interface, network communication is achieved by the interchange of UDP 

broadcast messages. The project can be easily extended, though, for experimenting with 

more protocols, potentially safer and lighter. 

 Built-in prioritization algorithm in the case of many conflicting UAS concurrently. 

It is very important to clarify that a conflict cannot only happen between two subjects. 

In the future civil airspace, it is very probable to have a conflict between numerous 

UAS at the same time. In case of a future collision avoidance strategy, a prioritization 

algorithm should take place at first so that each drone will take action based on a priority 

number. The prioritization algorithm takes a wide range of variables into account, from 

mission importance to battery level, so it can be applied fairly and globally to every 

stakeholder. 

 Saving and restoration of the state of the UAS in case of an emergency or mission 

takeover. 

A new concept is introduced where a UAS, operating an autonomous mission, can 

postpone it in case of a conflict or emergency, and continue later on. A set of necessary 

variables is saved and then loaded when emergency state is over.  

 Make it portable and flexible. 

Throughout the project, extra effort has been placed to make the source code 

extendable. It is clearly stated where in the source code new algorithms or protocols 

should be deployed, in order for the programmer to test his/her own functions. Also, 

Python language demands minimal setup and is already installed in most Linux 

distributions. 
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 Make it readable: Detailed documentation both for the user and the programmer. 

The main purpose of this project is to be used by the community. For this reason, the 

project is available to the public under the GNU General Public License, with the name 

“DK+” (DroneKit-plus) (Antoniou, 2016). Availability, though, is not enough when 

developing open-source projects. Strong documentation has to be written in order to 

support it. For this reason, following industry standards (Georg Brandl, 2016), 

(SourceForge, 2016), a comprehensive documentation can be found in the project’s 

website and in Appendix F: User’s and programmer’s manual. 

 

1.5 Structure 

Chapter One was devoted to introductory material helping understand the history behind the 

modern UAS, its main architecture and the importance of autonomy in such systems. The need 

for integration in civil airspace was also stated along with the risks involved. In Chapter Two, 

the most relevant pieces of work are stated, in order for the reader to understand where are we 

in research and what products have already been, or are soon to be, available for advanced 

control in UAS. 

Chapters Three to Five explain the implementation of the API and the system that is 

implemented in. In more detail, Chapter Three explains the parameters and characteristics of 

the system being modelled so that in Chapter Four and Five, a more precise, actual 

implementation of the system can take place, with detailed information about the system 

architecture in the hardware and software prospects. 

After the system modeling and implementation described in previous chapters, Chapter Six 

explains how is the system validated and tested, under both software-in-the-loop and real-life 

scenarios. Ultimately, the results are reported and commented upon in Chapter Seven.  
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2. Relevant work 
This chapter provides information on the research of unmanned aircraft moving gradually from 

the more general UA topic to the more specialized cooperative, airborne-based sense and avoid 

systems. An overview of the current legislations and available products and service providers 

is also described. 

2.1 Initial UAS design 

Thousands of articles and papers in the field of UAS have been published, especially by 

American and Chinese institutions. The first papers were published when the Predator drone 

came to production, in 1995 (results based on Scopus). During that time, the fundamentals of 

the modern UAS were being implemented, concerning subsystems like the inertial 

measurement unit (Humphrey, 1997) and the flight control system (Ozimina, 1995). Some 

effort in the development of the UAS communications segment in military applications is also 

observed. The first results on full duplex communication links in UAVs were reported by 

(Pinkney, et al., 1997). From 1998 until recently, there are publications concerning autonomy 

in landing (Lin, et al., 1998), attitude optimization (Oshman, 1999), (Kendoul, et al., 2007), 

(Ducard, 2008) and the integration of automatic control (e.g. use of PIDs) to the flight control 

system (Salih, 2010), (Pounds, 2012). The aforementioned publications started having great 

impact, indicating that the engineering sector has expanded its share in the UAS field. The first 

surveys on COTS autopilots, cited by many, indicate the maturity of the market (Chao, et al., 

2010). The modern problems in autopilots concern matters of resilience and adaptiveness 

(Garcia & Keshmiri, 2013).  From year 2010 there is also interesting bibliography on the design 

of UAS, accumulating all the previous related research. Some useful and educational books are 

(Nonami, et al., 2010)  and (Gundlach, 2012). 

 

2.2 Integration of UAS to the civil airspace 

From NASA’s first try, with the Proteus model, to exploit the use of UAS in civil applications 

to the first feasibility analyses of integrating the UAS to the civil airspace, more than a decade 

has passed. In the first publications concerning the “domestication” of the UAS, the authors 

tried to report all the issues and risks involved in the integration (Anand, 2007), (Dalamagkidis, 

et al., 2008), (Finn & Wright, 2012). After year 2010, which is marked by the maturity of the 

UAS industry, the innovations and standardization procedures take place. The U.S. government 

(Defense Science Board (DSB) Task Force, 2007), (UAS Task Force, Airspace Integration 

Integrated Product Team, 2011) and European governmental institutions (Commision, 2014) 

publish the first proceedings in the rulemaking process and recognize the potential of UAS in 

civil operations. International organizations also publish concrete terminology on the civil use 

of UAS, the most important of which is (ICAO, 2011). Risk assessments take place as well, 

since civil security is put at stake with the introduction of UAS into the non-segregated airspace 

(Luxhoj, 2013).  

Currently, the U.S. has the most organized ruleset of operating UAS in the NAS, which 

mandates the adoption of its practices by other countries as well. The European Union has also 

stated the importance of UAS in the civil scope and EASA has also taken measures for 

operations inside the continent. The most important milestones in UAS integration to the civil 

airspace are ICAO Circular No.328 and FAA’s rule 107. 
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Figure 2.1 UAV rule-making process in the EU and USA for integration in the civil airspace (Drone Industry Insights, 2015) 

 

2.3 Fully autonomous UAS operations 

With the introduction of the UAS to the civil airspace, the need for full autonomy is 

fundamental. Most modern publications are concerned with the safety and airworthiness of 

heterogeneous sets of UAS in unknown environments. Many methods and algorithms have 

been adopted in order to tackle the safety issues imposed by the free flight of UAS to the non-

segregated airspace. A summary of the S&A methods available can be found in 1.3 

Autonomous operations of UAS.  

There is a very interesting publication which presents the safety layers for collision avoidance 

in civil airspace and how the manned collision avoidance procedures can be integrated to the 

UAS S&A functionality (Korn & Edinger, 2008). The first sound results of S&A in UAS are 

evaluated by (Shakernia, et al., 2007), with authors mainly from the military industry, though. 

In Europe, the use of sensors for non-cooperative collision avoidance systems is evaluated and 

tested (Fasano, et al., 2008). The base of S&A systems is also set by Hutchings et al., by 

introducing the term Equivalent Level of Safety (ELOS) to compare flight safety between UAS 

and manned aviation (Hutchings, et al., 2007). A really good, recent report which is frequently 

referenced in the use of S&A in UAS is also published by ARC AIAA (Prats, et al., 2012). 

Finally, an overview of potential technologies in small-UAS for S&A systems, both 

cooperative and non-cooperative is presented in (Ramasamy, et al., 2014) and (Yu & Zhang, 

2015). 
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2.4 Collision avoidance 

There has been great research in collision avoidance methods through the years. Modern 

algorithms contain artificial intelligence elements and complex computation formulas. The 

issue of collision avoidance in mobile robots is being questioned before the technological 

advancements in unmanned aviation. Some of the most influential papers for mobile robots 

include the “dynamic window” approach, where the search zone for collision avoidance is 

parametrized according to the speed of the robot (Fox, et al., 1997) and the application of AI 

in real-time obstacle avoidance (Khatib, 1986).  

The applications of collision avoidance in UAS exploit methods of trajectory planning 

(Richards & How, 2002), automatic control and swarm intelligence. The problem is recognized 

to be really complex, especially when the UAS is in a dynamic environment taking full 

advantage of their maneuvering capabilities (Frazzoli, et al., 2002). An interesting and 

influential publication describes the coordination of UAS by generating trajectories, taking into 

account the time domain as well (McLain & Beard, 2000).  

 

2.5 Cooperative airborne-based sense and avoid 

The most important stimulant for the research of cooperative ABSAA, a method of collision 

avoidance towards fully autonomous UAS, is FAA’s “NextGen” program. According to 

NextGen, every airborne vehicle in the NAS must be equipped with an ADS-B transponder by 

the start of 2020. The same rule applies for the European airspace as well. It is not sure yet if 

the UAS are an exception to this mandate but there is research available to support their full 

integration into the NextGen NAS (Martel, et al., 2011), (Pahsa, et al., 2011), (Stark, et al., 

2013). (Jill, 2015) 

The U.S. Air Force has already set the “roadmap for airworthiness and operational approval” 

of ABSAA systems (Lester, et al., 2014). There is an interesting section in a MITRE 

Corporation’s publication, describing the operation, needs and risks of cooperative ABSAA 

(Lacher, et al., 2010).  

 

2.6 Relevant products  

The theory and the undertaken research by the aforementioned institutions and organizations 

is directly applied to the UAS industry in the hardware, software and services field. The UAS 

ecosystem is rapidly growing since applications in the civil scope have arisen. Below is a 

market research of the most prominent manufacturers and service providers in the field.  

Hardware 

Most companies sell proprietary systems with a wide range of functions, mainly for imaging 

and telemetry. The biggest UAS technology exporters are, according to professional reports, 

China (DJI), France (Parrot) and U.S. (3DR). The need for innovation and industry 

advancement is supported mostly by U.S. ($41M) and Europe ($10M) through funding of 

early-stage start-ups. The highest demand in UAS, as of Q4 2015, is in multi-rotor aircrafts, 

with an exponential increase in this trend, proven by the number of registered multi-rotor UAS 

in the NAS. Apart from the numerous commercial and governmental platform manufacturers, 
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a great market share belongs to companies that develop individual components and systems for 

all the segments of a UAS. (Drone Industry Insights, 2015) 

While companies like Parrot and DJI have the greatest market share in the consumer field, 

hobbyists and researchers who want to implement custom applications and ideas have to focus 

on companies providing open-source platforms and SDKs, the most important of which is 3DR. 

Software 

The company with the greatest impact, having a completely open ecosystem of software and 

hardware is 3DR (3DR, 2015). DJI also provides an advanced SDK but solely for their own 

systems. 3DR’s Dronekit is part of Linux Foundation’s collaborative project with codename 

Dronecode. Dronecode is an open source platform for the development of UAS (The Linux 

Foundation, 2016). The project members are international companies with great impact not 

only in the pure UAS industry (3DR, Parrot, Yuneec) but in the global hardware industry as 

well (Intel, Qualcomm). Many of the project members exploit Dronecode for applications in 

their proprietary systems (e.g. Parrot).  

The Dronecode hub contains a set of open-source projects related to autopilots (PX4, Pixhawk), 

industry-standard communication protocols (UAVCAN, MAVLink), ground control stations 

(QGroundControl, APM Planner 2.0), simulation environments (MAVROS) and advanced 

control APIs (Dronekit). (Dronecode, 2016) 

Services 

A great share of the market is related to drone services. Since the FAA and EASA mandates 

the use of small UAS in the civil airspace only upon certification, there are many approved 

schools providing training to individuals and companies, both for recreational and commercial 

use. In case of an individual without UAS ownership/certification, there is a wide range of 

companies providing drone operation. Imaging in drones also plays a vital role in the services 

market, with a great number of companies in mapping, inspection and agriculture. In support 

of the above service provider infrastructure, there are suppliers, retailers and companies in the 

integration and engineering sector. (Drone Industry Insights, 2016) 
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3. System modelling 
In this chapter, an abstract model of the system is going to be presented, along with the physical 

environment parameters taken into account. The chapter will be divided in four sections, each 

one modelling the input, processing, communication and output parameters of the system. 

From now on a multi-rotor UAS will be simply referred to UAS.   

 

3.1 Input 

A UAS is a system that interacts with the physical environment. Depending the flight 

mode/plan the user has set, the UAS continuously configures the rpm of each rotor, and as such 

the attitude of the system, in order to maintain its flight plan. The management of the UAS 

attitude (flight control) is handled by the autopilot and sensors are important for this role. More 

sensors can be equipped on the UAS for specific missions/advanced control, such as optical, 

gas and sonar, but for the purpose of this thesis, no use of extra sensors was exploited. 

Inertial measurement unit – Speed, stability 

The autopilot contains sensors the existence of which is vital to the UAS. Since the UAS 

supports maneuvers in three axes, namely pitch, yaw, roll, there must be information about the 

inertia in the three-dimensional pane. Also, in order to maintain stability, a gyroscope is 

needed, again with three-dimensional readings. Most commonly, the three-axis accelerometer 

and gyroscope are integrated into one sensor called inertial measurement unit (IMU), or motion 

processing unit (MPU). Usually the IMU is a fourth-generation MEMS sensor, meaning that 

data is delivered to the CPU already sampled, quantized, corrected/linearized and amplified.  

Because the IMU contains a temperature sensor for value correction, it can also output 

temperature data. It is important to mention that the temperature reading is not the atmospheric 

but the one inside the IMU.  

The IMU is responsible for providing real-time measurements of angular velocity and linear 

acceleration. Usually, the sensors providing motion data have very high sensitivity and the 

sampling rate, depending the system bandwidth, can be up to 20MHz. The software should 

define the tolerance of these measurements to avoid message overhead.  

Magnetometer – Compass heading 

Apart from angular velocity and acceleration, the orientation of the UAS in relation to the north 

is also of great importance for navigation in a flight plan. This information is also important 

when detecting a conflict. The output of the magnetometer ranges from 0o to 360o degrees, with 

zero being the geographical (true) north.  

Barometer – Altitude 

Since a UAS must be able to maintain a user-set altitude, there must a sensor which measures 

it. The altitude is usually measured based on the difference of atmospheric pressure between 

sea level and the vehicle’s height. It is important to know the relative altitude (height from 

ground-level) during take-off and landing in order to avoid a ground collision. Altitude is 

usually measured in meters through the barometric formula (Pixhawk, 2016). 

GPS – Location 

The GPS is a positioning system which allows the UAS to navigate based on satellite feed. In 

order to have a “3D fix” – accurate measurements in the 3D geographic coordinate system 
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(latitude, longitude, altitude), at least four satellites need to feed the GPS. The fourth is needed 

for the time variable. Precision is also very important in GPS measurements. Two metrics, 

vertical and horizontal dilution of precision (VDOP, HDOP) are used to define it. The smaller 

these values are, the better precision there is (Langley, 1999).  

Sometimes GPS values differ in accuracy. It is important that the accuracy of GPS when having 

conflicting UAS be less than one meter. According to the GIS community in Stack Exchange, 

in order to achieve accuracy of less than about one meter (1.11 m), the reading should have at 

least five decimal places. See GPS Precision for more information. 

Many times, it is needed to derive the distance in meters between two coordinates. This is 

usually derived from complex formulas taking into account the spherical shape of the earth. 

The distance between two conflicting small UAS is so small, though, that the area of interest 

is a flat surface. A simple Euclidean distance in the 2D space of the coordinates, always 

transformed to meters, is adequate. The third dimension, altitude, can be then compared to 

decide if there is a conflict.  

Wi-Fi – Network messages 

Along with the sensor system inside the autopilot, the UAS is also capable of receiving network 

messages that originate from nearby UAS through a Wi-Fi module. The UAS-specific 

messages include state parameters and their mission plan for the conflict detection system of 

the companion computer. More information will be given in System design and 

implementation. 

 

 

Figure 3.1 UAS autopilot sensing and receiving capabilities 

 

Input listeners and thresholding 

Dronekit has the ability to communicate with the autopilot via the low-latency communications 

protocol, MAVLink. The autopilot can provide vehicle-specific parameters: sensor readings 

and state parameters (battery level, flight mode and emergency state etc.). Not all parameters 

are useful for the solution developed so there is the need of choosing the fitting parameters and 

also choose when old values should be overwritten by new ones. For the first need, Dronekit 
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supports the necessary functions to add listeners to the chosen parameters. That means that 

whenever a parameter changes, a user-defined action will take place.  

Because of the high sensitivity of the sensor systems, thus the high value change rate, an extra 

thresholding limit is put for each parameter. In that way, too many writes in the system’s 

memory is avoided. The thresholding limits are determined upon experiments. According to 

the needs, the sensitivity of the sensors that the system observes is explicitly reduced.  

 

3.2 Processing 

The UAS is equipped with a range of different processors, each one with a different task: 

integrated into the sensor systems for data acquisition and signal processing, in the autopilot 

for the flight management and one extra for failsafe, inside a companion computer for 

computing-intensive tasks. 

The sensors and the autopilot are black boxes for the purpose of this thesis, since the tasks 

involved are developed inside the companion computer. The tasks that are processed by the 

companion computer are: 

 Send state parameters through a network socket 

 Receive state parameters from nearby UAS 

 Process received messages 

 Run collision avoidance algorithm 

 

 

Energy and processing efficiency 

The modules listed above and detailed in Figure 3.2 and Figure 3.3 are run as daemon threads 

in the companion computer. A computer that deals with advanced control of a UAS, especially 

Figure 3.2 Top-level block diagram of the UAS. The orange blocks are the 

newly implemented modules. All the modules are daemon threads running 

concurrently at specific rates. 
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when this involves collision avoidance procedures which are important for the airworthiness 

of the aircraft, is important to be energy efficient, robust and have a high fault tolerance. 

Although computing-intensive tasks in a companion computer can be energy consuming, the 

energy that is needed to power the rotors is far greater and this is the bottleneck in short-range 

UAS.  

The companion computer of a UAS (e.g. RPi, Odroid) is not an embedded processor, according 

to Marwedel, since the processor is of general use. What is more, it is running under a general-

use OS (Linux) which is not designated to be real-time or for specific processes. (Marwedel, 

2011) 

On top of that, Python language is not able to exploit multi-core architectures unless using 

libraries that actually create a lot of message overhead and unpredictable lock sessions 

(Beazley, 2010). This concludes that the system is not optimized for these certain tasks. Further 

timing and testing procedures are described in Validation and performance evaluation, in order 

to check that the system is functional. Unfortunately, the processor interrupts and the number 

of system calls are unpredictable. 
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Figure 3.3 Activity diagrams of the task and the state parameters update modules 

 

3.3 Communication 

The UAS is a real-time system, in means that it is vital to interact immediately with its 

surrounding environment. A processor or OS might not be “real-time”, e.g. it does not timeout 

an interrupt for a real-time process to continue its operation (The Linux Foundation, 2013). 

The communication layer has to be real-time though since it is important to deliver messages 

in a timely manner and uncorrupted. The main communication links are between: 
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 Sensors – Autopilot 

 Autopilot – Companion computer 

 Companion computer – Companion computer (on separate platforms)  

In order to “guarantee” the real-time behavior of the system, both point-to-point 

communication and shared buses are used, depending the application.  

Sensors – Autopilot (I2C, SPI) 

The external sensors can communicate with the autopilot via two kinds of protocols: Serial 

Peripheral Interface (SPI) and Inter-Integrated Circuit (I2C).  

The SPI is the simplest protocol, a single-master communication protocol where every slave 

SPI device connects to the master SPI device, thus needing slave select logic. The master and 

slave devices must share the same clock parameters (frequency, polarity and phase) in order to 

be able to communicate. Because of the binary values of the clock polarity and phase, there are 

four modes of operation. Physical interface characteristics, maximum data rate and addressing 

scheme do not need to be specified in this protocol. 

I2C is a multi-master protocol. Any slave can connect to any master as long as the devices have 

a unique 7-bit address and data is divided into bytes. A communication between any number 

of devices can be “flawless on just 2 physical wires”. The bus speed can be 100kbps, 400kbps 

or 3.4Mbps. 

Since I2C achieves communication between multiple devices on a single bus, it can have a 

much more elegant topology than that of the SPI, where slave select logic and multiple wiring 

is mandatory in case of many devices. The SPI though can achieve much faster speed rates 

(over 10Mbps), since there are no limitations by the protocol itself. (ByteParadigm, 2016) 

Autopilot – Companion Computer (MAVLink) 

MAVLink is a low-latency communications protocol between the autopilot and a companion 

computer or ground control station. It is an open source project that has become very popular 

due to its byte-level serialization, thus making it lightweight and supported by most radios. 

MAVLink packets are dependent on the command. The message overhead is just eight bytes. 

(QGroundControl, 2016) 

 

 

Figure 3.4 MAVLink packet anatomy (QGroundControl, 2016) 

 

Companion computer-to-Companion computer (IEEE 802.11) 

The UAS have the ability to communicate with others, in order to exchange information about 

their state. The transmission is carried out by the IEEE 802.11 (or commonly Wi-Fi) standard, 

a wireless local area network (WLAN) interface which provides 1 or 2 Mbps of transmission 

in the 2.4 GHz band. The 802.11 protocol belongs to layer 1 and 2 of the OSI architecture, 

namely Physical and Data link. That means that 802.11 can be used by any Network (OSI layer 
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3), Transport (OSI layer 4), and Host Layers (OSI 4 to 7) applicable. Currently, the software 

supports communication between HTTP sockets with UDP broadcast messages.  

UDP has been chosen over TCP since the latter introduces high latency in the handshake of the 

devices. UDP is not lossless but in 5.1 Networking analysis, the limitations of this protocol are 

analyzed.  

Because the 802.11 protocol can cause a lot of collisions in the receivers, especially if the 

messages from the UAS are broadcasted, there is the need for ensuring the integrity of the 

packet. For this reason, there is a checksum verification upon the receipt of a packet. The 

checksum type is MD5 in order to minimize the complexity of the software. MD5 is a hashing 

algorithm which is not safe for encryption of data since it is a broken algorithm, but it is good 

for creating hashes for checksum verification because it is lightweight. MD5 creates a 128-bit 

digest of the packet and it is sent along with the original value. When the receiver gets the 

message, it performs a new MD5 checksum of the information and verifies it with the one sent 

along. If they are equal it means that the data received in not corrupt.   

 

3.4 Output 

The output of the system can be considered the final outcome of all the processing in the 

autopilot and the companion computer. The purpose of all this processing is to finally guide 

the UAS to a specified location, thus controlling the attitude of the UAS, ultimately controlling 

the speed (rotations per minute - rpm) of each rotor.  

The autopilot outputs control signals to an Electronic Speed Controller (ESC) so that the later 

can adjust the rpm of the motor accordingly. The ESC’s are powered by the UAS power source, 

usually a Li-Po battery, in order to provide the necessary amperage to the motors. The more 

advanced controller is preferred over a PCB unit because of the nature of the brushless motors 

used in quadcopter UAS: 

The brushless motors of a multi-copter UAS contain sets of coils in the rotor that operate as 

electromagnets when current is passed through them. A permanent magnet is the stator (the 

stator/rotor can be the opposite). The coils are powered each one at a different time slot, thus 

having a three-phase ESC output, in a manner which allows the continuous movement of the 

rotor. A sensor is used to give feedback to the ESC about the current position of the rotor. The 

ESC can then activate the necessary coils to keep a steady rpm rate.  

 

Figure 3.5 Layout of system output (Techno Sainz, 2016) 
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4. System design and implementation 
This chapter provides a detailed description of the system, the design parameters taken into 

account and the programming practices. There is also going to be detailed description of the 

timing factor and the handling of events. 

 

4.1 Top-level design 

There is a try to create a system with good granularity in order to make easier modifications to 

the software. In this way the deployment of new protocols, porting to multi-processing 

functionality instead of multi-threading, addition/removal of new modules is more feasible. A 

more comprehensive view of the system is from a data flow prospect. For this reason, a DFDM 

is shown in Figure 4.2, for easier inspection of the design logic. The new library is a set of five 

classes:  

DroneNetwork: handles the communication protocols and initializes the send/receive/process 

threads in order to keep the nearby UAS state parameter list up-to-date. This class is the central 

node of the whole system. 

Send: Initialized by the drone network class, this thread is responsible for fetching the UAS 

parameters and transmitting them with the specified protocol.  

Receive: Initialized by the drone network class, this thread is responsible for receiving any 

incoming messages, verifying their integrity and their source and, if coming from a UAS, it is 

put to a queue for further processing. 

ReceiveTask: Initialized by the drone network class, this thread is responsible for getting the 

messages put in queue by the Receive class, adding metadata and storing to the appropriate list. 

The metadata stored along with the parameters of the drone are distance between the two UAS 

and a timestamp indicating the time received. If the distance calculated is beyond the specified 

safety zone, the message is ignored. If the message comes from a conflicting UAS, then the 

thread is responsible for updating the nearby UAS list. 

CollisionAvoidance: This class must be initialized in the main thread, specifying the desired 

collision avoidance protocol. Currently, a naïve protocol is used which works like the priorities 

of cars in a crossroad. This class contains methods for prioritization and context switching, 

which are going to be described later in this chapter 
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Figure 4.1 Top-level design of the cooperative ABSAA API. 
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Figure 4.2 DFDM of the implemented system. 
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Why two threads for receiving? 

The parameters received from the network are transferred from the receiver to the rest of the 

system via a thread-safe Python queue. The collision of messages at the receiver is beyond the 

matters of this thesis and as such, cannot be predicted or avoided. What can be avoided though 

is the loss of a message inside the system.  

The task of processing a message requires a number of CPU-bound tasks: calculation of inter-

drone distance and list update. What is more, if a long interrupt or system call takes place in 

the processor, a number of messages can be lost. If, while performing calculations or 

undertaking a long interrupt, a new message arrives, the receiver thread will be busy and will 

lose the message.  

In order to avoid this kind of hazard, a new thread, namely ReceiveTask, is responsible of 

performing these calculations for every message that arrives. The Receive thread is then 

responsible only for checking the message integrity and passing it to the ReceiveTask thread 

through a queue. 

The complexity of the Receiver’s algorithm is then reduced to O(1), while the former 

complexity of the subsystem, supposing the multiplications are carried out by the Karatsuba 

algorithm, was O(n1.585).  

An asymptotic analysis may not be very convincing when talking about bounded input systems 

but a timing analysis is described in Chapter Five. In any case, minimizing the workload of the 

receiver and keeping a message history minimizes data loss. Queuing the received messages 

for further processing by other threads and performing a minimal checksum verification are 

measures that reduce data loss and increase data integrity.  

 

4.2 Collision avoidance protocol 

As presented in chapter 2.4 Collision avoidance, the advancements in collision avoidance of 

UAS are very important. The development of a new method, or the deployment of an advanced 

collision avoidance method in the implemented system would be unreasonable. Due to the 

system model though, it has become feasible for the developer to deploy his/her own collision 

avoidance approach for testing. The API created for cooperative ABSAA contains some useful 

practices that can be exploited by the users. The most important are the prioritization algorithm, 

context switching and taking temporary control during a mission.  

The main idea behind the fundamentals of the presented approach in cooperative ABSAA using 

mainly GPS for sharing location and the IEEE 802.11 WLAN protocol, is maintaining the 

nearby UAS lists and deciding the new flight plan to avoid potential conflicts. ‘Nearby’ is 

decided explicitly inside the source code. The safety zone is a sphere with a certain radius. In 

order to decide if a UAS is in the vicinity of another UAS, the Euclidean distance is calculated 

first and then the altitudes are compared (See Appendix A: Transformations and formulas). An 

abstraction of the protocol is shown in Figure 4.3. 
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Figure 4.3 An abstraction of the collision avoidance API 

 

UAS momentum  

When the collision avoidance protocol requires the vehicle to reduce its groundspeed to zero, 

one of the most important factors affecting the system is negative acceleration in the x-axis. 

This is because a UAS cannot stop immediately, as it has momentum from its pre-conflict 

groundspeed. In order for a UAS to reduce its groundspeed it needs to come at a break angle 

which gradually causes the system to hold its position. Ideally the angle would be so high that 

braking could happen immediately, but this would have the tradeoff of unstable or even system 

failing behavior.  

The procedure of ‘stopping’ can be implemented with various ways by the autopilot and every 

way has significant differences in terms of acceleration. The decision to follow a certain 

stopping procedure is decided with trial and error since the factors affecting acceleration are 

very low-level and airframe/avionics dependable. Most recent ArduCopter firmware (AC3.3) 

has support for braking but this mode is not backwards compatible with previous versions. A 

more general solution should be given so that stopping can be feasible in older autopilot 

versions as well. Since the decision was made with trial and error, more information on the 

decision-making process is described in chapter 5.2 Software in the loop (SITL). 

 

Prioritization 

The collision data which is provided by the conflicting drones is maintained by the 

CollisionAvoidance thread. It is responsible for cleaning-up obsolete information and giving 

priorities based on each of the UAS parameters. The prioritization algorithm is implemented 

inside the thread class and, in order to be functional, must be run by every UAS instance 
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globally. The priorities model is taking into account four sets of state parameters which have 

certain importance The sets of attributes are not orthogonal, but some are more important than 

others. 

The SYSTEM_STATUS set describes the system status as a whole. It can be divided into 

subsystems which describe a higher-level state. For example, the system is on the ground if it 

is in state UNINIT, POWEROFF, BOOT, STANDBY, LOCKED, CALIBRATING. More 

information about the state parameters set can be found on the Appendix D: Prioritization 

parameter sets. 

The Capabilities set describes the feasibility of giving remote commands to attitude and 

altitude changes. If a UAS does not support such a capability, then it is difficult to change its 

flight plan, so it needs to have a higher priority in order for a conflict to be avoided.  

The SYSTEM_MODE set describes the flight mode of the UAS. If it is in a MANUAL mode 

then it is receiving RC commands, so there is the need for channel overriding in order to change 

its attitude. If the mode is one in the AUTO set, its mission plan must be saved before the 

avoidance plan is loaded. See  

UAS context switching for more information. 

MISSION_IMPORTANCE is a new feature of the UAS, which should be adopted by the 

industry in order to differentiate a UAS operating for Search & Rescue missions from a UAS 

operated by hobbyists. The Mission Importance is a number that indicates the UAS’ operation 

importance: 

 Level 2: Used for governmental, search & rescue, national/civil security operations. 

 Level 1: For UAS designated for commercial use, businesses and industry-related 

operations. 

 Level 0: Used by hobbyists for recreation and entertainment. 

The assignment of mission importance in a UAS has potential security threats. Since the code 

is open source, the developers can edit the variable so as to be of top importance, even if the 

intended use is for recreation (Level 0). So far, this attribute cannot be safely used or taken 

into account by the prioritization algorithm but in the future it can provide really useful 

applications.  
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Figure 4.4 The prioritization model. 

 

How globalized can the algorithm be? 

There is a worst-case scenario crafted for this question. Imagine three UAS (expandable to 

more than three with the same logic) in an area where the UAS in the middle can sense the 

other two, but the other two cannot sense each other. This scenario will be called ‘Chaining of 

Priorities’. The example of Figure 4.5 explains the scene.  
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Figure 4.5 Scenario of chaining in the prioritization algorithm 

 

Someone would expect that the priorities would be corrupt. If it is decided that the priority is 

D3->D2->D1, then D1 would wait for D2 and D3 would act before D2. So, according to the 

algorithm, D1 might not be sensing D3 but it will wait until D2 has moved away. Implicitly, 

D1 waits for D3.  

The real problem here is not the prioritization algorithm itself but message collisions: If two 

conflicting UAS are not aware of their counterparts, or if the lowest priority UAS is not aware 

of its highest priority UAS then the prioritization algorithm will be right, but actual priorities 

will not be correct.  

Another problem which arises when priorities are chained, is that the whole set of stakeholders 

can expand to a very wide area in a manner that the starting and ending UAS would never have 

a conflict otherwise. This scenario is visualized in Figure 4.6. 
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Figure 4.6 The effect of multiple UAS prioritization chaining. 

 

UAS context switching 

A new idea is expressed with the term ‘UAS context switching’. Most UAS perform 

autonomous flights and have a preloaded mission plan that follow. During a conflict, there may 

be a future possibility of changing the flight plan temporarily. The UAS, though, should be 

bound to finish the mission it is programmed for. For this reason, a set of state parameters along 

with the mission plan are saved in the memory and when the conflict is over, they are loaded 

back to the UAS. This operation allows for a temporary change in the UAS state/flight mode 

in order for it to overcome a conflict and, as such, increases the adaptability of the system. 

Taking control of the UAS allows for immediate response in case of an emergency. Currently, 

taking control means holding the position and altitude of the UAS steady while saving the 

previous state with the context switching module. In order to give back the control to the pre-

programmed mission, a context restore takes place.  

Although there is a significant latency, as shown in the simulation, during the context switching 

procedure, this operation is fundamental not only in collision avoidance but also in other 

applications discussed in Discussion and future work. 

 

4.3 Timing 

Timing is a very important factor when dealing with real-time embedded systems (Marwedel, 

2011). Concurrent processes can lock the CPU or I/O for long periods of time if they are not 

handled correctly, resulting the system to freeze. The scheduler of the system is actually the 

one in the OS, but inside the code there is the need to suspend the execution of daemon threads 

at a given frequency, thus releasing their locks for other threads that must run as well.  

Periodic suspension of thread activity 

The frequency the threads are suspended is dependent on the average airspeed of the UAS. 

This happens because the frequency the threads are suspended, especially the receiver and 

sender ones, is dependent on the frequency the UAS messages are broadcasted. If a UAS has 

an airspeed of five meters per second, then it should have its position known to the surrounding 
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UAS two or three times per second. This way, the UAS would be sensed each time it would 

cover a distance of one to two meters. The frequency would then be set to send the parameters 

every 0.3 to 0.5 seconds. For optimization issues, the rest of the system would also be active 

every 0.3 to 0.5 seconds, so that scheduling can be easier.  

If a UAS is flying with an airspeed of 44m/s, which is by the way the speed limit set by the 

FAA (FAA, 2016), then either the safety zone should be expanded or the frequency should be 

set to at least twenty messages per second. This would of course cause a lot of jamming in the 

communication channel, but this is discussed in Validation and performance evaluation. The 

periodic tasks are the CollisionAvoidance and Send threads. Some application would require 

the suspension in the main thread as well.  

Non-blocking operations 

Besides the suspension of the above threads, there are also some I/O-bound threads, the 

Receive and ReceiveTask where they should run continuously in order to receive and process 

the incoming messages. Continuous run, or else blocking operation, would cause very long 

system calls and the system would be susceptible to freezing.  

For this reason, the network socket of the Receive thread is set to non-blocking, meaning that 

the thread returns immediately if the object does not have any I/O event. This allows for the 

shortest system calls possible. The problem that raises is that non-blocking operations return 

immediately, so it is not known when the socket has an incoming message afterwards. Polling 

the socket is not an optimized solution since, between the polling windows, an I/O event will 

be ignored.  

An optimum solution to the problem is querying whether the socket is ready for reading with 

the select() method. That way, the thread is running only when there is an actual I/O event. The 

ReceiveTask thread, since it receives the messages from a queue, is active only when there is 

an object in the queue. Since the select() method can wait for an unspecified amount of time, 

an extra layer of protection is added by adding a timeout of one second. This timeout influences 

the maximum latency of the receive_task worker since both the receiver and worker are 

accessing a thread-safe queue. For this reason, a higher timeout in select() would potentially 

cause intolerable I/O-related latencies.  

 

4.4 Event handling 

Through the system, there are numerous operations which could raise an event. If these events 

are not handled accordingly, the system would be very susceptible to failure. A level of fault 

tolerance should also be introduced to the system. The events can be internal if they are caused 

by the components of the UAS or external if they are caused by the environment (Marwedel, 

2011). 

External 

The events caused by the environment can be infinite in the real world: Weather conditions, 

conflicts with cooperative or non-cooperative objects and human interactions. In such a 

dynamic environment, the system must be highly adaptable. The handling of external events 

can be mostly avoided by the sensing mechanisms of the systems, such as the IMU of the 

autopilot and the collision avoidance module of the companion computer. Research is being 
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conducted in order to create more resilient systems, being described with more complex 

models, taking into account more factors of their surrounding environment. 

Internal 

The events of interest that can be raised internally are mostly exceptions, which must be 

handled appropriately in order to ensure a safe operation for the UAS and the user. Every error 

is described by a unique ID. Defensive coding is needed, usually with try-catch blocks, in order 

to handle the exceptions that might rise in a piece of code. The most usual exceptions raised 

are: 

 Socket-related errors 

Most usually if the address is not valid or if the OS cannot open/operate/close a socket.  

 Empty or full queue 

If there is a try to get an object from an empty queue, the software must simply ignore 

the error and wait for an entry. If there is a try to write an object to a full queue, then 

the software must temporarily save all the messages to a new structure. 

 Object serialization (pickling) 

Pickling is the python algorithm for serialization of data. Serialization is needed in order 

to pass messages through channels. If an object cannot be serialized, e.g. a custom data 

type, an error is raised. Usually the software must warn the user that the object was not 

serialized, and pass an empty string through the channel, in order to avoid further 

system damage. The received message should then be checked and, if invalid, be 

ignored.  

Failsafe operation 

The events that can cause hazards to the system must be handled in a way that makes the system 

fault tolerant. If an event is an exception which is unhandled by the software, the system can 

run into an emergency state. In the event of a system failure, a failsafe operation must take 

place in order to protect the system.  

In case of a companion computer failure, the autopilot must still be functional in order to handle 

the rest of the UAS operation. The autopilot and the companion computer are separate systems, 

so the failure of one does not cause a failure to the other. If the companion computer fails, the 

autopilot is put into failsafe and causes the UAS to land as safely as possible.  

In the autopilot system, there usually is a spare processor in the event of failure, so that the 

processor can take over and perform all the necessary operations to ensure the safety of the 

UAS (assign its state to Emergency and the flight mode to Land).  

Along the Dronekit code and the extension developed for this thesis, there is a flag that states 

that the system is in emergency. For example, if the networking module cannot start the 

necessary threads for communication and collision avoidance, the system is not allowed to arm 

its motors and takeoff.  

 

4.5 Hardware and software used 

Most of the thesis work was implemented and simulated on a PC running Linux OS, Ubuntu 

16.04 Mate distribution, with 8GB DDR3 (1666Mhz) RAM, Intel® Core™ i5-2430M CPU @ 
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2.40GHz × 4. The code was written in Python 2.7 language and tested in a software-in-the-

loop (SITL) simulator, provided by Dronekit.  

The code was then deployed, on two multi-rotor UAS, on two different companion computers:  

 Raspberry Pi 2 model B with a supported Wi-Fi dongle 

 Raspberry Pi 3 model B 

The aforementioned computers were running lite versions of Linux, 64-bit Raspbian in ARM-

based architecture. Some Python 2.7 scripts were deployed in the GCS for pre-flight testing of 

the network communication link between the systems.  

The computer used for the development was of minor importance. As far as a computer with 

internet connectivity could run a Linux distribution with Python 2.7 installed, along with some 

project-specific libraries that will be detailed later, any modern system should be adequate. 

 

Multi-rotor UAS 

The project was tested on two UAS with different airframes, thus different air-dynamics. Even 

though the two airframes have about the same weight, the motors in the foam quadcopter are 

more powerful. This is because the foam is very lightweight and has relatively big dimensions. 

This frame is not ideal in windy conditions and has proven instability under these 

circumstances.  

The aluminum Phone-Drone, which is designed by the TUC SenseLab members, has smaller 

dimensions and is denser than its EPP counterpart. This feature allows flight in more extreme 

conditions and is more stable.    

 

Table 1 Comparison of two UAS specifications. 

 Foam quadcopter SenseLab Phone-Drone 

Material Expanded Polypropylene Aluminum 

Size(mm)/Weight(g) 640x640x80/500 250x250x50/600 

Motors Multistar 2209-980 T-Motor MN1806-14 

Autopilot APM 2.5 autopilot APM 2.6 autopilot 

GPS/Compass 3DR GPS LEA-6 v1.1/On-

board 

3DR uBlox GPS/Yes 

Companion Computer Raspberry Pi 2 model B (year 

2015)  

Raspberry Pi 3 model B (year 

2016) 

IEEE 802.11 Odroid Wi-Fi 3 On-board 

6-ch 2.4GHz Receiver Spektrum AR610 Saturn X6 

 

Software 

The development of the software was done in Linux Ubuntu 16.04 environment, with Sublime 

Text 2.0 editing software. A Linux distribution was chosen over a Windows OS since the 

development and testing is more straightforward in these systems. The developed software 

leveraged the API of 3DR’s open-source project, dronekit-python, and as such, the 
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programming language was Python. In order for dronekit-python to run, the contributors have 

already created a python library called droneapi.  

Dronekit 2.7 

Dronekit is powered by 3DR and is an open-source project aiding in advanced UAS control. 

Dronekit is a complete drone developer tools ecosystem providing the API for the development 

of applications in computers (dronekit-python), smartphones (dronekit-android) and the cloud 

(currently not supported yet). From now on, when referring to dronekit-python, it will be 

written simply as dronekit.  

Dronekit is written in C++ and provides an extra abstraction layer for the communication 

between an onboard computer and the autopilot. For this reason, it aids in developing 

processor-intensive tasks that augment the functionality of the autopilot. What is more, the 

applications are written in Python, a high-level programming language extremely versatile and 

easy for prototyping. With dronekit, someone can call methods, instead of constructing 

messages for the autopilot, and store their output directly in the abstract data types of Python. 

(3D Robotics, 2016) 

The number of SDK environments for UAS is very limited since most companies provide 

proprietary, out-of-the-box solutions. The best rival of dronekit is the SDK of DJI, but the latter 

is functional only for DJI hardware (DJI, 2016). What is more, dronekit belongs to The Linux 

Foundation’s Dronecode project, a collaborative open-source ecosystem for UAS. There are 

numerous companies and individuals supporting the project and as such, many of its projects 

(MAVLink, Ardupilot to name a few) have become UAS industry standards. 

Ardupilot 3.2.1 

The autopilot is an integral part of a UAS. For this reason, a Dronecode open-source project 

called ArduPilot is responsible of operating the UAS flight code in conjunction with the 

companion computer. Figure 4.7 is a very good explanatory top-level architecture, describing 

the functionality of ArduPilot and its connection with the rest of the UAS subsystems. Because 

of the hardware abstraction layer (HAL) of Ardupilot and its great support in COTS autopilot 

hardware, there was no need for further survey on the autopilot project. (ArduPilot Dev Team, 

2016) 
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Figure 4.7 Top-level architecture of ArduPilot (ArduPilot, 2016). 

 

MAVLink 1.0 

The interface between the autopilot and the companion computer/GCS is the MAVLink 

communications protocol. MAVLink is another open-source project of Dronecode and has 

become the industry standard in the communication segment of a UAS. The main reason is that 

the MAVLink protocol is extremely lightweight since messages are serialized in byte arrays. 

This means that they are transferred optimally between processes (autopilot/companion 

computer) and are also appropriate for use with any type of radio modem (autopilot/GCS).  

The project currently supports eighteen types of autopilots for twenty-eight types of vehicles. 

Among the message types, the most common are messages containing information about 

heartbeat, vehicle state, changes in sensor values and current flight plan. The most useful 

commands that can be given via dronekit and/or the GCS include change in flight mode, 

mission load, takeoff/landing, payload operation (e.g. gimbal). If there is a parameter that is 

not wrapped in a MAVLink message already, there is support for custom message definition 

by editing xml files (dialects).  

Although there is extensive documentation for the message types and commands, creating 

listeners for the latter can be a complex task. For this reason and in order to increase the 
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readability of the code, dronekit-python’s API provides an extra layer of abstraction in the use 

of the most common MAVLink structures. (QGroundControl, 2016) 

Dronekit-sitl 

An ArduPilot simulation environment, software-in-the-loop (SITL) is also being developed by 

dronekit contributors. The tool is actually a python library and is called dronekit-sitl. There are 

pre-built vehicle binaries, including quadcopter, but the user can apply custom binaries for 

local use. The tool is used for extensive testing of the autopilot software and a set of pre-built 

commands can be sent through MAVLink. Note than Dronekit-SITL is able to run only on 

processors of the x86 family, thus making it impossible to run on the RPi’s or Odroid, which 

have an ARM-based SoC. (dronekit, 2016) 

APM Planner 2 

Both real UAS testing and data from dronekit-sitl can also be sent to a user interface for 

visualization, the APM Planner. The project is part of the Dronecode collaborative project that 

provides the user interface for mission planning in multiple UAS platforms. The 

communication between the APM Planner and the SITL simulator is full duplex, meaning that 

besides reading the UAS parameters, commands can be passed through the MAVLink protocol 

from the APM Planner to the autopilot, too. (ArduPilot, 2016) 

 

4.6 Online repository and documentation  

The purpose of this thesis is to create an API extension for the already developed Dronekit-

Python API. For this reason, the project is uploaded to a GitHub repository and is being updated 

constantly in order to add new functionality and fix bugs. The open-source software is covered 

with the GNU General Public License version 3.0.  

Git 

GitHub uses the Git distributed version control system. Any user can clone the repository to 

his/her system and modify it. The modifications can be done locally and uploaded as a new 

branch or be uploaded to the main project (master branch). In that way, the project can have 

many contributors and users.  

Sphinx 

In order for the project to have many contributors and users, there is the need for extensive 

documentation both for programmers and users. For this reason, documentation was written 

with the help of reStructuredText and the Sphinx formatter. Sphinx and reStructuredText are 

the official documentation tools of Dronekit-Python and that is why they were chosen for this 

project as well. Sphinx is also the official documentation formatter of Python. 

reStructuredText is a scripting language that is later processed by a formatter (in this case 

Sphinx) and creates documentation interfaces in many formats. The format used for dk-plus 

documentation is html, so that it can be read by any browser. The documentation can be 

accessed through the GitHub project page. An offline version of the documentation is presented 

in Appendix F: User’s and programmer’s manual. 
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5. Validation and performance evaluation 
The purpose of this chapter is to evaluate the functionality of the system. Both lab testing and 

customer verification techniques will be applied. The results will then be analyzed to describe 

the performance limits, advantages and disadvantages of the system. The testing of the 

subsystems and individual functions is not described in this chapter as the changes in the source 

code were minor bug fixes. 

 

5.1 Networking analysis 

In general, it should be noted that any UAS broadcasts its position in a rate of two messages 

per second. This rate is determined by the max speed of the UAS which is assumed to be 5m/s. 

If a message is received after a maximum of half a second, then the position of the UAS will 

be outdated just by a maximum of 2.5 meters. This assumption is realistic in the average case 

of small-UAS, the speed limit set by the FAA is much higher though, at about 44m/s (100mph) 

(FAA, 2016). Further discussion on the limitations is done later in this chapter. 

Two of the most important metrics in the performance testing of the network are jitter and 

roundtrip time. According to the 0MQ whitepapers, roundtrip is the time interval a message 

requires to be sent and received back.  Jitter is “used to express how much do individual 

latencies tend to differ from the mean” (iMatix Corporation, 2014). The latencies that are going 

to be used in the jitter calculation will be the roundtrip time.  

Another important factor to be taken into account is the size of the message. The actual message 

size, as analyzed by the WireShark network traffic analyzer, ranges from 885 to 1064 bytes, 

including data, UDP and IP overhead. The overhead includes source/destination addresses, 

flags and the specified protocol parameters.  The overhead by sending broadcast UDP packets 

through IPv4 sockets, without checksum verification field (it is included in the data segment), 

is a constant of 42 bytes. Data can range from 848 to 1064 bytes depending the serialization of 

each packet and the fact that some values can also be null.  

 

 

Figure 5.1 Packet anatomy of the UAS messages sent with UDP. Information obtained from the WireShark network traffic 

analyzer. 

 

The data segment contains vehicle information which can be used in a collision avoidance 

protocol. More information on the data segment can be found in Appendix C: Information 

shared between UAS.  

The sampling was performed inside the companion computers while running dronekit and the 

ABSAA system. This was done in order to fully simulate the latency, possible interrupts and 

available resources. There were two tests to evaluate the performance of message exchange. 
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The first case was the average case, during which a UAS receives ten messages per second. 

The purpose of the second case was to jam the network and the receiver by sending a hundred 

messages per second. The testing code was running for enough time to produce about 200000 

samples.  

The distance between the antennae was one meter but experiments have shown that data can 

be transmitted in a roughly 75-meter range, a limit much higher than the actual UAS 40-meter 

safety zone. An extra counter was operating in both sender/receiver systems in order to 

determine message loss due to collisions and the UDP non-lossless protocol. 

The outcome of the testing was analyzed with the GNU Octave software. In order to have better 

visualization, data was divided into a hundred bins for charting the histogram. Since the 

information is packed mostly to the left of the chart (most messages have low roundtrip times) 

the chart was also presented in logarithmic scale.  

Histograms can also easily give the necessary statistics for the analysis. A very useful one is 

the 99th percentile, which describes where the 99% of the sample belongs to, in terms of latency. 

It is important to know the latency of 99% of the packets, but it is also important to know the 

worst case, which fortunately belongs to the rest 1%. This percentage, when analyzed 

asymptotically, is a huge number for packet loss but with such a bounded system input (2 to 

20 messages/s), a 1% packet loss can be tolerated.   

Test case: Average (10msg/s) 

An average case of 10msg/s rate in the communication channel is tested and evaluated. The 

results are as follow: 

 

Figure 5.2 Histogram of the latencies of roundtrip messages with a ten message/s rate. As it can be seen, the average latency 

of these messages is about 5.8ms, most of the messages have a latency of about 24.7ms and the jitter is about a hundred 

times higher than the average case. 
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Figure 5.3 The same data as of Fig.5.2, this latency-samples diagram is in semi-logarithmic scale for better visualization. 

The constants of jitter, 99th percentile and average are also drawn for ease of inspection. 

 

The message loss because of the communication channel was zero but it is interesting to know 

that the counter on the sender side instead of sending 25000 seconds * 10 messages/s = 250000 

messages, it sent 234160 messages.  

This is about a 6% of messages that were never sent because of the system. If this rate is evenly 

distributed during the session, then 0.6 messages are not sent every second. This value is 

tolerable for the system, taking into account the max airspeed of the UAS which is 5m/s. The 

loss of information translated to actual position error would then be a maximum of 2.5 metres, 

considering only the network, without taking into account other real-life parameters such as 

the GPS error, latency in the CPU-bound processes of the system’s processor and latency in 

the autopilot hardware to take the actions commanded by the companion computer. 

Finally, a 10-msg/s receive rate with a 2msg/s send rate of each individual UAS, means that 

the UAS could be able, on the network side, to handle up to at least five UAS. The jitter, which 

belongs to <1% of the total samples is also tolerable at 0.5s, since it equals the time window of 

the whole system.  

Test case: Jamming (100msg/s) 

The following scenario tries to jam the channel with a hundred messages/s rate. The results are 

very interesting in terms of latency and are shown in Figure 5.4 and Figure 5.5. 
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Figure 5.4 Histogram of the latencies of roundtrip messages with a hundred message/s rate. As it can be seen, the average 

latency of these messages is about 21.3ms, most of the messages have a latency of about 434ms and the jitter is about thirty 

times higher than the average case. 

 

 

Figure 5.5 The same data as of Fig.5.4, this latency-samples diagram is in semi-logarithmic scale for better visualization. 

The constants of jitter, 99th percentile and average are also drawn for ease of inspection. 

 

In the second test, jitter is not as high a multiple as in the first case, thus moving the average 

value way higher in the latency meter. The results should be expected: the receiver has ten 

times the workload in both I/O- and CPU-bound tasks and, combined with the overhead of the 

system, the latencies are much higher than this factor. Because of the average latency nearing 

the timing window, a message loss is also observed between the sender and the receiver of 



 

42 

 

about 9%. Out of all the messages that should be sent, a 13.5% was never sent, in opposition 

to the first case’s 6%. This concludes that the receiver lost in total about 16% of the messages.  

By performing the same statistical analysis as in the average test case, 16 messages out of 100 

were lost every second. If this number is distributed to all participating UAS, then eight out of 

fifty UAS will not be able to share their information during their time slot. In the worst case, a 

UAS will not be able to share its own data eight consecutive times, meaning four seconds. If 

this time is translated to position error, with a max speed of 5m/s, the conflicting UAS will be 

outdated by 20 meters. If the safety zone is 40 meters, in a frontal collision case, the UAS will 

have already crashed without taking into account any other latency factors! 

As it can be seen, the increase in latency from 10msg/s to 100msg/s is not linear but has an 

exponential increase. A further optimization analysis should be considered in order to define 

the acceptable limits of the system. It is quite sure though, that, inside a forty-meter sphere, the 

network channel allows for at least five UAS to participate safely in a conflict session. 

 

5.2 Software in the loop (SITL) 

Simulation of the UAS system in the development computer is called software-in-the-loop. The 

primary, coarse tests of the system functionality are undertaken in the protective environment 

of a host computer. The necessary simulation software is dronekit-sitl, which contains the 

binaries for the multi-copter vehicles, the physics engine and the simulation parameters.  

Testing scenario 

In order to check the functionality of the system, the developer’s computer was used to simulate 

the vehicle and a Raspberry Pi was used as a beacon with hard-coded coordinates. For the 

visualization needs, APM Planner 2 was used. The home location of the vehicle, the flight 

parameters and the autopilot version should be defined beforehand. With the help of Google 

Earth Pro, the beacon’s distance from the take-off simulated vehicle’s coordinates (called the 

home location) was hard-coded to be about 23 meters away from safety zone of the simulated 

vehicle.  

This scenario tries to test the whole functionality of the system. What is not tested is scaling 

(use for more than two stakeholders) and interaction between more than simulated vehicles, 

since APM planner cannot visualize more than one simulated vehicle instance. What is also 

not tested is conflict during a non-autonomous flight (manual modes). The prioritization 

algorithm as standalone has been evaluated with the use of ten dummy vehicles of different 

parameters and its functionality has been confirmed.  

The simulated vehicle’s mission was to perform a flight with 10-meter altitude, in a 50-meter 

square.  

The simulated vehicle’s mission was as follows: 

1. Take off to a target altitude of ten meters 

2. Go 50 meters north   [First waypoint] 

3. Go 50 meters west   [Second waypoint] 

4. Go 50 meters south  [Third waypoint] 

5. Go 50 meters east  [Fourth waypoint] 

6. Return to launch point 
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The position of the beacon was 63 meters north of the home location and the parameters of the 

beacon were crafted in a way that it has higher priority than the simulated vehicle (the easiest 

parameter for this is elevating the beacon’s mission importance).  

The expected behavior of the flying simulated vehicle was to: 

 Start receiving packets from the beacon and ignore it at first. Cross-check with packets 

received by the beacon. 

 When the distance between the beacon and the simulated vehicle would be less than the 

safety zone, the message should be processed and the console should print a warning 

message that another vehicle is approaching. 

 When detecting the beacon inside the safety zone, the simulated vehicle should 

immediately reduce its airspeed to 0m/s, since its priority should be lower than the 

beacon’s.  

 The beacon would then be stopped and, after 5s which is the timeout of outdated UAS 

in the conflict zone list, then simulated vehicle should continue its mission. 

 

 

Environment variables 

In order to overcome some limitations of the system, for testing purposes, a slight 

simplification of the model was configured. The greatest limitation was the power source since 

the simulation could be running for many minutes as such, the simulation did not take into 

account the power consumption.  

Another feature which was ignored was airspeed. Strong wind would require the autopilot to 

perform many corrections for stabilization and that would jam the graphs with irrelevant data.  

Figure 5.6 The mission waypoints loaded in the simulated vehicle as shown in APM planner (left). The yellow circle with the 

four dots represent the quadcopter’s current position. On the right, the mission and beacon position as shown in Google 

Earth. The green circle represents the safety zone of the UAS and the red one the critical zone. The beacon is in the way 

towards waypoint 1. 
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Another important factor was the GPS error. Some autopilot modes require a fully functional 

GPS, with 3D fix and low HDOP and VDOP. For this reason, the GPS of the simulated vehicle 

had very accurate GPS measurements.  

For fully functional autopilot operation, the barometer is also of great importance and it is 

usually a sensor that does produce erroneous measurements. In order to verify the actual 

functionality of the system, the barometer was programmed to deliver accurate results. 

Besides the above modifications to create ideal flight conditions, the necessary initialization 

and pre-arm checks were performed. The code-style should be defensive in order to avoid 

hazards during a bad boot or faulty avionics.  

Observations 

The APM Planner visualization pane optically verified the functionality of the system. The 

console messages also provided ample information in real-time and the vehicle’s behavior has 

been confirmed.  

In order to observe the (negative) acceleration of the vehicle during a conflict, data from the 

flight logs have been analyzed. In more detail, a correlation between the flight mode and the 

groundspeed has been visualized and the time variable was extracted. Four stopping methods 

have been tested and the results are as follow: 

 

 

Figure 5.7 UAS follows an autonomous mission (AUTO). When the higher priority beacon is in range it changes 

to GUIDED mode, saves the mission and holds its position until further commands are sent to the autopilot. 

Groundspeed stabilizes to zero after almost ten seconds and the distance covered during this period is more than 

25 meters. 
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Figure 5.8 POSHOLD contains a settable braking rate parameter which is particularly useful when experimenting with more 

aggressive braking. The parameter was increased from 8 degrees/s to 20 degrees/s. POSHOLD is a manual mode though, 

requiring input from the ground pilot. If not received within three seconds, the autopilot protocol demands the UAS to be in 

failsafe state. For this reason, the RC throttle channel is overridden to keep the UAS in the air. Further modifications of the 

throttle for stability reasons are undergone by the autopilot. The groundspeed momentum lasted for 8 seconds with 

significantly lower curves and the distance covered was 14 meters. 

 

 

Figure 5.9 The only parameter changed in this solution is POSHOLD_BRAKE_RATE which was increased by ten degrees/s. 

A 30degrees/s rate in braking is the limit since an increase could result in aggressive behaviour of the system. The results are 

much better compared to all the solutions presented. Time until zero groundspeed: 10 seconds. Very low groundspeed curves 

result in a ten-meter distance until zero. 
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Figure 5.10 After the beacon surpassing the safety zone of the UAS, POSHOLD mode is activated followed by GUIDED mode. 

This hybrid solution does not need an RC channel override and exploits the POSHOLD_BRAKE_RATE parameter. Latency 

here is not reduced compared to the GUIDED-only solution but the groundspeed curves are a lot lower and smoother. Distance 

covered from conflict detection to actual zero groundspeed is 20 meters. 

 

5.3 Hardware in the loop (HIL) 

Performing a simulation with the participating hardware connected gives a more realistic 

feedback for benchmarking, environmental factors to take into account and the physical 

hardware limitations. The quality of the system is also increased since during the design and 

implementation process there are details in hardware limitations that demand fine-tuning of the 

system (Kleijn, n.d.). HIL simulation was used for the 5.1 Networking analysis chapter, too. 

This testing step is also a preparatory step for the final field testing procedure (See 5.4 Field 

testing). 

Testing scenario 

The foam quadcopter was fully assembled and booted indoors. The propellers were removed 

for safety reasons. The PhoneDrone was used as a beacon, but also in full assembly and with 

hard-coded coordinates in a way that it is in the vicinity of the foam quadcopter. A laptop was 

used as a Ground Control Station (GCS) for uploading the necessary files and observing system 

changes on the remote companion computer consoles. The scenario contains the following 

actions: 

1. Boot the two UAS. 

2. Perform the pre-flight checklist test  

3. Connect to the UAS ad-hoc network with a laptop for access. 

4. Upload the necessary files to both systems. 
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5. Start the beacon program. 

6. Start the autonomous mission on the foam UAS. 

7. Observe the UAS reactions.  

8. Stop the beacon. 

9. Observe the UAS reactions again. 

10. Exit the foam UAS mission. 

 

Table 2 APM-Copter Flight Ops Checklist v1.0 (ArduPilot Dev Team, 2016). The telemetry unit was not mounted since the 

necessary information would be exchanged via WLAN connection. The propellers were also not on-board because of the 

indoor testing. 

 

 

 

Observations – Fine tuning 

Based on the logging and the behavior of the foam UAS, the following observations are stated. 

Any issues that prevented the accomplishment of the scenario are addressed and stated as well: 

 Some features of Dronekit were not supported by older firmware versions of the 

autopilot and as such the mission was not able to start. Some lines in the code are 

changed for compatibility reasons. The functionality is kept the same. The 

modifications are not stated since they are minor bug fixes.  

 The GPS was not able to have an HDOP of under two meters and sometimes it could 

not even get a 3D fix. The UAS was relocated or else the pre-arm checks would not be 

accomplished.  
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 There was a significant latency during the on-the-fly mode change. Some while-loops 

that were used for defensive coding were locking the thread for longer-than-expected 

sessions so they were put to sleep at a 200ms rate. A longer rate would cause bigger 

delay in the execution of the collision avoidance thread which sleeps every 500ms 

anyway.  

 The WLAN protocol has an average range of 75 meters without physical barriers.  

 Some flight modes are not supported so cases are added for backwards compatibility. 

 The autonomy of a fully charged 11.1V, 2200mAh battery is approximately 15 minutes 

of flight time.  

 

5.4 Field testing 

Having addressed the issues incurred during the SITL and HIL simulations, the final field 

testing was performed. The mission was fully autonomous so a remote human pilot was not 

needed. For safety reasons though a pilot was ready for a UAS takeover in case of emergency.  

Because of limitations in resources, no more than two UAS were able to interact with each 

other. The biggest issues during the testing were weather conditions, battery autonomy and to 

find a suitable takeoff platform.  

In order to increase the autonomy of the battery, a shorter flight plan was uploaded to the UAS 

that served the same testing purpose. A set of fully charged spare batteries were also taken 

along.  

The testing area would need to be open, apart from buildings and not crowded, for safety 

reasons. It should also be easily accessed and close to the laboratory. The most suitable area 

was the farmost parking area of the TUC ECE School. The mission plan is presented in the 

testing area in Figure 5.12. 
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Figure 5.11 The field testing mission plan. The UAS will fly towards WP1, WP2 and WP3 and it should stop at the first yellow-

red line intersection. After the beacon stops sending messages, the UAS should continue its mission. 

 

The first tests were performed with the foam UAS flying and the higher-priority PhoneDrone 

on the ground. The wind speed was too high for the aerodynamics of the foam UAS though 

(approximately 20-25km/h with gusts), and the system went in emergency status.  

For the next tests the flying-beacon roles were changed since the PhoneDrone is less 

susceptible to wind speed because of its shape and density. Weather conditions were also more 

thoroughly checked. This resulted in delays because of bad weather conditions (rain, high wind 

speed). The test was finally a success and the ‘braking’ techniques of 5.2 Software in the loop 

(SITL) were tested in order to see which one is most favourable for the real system. 
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6. Discussion and future work 
This final chapter is devoted to the presentation of the advantages and limitations of the system. 

Possible future development ideas are also stated. 

 

6.1 Advantages of the system 

Open-source 

The system designed in this thesis provides an extra communication and conflict-related 

interface for an open source UAS developer platform, Dronekit. Dronekit is used by a great 

proportion of UAS developers who want to experiment with advanced control methods and 

find industry-related applications. Being part of an industry-standard developer ecosystem 

helps in evolving the open UAS platform community and gives a boost to create more advanced 

techniques on a more versatile and robust basis. The designed system can also be reviewed by 

anyone in the community for further improvement and robustness. Since the deployment of the 

DK+ API can still be tricky since it is a prototype, the experienced community can transform 

it to a much more fault-tolerant and robust system.  

 

Minimum hardware and cost 

The architecture of the system has followed a minimum hardware approach. It must be 

expected that a UAS functioning fully autonomously would require extra processing power, 

other than the autopilot microcontroller. Since the software has to be run on a companion 

computer with Linux OS because of the Dronekit requirements, the target was to limit any 

other hardware requirements to zero. In most cases, an external WLAN module has to be 

connected, like in the RPi 2 or Odroid, but sometimes the computer has embedded WLAN 

support, like in the RPi 3.  

The most important factor that limits hardware requirements is the cooperative nature of the 

UAS and the fact that the cooperation is de-centralized, or peer-to-peer. That means that no 

extra sensors are needed between the UAS to sense another UAS in the region and also that no 

ground stations, radars or antennae are needed for the conflict detection and avoidance.  

Combining the global use of open source software and the minimum hardware requirements 

for advanced control in a UAS platform, a ‘cheap’ solution to airborne-based sense and avoid 

has been implemented. The system introduces low costs in extra hardware installation and 

interfacing since it is plug-and-play. It is also energy efficient since no extra sensors, gimbal 

or image processing is needed. The software itself is lightweight in CPU-bound operations with 

a complexity of O(n) while traversing lists. N can be a maximum of ten conflicting UAS, since 

extra scaling will be most likely to decrease the system reliability dramatically in the receiver 

section. The arithmetic calculations are also elementary algebra, which also reduces the 

complexity. In addition, the payload is not increased relatively a lot, since a mini companion 

computer, along with an external WLAN module and casing, weighs no more than a hundred 

grammars, less than ten percent of the average payload a small/micro-scale UAS can hold. The 

biggest energy consumers are still the motors. 
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Portability 

The minimum hardware approach and the open-source culture of the system make the system 

portable. Any small-scale computer running a Linux distribution and having WLAN support 

by any means, can have the Dronekit and DK+ installed for ABSAA support. The software 

requirements are also easy to meet since Python 2.x is installed in almost any Linux distribution 

and the extra dependencies can be installed via pip. 

  

Easy prototyping 

The Python language was also chosen because it makes prototyping easier than the use of C++ 

or Java. Python is a very high-level language where data types are abstract and there are 

libraries for thread-safe operations that minimize the lines of code that need to be written, in 

opposition to a C++ code where debugging and writing would take a lot more time. There are 

serious tradeoffs in optimization, though which will be analyzed in the Limitations section. If 

a truly OO language was to be chosen, C++ would be the preference instead of Java. Java has 

the same optimization problems with Python while C++ gives the freedom to fine-tune and go 

as low-level as someone wants. If someone wants to stitch C++ code though, Python also 

supports this feature.  

 

6.2 Limitations of the system 

Susceptibility to the physical environment 

The UAS alone have the limitation that they cannot fly under any weather condition and cannot 

be autonomous in any place. Depending the airframe, high wind speed, humidity and extreme 

temperatures are usually no-fly situations. The avionics necessary for a fully autonomous flight 

necessarily contain GPS readings. An open sky and at least four satellites are needed by default 

before the arming of the UAS, while position error needs to have a low threshold of 

approximately two meters. Since the UAS is susceptible to these uncontrollable conditions, the 

system developed inherits this disadvantage as well. 

 

Not optimized 

While the Python language is very good for prototyping, there is a great tradeoff that must be 

mentioned, the one of low optimization. Problems like memory garbage and the use of large 

memory space for the abstract data types, running always in a single core due to the Global 

Interpreter Lock (GIL) even in multi-threading programs, automatic scheduling and big 

message overhead in the OS kernel cannot be addressed by the Python programmer because of 

the language’s high level of abstraction. What is more, whatever the implementation and the 

granularity of the python software, the python interpreter can run only in one core, keeping the 

remaining cores of the companion computer unexploited. (Coghlan, 2011), (Beazley, 2010) 

The only way to overcome this major problem is the multi-processing library that is currently 

being used in a separate test branch. The problem with multi-processing software is high 

message overhead due to inter-process communication, since the use of shared memory is not 

functional as it is between threads (Danilov, 2014). Testing has shown that latency in a single-

core system is at acceptable rates, but with the explicit introduction of latencies, ranging from 
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100ms to 500ms, throughout the program, the system stops being real time. A possible multi-

core solution maybe would address this issue.  

 

Low scaling 

Scaling in the context of how many conflicting UAS can use the software in the same time and 

place. The most important factors limiting the conflict detection and avoidance ability of the 

system is the actual number of conflicting UAS inside the safety zone. The greatest bottleneck 

is on the receiver side, where message collisions can cause great data loss and latency. Another 

very important aspect is the range of the WLAN protocol which limits the maximum 

groundspeed of the conflicting UAS to a very low threshold. 

Networking tests of chapter 5.1 Networking analysis have shown that five UAS can safely 

communicate with each other while fifty UAS will introduce great latency to the system and a 

big data loss rate. It is intuitively believed that ten UAS will also be a safe limit for the receiver 

subsystem.  

Also, since the IEEE 802.11 protocol has a range of maximum 90 meters in the open sky 

(SpeedGuide, 2016), evaluated by lab testing, the safety zone can be of maximum 90 meters 

as well. If both UAS need 1s for processing and moving with the opposite direction, leaving a 

five-meter critical distance, it means that the UAS can stop at a maximum distance of 40 meters 

after the conflict detection.  

The braking rates of chapter Validation and performance evaluation show that on average case 

it takes 2s from 5m/s to 0m/s, yielding a rough estimate of 2.5m/s2 brake rate. By solving the 

following simple kinematics formula (The Physics Classroom, 2016): 

𝑑 =
1

2
𝑎 ∗ 𝑡2 (1) 

Where: 

d = 40m distance, 

a = 2.5m/s2 deceleration. 

 

Solving by the time variant, t, we have: 

𝑡 = 5.66𝑠 

Replacing to the velocity formula (The Physics Classroom, 2016): 

𝑉 = 𝑉0 + 𝑎 ∗ 𝑡 (2) 

Where: 

V = 0m/s target velocity 

t = time needed to cover the 40-meter distance, found through eq.1 

 

We finally have: 

(1),(2)
⇒   𝑉 = 14.15

𝑚

𝑠
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This means that the maximum speed should be approximately 14m/s, opposed to the NAS legal 

maximum speed of 44m/s. This is a great limitation for the system. Any UAS with maximum 

groundspeed greater than the 14m/s limit will cause the system to fail for the other conflicting 

UAS as well.  

A solution to this problem would be the use of other communication protocols, other than the 

IEEE 802.11, that have higher range. These protocols would have to be benchmarked again to 

see the new limitations on the receiver side that they impose and the extra hardware costs and 

interfacing required. 

 

Non-dynamic for different airframes 

The system needs to be adaptive to the airframe of each UAS for fine tuning some important 

parameters, the most important of which are: 

 Autopilot version 

The version of the autopilot can sometimes determine the abilities the UAS has in terms of 

available flight modes and MAVLink commands. Since not every MAVLink command 

and flight mode is supported by all autopilot hardware and firmware, different procedures 

need to take place for the same purpose. For example, the ArduCopter 3.3 supports the 

BRAKE flight mode which automatically stops the UAS at the current position. Older 

versions don’t have this kind of support so different methods need to be applied, like the 

ones presented in Validation and performance evaluation.  

 Maximum groundspeed 

As mentioned before, if a UAS can achieve a maximum groundspeed of more than 14m/s 

it should take other measures for conflict detection and avoidance since it imposes serious 

risks for the rest of the UAS, if communication is achieved via the wireless internet 

protocol.  

 Braking rate 

The braking rate calculated in this thesis via testing (see 5.2 Software in the loop (SITL)) 

is applied only to the certain airframe tested. Each UAS has got different avionics, motors 

and aerodynamics and as such different braking rate.  

The safety zone of each UAS is currently hard-coded in the system and as such, it does not take 

into account these parameters. This means that the safety zone distance is not optimized for 

each UAS individually thus making the conflicting set of UAS more rigid.  

In conclusion, the system developed has opened a new field, the cooperative airborne-based 

sense and avoid method, in the Dronekit ecosystem. The system requires little, cheap and easy 

hardware additions to an existing open-platform UAS and contains all the necessary 

documentation to get someone started. On the other hand, there is still a lot of work to be done 

in order to make it more resilient in the dynamic environment of the UAS industry and more 

robust to the already developed software. Currently, it is safe to assume that the system works 

as it should for UAS with maximum groundspeed of less than 14m/s and for five to ten 

concurrently conflicting UAS. 

 



 

54 

 

Not secure 

Since the software is open-source, any developer can download and modify it to his/her likings. 

This imposes a high risk in hacking the UAS in order to be seen as a top-priority UAS (see 

Prioritization) even if it is for recreational use. Also, the connection is not secure. This implies 

that in a future mission takeover feature, it will be feasible for other UAS to hijack their 

surrounding ones.  

 

6.3 Future work 

As inspired from the disadvantages of the system, there are great ways for further development 

of the system for extra robustness and functionality. The following sections mention the most 

important ones. 

 

Real-time 

There is a Linux kernel patch, RT_PREEMPT (The Linux Foundation, 2016), that promises to 

transform the system into a real-time one. This is done by inserting timeouts for signals 

interrupting a high-priority process. The deployment of the patch is tricky to the average user 

and should come pre-installed in order to be widely used. For benchmarking purposes, though, 

the patch could be installed by a developer and see if the timing differences are high enough to 

start the procedure of making it available to all the users. 

 

Optimization 

Currently there are two big optimization issues. The first is the communications interface and 

the interconnection of UAS as nodes in a dynamic network. There has to be serious research 

on dynamic ad-hoc networks and how they can be applied in the UAS case. The problem with 

the internet protocol communication is the interfacing since any time the UAS can be both 

routers (give IP addresses to the UAS needed to connect in the subnet) and members (be able 

to join other subnets). In order to avoid this rather complicated issue, maybe other 

communication methods should be researched. The decision on the communication protocol 

has to take into account the tradeoffs between range and bandwidth or cost in resources 

(installation, money, implementation time).  

If the WLAN protocol seems an acceptable solution, further optimization can be achieved by 

using some network-specific packages that are network-related, like 0MQ (iMatix Corporation, 

2016) and Twisted (Twisted Matrix Labs, 2016).  

The second optimization issue is the programming language which does not allow low-level 

programming, thus limiting the source code efficiency. Porting the software to C++ and 

embedding it to the Dronekit core could be a possible solution to this but again the 

debugging/implementation time tradeoff has to be taken into account. The transformation of 

the system to multi-processing instead of multi-threading, in the Python language, could also 

be very useful in the full exploitation of the resources of a multi-core companion computer, but 

this again could mean the change in the whole architecture of the system.  
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Resilience 

As stated in the Limitations section of this chapter, the system does not take into account 

airframe-specific parameters to set its safety distance and the braking methods. A dynamic 

distance window and extra support for more autopilot versions would make the system more 

adaptive to the individual UAS.  

Also, better precision in the distance between UAS can be achieved by considering the current 

coordinates for error correction in the distance calculation function.  

 

The ‘Drone Language’ 

A very useful concept that is based on the cooperative nature of the system and the ‘context-

switching’ (see UAS context switching) is to create a messaging interface with a set of 

supporting commands for UAS to be able to remotely control other UAS. The application of 

this concept would be, for example, a mission takeover in case of an emergency: A UAS which 

is registered as a volunteer receives a message from a nearby top-priority, search-and-rescue 

UAS, that it needs help in scouting. Then the volunteer UAS saves its state and follows the 

governmental UAS to the mission.  

 

Collision avoidance methods 

Currently, the collision avoidance protocol used is pretty naïve and it does not consider much 

of the information that is shared between the UAS. This is because the purpose of the thesis 

was to create the infrastructure for the support of such algorithms and not research the 

algorithms themselves. The deployment of Artificial Intelligence algorithms, like the A* path 

planning, with the aid of trajectory planning techniques can create very powerful collision 

avoidance protocols. The time and space complexity are of course increased dramatically and 

further optimization is needed in order for them to be functional.  
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Appendix A: Transformations and formulas 
 

GPS Precision 

The GPS reading of the UAS represents the latitude and longitude in decimal degrees. In order 

to get a centimeter precision, the following formulas are used. The distance from the equator 

to the poles along the Paris meridian is defined as: 

𝐷 = 107 𝑚𝑒𝑡𝑒𝑟𝑠 

The angle from the equator to the pole is known to be 90 degrees thus: 

1𝑜𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 = 111111 𝑚𝑒𝑡𝑒𝑟𝑠𝑥−𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒       (1) 

1𝑜𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 = 111111 𝑚𝑒𝑡𝑒𝑟𝑠𝑦−𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 ∗ cos(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒)    (2) 

As such, a reading with zero decimal places equals a 111111-meter radius, one decimal place 

equals a 11111.1-meter radius and so forth. In order to have a centimeter-scale precision 

(1.11111 cm), there needs at least a reading with 6 decimal places. It has to be noted that the 

error gets bigger as approaching the poles.  

(Stack Exchange, 2011) 

The same method, but with a more precise reading, is to calculate the circumference of the 

earth and then divide it by 360 degrees. The assumptions of this model is that the earth is a 

perfect sphere with 6378137-meter radius. In that way, one degree of latitude equals: 

2∗𝜋∗6378137

360
= 111319.9 𝑚𝑒𝑡𝑒𝑟𝑠       (3) 

With this transformation, 6 decimal degrees equal a precision of 1.113199 cm.  

 

Ground distance between two coordinate sets 

Since the two coordinate sets are relatively close to each other, there is no need for great circle 

navigation (Williams, 2011). A simple flat-earth model (use of the Euclidean distance) can be 

used. 

The transformation from degrees to meters follows the model of eq.3: 

𝛥𝜒 =  √(𝑙𝑎𝑡2 − 𝑙𝑎𝑡1)
2 + (𝑙𝑜𝑛2 − 𝑙𝑜𝑛1)

2 ∗ 111319.5 𝑚𝑒𝑡𝑒𝑟𝑠   (4) 
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Appendix B: Airframe characteristics 
The two airframes that were used for the hardware-in-the-loop simulation have the following 

characteristics: 

Foam quadcopter 

 

Figure 0.1 Full assembly of the EPP quadcopter. The autopilot must be in the centre of mass for good IMU 

calibration. Along with the GPS and compass (top of autopilot), they must be as far as possible from power 

sources and the motors for minimizing magnetic interference (ArduPilot Dev Team, 2016). The companion 

computer (RPi 2) with the WLAN module can be seen on the centre bottom of the UAS. The propellers have been 

removed for safety reasons in indoor testing. 

 

1. Airframe material 

High-density expanded poly-propylene (EPP foam). Not resistant to oil and oil by-

products including gasoline and kerosene. Lightweight material and energy absorbing, 

very good for weight-saving applications and withstands multiple impacts (JSP, 2016). 

The UAS can be unstable at medium-high wind speed so extra care has to be given in 

the aerodynamics at the design process.  

2. Dimensions 

640x640x80 mm. Approximately 250gr without electronics. 
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Figure 0.2 EPP quadcopter frame in full assembly. Under the wooden cap there is room for the PDB and ESCs. 

The wooden boxes provide a base for the motors. (HobbyKing, 2015) 

 

3. Motors 

4x Turnigy Multistar 2209-980Kv 14Pole Multi-Rotor Outrunner V2. More poles give 

better control to the ESCs for better stability of the motors rpm. The motors of the foam 

must be strong enough to keep better stabilization of the UAS, since the airframe can 

be too lightweight for windy conditions. 

 

Table 3 Characteristics and dimensions of the foam quadcopter motors. 

 
 

 

4. Autopilot: 

ArduPilot Mega (APM) 2.5 is an autopilot that supports the open-source ArduCopter 

firmware. Hardware version 2.5 is not supported any more by the more modern 
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ArduCopter 3.3 firmware. The latest firmware supported is ArduCopter v.3.2.1. This 

induces some minor changes in the software design for backwards compatibility with 

the earlier versions. The APM autopilot is a cheap alternative to the more advanced 

Pixhawk one. This is challenging when dealing with advanced UAS functionality since 

the resources of APM are very limited. As such, on-the-fly operations must be handled 

with extra care.  

 

The layout of the APM 2.5 is shown in Figure B.3. The APM 2.5 features an on-board 

compass and the microcontroller is Atmega2560 (Atmel, 2014). Since it contains an 

AVR CPU, the autopilot is also compatible with Arduino.  

 

 

Figure 0.3 ArduPilot Mega 2.5 layout. (ArduPilot Dev Team, 2016). 

 

5. GPS/Compass: 

Since the autopilot does not contain GPS, an external module must be used. The 

supported module that works with APM 2.5 is 3DR’s LEA-6 GPS.  
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Figure 0.4 3DR’s GPS LEA-6 v.1.1 mounted on the foam quadcopter, next to the APM2.5 autopilot. 

6. Companion computer: 

The computer used for extra processing power in the advanced UAS control side was 

the ARM-based Raspberry Pi 2 model B with the Raspbian, debian-based Linux 

distribution. Raspbian is a lightweight OS optimized for the RPi.  

 

 CPU: ARM quad-core Cortex-A7 @ 900MHz 

 RAM: 1GB LPDDR2 (synchronous with the CPU clock) 

 Graphics: VideoCore IV 3D graphics core 

 Interfaces: SD card slot, Ethernet, 4xUSB2 ports, Type-A HDMI, CSI, DSI, 40 

GPIO pins, 3.5mm audio jack and composite video. 

The Raspberry Pi 2 does not have an onboard WLAN module, so a plug-and-play 

Odroid Wi-Fi module was used instead.  
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Figure 0.5 The Raspberry Pi 2 model B with the Odroid Wi-Fi module installed, as part of the full assembly of the foam 

quadcopter. It is powered by one of the 5V outputs of the autopilot through a micro-USB port. 
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SenseLab PhoneDrone 

 

 

Figure 0.6 The SenseLab PhoneDrone in full assembly. The propellers were removed for safety reasons during indoor testing. 

The autopilot is under the companion computer which is seen at the centre of the UAS. This UAS originally takes a smartphone 

as a companion computer but it received slight modifications to accept a Raspberry Pi.   

 

1. Airframe material 

Aluminum is a widely used material for multi-copters since it can be easily fabricated. 

It is not as energy-absorbing as EPP but after a crash it is feasible to be bent back in 

shape. Two of the most important drawbacks is that aluminum is RF blocking and 

transfers vibrations. As such, extra care has to be taken on the placement of the RF 

receiver and the autopilot, since vibrations can cause erroneous output of the 

IMU/barometer.  

 

2. Dimensions 

250x250x50 mm, 500gr including all equipment.  

 

 

3. Motors 

4x T-Motor MN1806-14. Since this airframe was designed to be lightweight and 

portable, small-sized but powerful motors were needed to be used. For this reason, the 

dimensions of these motors may be small but the 2300kV output is adequate to easily 
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lift it. Because a smaller 1800mAh 7.4V battery may be used for portability reasons, 

the company’s datasheet (see Table 4) proves that even with this capacity it can provide 

enough thrust. 

 

Table 4 Specifications of the Tiger Motors MN1806 2300KV motor. (T-Motor, 2013). 

 
 

 

Figure 0.7 The 1400KV variation of the MN1806 series (T-Motor, 2013) 

 

4. Autopilot 

The autopilot used is the next version of the one in the foam quadcopter, APM 2.6. This 

version does not have an on-board compass and GPS and as such the supported 

hardware was used. Since the autopilot in the PhoneDrone does not have a casing for 

design reasons, a piece of foam should be put on top of the barometer in order to absorb 

vibrations.  
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5. GPS/Compass 

The APM 2.6 supported 3DR uBlox GPS LEA-6 with compass module was used. The 

module was placed in a 3D-printed heightened platform on top of the aluminum 

airframe in order to reduce vibrations and magnetic interference. 

 

 

Figure 0.8 The GPS and compass module, mounted on the 3D-printed base (blue). 

 

6. Companion computer 

The computer used was the ARM-based Raspberry Pi 3 model B running the Raspbian 

OS.  

 

 CPU: ARMv8 64-bit quad-core @ 1200MHz 

 RAM: 1GB LPDDR2 (synchronous with the CPU clock) 

 Graphics: VideoCore IV 3D graphics core 

 Interfaces: SD card slot, Ethernet, IEEE 802.11n WLAN, Bluetooth 4.1+Low-

Energy, 4xUSB2 ports, Type-A HDMI, CSI, DSI, 40 GPIO pins, 3.5mm audio jack 

and composite video. 

 

 



 

73 

 

 

Figure 0.9 The Raspberry Pi 3 model B mounted on the PhoneDrone and powered by one of the 5V autopilot outputs. 

Casing has been used for the protection of the system. 
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Appendix C: Information shared between UAS 
The vehicle state parameters which are found useful during a conflict involve the system’s 

avionics capabilities, flight plan, remaining power, system state. Not all attributes can be 

accessed by the system, since some of which are hardware and software dependable. The 

parameters exchanged are: 

Metadata: 

 ID: Int representation of a code-generated unique id. 

 last_recv: Timestamp added upon message receipt. 

 distance_from_self: calculated upon receipt. 

GPS-related: 

 gps_fix: Needs to have value 3 for 3D fix. 

 gps_sat: Number of satellites 

 gps_eph: horizontal position error in meters 

 gps_epv: vertical position error in meters 

Autopilot: 

 set_global_alt: Altitude remotely settable. Not supported with AC3.2 versions or older. 

 set_attitude: Attitude remotely settable (pitch, yaw, roll). Not supported with AC3.2 

versions or older. 

 version: Autopilot firmware version. 

Flight plan: 

 mission_importance: See System design and implementation. 

 mode: Flight mode. See Appendix D: Prioritization parameter sets. 

 heading: Heading in degrees. 

 next_wp: A number indicating the next waypoint in the mission list. 

 next_wp_lat: next target latitude. 

 next_wp_lon: next target longitude. 

 next_wp_alt: next target altitude. 

Flight parameters: 

 groundspeed: Speed in m/s relative to the ground. 

 airspeed: Actual speed in m/s. 

 velocity: Three-axis speed in m/s. 

 global_alt: Altitude relative to the ground. 

 global_lat: Latitude relative to the global frame. 

 global_lon: Longitude relative to the global frame. 

System: 

 ekf_ok: Indicator that the Extended Kalman Filter is ok. 

 system_status: See Appendix D: Prioritization parameter sets. 

 battery_level: Indicates percentage left. Only if power module is equipped.  
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Appendix D: Prioritization parameter sets 
During the prioritization algorithm, four parameter sets are considered: 

1. System status 

The status is defined inside the autopilot software and describes the UAS state. The list 

of states can be categorized to no-fly or fly-mayday and fly-normal. 

  

The no-fly states have the lowest priority since they wait for clearance before they start 

flying. The only exception is the UAS with top level mission importance, which can 

take-off with higher priority. The no-fly states are: 

o UNINIT: system uninitialized. 

o BOOT: system during booth. 

o POWEROFF: system during power off. 

o STANDBY: ready to accept commands. 

o CALIBRATING: calibration of the system’s avionics (IMU, GPS etc.). 

o LOCKED: does not accept any commands. 

There are also two flight modes that declare a flying UAS in danger. These systems 

have the greatest priority since it is most probable that they have lost control. These fly-

mayday states are: 

o EMERGENCY: something is going wrong but the UAS can still be controlled. 

o CRITICAL: The system is in mayday and cannot be controlled. 

 

The other states belong to the fly-normal set and are not weighted in the prioritization 

algorithm. 

 

2. System mode 

The system mode is the flight mode of the UAS. The modes can be categorized as 

manual and automatic, according to their need in a ground pilot or not. This 

categorization is important since a UAS in manual flight mode may not be capable of 

performing flights in auto mode. For more information, see the reference (ArduPilot 

Dev Team, 2016). 

 

Ardupilot: ArduCopter flight modes: 

o Manual 

 ALT_HOLD 

 STABILIZE 

 MANUAL 

 ACRO 

 SPORT 

 DRIFT 

 POSHOLD 

 SIMPLE 

 SUPER_SIMPLE 

o Auto 

 RTL 
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 LOITER 

 AUTO 

 GUIDED 

 CIRCLE 

 LAND 

 BRAKE 

 LIFTOFF 

 

3. Mission importance 

Mission importance is described in detail in  Since the decision was made with trial and 

error, more information on the decision-making process is described in chapter 5.2 

Software in the loop (SITL). 

 

Prioritization.  

 

4. Capabilities 

Some autopilots contain information about their capability or not to remotely change 

the altitude and attitude of the UAS. If there is no such capability, then the UAS must 

get a top priority since it is non-cooperative. The parameter can be accessed via the 

vehicle’s attributes: 

o bool set_global_alt 

o bool set_attitude 

If one of these capabilities is set True, then the UAS is able to make a remote maneuver, 

thus having the potential to lower its priority number. Some autopilots do not contain 

this field, so if the values are null, they are considered True.  
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Appendix E: Source code mechanics 
The steps for initializing and using the API inside the user’s dronekit code. Some sample code 

is shown that helps in the understanding of the system’s mechanics. For the whole code please 

visit: https://github.com/LeonidasAntoniou/dk-plus.  

Initialization inside the dronekit code: 

Figure 0.10 The Networking class is the central node of the system. A vehicle object from dronekit and the specification of 

networking protocol is needed for the initialization of the whole system’s functionality. The initialization of the Networking 

class adds automatically the necessary listeners for the keeping the parameters up-to-date.  

 

Behind the Networking class 

By calling network.start() inside the main module, the system is initialized. A separate .start() 

function needs to be called for the CollisionAvoidance class, in order for it to begin functioning. 

Figure 0.11 The code inside the Networking class responsible for calling the necessary networking functions and spawning the 

daemon threads of sending/receiving/processing the vehicle’s status parameters.

https://github.com/LeonidasAntoniou/dk-plus
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Figure 0.12 Some of the many listener functions responsible for keeping the UAS status parameters updated, with the correct 

tolerance to keep writes to minimum. 
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Figure 0.13 How the networking with UDP in broadcast is started and a fragment of a helper function – populate_drones() 

for testing purposes. 
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The Send, Receive and Process daemons 

 

 

Figure 0.14 The receiver daemon waiting for a message non-blocking and verifying the integrity of the message with MD5 

checksum. 

 

 

Figure 0.15 The receive_task daemon adding metadata to the received message. 
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Figure 0.16 Adding a checksum field and pickling the parameters for sending. 
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Collision avoidance functions 

A collision avoidance protocol can be specified inside the CollisionAvoidance class. The 

samples of some helper functions are shown below. 

 

 

Figure 0.17 Taking and giving control for the mission switch/takeover concept.  
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Figure 0.18 Restoring the previous flight plan and state of the UAS, after a conflict or mission takeover. 
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Figure 0.29 Some of the code inside update_drone_list(). This function is responsible for keeping correct information on the 

whereabouts of other UAS in its vicinity, taking into account the safety zone. 
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Appendix F: User’s and programmer’s manual 
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