
Virtual Reality Flight Simulator with
hand-tracking technology and haptic feedback.

Panagiotis Drakopoulos

2

0.1 Abstract

This thesis aims to take advantage of the latest Virtual Reality technology
and technical know-how available, to create a highly realistic and interactive
flight simulation experience ,by putting the user in a replica cockpit of a
modern passenger jet.

First and foremost, we need to highlight the fact that VR applications
require a different approach and design than the standard applications and
games for 2D computer monitors, due to the nature of VR itself. Thus,
the challenge of this work, was to combine different types of software and
hardware technologies, in order to create a realistic 3Dflight simulation, in
which the user-pilot can interact in with his own hands, without requiring
previous experience with the technology being used or pilot skills. Providing
a user-friendly , realistic and enjoyable experience is crucial for the success
of this and other similar projects. This is because VR is still making its first
steps in the consumer market, meaning that the vast majority of people have
not yet experienced VR, but are used to interacting with traditional types
of hardware, such as a 2D computer screen, keyboard, mouse and so on.

0.2 Acknowledgements

• I would like to thank my supervisor, Assoc. Prof. Katerina Mania for
providing me the opportunity to work on this thesis, as well as the tools
, environment and guidance needed throughout the process.

• I would like to thank professors Georgios Halkiadakis and Antonios
Deligiannakis for their time reading and reviewing this thesis.

• I would like to thank my friends for their moral support.

• I would like to thank my colleagues Vasilis Dimakopoulos and Vasilis
Giovanoglou for the technical support over the haptic feedback imple-
mentation

• Finally, I would like to express my sincere gratitude to my family for
their endless encouragement and support in many aspects.

Contents

0.1 Abstract . 2
0.2 Acknowledgements . 2

1 Introduction 7
1.1 Concept . 7
1.2 Thesis Outline . 9

2 Background and Terminology 11
2.1 Virtual Reality . 11
2.2 Frame Rate . 11
2.3 Head Mounted Displays (HMDs) 12

2.3.1 Positional tracking . 12
2.3.2 Head tracking . 13
2.3.3 Eye tracking . 14
2.3.4 Hand tracking . 15
2.3.5 HMD specifications . 16

2.4 Stereoscopy . 19
2.4.1 Stereoscopy in VR and its problems 20

3 3D Computer Graphics 23
3.1 3D Modeling . 23
3.2 3D Rendering . 24

3.2.1 Basics . 24
3.2.2 Global Illumination (GI) 25

3.3 Definitions . 26
3.3.1 Polygon Mesh . 26
3.3.2 Texture mapping . 27
3.3.3 Shader . 29

3.4 Game Engines . 29

3

4 CONTENTS

3.4.1 Introduction to Game Engines 29

3.4.2 Popular Game Engines 30

3.4.3 Comparison/Choosing the right engine 32

4 Technological Background 35

4.1 Unity3D . 35

4.1.1 What is Unity3D? . 35

4.1.2 Project structure in Unity3D 35

4.1.3 Components . 36

4.1.4 Scripting . 38

4.1.5 Interface . 40

4.2 3D Modeling Tools . 41

4.2.1 Basics . 41

4.2.2 SketchUp . 42

5 Implementation 45

5.1 3D Environment . 45

5.1.1 Cockpit . 45

5.1.2 Clouds . 46

5.1.3 Terrain . 47

5.1.4 Airport . 50

5.2 Physics . 50

5.2.1 How do airplanes fly? 50

5.2.2 Linear forces . 52

5.2.3 Torque forces . 56

5.2.4 Simulating physics in Unity3D 57

5.3 Avionics . 61

5.3.1 PFD and ND . 61

5.3.2 Autopilot . 62

5.3.3 Pedestal . 64

5.3.4 Overhead panel . 64

5.3.5 Implementing Avionics in Unity3D 66

5.4 Audio . 69

5.5 Menu . 72

5.6 High level project structure 74

CONTENTS 5

6 Interactivity 79
6.1 Introduction to Leap Motion’s hand tracking 79
6.2 Integrating Leap Motion in Unity 80
6.3 Detecting touch and gestures in Unity3D 82
6.4 Gestures . 86

7 Haptic feedback 89
7.1 Haptic feedback and why is it important 89
7.2 Introduction to Arduino . 89
7.3 Setting up and programming Arduino 90
7.4 Unity to Arduino communication 93

8 Result, Evaluation and Future Work 97
8.1 Result and System Evaluation 97
8.2 Conclusion and Future Work 98

6 CONTENTS

Chapter 1

Introduction

1.1 Concept

In the recent years, Virtual Reality(VR)is becoming more and more ad-
vanced, and is slowly but steadily gaining entry in the consumer market.
This has made VR technology available to more people than ever before, in
high, but affordable prices, which are expected to drop further as years pass.
This effort was also boosted by famous companies such as Google, HTC,
Oculus by investing in the design and production of Head Mounted Displays
(HMDs). As we will explain later, an HMD is the main device that gives
users access to virtual worlds.

As a result, VR is getting increasing attention by scientists , software
and game developers which are putting big effort to integrate VR in current
applications, create new ones and in general make it more attractive and
usable to a larger portion of people.

As it was mentioned before, due to the nature of the VR technology,
VR applications require developers to alter their approach while developing
common non-VR apps. We will provide 3 short examples to prove why this
is:

• Traditional input methods, such as the keyboard or mouse , are next
to useless, because they are hard to manipulate when a user is wearing
a Head Mounted Display. As a result, developers have to come up
with more suitable input and output methods. These days, the most

7

8 CHAPTER 1. INTRODUCTION

common input methods for VR apps are hand-tracking hardware, or
looking at a specific direction (while wearing an HMD).

• As for the output, it is recommended that developers dont require users
to make uncomfortable head movements in order to achieve their goal.
Furthermore, any shown text or information should not be very small,
otherwise it is running the risk of being indistinguishable, because of
pixelation visible on the HMD screen (also known as screendoor effect
more about this on the following chapter).

• VR developers must also take into account the fact that sudden or ex-
treme motion in the virtual world is most likely to cause unpleasant
effects on users, ranging from dizziness to nausea, headache, disorienta-
tion and even vomiting.Studies show that the cause for these unfortu-
nate health issues related to VR usage, is that the human eye suggests
that the body is moving, while the inner ear disagrees, thus flooding
the brain with conflicting information. [1]

In this thesis, we attempted to overcome all of the above challenges, by
creating an 3d VR Flight Simulator application with priority to user expe-
rience and comfortable interaction techniques. This was achieved by taking
advantage of real-time hand-tracking technology and haptic feedback.

The concept of this application, was to develop a VR flight Simulator,
complying with all of the above , in which the user-pilot can perform basic
tasks and operations in a 3d replica of a real cockpit, by simply using his own
hands and a joystick. The user should also be able to start-up the airplane,
taxi to the runway, takeoff, fly (manually or by Auto Pilot) and land. To
make this possible, a 3D model of the entire Eleftherios Venizelos Athens
International Airport was constructed from scratch, including details such
as runways, taxiways, terminal buildings, ground service vehicles, parked
aircraft and more.

Additionally, a large part of photoreal terrain surrounds the airport, cov-
ering a large region of Attica, whichin combination with the sky and clouds
make the Flight Simulator look even more realistic. Finally, a Flight Simula-
tor wouldnt be a Simulator without the appropriate physics. A big effort was
put to make the airplane feel realistic, by simulating all the forces acting on
it in real-time: lift, drag, thrust and gravity. These of course will be analyzed
and explained in the next chapters.

1.2. THESIS OUTLINE 9

1.2 Thesis Outline

In the following chapters the framework that was followed is thoroughly ex-
plained. The first three chapters have an introductory and educative purpose.
The rest of the chapters focus on the implementation process along with the
software and hardware used to accomplish the final result.

The second chapter focuses on the theoretical background and basic ter-
minology regarding the field of Virtual Reality. Additionally, the technology
behind virtual reality headsets is extensively presented, explained and re-
viewed.

The third chapter provides an insightful review of technologies used in
3D Graphics, from the creation to rendering of 3D surfaces and objects.
Moreover, a review and comparison of the most powerful free game engines
is provided. The chapter also explains which technologies of the above are
used in this project and why.

The fourth chapter describes the software tools used in the development
process. Unity3D’s architecture and basic user interface elements are pre-
sented. Finally the chapter presents the 3D modelling software used for
creating the 3D environment.

The fifth and most extensive chapter is dedicated to presenting fundamen-
tal parts of this application. The first section describes the creation process
of the 3D environment along with the used techniques and software. The
following section provides the aerodynamic and physics theories regarding
aircraft flight, including explanation and examples of how these are simulated
in the game engine, Unity3D. The next section depicts the aircraft avionics,
the electrical systems of the cockpit, and how they were implemented. The
remaining sections outline the application’s Audio, Menu in conjuction with
its basic structure.

The sixth chapter portrays the process of making the user able to inter-
act with the cockpit with his hands. It begins with a small review of the
used hand-tracking hardware. Then the integration process to Unity3D is
presented step by step, from installation to scripting so that hand gestures
are recognized.

10 CHAPTER 1. INTRODUCTION

The seventh chapter is devoted to haptic feedback. It initially explains
what haptics are and what purpose do they serve. The next section present
the entire implementation process, from connecting, configuring and pro-
gramming the hardware, to enabling communication with software.

The eighth chapter presents the evaluation result of this project. The
final version of the application was assessed by a number of users, in terms
of usability and overall quality, noting their comments, reactions and sugges-
tions.

In the ninth chapter the conclusion of the whole development process is
presented, along with thoughts and suggestions about future extensions.

Chapter 2

Background and Terminology

2.1 Virtual Reality

Virtual reality is a computer technology that simulates a user’s physical pres-
ence in a software-generated replica of a real environment or an imaginary
setting, enabling the user to interact with this space. A person using vir-
tual reality equipment (ex. an HMD) is typically able to ”look around” the
artificial world, move about in it and interact with features or items that
are depicted. Virtual realities artificially create sensory experiences, which
can include sight, touch, hearing, and, less commonly, smell. Todays most
popular VR devices are the so called HMDs, which we explain next. [2]

2.2 Frame Rate

Frame Rate, commonly measured and referred to as frames-per-second (FPS),
is the frequency at which a hardware device is able todraw or capture con-
secutive images , called frames. The term is usually used when describing
technical specifications of film and video cameras, computer graphics and
motion capture systems.It is also a measure of performance of games and 3d
applications. In video, film computer graphics and even more in Virtual Re-
ality, Frame Rate output is critical, as it decides whether consecutive frames
will be perceived by the brain as separate images or not, thus giving the
desired illusion of motion. Although the human visual system can theoret-
ically process 1000 different images a second, studies show that untrained
eyes can hardly tell any difference above 60fps or 100fps, depending on the

11

12 CHAPTER 2. BACKGROUND AND TERMINOLOGY

display device and usage. For example virtual reality devices usually require
a higher than usual fps rate to create the pleasant illusion of smooth mo-
tion.Finally, it is essential to note that achieving high frame rates is usually
not an easy task , as it requires hardware with substantial processing power
and thoughtful application programming.

2.3 Head Mounted Displays (HMDs)

Figure 2.1: HMDs by Oculus,Sony and htc.

An HMD is generally a form of head-mounted goggles that has a dis-
play in front of one (monocular HMD) or both eyes (binocular HMD). These
displays allow the user to see the virtual environment. Many current gener-
ation HMDs come with features such as positional-tracking, head-tracking,
hand-tracking and even eye-tracking. The more sophisticated the HMD, the
more of the above technologies are incorporated, providing users remarkable
simulation experiences.

2.3.1 Positional tracking

This technology allows the HMD and/or the computer to have knowledge of
real-time positioning of a user in real 3D space. This can be very useful for
certain applications or games, as someone could move in the virtual world by
simply walking or moving around in reality. This is achieved by constantly
measuring distance and angles between fitted sensors inside the HMD in
respect to one or more base stations located in a room. Then , mathematical
calculations translate the measurements to the exact position of the user in
the room.

2.3. HEAD MOUNTED DISPLAYS (HMDS) 13

Figure 2.2: positional tracking

2.3.2 Head tracking

It is one of the most important features of an HMD. This is what allows
the user to look-around a virtual world by simply moving/tilting the head
as we normally do in our lives, without the need of separate controllers, thus
giving the illusion of presence in the virtual environment. A head-tracking
system typically consists of components such as accelerometers, gyroscopes
and magnetometers,which are also used in nowadays smartphones.An exter-
nal stationary sensor may also be used.

Figure 2.3: positional tracking. Source : https://developer.mozilla.org/en-
US/docs/Web/API/WebVR API/WebVR concepts

14 CHAPTER 2. BACKGROUND AND TERMINOLOGY

2.3.3 Eye tracking

It is the process of measuring either the point of gaze (where one is look-
ing) or eye motion. Eye trackers have a wide range of applications, which
includes medical research, marketing, product design, simulators, human ac-
tivity recognition, and recently VR. For example, in medical research eye-
tracking can be used to study a subjects response to different kinds of stim-
uli, helping in the diagnosis of diseases and disorders, such as Attention
Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorder (ASD),
Obsessive Compulsive Disorder (OCD). In marketing and product design,
eye-tracking can be used to detect whether potential customers focus their
attention on the desired elements of a product. In the Virtual Reality field,
eye-tracking can be helpful in interacting with the environment by providing
the point of gaze as input to the computer or bringing specific objects and
scenery in/out of focus, depending on where someone is looking. [5]

Figure 2.4: Eye tracking. Source: en.wikipedia.org/wiki/Eye_tracking

The most widely used designs are based on video-based eye trackers. A
camera focuses on the eye recording several frames per second (fps) which
can vary from 30 to 1000 or more fps, depending on the application. Each
frame is processed, and an output vector between the center of the pupil and
the corneal reflection is calculated. This vector is then used to locate the
point of gaze, after an initial calibration procedure.

en.wikipedia.org/wiki/Eye_tracking

2.3. HEAD MOUNTED DISPLAYS (HMDS) 15

2.3.4 Hand tracking

Much like head and positional tracking, hand-tracking describes the process
of constantly capturing a users hands position and movements in real 3d
space. Although this technology is still making its first steps in the Virtual
Reality field , HMD manufacturers are starting to adopt it, as it opens new
horizons and possibilities for VR users and developers. It is very obvious that
being able to interact with a virtual environment by simply using your hands
(as in real life), will bring the realism and interactivity of virtual reality to a
whole new level. It usually works is by allowing the user to see a 3d computer
generated replica of his hands in the virtual world, according to their current
position and rotation in real 3d space. For example, a user could point his
(real) finger to touch a virtual button , thrust his hand forward to punch a
virtual enemy or make a gesture to trigger an event.

There are two main techniques that implement hand-tracking:

The first technique, requires a user to constantly hold special con-
trollers with his hands, which act as positional-tracking devices for each
individual hand. A similar process to positional-tracking is followed mea-
surements are taken between the controllers and base stations in a room.
Then, the position of each hand can be calculated in relativity to the head
and room and be projected in the virtual world.

The second technique involves a design similar to eye-tracking which
includes image capturing and image processing. One or more camera sen-
sorslocated on the HMD point towards the users hands , capturing their
movement in several frames per second. Then advanced mathematical and
image processing algorithms analyze each image/frame, producing a 3d rep-
resentation of how the device sees the hands.

As we will see in the Interactivity chapter, in this project the hand-tracking
hardware that was chosen (Leap Motion) utilizes the second technique. This
choice was made upon the fact that this technique is very efficient and user-
friendly, even more for this specific application. [6]

16 CHAPTER 2. BACKGROUND AND TERMINOLOGY

Figure 2.5: wireless controllers with hand-tracking capabilities.

2.3.5 HMD specifications

There are various quality factors that distinct HMDs from one another. Ev-
ery current or older generation HMD has its advantages and disadvantages,
depending on the application it is intended for. The most common HMD
specifications are the following [7][8][9]:

Figure 2.6: hand-tracking by image capture and image processing.

2.3. HEAD MOUNTED DISPLAYS (HMDS) 17

Display Resolution

It is one of the most important factors that plays a big role in visual quality.
Due to the fact that the displays of the HMD sit very close to the eye, they
must be of a minimum resolution of higher, in other words , have a high
pixel density. If this is not the case, lines separating the pixels will become
visible to users, which is known as the screen-door effect, distracting from
the overall experience and realism. This is one of the biggest issues with
current virtual reality headsets which manufacturers are trying to overcome
by increasing the display resolution.

Figure 2.7: Screendoor effect .

Field of View (FoV)

Field of View describes a users viewable area of the world while wearing an
HMD, in angles. Wider FOV means a larger area is observable at any given

18 CHAPTER 2. BACKGROUND AND TERMINOLOGY

time , consequently giving a higher level of immersion. It is an important
aspect of VR experience. A small FOV can harm the feeling of presence in a
virtual environment, because users will feel as if they are looking through a
small window. To put things into perspective, humans have a total FOV of
200 to 220 degrees (114 of that is binocular) while HMDs are still struggling
to pass the 100 barrier.

Figure 2.8: Human Field of View

Refresh rate

The refresh rate is the number of times a second that a display hardware
completely updates its image. It is sometimes confused with the Frame Rate.
The refresh rate is constant and independent of the rate a video source
can feed the display device with new frames (frame rate). For example, if a
computer feeds a 60Hz screen with a frame rate of 30fps, the screen will still
update its content 60 times per second, drawing identical frames as needed.As
we previously described, the human eye requires a high frequency of image

2.4. STEREOSCOPY 19

updates in order to perceive separate frames as smooth motion. Therefore,
HMD display screens must feature a high enough refresh rate.

Optics - Lenses

Good optics are also required for an immersive VR experience. It is one of
the most important factors for image clarity and FoV. The lenses need a short
focal length to magnify the displays for best possible FoV, while preserving
image quality and minimizing their impact on the ergonomics and design of
an HMD. Todays leading headset manufacturers, such as HTC and Oculus
are equipping their HMDs with Fresnel lenses.

Figure 2.9: Lenses in current-gen HMDs.

This type of lens was originally developed many decades ago for use in
lighthouses. It allows for a short focal length and large aperture while
being thin and light, making it an attractive choice for headsets. Fresnel
lenses also produce optical diffusion, which helps reduce the screen-door effect
to some extent.

Other quality factors

There also more factors that contribute to the final user’s experience. These
include adjustable IPD(InterPupilary Distance), screen type, latency, weight
and more.

2.4 Stereoscopy

Stereoscopy is a technique for creating or enhancing the illusion of depth in
atwo-dimensional image. It is usually achieved by presenting two offset im-

20 CHAPTER 2. BACKGROUND AND TERMINOLOGY

Figure 2.10: Light passing through Fresnel lens.

Figure 2.11: Comparison of HMDs currently available

ages separately to the left and right eye of the viewer. These two-dimensional
images are then combined in the brain to give the perception of 3D depth.
Because it is relatively easy to implement , it is commonly used in todays
3D cinemas, TVs and Virtual Reality to produce the 3D depth effect. The
viewer has to wear glasses which interact with an appropriate display (via
polarization, active-shutter and other methods), providing each eye with a
slightly different image. [10]

2.4.1 Stereoscopy in VR and its problems

In virtual reality, stereoscopy creates the illusion of 3D depth, however the
effect is somewhat problematic, incomplete and feels unnatural to the hu-

2.4. STEREOSCOPY 21

Figure 2.12: two offset stereoscopic images superimposed into one.

man eye. The main reason is that all points and objects of an image are
positioned exactly in the same distance from the eye. What this means is,
when a viewer tries to focus on far away objects, he is keeping a fixed focal
distance but changing the ”vergence” angle ofhis eyesin essence, going a little
cross-eyed for a moment. That can lead to visual discomfort and fatigue, eye
strain, diplopic vision, headaches, nausea, compromised image quality, and
even more severe pathologies.
Researches are seeking possible solutions to this problem by experimenting
with multiple screen layers to alleviate some of the issues. A second reason
with easier solution, is that there might be a smaller or bigger offset than the
ideal between the 2D stereoscopic images, and some hardware or software
calibration may be required. [11]

Summary
In this chapter we covered the basic technological background of Virtual
Reality. We provided the necessary terminology along with current software
and hardware technologies used in HMDs.

22 CHAPTER 2. BACKGROUND AND TERMINOLOGY

Chapter 3

3D Computer Graphics

The field of computer graphics is concerned with generating and displaying
three-dimensional geometric data in a two-dimensional space (e.g., computer
monitor, screen). Whereas a single point in a two dimensional graphic has
the properties of position, color, and brightness, a 3D point adds a depth
property that indicates where the point lies on an imaginary Z-axis. The
creation of 3D graphics begins with the modeling process, followed by the
layout and interactivity of the modeled objects in a scene. The process ends
with the 3D rendering, which refers to the computer calculations required to
display the graphic on a screen

3.1 3D Modeling

3D modeling refers to the process of creating the three dimensional surface
of an object. The product of this process, the 3D model, is formed by a
collection of points in 3D space connected by geometric entities such as lines,
triangles, and curved surfaces. The 3D model can originate manually, created
by a user of a 3D modeling tool, algorithmically or it can be scanned into
a computer from real world objects (via methods that are mentioned in the
previous sections).

The 3D models are separated in two categories. One are the solid mod-
els, which define the volume of the object they represent. These are more
realistic, but more difficult to build. Solid models are mostly used for non
visual simulations such as medical and engineering simulations. The second
are the shell or boundary models. These models represent the surface, the

23

24 CHAPTER 3. 3D COMPUTER GRAPHICS

boundary of the object, not its volume. Theseare easier to work with than
solid models. Because the appearance of an object depends largely on the
exterior of the object, boundary models are the ones mainly used in com-
puter graphics. Almost all visual models used in the entertainment industry
are shell models.

A 3D model consists of points called vertices that define the shape and
form polygons. A polygon is an area formed from at least three vertices, a
triangle , or four vertices , which is called a quad. The line that joins one
vertex with another is called edge. There are several modeling methods. The
most commonly used ones are:

Polygonal modeling: is a modeling process that represents the surface
of an object using polygons. The vertices are connected by line segments to
form a polygonal mesh. The vast majority of 3D models today are built as
textured polygonal models, because they are flexible and rendered quickly.
However, polygons are planar and can only approximate curved surfaces using
many polygons.

Curve modeling: Surfaces are defined by curves, which are determined
by weighted control points. The curve follows but does not necessarily inter-
polate the points. Increasing the weight for a point will pull the curve closer
to that point.

Digital sculpting: Still a fairly new method of modeling, 3D sculpting
has become very popular in the last years. It refers to the use of software that
offers tools to push, pull, smooth, or otherwise manipulate a digital object
as if it were made of a real-life substance such as clay. It can introduce
details to surfaces that would otherwise have been difficult or impossible to
create using traditional 3D modeling techniques. The downside is that in
order to achieve detail with sculpting the models must have a high number
of polygons.

3.2 3D Rendering

3.2.1 Basics

Converting information about 3D objects into a graphics image that can be
displayed is known as rendering. It usually requires considerable memory
and processing power. It is the process of adding realism to computer
graphics by adding three-dimensional qualities such as light, shadows and

3.2. 3D RENDERING 25

variations in color and shade. This process is usually performed using 3D
computer graphics software. There are many rendering methods that have
been developed, each one appropriate for specific applications. There is the
non photorealistic rendering, which gives the effect of painting, drawing or
cartoons, and the rendering methods aiming to achieve high photorealism.

Another categorization is suitability for real time rendering and non real
time rendering. Non real time rendering is implemented in non interactive
media such as films and video. In this case, the rendering process can take
huge amounts of time. That is because non real time rendering has the
advantage of very high quality even with limited processing power due to
the absence of real time response, which makes the time for the rendering
process not considerable. A method suitable for non real time rendering is
ray tracing, which simulates the path of a single light ray as it would be
absorbed or reflected by various objects in the scene. Real time rendering
is implemented in interactive media such as games and simulations. The
calculations and the display are happening in real time. The primary goal
is to achieve an as high as possible degree of photorealism at an acceptable
rendering speed. This is 24 frames per second, as that is the minimum the
human eye needs to see to successfully create the illusion of movement.

3.2.2 Global Illumination (GI)

Global illumination (shortened as GI) or indirect illumination is a general
name for a group of algorithms used in 3D computer graphics that are
meant to add more realistic lighting to 3D scenes. Such algorithms take into
account not only the light which comes directly from a light source (direct
illumination), but also subsequent cases in which light rays from the same
source are reflected by other surfaces in the scene, whether reflective or not
(indirect illumination).

Images rendered using global illumination algorithms often appear more
photorealistic than images rendered using only direct illumination algorithms.
However, such images are computationally more expensive and conse-
quently much slower to generate. One common approach is to compute the
global illumination of a scene and store that information with the geometry,
e.g., radiosity. That stored data can then be used to generate images from
different viewpoints for generating walkthroughs of a scene without having
to go through expensive lighting calculations repeatedly.

26 CHAPTER 3. 3D COMPUTER GRAPHICS

Figure 3.1: a scene rendered with GI. Notice that the green color of the
wall is being cast onto the sphere on the right side of the image. It is the
result of indirect lightning. The green wall is reflecting some of the light
coming from a light source. Source: http: // blog. digitaltutors. com/

understanding-global-illumination/ .

Radiosity, ray tracing, beam tracing, cone tracing, path tracing, Metropo-
lis light transport, ambient occlusion, photon mapping, and image based
lighting are examples of algorithms used in global illumination, some of which
may be used together to yield results that are not fast, but accurate.

These algorithms model diffuse inter-reflection which is a very important
part of global illumination; however most of these (excluding radiosity) also
model specular reflection, which makes them more accurate algorithms to
solve the lighting equation and provide a more realistically illuminated scene.

3.3 Definitions

3.3.1 Polygon Mesh

A polygon mesh consists of vertices, edges and faces that define the shape of a
3D object. The vertices are points which represent positions along with other
information such as color and texture coordinates, an edge is a connection
between two vertices and a face is a closed set of edges. The faces can be

http://blog.digitaltutors.com/understanding-global-illumination/
http://blog.digitaltutors.com/understanding-global-illumination/

3.3. DEFINITIONS 27

represented by triangles (three edges), quads (four edges) or convex polygons
(five or more edges). A vertex can be shared by many adjacent faces, and an
edge can be shared by no more than two faces. The faces share edges and
form the three dimensional surface of an object like tiles.

A polygon mesh is fairly easy to render, however most rendering hardware
supports only triangle or four sided faces (quads). It should be noted that
most computer graphics software require that objects be composed entirely
of triangles or quads. [24]

3.3.2 Texture mapping

There are two ways of adding detail to a surface. One method is to add
details via modeling. That means that extra polygons need to be created in
order to form the details. This results in increasing the scene complexity and
consequently the rendering speed. In addition there are some fine details that
are very hard to model. The other method, which is a more popular approach
is to map a texture to the surface. Texture mapping is making possible to
simulate photorealism in real time, by vastly reducing the number of polygons
and lighting calculations needed to create a realistic 3D scene.

A texture map is a bitmap image that is applied to the surface of a poly-
gon. Every vertex in a polygon is assigned a texture coordinate, which is
known as a UV coordinate. Image sampling locations are then interpolated
acrossthe face of the polygon to produce a visual result that seems to have
more details than could otherwise be achieved with a limited number of poly-
gons. Texture mapping was originally a method of simply mapping pixels
from a texture to a 3D surface. Nowadays many complex mapping methods
have been developed in order to add photorealism and detail to a flat surface.
Some of the most used mapping methods are presented below. [25]

Diffuse mapping: A diffuse map is a texture you use to define a sur-
face’s main color. It is the most frequently used texture mapping method.
It wraps a bitmap image onto the surface while displaying its original pixel
color. Any bitmap image, such as images captured by digital camera, can be
used as diffuse map. It sets the tint and intensity of diffuse light reflectance
by the surface.

Bump mapping: is a texturing technique for simulating small displace-
ments on the surface of an object, while the surface geometry is not modified.

28 CHAPTER 3. 3D COMPUTER GRAPHICS

Instead only the surface normal is modified as if the surface had been dis-
placed. This is achieved by perturbing the surface normals (the imaginary
vectors perpendicular to the surface that are used in lighting or shading cal-
culations) of the object and employing the perturbed normal during lighting
calculations. It uses the values of a grayscale image to simulate abnormalities
on the surface. Black areas recede and white areas protrude.

Normal mapping: is considered a newer and better variation of bump
mapping. The detail they create is also fake no additional resolution added
to the geometry. A common use of this technique is to greatly enhance the
appearance and details of a low polygon model by generating a normal map
from a high polygon model or a height map. (a height map is a raster image
used to store values such as surface elevation data, for display in 3D com-
puter graphics). Normal maps consist of red, green, and blue. These RGB
values translate to x, y, and z coordinates, allowing a 2D image to represent
depth. The 2D image is applied to the surface. This way, a surface simulates
the lighting and color associated with 3D coordinates. In the normal map,
each pixel’s color value represents the angle of the surface normal.

Displacement mapping: In contrast to bump and normal mapping,
displacement mapping adds real 3D detail to a surface, based on a displace-
ment map. Like a bump map, a displacement map consists of grayscale
values. They can either be baked from a high resolution model or painted
by hand. Due to the fact that real geometry is added in real-time, the mesh
must be subdivided or tessellated and render times are increased.

Other types of mapping include specular mapping, which allows parts
of an object to have a specular effect, reflection mapping which is a tech-
nique for approximating the appearance of a reflective surface by means of a
pre computed texture image and opacity mapping which determines which
partsof the object should be transparent and how much.

Nowadays, two or more of these techniques are used simultaneously on
most surfaces to simulate real environments, while increasing the scene com-
plexity by a little to no amount.

3.4. GAME ENGINES 29

Figure 3.2: Applying texture map to a simple model

3.3.3 Shader

A shader is considered a program that is executed during the rendering pro-
cedure and it refers to the process of altering the color of a surface in the
3D scene, based on its angle to lights and its distance from lights to create a
photorealistic effect. Shading is also dependent on the lighting itself that is
used in the scene. Shaders are most commonly used to handle a scenes light-
ing and shadow effects. Beyond that more complex uses include altering the
hue, saturation, brightness or contrast of an image, producing blur, normal
mapping, light bloom, volumetric lightning, distortion, and a wide range of
other.

3.4 Game Engines

3.4.1 Introduction to Game Engines

A game engine is a software frame-
work designed for the creation and
development of video games. De-
velopers use them to create games
for consoles, mobile devices and per-
sonal computers. The core func-
tionality typically provided by a
game engine includes a rendering en-

30 CHAPTER 3. 3D COMPUTER GRAPHICS

gine (renderer) for 2D or 3D graph-
ics, a physics engine, a collision
detection (and collision response)
system, sound, scripting, anima-
tion, artificial intelligence, network-
ing, streaming, memory manage-
ment, threading, localization sup-
port, scene graph, and may include

video support for cinematics. The process of game development is often econ-
omized, in large part, by reusing/adapting the same game engine to create
different games, or to make it easier to ”port” games to multiple platforms.

T he beauty and power of game engines, is that they speed-up the devel-
opment process, by providing a suite of visual development tools,reusable
software components and simplification of frequently used tools, elements
and processes. Game Engines are usually built upon one or multiple render-
ing application programming interfaces (APIs), such as Direct3D or OpenGL
which provide a software abstraction of the graphics processing unit (GPU).
These APIs are commonly used to interact and communicate with the GPU,
to achieve hardware-accelerated rendering.

Modern game engines are some of the most complex applications written,
which is the result of years and years of improvements , experience and
development. Nowadays they often feature dozens of finely tuned systems
interacting to ensure a precisely controlled user experience. The continued
evolution of game engines has created a strong separation between rendering,
scripting, artwork, and level design. It is now common, for example, for a
typical game development team to have several times as many artists as
actual programmers. [12]

Furthermore, due to the constant growth of the smartphone applica-
tion market and increasing competition, popular high-end Game Engines
are proving to be a precious tool for developers worldwide, to bring their
ideas and games to life, in as many platforms as possible.

3.4.2 Popular Game Engines

In this section, we will take a brief look at 4 of the most popular free game
engines currently available, and explain which is more suitable for this project

3.4. GAME ENGINES 31

and why.

Unreal Engine

Unreal Engine(UE),initially released on 1998, is a com-
plete suite of game development tools, powering hundreds
of games,simulationsandvisualizations. It is one of the most
advanced engines to date, delivering top quality visuals
while providing users with a large variety of tools to work
with everything they need. Due to its capabilities ,efficient
design and ease of use it is well-appreciated engine from
hobbyists to development studios. It is also available for
free. Developers can also port their projects to mobile devices, both iOS and
Android. Unreal Engine also works with Virtual Reality. Finally, UE also
gives access to its users with to a marketplace , to buy re-usable content and
add to their project, speeding the development process. [13]

Unity3D

Unity 3D, initially released on 2005, is a flexible and power-
ful development platform for creating high quality 2D and
3D games. Emphasizing on portability, Unity currently sup-
ports over 20 platforms, including PCs, consoles, mobile de-
vices (iOS and Android)and websites. Additionally, many
settings can be configured for each platform. As a result,
Unity can detect the best variant of graphic settings for
the hardware or platform the game is running, thus optimizing performance
and sacrificing visual quality if necessary. Apart from its next-generation
graphical capabilities, Unity also comes with an integrated physics engine
(nVidias PhysX). Much like Unreal Engine, Unity offers developers an Asset
Store to buy re-usable content and assets for use in their project. To sum
up, due to its ability to efficiently target multiple platform at once and user-
friendly environment, this game engine is an ideal choice for a large portion
of developers.

CryEngine

32 CHAPTER 3. 3D COMPUTER GRAPHICS

CryEngine is a game engine developed by game developer
Crytek , which has been used in all of their titles. It
is known for its ability to produce stunning, eye-catcing
graphics and visuals, featuring advanced shader and light-
ning systems. Because of this, CryEngine clearly targets
only powerful PCs and high-end consoles. It comes with VR
support and a large amount of advanced visual features, tools, audio/physics
systems and character and animation systems.CryEngine can be downloaded
and used for free. [14]

Amazon Lumberyard

Amazon Lumberyard is a free game engine developed by
Amazon and based on the architecture of CryEngine. Lum-
beryard has similar capabilities to CryEngine and can be
used for production of high quality games targeting high-
end platforms. It is remarkable that the entire source code
can be viewed and changed by the developers to suit their
needs. This engine focuses on a fee-based managed system
for cloud building and hosting, intended to allow developers to easily develop
games that attract ”large and vibrant communities of fans, as stated by the
company. [15]

3.4.3 Comparison/Choosing the right engine

Unreal Engine and Unity are currently ahead of the competition as the two
most popular game engines available to the public. This is due to the fact
that they both succeed in providing high-end graphics, a large variety of us-
able tools, great support for platforms and devices, without compromising
usability and efficiency. It is important to note that these 2 engines offer
a large community support, which is also something that has to be consid-
ered when choosing an engine. CryEngine and Lumberyard are also great
and powerful engines with remarkable capabilities, however their complicated
structure and smaller community excluded them from our consideration.

In conclusion, taking into account the advantages and disadvantages of
each engine, Unity proved to be the ideal choice for this project, mainly due
to its efficiency, large community support and ease of use.

3.4. GAME ENGINES 33

Summary
In this chapter we provided an insightful review of technologies used in 3D
Graphics, from the creation of 3D models, to the rendering of photorealistic
scenes. Moreover, we reviewed and compared today’s most powerful free
game engines available to the public.

34 CHAPTER 3. 3D COMPUTER GRAPHICS

Chapter 4

Technological Background

4.1 Unity3D

4.1.1 What is Unity3D?

Unity 3D is a powerful cross-platform 3D game engine with a user friendly
development environment. Unity 3D helps developers create games and ap-
plications for mobile, desktop, the web, and consoles. Its 3D environment
is suitable for laying out levels, creating menus, doing animation, writing
scripts, and organizing projects. Unitys primary goal may be the develop-
ment of 3D video games, however, it is also suitable to create other kinds of
interactive content, such as animations, simulations or 3D visualizations.

Unity is a fully integrated development engine that provides functionality
to create interactive 3D content. With Unity the developer can assemble as-
sets into scenes and environments, add lighting, audio, special effects, physics
and animation, simultaneously play, test and edit the application, and when
ready, publish to chosen platforms, such as Mac, PC and Linux desktop com-
puters, Windows, the Web, iOS, Android, Windows Phone 8, Blackberry 10,
Wii U, PS3 and Xbox 360. Unitys complete toolset, intuitive workspace and
rapid, productive workflows help users to drastically reduce the time, effort
and cost of making interactive content.

4.1.2 Project structure in Unity3D

Unity is defined by its component based architecture. Its workflow builds
around the structure of components. Each component has its own specific

35

36 CHAPTER 4. TECHNOLOGICAL BACKGROUND

job, and can generally accomplish its task or purpose without the help of any
outside sources.

Each game or application created in Unity is called a project. Each
project consists of one or more scenes. Scenes contain the objects of the
game. They can be used to create a main menu, individual levels, and any-
thing else. Every scene is considered as a unique level. In each scene, the user
can position the 3D models, construct the environment and essentially de-
sign most of the functionality. Every object placed in a scene is considered a
GameObject. GameObject sconsist of one or more components. Compo-
nents are Unitys fundamental elements, which are used to define properties,
behavior and characteristics of a GameObject. The user can add a wide
variety of components in a GameObject to achieve the desired functionality.

4.1.3 Components

Some of the most commonly used components in Unity are presented next.

Transform Component

Every GameObject contains a Transform Component. When creating a
GameObject a transform component is added automatically. It is impos-
sible to create a GameObject without one or remove it. The Transform
Component is one of the most important and most frequently accessed Com-
ponent. It defines a GameObject’s position, rotation, and scale in the game
world based on the x,y,z coordinate system.

These parameters are initialized
by hand and/or can modified in run-
time by script to make objects move,
rotate and more. It is important to
note that when scripting functional-
ity such as movement, Unity consid-
ers the Z axis as forward/backwards

, Y axis as up/down and X axis as left/right.

4.1. UNITY3D 37

Mesh Component

3D meshes are the main graphic object primitive of Unity. Various compo-
nents exist in Unity to render meshes. The most commonly used components
are the mesh renderer and the mesh filter. They are used in collaboration
in order to display an object. The mesh filter takes a mesh from your assets
and passes it to the mesh renderer for rendering on the screen. The mesh
renderer takes the geometry from the mesh filter and renders it at the po-
sition defined by the object’s transform component. When importing mesh
assets, Unity automatically creates a mesh filter along with a mesh renderer.
Another component is the text mesh. It generates 3D geometry that displays
text strings.

Physics Component

Physics components allow the user
to give objects realistic motion and
reaction to collisions by simulating
physics laws. Unity has NVIDIA
PhysX physics engine built-in. A
physics engine is computer software
that provides an approximate sim-
ulation of physical systems. This
allows for unique realistic behavior

and has many useful features. A rigidbody component makes the object
that is attached to be affected by gravity or linear and angular forces and
collide with other objects. There is also a variety of collider components
(mesh, box, sphere, wheel collider) which surround the shape of an object
for the purposes of detecting physical collisions. In this project, due to its
simulation nature, a physics component was attached on the Aircraft game
object.

Rendering Component

These are the components that have to do with rendering in-game and user
interface elements, as well as lighting and special effects. The camera compo-
nent is essential as it is used to capture and display the world to the player.
It can be customized and manipulated to fulfill the requirements of the users
application. The GUI Texture and GUI Text components are made especially

38 CHAPTER 4. TECHNOLOGICAL BACKGROUND

for user interface elements, buttons, or decorations as well as displaying text
on screen. Another important rendering component is the light component.
It brings a sense of realism. Lights can be used to illuminate the scenes and
objects, to simulate the sun, flashlights, or explosions just to name a few.

Audio Component

These components are used to implement sound. The most important com-
ponent here, is the Audio Source component, which as the name suggests,
plays a sound file at the location of the game object it is attached to. The
developer can set parameters such as sound volume, pitch and change the
sound file to be played at any time. These parameters can also be changed
by script during run-time.

Script Component

The script component is used to attach a script onto a game object. Scripts
are often attached to objects, to define their behavior and trigger effects upon
specified conditions. More about scripts in the following section.

Materials and Shaders

Materials and shaders are crucial components that are categorized in the
asset component group. There is a close relationship between materials and
shaders. Materials are used in conjunction with mesh renderers and other
rendering components used in Unity. They play an essential part in defin-
ing how the object is displayed. The properties that a materials inspector
displays are determined by the shader that the material uses. A shader is a
specialized kind of graphical program that determines how texture and light-
ing information are combined to generate the pixels of the rendered object
onscreen. In other words, it tells the graphics hardware how to render sur-
faces.The user can select which shader each material will use. Specifically,
a material defines which texture and color to use for rendering, whereas the
shader defines the method to render an object.

4.1.4 Scripting

Scripting is an essential part of Unity as it defines the entire behavior of the
game or application. Even the simplest game needs a script to respond to

4.1. UNITY3D 39

input. Scripts can be used to create graphical effects, control physical be-
havior of objects or characters , trigger effects upon specified conditions and
generally bring a game to life. Unity supports two programming languages:
C sharp which is similar to C++ or Java and javascript. The scripts can
be written and edited in MonoDevelop, which is an integrated development
environment (IDE) within Unity. An IDE combines a text editor with addi-
tional features for debugging, auto-complete and other project management
tasks.
Scripting is linked with the component based architecture Unity uses. As
it was mentioned above, the behavior of GameObjects is controlled by the
components that are attached to them. Thus, components can be accessed
or modified by script at any time to achieve desired behavior and function-
ality. Each script makes its connection with the internal workings of Unity
by implementing a built-in class called MonoBehaviour. This class refers to
the component that can be enabled or disabled. Javascript automatically
derives from the class without the need to be declared, whereas the other
two languages have to explicitly declare the class.

When a script is created, there are two functions automatically declared
in it, Start() and Update(). Start is called when a script is enabled and it
is called exactly once in its lifetime.

• The Start function is the place where initialization occurs. It is used to
initialize an objects position, state and properties or load other scripts
and gameobjects for later use.

• Update is the function that implements game behavior. It is called
in every frame and is crucial for checking and modifying the state of
various parts of the application. From a programming standpoint each
game or application runs in loop, which allows it to run smoothly re-
gardless of a user’s input or lack thereof. For a change to occur an
event must be activated. The update function checks every frame for
such events, which can be changes to position, state and behavior and
determines the outcome. The start function is called by Unity before
the Update function is called for the first time.

There are other kinds of event functions that can trigger a change. There
are the input event functions, that track the mouse movement and input.

40 CHAPTER 4. TECHNOLOGICAL BACKGROUND

These functions allow a script to react to user actions with the mouse. Some
examples of those functions are OnMouseDown, which is called when the
user has pressed the mouse button, OnMouseUp which is called when the
user has released the mouse button, OnMouseEnter which is called when the
mouse enters a GUI element, etc.

Another important function is the OnGUI function. Unity has a system
for rendering Graphical User Interface (GUI) controls over the main action
in the scene and responding to clicks on these controls. The code handling
those events is treated somewhat differently from the normal frame update
and is placed in the OnGUI function, which is called multiple times per frame
update.
Apart from the functions provided by Unity, the developer can create his/her
own functions in order to control or determine the behavior of a GameObject,
change the properties of a component or altering the overall state of the
application. In order for these custom functions to be executed, they have
to be called inside a Unity event function, like Update.
The most commonly used functions were presented briefly above, as well as
the concept of how they are used. The basic notion of the Unity scripting
is that the scripts are components that can control the GameObject. Each
component property corresponds to a script variable and the scripts can
access not only the components of the GameObjects they are attached to ,
but also other GameObjects.

4.1.5 Interface

Unity has a relatively simple and user-friendly interface, which can be also
customized to meet each developers needs. The basic tabs and buttons are
shown and explained below.

1. Tools to move, scale, rotate and resize GameObjects in the game world

2. Hierarchy: Contains every GameObject in the current scene

3. Project Brower: Contains the entire directory of assets and files that
belong to the specific project. They can be accessed and placed to the
scene at any time. Users can also drag and drop assets from the project
brower directly to the Hierarchy(2) or the Scene(6) tab.

4.2. 3D MODELING TOOLS 41

Figure 4.1: Unity’s user interface.

4. Inspector: This panel displays information and properties of a currently
selected gameobject, including its attached components.

5. Developers can press the play button to instantly run their project
within the development environment to debug and test functionality.
They can also pause at any time to perform any changes and see the
outcome live.

6. Scene/Game panel: 3d viewer and editor of the current scene. Devel-
opers can move around anywhere they want and zoom in and out of
objects.

4.2 3D Modeling Tools

4.2.1 Basics

In the process of creating games and 3d applications in general, one or more
tools are used in order to create - model the 3d objects that exist in a 3d
environment. These tools are referred to as 3d modeling software, and dozens
of them exist. Each tool is different in its way. Some of them are simpler,

42 CHAPTER 4. TECHNOLOGICAL BACKGROUND

others require experience and expertise. Some are free and some are quite
expensive. Some tools focus on realistic visualizations and architecture, while
others do a better job for 3d games modeling or animations. It is up to
the developer to choose the tool or tools that satisfies his demands best.
AutoCAD, 3D Studio Max, SketchUp, Blender and ZBrush are some of the
most popular tools to date. In this thesis, the 3d environment , including
the cockpit, airport and other objects ,was modeled in SketchUp.

4.2.2 SketchUp

Figure 4.2: Example of creating a simple 3D office building in SketchUp.

SketchUp is a 3d modeling program. It is particularly known for its ease
of use, even by users with little or no experience over 3d modeling, which also
is what makes it popular and stand apart from its competitors. SketchUps
main characteristic is that it allows the creation of 3d models by actually
drawing and drag-and-dropping on a 3d space. Users start the modeling
process of their scene by using 2D primitives such as lines, circles and planes.
Then depth can be added by simply pulling a 2D surface in/out. For exam-
ple, a building can be easily created by drawing its perimeter as a 2d surface,
then pulling it out to add depth (in this example height) and thats it. Of
course more advanced tools are provided for more details.

Like most modeling software, SketchUp has a built-in texturing system.
Although rather simple and not as complete as others programs, users can
import their textures to paint their objects by clicking on the desired surface.
It also gives the ability to alter the position , scale and rotation of a texture
on a surface to achieve the desired result.
The main disasdvantage of SketchUp is that due to its simple interface and

4.2. 3D MODELING TOOLS 43

limited set of tools, it lacks the professionalism of other modeling tools. This
means that some advanced and complex operations on a 3d model can not
be performed.
Finally, SketchUp comes with a variety of plugins that allow 3d models to
be exported in many formats. So when a 3d object/environment has been
modeled, we can export it as a format Unity understands.

In this project we chose SketchUp as our 3D modelling software, as it is
free, easy to use and adequate for the type of models we need in this project.
We created the 3D models in SketchUp and applied basic diffuse textures.
For more details, such as normal maps, emission maps, reflections and
more, we used Unity’s build-in material system, which is advanced enough
to produce realistic graphics.

Summary
In this chapter we examined and presented the two main software tools used
in this project, Unity3D engine and SketchUp. We covered the fundamentals
of Unity and its component-based architecture. We also presented the basic
structure of scripts and user interface. As for the 3D modeling tools, we
explained their purpose and we justified our choice.

44 CHAPTER 4. TECHNOLOGICAL BACKGROUND

Chapter 5

Implementation

5.1 3D Environment

5.1.1 Cockpit

As it was mentioned in the introductory chapter, the cockpit presented in
this Flight Simulator is closely based upon the real Airbus 320 passenger
jet cockpit. Each part was carefully modeled based on its real dimensions,
size, shape and material. During the process, real photographs of various
angles were used and imported into our 3d modeling software, in this case
SketchUp, as our guide to create the 3d replica.

Figure 5.1: Airbus 320 cockpit

45

46 CHAPTER 5. IMPLEMENTATION

We modeled most of the cockpit details by importing real photographs in
SketchUp. This way we could accurately replicate the parts of a real cockpit,
one by one. Then, we stitched them together precisely, textured them, and
added smaller details, such as buttons and switches.

Figure 5.2: Making the 3D model based on a photograph in SketchUp

5.1.2 Clouds

The clouds in this simulation look realistic and appear to be 3d, but in fact
they are not. Clouds are basically 2D textures with transparency that are
stretched on 2D rotating planes, which are randomly positioned in the sky.
To be more specific, we apply a simple but effective technique. The texture
of the cloud constantly rotates in a way that the normal (perpendicular) vec-
tor of its surface is always pointing towards the users eyes, the game camera
to be more precise. As a result, the user, no matter where he is positioned,
always sees the front surface of the cloud, thus giving the illusion that the
cloud has depth. The figure below illustrates the above technique:

Unity Implementation
Firstly we created 2D planes and positioned them in the sky at random po-

5.1. 3D ENVIRONMENT 47

sitions. Then we edited the plane scale to match with a real clouds size.
Secondly we created a new material to add to the plane, to turn its white
surface into a realistic cloud. We change the default shader to Particles/Al-
pha Blended. We do this because our .png texture files has transparency, and
because a cloud can be considered a form of particles.
Finally, we need to make a script to apply the rotation technique explained
above. The main part of the code that implements it is :

void Update () {
trans form . LookAt (MainCamera . trans form) ;

}

Where transform refers to the transform of the cloud the script is at-
tached to, and MainCamera.transform refers to the transform of the cam-
era the users eyes. This function is called in every frame update. The
LookAt() function rotates the transform so the forward vector points at
target’s current position.

5.1.3 Terrain

The terrain used for this simulation is a collection of real satellite images,
imported and stitched together in Unity. The featured terrain covers a large
portion of the Attica region, Greece, including Athens International Airport.
The covered surface area is equal to approximately 1500 km2.

The process was split into 3 parts. Firstly we downloaded the required
satellite images. Secondly we created the terrain objects and imported the

48 CHAPTER 5. IMPLEMENTATION

Figure 5.3: Illustration of the area covered. Source: BingMaps

satellite images to Unity. Thirdly we added elevation to the flat terrain.

Step 1 : Acquiring satellite terrain images.
We used MapPuzzle , a small software solution that allows automated satel-
lite imagery download. The reason we used this tool, is that it automatically
combines all downloaded images, into one very high resolution image. Other-
wise we would have to stitch together hundreds of different images, needless
to say, a painful and time-consuming process.

Step 2 : Creating, positioning and texturing terrain in Unity.

We import the high resolution
terrain images into Unity, as down-
loaded by the Map Puzzle applica-
tion. Then we need to create the ter-
rain game objects. Each terrain ob-
ject will be textured by one high res-

5.1. 3D ENVIRONMENT 49

Figure 5.4: Map Puzzle v.1.4.8 main window

olution terrain image. Each terrain
image is 9000x9000 pixels, which
corresponds to 17km width x 17 km
height = 289km2 surface area. Fur-
thermore, it is important to note

that 1 distance unit in Unity3D equals 1 meter.

Step 3 : Adding elevation.

At the moment, our terrain is correctly positioned and textured, but is a

50 CHAPTER 5. IMPLEMENTATION

completely flat surface without any elevation. Thus we can use one of Unitys
paint brushes to raise/lower the terrain. This is feasible by simply selecting a
brush type (different brushes produce different effects and surface anomalies)
and clicking on the desired terrain area.

Figure 5.5: Adding elevation to the terrain in Unity

5.1.4 Airport

Like most models, the airport was modeled and textured in SketchUp. The
featured airport is highly based upon Athens International Airport, Greece.
It features the main terminal buildings, two main runways for take-off and
landing, taxiways and other objects that add realism and detail, such as
aircraft jetways and parking areas, ground service vehicles and more.

When starting the simulation, the user can choose between 2 locations to
start. The first option is at a gate at the main terminal buildings, and the
second option is at the start of runway 03R.

5.2 Physics

5.2.1 How do airplanes fly?

Airplanes are constructed such that the airflow pattern around them gener-
ates lift, thereby enabling them to fly. The airflow is produced by the forward
motion of the plane relative to the air. This forward motion is produced by
engine thrust, delivered by way of propeller engines or air-breathing engines

5.2. PHYSICS 51

Figure 5.6: Athens International Airport from above.

Figure 5.7: LEFT: real airport photo. RIGHT: airport render in Unity3D

52 CHAPTER 5. IMPLEMENTATION

(turbines). [16][17]

Figure 5.8: Airplane forces

All the forces (and moments) acting on an airplane are a result of pressure
forces (normal to the airplane surfaces) and shear forces (along the airplane
surfaces), both created by the airflow pattern over the airplane body. The
moments (torques) are a result of the forces and, in addition to forces, are
part of rigid body motion analysis. Airplanes can generally be treated as
rigid bodies when analyzing the dynamics of their motion.

5.2.2 Linear forces

Lift

The lift force (L) ”holding” a plane up is generated by airflow over the wings.
This airflow is only possible if the plane moves relative to the air, hence lift
is only possible if the plane moves relative to the air. The relative air speed
must be large enough for sufficient lift to be generated.

In order to explain how lift force is produced, we have to take a brief look
at the shape of a wing from an aerodynamics perspective. In aerodynamics,
airplane wings are called airfoils. They have a cambered shape which enables
them to produce lift, even for angles of attack (α) equal to zero.

The presence of air friction (viscosity) is what allows an airfoil to generate
lift. The reasoning behind this is complicated and involves rather complex

5.2. PHYSICS 53

Figure 5.9: airflow over a wing (airfoil). Source: Wikipedia via Theresa
knott.

mathematics. But basically, the air flow pattern around an airfoil results in
the lower half of the airfoil experiencing greater pressure force than the top
half of the airfoil. As a result, a lift force is generated. This is perhaps the
least understood, and most asked, aspect of how airplanes fly.

The amount of lift produced is not only determined by an aircraft’s veloc-
ity or thrust, but also by other factors. Lift depends on the air density, the
square of the velocity, the air’s viscosity and compressibility, the surface area
over which the air flows, the shape of the body, and the body’s inclination to
the flow. In general, the dependence on body shape, inclination, air viscosity,
and compressibility is very complex.

One way to deal with complex dependencies is to characterize the depen-
dence by a single variable. For lift, this variable is called the lift coefficient,
designated Cl This allows us to collect all the effects, simple and complex,
into a single equation. The lift equation states that lift L is equal to the lift
coefficient Cl times the density r times half of the velocity V squared times
the wing area A. [18]

However, due to the fact that Cl mostly depends on the aircrafts current
angle of attack (AoA or (α)), for the purpose of this thesis we can make a
simplification and exclude other less significant parameters.

54 CHAPTER 5. IMPLEMENTATION

Figure 5.10: lift equation.

Figure 5.11: lift coefficient (Cl) vs. angle-of-attack ((α))

5.2. PHYSICS 55

Weight

As one would expect, the weight (W) of the plane points straight down in
the direction of gravity. Now, W = mg, where m is the mass of the plane
and g is the acceleration due to gravity, where g = 9.8m/s2.

Drag

The drag force (D) is opposite to the velocity (V) force, and is caused by
air resistance generated on aircraft surfaces. Drag is a mechanical force,
meaning that it is not generated by a force field (for example gravitational
or electromagnetic field), but by the difference in velocity between the solid
object (aircraft) and the fluid (air).
Drag can be manipulated to an extent by pilots, depending on the flight
phase. For example , pilots may want to increase drag to slow down the
plane during descent, by extending movable surfaces such as flaps and speed
brakes.

Thrust

Thrust is a mechanical force which moves an aircraft through the air. Thrust
serves two main purposes. Firstly, it is used to overcome the drag of an air-
plane. Secondly, as mentioned earlier, lift can only be generated when a
plane moves relative to the air at sufficient speeds. Thrust is produced by
accelerating the airflow in the rearward direction. This backwards acceler-
ation of the airflow exerts a ”push” force on the airplane in the opposite
direction, by Newton’s third law (For every action, there is an equal and
opposite reaction), causing the airplane to move forward.

When the airplane is moving at constant velocity it is experiencing zero
acceleration, and the forces must balance. This means that the lift force (L)
generated by the airplane wings must equal the airplane weight (W), and the
thrust force (T) generated by the airplane engines must equal the drag force
(D) caused by air resistance. However, when for example the pilot wants to
gain altitude (climb), lift must overcome the weight caused by gravity, thus
L > W .

• L = W : aircraft is flying at steady altitude.

• L > W : aircraft climbs

56 CHAPTER 5. IMPLEMENTATION

• L < W : aircraft descents

It is important to mention that lift(L) is always perpendicular to the
airplane body, or the velocity vector(V), to be more specific. This means
that lift force is only opposite to the Weight force only when the airplane is
flying wings-level (not turning).

5.2.3 Torque forces

Torque forces are responsible for maneuvering and navigation of the aircraft
during flight. Pilots control the aircraft by adjusting physical elements on the
outside of the airplane, elements which modify the airflow pattern around the
plane, causing the plane to adjust its attitude and flight path. These physical
elements are called control surfaces and consist of ailerons, elevators, rudders,
spoilers, flaps, and slats. Adjusting a plane’s flight path always involves either
pitching, rolling, or yawing, or a combination of these. The figure below
illustrates what these are.

Figure 5.12: Rotation of an aircraft about the 3 principal axes.

• Roll: A roll is the rotation of the aircraft about the Unity Z axis, which
causes the tilt to the left or right side. The angular displacement about

5.2. PHYSICS 57

this axis is called bank.The pilot changes bank angle by increasing the
lift on one wing and decreasing it on the other. A positive roll angle lifts
the left wing and lowers the right wing. The ailerons are the primary
control of bank.

• Pitch: Pitch is the rotation of the aircraft about the Unity X axis,
whichcauses the aircraft to nose-up (climb) or nose-down (descent).
The primary control of pitch are the elevators, located in the tail.

• Yaw: Yaw is the rotation of the aircraft about the Unity Y axis, which
causes the aircraft nose to move from side to side. The rudderis the
primary control of yaw.

Figure 5.13: Aircraft parts and their purpose. Source: NASA

5.2.4 Simulating physics in Unity3D

Physics are implemented in our aerodynamics.cs script file.

58 CHAPTER 5. IMPLEMENTATION

Firstly, in order to enable physics simulation on any object in Unity, we
need to attach the Rigidbody component to it.Adding a Rigidbody com-
ponent to an object will put its motion under the control of Unity’s physics
engine. Even without adding any code, a Rigidbody object will be pulled
downward by gravity and will react to collisions with incoming objects if the
right Collider component is also present.

In this project, simulation and calculation of all forces acting on the air-
plane is provided by twodedicated functions, which update and re-calculate
every parameter in every frame.

Our first function is CalculateLinearForces(). This function simulates
every force that makes the plane move up/down or backward/forward. To
add a linear force in Unity, we need a vector along which the force will act,
and a variable to describe the specific amount of force we want to apply.

For example, adding a thrust force requires a vector corresponding to the
aircraft’s z axis , because thrust is supposed to make the plane go forward,
multiplied by the desired force amount. So, if we want to add a thrust force
equal to 10000 Newton, we do it as following:

airplaneRb.AddForce(10000 * transform.forward);

where airplaneRb is the object with the attached RigidBody component
and transform.forward is a vector pointing forward (object z axis). Simu-
lating the Lift force was a more complex procedure, because it depends on

5.2. PHYSICS 59

many parameters.

The vector along lift will act changes as the plane tilts and turns.
However Lift is always perpendicular to the z axis (velocity/forward) and
the x axis (vector pointing to the right). In other words, lift direction is
equal to the cross product between the aircrafts z and x axis. (Given two
linearly independent vectors a and b, the cross product, a b, is a vector that
is perpendicular to both a and b)

As for the lift amount, we use the lift equation as shown previously , in
combination with the lift coefficient, which is defined as shown in figure X.
The lift amount is calculated in a separate function, CalculateLift().

The code that implements the above is:

liftDirection = Vector3.Cross(airplane.velocity, transform.right).normalized;

liftAmount = CalculateLift();

Airplane_rb.AddForce(liftAmount * liftDirection);

For the simulation of drag and gravity, we didnt write any extra code
because Unity already implements both on every active RigidBody. Accel-
eration of gravity is set to 9.83 m/s by default. As for drag forces, Unity
allows us to manipulate two parameters, drag and angular drag.

• Drag: the higher its value, the more an object resists to movement.

• Angular drag: the higher its value, the more an object resists to rota-
tion.

The above values were experimentally set by testing which caused the
plane to fly and behave realistically.

The second function is CalculateTorque(). This function simulates ev-
ery force that makes the plane rotates about its 3 axes. This includes pitch,
roll and yaw, which were previously described. To add a torque force in
Unity, we need a vector representing the rotational axis, and a value/vari-
able representing torque amount.
When an aircraft performs a roll, it rotates about its z axis, which is de-
scribed in Unity by the transform.forward vector. During a pitch, the air-
craft rotates about its X axis, which is described by the transform.right

60 CHAPTER 5. IMPLEMENTATION

vector. Finally, during a yaw, the aircraft rotates about its Y axis, which
corresponds to the transform.up vector.
Concluding, code implementation of torques is similar to that of linear forces.
For example, a torque making the plane climb or descend (pitch) can be ap-
plied as shown:

a i r p l a n e r b . AddTorque (PitchInput ∗ trans form . r i g h t) ;

In the above code example, PitchInput represents the amount of pitch
and is controlled by the pilot. Positive value results in nose-up and negative
value in nose-down. The higher the absolute value, the greater the torque
, thus the more aggressive the change of pitch, and the faster the rate of
climb/descent.
Yaw and Roll are implemented in exactly the same way, the only difference
being the rotational axis.

Furthermore, when a plane needs to turn, the wings must roll to a banked
position so that they are angled towards towards the desired direction of the
turn. When the turn has been completed the aircraft must roll back to
the wings-level position in order to resume straight flight. In the case of an
aircraft making a turn, the horizontal component of lift acting on the aircraft
causes centripetal acceleration, thus causing the aircraft to accelerate
inward and execute the turn. [19]

Figure 5.14: Centripetal force acting during a banked turn. Source:
Wikipedia via Deeday-UK

By analyzing the forces and applying some simple mathematics, we can

5.3. AVIONICS 61

produce a formula depicting the relation between the radius of the turn (R)
, the velocity (v) and the angle of bank (ϑ).
While the aircraft performs a banked turn without changing altitude, the
vertical component of lift balances out the weight, thus:

L cosϑ = W = mg (5.1)

L sinϑ = mv2/R (5.2)

By dividing 5.1 and 5.2 we get:

R =
v2

g tanϑ
(5.3)

This formula shows that the radius of turn is proportional to the square
of the aircrafts true airspeed. With a higher airspeed the radius of turn is
larger, and with a lower airspeed the radius is smaller.

This formula also shows that the radius of turn decreases with the angle
of bank. With a higher angle of bank the radius of turn is smaller, and with
a lower angle of bank the radius is greater.

5.3 Avionics

Avionics are the electronic systems used on aircraft, artificial satellites, and
spacecraft. Avionic systems include communications, navigation, the display
and management of multiple systems, and the hundreds of systems that are
fitted to aircraft to perform individual functions.

5.3.1 PFD and ND

These monitors make the most important instruments of the airplane, and
pilots consult them through all phases of a flight. The PFD (left monitor)
provides current airspeed, altitude, heading, and an artificial horizon. It
also displays other important information regardingflight status. The ND

62 CHAPTER 5. IMPLEMENTATION

Figure 5.15: 1. PFD and ND 2. Autopilot 3. Pedestal 4. overhead panel 5.
landing gear lever and EWD

(right monitor) , as its name suggests, provides information related to the
navigation of the airplane. It shows current heading, speeds, planned route,
nearby traffic, airports and waypoints.

5.3.2 Autopilot

An autopilot is a system used to control the trajectory of a vehicle without
constant ’hands-on’ control by a human operator being required. Autopilots
do not replace a human operator, but assist them in controlling the vehicle,
allowing them to focus on broader aspects of operation, such as monitoring
the trajectory, weather and systems. Autopilots are used in aircraft, boats
(known as self-steering gear), spacecraft, missiles, and others. Autopilots
have evolved significantly over time, from early autopilots that merely held
an attitude to modern autopilots capable of performing automated landings
under the supervision of a pilot. Modern autopilots on complex aircraft use
computer software. The main function is to allow pilots to set a desired alti-
tude, speed, and heading to be maintained. Nowadays autopilots can perform

5.3. AVIONICS 63

more complex operations, such as follow a predefined flight path, maintain a
steady rate of climb/descent or execute an entire landing procedure, without
requiring any action from the pilots.

In our project, the Autopilot is handled by a separate script,
autopilot.cs. The user can set a desired heading, speed and alti-
tude.

We treat the autopilot as a closed-loop system. A Closed-loop Control
System, also known as a feedback control system is a control system which
has one or more feedback loops (hence its name) or paths between its output
and its input. The reference to feedback, simply means that some portion of
the output is returned back to the input to form part of the systems excita-
tion. [21]
Closed-loop systems are designed to automatically achieve and maintain the
desired output condition by comparing it with the actual condition. It does
this by generating an error signal which is the difference between the out-
put and the reference input. In other words, a closed-loop system is a fully
automatic control system in which its control action being dependent on the
output in some way.

Figure 5.16: a typical closed-loop system

To explain how autopilot is implemented in our Unity project, we will
give an example on how the aircraft maintains a specified altitude. In this
case, Input is the desired altitude set by the pilot, and Output is the
current altitude. If the aircraft flies in a different altitude, the comparison
will produce an error. The bigger the difference between the actual and the
target altitude, the bigger the error. The bigger the error, the greater the
rate of climb or descent. As the plane tries to reach the target altitude, the
error will get smaller and smaller and eventually become equal to zero. At

64 CHAPTER 5. IMPLEMENTATION

that point , the aircraft has successfully reached the target altitude, thus the
rate of climb/descent is set to zero. This functionality is illustrated in Fig-
ure 5.17 as a closed-loop system. In other words, the rate of climb/descent,
depends on the size of the error (up to a limit)

Figure 5.17: our closed-loop system that implements the Autopilot system.

In order to make the aircraft maintain the desired heading and altitude
appearing on the LCD, the user must activate the Autopilot system
by pressing the Autopilot switch, shown in figure 5.18. For as long as
autopilot is activated, the Autopilot is in full control of the aircraft.

5.3.3 Pedestal

The pedestal is the group of instruments located in the middle. It provides
access to fundamental controls of the aircraft, such as the thrust lever (to
manually control the amount of thrust) ,engine switches (to start or shut
down engines) and other levers to set the flaps, speed brake and parking
brake.

5.3.4 Overhead panel

The overhead panel is located in the center area just above the pilots. In
reality the overhead panel contains many switches and buttons to control

5.3. AVIONICS 65

Figure 5.18: Autopilot: LCD displaying current target airspeed, heading and
altitude, and rotary knobs

Figure 5.19: Pedestal.

66 CHAPTER 5. IMPLEMENTATION

aircraft systems, electronics, hydraulics and more. However for the purpose
of this thesis, providing such functionality would make the simulation very
complex, thus we only included some very basic functionality.

Figure 5.20: Overhead panel.

5.3.5 Implementing Avionics in Unity3D

The implementation of instrument displays in Unity was based upon the
build-in UI(user interface)components. Unity UI features a variety of com-
ponents such as Canvas, Image, Text, Button and more. In order for UI
components to be rendered in a scene, they must be children of a GameObject
with a Canvas component (recall that components that provide properties
and functionality are attached to GameObjects). In this thesis we use more
than 1 Canvas, containing UI text and raw image components, which work
as cockpit displays and instruments [22]

Canvas

The Canvas is the area that all UI elements should be inside. The Canvas
is a Game Object with a Canvas component on it, and all UI elements must

5.3. AVIONICS 67

be children of such a Canvas.

Creating a new UI element, such as an Image using the menu GameObject
→ UI→ Image, automatically creates a Canvas, if there isnt already a Canvas
in the scene. The UI element is created as a child to this Canvas. The Canvas
area is shown as a rectangle in the Scene View. This makes it easy to position
UI elements without needing to have the Game View visible at all times.
The Canvas can be set to different render modes to get different effects. For
example Screen Space Overlay mode is used to place UI elements on top
of the scene. If the screen is resized or changes resolution, the Canvas will
automatically change size to match this. It is commonly used for menus.
The most frequently used render mode in this project is ”World Space” In
this render mode, the Canvas will behave as any other object in the scene.
The size of the Canvas can be set manually, and UI elements will render in
front of or behind other objects in the scene based on 3D placement. This is
useful for UIs that are meant to be a part of the world. This is also known
as a diegetic interface. Needless to say, all cockpit instruments and displays
are in World Space render mode.

Creating the PFD and ND in Unity3D

Before stepping in to the creation process of these important instrument dis-
plays, which are crucial for aircraft navigation, lets explain their very
basic functionality.

The Primary Flight Display (PFD), consists of 4 basic elements. The
first two are the airspeed and altitude indicators. The third element, is
the artificial horizon.It is used in an aircraft to inform the pilot of the ori-
entation of the aircraft relative to Earth’s horizon. It indicates pitch (nose
up/down) and bank (side to side tilt) and is a primary instrument for flight
in instrument meteorological conditions. The fourth and final part of the
PFD displays information such as if autopilot or autothrust are activated.

The Navigation Display (ND)’s main purpose is to display the air-
craft’s current heading in degrees, as well as its relative distance to airports
and other aircraft, by using a 360 degree rotating circle , similar to a compass.

Now that we have briefly presented the basics of these important instru-

68 CHAPTER 5. IMPLEMENTATION

Figure 5.21: Primary Flight Display (PFD)

ment displays, we can proceed to the implementation process in Unity3D.
First of all, these instruments take advantage of Unity’s UI system. This
means that we will need a Canvas which will render the UI elements. The
Canvas needs to be set in World Space mode, because the instrument dis-
plays’ position is fixed and independent of the camera position. Secondly, we
need to think which parts will be static , and which will change, appear or
disappear, move or rotate. Since we have decided, we can create the appro-
priate UI element, position it correctly and customize it. Note that changing
or moving elements need to be scripted to do so.

As for the PFD, there is one static part, considered as the PFD back-
ground. Since it remains unchanged, we can import an image and attach
it on a UI → Raw Image component. The image needs to be transpar-
ent, so that we can later place the artificial horizon image behind it. The
next step is to create a new material that contains the transparent texture
map and the emission map (it is a display so it has to emit some light) .
The material’s rendering mode should be changed from the default Opaque
mode to Cutout mode, otherwise the transparency won’t be rendered prop-
erly. After positioning and setting up the PFD’s background, we can add
the artificial horizon. The artificial horizon is basically an image that will
rotate and move. It is positioned slightly behind the PFD background, and
is visible through the transparent gap. We follow the same process as the
PFD background. We create a new UI→ Raw Image and set up the material.

5.4. AUDIO 69

Scripting the behaviour
Finally we have to script the artificial horizon so that it moves and rotates, in
accordance to the aircraft. Hence, we need the script to retrieve the aircraft’s
current pitch and roll rotations, and rotate/move the artificial horizon’s im-
age accordingly. This process is executed every frame.

Initially, we need a reference to the aerodynamics script, because it is the
script that will supply us with the aircraft’s current pitch and tilt. Then
we just apply these rotation values to the artificial horizon’s transform. We
use transform.localRotation = Quaternion.Euler(xAngle, yAngle, zAngle) to
alter its rotation and transform.localPosition = new Vector3(x, y, z) to alter
its position. We attach the script , and we have a fully functional artificial
horizon.

For the rest of the displayed information, we use the UI → Text compo-
nents. These components can display any text in a string format at a specific
position in the 3d world. They are commonly used for on-screen information,
text, words or numbers. They can display a pre-set string which can also
be changed during run-time by scripts. These components were used in our
project to display information such as current airspeed, altitude, heading ,
flap position and more.

The Navigation Display was created by following the same pattern , so
there is no need for a separate section.

5.4 Audio

A game would be incomplete without some kind of audio, be it background
music or sound effects. Unitys audio system is flexible and powerful. It can
import most standard audio file formats and has sophisticated features for
playing sounds in 3D space, optionally with effects like echo and filtering
applied. Unity can also record audio from any available microphone on a
users machine for use during gameplay or for storage and transmission.

Basic Theory
In real life, sounds are emitted by objects and heard by listeners. The way
a sound is perceived depends on a number of factors. A listener can tell
roughly which direction a sound is coming from and may also get some sense
of its distance from its loudness and quality. A fast-moving sound source

70 CHAPTER 5. IMPLEMENTATION

(like a falling bomb or a passing police car) will change in pitch as it moves
as a result of the Doppler Effect. Also, the surroundings will affect the way
sound is reflected, so a voice inside a cave will have an echo but the same
voice in the open air will not.

Figure 5.22: Audio Sources and Audio Listener

To simulate the effects of position, Unity requires sounds to originate from
Audio Sources attached to objects. The sounds emitted are then picked
up by an Audio Listener attached to another object, most often the main
camera (user). Unity can then simulate the effects of a sources distance and
position from the listener object and play them to the user accordingly. The
relative speed of the source and listener objects can also be used to simulate
the Doppler Effect for added realism.
Apart from Audio Source and Audio Listener, the next important object used
to script audio, is Audio Clip. Audio Clips contain the audio data used by
Audio Sources. An Audio Source object can be scripted to use more than
one Audio Clip. However, an Audio Source can only play one Audio Clip
at a time. For sounds that have to be played simultaneously, more Audio
Sources are needed.

In this project it is common that many different sound effects are played
at the same time. For example , the user can hear the engines running, the
wheels make noise and the click of a button at the same time. Therefore,
many Audio Sources are required. Even each engine has its own Audio
Source. Concluding, these are the Audio Sources used:

• Left engine

5.4. AUDIO 71

• Right engine

• Cockpit sounds (clicks, switches, landing gear, flaps)

• External sounds (wheels)

• ATC (air traffic control)

Normally, each Audio Source has a script attached to it, which defines its
behavior. The script defines the audio clips that will be used, which one will
be played, when and how. Specifically, the programmer can write functions
that can also be called externally , to play a desired audio clip and set its
playback properties , like volume, pitch and other such as if the audio clip
should play repeatedly (loop) or not.
For example, lets take a brief look at the script (cockpitsounds.cs) that han-
dles cockpit sounds on how it works, supposing that it is already attached to
an Audio Source game object:

The first lines define the Audio Source component and the Audio Clips
to be used:

AudioSource sound ;
public AudioClip AutoPi lot ;
public AudioClip CabinBel l ;
public AudioClip Cl i ck ;
public AudioClip RotarySwitch ;

Next, we use the GetComponent function to gain access to the Audio
Source component:

void Star t () {
sound = GetComponent<AudioSource >() ;

}

Finally, we write the functions that will make the Audio Source play a
specific Audio Clip, with specific parameters. Obviously, the functions are
set as public, so that they can be called from other scripts:

public void playAutoPilotSound () {
sound . c l i p = AutoPi lot ;

72 CHAPTER 5. IMPLEMENTATION

sound . loop = fa l se ;
sound . Play () ;

}

public void playCabinBellSound () {
sound . c l i p = CabinBel l ;
sound . loop = fa l se ;
sound . Play () ;

}

public void playClickSound () {
sound . c l i p = Cl i ck ;
sound . loop = fa l se ;
sound . Play () ;

}

Additionally, we can accomplish more complicated functionality by script-
ing, such as setting audio clips play for a specific amount of time, or make
two audio clips crossfade, which is useful when simulating engine sounds .
Crossfade is the technique that makes a smooth transition between two audio
files. It is achieved by fading out (slowly decreasing volume) one source file
while fading in (slowly increasing volume) the other. This method creates a
smooth transition because for a short period of time the listener hears both
files playing simultaneously. This can be easily implemented by modifying an
Audio Sources volume at run-time. Note that crossfading two clips requires
manipulation of two Audio Sources.

5.5 Menu

This project features a menu, which appears on the screen on application
start, or when the user pauses the simulation. It is a simple menu that pro-
vides some basic instructions and information and options. The menu was
created by using Unity’s UI elements (Canvas ,button, text) along with a
script to execute the desired option.

The menu allows the user to start from two different positions by clicking
the respective button. Clicking the ”Start at gate” button, the simulation

5.5. MENU 73

will start with the aircraft parked at an airport gate, and clicking the ”Start
at runway” button, the aircraft will be moved to the start of the runway
for takeoff.

We want the menu to be on top of the screen, independent of any game
object. Thus we set the canvas render mode to screen space-overlay. Then we
add the text and buttons onto the canvas. Now we have created the visible
part of the menu, but it isnt programmed to react to user input yet.

So the next step is to create a new script, supposing MenuScript.cs ,
to respond to user input and execute some operations. This script needs
access to 3 different game objects and we will explain why. These objects are
the camera, the aircraft and the cockpit. The reason is that when the user
clicks on Start at gate or Start at runway, the following actions need to be
performed:

• Hide the menu (because the user already clicked something)

– Set the canvas.enabled = false; of the menu canvas

• Move the aircraft to the desired position (gate or runway)

– Set AircraftPrefab.transform.position

– Set AircraftPrefab.transform.rotation

• Make the camera a child of the cockpit gameobject.

– MainCamera.transform.parent = Aircraft.transform;

The final step is to define which function of the above script will be ex-
ecuted when the OnClick() event of a button is triggered. Obviously, we
need two different functions for two different buttons.

By now, we have a functional menu, however once the user starts the
simulation, he can no longer pause or go back to the menu. To counter this,
we allow the user to pause the simulation at any time, by pressing the P but-
ton. During a pause, the menu automatically appears on top of the screen.
Needless to say, pressing the P button again will un-pause and the simulation
will continue as normal.

74 CHAPTER 5. IMPLEMENTATION

Figure 5.23: Creating the Menu in Unity. The red arrow illustrates that when
a button is clicked, the OnClick() event is triggered, which in turn calls a
script function to do something. The canvas of the menu is also visible.

The main method to implement a pause in Unity3D, is to stop the pas-
sage of time. There is a specific variable for this , which is Time.timeScale.
Setting this equal to zero will basically pause the game, if all functions are
frame rate independent. This means that FixedUpdate() functions will
not be called at all when timescale is set to zero (Update() functions will
be normally called) .This is how a pause is achieved.

5.6 High level project structure

Up to this point, we have seen that this Flight Simulator project consists of
many different sections and functions, that work seamlessly producing the
end user experience. For this to happen, scripts and game objects have to
constantly communicate with each other and exchange data. Each script
serves its own purpose and is dependent upon one or more game objects or
scripts. For example, the aerodynamics.cs script simulates physics, Avion-
ics.cs handles the aircrafts systems and instrument displays, TouchRecogn.cs
monitors users hand position and gestures, and so on.

5.6. HIGH LEVEL PROJECT STRUCTURE 75

Below is a high level diagram of the most important scripts and game
objects that shows how information is exchanged between them.

Figure 5.24: High level project diagram depicting the most important parts.

Lets see what happens when for example the user turns on the auto pilot,
by touching the autopilot switch.

76 CHAPTER 5. IMPLEMENTATION

1. The TouchRecogn script recognizes that the auto pilot switch has been
pressed.

2. TouchRecogn script instructs the UnityToArduino script to send vibra-
tion feedback to the user.

3. TouchRecogn script instructs the Avionics script that the auto pilot
system is on, so it updates the instrument displays, and the auto pilot
switch is lit , depicting that it is active.

4. It also activates the Autopilot script. The Autopilot.cs script is now in
control of the aircraft, by communicating and instructing the Aerody-
namics script how to fly the airplane.

5. The Autopilot script controls the trajectory of the aircraft by using the
closed-loop system shown previously.

5.6. HIGH LEVEL PROJECT STRUCTURE 77

Summary
In this chapter we presented the entire process of utilizing real photographs,
techniques , mathematics and physics in order to implement the fundamental
elements of this Flight Simulator, from the ground up. We covered the
making of the 3d environment, avionics, audio and aerodynamic physics. We
also presented a high level project diagram that illustrates interaction and
communication between the most important elements of this application.

78 CHAPTER 5. IMPLEMENTATION

Chapter 6

Interactivity

6.1 Introduction to Leap Motion’s hand track-

ing

Leap Motion is a computer hardware sensor device that supports hand and
finger motions as input, analogous to a mouse, but requires no hand contact
or touching.

The Leap Motion controller is a small USB peripheral device which is
designed to be placed on a physical desktop, facing upward. It can also
be mounted onto a virtual reality headset. Using two monochromatic IR
cameras and three infrared LEDs, thedevice observes a roughly hemispherical
area, to a distance of about 1 meter. The cameras generate almost 200 frames
per second of reflected data. This is then sent through a USB cable to the host
computer, where it is analyzed by the Leap Motion software using ”complex
maths” in a way that has not been disclosed by the company, in some way
synthesizing 3D position data by comparing the 2D frames generated by the
two cameras. In a 2013 study, the overall average accuracy of the controller
was shown to be 0.7 millimeters.[29] The smaller observation area and higher
resolution of the device differentiates the product from the Kinect, which is
more suitable for whole-body tracking in a space the size of a living room.

Leap Motion has significantly improved virtual reality experience overall
by allowing users to manipulate and Dztouchdz virtual objects, something
impossible before. As a result, the illusion of physical presence in virtual
environments is stronger and more believable, thus making developers want

79

80 CHAPTER 6. INTERACTIVITY

Figure 6.1: Leap Motion controller. Left: controller placed on desk facing
upwards. Right: controller mounted on HMD facing forward.

to take advantage of this technology and integrate it into their applications.

In this project, interactivity is achieved by integrating the LeapMotions
API (Unity Assets for Leap Motion) into Unity. The application is designed
in such way that the controller must be mounted on the HMD to track hands
properly.

6.2 Integrating Leap Motion in Unity

The first step code, is to download the Unity Assets for LeapMotion and
import them to our Unity project. These assets allow Unity to communicate
with Leap Motions software and hardware. They come with example scenes,
prefabs and scripts for some basic functionality (such as gesture recogni-
tion). They also include the required libraries that allow scripts to access
Leap Motions classes and functions.

The second step is to set the Leap Motion controller (HandController) as
a child of the Main Camera object. The HandController object is a prefab
that comes with Leap Motions unity assets. Camera is the camera object
that is connecteddz with the virtual reality HMD. Thus when the user moves
and looks around, his hands must follow his movement, giving the illusion
that they are attached to the body as in real life. This is the reason why the
controllers game object must be a child of the camera object.

6.2. INTEGRATING LEAP MOTION IN UNITY 81

Figure 6.2: Leap Motion : recognized gestures

We can see that the HandController object
has two scripts attached to it:

The Hand Controller script defines hands
graphics and physics models to be used.
Leap Motions assets come with ”prefab” hand
models, such as realistic human hands or
robotic hands. Developers also need to
specify whether the controller is mounted
on an HMD or not for proper functional-
ity.

The Touch Recogn script handles touch
recognition, by constantly tracking the position
of the fingertip, every frame. This script func-
tions under a main principle: When the finger-
tip gets to close proximity to one of the cockpits

touchable buttons and switches, the object is considered as being physically
touched. The touch distance threshold is defined inside the script. It must
be carefully set. A small threshold might make touching a button hard and
require high precision, while a big threshold might accidentally trigger but-
tons and switches that were not meant to be touched. [23]

It is important to note that we had to implement a debouncing method
for almost all buttons and switches. Debouncing is a technique that ensures
that only one signal can be registered within the space of a given time (usually
milliseconds), even when the hand is continuously in touch with an object.

82 CHAPTER 6. INTERACTIVITY

Figure 6.3: Leap Motion’s realistic hand models in real-time gameplay

To give an example, without debouncing, it would be extremely hard to
trigger a switch ON and OFF , because it would constantly trigger between
the OFF and ON states for as long as the hand is touching it. To sum
up, the application constantly measures the distance between the hands and
each Dzclickable/touchabledz object inside the cockpit. When the distance
to an object is smaller than a defined threshold, it is considered as physical
contact.

6.3 Detecting touch and gestures in Unity3D

Lets see in more detail how the TouchRecogn script works - from hand move-
ment tracking to converting finger coordinates from LeapMotion’s coordinate
system to our scene’s system and how actions are triggered when a touch is
detected.

The process that will be described in the following sections can be summa-
rized as following:
Leap Motion tracks hands ⇒ captured data is stored in objects ⇒
needed variables are obtained ⇒ information converted to usable
formats.

6.3. DETECTING TOUCH AND GESTURES IN UNITY3D 83

Firstly, we need to highlight that the method we use for touch detection,
is based on measuring the finger’s distance to every touchable object in the
cockpit, every frame. If the measured distance to an object is lower than a
specified threshold, the object is considered to be touched.

Consequently, the initial step is to load all the clickable/touchable ob-
jects in the cockpit and store them in a GameObject variable, so we can
access their transform component. For example, we load the landing gear’s
GameObject by calling GameObject.Find(”LDG GEAR LEVER”);. During
initialization, we also load external scripts, such as the Avionics and the Uni-
tyToArduino script. We need access to the Avionics script, because touching
a button will trigger an event or a change in the aircraft’s systems, and we
also need access to the UnityToArduino script in order to enable vibration
feedback upon touching an object.

Once done with initialization, we can proceed to the actual process of
tracking hand movement, fingertip position to be more specific. However,
before calculating distances from the fingertip to objects, we need to perform
some necessary actions:

1. Every frame update, we need to retrieve the updated frame object.
The Frame class represents a set of hand and finger tracking data de-
tected in a single frame. The Leap Motion software detects hands,
fingers and tools within the tracking area, reporting their posi-
tions, orientations, gestures, and motions in frames at the Leap
Motion frame rate. We do this by calling: Frame frame = con-
troller.Frame();

2. We need to utilize the retrieved frame object to gain access to infor-
mation regarding the fingers. We store this information in a fingers
object as such: FingerList fingers = frame.Fingers;
The FingerList class represents a list of Finger objects.

3. Any coordinates, directions, and transformations reported by these
classes are expressed relative to the Leap Motion coordinate system, not
your Unity game world. To convert position vectors to Unity coordi-
nates, we use the Vector class extension ToUnityScaled(). For example
, in order to get the fingertips position relative to Unity’s hierarchy, we

84 CHAPTER 6. INTERACTIVITY

need to do: Vector3 localTipPos = fingers[1].TipPosition.ToUnityScaled();
fingers[X] returns the finger object of the X finger. In this case, 1 rep-
resents the index finger.

4. Depending on the application and developer’s approach, we can convert
the above finger coordinates, from local space to world space. We do
this by calling: worldTipPos = transform.TransformPoint(localTipPos);
This step is only necessary when we need coordinates in respect to the
world space, independent of any parent game object.

By now, we have the latest coordinates of a user’s finger and all the coor-
dinates of touchable objects. So all we have to do now is calculate distances
to determine whether the fingertip is touching an object. For more readable
code, we have separate functions that measure the distance to each object.

void Update() {

.......

Frame frame = controller.Frame();

FingerList fingers = frame.Fingers;

.......

Vector3 localTipPos = fingers[1].TipPosition.ToUnityScaled();

Vector3 worldTipPos = transform.TransformPoint(localTipPos);

.......

checkDistanceFromLDGGear();

checkDistanceFromThrottleLever();

checkDistanceFromFlapsLever();

checkDistanceFromSpeedBrakeLever();

checkDistanceFromEngineSelectors();

......

}

The above ”checkDistanceFromXXX” functions are called in every frame,
that’s why they are placed in the Update() section of the script, together with
the previous actions. These functions share the same structure, so we will
take a look at one, for example the checkDistanceFromThrottleLever();

6.3. DETECTING TOUCH AND GESTURES IN UNITY3D 85

As its name suggests, this function determines whether or not the user
is touching the throttle lever that controls the thrust of the engines. Lets
analyze the procedure that is followed every single frame step by step:

1. The distance between the fingertip and the throttle is measured.

2. If the distance is lower than a specified threshold, the throttle is being
touched, so:

(a) A signal must be sent to Arduino to give vibration feedback to
the user. We do this by setting a Boolean variable as true. (This
variable is false when nothing is touched - no vibration feedback)

(b) The throttles must follow the movement of the hand, while in
touch. In Unity, the forward/back motion of objects is performed
along its Z axis. Thus, the x and y coordinates remain always
unchanged.

(c) The new throttle Z coordinate must be equal to the fingertips
z value. This way the user has the illusion that he is naturally
moving the throttle with his hand.

(d) To this point, the position of the throttle in the 3D space is only
a set of x,y,z coordinates. We need to convert and normalize the
coordinates, in order to get the current thrust amount in the 0%-
100% range. So, supposing that the maximum Z value represents
maximum thrust, and the minimum Z value represents idle thrust,
we use the normalization formula:

thrust% =
Z − Zmin

Zmax − Zmin

∗ 100 (6.1)

(e) Concluding, we have successfully translated the throttle lever’s
current position to a usable thrust percentage in the 0-100 range,
to set the current engine thrust. We can now send this value to
the scripts that handle the aircraft systems.

86 CHAPTER 6. INTERACTIVITY

Figure 6.4: Converting throttle lever coordinates to thrust % amount.

6.4 Gestures

Recognizing gestures, such as making circles with a finger, requires a slightly
different approach. The Leap Motion software recognizes certain movement

6.4. GESTURES 87

patterns as gestures which could indicate a user intent or command. The
Leap Motion software reports gestures observed in a frame the in the same
way that it reports other motion tracking data like fingers and hands. For
each gesture observed, the Leap Motion software adds a Gesture object to
the frame. The gesture objects can be obtained from a GesturesList, same
way as finger objects are obtained from a FingerList.

In this project, we took advantage of the Circle type of gesture. Circle
gestures are continuous. Once the gesture starts, the Leap Motion software
will update the progress until the gesture ends. A circle gesture ends when
the circling finger or tool departs from the circle locus or moves too slow.

In order to convert a gesture into usable input for our application, we
need to perform some actions:

1. Access the gestures objects stored in GestureList (if any).

2. Check what type of gesture it is. If it is Circle type, we proceed
further, If not, the gesture is rejected.

3. We need to find out the whether the circle made was clockwise or coun-
terclockwise. We do this by (circle.Pointable.Direction.AngleTo(circle.Normal)
<= Mathf.PI / 2)

4. If the above condition is true, the circle is clockwise, else it’s counter
clockwise.

The circle gesture is recognized while rotating the index finger like in
the image. We use clockwiseness to determine whether the value needs to
increase or decrease.

Summary
In this chapter we thoroughly examined the process followed behind the
scenes to accomplish interactivity by hand gestures. We learnt the basics of
Leap Motion and how it is integrated into Unity. Then we presented how
we utilize hand-tracking data stored in objects as usable input to trigger
buttons, move levers to control the aircraft.

88 CHAPTER 6. INTERACTIVITY

Figure 6.5: Making a circle with the index finger as shown in the image will
be recognized as a gesture.

Chapter 7

Haptic feedback

7.1 Haptic feedback and why is it important

Haptic feedback, often referred to as simply ”haptics”, is the use of the sense
of touch in a user interface design to provide information to an end user.
When referring to mobile phones and similar devices, this generally means
the use of vibrations from the device’s vibration alarm to denote that a but-
ton has been pressed.[24]

The goal here is that a user gets some kind of haptic feedback, when his
hand/finger is in contact with a switch or a lever. This is important, because
apart from improving realism, it helps users understand whether their touch
and gestures are recognized by the application or not. To give a better clue,
hand-tracking technology and techniques are still imperfect and there is al-
ways a possibility of error. By providing instant haptic feedback to the user,
he knows for sure whether his gestures were processed by the application.

We achieved a satisfactory result by using a vibration motor, connected to
a digital pin in an Arduino microcontroller. When the application recognizes
a gesture, the motor produces a vibration, simulating physical contact.

7.2 Introduction to Arduino

Arduino is an open-source project that created microcontroller-based kits
for building digital devices and interactive objects that can sense and con-

89

90 CHAPTER 7. HAPTIC FEEDBACK

trol physical devices. The project is based on microcontroller board de-
signs, produced by several vendors, using various microcontrollers. These
systems provide sets of digital and analog input/output (I/O) pins that can
interface to various expansion boards (termed shields) and other circuits.
The boards feature serial communication interfaces, including Universal
Serial Bus (USB) on some models, for loading programs from personal com-
puters. For programming the microcontrollers, the Arduino project provides
an (IDE) based on a programming language named Processing, which also
supports the languages C and C++. [25]

The first Arduino was introduced in 2005, aiming to provide a low cost,
easy way for novices and professionals to create devices that interact with
their environment using sensors and actuators. Common examples of such
devices intended for beginner hobbyists include simple robots, thermostats,
and motion detectors.
An Arduino’s microcontroller is pre-programmed with a boot loader that
simplifies uploading of programs to the on-chip flash memory, compared with
other devices that typically need an external chip programmer. This makes
using an Arduino more straightforward by allowing the use of an ordinary
computer as the programmer.

7.3 Setting up and programming Arduino

The Arduino project provides an integrated development environment (IDE),
which is a cross-platform application written in the programming language
Java. Programmers can compile the code and instantly upload it to
the Arduinos hardware, usually by a serial connection over USB. A
typical Arduino script consist of two functions that are compiled and linked
with a program stub main() into an executable cyclic executive program:

• setup(): a function that runs once at the start of a program and that
can initialize settings.

• loop(): a function called repeatedly until the board powers off.

In order to establish a communication between Arduino and a PC we
need to write a simple sketch(script), compile it and upload it to our micro-
controller, as explained previously. We basically want to program our Ar-
duino to receive data from the PC (and Unity) over a serial connection, and

7.3. SETTING UP AND PROGRAMMING ARDUINO 91

Figure 7.1: Arduino ’UNO’ microcontroller

change its output according to the received input. We have two different
inputs (characters) that Unity sends:

• ’y’: Unity sends this character when a hand is in contact with a switch,
thus the Arduino gives HIGH voltage to the vibration motor via the
connected pin.

• ’n’: Unity sends this character when a hand is not in contact with a
button or a switch. Thus Arduino gives LOW voltage to the vibration
motor, and the vibration stops.

int Vout = 10 ; // pin no . = 10
char myCol [2] ;

void setup ()
{

S e r i a l . begin (9 6 0 0) ;
pinMode (Vout ,OUTPUT) ;
d i g i t a l W r i t e (Vout , LOW) ;

92 CHAPTER 7. HAPTIC FEEDBACK

Figure 7.2: Vibration motor connected to Arduino.

}

void loop ()
{

int tc = 10 ;
S e r i a l . r eadBytesUnt i l (tc , myCol , 1) ;
i f (strcmp (myCol , ”y”) == 0) {

d i g i t a l W r i t e (Vout , HIGH) ;
}

i f (strcmp (myCol , ”n”) == 0) {
d i g i t a l W r i t e (Vout , LOW) ;

}
}

The above code is written in Arduino’s IDE, compiled and uploaded to

7.4. UNITY TO ARDUINO COMMUNICATION 93

the micro controller.

• Serial.begin() : opens serial port and sets data rate to 9600 bps.

• pinMode(10, OUTPUT) : Configures the specified pin to behave ei-
ther as an input or an output. In this case, as output, because we want
Arduino to control the vibration motor.

• digitalWrite(): Write a HIGH or a LOW value to a digital pin. If the
pin has been configured as an OUTPUT with pinMode(), its voltage
will be set to the corresponding value: 5V (or 3.3V on 3.3V boards) for
HIGH, 0V (ground) for LOW.

• Serial.readBytesUntil(tc, myCol, 1): reads characters from the se-
rial buffer into an array. The function terminates if the terminator
character is detected, the determined length has been read, or it times
out.

Finally, we need to compare the character from the serial buffer to ’y’ or
’n’, by using the strcmp() function, which returns 0 when two strings are
identical. If the input character equals to ’y’, the vibration starts, because
the pin is set to HIGH voltage. If the input character equals to ’n’, the
vibration must stop, thus the pin’s voltage is set to LOW.

7.4 Unity to Arduino communication

The last step to achieve vibration feedback, is to program Unity to commu-
nicate and send data to Arduino. There is a dedicated script that handles
Unity to Arduino communication, which is the UnityToArduino.cs script.
The script executes the following processes:

1. Unity.IO.Ports library is imported to our script, to be able to open and
use serial ports.

2. The serial ports parameters are defined, according to Arduino setup.

3. We open a new serial port, after checking that it isnt already open.

94 CHAPTER 7. HAPTIC FEEDBACK

4. Send the appropriate byte to Arduino by Dzwritingdz a character to
the serial port.

• Writes ’y’ if the users hand is touching a switch or a lever.

• Writes ’n’ if the users hand is not touching anything.

us ing UnityEngine ;
us ing System . C o l l e c t i o n s ;
us ing System . IO . Ports ;
us ing System . Threading ;

public class UnityToARDUINO : MonoBehaviour {
public stat ic S e r i a l P o r t sp = new S e r i a l P o r t (”COM5” , 9600) ;
private int s a f e t y t i m e = 1 ; // 1 second input ingore to avoid e n d l e s s v i b r a t i o n
private bool ingnoreInputVib = fa l se ; // Use t h i s f o r i n i t i a l i z a t i o n

void Star t () {
OpenConnection () ;

}

// Update i s c a l l e d once per frame
void Update ()
{
}

public void OpenConnection () {
i f (sp != null) {

i f (sp . IsOpen)
{

sp . Close () ;
p r i n t (” Clos ing port because i t s a l r eady open ! ”) ;

}
else

{
sp . Open () ;
sp . ReadTimeout = 16 ;
p r i n t (” port opened ! ”) ;

7.4. UNITY TO ARDUINO COMMUNICATION 95

}

}
else
{

i f (sp . IsOpen)
p r i n t (” port a l r eady open”) ;

else pr in t (” port==n u l l ”) ;
}
}

public void ContinuousVibrate ()
{

sp . Write (”y”) ;
}

public void s topVibrat ion ()
{

sp . Write (”n”) ;
}

}

96 CHAPTER 7. HAPTIC FEEDBACK

The process we described in the above sections can be summarized by the
process diagram below:

Chapter 8

Result, Evaluation and Future
Work

8.1 Result and System Evaluation

From the first development phases, the application was constantly tested
by users, and necessary changes were immediately made. The process of
continuous assessment and refinement since early development resulted in a
polished environment and straightforward gameplay with a few defects and
flaws.

The development versions that were put to the test, gained mostly posi-
tive responses from the testing team of users, consisting of about 20 people.
The graphics felt significantly convincing. They stated that they were im-
mediately submerged into the environment, believing that they are in a real
cockpit, in a real airport. Physics and flying mechanisms gave the sense of
flying to users on their seat, but without making them feel motion-sick, which
is extremely important to us. Users also enjoyed interaction with the cockpit
by their own hands.

As for the negative comments, users with no previous experience on VR
environments, reported lack of instructions as well as difficulty controlling
the aircraft and performing simple actions. However this is partially due
to the nature of simulations, which requires some basic knowledge of the
objective. As for the hand-tracking, users initially had trouble interacting

97

98 CHAPTER 8. RESULT, EVALUATION AND FUTURE WORK

with the cockpit , as for example they found themselves touching buttons and
switches not intended to, while others felt that the system did not respond
to their gestures. Fortunately these problems only lasted from seconds to a
few minutes as users started to get used to the experience.

In our effort to make further improvements, we realised that most nega-
tive comments had to do with some difficulty interacting with the aircraft.
As a result, some elements in the cockpit were resized or repositioned. Fur-
thermore, the touch distance threshold that designates how far or close to
objects the hand must be to be triggered was re-configured. Finally, some
switches or levers are disabled during some stages of the flight, to prevent
undesired behaviour by unintended hand motions. For example, users can-
not retract the landing gear whilst on the ground or move the throttle lever
while the autopilot is engaged.

Upon re-evaluation with the above changes implemented , with the same
users, the overall experience was improved , with fewer negative comments.

Concluding, although there is always margin for improvement, a per-
fect result is impossible to achieve at this very moment. This is mainly due
to two reasons. The first one is that hand-tracking sensors are not 100%
accurate. Thus, simulating hand movements that require high precision is
a challenge. The second reason, is Virtual Reality itself. Despite the im-
provements over the last years, there are still visual issues to be solved, such
as image quality and sense of scale and distance.

8.2 Conclusion and Future Work

It seems that Virtual Reality is on a good track in getting into our lives,
not only for entertainment , but also for other purposes, such as education,
medicine and simulations. Computer graphics, hardware and current tech-
nology in general has finally reached the point where virtual environments
feel more alive than ever before. Virtual reality is becoming more convincing,
as hand-tracking or body-tracking is advancing along with HMD technology.
Users can now be part of realistic and highly-detailed 3D environments and
interact with them in many ways. The good news is that there is still a lot
of room for improvement, regarding both hardware and software.

The main technical challenge of this work was the implementation of
a realistic and detailed 3D environment along with simulated physics and

8.2. CONCLUSION AND FUTURE WORK 99

extensive interactivity, without compromising:

• Usability

• Performance - even on older generation hardware

• Stability

• User experience (dizziness, nausea, motion sickness...)

However, this project can be extended and improved in many of its as-
pects. Graphics can be enriched. There could be more airports, larger and
higher resolution terrain, realistic sea with real-time reflections and more.
Interactivity can be also vastly improved - more buttons and switches and
more accurate response to users gestures. The vibration feedback imple-
mented, provides user feedback by giving a sense of touch through a light
vibration, still feels incomplete and inferior to the real sense of touch and
remains an area of future research. Finally, a mini-tutorial can be imple-
mented to help novice users perform basic actions during flight.

Finally, in a more mature state of this project, A.I. (Artificial Intelli-
gence) could be possibly utilized and integrated into certain functions. For
example, A.I. airplanes that take-off , fly and land, A.I. Air Traffic Controllers
giving instructions to pilots, or even some kind of pilot behaviour/reaction
monitoring system.

100 CHAPTER 8. RESULT, EVALUATION AND FUTURE WORK

References

1. http://www.wsj.com/articles/what-does-virtual-reality-do-to-your-body-
and-mind-1451858778

2. https://en.wikipedia.org/wiki/Virtual reality

3. http://gizmodo.com/this-is-how-valve-s-amazing-lighthouse-tracking-technol-
1705356768

4. http://blog.natebeatty.com/2016/03/13/lighthouse-deconstructed/

5. https://imotions.com/blog/top-8-applications-eye-tracking-research/

6. http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-
controller-work/

7. http://www.vrs.org.uk/virtual-reality-gear/head-mounted-displays/

8. http://www.tomshardware.co.uk/vive-rift-playstation-vr-comparison,review-
33556-3.html

9. http://uploadvr.com/vr-hmd-specs/

10. https://en.wikipedia.org/wiki/Stereoscopy

11. http://arstechnica.com/gaming/2015/08/uncross-those-eyes-researchers-
solve-vrs-depth-of-focus-headaches/

12. https://en.wikipedia.org/wiki/Game engine

13. https://www.unrealengine.com/unreal-engine-4

14. https://www.cryengine.com/

15. https://aws.amazon.com/lumberyard/faq/

16. https://www.grc.nasa.gov/www/k-12/airplane/thrust1.html

17. http://www.real-world-physics-problems.com/how-airplanes-fly.html

18. https://en.wikipedia.org/wiki/Lift coefficient

19. https://en.wikipedia.org/wiki/Banked turn

8.2. CONCLUSION AND FUTURE WORK 101

20. https://www.grc.nasa.gov/www/k-12/airplane/

21. http://www.electronics-tutorials.ws/systems/closed-loop-system.html

22. https://docs.unity3d.com/Manual/UICanvas.html

23. https://developer.leapmotion.com/documentation/v2/csharp/devguide/Leap Overview.html

24. http://www.mobileburn.com/definition.jsp?term=haptic+feedback

25. https://www.arduino.cc/

	Abstract
	Acknowledgements
	Introduction
	Concept
	Thesis Outline

	Background and Terminology
	Virtual Reality
	Frame Rate
	Head Mounted Displays (HMDs)
	Positional tracking
	Head tracking
	Eye tracking
	Hand tracking
	HMD specifications

	Stereoscopy
	Stereoscopy in VR and its problems

	3D Computer Graphics
	3D Modeling
	3D Rendering
	Basics
	Global Illumination (GI)

	Definitions
	Polygon Mesh
	Texture mapping
	Shader

	Game Engines
	Introduction to Game Engines
	Popular Game Engines
	Comparison/Choosing the right engine

	Technological Background
	Unity3D
	What is Unity3D?
	Project structure in Unity3D
	Components
	Scripting
	Interface

	3D Modeling Tools
	Basics
	SketchUp

	Implementation
	3D Environment
	Cockpit
	Clouds
	Terrain
	Airport

	Physics
	How do airplanes fly?
	Linear forces
	Torque forces
	Simulating physics in Unity3D

	Avionics
	PFD and ND
	Autopilot
	Pedestal
	Overhead panel
	Implementing Avionics in Unity3D

	Audio
	Menu
	High level project structure

	Interactivity
	Introduction to Leap Motion's hand tracking
	Integrating Leap Motion in Unity
	Detecting touch and gestures in Unity3D
	Gestures

	Haptic feedback
	Haptic feedback and why is it important
	Introduction to Arduino
	Setting up and programming Arduino
	Unity to Arduino communication

	Result, Evaluation and Future Work
	Result and System Evaluation
	Conclusion and Future Work

