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Abstract

This thesis proposes, for the first time in the literature, the use of hyper-

graphs for the efficient formation of effective agent coalitions. We put for-

ward several formation methods that build on existing hypergraph prun-

ing, transversal, clustering and hybrid algorithms, and exploit the hyper-

graph structure to identify agents with desirable characteristics. Our ap-

proach allows the near-instantaneous formation of high quality coalitions,

adhering to multiple stated quality requirements. Moreover, our methods

are shown to scale to dozens of thousands of agents within fractions of a sec-

ond; with one of them scaling to even millions of agents within seconds. We

apply our approach to the problem of forming coalitions to provide (electric)

vehicle-to-grid (V2G) services. Ours is the first approach able to deal with

large-scale, real-time coalition formation for the V2G problem, while taking

multiple criteria into account for creating the electric vehicle coalitions. A

sketch of these ideas appeared originally in a short paper in the 22nd Euro-

pean Conference on Artificial Intelligence (ECAI-2016). Afterwards, a full

paper describing our work was published in the 14th European Conference

on Multi-Agent Systems (EUMAS-2016).
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ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Χρήση Υπεργράφων για την Αποτελεσματική Δημιουργία Συνασπισμών με

Εφαρμογή σε Συνεταιρισμούς Ηλεκτρικών Οχημάτων

Φίλιππος Χριστιανός

Περίληψη

Αυτή η διπλωματική εισάγει, για πρώτη φορά στη βιβλιογραφία, την χρήση

υπεργράφων για την ταχεία δημιουργία αποτελεσματικών συνασπισμών αυτόνο-

μων πρακτόρων. Προτείνουμε ορισμένες μεθόδους σχηματισμού, που βασίζο-

νται σε υπάρχοντες αλγορίθμους υπεργράφων, όπως οι pruning, transversal,

clustering και hybrid, και εκμεταλλευόμαστε την δομή του υπεργράφου για

να εντοπίσουμε πράκτορες με επιθυμητά χαρακτηριστικά. Η προσέγγισή μας

επιτρέπει τον σχεδόν στιγμιαίο σχηματισμό συνασπισμών υψηλής ποιότητας,

ικανοποιώντας πολλαπλές ποιοτικές απαιτήσεις. Επιπλέον, οι μέθοδοί μας κλι-

μακώνονται ώστε να δέχονται δεκάδες χιλιάδες πράκτορες ως είσοδο και να

εμφανίζουν τα αποτελέσματα μέσα σε κλάσματα του δευτερολέπτου, με μια από

αυτές να λειτουργεί με εκατομμύρια πράκτορες μέσα σε δευτερόλεπτα. Εφαρ-

μόζουμε την προσέγγισή μας στο πρόβλημα της δημιουργίας συνασπισμών για

την παροχή ρεύματος από ηλεκτρικά οχήματα προς το ηλεκτρικό δίκτυο (το

λεγόμενο πρόβλημα Vehicle-to-Grid, ή V2G). Η προσέγγισή μας είναι η πρώτη

που είναι σε θέση να ασχοληθεί με μεγάλης κλίμακας, και σε πραγματικό χρόνο

σχηματισμό συνασπισμών για το πρόβλημα V2G, λαμβάνοντας υπ΄όψιν πολλαπλά

κριτήρια για τη δημιουργία των συνασπισμών ηλεκτρικών οχημάτων. ΄Ενα προ-

σχέδιο των ιδεών αυτών εμφανίστηκε αρχικά σε μια σύντομη δημοσίευση στο

22ο European Conference on Artificial Intelligence (ECAI-2016) και έπειτα σε μια

πλήρη στο 14ο European Conference on Multi-Agent Systems (EUMAS-2016).

HTTP://WWW.TUC.GR
http://www.ece.tuc.gr/
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Chapter 1

Introduction

Coalition formation (CF) is a paradigm widely studied in multiagent systems

and economics, as means of forming teams of autonomous, rational agents

working towards a common goal [7]. Game theory, the study of strategies

involved in interaction between intelligent rational agents with the goal of

maximizing their rewards is also connected to coalition formation. Specifi-

cally, cooperative game theory allows players to form coalitions and achieve

rewards through cooperation[6]. Coalition formation can be used in many

real-life problems, such as improving the Smart Grid, and thus, is an active

area of study in multiagent systems (MAS).

One domain where the formation of coalitions comes naturally into play

is the so-called vehicle-to-grid (V2G) problem. In V2G, battery-equipped elec-

tric vehicles (EVs) communicate and strike deals with the electricity grid in

order to either lower their power demands or return power to the network

when there is a peak in the request for power. This helps the grid to main-

tain a balanced power load [31]. G2V is V2G’s “sister” problem, where EVs

connect and draw power from the Grid without overloading it [34]. In both

cases, the coordination of EVs efforts, is essential.

To elaborate, several recent approaches have called for the formation of

EV coalitions in order to tackle the V2G problem [29, 21, 20]. The exist-

ing approaches, however, typically exhibit the following characteristics: (a)

they attempt to form optimal coalitions or coalition structures; and (b) they

either attempt to form coalitions with respect to a single criterion, or em-

ploy lengthy negotiation protocols in order to capture various coalitional

requirements while respecting the constraints of individual agents.
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The inherent hardness of the optimal coalition structure generation prob-

lem [30], however, along with the fact that negotiation protocols can be

lengthy and thus highly time-consuming, can severely restrict the practi-

cality and scalability of such algorithms: existing algorithms can handle at

most a few hundred EVs. In reality though, there exist hundreds of thou-

sands of EVs that connect to the grid and that could potentially offer their

services. Any formed coalition would be required to possess a multitude of

desirable characteristics high collective storage capacity and high collective

discharge rate, and so on; and, if the aim is to balance the electricity de-

mand in real-time, any such service should be offered by the appropriate

coalition almost instantaneously.

In this thesis, we overcome the aforementioned difficulties by employ-

ing, for the first time in the literature, hypergraphs to achieve the timely for-

mation of coalitions that satisfy multiple criteria. In our approach, EV agents

that share specific characteristics are organised into hyperedges. Then, build-

ing on the existing hypergraphs literature [13, 39], we propose algorithms

for (i) hypergraph pruning, to focus on interesting parts of the search space;

(ii) hypergraph transversal to identify sets of vertices (agents) that combine

several desirable characteristics; and (iii) hypegraph clustering, that allows

the identification of clusters of high quality agents. Moreover, we put for-

ward (iv) a heuristic formation algorithm that benefits from pruning and

generates high quality coalitions near-instantaneously, while scaling lin-

early with the number of agents.

In contrast to existing approaches, we do not attempt to generate an op-

timal coalition structure, nor do we attempt to compute a single optimal

coalition. Instead, we exploit the hypergraph representation of our prob-

lem in order to select agents and form highly effective coalitions, while be-

ing able to scale to dozens of thousands of agents within fractions of a sec-

ond; and, in the case of our heuristic method, even to millions of EV agents,

within a few seconds.

Though here we apply it to the V2G problem, our approach is generic

and can be used in any coalition formation setting. It is perhaps surprising

that a powerful model like hypergraphs has not been so far exploited for
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devising efficient coalition formation methods, despite its intuitive connec-

tions to the concept of coalitions. Regardless, we are not aware of any work

to date that has exploited hypergraphs and related algorithms in order to

perform real-time, large-scale, multi-criteria coalition formation, as we do in

this thesis.

A sketch of these ideas appeared originally in a short paper in the ECAI-

2016 [11]. Afterwards, a full paper describing our work was published in

the EUMAS-2016 [10].

1.1 Thesis Outline.

The rest of the thesis is structured as follows. Chapters 2 and 3 introduce

concepts as the Smart Grid, electric vehicles and coalition formation. Fur-

thermore, we provide background information and present works related

to our research. Chapter 4 presents our approach and the transversal, clus-

tering, heuristic and hybrid methods used (Sec. 4.3, 4.4, 4.5, 4.6) to solve

the aforementioned problem. Finally, Chapter 5 presents our experimental

results while Chapter 6 concludes and outlines future works.
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Chapter 2

Background

This chapter presents some background for the research presented in this

thesis. Specifically, section 2.1 starts with a definition and overview of the

Smart Grid and connects it to electric vehicles. In section 2.2 we discuss

coalition formation and finally, in section 2.3 we present background infor-

mation on hypergraphs.

2.1 Electric Vehicles in the Smart Grid

The current electricity Grid, is the network that delivers power to con-

sumers. It uses large central power stations that distribute the energy through

high capacity power lines to both industrial and domestic areas. Histori-

cally the Grid handled peak hours poorly, with blackouts and power cuts

being common [16]. Only more recently and after establishing patterns in

electricity demands, could the daily peaks be met, using part-time gen-

erators (usually the expensive gas turbines). The current structure of the

Grid is a product of an evolutionary process that lasted decades, connected

to growing needs of consumers. Thus, the current infrastructure was not

planned as a whole, but rather extended several times, creating weak links

and containing outdated designs. One of the most important issues, is the

centralized nature of the Grid. It is built around large power plants produc-

ing all the energy required by the consumers. With the growth of smaller,

usually renewable, energy producers, the Grid by necessity has to move to

a less centralized and more interactive structure.

The Smart Grid, therefore, is a modernized electricity Grid that collects
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and uses information to improve efficiency, reliability, economics and sus-

tainability of the electrical Grid. It is also planned to be more decentral-

ized making efficient use of small scale producers and prosumers. 1 Thus,

the Smart Grid can potentially become much more reliable than its "clas-

sic" counterpart by eliminating single points of failure. Another important

characteristic of the Smart Grid is that it is much more interactive. Every-

one connected, communicates and coordinates with the Grid, rendering the

consumption and production more balanced. Connected consumers also

implement smart technologies that drive their own consumption down.

With techniques like the ones mentioned above, the network’s energy load

is balanced and thus the distribution is more efficient - eliminating, if pos-

sible, high-cost energy producers like gas turbines. To understand the ef-

ficiency of the Smart Grid, experiments have, for example, shown that just

a small scale coordination of a few battery-equipped houses can lower ev-

eryone’s electric bill [37].

Electric vehicles (EVs) are a promising new concept for the automotive

industry. EVs use energy stored in a battery and electric motors to generate

propulsion. Electricity offers many advantages against petrol-powered ve-

hicles. Specifically, EVs are cost effective, require less maintenance, and

have no direct emissions since they run in electricity powered engines.

In their current state, the batteries of electric vehicles (which rapidly be-

come even more efficient and cost effective [28]) are capable of at least

300km [15][38] of range. 2 To achieve this range, the batteries have a large

capacity usually in the 60kWh-100kWh range. To put this into perspective,

batteries as low as 4kWh can have a significant impact on the energy foot-

print of a typical household [37].

Another important factor for the battery is the discharge rate. A vehicle

requires a large amount of energy during acceleration. For example, accel-

erating a typical vehicle to 100km/h in 10 seconds can require up to 65kW

of power [38]. Since EV batteries are actually designed for discharging at

these rates for typical driving, we can safely assume that we can use this

discharge rate for other uses.

1Prosumer is a small scale electricity consumer that might also produce energy[25].
2The range of an EV is defined as the driving range using power only from its battery

pack during a single charge.
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Charging the batteries is another characteristic that must be accounted

for. Currently, charging the battery takes a few hours depending on the

battery’s state of charge (Soc). Nevertheless for an everyday use scenario,

a battery can be expected to charge (using fast charging) to a reasonable

amount in half an hour [38]. In this thesis we will not examine how EVs

charge, or how we can regulate its charging.

Due to the previously mentioned growth of EVs and their energy capac-

ity we can safely assume that they will play a significant role in the future

of the electricity Grid [31]. As a result, two categories of problems arise.

First, the issue of how we can successfully provide the energy those vehi-

cles need, and charge them without overloading the Grid. The second is

how energy stored in EVs can be used to balance out peaks in consumption

or even serve as backup power. Those categories are called Grid to Vehicle

(G2V) and Vehicle to Grid (V2G) [27] [23] respectively.

G2V is better explained by noticing that, due to the common working

hours, large numbers of EV owners might return home and charge their

vehicles, at about the same time. Since EVs can draw a huge amount of

power the Grid will overload due to huge spikes on consumption. Never-

theless the charging could have been coordinated and EVs charged during

the night, without causing spikes. Finding an optimal way to charge EVs

this way though is quite complicated, since possibly millions of batteries

have to eventually be charged. Several attempts have been made to tackle

the problem [14][34] but are not usually scalable to large numbers of EVs.

V2G, a problem related to our work here, in contrast to G2V, is the ques-

tion of how EVs can supply power (usually stored in the vehicle’s battery)

to the Smart Grid during power peaks. This can lower or even eliminate the

need of expensive back up generators. Since the batteries can charge when

power is cheap (e.g. at night) and return the power when its more expen-

sive, this raises an opportunity for profit for EV owners. Nevertheless this

does not come without several issues to be addresses. Specifically, a single

EV must know if its owner will need the energy that will be sent to the Grid

and not participate in an exchange if there’s a chance the owner needs to use

the vehicle. In addition, EVs can be used by owners without any previous

notice and might be unplugged from the electricity Grid at any moment.
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This raises the issue of reliability: how certain we are that a vehicle that

promises to deliver power during a timeslot, can actually keep its promise.

Finally, while the batteries can store and provide a respectable amount of

energy, the needs of the Grid are proportionally much greater. Thus EVs

must be able to cooperate to provide sufficient and reliable services. Sev-

eral aspects of V2G have been researched. We will mention several such

attempts in Chapter 3.
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2.2 Coalition Formation

Coalition Formation deals with how agents can form one or more groups,

called coalitions, that can tackle a common problem. CF theory analyzes

several of its aspects, that range from creating such coalitions to fairly di-

viding rewards to the members of a coalition. Individual agents usually

have different degrees of efficiency. Thus, we must form groups of agents

with characteristics that compliment each other and exploit their individual

strengths[33]. As discussed in [32], coalition formation has three activities.

Coalition structure generation (CSG), is the first of these activities, namely the

partitioning of the set of agents into mutually disjoint coalitions (or groups),

in a way that the resulting coalitions maximize the sum of the rewards of

all agents (known as social welfare) [30]. Next is the optimizations problem of

each coalition, that tries to maximize the rewards from outside the coalition

and optimize the allocation of resources and tasks between agents of the re-

spective coalition. The last activity of CF is the division of the rewards among

agents. This must be done in such a way that the rewards are fair, and no

agent can be motivated to leave his coalition.

Finding the optimal coalition structure is generally computationally ex-

pensive, especially in a large set of agents, and the computational require-

ments grow exponentially. As such, finding in a reasonable time a CS that is

within a bound of the optimal one, is also hard problem. There are several

attempts to solve this problem [32] [30].

Nevertheless, in this thesis we will not attempt to solve the CSG prob-

lem. Instead we will focus on finding a simple coalition that is able to per-

form a specific task. Such a coalition will be created by selecting agents

from an extensive set, in a way that the result can efficiently handle the

appointed task. In addition each agent will have several attributes that

contribute in different ways to the completion of the goal. We will not be

using a utility function (that ultimately combines the attributes, thus losing

accuracy within its particular dimensions).

By contrast, in essence we will be tackling what we call multi-criteria
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coalition formation, that is, the problem of forming coalitions that can ac-

complish a task that requires meeting a range of task-related goals: for in-

stance, offering a minimal value of charging capacity, a minimal value of

charging rate and so on. Due to the nature of this problem, the results

cannot be easily evaluated. There is possibly a great number of possible

coalitions with similar capacity to handle the task. In addition, since the

agent set is magnitudes larger that what usual optimal CF algorithms can

handle we cannot find how close to optimality our solution is. Thus we will

focus on creating coalitions that can complete the task efficiently and can be

generated in a minimal amount of time.

This problem can be quite natural in todays world. There are several

real world examples where efficiency is sacrificed for performance. In this

thesis, we will present a way to form an EV coalition in just a few seconds,

able to fulfill the energy requirements of the Smart Grid.
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FIGURE 2.1: A Simple Hypergraph

FIGURE 2.2: A Single Hyperedge

2.3 Hypergraphs

The Hypergraph, is a generalization of a graph. In contrast to a simple

graph, hypergraph’s edges can connect multiple vertices. We formally de-

fine a hypergraph as H = (V,E) where V is a set of unique vertices or nodes

and E is the set of edges or hyperedges.

A simple hypergraph can be seen in figure 2.1. In this example, the ver-

tices of the hypergraph are V = {u1, u2, u3, u4} and the edges E = {e1, e2}.

Edge e1 contains vertices u1, u2, while e2 contains u2, u3, u4.

The difference of graphs and hypergraphs is outlined in the figure of the

hyperedge e2 2.2. As shown, a hyperedge can connect multiple vertices, in

contrast to simple graphs where an edge always connects two nodes.

Hypergraphs are well studied, and thus there are many definitions in

literature which can help us use them as a data structure. First, a transversal,
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or hitting set, of a hypergraph is a set of nodes T ⊂ V such that T intersects

with any edge E of the hypergraph. A hitting set that does not contain any

other hitting set is called minimal. This is better illustrated in Fig. 2.3. As

shown, the hypergraph has three minimal transversals: T1 = {u1, u4}, T2 =

{u1, u3} and T3 = {u2}. Any other transversal such as T4 = {u2, u4} is not

minimal since T3 ⊂ T4 (it contains at least one other transversal). Finally,

the set of minimal transversals is called the dual of a hypergraph or minimal

set-cover and denoted as Hd.

We expect this problem to be of high complexity since it is essentially

the set-cover problem extended to hypergraphs. The search version of the

set-cover problem in graphs is NP-hard. However, computing the dual hy-

pergrah is a problem widely studied, and hence, many algorithms offer ef-

ficient solutions. To begin, Berge’s algorithm [2], while slower than the rest,

is foundation of many algorithms which are merely an improvement on it.

Specifically, the algorithms described here, are divided in two types: im-

provements over Berge and hill-climbing algorithms. The Berge algorithm

updates the set of minimal transversals by iteratively adding hyperedges.

Dong and Li [12], for instance, is a Berge-based algorithm that improves

upon it. This method decreases the search space by avoiding to generate

several non-minimal transversals. Bailey et al. [1] algorithm, starts with

a limited vertex set and update both hyperedges and hitting sets by con-

stantly adding new vertices. Kavvadias et al. [22] propose a memory-

bound depth-first approach which generates a constant stream of minimal

hitting sets. Nevertheless this method does not come with a time com-

plexity bound. Khachiyan et al. [4] provide a quasi-polynomial algorithm for

enumerating all minimal transversals. In a sense of time complexity this is

the fastest of the algorithms presented here, but in practice it falls behind in

several test-cases. Extending on that, another publication [24] finds a multi-

threaded solution with excellent time complexity assuming multiple cores.

Finally [18], a solution not based on Berge, offers a hill-climbing algorithm

that adds vertices in increasing order and checks if they satisfy a minimal

transversal condition.

Another well-studied hypergraph-related problem is hypergraphs clus-

tering. This is done by regarding the edges as node attributes and using
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FIGURE 2.3: Color-coded Transversals

several techniques to cluster nodes with similar attributes together. For

instance [39], proposes powerful methods of spectral clustering on hyper-

graphs and algorithms for classification and embedding. The methods pro-

posed had a significant advantage when used in hypergraphs over simple

graphs, since they managed to store complex relationships among objects

on the hyperedges. A game theoretic approach to hypergraph clustering is

found in [5]. Specifically, there the cluster is treated as the game-theoretic

concept of equilibrium, and the problem of partitioning the hypergraph to

clusters as non-cooperative multiplayer game. This has several advantages

over classical approaches, e.g. the final number of clusters is not needed

beforehand. Finally, Leordeanu and Sminchisescu [26] propose an efficient

clustering method that updates which vertices correspond to which clusters

in parallel through an iterative procedure. This manages to reduce comput-

ing requirements significantly.

In addition, there are also many ways for matrices to represent a hyper-

graph or specific attributes of it. For instance the incidence matrix, weight

matrix and adjacency matrix are all easily defined, as we show in Sec-

tion 4.4.

Hypergraphs thus, are a powerful and well-defined way to store infor-

mation. For example we can easily store (better explained in Chapter 4) EVs

in hyperedges that represent a specific quality. Edges then store both at-

tributes of EVs and, possibly, complex relations between them. This comes
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with advantages like the instant selection of interesting parts of the graph

or fast set operations like intersection or union.

Later, in Chapter 4 we explain how these advantages and the existing

literature is exploited for efficient coalition formation.
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Chapter 3

Related Work

Here we review related work mainly on the V2G and the SCG problems,

and highlight its differences to our approach in this thesis. To begin, in their

pioneer work, Valogianni et al. [34] propose an adaptive smart charging algo-

rithm that adjusts the power drawn from the electrical Grid for charging EVs,

based on each EV owner’s utility from charging. backbone of the approach

is based on a reinforcement learning for capturing agent needs and behavior.

It also utilizes an optimization module that schedules the charging of each

EV in order to maximize its utility, subject to network constraints. Though

effective, this work fails to focus on the problem of feeding the network

with power drawn from EVs in a coordinated fashion. As such EV coali-

tions and their potential are not being considered in this work.

Contrary to the aforementioned line of research, the work presented

in [21] considers an attempt to exploit EV coalition formation in energy

exchange. In particular in [21] EV coalitions are utilized in selling power

in the regulation market. In more detail, EV coalitions provide the follow-

ing service to the Grid every few seconds: they, either, (i) scale down their

power draw (or discharge); or they (ii) scale it up, and request more power

from the Smart electrical Grid. Despite the effectiveness of this approach,

there are considerable limitations with respect to its practical application

that renders its usability in real setting scenario, questionable. In more de-

tail there is a need for a complicated and resource-consuming EV selection

process by an aggregator agent. Moreover, in this context, and to limit the

respective complexity, the simulations involved in this work considered a

limited pool of three hundred vehicles only.

That said, the potential of coalition formation is not only exploited in
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the narrow context of EVs. In more detail, coalition formation has long been

investigated to provide regulation services to the Smart Grid and, in recent

years several works in this direction emerged. For instance the work in [35]

adapts a game-theoretic perspective on the formation of coalitions in the

Smart Grid. In this context, it considers the optimal coalition structure gen-

eration problem (CSG). To this end, it utilizes an approach of forming virtual

energy consumer coalitions. In the context of these coalitions, it manages to

flatten the energy demand. This, in turn, enhances the negotiational ability

with the Grid, enabling better prices in what could be a G2V arrangement.

In more detail, the solution of the CSG, provides the best VEC for every

consumer on the market; and guarantees a core-stable payoff distribution

outcome. Nevertheless, the computational complexity of this approach ren-

ders it impractical in real settings. In particular, this work has been shown

to perform adequately on social graphs of limited size (with only a hand-

ful of agents). Notably, against this background, our approach manages to

produce high quality solutions in milliseconds, and scales to the number of

millions (as further discussed in Chapter 5).

Now, two recent papers which study cooperative games defined over graphs

that impose constraints on the formation of the coalitions, are [8] and [9].

Specifically, they assume that the environment possesses some structure

that forbids the creation of individual coalitions, due to limited resources

and existing physical or even legal barriers. This is captured by an undi-

rected graph providing a path connecting any two agents that can belong

to the same coalition. Both of these papers, however, do not employ hyper-

graphs in any way. Hypergraphs have in fact been used for modelling agent

interactions in cooperative game settings, where agents can simultaneously

belong to multiple coalitions [19] [40]. Now, several papers [8] [9] [19] [40]

focus on studying the theoretical problem of achieving coalitional stability

via appropriately distributing the payoff among the agents. This is done

rather than providing algorithms for large-scale coalition formation in real-

world settings, as we do in this work.

By contrast, two papers that study the generation of optimal coalition

structures while focusing on stability are [3] [36]. They focus on the use of

synergy graphs. Those graphs connect agents with edges that represent a
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vital synergistic link, such as communication, trust or physical constrains.

They propose efficient ways to generate all possible coalitions and find the

optimal coalition structure. Although these approaches scale to thousands

of agents they are limited in terms of scalability compared to our approach

which scales to millions of users. Furthermore, their approach fails to tackle

multiple formation criteria.

A paper that is more related to our work here, in the sense that it ex-

ploits constraints among vehicles for coalition formation, is the work of

Ramos et al. [29]. In this context, they propose the dynamic formation of

coalitions among EVs so that they can function as virtual power plants that

sell power to the Grid as an aggregate. The method relies heavily on a inter-

agent negotiations protocol. However, that work also attempts to tackle the

optimal CSG problem and hence suffers from high complexity and scalabil-

ity issues. As such, although it is empirically shown to produce solutions

that are close to optimal (98%), this is only when tested in scenarios with

a few dozens of agents. In addition, the work in [29] considers only a sin-

gle criterion for the formation of a coalition—namely, the physical distance

among the EVs. The physical distance, however, is not a very natural cri-

terion; and, in any case, it is imperative that a multitude of criteria is taken

into account—such as capacity, discharge power, and perceived reliability

(see, e.g., [20]). Our approach, in contrast, is able to take into account any

number of natural criteria to form EV coalitions.
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Chapter 4

Our Approach

In order to develop multi-criteria coalition formation algorithms that gen-

erate coalitions efficiently, we employ the concept of a hypergraph. A hyper-

graphH = (V,E) is a generalization of a graph, where each hyperedge e ∈ E

can contain any number of vertices (or nodes) in the set V .

Vertices in H correspond to agents; while we view a hyperedge as cor-

responding to some particular attribute or characteristic possessed by the

agents in the hyperedge. In the V2G setting, the agents correspond to EVs

(i.e., an EV is represented by a node in our hypergraph); while the hyper-

edges correspond to vehicle characteristics. More specifically, a hyperedge

corresponds to a “quality level” of some EV attribute, as we explain below.

In order to represent the different quality of the various hyperedges, and

utilize it in our algorithms, we mark each hyperedge with a weight.1 These

weights define the degree of a node: The degree deg(u) of a node u is the sum of

the weights of its edges. Intuitively, a high degree node is a high quality one. This

fact is exploited in our algorithms below. A hyperedge (of a given qual-

ity) will be also called a category. The (quality of the) categories to which

an EV belongs will be influencing the decisions of our hypergraph pruning

algorithm, which we describe in Section 4.2 below. A node that belongs

to a hyperedge characterizing the quality of a given agent attribute, can-

not belong to some other hyperedge characterizing the quality of the same

attribute.

To illustrate the use of hypergraphs in our setting, consider for example

1In our implementation, the weight of the edges, according to the quality of each at-
tribute(capacity, reliability and discharge), are as follows: {extremely-high: 8, very-high: 7,
high: 6, medium-high: 5, medium-low: 4, low: 3,very-low: 2, extremely-low:1}. Thus we have 24
edges + 1 containing commitment of EVs.
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FIGURE 4.1: Storing EVs in a hypergraph

FIGURE 4.2: Pruning the hypergraph
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the hypergraph of Fig. 4.1, which contains the hyperedges e1...6 and ver-

tices u1...7. It is clear in this example that vertices may belong to multiple

hyperedges: the hyperedge e1 contains the vertices u3,4,6,7, while the ver-

tex u1 belongs in the hyperedges e2, e5, e4. Vertices in Fig. 4.1 correspond

to EVs; while the hyperedges correspond to the “quality” of the following

EV attributes: capacity, discharge rate and observed reliability. The meaning

of these attributes is intuitively straightforward, but will be nevertheless

explained in Section 4.1 below. Each attribute is related to at least one hy-

peredge in the hypergraph. For instance, in Fig. 4.1, the capacity attribute is

represented by three hyperedges in the hypergraph: low-capacity, medium-

capacity, and high-capacity. As noted above, no node can belong in more

than one capacity-related hyperedges. In our figure,

• the hyperedge e1 represents the nodes which have high capacity;

• the hyperedge e2 contains nodes that have low capacity;

• e3 and e4 include the vehicles with high and low discharge rate, re-

spectively;

• finally, e5 contains nodes that are expected to the highly reliable.

For example, node u1 is a low-capacity, low-discharge but highly reliable vehi-

cle, while node u3 is a high-capacity, low-discharge and highly reliable one.

Organizing the information relating to specific agent attributes using

hyperedges, enables us to both access this information efficiently, and keep

it organized. Moreover, in many settings, agent characteristics captured

by hyperedges, naturally correspond to criteria according to which we can

form coalitions. For example, it is conceivable that we want to use agents

with high capacity from the respective high-capacity edge, if our goal is to

form coalitions with high capacity. Our approach of using hypergraphs is

even more generic than what implied so far, since we can easily define hy-

peredges that contain agents which are or are not permitted to connect with

each other, for various reasons; and since we can exploit the hypergraph to

allow the formation of coalitions according to a multitude of criteria.
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4.1 Criteria for Forming Coalitions

The algorithms presented in this work can be employed by any entity or

enterprice (such as the Grid, utility companies or Smart Grid cooperatives)

that wants to form EV coalitions for the V2G problem, using any set of cri-

teria of its choosing. Here we identify three such natural criteria, namely

reliability, capacity and discharge rate. These formation criteria are consis-

tently mentioned in the related literature, though perhaps not with these

exact names, and not explicitly identified as such [21, 20, 34].

First of all, a coalition has to be consistently reliable, i.e. it should be

able to provide the power that has been requested without any disruptions.

For a coalition to be reliable, its members must be reliable too, and gaps

in reliability must be met with backup agents. We define agent reliability as

the estimated probability that an agent will fulfill its promises. The promise of an

agent is its commitment on being connected to the Grid during a specific time

slot in order to contribute via providing energy to the Grid, if so requested.

Such slots naturally correspond to electricity trading intervals.

Since the coalitions are formed to offer power services in future time

slots, agents can be asked to state their availability. This availability is

stored in commitment hyperedge .

In addition, a coalition must fulfill a capacity requirement. The capacity

of a coalition is the amount of electricity (measured in kWh) the coalition

will be offering to the Grid; while the capacity of en EV is, similarly, the

amount of electricity (in kWh) the EV will be offering to the Grid. In fact,

gathering enough EV capacity to cover the Grid needs during high demand

periods, is the main objective of any V2G solution. Naturally, creating a

coalition to meet a high power peak requires a considerable amount of ca-

pacity offered. On the other hand minor peaks can be stabilised by building

EV coalitions with a much lower capacity.

Another factor in the V2G problem is the discharge rate of a coalition (or,

of a single EV)—the rate by which the coalition (resp., the EV) is able to pro-

vide (electrical) energy to the Grid over a specified time period. Discharge

rate is measured in kW. A high coalitional discharge rate could be required

in cases where capacity should be offered within a small amount of time,
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for example when the Grid is under a heavy demand load. Naturally, a

coalition has a high discharge rate if its members discharge rates are high;

for our purposes, we assume that the discharge rate is additive, i.e., the

discharge rate of a coalition is the sum of its EVs discharge rates. In Chap-

ter 5, we will be forming coalitions in order to meet specific capacity and

discharge rate targets; and observing how reliable the coalitions meeting

these targets are.

Now, the hypergraph used in our current implementation was designed

so that it could easily satisfy requests pertaining to these particular criteria.

As such, there was a total of 25 hyperedges in the hypegraph—{extremely-

high, very-high, high, medium-high, medium-low, low, very-low, extremely-low}

× {capacity, discharge rate, reliability}; and a committed one, containing EVs

that have stated they will be connecting to the Grid during the particular

slot.2

In our model, we assume that, at any time step that this is required—

due to a consumption peak, an unplanned event, or the need to regulate

frequency and voltage—the Grid (or some other entity) advertises its de-

mand for a V2G coalition with several desirable characteristics. As noted

in [20], individual EVs are well-suited for providing services at short notice.

What we show in this thesis, is that we can select agents from a huge pool

of EVs to form coalitions that are able to provide large amounts of power at

short notice, and with high reliability.

4.2 Pruning the Hypergraph

An important aspect of using hypergraphs for dealing with large state-

spaces, is the resulting ability to perform node and edge pruning. Since

dozens or hundreds of thousands of our EVs populate the hypergraph,

and each one is a member of several hyperedges, running the algorithms

without pruning would require an enormous amount of computing power.

However, due to the nature of the hypergraph, and the way we store our

vehicles and their attributes, it is extremely easy and effective to narrow

2We could have stored the commitment of the EVs on a “per time slot” basis, by using
several hyperedges (one per slot) without any additional cost. However, in our experiments,
we focus on a single time slot only.
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down the number of vehicles and edges used, by leaving out EVs that are

less promising as coalition members. For example, if achieving a high ca-

pacity for the to-be-formed coalition is a key goal, then, intuitively, we

can narrow down our search for coalition members by focusing only on

nodes belonging to the set of hyperedges (or “categories”) highcapacity ∪

veryhighcapacity ∪ exhighcapacity.

To illustrate pruning, Fig. 4.1 shows a hypergraph that contains all EVs.

In order to reduce the size of the hypergraph and thus the computing re-

quirements, we could keep only EVs belonging to at least one high quality

edge, as shown in Fig. 4.2.

Algorithm 1 Pruning the Hypergraph

1: procedure PRUNING(H , CategoriesKept)
2: for Hyperedge ∈ H do
3: if Hyperedge ∈ CategoriesKept ∩ Committed then
4: NewHEdges← NewHEdges ∪HyperEdge
5: NewNodes← NewNodes ∪HyperEdge.nodes
6: end if
7: end for
8: NewHGraph← Hypergraph(NewNodes,NewHEdges)
9: end procedure

Algorithm 1 is our implementation of pruning. The algorithm iterates

over all hyperedges in the given hypergraph H , and keeps only the nodes

belonging to hyperedges that correspond to the specified “categories of in-

terest” (CategoriesKept in Alg. 1).

In our implementation, the CategoriesKept are heuristically selected, and

depend on the algorithms. For instance, the minimal transversal algorithm

requires a more aggressive pruning, since its complexity is sensitive to the

number of nodes used as input (cf. Section 4.3), and we therefore empiri-

cally feed it with as few hyperedges as possible. In section 5.1 we provide

Table 5.2 showing the efficiency of our pruning algorithm.

Our experimentation indicates that the use of pruning can lead to a sig-

nificantly smaller hypergraph, and to vast improvements in terms of ex-

ecution time for our algorithms. In our simulations, the hypergraphs are

pruned to about 1/20 of the initial size of the EVs pool, without sacrific-

ing the methods’ performance (cf. Section 5.1). Moreover, pruning using

Algorithm 1 is almost instantaneous.
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4.3 A Minimal Transversal Algorithm

Using hypergraphs allows to use an intuitive approach for locating agents

for coalitions: to generate the set of minimal transversals for the high-value hy-

peredges [13]. A transversal (or hitting set) of a hypergraph H, is a set T ⊆ V

with hyperedges X where X = E (i.e., vertices in T belong to all hyper-

edges in E). A minimal transversal is a set that does not contain a subset that

is a hitting set of H . As such3, generating several minimal transversal sets

for high-quality hyperedges is expected to identify agents which are high-

quality and should be used in the formation of a coalition. Subsequently,

we join those agents together until our criteria are met.

Our approach with the minimal transversal set is to prune all edges but

those of extremely high quality that are also “committed”, as seen in Algo-

rithm 2. Then we generate progressively the minimal hitting sets, using an

algorithm similar to [13]. That is, we first generate the minimal hitting sets

containing one node, then those with two, and so on. Then we randomly

pick agents belonging to those minimal transversals, until the coalitions re-

quirements are met. If the requirements are met during the progressive

minimal transversal generation process, no further minimal transversals

are generated.

To illustrate this concept with the help of Fig. 4.1, we prune the hy-

pergraph to keep only the high-quality edges e1, e3, e5, leaving us with the

nodes u1, u3...u7 and edges e1, e3, e4, as seen in Fig. 4.2. Then we generate

all the minimal transversal sets. The minimal transversals generated first

are the ones with two nodes (since there are no minimal transversals with

one node) i.e. the following{u3, u5}, {u1, u7}, {u6, u1}.

This method creates a set of agents with uniformly distributed high-

quality characteristics. Though this is desirable in theory, in practice the

results vary depending on the generated minimal transversal set. There are

characteristics which might be of higher importance than others and this

cannot be taken into account by the transversal algorithm due to its nature.

Regardless, this method could be of much use for creating a base of quality

agents; for uniformly improving the quality of an already formed coalition

3Of course there can be more than one minimal transversals, and it is not necessary that
they have the same cardinality.
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by adding agents from the minimal transversal sets; and for creating versa-

tile coalitions without focusing on specific attributes.

Algorithm 2 Coalition formation using Minimal Transversal

1: procedure MINIMALTRANSVERSAL(H)
2: H ← Prune(H, exhigh) . exhigh signifies all hyperedges with

exhigh qualities
3: T = ∅, C = ∅ . Start with an empty coalition
4: for i=1 to |E| do . where |E| is the number of edges in the (pruned)
H

5: Create the union U of minimal transversal sets with size i, gen-
erated from H .

6: T = T ∪ U
7: while C does not meet the criteria do
8: Randomly select an unselected node ∈ T and add it to C
9: end while

10: if criteria have been met then
11: return formed coalition C
12: end if
13: end for
14: end procedure

Line 6 of Algorithm 2 is our implementation of minimal transversal [13].

Though there is no known polynomial time algorithm for the general hy-

pergraph transversal problem, the algorithm given was shown experimen-

tally to behave well in practice, and its memory requirements are polynomi-

ally bounded by the size of the input hypergraph, though it comes without

bounds to its running time.

4.4 A Clustering Algorithm

The second approach is to create clusters of agents. After creating said clus-

ters, we efficiently calculate the best cluster and then sample EVs from that

group until our coalition criteria are met.

In more detail, we first generate a hypergraph of EV agents with the

characteristics described previously. Then, hypergraph clustering is per-

formed. The hypergraph clustering itself is an implementation of that pro-

posed in [39], and is conducted as follows.

We begin by implementing functions that calculate

• the Incidence Matrix: A matrix H with entries h(u, e) = 1 if u ∈ e and 0

otherwise.
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• the Weight Matrix: A diagonal matrix W containing the weights of the

hyperedges.

• Du and De: Matrices containing the node and hyperedge degrees re-

spectively.

• the Adjacency Matrix: A matrix defined as A = HWHT −Du

The matrices above are used for the final calculations of the hypergraph

Laplacian matrix. This a matrix representation of a graph, that has infor-

mation on the degrees of the nodes, and their connections with the hyper-

edges (cf. [39], Section 5). After its calculation, the Laplacian contains the

node degrees in its diagonal (which enables us to discard theDu matrix, for

memory efficiency).

As explained in [39], having the Laplacian, enables us to calculate the

Φ eigenvectors [Φ1...Φk] corresponding to the k lowest eigenvalues. These

can then define X = [Φ1...Φk], a matrix that can be employed for k-way

partitioning to cluster our agents. This is achieved via running the k-means

algorithm [17] on the row vectors of X[39]. As explained in [39], the rows

of X are representations of the hypergraph vertices in the k-dimensional

Euclidean space. Of course, choosing a value for k has to be decided empir-

ically. In Section 5.4 we will be testing different values for k. After gener-

ating the clusters, we are given the task to locate the “best” cluster among

them. To do this efficiently, we simply sort them by looking at the average

of the node degrees. 4 This provides us with a cluster that is better than the

rest. We then sample nodes from the best cluster until our criteria are met.

Algorithm 3 summarizes the method.

4.5 A Heuristic Algorithm

While using a minimal transversal generates quality sets of agents, com-

puting the degree of a node can identify single agents with many quality at-

tributes. As an example, when we have a reliable coalition as a base but we

require more capacity, we can use the sorted list we have generated, to pick

agents with high capacity. Intuitively, this approach will result to picking
4Note that the Laplacian matrix can also be used to extract easily high-quality agents, by

retrieving nodes that have high values (high node degrees) in its diagonal.
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Algorithm 3 Coalition formation using Hypergraph Clustering

1: procedure CLUSTERING(H)
2: H ← Prune(H, (vhigh ∪ exhigh)) . exhigh and vhigh signify the

sets of extremely high and very high quality hyperedges respectively
3: Generate k clusters using the algorithm described in 4.4 [39]
4: C = ∅ . Start with an empty coalition
5: Find the best cluster, A, by comparing the sum of node degrees of

each cluster.
6: while C does not meet the criteria do
7: Randomly select a node ∈ A and add it in C
8: end while
9: end procedure

high overall quality agents for our coalition. We can also create coalitions

by using only the best available agents. Moreover, we can use the aforemen-

tioned sorted-by-degree list of nodes in order to "fill gaps" and improve on

the quality of already formed coalitions.

Thus, our heuristic method operates as follows. (1) First, we prune the

hypergraph to include only “promising” nodes and hyperedges. For in-

stance, we exclude nodes not in extremely high or in very high hyperedges.

(2) Then we sort the remaining nodes based on their node degree. (3) Fi-

nally, we pick the highest degree nodes from the list until the coalition cri-

teria are met. By starting at the top of the list, we can guarantee that agents

have many positive characteristics.

We can see at step (1) above, that this algorithm, like the rest of our

methods, employs pruning. As such, it does exploit the hypergraph struc-

ture. However, in practice the algorithm can deliver excellent results with-

out much pruning. In our experiments in Chapter 5 below, the heuristic

approach is shown to outperform the rest while pruning only the non-

committed nodes in the hypergraph. In fact, one strength of this approach

is that it does not rely on pruning, since its complexity is low: essentially,

that of the algorithm employed for sorting (i.e.,O(nlogn), since we use with

Python’s built-in Timsort algorithm). By not relying on pruning, the algo-

rithm can focus on promising nodes with high node degree (and, therefore,

quality), irrespective of the exact hyperedges to which they belong.
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4.6 A Hybrid Algorithm

In an attempt to exploit the strengths of each method we devised a hy-

brid algorithm that selected agents using both the transversal and heuristic

method. As mentioned above, the transversal algorithm has the ability to

find coalitions that are good in all aspects. The heuristic algorithm though,

identifies single agents that are good depending on the weight of the edges.

The hybrid method works as follows. (1)It prunes the hypergraph using

the methods described to shrink the size of the pool. (2)Then the transversal

algorithm runs and generates a coalition with k times the needed goals. The

agents of the new coalition are V1 ⊂ V . (3) Finally, instead of randomly se-

lecting agents from the minimal transversals generated, the heuristic method

runs on a hypergraphH1 = (V1, E) and selects the final coalition. It will also

fill in the rest of the gaps in the coalition if required. This is better shown

in 4.

Thus, the hybrid method can guarantee that coalitions generated share

the properties of coalitions formed through the simple transversal algo-

rithm, but also manages a better quality by selecting the best agents using

the heuristic method.

Algorithm 4 Coalition formation using Hybrid Approach

1: procedure HYBRID(H)
2: H ← Prune(H, (vhigh ∪ exhigh)) . exhigh and vhigh signify the

sets of extremely high and very high quality hyperedges respectively
3: Generate a coalition V1 ⊂ V using algorithm 2 but using k times the

requirements (goals) needed. (k is empirically selected)
4: Generate a hypergraph H = (V1, E) and run the heuristic algorithm

for possibly the final coalition.
5: If needed (k < 1), run heuristic again to fill in the gaps.
6: end procedure

This method does have a disadvantage. While the resulting coalitions

are of high quality, the runtime is much higher than the simple methods

since both algorithms run sequentially (with a lower goal, though). Never-

theless, the runtime is still low and can be further reduced using methods

discussed in Chapter 6.
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4.7 A Simple Sampling Method

For interest, and in order to have a benchmark for the rest of our algorithms,

a simple sampling algorithm was also developed. The algorithm takes ran-

dom samples until the specified goals are achieved.
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Chapter 5

Experiments and Results

In this section we present the evaluation of our algorithms. First we explain

how the EV population is generated, and the time this generation process

takes. Then, the performance of the algorithm is evaluated in terms of the

quality of the formed coalition and also in terms of execution time and scal-

ing behavior. All figures and tables present average values over multiple

runs. Specifically, we generated 20 hypergraphs with 20, 000 EVs each, and

then ran each algorithm on every hypergraph 10 times, and took the aver-

ages (and the average of those averages). Our experiments were run on a

Sandy Bridge i7-2600K at 4.2 GHz. All the tests were running on a single

thread on Python, meaning that there is a lot of room for optimization.

5.1 Generating the EV Population

To generate the population for each type of experiment we create the vehi-

cles one by one, by first generating its properties as follows. The capacity of

each vehicle is generated from a Gaussian distribution with mean value 100

and σ = 80. The discharge rate of each vehicle is generated from a Gaussian

distribution with mean value 10 and σ = 5. The reliability of each vehicle

is picked from a Gaussian distribution with mean value 0 and σ = 1. Each

EV’s commitment of being connected to the Grid is a true / false variable,

with a 0.9 probability of being true. If true, then the EV is inserted in the

committed hyperedge. When a vehicle has its properties created, it is added

in the pool of available EVs. The computational complexity of generating

the hypergraph is, as expected, O(n).
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FIGURE 5.1: Hypergraph generation scaling

The coalition requirements are set to values which are commonly used

in the regulation market [20], namely the following two. First, each coali-

tion must have a total capacity of at least 10MWh. The discharge rate must

also be at least 1MW [20] These values are kept constant throughout all

experiments—except when we test scaling against an increasing capacity

goal, where capacity is treated as a variable. 1

Creating the hypergraph is a problem that scales linearly with time.

Specifically, generating the hypergraph, including the vehicles and distribut-

ing them to hyperedges, takes a very small amount of time and scales lin-

early up to a million within a minute (Table 5.1 and Fig 5.1). As mentioned

above, the initial EV population was 20, 000 nodes. However, before feed-

ing the nodes to the algorithms, we pruned the hypergraph to keep promis-

ing nodes. Table 5.2 shows the average hypergraph size finally fed to the

algorithms.

1As stated in Chapter 4, our hypergraph used 25 hyperedges to store the attributes.



5.2. Forming the Coalitions 33

EVs Generation Time (sec)
100,000 5.08
200,000 10.23
300,000 15.31
400,000 20.51
500,000 25.75
600,000 30.69
700,000 36.14
800,000 42.38
900,000 48.37

1,000,000 53.62

TABLE 5.1: Hypergraph generation scaling timings

Algorithm Nodes after Pruning Edges after Pruning
Transversal 1148.4 4
Clustering 1218.8 7
Heuristic 18012.6 25

TABLE 5.2: Pruning Results

5.2 Forming the Coalitions

We now proceed to evaluate the performance of our algorithms. Our evalu-

ation will examine (a) how fast and (b) by selecting how many vehicles they

can meet the set requirements. Naturally, the faster an algorithm forms a

coalition that meets all the requirements, the better.

Moreover, coalitions with fewer vehicles are preferable, since intuitively,

this allows for a more efficient allocation of resources, and also means that

fewer EVs will share the payoff associated with forming the coalition (ex-

actly how this payoff allocation will occur, is a problem we do not deal with

in this thesis).

To begin, in all Figs. 5.2—5.5:

• In all subfigures, the horizontal axis depicts the progression of the

coalition size.

• Capacity subfig. On the first graph of each figure, the capacity of the

coalition is displayed. We can see how it is increased by selecting the

appropriate agents until the goal (horizontal line) is reached.
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FIGURE 5.2: Coalition formation with the
Heuristic Algorithm
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FIGURE 5.3: Coalition formation with the
Clustering Algorithm
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• Reliability subfig. The second graph displays the mean reliability of

our coalition.

• Discharge subfig. The third and last graph displays the discharge rate

of the coalition. The goal of 1, 000 kW is shown as a horizontal line.

Heuristic Algorithm As explained in Section 4.5, this algorithm attempts

(in a rather “greedy” manner) to identify the best EVs from the hypergraph.

As we can observe in Fig. 5.2, it takes on average only 58.5 vehicles to reach

the goal requirements, which is the most efficient use of resources observed

across all our methods. The reliability achieved is also high, reaching a

value of more than 1.5. We remind the reader that the mean reliability of

our pool of EVs is 0. This approach is also the most time and memory

efficient of all. Specifically the algorithms average completion time is only

25ms for these experiments, and it also scales linearly into the millions as

seen in Fig. 5.10 below.

Clustering Algorithm This method performs clustering, as explained in

Section 4.4, and then takes random samples from the best cluster. Fig. 5.3

depicts its performance when using k = 3 clusters. Unfortunately, we can-

not control how exactly the clusters are formed, so we do not have a guar-

antee that high quality vehicles will be clustered together. This leads to

a mediocre result with an increased average coalition size, and a slightly-

over-the-average reliability. The average size of coalitions meeting both

requirements is 98. The average time required for the method’s completion

is 709ms. In Section 5.4, we show how different k values affect our results.

Transversal Using the transversal algorithm and taking nodes from a list

of minimal hitting set. Fig. 5.4 shows its performance. The transversal algo-

rithm appears to work quite well since the average coalition size is only 64,

slightly higher than that achieved by the heuristic approach. The reliability

of the coalition is high, reaching values over 1.1. It can also scale quite well,

reaching thousands of vehicles (cf. Fig. 5.8 and Table 5.5), but not as well as

the heuristic approach. The average time to completion was 120ms.
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FIGURE 5.4: Coalition formation with the
Minimal Transversal Algorithm
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FIGURE 5.5: Coalition creation with the
Simple Sampling Algorithm
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FIGURE 5.6: Coalition creation with the
Hybrid Algorithm
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Algorithm Coal. Size(#EVs) Run. Time(ms) Gen.+Run. Time(ms)
Heuristic 58.5 25 1041

Clustering 98 709 1725
Transversal 64 120 1136

Hybrid 59.6 75 1091
Sampling 109.3 24 1040

TABLE 5.3: Summarizing the performance results

Hybrid The hybrid algorithm takes EVs from coalitions created with transver-

sal and heuristic. It runs faster than the transversal algorithm with better

results while still having the advantages discussed in Sec. 4.3. Fig. 5.6 de-

picts its performance. The average coalition size is just a bit higher than the

heuristic at 59.6. Finally the mean running time is 75ms.

Simple Sampling Fig. 5.5 depicts our results for the Simple Sampling

method. The average coalition size achieved with this algorithm is 109.3.

The average completion time was 24ms. As expected, this algorithm achieves

the weakest results among all our algorithms.

Finally, Fig. 5.7 and Table 5.3 summarize the results for convenience.

In the figure it can be easily seen that the hybrid and heuristic approach

manage smaller coalitions by balancing correctly between discharge and ca-

pacity and finding overall good EVs. It can also be seen that the clustering

algorithm selects high capacity EVs early on, thus wasting a lot of potential

afterwards, by having to select the rest of the EVs to reach the discharge goal.

This can be mitigated by increasing the number of clusters (Sec. 5.4)

5.3 Scaling Behaviour

We now test the scaling behaviour of our algorithms. First, we show how

our algorithms scale with time when the capacity goal is increased. Then, we

show how they scale as the number of EVs under consideration increases.

In Fig. 5.9 and Table 5.4 we can see how the transversal, heuristic and

clustering algorithm scale against an increasing capacity goal (assuming

any other goal remains fixed). The starting size of the available agents was

kept constant at 20, 000 EVs for this experiment. We observe that the scaling

behaviour of the heuristic algorithm against an increasing capacity goal is
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FIGURE 5.7: Coalition creation

Goal (kWh) Heuristic (sec) Clustering (sec) Transversal (sec)
10,000 0.03 0.049 0.20
40,000 0.04 0.049 0.36
70,000 0.06 0.049 0.34
100,000 0.11 0.049 0.33
130,000 0.19 0.049 0.33
160,000 0.28 0.049 0.33
190,000 0.39 0.049 0.34
220,000 0.50 0.049 0.32
250,000 0.64 0.049 0.32
280,000 0.86 0.049 0.32

TABLE 5.4: Scaling against an increasing “capacity” goal
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exponential. Nevertheless, its total required execution time is low, since it

takes the algorithm 0.9 seconds to reach the goal capacity of 300,000 kWh.

The transversal algorithm scales with steps. The main reason for this is that

the minimal transversal sets are generated before we select the agents of a

coalition. If a minimal transversal set does not achieve the goal capacity,

we generate a new one with more agents, till we reach the set capacity goal.

This generates a step pattern, the first stages of which are shown in Fig. 5.9.

In Fig. 5.9 we actually manage to see only one step because generating the

minimal transversals with 3 EVs is enough to find good coalitions for all

goals from 40, 000 kWh onwards (while it was enough to generate the min-

imal transversals with 2 EVs to cover the 10, 000 kWh capacity goal).

Now, the running time of the hypegraph clustering algorithm is largely

independent of the size of the stated capacity goal. This is because the clus-

tering itself, which is the part of the algorithm that requires the most pro-

cessing power, takes place regardless of the final coalition requirements.

Indeed, we observe in Fig. 5.9 that after an initial jump due to increased

sampling requirements (cf. lines 6—8, Alg. 3) when moving from a goal

of 10, 000 to 40, 000 kWh, the algorithm’s running time remains largely un-

altered. Fig. 5.8 displays scaling against the initial EV population. The

coalition goals were kept constant, and the same for all algorithms. The

heuristic algorithm shows a linear scaling in time as the agent size grows.

Specifically, the heuristic algorithm can scale up to a million agents within an

acceptable time.

Fig. 5.10 demonstrates this behaviour, starting from 50, 000 EVs. Of

course, one expects that when the population reaches several millions, the

complexity of the sorting algorithm will kick in, creating bottlenecks. Re-

gardless, the fact that linear scalability is maintained up to 1, 000, 000 agents

is reassuring. By contrast, looking at Fig. 5.8, we observe that the transver-

sal and clustering algorithms scale exponentially.
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FIGURE 5.8: Scaling against an increasing
EV population
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FIGURE 5.9: Scaling against an increasing
“capacity” goal
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FIGURE 5.10: Scaling of the Heuristic Algorithm

FIGURE 5.11: Evolution of the average size of coalitions
produced with the Hypergraph Clustering method, when

varying the number of clusters
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EVs Heuristic (sec) Clustering (sec) Transversal (sec)
10,000 0.012 0.14 0.03
11,000 0.013 0.17 0.04
12,000 0.015 0.22 0.05
13,000 0.016 0.25 0.06
14,000 0.017 0.31 0.07
15,000 0.018 0.11 0.07
16,000 0.019 0.36 0.08
17,000 0.020 0.43 0.08
18,000 0.021 0.50 0.09
19,000 0.023 0.57 0.10
20,000 0.024 0.69 0.12

TABLE 5.5: Scaling against an increasing EV population

5.4 Varying the number of hypergraph clusters

We test our clustering algorithm further by modifying the number of clus-

ters, k, since this is a parameter that can be optimized empirically, as ex-

plained in Section 4.4.

Fig. 5.11 displays the relation between k and the average coalition size

that results from the clustering method (and which achieves the set goals).

Creating a larger number of clusters results in smaller, and thus better, coali-

tions. Regardless, even when k = 15, the clustering algorithm still produces

coalitions with more EVs than the heuristic one.
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Chapter 6

Conclusions and Future Work

In this thesis, we demonstrated how to employ hypergraphs for creating

coalitions based on multiple criteria. The existence of several hypergraph

transversal and clustering algorithms makes hypergraphs easy to work with.

Moreover, the ability to select almost instantaneously parts of the hyper-

graph that are interesting, offers a significant advantage, enabling one to

generate coalitions with desirable characteristics within seconds. This makes

hypergraph use quite attractive for real-world, real-time scenarios.

We presented several coalition formation methods that employ hyper-

graphs for tackling the V2G problem, and evaluated their performance.

Our proposed heuristic algorithm, in particular, was shown to be the most

effective and efficient of our methods, as it is able to use a minimal num-

ber of EVs to provide the required capacity, discharge rate, and reliability

to the Grid in a few milliseconds; while it exhibits exceptional scaling be-

haviour with respect to the number of EVs under consideration. Ours is the

first approach that is able to deal with large-scale coalition formation for the

V2G problem, while taking multiple criteria into account for creating the EV

coalitions.

Future work includes implementing a more efficient minimal transversal

algorithm as follows.

Finding all the minimal transversals of a hypergraph is a computation-

ally difficult task. As the size of the graph increases the number of patterns

increases - exponentially in the worst case scenario. Nevertheless, while the

pool of EVs might be huge, a coalition meeting the requirements could be

small enough and require only a handful of transversals to be generated.

For this reason, it is worth exploring ways to generate transversals in a
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depth-first manner. This would enable us to create as many as we required

to fulfill the requirements of the coalition. Such an attempt was presented

in [22]. This paper suggest a way to create transversals one by one as op-

posed to generating simultaneously all sets of each size, and while it doesn’t

offer a time bound for the worst case scenario, it does offer bound in terms

of memory use.

By implementing this algorithm, we could stop the execution as soon

as the coalition being built reached the requirements. This can greatly the

execution time of the Minimal Transversal algorithm and allow it to scale

to higher pool sizes. This method, since it is a depth-first approach, might

even move the scaling bottleneck from the size of the EV pool to the re-

quirements.

Another algorithm, proposed in [24], for finding k minimal transversals

using parallel processors. The time is bound by polylog(|V |, |H|, k) assum-

ing poly(|V |, |H|, k) numbers of processors. This algorithm could be the

most efficient for finding a collection of minimal transversals but unfortu-

nately an estimation for k must be made first.

By implementing this algorithm we could gain several advantages. For

instance the algorithm would not scale with pool size anymore but only

with requirements. It could eventually be faster than heuristic since it can

run in multiple processors (sorting used in heuristic cannot run in multiple

cores). Nevertheless, the results should generally stay the same (coalition

size for example) since it is only an optimization.

Finally, additional future work includes improving the clustering ap-

proach with an alternative method for representing the vertices in the Eu-

clidean space; and for identifying promising clusters. Finally, all algorithms

can be equipped with multithreading capabilities, to substantially improve

their performance.
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