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Statistical Methods for Dialogue Systems

by Despoina GEORGIADOU

The ideal Dialogue Systems would be natural and error-less human-
machine conversational understanding systems. Aiming to this, Spoken
Language Understanding (SLU) systems firstly focus on identifying the re-
quests of the users as naturally expressed in their own language. When
such a machine serves a user, semantics are automatically extracted by the
human utterance, the intention is comprehended and then the appropriate
actions are taken in order to satisfy the user’s requests. An ubiquitous and
challenging task in Spoken Language Understanding is slot filling (SF). By
slot we refer to one tag or label for each word. Thus, the slot filling task is
the procedure of taking an input as a sequence of words, and resulting in
an output as a sequence of slots. This can be considered as sequence classi-
fication problem as the slot which corresponds to a word can be considered
as the class in which the word is classified. Slots are related not only to the
domain, but also to one another, so we should define a sequence of labels
jointly for the tested utterance. Originally, the slot filling task was managed
with conditional random field (CRF), which were later substituted by neu-
ral networks. The latter approach with a wide variety of variants, such as
recurrent neural networks (RNNs), significantly outperformed the former
approach. In theory, RNNs are really promising when it comes to temporal
dependencies. In practice, they cannot memorize long-term dependencies
that relate the current-time semantic label prediction to the observations
many time instances away, due to limited memory and consequently they
tend to be hard to train. To tackle this issue many approaches have been
proposed which eventually tend to be more complex. An interesting alter-
native architecture is the Clockwork RNN (CW-RNN). This variant is less
complex and at the same time the overall neural network is faster thanks
to the less parameters that should be evaluated. In this study we explore
the Clockwork RNN and some variants on the ATIS data resource. In this
work all the CW-RNNs are implemented with the use of the publicly avail-
able Theano neural network toolkit. Through our experiments we observed
that the tested architectures are able to enhance the performance of the sim-
ple RNN.
Index Terms: slot filling (SF), spoken language understanding (SLU),
clockwork recurrent neural network (CW-RNN)
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Chapter 1

Introduction

In this chapter we introduce Spoken Language Understanding and we fo-
cus on one specific task of it which is the Slot Filling Task. After that, we
describe both the objective of this work and how it is organized here.

1.1 Spoken Language Understanding (SLU)

Spoken Language Understanding (SLU) is an emerging field in between
speech and language processing, investigating human/machine and hu-
man/human communication by leveraging technologies from signal pro-
cessing, pattern recognition, machine learning and artificial intelligence.
SLU aims to extract the meaning of the speech utterances(spoken phrases-
we use the word utterance rather than sentence when referring to spoken
language [3]) and automatically identify the intent of the user as expressed.
The term SLU has largely been coined for understanding of human speech
directed at machines and it is widely believed that the number of SLU ap-
plications will increase in the future since its applications are vast, from
voice search in mobile devices to meeting summarization, attracting inter-
est from both commercial and academic sectors. Several elements that are
necessary in human-computer dialog are described in [1].

There are three categories of understanding systems [2]. The first one is
about artificial intelligence systems that mimic understanding [Eliza, MIT
1966]. The second category contains systems rooted in artificial intelligence,
which are successful for very limited domains, using deeper semantics. The
third category is systems where understanding is reduced to a mostly sta-
tistical language processing problem and it is our main focus in this work.
In the last case, targeted speech understanding tasks are tried to be solved
instead of the global machine understanding problem. In targeted speech
understanding tasks the problem of understanding a user’s utterance is re-
duced to the problem of extracting specific arguments in a given frame-
based semantic representation. Today there are many targeted speech un-
derstanding systems.

1.2 The Slot Filling (SF) task

Slot filling in the framework of spoken language understanding (SLU) is a
task whose job is to derive semantic components from a human spoken ut-
terance. The slot filling task is different from intent determination which is
another significant SLU task. The former aims to define a sequence of labels
jointly for the tested utterance, whereas the latter defines one label for the
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TABLE 1.1: IOB representation example

I want to fly from Chania to Athens next week

O O O O O B-dept O B-arr B-date I-date

whole utterance and thus it is a standard classification problem.

Nowadays, there is a huge interest in automated systems which support
human-machine dialogue. To accomplish such a tremendous achievement
a major task in spoken language understanding ought to be addressed. This
is the filling of slots embedded in a semantic frame which is actually a re-
ally challenging task, since it requires the extraction of complex semantics.

For instance, providing the user’s utterance is "I want to fly from Chania
to Athens next week" (see TABLE 1.1 ), we need to determine the domain
and the intent as well as fill the slots (give a semantic tag/label for each
word). For simplicity and abstraction reasons, the Slot Filling Task trans-
forms the sentence to the IOB format, which is the well-used in/out/begin
representation. This results our utterance in becoming "O O O O O B-dept
O B-arr B-date I-date" in terms of slots, while the Intent is <Find_Flight>
and the domain is <Airline_Travel>.

It can be easily understood that the slots are closely related to the domain.
In the example above words such as "want" or "I" are of no particular in-
terest and for this reason no slot is filled or in other words the blank slot
is filled. On the other hand, given the domain is <Airline Travel>, words
like "Chania", which is a town, are of extremely high significance since the
destination and the departure of a route are obviously some of the most
essential information to be tagged. Furthermore, the date of the flight that
the user attempts to find is a necessary slot to be filled as well. It is also
worth noticing that the slots are related not only to the domain, but also to
one another. More specifically, the word "next" in our example, is nearly
meaningless if seen on its own. However, if we observe the word "next"
before the word "week" then it turns to be a part of the tag date and the slot
definitely should be filled. However, at the highest level of complexity for
slot filling, we should also capture the slot-concept dependencies beyond
the context word window that captures short-term dependencies.

Consequently statistical spoken language understanding techniques need
to be implemented in order to achieve proper slot filling. In the past, before
the extensive use of neural networks, a wide range of methods had been
used. Some of the most used models are hidden Markov models, discrim-
inative classification methods such as CRFs, knowledge-based methods,
and probabilistic context free grammars. The most successful approach, be-
fore the use of neural networks for slot filling was the conditional random
fields (CRFs).



1.3. Objective of this work 3

1.3 Objective of this work

The slot filling (SF) task, described in previous section, is an essential issue
in spoken language understanding (SLU). In recent years, artificial neural
networks are on the spotlight of most researches on the SF task [23], thus
plenty of neural network technologies have been applied aiming to handle
this matter.

In this work, we implemented and compared a variety of recurrent-neural-
network architectures. The objective was to investigate the performance
of techniques that have never been used on the ATIS benchmark (the air-
line travel information system data resource). With our work, we tried to
study the mystery called neural networks and how these seemingly sim-
ple structures manage to deal with so complex tasks such as finding deep
dependencies among words in spoken language. We also hope to provide
new ideas and motivation for extended research and development of sim-
ple, yet effective models.

Starting with some coverage of Spoken Language Understanding (SLU) we
focus on Artificial Neural Networks (ANNs) and we provide knowledge
on the state-of-the-art about the slot filling task. The novelty of this work is
a ClockWork Recurrent Neural Network (CW-RNN) and the variant neu-
ral networks that are applied in order to accomplish our classification task.
Statistical information about the dataset we used to implement this work
is provided. A range of experiments were carried out in order to test the
performance of all the algorithms we implemented. The extracted results
are offered in tables and figures to show that they are comparative to the
state-of-the-art techniques.
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1.4 Outlook of the contents

This work is organized in five chapters:

• Chapter 2:
– Preliminaries: This chapter provides a brief, comprehensive though
coverage of Spoken Language Understanding (SLU). Then, focusing
on Artificial neural networks, we demonstrate the main architectures
on which we based our work. Details about learning, optimization
and testing are provided as well.

• Chapter 3:
– State of the art : Being more specific about the slot filling task, the
main established approaches are covered. For each approach, we de-
scribe the algorithms used in order to provide the reader with a com-
prehensive view of the state of the art in this area. In addition, the
novelty of this work is described, in order to compare and contrast
with the state-of-the-art techniques.

• Chapter 4:
– Clockwork Recurrent Neural Networks (CW-RNN) for Slot Filling:
This chapter shows our proposed approach to the Slot Filling task.
The classifier we build is a Clockwork Recurrent Neural Network
and, since it results in good performance, we aim to provide details
of each stage of the procedure. Consequently, we firstly describe the
turning of the training data-set into vectors, analyzing the specific
techniques used. Then, we cover extensively the variant neural net-
works that are applied in order to accomplish our classification task.

• Chapter 5:
– Datasets and Experiments : This chapter offers all the necessary
statistical information about the data-set we used to implement this
work and test the performance of all the algorithms. In particular, we
used an American-English database. A class description of the data-
set is also included. It also focuses on the experiments we carried out
in order to test the performance of all the algorithms we implemented.
The extracted results as well as comparative tables and figures are of-
fered for a deeper comprehension.

• Chapter 6:
– Conclusion : This chapter summarizes and features the results and
the conclusions from our work. In addition to this, possible future
work is proposed.
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Chapter 2

Preliminaries

2.1 Spoken Dialogue Systems

A Spoken Dialog System is a system where dialogues are delivered through
voice. It denotes a wide range of systems, from weather information sys-
tems (for instance MIT Jupiter weather information) to complex problem
solving, reasoning, applications. Some applications of spoken language
systems are automatic call routing, answering questions about weather or
sports, travel planning, tutoring systems, applications within games and
many others.

2.1.1 Architecture

The objective of a spoken dialogue system is to let a human interact with a
computer-based information system using speech as means of interaction.
Because a spoken dialogue system can make errors and user requests can
be incomplete or ambiguous, a spoken dialogue system must actively re-
quest for missing data and confirm information, resulting in a sequence of
interactions between a user and a machine. This turn-based sequence of
interactions between a user and a machine is called a dialogue. Figure 2.1
illustrates the architecture of a spoken language system.

FIGURE 2.1: Spoken dialog systems chain
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One example of a dialogue between a human (user) and a machine (sys-
tem) could be a telephone directory assistance task. In this example, the
user can ask for telephone numbers, fax numbers, and email addresses of
persons, departments, and companies. After each user input, the system
must select an appropriate dialogue action and respond to the user in a co-
operative way such that finally the user’s request can be answered. Spoken
dialog systems divide the complex task of conversing with the user into
more specific subtasks handled by specialized components: voice activ-
ity detection, speech recognition, natural language understanding, dialog
management, natural language generation, and speech synthesis. These
components are usually organized in a pipeline as shown in Figure 2.1,
where each component processes the result of the preceding one and sends
its result to the next one. The following sections give a brief overview of
each component and the typical issues they face.

In Figure 2.1, a user s spoken utterance is taken and transformed into a
textual hypothesis of the utterance. This hypothesis is parsed and a seman-
tic representation of the utterance is generated. This representation is then
handled by the dialogue policy and generates a response. The language
generation component then generates a surface representation of the utter-
ance, often in some textual form, and passes it to a text-to- speech synthesis
which generates the audio output to the user.

2.1.2 Components

Spoken dialog systems divide the complex task of conversing with the user
into more specific subtasks handled by specialized components. These com-
ponents are usually organized in a pipeline as shown in Figure 2.1, where
each component processes the result of the preceding one and sends its re-
sult to the next one. These may be the most important components of most
dialogue systems [1]:

1. Feature Extraction and Voice Activity Detection

2. Speech Recognition

3. Natural Language Understanding

4. Dialog Policy

5. Natural Language Generation

6. Speech Synthesis

The following sections give a brief overview of each component and the
typical issues they face.

Feature Extraction and Voice Activity Detection

Voice activity detection (VAD) is the problem of detecting in the incom-
ing audio signal when the user speaks and when he/she does not. Features
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from the audio signal are extracted and classified as speech or non-speech.
This apparently easy problem can in fact be extremely hard to solve accu-
rately in noisy conditions and has been the focus of much research, partic-
ularly in the signal processing community.

Speech Recognition

The automatic speech recognition (ASR) module takes the speech audio
data segmented by the VAD and generates its word-level transcription. In
addition, the generated hypothesis is sometimes annotated at the word- or
utterance-level with confidence scores. ASR engines rely on three models
an acoustic model, which describes the mapping between audio data and
phonemes, a lexicon, which describes the mapping between phoneme se-
quences and words, and a language model, which describes the possible
(or likely) sequences of words in a language. The acoustic model needs
to be trained on a corpus of transcribed utterances. The lexicon can be ei-
ther trained as a set of letter-to-sound rules from a corpus of words and
their pronunciation, or, more often, it can be written by hand. The lan-
guage model can be either a hand-written grammar, or a statistical lan-
guage model trained on a corpus of in-domain data. Most ASR engines
are designed to process full utterances, where the definition of an utter-
ance corresponds to a phrase or sentence. However, they usually perform
recognition incrementally, as the user is speaking, and therefore can pro-
vide partial recognition results at any time.

Natural Language Understanding

The natural language understanding (NLU) module takes the sequence of
words output by the ASR and generates a semantic representation of it.
NLU can be performed by providing a hand-written grammar that cap-
tures semantic relationships (either directly from the words, or via a syn-
tactic analysis). Another approach to NLU is to train a statistical parser on
a corpus of sentences annotated with their semantic representation. Most
NLU modules assume that they are given a full utterance. Again the def-
inition of an utterance varies and depends on the grammar or corpus on
which the module was built.

Dialog Policy

The dialog policy or dialog manager (DM) takes the semantic represen-
tation of the user input generated by the NLU and outputs the semantic
representation of the system’s response. While there are many approaches
to dialog management, the DM generally performs (at least) the follow-
ing three tasks: interpreting user input in the current dialog context, up-
dating the dialog context based on user input, generating relevant system
responses. The DM also exploits knowledge about the domain and task
at hand, which are usually provided by some back end module such as a
database or an expert system.
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Natural Language Generation

The natural language generation module (NLG) takes the semantic repre-
sentation of the system response and outputs a natural language expression
of it. Simple and common approaches to NLG include canned text when
there is little variation in system prompts and templates. More advanced
approaches have been proposed, either based on linguistic concepts such
as discourse structure [Wilcock and Jokinen, 2003] or using statistical map-
ping between the semantic representation and the surface form [Oh and
Rudnicky, 2000]. The NLG can optionally annotate the surface form with
mark up tags destined to help speech synthesis using a speech synthesis
mark up language such as SSML or JSAPI. Such tags can indicate prosodic
patterns such as rising or falling pitch, pauses, or emphasis.

Speech Synthesis

The speech synthesis, or text-to-speech module (TTS) takes the natural lan-
guage output of the NLG (potentially augmented with mark up tags) and
generates an audio waveform corresponding to its spoken version. The
simplest way to perform TTS, and also the one that leads to the highest nat-
uralness, is to use pre-recorded prompts. As for canned-text NLG, this can
be used when there is little variation in the system prompts so that they can
all be covered by a voice talent. General speech synthesis allows the sys-
tem to say any text, even potentially unplanned ones (which is necessary
when the system retrieves variable information from, say, a web site). The
synthesized utterance is played back to the user through the output audio
device.

FIGURE 2.2: Dialogue System Architecture

FIGURE 2.3: Dialogue System Architecture-example



2.2. Artificial neural networks 9

2.2 Artificial neural networks

In this section we briefly introduce the Artificial neural networks [6]. A
connection of simple processing units is called Artificial Neural Network or
Neural Net or ANN. These processing units are called neurons. They take
inputs, they are connected to other neurons to form the network and finally
give the outputs. Every neuron performs a simple mathematical task, but as
a whole these processors give a neural network the ability to achieve more
complex accomplishments. Not all the connections are equally important.
Each input is weighted by a weight w which represents the strength of the
connection. The sum of the inputs and their weights is called the activation
S of the neuron. Early neural nets used to result in binary outputs. How-
ever, it was soon discovered that a continuous output was more accurate
and flexible. In this case the neurons obtained the ability to express un-
certainty. The sigmoid function f(x) = 1

1+e−x is one of the most popular
continuous functions used and it is called Activation Function. Other such
functions are the linear, the logarithmic and the tangential functions.

The neural networks started to be used for pattern recognition in the late
1950s. Experiments that were conducted on neural networks demonstrated
that they have the ability to generalize and at the same time they were ex-
tremely noise tolerant. These two things are the most essential facts about
Neural Networks.

A typical neural network can learn or in other words it can be trained by
changing the weights. The most usual and popular way to do so is the Back-
propagation learning algorithm. The main idea is to adjust the weights de-
pending on the output. For instance, if the output is what we want, then the
weights remain unchanged. But if the output is too high or too low then the
weights should be decreased or increased respectively. In order to decrease
or increase the weights, a constant is added to the formula of each weight.
This constant is called learning rate and its job is to speed up or slow down
the learning process when needed.

During the training stage, it should be taken into consideration that the
network should have the ability to recognize noisy or even corrupted pat-
terns. To manage this, one idea is to add noisy versions of the input data in
the training set. However, there is another interesting and better way. We
still need the noisy versions of the input data but we do not add them in the
training set. Instead we keep the apart as a different set called Validation
set. Each time after training we use this validation set to calculate the error.
When the error becomes low, the network stops. This stops the problem of
over-training which means that the networks becomes too accurate on the
data it is trained to. In case of over-training the network will not handle the
noisy data well and the performance will consequently drop.

2.2.1 Feed-forward Neural Networks

A feed-forward neural network is a classification algorithm and it is the
simplest form of neural networks. A number of simple units (neurons or
nodes) are organized in layers and these units are connected with all the
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other units in the previous layer. The data enters the input layer moving
forward to the output layer. Since there is no feedback between layers such
a network is called feed-forward neural network. Usually, a feed-forward
neural network has two main operations which are learning and classifica-
tion. In Figure we provide a simple example of a 3-layered network.

FIGURE 2.4: A Feed-forward Neural Network

In the feed-forward neural network shown in Figure 2.4, the input layer
consists of 3 nodes, the hidden layer consists of 4 nodes and the output
layer of 2 nodes. In the figure all the feed-forward connections are depicted.
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2.2.2 Recurrent Neural Networks

Feedback or Recurrent Neural Network (RNNs) have been investigated
quite a lot in spoken language understanding (SLU) the last few years.
The variants that have been tested are of high interest and provide great
results. It is an undeniable fact that recurrent neural networks outweigh
the traditional feed-forward neural networks. Actually, the former seem to
differ from the latter on the fact that they have the ability to capture and
exploit long-term dependencies since it connects past and current entries.
Of course, there are common points as well. In both feed-forward and feed-
back neural networks, the words are transformed into high-dimensional
real-valued vector. So, we instead of working with words, we work in the
vector space. As logically expected, in the vector space the similar seman-
tically words are close. Thus, it is feasible to develop a continuous space
language model that exploits the relationship of such words. Training the
model on large datasets and searching for the most suitable parameters for
this model which maximizes the likelihood of one word in a context, then
the likelihood of similar words in similar contexts is maximized as well.
In language understanding and in this work particularly the focus is on the
slot filling task. The last few years, a really popular technique to do so, used
to be Conditional Random Fields (CRFs). This technique deploys an expo-
nential model which has been widely used for sequence tagging. However,
further techniques such as Support Vector Machines or Finite State Trans-
ducers have been examined for the same purpose.

2.2.2.1 Elman-type neural networks

One successful recurrent architecture is the Elman-type [4]. The main goal
of this architecture is to introduce memory to the neural networks (see Fig-
ure 2.5). Like the conventional feed-forward networks, the recurrent neural
networks have three basic parts called units or layers. These are the in-
put, the hidden and the output layer. In feed-forward networks the input
units activate the hidden units and then the hidden units activate the output
units. The difference in the Elman RNN architecture is that except for the
mentioned activations, the hidden units activate themselves through some
other hidden units called context units. To sum up, not only the input units
but also the context units activate the hidden units and the hidden units
feed both forward to activate the output units and back to activate the con-
text units. The hidden units map the input and the previous hidden units’
state to the output. To achieve this, the units are connected with weights
which are continually adjusting in order to map the input to the output in
the best possible way.

For a mathematical representation of the input-output relation we have to
denote some details. Let in(t) and o(t) the input and output vector respec-
tively. The output vector o(t) has a dimensionality equal to the number of
possible slots. The hidden layer h(t) represents of the memory of the net-
work.
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FIGURE 2.5: An Elman-type Neural Network

Then the hidden and output layers are:

h(t) = f

(
Wxx(t) +Whh(t− 1) + bh

)

s(t) = softmax{Wh(t) + b}

where Win, Wh and W are the matrices with the weights of the network’s
connections.

We also use the sigmoid function at the hidden layer: f(x) = 1
1+e−x

and a softmax function at the output layer: softmax(xi) = exi
K∑

k=1

exk

One popular way to train this model is back-propagation which maximizes
conditional likelihood of the data.

2.2.2.2 Jordan-type neural networks

The Jordan RNN [5] is likewise an architecture with recurrent connections
(see Figure 2.6). The different part is that the hidden layers are fed with the
output posterior probabilities:

h(t) = f

(
Winin(t) +Woo(t− 1)

)

o(t) = softmax{Wh(t)}

2.2.2.3 Hybrid neural networks

A combination of the Jordan and the Elman architectures (see Figure 2.7)
results in the hybrid model [9]:
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FIGURE 2.6: A Jordan-type Neural Network

h(t) = f

(
Winin(t) +Whh(t− 1) +WoP{o(t− 1)}

)

o(t) = softmax{Wh(t)}

FIGURE 2.7: An Elman-Jordan Hybrid Neural Network

2.2.3 Learning, optimization and testing

2.2.3.1 Gradient descent

During training our neural network, we try to minimize the number of er-
rors on unseen examples by optimizing the network’s parameters θ. A not
computationally expensive way is to minimize the Negative Log-Likelihood
Loss (NLL) as the loss function, which means that we maximize the log-
likelihood of our classifier given all the labels y(i) in a training dataset. The
gradient for each one of the sentences in our training set D is used as a
supervised learning signal for deep learning of a classifier. The negative
log-likelihood is:

NLL(θ,D) = −
|D|∑
i=0

logP

(
Y = y(i)|x(i), θ

)
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2.2.3.1.1 Stochastic gradient descent (SGD)

Gradient descent is the most common way to optimize neural networks. In
this algorithm, we start with our loss function and some parameters and
we work in a loop. In each repetition we compute the gradient and based
on that we compute the parameters. The loop is terminated when some
stopping conditions are met. To speed up this procedure we can estimate
the gradient using some of the training data, not the entire training set.
This form of Gradient descent is called Stochastic gradient descent (SGD)
and in its purest form, it takes as input only one single example at a time to
estimate the gradient.

2.2.3.1.2 Mini-batch stochastic gradient descent (MSGD)

There are many variants of the stochastic gradient descent used in train-
ing a classifier. One of them is called minibatch stochastic gradient descent
(MSGD). In this algorithm, we use more than one training data to make
each estimate of the gradient. This technique reduces variance in the esti-
mate of the gradient, and often makes better use of the hierarchical mem-
ory organization in modern computers. Generally, mini-batches are usu-
ally better. They need less computations and are more efficient than true
stochastic gradient descent. This variant seems like a trade-off between
computing the true gradient and the gradient at one only example. It may
also result in smoother convergence of the algorithm, as the gradient which
is estimated at each step uses more training data.

2.2.3.1.3 Sentence-level instead of word-level gradient descents

During the training procedure of a recurrent neural network, we have to
make a decision about the updates. One option would be to do on-line up-
dates, which means that the updates are done on word-level. This would
mean that we would have to estimate and update the model parameters
of the network after predicting every single word of every single sentence.
Taking into consideration the fact that in our input data the length of a sen-
tence could be long, it is easy to realize that this is a complex thing to do.
This is due to the fact that when updating after the prediction of the i-th
slot, we should then re-compute all the parameters from the beginning of
this sentence if we want predictions consistent with the current model pa-
rameters.

So, a way to deal with this is to work in sentence level instead of word
level. More specifically, the whole sentence can be considered as a mini-
batch. For each mini-batch we compute the mean loss. Afterwards, we
perform a gradient update for the this sentence. This is the basic idea of
mini-batch gradient descent . This approach can be applied irrespectively
the network architecture and there is no issue that the mini-batches are of
different size.

2.2.3.2 Regularization

When it comes to neural networks and generally classification tasks, opti-
mization is not the only issue to deal with. When we train our model we
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should make sure that our classifier can treat unseen entries, not only the
ones it has already seen in the training data. The mini-batch stochastic gra-
dient descent algorithm does not take this into consideration, and this may
lead in over-fitting the training data. One way to handle this situation and
avoid over-fitting is regularization. There are several techniques for reg-
ularization but in this work we used early-stopping and dropConnect. A
brief description of these two methods follows.

2.2.3.2.1 Early-Stopping

The first regularization technique to overcome over-fitting is called early-
stopping. This method is widely used because it is simple to understand
and implement and has been reported to be superior to regularization meth-
ods in many cases. The main idea is to monitor the performance of the
model on a validation set, not on the training set. A validation set is a set
of data that are not part either of the training or the test set and thus it is
considered to be representative of future test set. When the performance of
the model improves sufficiently on the validation set, then the model im-
plemented here gives up on further optimization.

The procedure start by splitting the training data into a training set and
a validation set. An efficient way to separate these two sets is to consider as
training set the 80 percent of the training data and the rest 20 percent would
be the validation set. Then, the model trains on the training set and evalu-
ates the validation set after every epoch which is a single pass through the
whole dataset. When the error on the validation set is higher than it was the
last time it was checked, we have early-stopping. This means that we stop
the training procedure before the maximum number of epochs is reached.
Finally, we use the last parameters of the network on our test data. This
approach uses the validation set assuming that the error on the test set will
be similar.

2.2.3.2.2 Dropout and DropConnect regularization

Another form of regularization we used is called DropConnect and it is
variant of the Dropout regularization. In Dropout we set some activations
in each layer to zero during the training stage. In this way, over-fitting is
reduced and the performance is improved. The main idea is that omitting
the effect of a part of the training examples the model does not learn the
training data exclusively.

The variant we used in this work is DropConnect. DropConnect is a gen-
eralization of Dropout. It randomly drops the weights, which means that
it sets the weights to zero, rather than the activations. Both Dropout and
DropConnect are suitable for fully connected layers. A brief description of
Dropout and DropConnect follows.
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Let’s suppose a fully connected layer of a neural network with:

• input v = [v1, v2, ..., vn]

• weight parameters W (of size d× n) and

• output r = [r1, r2, ..., rd]

The output r is computed as a matrix multiply between the input vector
and the weight matrix followed by a non-linear activation function, a:

r = a(Wv) (where biases [37] are omitted for simplicity)

Dropout

Each element of a layer’s output is kept with probability p, otherwise being
set to 0 with probability (1-p). Applying Dropout on the outputs of a layer,
we have

r = ma(Wv)

where m is a binary mask vector of size d with each element, j, drawn
independently from mj ∼ Bernoulli(p).

Many activation functions such as tanh, centered sigmoid and relu have
the property that a(0) = 0. Thus, we have r = a(mWv), where Dropout is
applied at the inputs to the activation function.

DropConnect

Instead of dropping an activation, one can drop some weights connecting
the neurons of a layer. Each connection is set to zero with probability 1− p
and with probability p it is set to one. Applying DropConnect on a layer on
the training stage, the output is

r = a((MW )v)

whereM is a binary matrix encoding the connection information andM(i, j)
∼ Bernoulli(p).

Each element of the maskM is drawn independently for each example dur-
ing training. The biases [37] are also masked out during training. An exam-
ple is shown in Figure 2.8.
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2.2.3.3 Testing

We partition our dataset into three sets, the training set, the validation set
and the test. First we use our training set. We start with a random initializa-
tion and we apply the stochastic gradient descent algorithm to calculate the
parameters of the model. Then, at each epoch we use the validation set to
check if the model is working properly. If a model results in a good perfor-
mance for the validation set, we save it. In case we use the early-stopping
regularization, we keep doing this procedure for a specific number of loops.
If it has been a long time since the last time we found a good model, we stop
our loop. As the final parameters of the model, we keep the best parameters
we had saved. Finally, we use these parameters for evaluation on the test
set. The performance of the model is the evaluation on the test set, using
the best parameters for the validation set and this is the performance we
expect on unseen data.
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FIGURE 2.8: DropConnect regularization example



19

Chapter 3

State-of-the-art

3.1 Slot filling techniques

For a long time the predominant models for the SF task [2] in SLU were the
popular CRFs [19] and SVMs [12]. In 2013, simple RNNs [14] were investi-
gated for the SF task and outperformed all previous approaches. Since then,
several RNN variants were proposed, which either experiment with differ-
ent connection types inside the network such as the Bi-directional [9, 22],
the hybrid [9] and the RNN-SOP [25] or add extra memory such as LSTM
[15] and RNN-EM [17]. Many other combinations have been investigated
such as the encoder-labeler LSTM [18], Bi-directional RNN-LSTM [39] and
the Bi-directional RNN using a ranking loss function [21] which showed
great performance. Recently, attention-based RNN [40] and knowledge-
guided structural attention networks [41] have shown benefits on the lan-
guage understanding task.

3.1.1 Conditional Random Fields (CRF)

A discriminative method which has been extensively used in spoken lan-
guage understanding for the slot filling task is the Conditional Random
Fields (CRFs). CRFs were introduced by Raymond and Riccardi [10] for
the slot filling task. Several studies have been conducted and they have
shown that CRFs outperform conventional generative models. This tech-
nique maximizes the log posterior probability of training data label se-
quences given the observation which is usually achieved by applying gradient-
based optimization like stochastic gradient decent. More information and
experiments using CRFs are in [10][11].

3.1.2 Support Vector Machines (SVM)

Support Vector Machines (SVMs) is a technique used in [12] to identify En-
glish base phrases. This technique is popular due to its ability to gener-
alize. Moreover, it is considered to perform well even with data of high
dimensionality. Considering a binary classification task, the training data
are represented by a feature vector. The purpose is to find an optimal hy-
perplane. SVMs are able to do so and successfully manage to separate the
training data by finding the hyperplane that maximizes its margin. SVMs
are also used for non-linear classification (Vapnik, 1998). Kernel SVMs have
been used in order to handle non-linear hypotheses building optimal sep-
arating hyperplanes which take into account all combinations of features.
Some of the commonly used kernels are linear, polynomial and radial basis
functions. A detailed discussion on SVMs can be found in [12],[13].
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3.1.3 Neural Networks

3.1.3.1 RNN

For a long time the predominant models for the slot filling (SF) task in spo-
ken language understanding were the Conditional Random Fields (CRFs)
and the Support Vector Machines (SVMs). In 2013 an adaptation of the
Recurrent Neural Networks (RNN) [14] was proposed for the SF task (see
Figure 3.1). That basic RNN outperformed the previous CRF results. In the
same work it was also demonstrated that the model is able to learn task
appropriate word-embedding. This basic RNN architecture consists of an
input layer, a hidden layer and an output layer. The input is connected to
a set of hidden nodes in the hidden layer. All hidden nodes are fully con-
nected with recurrent connections among the hidden nodes. These hidden
nodes are also connected with a set of output nodes. For language under-
standing, the RNN is trained using the semantic labels of the words rather
than the words themselves. The proposed RNN produced state-of-the-art
results and for more advanced state-of-the-art bag-of-words, word embed-
ding, named-entity, syntactic and word- class features used as well.

FIGURE 3.1: A Recurrent Neural Network for SF

3.1.3.2 CNN-CRF

This architecture is a combination of two difference architectures. The model
which was proposed for the slot filling task is triangular Conditional Ran-
dom Fields (TriCRF) [19]. Instead of having one simple input layer, this
work places Convolutional Neural Network (CNN) layers at the input layer
(see Figure 3.2). These CNN layers’ job is to extract the feature which will
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then be the input of the TriCRF. Thus, it is supposed to be considered as a
continuous space version of the TriCRF model. The CNN-CRF architecture
achieved state-of-the-art results. Another interesting information about this
work is that the CNN-CRF models two tasks, the slot filling and the intent
determination, simultaneously. In addition to this, the bias issue [37] is han-
dled by globally normalizing the neural network. That was the first model
proposed to train both intent determination and slot filling jointly based on
neural networks.

FIGURE 3.2: CNN-CRF for SF

3.1.3.3 Bi-directional RNN

In the simple recurrent neural network, the output of the hidden layer at
time step t−1, h(t−1) returns a feedback into the input of the hidden layer
at time step t, h(t). In other words, this neural network takes advantage
of previous information. The exact same thing could be done by using the
future instead of previous information. This means that the input of the
hidden layer at time step t, h(t), would get h(t + 1), not h(t − 1). How-
ever, an even better case would be the combination of these two ideas (see
Figure 3.3). That is what the basic idea of the Bi-directional RNN [9] is. In
this work, both bi-directional Elman RNN and bi-directional Jordan RNN
were proposed and tested. Since the former results in better performance
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than the latter, here we provide some more details about the bi-directional
Elman RNN using context window.

The first step is to define the forward hidden layer h(t):

−→
h (t) = f

(
−→
Winin(t) +

−→
Wh
−→
h (t− 1)

)

where −→Win, −→Wh are the weights for the forward input and the hidden lay-
ers.

The backward hidden layer h(t) is:

←−
h (t) = f

(
←−
Winin(t) +

←−
Wh
←−
h (t+ 1)

)

where ←−Win, ←−Wh are the weights for the backward input and the hidden
layers.

Then, the bidirectional hidden layer h(t) takes as input the forward and
backward hidden layers:

hbi(t) = f

(
Winin(t) +

−→
Wh
−→
h (t− 1) +

←−
Wh
←−
h (t+ 1)

)
The bi-directional RNN cannot outperform the simple RNN both with con-
text window.

3.1.3.4 LSTM

A long short-term memory (LSTM) neural network [16],[15] is another neu-
ral network which consists of an input layer, a hidden layer and an output
layer. Like the simple recurrent neural network the output of the hidden
layer returns as feedback to the hidden layer, which thus uses past infor-
mation. However, the LSTM architecture has advanced properties com-
pared to the simple RNN due to the fact that the hidden layer contains
connected memory cells which modulate their input-output in a context-
sensitive way. The memory cells are linearly activated and propagated be-
tween different time steps (see Figure 3.4).

An LSTM can be described by these functions:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bi)

ct = ft � ct−1 + it � tanh(Wxcxt +Whcht−1 + bc)
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FIGURE 3.3: Bi-directional RNN for SF

ot = σ(Wxoxt +Whoht−1 +Wcoct−1 + bo)

ht = ot � tanh(ct)

where σ is the logistic sigmoid function. i is the input gate, f is the for-
get gate and o is the output gate. c is the memory cell activation vectors h
is the hidden vector

� is the element-wise product of the vectors. The weight matrices from
the cell to gate vectors are diagonal, whereas the weight matrices from in-
put, hidden, and output vectors are not diagonal.

The LSTMs achieved state-of-the-art results on the ATIS database. In this
work [15], they further extend the basic LSTM architecture to create deep
LSTM. This deep LSTM consists of two layers of LSTMs. This extension
improved the performance of the model and resulted in another state-of-
the-art results on the ATIS database.



24 Chapter 3. State-of-the-art

FIGURE 3.4: LSTM for SF

3.1.3.5 RNN-SOP

In [25], the Structured Output Prediction Recurrent Neural Network (RNN-
SOP) was introduced (see Figure 3.5). The goal of this architecture is to cap-
ture and exploit label dependencies in model training. To do so, the model
feeds the previous output label to the current sequence state, by using a
sampling approach on true and predicted labels. This sampling approach
makes the model more robust. The main idea is to makes the model learn
to handle its own mistakes.

At time step t, the hidden layer of the neural network ht takes the word
input xt, previous hidden layer ht−1 and the output label yt−1 as input. Dur-
ing training, the true label at time step t − 1 can be used as yt−1 whereas,
during inference, the true label is unknown information. Thus, only the
predicted label can be used. The problem that arises in this way is that the
prediction power of the RNN does not generalize well during inference.
An error made early in the input sequence can be propagated to the fol-
lowing predictions since they use wrong label information. To deal with
such problems, the RNN-SOP applies a sampling approach in order to de-
cide if true label or predicted label from the previous time step will be used.
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Randomness to the output label is the key. With randomness the RNN
model can learn to handle its own mistakes. The output label is either the
predicted label with highest probability or a sampled label following label
output probability distribution at t − 1. During the training process, the
true label is chosen with probability Pi whereas the predicted label is cho-
sen with probability 1 − Pi. Different values for the Pi probability where
examined in order to check the impact on the performance. Finally, perfor-
mance gain over the baseline RNN system was achieved.

FIGURE 3.5: RNN-SOP for SF

3.1.3.6 Hybrid RNN

In [9] the Hybrid RNN is an RNN version which is a combination of the
recurrences from the Jordan and the Elman RNN models (see Figure 3.6).
The hidden layer activation and the output are:

h(t) = f

(
Winin(t) +Whh(t− 1) +WoP{o(t− 1)}+ bh

)

o(t) = softmax{Wh(t) + b}
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FIGURE 3.6: Hybrid RNN for SF

3.1.3.7 Deep LSTM

Here we present a recently proposed architecture, the Encoder-labeler LSTM
and its extension Encoder-labeler Deep LSTM. In [15] the proposed encoder-
labeler LSTM, the input words are represented into a vector using an LSTM
encoder. Then the input vector enters a second LSTM layer. This second
LSTM is responsible for the slot filling task (see Figure 3.7). In this way
label dependencies and information of whole input sequence is possible to
be captured. To sum up, this work managed to leverage sentence-level in-
formation and achieved new state-of-the- art in the slot filling task of the
standard ATIS corpus. An Encoder-labeler Deep LSTM was also proposed
providing some improvement to the performance of the model.

3.1.3.8 RNN-EM

The limited capacity of the memory of the simple RNNs has always been a
concerning issue. The RNN-External Memory (RNN-EM) proposed by [17]
is an alternative version of the RNN that uses an external memory in order
to handle the limitation of memory capacity (see Figure 3.8). The RNN-EM
model stores the past hidden layer activities both from the current input
and from past inputs. The basic idea is that the input observation along
with the content retrieved from the external memory is used for future pre-
dictions.

In detail, the RNN-RM consists of an input, a hidden and an output layer.
There is no direct feedback of the hidden layer activity at the previous time
step to the hidden layer. The feedback is taken as input to the hidden layer
from the external memory. A weight vector is applied to retrieve the content
from the external memory. The weights are proportional to the similarity of
the current hidden layer activity with the content in the external memory.
In practice this means that the content that is not relevant to the current
hidden layer activity has small weights whereas the content that is relevant
to the current hidden layer activity has high weights.

The philosophy of the RNN-EM architecture reminds of the long short-
term memory neural networks. However, the RNN-EM gave higher per-
formance than both the LSTM and the deep LSTM model and generally
RNN-EM model achieved state-of-the-art results.
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FIGURE 3.7: deep-LSTM for SF

3.1.3.9 Encoder-labeler LSTM

Here we present a recently proposed architecture, the Encoder-labeler LSTM
and its extension Encoder-labeler Deep LSTM. In [18] the proposed encoder-
labeler LSTM, the input words are represented into a vector using an LSTM
encoder. Then the input vector enters a second LSTM layer. This second
LSTM is responsible for the slot filling task. In this way label dependen-
cies and information of whole input sequence is possible to be captured.
To sum up, this work managed to leverage sentence-level information and
achieved new state-of-the-art in the slot filling task of the standard ATIS
corpus. An Encoder-labeler Deep LSTM was also proposed providing some
improvement to the performance of the model.
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FIGURE 3.8: RNN-EM for SF

3.1.3.10 RSVM

In [21] Recurrent Support Vector Machines (RSVM) for slot tagging are pro-
posed. RSVM combine a recurrent neural network (RNN) and the struc-
tured support vector machines (see Figure 3.9). The RNN is used for feature
extraction. The support vector machine uses a sequence-level discrimina-
tive objective function. Furthermore, the model training was fast due to the
fact that it skips the weight updating for non-support vector training sam-
ples. The model achieved new state-of-the-art results on the ATIS datasets.

3.1.3.11 Bi-directional RNN with ranking loss

In [22], a bidirectional recurrent neural network was proposed for the slot
filling task. The bidirectional RNN was Elman-type. The feedback was
information not only from the past but also from the future context, as in
the case of the bidirectional RNN proposed by Mesnil in [9]. However, here
ranking loss function is used to train the model. The use of the ranking loss
function provides improvement on the performance over the cross entropy
loss function.

3.1.3.12 Knowledge-guided Structural Attention Networks (K-SAN)

In [41], a more generalized form of the RNN is presented. This architecture
incorporates non-flat network topologies in order to handle previously un-
seen test data, as well as finding the salient features to predict the semantic
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FIGURE 3.9: RSVM for SF

tags of the given sentences.

3.1.3.13 Attention-Based RNN

This RNN variant [40] jointly handles the intent detection and slot filling
task. This work takes alignment into great account. This RNN encoder-
decoder model with attention to the alignment manages to extract more
information and finally to achieve a new state-of-the-art result.
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Chapter 4

ClockWork Recurrent Neural
Networks for Slot Filling

4.1 Novelty of the present work

Studying the state-of-the-art (Chapter 3), it is clear to see that almost all the
neural network architectures proposed for the slot filling task are a variant
of the simple recurrent neural network architecture (RNN). A simple RNN
deals sufficiently with short-term dependencies of the input words. How-
ever, it lacks in the ability in handling long-term context. Consequently, the
state-of-the-art proposals focus on providing a way to tackle this matter.

The issue that arises is that the more complex the dependencies a type of
neural network tries to catch are, the more complex it becomes itself. All
the recently proposed architectures require extra memory contrary to the
simple Recurrent Neural Network, as well as a higher number of computa-
tions is necessary. This is mainly due to the fact that each model increases
the number of the simple RNN parameters in order to improve the perfor-
mance.

The difference of the present work is that our variant RNN simplifies the
way of capturing long-term dependencies. More specifically, no extra mem-
ory of parameters are required. Instead of this, our neural network contains
a reduced amount of parameters compared to the simple RNN. As a result
the computational cost is lower. In addition to this, it is quite simple both to
understand and implement. Even though our model is simple, it is capable
of learning long-term information, apart from the short-term context that is
captured anyway, even with the simple form of the simple RNN.

Our proposed neural network architectures are based on the clock-work
RNN [20]. This neural network is a simple modification of the simple RNN.
It was proposed and used for other tasks such as audio signal generation,
TIMIT spoken word classification and on-line handwriting recognition. In
all these three cases the Clock-Work RNN outperforms the simple RNN.
Thus, it shows that it can be promising for other tasks as well. A similar
time-scale architecture on LSTMs was only applied for modeling long texts
[38].

The novelty of this work lies on the fact that a clock-work RNN has never
been used for slot filling in spoken language understanding. In addition,
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we propose four novel models, the hybrid CW-RNN, the bi-directional CW-
RNN, the deep CW-RNN and the Convolutional CW-RNN. While the present
study is related to the simple RNN and hybrid RNN, it capitalizes the ar-
tificial network by partitioning the hidden layer. This was not considered
in these earlier studies and may provide insights for future research. Our
goal is to investigate the potentials of the Clockwork RNN variants for our
slot filling task. For this purpose, we used a common dataset benchmark
to conduct our experiments in order to compare our results with those of
other neural network architectures. All proposed networks were modeled
following the procedure described in Section 2.2.3.

4.2 Capturing short-term dependencies

In this work, we try to capture short-term dependencies, using a word-
context window surrounding the word of interest. With each word mapped
to an embedding vector, the word-context window is the ordered concate-
nation of word embedding vectors. For instance, if we want to use context
window of size 3, then the word for tagging will be contexted by the pre-
vious and the following word features in the word feature vector. In detail,
in the beginning we have an array of features [a,b,c]. The context window
of size 3 for the word feature a is [-1,a,b], for feature b it is [a,b,c] and for
feature c it is [b,c,-1]. So putting all these together as rows of a matrix, at
the end we have a matrix of indexes where each line i corresponds to the
context window surrounding the i-th word.

4.2.1 Word embeddings

To feed a neural network means to insert data as input. Undeniably this
cannot be done with actual words in the case of the word tagging task.
So, another representation of each word should be created, and finding a
suitable one is not always an obvious thing to do. One way to handle this
problem, is to extract some features from the data and then to represent
each word as a vector and thus move to the continuous embedding space.
However, there is no unique method to create these word embeddings. A
frequently used technique is to train external data, like the Wikipedia, so
that the embeddings cluster in case of similar word semantics. Of course,
there is always a simpler way. One can randomly initialize the embedding
vector, as long as this does not have negative effect on the performance of
the system. For the ATIS data-set this simple approach seems to be effective.
Consequently, for matters of simplicity our word embeddings were initial-
ized randomly in our neural networks. For other data-sets the architecture
could take advantage of better trained word representations, by initializing
a word look-up table with vectors trained by back-propagation instead of
randomly.

4.2.2 Context window

So far, we have described the procedure of extracting features from the
words of a sentence produced either randomly or with the use of a look-
up table. A vector containing these features is called Word Feature Vector.
In machine learning two tasks are common to follow. The one would aim in
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tagging the sentence as a whole and the other would aim in tagging each el-
ement of the Word Feature Vector individually. The latter task is called Slot
Filling and is the focus of this work. This word tagging task requires higher
level dependencies among the words of the sentence tested. Consequently,
the features contained in a Word Feature Vector need to be combined some-
how and provide the next layer with more complex information. The ex-
traction of higher level features can be achieved in different ways. Two of
them are the window approach (context window), and the convolutional
approach (section 4.1.3).

For the context window approach, a fixed window parses the Word Feature
Vector in order to feed the next layer of the neural network. For instance,
for window of size 3, the word we want to tag is accompanied by the previ-
ous and the following word in the window. This is the context of the word
and the main reason why we do it is due to the fact that we suppose that
each word in a sentence depends on its neighbors. The longer the window
is, the more the neighbors that are taken into consideration for the decision
of the network.

To sum up, a word enters a neural network in its context and thus the net-
work is capable of capturing short-term dependencies. The only problem
that appears is with the borders. In detail, the words both at the beginning
and at the end of a sentence lack in context. For example, the first word of
a sentence does not have a previous word. In such cases, we can handle
this matter by using a technique called padding. We can pad the window
whenever real context is not available. The elements that we add can be
random or fixed values or features for the same sentence. For instance, it
can be considered that the previous word of the first one, is the last word
of the same sentence. Similarly, the following word of the last word of the
sentence can be considered to be the first word of the sentence. In this work,
the padding is done with the fixed index -1.

4.2.3 Convolutional layer

The other approach mentioned earlier uses a convolutional layer. Through
convolution it is possible to combine the features of the Word Feature Vec-
tor into a global feature vector. For a specific word we want to tag, we first
produce local features around it. Then, this local feature vector of the word
is fed to the convolutional layer. This procedure is supposed to be done for
each word in the sentence. The output of the convolutional layer should be
fed to the standard hidden layers of the neural network and the size of the
output of the network depends on the number of words in the sentence fed
to the network.

However, applying convolution on a vector using a filter, the output of the
convolutional layer would be of size vector_size+ filter_size− 1. So, it is
obvious that we need to turn the feature vector into its original size (vec-
tor_size) again.

To do so, we apply a Max Layer between the convolutional layer and the
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standard hidden layer of the neural network. For the max layer, max-
pooling is frequently used. Max-pooling is a popular technique in image
processing and it actually is a form of non-linear down-sampling. The main
idea is to partition convolutional output and for each part it keeps the max-
imum value. In this way, not only the dimensionality is reduced, but also
robustness is provided.

4.3 Capturing long-term dependencies

To capture long-term dependencies we apply a Clockwork Recurrent Neu-
ral Network. The Clockwork Recurrent Neural Network (CW-RNN) is a
variant of the simple RNN architecture (Figure 4.2), proposed by Jan Kout-
nik, Klaus Greff, Faustino Gomez and Jurgen Schmidhuber [20]. The pur-
pose of this architecture is to deal with the fact that RNN is not capable
of capturing long-term dependencies although it works pretty well with
short-term dependencies.

This issue is handled by CW-RNN by partitioning the RNN hidden layer
into separated modules. These modules run at different clock speeds, tim-
ing their computation with different, discrete clock periods. Consequently,
CW-RNN both trains and evaluates faster as not all modules need to be
executed at every time step. Moreover, the model has a lower number of
weights, because slower modules do not receive inputs from faster ones.

To sum up, rather than making the standard RNN architecture more com-
plex, CW-RNN reduces the number of SRN parameters, improves the per-
formance of the model and speeds up the network evaluation. The benefit
of the CW-RNN is that its high-speed modules remember high-frequency
information which is provided by the low speed modules and at the same
time the low-clock-rate modules retain the long-term information obtained
from the input.

4.3.1 CW-RNN architecture

A typical uni-directional RNN consists of input, hidden, recurrent and out-
put layers. In the SF task, the input if size nin xt ∈ Rnin at time t is a real-
valued vector associated to each word (word embeddings). The output of
the hidden layer of size nh at a time step t is then defined as:

ht = f

(
Wxt + Uht−1 + b

)
(4.1)

where W ∈ Rnh×nin and U ∈ Rnh×nh are the weight matrices of the input
and the hidden layer respectively, b ∈ Rnh serves as a bias vector and h0 ∈
Rnh is the initial state. The function f at the hidden layer is the sigmoid
function:

f(x) =
1

1 + e−x

The output layer can be described by the following equation

ot = softmax (Woht + bo) (4.2)
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where Wo ∈ Rnout×nh and bo ∈ Rnout define the weight matrix and bias
vector of the output layer.

The CW-RNN is the same as the RNN above except that the hidden
layer neurons are partitioned into m chunks (modules) of k = nh/m neu-
rons each (Figure 4.3). For each module i ∈ {1, · · · ,m}, a different clock
period Ti ∈ {T1, ..., Tm} is set which defines when each module will be ac-
tivated and updated. In this paper we use a period Ti = 2i−1 as in [20],
although different clock period definitions can also be investigated.

We can, therefore, partition matrix U = (Uij), i, j ∈ {1, . . . ,m} into m2

block sub-matrices, Uij , of size k × k, matrix W = (Wi) into m block sub-
matrices of size k × nin (Figure 4.1), and vector b = (bi) into m sub-vectors
of size k × 1.

FIGURE 4.1: CW-RNN hidden layer matrix presentation for
4 modules

The connections among the neurons of the network depend on the time
period. Specifically, although the neurons within each module are fully
interconnected, the recurrent connections from module j to module i ex-
ist only if the period Ti is larger than the period Tj . In other words, the
connections between the modules propagate the hidden state from slower
modules to faster modules, which means the block Uij is the zero matrix
when Ti > Tj . The later inequality is used as in [20], although the opposite
could do as well.

At each time step t, only the output of modules i that satisfy (t mod
Ti = 0) are active, where mod denotes modulo. The other modules retain
their output values from the previous time-step. Therefore, the hidden state
vector, which we have already named ht, is partitioned into m sub-vectors
of size k, ht = [h1>t , . . . , hi>t , . . . , h

m>
t ]>, where hit is the output of the i-th

module at time-step t:

hit =

 f

(
m∑
j=i

Uijh
j
t−1 +Wixt + bi

)
if t mod Ti = 0

hit−1 otherwise

It is clear that the low-clock-rate modules retain long-term information,
while the faster modules contain the local information which is the context
provided by the slower modules. In this example the module g = 1 is the
fastest one and the module g = 4 is the slowest one.
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The CW-RNN is a simplified RNN architecture, since using a smaller
number of connections, decreases the number of parameters and the over-
all complexity of the network. Since a relatively small number of modules
is activated at each time step, the computational complexity is largely de-
creased when training is performed in normal processing units.

4.3.2 Novelty of the present work: CW-RNN-based architectures

4.2.2.1 Bi-directional CW-RNN

The present work proposes bidirectional-CWRNN (biCW-RNN). It is based
on the bidirectional RNN [9], described in Section 3.1.3.3. The bidirectional
approach is able to exploit both future and past information in the input.

The hidden state vector ht for the biCW-RNN is the addition of the for-
ward h

(f)
t as stated for the simple CWRNN and a backward h

(b)
t . The total

hidden state is therefore ht = h
(f)
t + h

(b)
t . (Figure 4.4)

4.2.2.2 Hybrid CW-RNN

In Section 2.2.2.3 we described the hybrid recurrent neural network. It is a
simple combination of the Elman and the Jordan architecture. The differ-
ence is that both the past hidden activity and the past prediction is fed back
to the hidden layer. In [9], the hybrid recurrent neural network slightly out-
performs the simple recurrent neural network which is implemented in the
paper. Inspired by [9], we created our Clock-Work Hybrid Recurrent Neu-
ral Network shown in figure 4.5.

The combined model is employed to learn more data patterns as both the
past hidden activity and the past prediction ot−1 is fed back to the hidden
layer. When CW-RNN is considered, several hidden layer modules are in-
active at most time steps. The output layer of the network, which can also
be seen as an average over past time-steps, can be set as feedback to the
hidden layer. Specifically, we obtain the hidden layer dynamics using both
the output posterior probabilities and the influence of past hidden states of
the active models.

In this way, we introduce a hybrid CW-RNN architecture which combines
the recurrences from the Jordan and the Elman models within the CW-RNN
framework. The dynamics of our hybrid CW-RNN can be described from
the following equation:

hi
t =

 f

(
m∑
j=i

Uijh
j
t−1 + Viot−1 +Wixt + bi

)
if t mod Ti = 0

hi
t−1 otherwise

where ot is given by 4.2 and the weight matrix, V ∈ Rnh×nout of the con-
nections from the output to the hidden layer, is partitioned into m blocks
V = [V >1 , . . . , V

>
i , . . . , V

>
m ]> of size k × nout.
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4.2.2.3 Deep CW-RNN

Deep neural networks have been extensively used in image processing. A
popular type of deep neural networks is the deep convolutional neural net-
work. The term deep refers to the fact that multiple hidden layers instead
of one are used. The depth of a neural network is the number of such lay-
ers which are connected as the output of the one layer feeds the next one.
Somehow, this procedure has shown great improvement in the models’ per-
formance.

Similarly, in spoken language understanding attempts have been made to
explore deeper and more complex information from the input, through
deep neural networks. One such example is [16]. In this paper a second
LSTM is stack on top of the first LSTM layer. This variant provided signifi-
cant improvement on the performance of the model.

Based on this idea, we developed a Deep Clock-Work RNN. Instead of two
LSTM layers, our neural network contains two Clock-Work RNN layers.
The output of the lower cw-rnn forms the input sequence for the upper cw-
rnn. In detail, the input in(t) of the upper cw-rnn takes ht from the lower
cw-rnn. A transformation matrix is applied on the h(t) to transform it to
in(t). On top of the second cw-rnn layer a softmax layer is stack as in the
regular cw-rnn case. In this work, we used depth 2 in our experiments (see
Figure 4.7).

4.2.2.4 Convolutional CW-RNN

Previously, in Section 4.1 we discussed about capturing short-term depen-
dencies. In Section 4.1.3 we briefly described how a Convolutional layer
can be used for extraction of larger level features. The need to exploit long-
distance dependencies among words far away in a sentence and out of a
context word window, led us to create a convolutional clock-work recurrent
neural network (CW-CRNN). To do so, we added a simple convolutional
layer between the input and the hidden layer of our clock-work recurrent
neural network introduced in Section 4.2.1.

A classical convolutional layer performs a convolution on an input in()
with a filter f() and outputs:

conv(in, f) = in(m,n)⊗ f(m,n) =
∞∑

u=−∞

∞∑
v=−∞

in(u, v)f(m− u, n− v)

where the values of the filter f() ∈ Rflxfl are considered to be parame-
ters of the layer trained by back-propagation. The filter is small but extends
through the full depth of the input. During the forward pass, we convolve
each filter across the width and height of the input volume and compute
dot products between the entries of the filter and the input at any position.
In this work, we consider the size of the filter as a hyper-parameter and we
tested different sizes to check how the performance is affected.

Similarly to [42], we form the input matrix X ∈ Rnin×N by concatenat-
ing the N word embeddings xt from an input sentence. Then a 2D filter
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defined through a filter matrix F ∈ Rf1×f2 is used to perform wide con-
volution with the input matrix X . To address the problem of the missing
words in the borders, we perform padding with past and future words.
If we define l1 = bf1/2c and l2 = bf2/2c, the convolution is described as
follows:

(X ∗ F )(i, t) =

l1∑
j=−l1

l2∑
τ=−l2

xt+τ (i+ j)F (l1 + 1− j, l2 + 1− τ)

where i ∈ [−l1 + 1, . . . , nin + l1]}, t ∈ [−l2 + 1, N + l2].

The filter values are considered to be parameters of the layer initialized
randomly from a uniform(-1,1) distribution and estimated during model
training with back-propagation. During the forward pass, we convolve
each filter across the width and height of the input volume and compute
dot products between the entries of the filter and the input at any position.
In this work, we consider the size of the filter as a hyper-parameter and
we evaluated our system on different filter sizes, specifically f1 = nin and
f2 = {3, 7, 9}.

Since the size of the features obtained from the convolutional layer is higher
that the size of the input, we add a max-pooling layer after the convolu-
tional layer. Max-pooling is a popular technique in image processing which
is a form of non-linear down-sampling. The main idea is to partition convo-
lutional output and to keep the maximum value for each part. In this way,
we perform dimensionality reduction and we obtain robust features.

The result of the convolutional layer is the extraction of continuous space
features. Such a continuous space feature extraction is able to capture more
complex information than simple n-grams. Then, the extracted features are
fed to the next layer for slot filling. In this work, we used one convolu-
tional layer (see Figure 4.6). However, multiple convolutional layers can be
stacked together to model wider range dependencies.

The size of the features is higher that the input and thus we add a max-
pooling layer right after the convolutional layer. The max-pooling layer
performs non-linear down-sampling. In detail, it partitions the input into
a specific number of non-overlapping regions and for each region it out-
puts the maximum elements. It is obvious that by max-pooling we reduce
the amount of parameters and the computations in the network and con-
sequently we control over-fitting. Convolutional nn have been used in:
[19][34][35][36].
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FIGURE 4.2: A Recurrent Neural Network

FIGURE 4.3: A ClockWork Recurrent Neural Network
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FIGURE 4.4: A bidirectional ClockWork Recurrent Neural
Network
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FIGURE 4.5: A hybrid ClockWork Recurrent Neural Net-
work
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FIGURE 4.6: A convolutional ClockWork Recurrent Neural
Network
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FIGURE 4.7: A deep ClockWork Recurrent Neural Network
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Chapter 5

Data and Experiments

5.1 Corpus Analysis

In this work the corpus that we used is the popular and extensively used
Airline Travel Information System (ATIS). ATIS [43] consists of audio record-
ings from speakers which make flight reservations or ask relevant informa-
tion. For each of the recordings there is an annotated sentence as well as an
annotated synchronous semantic interpretation (label) using the BIO (Be-
gin - Inside - Outside) format. In this way, all words have a corresponding
semantic label of either type B, I or O. The ATIS corpus was chosen for
our experiments due to fact that it is the one that has been most used the
by the SLU community particularly for the slot filling task e.g. [28,29,30,31].

In the original data, the training set includes 4978 sentences. These sen-
tences were selected from Class A (context independent) training data in
the ATIS-2 and ATIS-3 corpora. In this work, we used the database used in
[14,9]. In this corpus, the 20 percent of the original training data was ran-
domly sampled and used as the validation set. The rest 80 percent of the
data was used as the model training set. As for the test data, they are from
the ATIS-3 Nov93 and Dec94 datasets and they contain 893 sentences. The
dataset provides us with the training set, the validation set, the test set and
the dictionary (see Table 5.1 and Appendix[A]). For each sentence in each
set we have this information: word id, name entity id and label id (see an
example in Tables 5.2 and 5.3).

In this dataset there are 127 different types of slots (tags), including the
common "null" label. The labels were created by [33] from the original an-
notations. In order to learn directly from data, we fully annotate automat-
ically the train set to get the words/concept pairs. So, first we replace all
class members by their corresponding label. Then we extract the sequence
of concepts from the abstract semantic annotation. And finally, we build
a regular expression to find concepts in words sequence. In this work, we
preprocessed the data as in [14] for our experiments.

An example
In the example demonstrated in Table 5.2, train_lex is the vector with the
word ids. Each word has a unique id. Train_ne is the name entity id. Here
we notice that the words ’pittsburgh’ and ’baltimore’ have a different words
id, but they have the same name entity id since they both are city names.

Furthermore, train_y is the vector which contains the label id of each word.
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ATIS database

vocsize = 572
nclasses = 127

nsentences:
train = 3983

validation = 995

test = 893

TABLE 5.1: Basic information on ATIS dataset

As we see, the words ’pittsburgh’ and ’baltimore’ may have the same name
entity id, but they have different labels as the former is the departure city
and the latter is the destination city.

EXAMPLE
Sentence: what ’s the smallest plane that flies from pittsburgh to baltimore on eight sixteen
train_lex 554 4 481 444 381 480 192 208 379 502 69 358 169 441
train_ne 0 0 0 85 0 0 0 0 18 0 18 0 31 134
train_y 126 126 126 54 126 126 126 126 48 126 78 126 35 126

TABLE 5.2: A user’s utterance example in ATIS

EXAMPLE lex ne y IOB
what 554 0 126 ’O’

’s 4 0 126 ’O’
the 481 0 126 ’O’

smallest 444 85 54 ’B-mod’
plane 381 0 126 ’O’
that 480 0 126 ’O’
flies 192 0 126 ’O’
from 208 0 126 ’O’

pittsburgh 379 18 48 ’B-fromloc.city_name’
to 502 0 126 ’O’

baltimore 69 18 78 ’B-toloc.city_name’
on 358 0 126 ’O’

eight 169 31 35 ’B-depart_time.time’
sixteen 441 134 126 ’I-depart_time.time’

TABLE 5.3: Detailed utterance example in ATIS

5.2 Problems concerning Corpus

The biggest problem with this database is that the training set is too small.
This fact results in finding many previously unseen sequences in the test set.
Another significant category of errors is that we may have partially correct
slot value annotations. For example, the word today can either match the
tag Depart Date.Relative or Arrive Date.Relative. The third type of errors
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exists because of the disability of a model to capture long-term dependen-
cies. This type of errors is our target in this work and it was been exten-
sively analyzed in previous sections. Finally, other types of less errors are
the annotation errors, which means that the slots were assigned the wrong
category or tokenization issues, ill-formulated queries and ambiguous ut-
terances. A more extensive study on the errors related to ATIS can be found
in [31].

5.3 Data Processing

The task of SF is to predict the semantic label for each of the words in the
ATIS sentences. To obtain proper input for our neural network architectures
we need to represent each of the words in the sentences as d-dimensional
feature vectors. Specifically, following the same data processing method
as in [9,44,45] each word in the sentence is represented as an integer cor-
responding to the vocabulary id. Furthermore, for each of the word in the
sentence we apply a context window which creates a vector representation
by embedding the previous nw and the next nw words. In this way, short-
term dependencies can be efficiently represented into the feature vector.
Thus, the sentence is now represented by a matrix of integers. Finally, we
associate this matrix of indexes to randomly selected embeddings which re-
sults to a continuous real-valued representation of the input sentence. Ad-
ditional features could be incorporated into our model, however we use
lexical features which are automatically extracted from word sequences to
keep our model as simple as possible and make the model comparison more
meaningful.

5.4 Evaluation Measures

The target of a classifier is to classify each test data in the correct class. So,
to examine how successful our algorithm is, we calculate the accuracy of
the classifier. As accuracy, we consider the number of the test data which
are classified correctly over the total number of the test data. The formula
which describes the accuracy of a classifier is:

Accuracy = #Correctly classified test data
#Total test data · 100(%)

When we want to evaluate our classifier per class, there are some further
measures we can use [47]. These measures are precision and recall. First,
we define the terms tp, fp, tn, fn:

• tp (true positive): the number of the data which are classified correctly

• fp (false positive): the number of the data which are not classified
correctly

• tn (true negative): the number of the data which should not be classi-
fied in a class and they weren’t
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• fn (false negative): the number of the data which should not be clas-
sified in a class but they were

Now we can define precision (Prec) and recall (Rec) as:

Prec = tp
tp+fp and Rec = tp

tp+fn

Precision can be considered as a measure of exactness or quality. More
specifically, high precision means that an algorithm returned substantially
more relevant results than irrelevant. On the other hand, recall is a measure
of completeness or quantity. For instance, high recall means that an algo-
rithm returned most of the relevant results [24].

Since we have more than two classes we need to find a way to combine
the precision and recall we get from each class into one measure, since it
is often useful to have a single measure. There are two ways to combine
multiple performance measures into one quantity:

- Macro-averaging: compute performance for each class, then average.
- Micro-averaging: collect decisions for all classes, compute contingency ta-
ble, evaluate.

So first the macro-averaged or micro-averaged precision and recall should
be evaluated. Then, the combination of these two measures is the F-measure
or balanced F-score (F1 score). The F1 score is the harmonic mean of preci-
sion and recall:

F1 = 2·Prec·Rec
Prec+Rec

Similarly to other works, in our experiments we evaluated our model per-
formance using the macro F 1 score, the script of which was provided in the
text chunking CoNLL shared task 2000 [46].

5.5 Baseline

Here we provide a brief description of the baseline models. In order to eval-
uate the results of our artificial neural network, we need to use the reported
results of these relevant models and compare them with the results of this
work in a following section. All the compared algorithms are applied on
the same train and test dataset.

RNN

Yao in [14] trained a simple RNN. The model contained 200 hidden layer.
The input was continuous space embedding of words. Two words of look-
ahead was used and from the results it is obvious that it is a lot better than
not using words of look-ahead, especially for networks of small size. We
notice in the results that different numbers of hidden layers with over 100
layers perform almost the same. The highest performance of this simple
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model measured with the F1-score is 94.11%. For further improvement of
the performance named entity features were also used. In this way, 3% im-
provement was achieved. Since, the features are highly related to the final
output labels, this was expected. In other experiments, Yao used bag-of-
words as input to the RNN and showed that the model is improved using
bag-of-words input. The combination of the last two improvements, bag-
of-words and named-entity features, resulted in the highest score which
was 96.60%.

CNN-CRF

Xu and Sarikaya in [19] proposed a CNN-CRF. The CNN extracts features
and the CRF performs the classification task. The input was 30 dimensional
word vectors. The hidden layer of the CNN contained 110 dimensional hid-
den features from the context window size 5. In the experiments only lex-
ical features automatically extracted from word sequences were used. Xu
and Sarikaya jointly performed intent determination and slot filling. Their
proposed CNN based TriCRF outperforms the simple TriCRF. The highest
performance of this simple model measured with the F1-score is 94.35%.

Bi-directional RNN

Mesnil in [9] tried to benefit from both future and past information. To
do so, he tested a bidirectional recurrent neural network. The bidirectional
model combines the past and future information through its hidden state.
The input with a context window is the input of the model in order to en-
code the future and past information together. Mesnil conducted 200 exper-
iments with random sampling [8] of the hyper-parameters. For the context
window the sizes tested where 3, 5, ... , 17. For the word embeddings the di-
mensions checked where 50 and 100 where the embedding matrix and the
weight matrices were randomly initialized from the uniform of range [-1,1].
The regularization method was early-stopping over 100 epochs. From the
results we see that the context window does not provide improvements to
the bidirectional architecture. The highest performance of the bidirectional
RNN measured with the F1-score is 94.73%.

LSTM and Deep LSTM

Yao in [15] proposed the LSTM and the Deep LSTM models. In the LSTM
the input word in a context window of size 3 is fed to the model. For the
simple LSTM 300 hidden layers and minibatches of size 30 were used. In
the case of the deep LSTM Yao used 200 hidden layers for the lower LSTM
and 300 hidden layers for the upper LSTM and the minibatch size was 10.
Measured with the F1-score, the highest performance for the LSTM was
94.85% whereas for the Deep LSTM 95.08%.

RNN-SOP

In [25] Liu and Lane proposed the Structured Output Prediction Recur-
rent Neural Network (RNN-SOP). For the input of the network only word
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features are used. Both dropout and L2 regularization were used to pre-
vent overfitting but the improvement was limited for ATIS slot filling task.
Liu and Lane used context window of size 4 in order to incorporate future
context features. In the experiments the Pi was set to values from 0.20 to
1.0. Measured with the F1-score, the highest performance for the RNN-SOP
achieved was 94.89% with Pi = 0.8.

Hybrid RNN

Mesnil in [9] experimented with the Hybrid RNN. The hybrid model out-
performed the simple RNN. n the experiments, the highest performance of
the bidirectional RNN measured with the F1-score is 95.06%. Mesnil con-
ducted 200 experiments with random sampling [8] of the hyper-parameters.
For the context window the sizes tested where 3, 5, ... , 17. For the word em-
beddings the dimensions checked where 50 and 100 where the embedding
matrix and the weight matrices were randomly initialized from the uniform
of range [-1,1]. The regularization method was early-stopping over 100
epochs. For further improvement of the performance, he concatenated the
Named Entity (NE) information feature as a one-hot vector feeding both to
the context window input and the softmax layer. In the case of ATIS dataset,
he used the gazetteers of flight related entities, e.g. airline as named enti-
ties. The results showed gains for all the methods tested.

RNN-EM

In [17] Peng and Yao proposed the RNN-EM. In the experiments the input
has a context window of size 3. During the training procedure AdaDelta
was applied for the gradients update. The model runs for 50 epochs. The
highest performance for the RNN-EM was achieved for 100 hidden layers
and 8 memory slots each of dimension 40. The RNN-EM performed LSTM
by almost 0.38% and the highest performance measured with the F1-score
was 95.22%.

Bidirectional RNN with ranking loss (R-biRNN)

In [22], a Bidirectional RNN with ranking loss was proposed. The model is
trained with stochastic gradient descent in 25 epochs. The activation func-
tion that was used is the sigmoid function. The regularization technique
was L2 regularization with weight 1e-7. The mini batch size was 1 and
100 hidden layers were used. Techniques like AdaGrad [26] and AdaDelta
[27] were also used. Wherever the learning schedule does not need cross-
validation, the model was fed with all the training data. The highest F1-
score achieved by the simple form of the model R-biRNN is 95.47%. For
further improvement of the performance they trained 5 models with dif-
ferent initializations and combined them. In case of a tie, one of the most
frequent classes is randomly picked. In this way the F1-score is 95.56%.

Recurrent Support Vector Machines For Slot Tagging In Spoken Lan-
guage Understanding

In [21] Recurrent Support Vector Machines (RSVMs) were used for the slot
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filling task. For the input only lexical features are used. During training
with 20 epochs, the learning rate changes by AdaGrad [32]. Furthermore,
300 hidden layers were used as well as the two surrounding words of each
word are used as bag of words. In the experiments, 10 models are trained.
Each model has the same parameters but different random initialization.
The highest F1-score achieved is 95.5%.

Encoder-labeler LSTM(W) and Encoder-labeler Deep LSTM(W)

In [18], Kurata,Xiang, Zhou, Yu proposed the Encoder-labeler LSTM(W).
They used word embeddings of dimension 30, with context window of
size 0, 1, 2. The size of hidden units in the LSTM was 100, 200, 300. The
model runs for 100 epochs during the training process. The highest F1-
score achieved was 95.4%. Using both a labeler LSTM(W) and a labeler
LSTM(W+L), they got improvement by explicitly modeling label depen-
dencies. In [18], an encoder-labeler deep LSTM(W) is also proposed. In
both models, the hyper-parameter were randomly searched as proposed in
[8]. For the encoder-labeler deep LSTM(W), they used word embeddings
of dimension 30, 50, 75, with context window of size 0, 1, 2. The size of
hidden units in the LSTM was 100, 150, 200, 250, 300. The highest F1-score
achieved is 95.66%.

Attention-Based Recurrent Neural Networks

In this category, we have two attention-based encoder-decoder neural net-
work models which have recently shown promising results. K-SAN [41]
learns the representation for the whole sentence by paying different atten-
tion on the substructures and leverages prior knowledge as guidance to
incorporate non-flat topologies. It has better generalization and robustness
and its performance reaches 95%. The second and most important model
in this category is an attention-based RNN model for joint intent detection
and slot filling [40]. A bidirectional RNN reads the input sentence forward
and backward, and at each time step, the concatenated forward and back-
ward hidden states is used to predict the slot label. This attention-based
bidirectional RNN model jointly deals with intent detection and slot filling.
This joint model appears to simplify the dialog system, as only one model
needs to be trained and deployed. Finally, this model achieved state-of-the-
art performance, 95.78% for slot filling, on the benchmark ATIS task.

5.6 Data Processing

Reading directly from the database we need to transport our data in a
proper way so that they can be the input of our neural network (see Fig-
ure 5.1).

• A sentence is a sequence of words. Each word being listed in a vocab-
ulary table can be associated to a specific word id.
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model F1(%)
RNN 94.11

CNN-CRF 94.35
Bi-directional RNN 94.73

LSTM 94.85
RNN-SOP 94.89

K-SAN 95.00
Hybrid RNN 95.06
Deep LSTM 95.08

RNN-EM 95.22
Encoder-labeler LSTM(W) 95.40

CNN TriCRF 95.42
R-biRNN 95.47

5×R-biRNN 95.56
Bi-directional CNN 95.61

Encoder-labeler Deep LSTM(W) 95.66
Attention-Based RNN 95.78

TABLE 5.4: Baseline F1 scores on ATIS

• So, a sentence can easily be represented by a vector of integers.

• Next, we want to capture short-term dependencies between the words,
so each word is accompanied by the words among which it is located.
To do so, we apply a context window, which means that each word is
not a single number any more, but a vector of numbers including the
previous and the following words in the sentence. Thus, the sentence
is now represented by a matrix of integer numbers.

• Finally, we associate this matrix of indexes to randomly selected em-
beddings which gives a matrix of real numbers.

FIGURE 5.1: Data processing

Now that we have associated every single word to a real-valued vec-
tor, we have a continuous representation of the input to feed the neural
network. Additional features could be incorporated into our model, how-
ever we use lexical features which are automatically extracted from word
sequences to keep our model as simple as possible and make the model
comparison more meaningful.
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Sentence <from montreal to las vegas>
IOB [’O’, ’B-fromloc.city_name’, ’O’, ’B-toloc.city_name’, ’I-toloc.city_name’]

words to indexes [208 319 502 260 539]

TABLE 5.5: Example of a sentence in ATIS

context window
-1, 208, 319

208, 319, 502
319, 502, 260
502, 260, 539
260, 539, -1

TABLE 5.6: context window example

Word Embeddings
-0.06971462, 0.07759826, 0.05064092, ..., 0.06876717, -0.05846993, -0.10999857
-0.06971462, 0.07759826, 0.05064092, ..., 0.10192625, 0.08745284, 0.04919793
-0.06971462, 0.07759826, 0.05064092, ..., -0.01003582, 0.10694719, 0.1247109
0.10038264, -0.10563177, -0.18760249, ..., -0.01003582, 0.10694719, 0.1247109

0.17441745, 0.16767969, -0.069546 , ..., -0.01003582, 0.10694719, 0.1247109

TABLE 5.7: Word Embeddings example

5.7 Experiments and Results

In this section all the experiments and the results are shown. All the exper-
iments were conducted in order to maximize the models F1 score and to do
so, we use the high-level programming language Python. To implement all
the artificial neural networks we used the Theano toolkit [7]. For all of our
neural networks we use random sampling of the hyper-parameters [8] (see
Table 5.8).

parameter value
Context window size {3, 5, 7, 9}

Number of hidden units 200

Dimension of word embedding {50, 100}
Learning rate rand(0.1− 1)

Seed rand(1− 1000)

early-stopping epochs 100
depth {1, 2}

embedding matrix initialization unif(−1, 1)

weight matrices initialization unif(−1, 1)

TABLE 5.8: Model’s parameters
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5.8 Comparison of this work to the state-of-the-art

By construction, CW-RNN has less parameters than an RNN or an LSTM
with the same number of neurons. For instance, assuming that a CW-RNN
has its hidden layer partitioned into m modules and each module consists
of k neurons (figure 5.2), this makes a total of nh = k ×m neurons. Since
each neuron receives input only from the neurons having the same or larger
clock period, the number of parameters for the recurrent matrix U of CW-
RNN is:

parameters(U) =

m∑
j=1

jk2 =
n2h + nhk

2
(5.1)

FIGURE 5.2: CW-RNN modules

For a direct comparison, the recurrent matrix of a similar sized RNN
has n2h parameters which means that the RNN has 2m

m+1 more parameters
than the CW-RNN. For instance, for am+1 typical experiment withm = 4,
the number of RNN parameters are 1.6 times more than the corresponding
CW-RNN. Furthermore, although both the CW-RNN and the RNN have
the same number of input connections, which are represented by matrix W
this is not the case when LSTMs are considered. The blocks of an LSTM are
described by 7 interconnection matrices, which account for 7× n2h parame-
ters, and by 4 input matrices.

The CW-RNN also reduces the vanishing gradient problem which is
prominent to other RNN-based architectures. Since a module i with pe-
riod Ti is updated every Ti time steps and the back-propagation in time is
also performed with steps of length Ti, the error signal for slow modules
remains strong enough during longer time intervals. For example, given a
sequence {(xi, yi)|i = 1, . . . , N} of data sample pairs, the parameter estima-
tion formula for the slowest module m of the CW-RNN are identical to the
formula corresponding to an RNN having the same size as the module m
and is estimated from the following sequence of data samples:

{(x1, ȳt), (xTm+1, ȳTm+1), (x2Tm+1, ȳ2Tm+1), . . .}

where xt is now sampled at t ∈ {1, Tm + 1, 2Tm + 1, 3Tm + 1, . . .}, in-
stead of t ∈ {1, 2, . . .} in the Vanilla RNN. The mean value ȳiTm+1 of yt
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for iTm + 1 ≤ t ≤ (i+ 1)Tm ,i ∈ {0, 1, . . .}, is defined as:

ȳiTm+1 =
1

Tm

(i+1)Tm∑
t=iTm+1

yt (5.2)

Table 5.11 demonstrates the results of all the models implemented in
this work and in table 5.3 we compare our results to the baseline results.
Although we did not achieve state-of-the-art results, we managed to out-
perform some more complex models.

In Figure 5.3 we provide some statistics for a single experiment, where
we can clearly observe that there is not parameter to guarantee generally
high performance. The purpose of these diagrams is to show that we can-
not predict the behavior of the model when changing the hyper-parameters
and thus, for different data, the parameters of the model must be searched.

model F1(%)

Convolutional CW-RNN 95.44
Bi-directional CW-RNN 95.31

Hybrid CW-RNN 95.25
CW-RNN 95.23

dropConnect CW-RNN 95.21
Deep CW-RNN 94.65

TABLE 5.9: Results of this work
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model F1(%)
RNN 94.11

CNN-CRF 94.35
Bi-directional RNN 94.73

LSTM 94.85
RNN-SOP 94.89

K-SAN 95.00
Hybrid RNN 95.06
Deep LSTM 95.08

RNN-EM 95.22
CW-RNN 95.23

Hybrid CW-RNN 95.25
Bi-directional CW-RNN 95.31

Encoder-labeler LSTM(W) 95.40
CNN TriCRF 95.42

Convolutional CW-RNN 95.44
R-biRNN 95.47

RSVM 95.50
5×R-biRNN 95.56

Bi-directional CNN 95.61
Encoder-labeler Deep LSTM(W) 95.66

Attention-Based RNN 95.78

TABLE 5.10: Best F1 scores on ATIS

Architecture CW-RNN Vanilla RNN
Elman-type 95.23 94.98

Hybrid 95.25 95.06
Bi-directional 95.31 94.73

TABLE 5.11: F1-scores of CW-models in this work com-
pared to their simple versions for the same number of hid-

den units
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FIGURE 5.3: an example of the experiments
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Chapter 6

Concluding remarks and future
work

6.1 Concluding remarks

In this work, we presented a modified Recurrent Neural Network to per-
form a language understanding task and specifically the slot filling task
in order to automatically extract significant information from utterances.
Based on the RNN proposed in [9] we managed to boost the performance
of this neural network without actually changing its architecture. More
specifically, we created a simple RNN, then we broke it in 4 parts and we
forced each part to run in an individual pace.

With this simple modification the ClockWork-RNN outperformed the
simple RNN by 0.25%. Moreover, the hybrid version of our ClockWork-
RNN outperformed the simple hybrid RNN by 0.19% and the bidirectional
version of the ClockWork-RNN outperformed the simple bidirectional RNN
by 0.58%. The Convolutional CW-RNN, which is a novel architecture pro-
posed in the present work, led to even higher performance than these mod-
els and gave comparative to the state-of-the-art results.

The interesting part of the present work is that the slot filling task is
dealt with a neural network architecture which manages to overcome the
difficulties of the simple RNN, while at the same time, it has some superior
features. More specifically, the Clockwork RNN is able to expand its mem-
ory exploiting its own structure, without using further external memory.
By succeeding that, a CW-RNN can capture long-term dependencies and it
reduces the vanishing gradient problem. As for the superior features, the
CW-RNN architecture has less number of parameters than in the case of the
simple RNN (almost the half parameters). Thus, the CW-RNN needs fewer
operations per time step, so it is faster than RNN. Actually, the overall CW-
RNN speed-up over RRN is m/4.

The importance of the proposed model lies on the fact that it provides an
artificial neural network which could substitute the simple RNN wherever
the latter is used in more complex architectures. It would be very interest-
ing to find out if the baseline models could be boosted, by such a simple
modification.
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6.2 Future work

As future work, we have plenty possible extensions of the work. As previ-
ously mentioned, it would be very intriguing to test the performance of all
the baseline models by substituting the simple RNN with the ClockWork-
RNN in order to enhance these architectures. Another area of interest would
be to check the adaptability of the proposed neural network when testing
other datasets.

Furthermore, we are interesting in exploring new types of artificial Neu-
ral Networks to deal with noise owing to either recognition errors or speaker’s
error such as hesitations or side-speech.

Finally, our biggest interest is to search the possibilities of building a
neural network for dialog state tracking, where the basic idea is to take into
account the dialog history.
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Appendix A

Appendix

ATIS Vocabulary and Classes

WORDS

0: "’d", 1: "’ll", 2: "’m", 3: "’re", 4: "’s", 5: "’t", 6: ’72s’, 7: ’<UNK>’, 8: ’DIGIT’,
9: ’DIGITDIGIT’, 10: ’DIGITDIGITDIGIT’, 11: ’DIGITDIGITDIGITDIGIT’,
12: ’DIGITDIGITDIGITDIGITDIGITDIGIT’,

13: ’a’, 14: ’abbreviation’, 15: ’abbreviations’, 16: ’about’, 17: ’ac’, 18: ’ac-
tually’, 19: ’after’, 20: ’afternoon’, 21: ’again’, 22: ’air’, 23: ’aircraft’, 24:
’airfare’, 25: ’airline’, 26: ’airlines’, 27: ’airplane’, 28: ’airplanes’, 29: ’air-
port’, 30: ’airports’, 31: ’alaska’, 32: ’all’, 33: ’along’, 34: ’also’, 35: ’am’,
36: ’america’, 37: ’american’, 38: ’amount’, 39: ’an’, 40: ’and’, 41: ’angeles’,
42: ’another’, 43: ’any’, 44: ’anywhere’, 45: ’ap’, 46: ’ap57’, 47: ’ap80’, 48:
’approximately’, 49: ’april’, 50: ’are’, 51: ’area’, 52: ’arizona’, 53: ’around’,
54: ’arrange’, 55: ’arrangements’, 56: ’arrival’, 57: ’arrivals’, 58: ’arrive’, 59:
’arrives’, 60: ’arriving’, 61: ’as’, 62: ’at’, 63: ’atl’, 64: ’atlanta’, 65: ’august’,
66: ’available’,

67: ’b’, 68: ’back’, 69: ’baltimore’, 70: ’be’, 71: ’beach’, 72: ’before’, 73:
’between’, 74: ’boeing’, 75: ’book’, 76: ’booking’, 77: ’boston’, 78: ’both’, 79:
’bound’, 80: ’breakfast’, 81: ’burbank’, 82: ’business’, 83: ’but’, 84: ’buy’, 85:
’bwi’, 86: ’by’,

87: ’c’, 88: ’california’, 89: ’can’, 90: ’canada’, 91: ’canadian’, 92: ’capacity’,
93: ’car’, 94: ’carolina’, 95: ’carries’, 96: ’cars’, 97: ’charlotte’, 98: ’cheap’,
99: ’cheapest’, 100: ’chicago’, 101: ’choices’, 102: ’cincinnati’, 103: ’cities’,
104: ’city’, 105: ’class’, 106: ’classes’, 107: ’cleveland’, 108: ’close’, 109: ’co’,
110: ’coach’, 111: ’code’, 112: ’codes’, 113: ’colorado’, 114: ’columbus’, 115:
’coming’, 116: ’connect’, 117: ’connecting’, 118: ’connection’, 119: ’connec-
tions’, 120: ’continental’, 121: ’cost’, 122: ’costs’, 123: ’could’, 124: ’county’,
125: ’cp’,

126: ’d’, 127: ’daily’, 128: ’dallas’, 129: ’database’, 130: ’day’, 131: ’days’,
132: ’dc’, 133: ’dc10’, 134: ’december’, 135: ’define’, 136: ’delta’, 137: ’den-
ver’, 138: ’depart’, 139: ’departing’, 140: ’departs’, 141: ’departure’, 142:
’departures’, 143: ’describe’, 144: ’destination’, 145: ’detroit’, 146: ’dfw’,
147: ’diego’, 148: ’difference’, 149: ’different’, 150: ’dinner’, 151: ’dinner-
time’, 152: ’direct’, 153: ’display’, 154: ’distance’, 155: ’dl’, 156: ’do’, 157:
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’does’, 158: ’dollars’, 159: ’downtown’, 160: ’dulles’, 161: ’during’,

162: ’ea’, 163: ’each’, 164: ’earlier’, 165: ’earliest’, 166: ’early’, 167: ’eastern’,
168: ’economy’, 169: ’eight’, 170: ’eighteenth’, 171: ’eighth’, 172: ’either’,
173: ’eleventh’, 174: ’evening’, 175: ’ewr’, 176: ’expensive’, 177: ’explain’,
178: ’express’,

179: ’f’, 180: ’f28’, 181: ’far’, 182: ’fare’, 183: ’fares’, 184: ’february’, 185:
’ff’, 186: ’field’, 187: ’fifteenth’, 188: ’fifth’, 189: ’find’, 190: ’first’, 191: ’fit’,
192: ’flies’, 193: ’flight’, 194: ’flights’, 195: ’florida’, 196: ’fly’, 197: ’flying’,
198: ’fn’, 199: ’following’, 200: ’for’, 201: ’fort’, 202: ’four’, 203: ’fourteenth’,
204: ’fourth’, 205: ’francisco’, 206: ’friday’, 207: ’friends’, 208: ’from’,

209: ’general’, 210: ’georgia’, 211: ’get’, 212: ’give’, 213: ’go’, 214: ’goes’,
215: ’going’, 216: ’great’, 217: ’ground’, 218: ’guardia’,

219: ’h’, 220: ’has’, 221: ’have’, 222: ’heading’, 223: ’hello’, 224: ’help’,
225: ’here’, 226: ’hi’, 227: ’highest’, 228: ’hours’, 229: ’houston’, 230: ’how’,
231: ’hp’,

232: ’i’, 233: ’if’, 234: ’in’, 235: ’include’, 236: ’indianapolis’, 237: ’infor-
mation’, 238: ’interested’, 239: ’international’, 240: ’into’, 241: ’is’, 242: ’it’,
243: ’itinerary’,

244: ’january’, 245: ’jersey’, 246: ’jfk’, 247: ’jose’, 248: ’july’, 249: ’june’,
250: ’just’,

251: ’kansas’, 252: ’kind’, 253: ’kinds’, 254: ’know’,

255: ’la’, 256: ’lake’, 257: ’land’, 258: ’landing’, 259: ’landings’, 260: ’las’,
261: ’last’, 262: ’lastest’, 263: ’late’, 264: ’later’, 265: ’latest’, 266: ’layover’,
267: ’least’, 268: ’leave’, 269: ’leaves’, 270: ’leaving’, 271: ’less’, 272: ’let’,
273: ’like’, 274: ’limo’, 275: ’limousine’, 276: ’list’, 277: ’listing’, 278: ’live’,
279: ’lives’, 280: ’located’, 281: ’logan’, 282: ’long’, 283: ’look’, 284: ’look-
ing’, 285: ’los’, 286: ’louis’, 287: ’love’, 288: ’lowest’, 289: ’lufthansa’, 290:
’lunch’,

291: ’m’, 292: ’m80’, 293: ’make’, 294: ’makes’, 295: ’making’, 296: ’many’,
297: ’march’, 298: ’maximum’, 299: ’may’, 300: ’mco’, 301: ’me’, 302: ’meal’,
303: ’meals’, 304: ’mean’, 305: ’meaning’, 306: ’memphis’, 307: ’miami’, 308:
’michigan’, 309: ’midnight’, 310: ’midway’, 311: ’midwest’, 312: ’milwau-
kee’, 313: ’minneapolis’, 314: ’minnesota’, 315: ’missouri’, 316: ’mitchell’,
317: ’monday’, 318: ’month’, 319: ’montreal’, 320: ’more’, 321: ’morning’,
322: ’mornings’, 323: ’most’, 324: ’much’, 325: ’my’,

326: ’name’, 327: ’names’, 328: ’nashville’, 329: ’nationair’, 330: ’near’,
331: ’need’, 332: ’new’, 333: ’newark’, 334: ’next’, 335: ’night’, 336: ’nine-
teenth’, 337: ’ninth’, 338: ’no’, 339: ’nonstop’, 340: ’nonstops’, 341: ’noon’,
342: ’noontime’, 343: ’north’, 344: ’northwest’, 345: ’november’, 346: ’now’,
347: ’number’, 348: ’numbers’, 349: ’nw’,
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350: "o’clock", 351: ’oakland’, 352: ’october’, 353: ’of’, 354: ’offer’, 355:
’offers’, 356: ’ohio’, 357: ’okay’, 358: ’on’, 359: ’one’, 360: ’only’, 361: ’on-
tario’, 362: ’options’, 363: ’or’, 364: ’ord’, 365: ’originate’, 366: ’originating’,
367: ’orlando’, 368: ’other’, 369: ’out’, 370: ’over’,

371: ’passengers’, 372: ’paul’, 373: ’pennsylvania’, 374: ’people’, 375: ’pe-
tersburg’, 376: ’philadelphia’, 377: ’philly’, 378: ’phoenix’, 379: ’pittsburgh’,
380: ’plan’, 381: ’plane’, 382: ’planes’, 383: ’please’, 384: ’pm’, 385: ’possi-
ble’, 386: ’price’, 387: ’prices’, 388: ’provide’, 389: ’provided’,

390: ’q’, 391: ’qo’, 392: ’quebec’, 393: ’qw’, 394: ’qx’,

395: ’rate’, 396: ’rates’, 397: ’reaching’, 398: ’rent’, 399: ’rental’, 400: ’rentals’,
401: ’repeat’, 402: ’requesting’, 403: ’reservation’, 404: ’reservations’, 405:
’restriction’, 406: ’restrictions’, 407: ’return’, 408: ’returning’, 409: ’right’,
410: ’round’,

411: ’s’, 412: ’sa’, 413: ’salt’, 414: ’same’, 415: ’san’, 416: ’saturday’, 417:
’saturdays’, 418: ’say’, 419: ’schedule’, 420: ’schedules’, 421: ’seating’, 422:
’seats’, 423: ’seattle’, 424: ’second’, 425: ’see’, 426: ’september’, 427: ’serve’,
428: ’served’, 429: ’serves’, 430: ’service’, 431: ’serviced’, 432: ’services’, 433:
’serving’, 434: ’seventeenth’, 435: ’seventh’, 436: ’sfo’, 437: ’shortest’, 438:
’should’, 439: ’show’, 440: ’six’, 441: ’sixteen’, 442: ’sixteenth’, 443: ’sixth’,
444: ’smallest’, 445: ’snack’, 446: ’so’, 447: ’some’, 448: ’sometime’, 449:
’soon’, 450: ’sorry’, 451: ’southwest’, 452: ’st.’, 453: ’stand’, 454: ’stands’,
455: ’stapleton’, 456: ’starting’, 457: ’still’, 458: ’stop’, 459: ’stopover’, 460:
’stopovers’, 461: ’stopping’, 462: ’stops’, 463: ’sunday’, 464: ’sundays’, 465:
’sure’,

466: ’tacoma’, 467: ’take’, 468: ’takeoff’, 469: ’takeoffs’, 470: ’taking’, 471:
’tampa’, 472: ’taxi’, 473: ’tell’, 474: ’ten’, 475: ’tennessee’, 476: ’tenth’, 477:
’texas’, 478: ’than’, 479: ’thank’, 480: ’that’, 481: ’the’, 482: ’their’, 483:
’then’, 484: ’there’, 485: ’these’, 486: ’they’, 487: ’third’, 488: ’thirteenth’,
489: ’thirtieth’, 490: ’thirty’, 491: ’this’, 492: ’those’, 493: ’three’, 494: ’thrift’,
495: ’through’, 496: ’thursday’, 497: ’thursdays’, 498: ’ticket’, 499: ’tickets’,
500: ’time’, 501: ’times’, 502: ’to’, 503: ’today’, 504: ’tomorrow’, 505: ’too’,
506: ’toronto’, 507: ’total’, 508: ’tower’, 509: ’train’, 510: ’transcontinen-
tal’, 511: ’transport’, 512: ’transportation’, 513: ’travel’, 514: ’traveling’, 515:
’trip’, 516: ’trips’, 517: ’trying’, 518: ’tuesday’, 519: ’tuesdays’, 520: ’turbo-
prop’, 521: ’twa’, 522: ’twelfth’, 523: ’twentieth’, 524: ’twenty’, 525: ’two’,
526: ’type’, 527: ’types’,

528: ’ua’, 529: ’under’, 530: ’united’, 531: ’up’, 532: ’us’, 533: ’use’, 534:
’used’, 535: ’uses’, 536: ’using’, 537: ’utah’,

538: ’various’, 539: ’vegas’, 540: ’very’, 541: ’via’,

542: ’want’, 543: ’washington’, 544: ’way’, 545: ’we’, 546: ’wednesday’, 547:
’wednesdays’, 548: ’week’, 549: ’weekday’, 550: ’weekdays’, 551: ’well’,
552: ’west’, 553: ’westchester’, 554: ’what’, 555: ’when’, 556: ’where’, 557:
’which’, 558: ’who’, 559: ’will’, 560: ’wish’, 561: ’with’, 562: ’within’, 563:
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’without’, 564: ’worth’, 565: ’would’,

566: ’y’, 567: ’yes’, 568: ’yn’, 569: ’york’, 570: ’you’, 571: ’your’

Classes

In this section we provide the reader with a table containing all the pos-
sible slot tags or labels as it is used to calling them. These labels, shown in
Table A.1, are really descriptive and one can understand easily what kind
of information it would include. The tag which is not so obvious is the ’O’.
The same is for the first letter of each tag which is B or I.

These three letters B, I, O represent the words Beginning, Inside and Out-
side respectively. By using this type of tagging we actually represent each
sentence with the use of the IOB format [https://en.wikipedia.org/wiki
/Inside_Outside_Beginning]. The Inside Outside Beginning (IOB) repre-
sentation is a popular way of tagging in computational linguistics. The let-
ter B is the prefix before a labels which indicates the beginning of a chunk.
For instance, considering that the departure city is ’New York’ the word
’New’ would have the label ’B-fromloc.city_name’, whereas the word ’York’
would have the label ’I-fromloc.city_name’. B is also used when a tag is fol-
lowed by a tag of the same type without O tokens between them.

Similarly, the letter I is the prefix of a label indicates that the label is in-
side a chunk. Finally, the letter O indicates that a token does not belong to
chunk, which in practice means that the specific word is of no interest for
the specific task.
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ATIS Classes
0: ’B-aircraft_code’ 1:’B-airline_code’
2: ’B-airline_name’ 3: ’B-airport_code’
4: ’B-airport_name’ 5: ’B-arrive_date.date_relative’

6: ’B-arrive_date.day_name’ 7:’B-arrive_date.day_number’
8: ’B-arrive_date.month_name’ 9: ’B-arrive_date.today_relative’

10: ’B-arrive_time.end_time’ 11:’B-arrive_time.period_mod’
12: ’B-arrive_time.period_of_day’ 13: ’B-arrive_time.start_time’

14: ’B-arrive_time.time’ 15: ’B-arrive_time.time_relative’
16: ’B-booking_class’ 17: ’B-city_name’

18: ’B-class_type’ 19: ’B-compartment’
20: ’B-connect’ 21: ’B-cost_relative’

22: ’B-day_name’ 23: ’B-day_number’
24: ’B-days_code’ 25: ’B-depart_date.date_relative’

26: ’B-depart_date.day_name’ 27: ’B-depart_date.day_number’
28: ’B-depart_date.month_name’ 29: ’B-depart_date.today_relative’

30: ’B-depart_date.year’ 31: ’B-depart_time.end_time’
32: ’B-depart_time.period_mod’ 33: ’B-depart_time.period_of_day’

34: ’B-depart_time.start_time’ 35: ’B-depart_time.time’
36: ’B-depart_time.time_relative’ 37: ’B-economy’

38: ’B-fare_amount’ 39: ’B-fare_basis_code’
40: ’B-flight’ 41: ’B-flight_days’

42: ’B-flight_mod’ 43: ’B-flight_number’
44: ’B-flight_stop’ 45: ’B-flight_time’

46: ’B-fromloc.airport_code’ 47: ’B-fromloc.airport_name’
48: ’B-fromloc.city_name’ 49: ’B-fromloc.state_code’
50: ’B-fromloc.state_name’ 51: ’B-meal’

52: ’B-meal_code’ 53: ’B-meal_description’
54: ’B-mod’ 55: ’B-month_name’

56: ’B-or’ 57: ’B-period_of_day’
58: ’B-restriction_code’ 59: ’B-return_date.date_relative’

60: ’B-return_date.day_name’ 61: ’B-return_date.day_number’
62: ’B-return_date.month_name’ 63: ’B-return_date.today_relative’
64: ’B-return_time.period_mod’ 65: ’B-return_time.period_of_day’

66: ’B-round_trip’ 67: ’B-state_code’
68: ’B-state_name’ 69: ’B-stoploc.airport_code’

TABLE A.1: ATIS dataset classes(1)
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ATIS Classes
70: ’B-stoploc.airport_name’ 71: ’B-stoploc.city_name’

72: ’B-stoploc.state_code’ 73: ’B-time’
74: ’B-time_relative’ 75: ’B-today_relative’

76: ’B-toloc.airport_code’ 77: ’B-toloc.airport_name’
78: ’B-toloc.city_name’ 79: ’B-toloc.country_name’
80: ’B-toloc.state_code’ 81: ’B-toloc.state_name’
82: ’B-transport_type’ 83: ’I-airline_name’
84: ’I-airport_name’ 85: ’I-arrive_date.day_number’

86: ’I-arrive_time.end_time’ 87: ’I-arrive_time.period_of_day’
88: ’I-arrive_time.start_time’ 89: ’I-arrive_time.time’

90: ’I-arrive_time.time_relative’ 91: ’I-city_name’
92: ’I-class_type’ 93: ’I-cost_relative’

94: ’I-depart_date.day_number’ 95: ’I-depart_date.today_relative’
96: ’I-depart_time.end_time’ 97: ’I-depart_time.period_of_day’
98: ’I-depart_time.start_time’ 99: ’I-depart_time.time’

100: ’I-depart_time.time_relative’ 101: ’I-economy’
102: ’I-fare_amount’ 103: ’I-fare_basis_code’
104: ’I-flight_mod’ 105: ’I-flight_number’
106: ’I-flight_stop’ 107: ’I-flight_time’

108: ’I-fromloc.airport_name’ 109: ’I-fromloc.city_name’
110: ’I-fromloc.state_name’ 111: ’I-meal_code’

112: ’I-meal_description’ 113: ’I-restriction_code’
114: ’I-return_date.date_relative’ 115: ’I-return_date.day_number’

116: ’I-return_date.today_relative’ 117: ’I-round_trip’
118: ’I-state_name’ 119: ’I-stoploc.city_name’

120: ’I-time’ 121: ’I-today_relative’
122: ’I-toloc.airport_name’ 123: ’I-toloc.city_name’
124: ’I-toloc.state_name’ 125: ’I-transport_type’

126: ’O’

TABLE A.2: ATIS dataset classes(2)
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