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Abstract

Cyber-Physical Systems (CPSs) are widely used in many applications that require physi-
cal inputs and outputs. A CPS usually combines a set of hardware-software components
to achieve optimal application execution in terms of performance and energy consumption.
An important ability and requirement of CPSs is to be scalable through modularity,
making them cost effective and providing enough computational power for the assigned
tasks.

This thesis is the result of our efforts to design and implement a cost-effective yet efficient
Network Interface (NI) for the AXIOM CPS board and system to achieve said modularity.
The NI has to achieve high throughput, with remote access to the memory, and several
different transfer types to accommodate the project’s needs. It also has to be cost
effective, with the minimum possible usage of the board’s available resources and follow
certain guidelines for easy connectivity.
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Chapter 1

Introduction

In recent years, a key research area are Cyber-Physical Systems, as they are tightly
integrated with the Internet and their users, allowing a rapid and close interaction not
only between themselves, but also between them and humans. In CPSs, physical and
software components are deeply intertwined, with the expectation that such systems will
at least react in real-time, provide enough computational power for the assigned tasks,
consume the least possible energy, scale up through modularity and allow for an easy
programmability across performance scaling. Various projects focus on CPSs. One of
them, the AXIOM project aims at researching new software and hardware architectures
for CPSs to meet the above expectations.

1.1 Motivation

This thesis was conceived as part of the AXIOM project, AXIOM being the abbrevi-
ation for Agile, eXtensible, fast I/O Module. The AXIOM project aspires to create
a European-designed and -manufactured single board computer [1.1] that has great
flexibility, energy efficiency and modularity, because of a low-power CPU, an integrated
low-power FPGA, and a fast-and-cheap interconnect, the subject of this thesis, using the
USB type-C connectors. The programming model for the AXIOM board is the OmpSs
from Barcelona Supercomputing Center, offering improved thread management, using the
BSC Mercurium compiler, and running on Linux, with drivers provided as open-source
by the project’s partners. The AXIOM board also has support for Arduino pluggable
boards, called shields, to extend it’s functionality and is provided by SECO.
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This thesis is the result of our efforts to design and implement a cost-effective yet efficient
Network Interface (NI) for the AXIOM CPS board and system to achieve said modularity.
The NI has to achieve high throughput, with remote access to the memory, and several
different transfer types to accommodate the project’s needs. It also has to be cost
effective, with the minimum possible usage of the board’s available resources and follow
certain guidelines for easy connectivity.

Fig. 1.1 AXIOM board

1.2 Thesis Contributions

The Network Interface we designed along with a Router, also designed as part of the
FORTH AXIOM program, constitute the Axiom Interconnect. The Network Interface is
inspired by the FORMIC project, but includes the necessary functionality to facilitate
the needs of the OmpSs programming model. Those features include several transfer
types, that include Remote Direct Memory Access (RDMA) transfers. Another impor-
tant feature is the well thought out Control and Status Registers and the Interrupt system.
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To implement this design, we create three different message controllers, an interrupt
controller, as well as the needed interconnects. We utilize the AXI4 and AXI4-Stream
interfaces provided by Xilinx as well as the provided IPs to implement the FIFOs, the
registers and the DMA engine for our design.

The final result is a working, efficient Network Interface, using a lot of the available
bandwidth, with low usage of the available FPGA resources.

Notably, the NI:

• Supports multiple transfer types

• Supports RDMA transfers

• Has a fully fledged interface to interact with the PS

• Is pipelined for minimal latency and parallel functions

1.3 Thesis Outline

The remainder of this work is organized as follows. In Chapter 2 we review similar work
in whole, or in part to this thesis, and find out what comparisons can be made to our
work. In Chapter 3 we describe the Network Interface Architecture we designed, as well
as the intended functionality. Chapter 4 provides a description of the tools used, the
implementation details of our design, and the resources utilized. In Chapter 5 we analyze
the hardware used and the results we attained. Finally, Chapter 6 entails the conclusions
drawn from this work, as well as proposals for improvements to the efficiency and cost of
our work.





Chapter 2

Related work

As multi- and many-core platforms are becoming an important research subject with
scalability in mind, there has been a need for efficient network interfaces. Two works
that research network interfaces in multi-chip platforms are the FORMIC project and
the SARC project.

The SARC project’s [4] approach to network interfaces for many-core platforms is to
merge the cache controller and the network interface functions by relying on a single
hardware primitive. Depending on the access type and the state of the addressed line,
different responses may be triggered like coherence actions, RDMA, synchronization, or
configurable event notifications. To test the design, benchmark kernels were simulated
on a full-system simulator to compare speedup and network traffic against cache-only
systems with directory-based coherence and prefetchers. The results were 10 to 40%
higher speedup on 64 cores, and a reduction of network traffic by factors of 2 to 4, thus
economizing on energy and power.

S. Kavadias et Al [5][6] propose the use of scratch-pad memories, since they allow direct
inter-core communication, with latency and energy advantages over coherent cache-
based communication. They designed a cache-integrated network interface to be used
in multicore architectures, that combine the flexibility of caches and the efficiency of
scratchpad memories. To create the NI they shared the SRAM configurably among
caching, scratchpad, and virtualized NI functions. Their architecture provides local
and remote scratchpad access, to either individual words or multi-word blocks through
RDMA copy. It also supports event responses as a mechanism for software configurable
synchronization primitives. To test their design, they implemented it in a four-core FPGA
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prototype, and evaluated the on-chip communication performance on the prototype as
well as on a CMP simulator with up to 128 cores. The result was efficient synchronization,
low-overhead communication, and amortized-overhead bulk transfers, which allow par-
allelization gains for fine-grain tasks, and efficient exploitation of the hardware bandwidth.

Another approach is the FORMIC [8] project. FORMIC is a novel hardware prototype
board designed specifically to be a cost-efficient building block for scalable systems. It is
minimal in concept, small, has both SRAM and DRAM memories, features convenient
SATA connectors and is optimized to be a part of a larger system. The Formic board has
a 35% bigger FPGA, three times more SRAM, four times more links and costs at most
half as much when compared to the popular Xilinx XUPV5 prototyping platform. Each
FORMIC board consists of a Xilinx Spartan-6 LX150T FPGA, three Cypress 9-Mbit
166-MHz ZBT SRAMs and a single Micron 1-Gbit 400-MHz DDR2 SDRAM chip. Each
SRAM offers a raw bandwidth of 5.3 Gbps and the DRAM has a peak bandwidth of 12.8
Gbps. To test the Formic board, a hardware design project based on the SARC project
was used. A full network-on-chip centered around a 22-port crossbar was designed for
scalability. A 64-board system with 512 cores that is MicroBlaze-based, non-coherent,
with DMA capabilities and with full network-on-chip in a 3D-mesh topology was built
and tested. This hardware architecture was used in the ENCORE project, as the basis
of a manycore, task-based runtime system.



Chapter 3

NI architecture

The NI we designed and implemented has to communicate with the Processing System
(PS) of the AXIOM board, through four FIFOs, two Rx and two Tx, to send descriptors
that the NI transforms to packets, or receive descriptors of the incoming packets. It also
communicates with the Router, by sending or receiving packets.

Two basic functions are supported, the transfer of data from and to the PS, from
now on referred to as Raw transfer category, and the transfer of data directly from and
to the memory of the PS with the use of a DMA engine, from now on referred to as
RDMA transfer category, as shown in figure 3.1. To initiate a transfer, the PS sends
the corresponding descriptor to the NI. The Raw transfers are single packet transfers
with a max payload of 255 Bytes. The RDMA transfers allow for a max payload of
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64 KBytes per transfer, as they are comprised of multiple packets. Another advantage
RDMA transfers have over Raw transfers is that the payload is read and written without
interaction with the PS, other than writing a Tx Descriptor to start the transfer, and
reading an Rx Descriptor after completion. The RAW transfer category includes the
RAW_NEIGHBOUR and RAW_DATA transfers, and the RDMA transfer category
includes the LONG_DATA, RDMA_WRITE and RDMA_READ transfers.

Fig. 3.1 Available transfers - descriptors

For every transfer, the PS communicates with the NI by writing a Tx descriptor in the
corresponding Tx FIFO to start a transfer, or reading one from the corresponding Rx
FIFO to learn about completed transfers. The NI is responsible for transforming those
descriptors to packets on the sender side, and re-transforming them to descriptors on the
receiver side. For RAW transfers the payload is included in these descriptors, whereas
for RDMA transfers only the address offset and size of the payload in the memory is
included. This way the PS does not have to send the payload to the NI to start the
transfer, and after a completed transfer can read the payload from the memory when
needed.

To control the network traffic three different priorities are used, high, medium and low,
each with its own Virtual Channel (VC). High priority Packets are assigned to VC 2,
Medium priority Packets are assigned to VC 1 and Low priority Packets are assigned to
VC 0.

The NI is comprised of the Tx channel, the Rx channel, the Interrupt Handler, a DMA
engine, the Control Registers and the Status Registers. Figure 3.2 shows the architecture
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of the NI we designed. The Tx Controllers receive the Tx descriptors, transform them
to packets and send them to the Vc FIFOs and then to the Router. The Rx Controller
receives the packets and generates the Rx descriptors. Whenever one of the Tx FIFOs,
while previously full, gets to have empty space, or one of the Rx FIFOs, while previously
empty, gets to have data, an interrupt is generated to inform the PS. Finally, the DMA
engine is responsible for reading and writing the payload for RDMA transfers.

MPSoc

HPC

HPM

IRQ

DDR4

NI status registers

IRQhandler

NI control registers

Datamover

Rx

Rx FIFOs

Tx FIFOs

S, E
N, W

TxDMAController

TxRawController

Tx

rxConf

txConf

RxController

Vc1
Interconnect

Vc1

Vc0

Vc2

All Vcs

Router

*

*Tx_DMA Interconnect

Fig. 3.2 NI architecture

3.1 Supported transfers

To start a transfer, the PS has to send a descriptor to the NI. These descriptors are shown
in table 3.1. For the RAW transfers, the Tx and Rx descriptors have the same structure.
The Raw descriptors have a header with the necessary information for the transfer, and
the payload to be sent. The Tx descriptors have a DESTINATION field, while the Rx
descriptors have a SOURCE field. For the RDMA transfers, the Tx descriptor contains
not only the header, to start the transfer, but also the information needed to get the
payload from the memory, while the descriptor itself does not contain any payload. The
Rx descriptor that is written in the receiver node contains the necessary information for
the PS to get that payload from the memory. An Rx descriptor is also written in the
sender node, and is used to inform the PS if the transfer was successful or not. For the
LONG_DATA transfers, it is not needed for the sender PS to specify where to write
the transmitted payload because that is handled by the receiver PS. There are six main
fields in the descriptor of each packet:
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1. The TYPE field is 3 bits wide and its value is the packet’s type.

2. The PORT field is 3 bits wide and is used by the PS, for example, to encapsulate
Ethernet packets.

3. The DESTINATION field is 8 bits wide and its value is either the Physical Interface
it will be sent from for RAW_NEIGHBOUR transfers or the receiving Node id for
all the other transfers.

4. The SOURCE field is 8 bits wide and its value is either the Physical Interface it
will be received from for RAW_NEIGHBOUR transfers or the sending Node id
for all the other transfers. This value is written in the SOURCE register of the NI
after a discovery protocol is complete and is read by the Tx Controllers to generate
the Headers.

5. The MESSAGE ID field is 8 bits wide and its value is an id given by the PS that
together with the SOURCE and DESTINATION fields create a unique id for each
transfer.

6. The PAYLOAD SIZE field is 8 bits wide for RAW descriptors and 16 bits wide for
RDMA and LONG_DATA descriptors and its value is the size of the payload that
will be transmitted in Bytes.

LONG_DATA and RDMA descriptors have four extra fields depending on whether they
are written or read by the PS:

1. The SRC Addr field is 32 bits wide and its value is the address offset of the memory
that the DMA transfer will start from in the local node.

2. The DST Addr field is 32 bits wide and its value is the address offset of the memory
that the DMA transfer will start from in the remote node.

3. The S field, short for Sender, is 1 bit wide and specifies if this descriptor’s recipient
is the sender of the transfer or not.

4. The E field, short for Error, is 1 bit wide and specifies if the transfer completed
with an error or not.

The packets, as shown in table 3.2, contain the information extracted from the corre-
sponding descriptors, but include two other fields necessary for the transfer and the
payload:
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1. The VC field is 2 bits wide and its value is the priority of the packet depending on
the type. ACK packets are of High priority, RDMA_READ packets are of Low
priority and all the other Packets are of Medium priority.

The ACK and INIT packets are not data packets, but control packets, and do not
contain payload. The ACK packet also contains the ACK Type field with valid types:
RDMA_WRITE, RDMA_READ and LONG_DATA, and the NACK field which specifies
if it is a NACK or an ACK. Finally, the INIT packet contains the INIT Type field with
valid types: RDMA_WRITE, RDMA_READ, and LONG_DATA.
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Table 3.1 descriptors

RAW_NEIGHBOUR /
RAW_DATA descriptor
←− 1 Byte −→
N/U PORT TYPE

SRC / DST
MESSAGE ID

PAYLOAD SIZE
N/U

PAYLOAD Byte 0
...

PAYLOAD Byte n

LONG_DATA
Tx descriptor

←− 1 Byte −→
N/U PORT TYPE

DESTINATION
MESSAGE ID

PAYLOAD SIZE LOW
PAYLOAD SIZE HIGH

SRC Addr 0
SRC Addr 1
SRC Addr 2
SRC Addr 3

RDMA_WRITE /
RDMA_READ
Tx descriptor

←− 1 Byte −→
N/U PORT TYPE

DESTINATION
MESSAGE ID

PAYLOAD SIZE LOW
PAYLOAD SIZE HIGH

SRC Addr 0
SRC Addr 1
SRC Addr 2
SRC Addr 3
DST Addr 0
DST Addr 1
DST Addr 2
DST Addr 3

LONG_DATA /
RDMA_WRITE /

READ Rx descriptor
receiver side

←− 1 Byte −→
S E PORT TYPE

SOURCE
MESSAGE ID

PAYLOAD SIZE LOW
PAYLOAD SIZE HIGH

DST Addr 0
DST Addr 1
DST Addr 2
DST Addr 3

LONG_DATA /
RDMA_WRITE /

READ Rx descriptor
sender side

←− 1 Byte −→
S E PORT TYPE

DESTINATION
MESSAGE ID

PAYLOAD SIZE LOW
PAYLOAD SIZE HIGH
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Table 3.2 packets

RAW packet
←− 1 Byte −→

SOURCE
DESTINATION
MESSAGE ID

VC PORT TYPE
PAYLOAD SIZE

PAYLOAD Byte 0
...

PAYLOAD Byte n

ACK packet
←− 1 Byte −→

SOURCE
DESTINATION
MESSAGE ID

VC PORT TYPE
PAYLOAD SIZE LOW
PAYLOAD SIZE HIGH
NACK ACK Type

INIT packet
←− 1 Byte −→

SOURCE
DESTINATION
MESSAGE ID

VC PORT TYPE
PAYLOAD SIZE LOW
PAYLOAD SIZE HIGH

INIT Type

LONG_DATA packet
←− 1 Byte −→

SOURCE
DESTINATION
MESSAGE ID

VC PORT TYPE
PACKET PAYLOAD

PAYLOAD Byte 0
...

PAYLOAD Byte n

RDMA_WRITE /
RESPONSE packet
←− 1 Byte −→

SOURCE
DESTINATION
MESSAGE ID

VC PORT TYPE
PACKET PAYLOAD

DST Addr 0
DST Addr 1
DST Addr 2
DST Addr 3

PAYLOAD Byte 0
...

PAYLOAD Byte n

RDMA_READ packet
←− 1 Byte −→

SOURCE
DESTINATION
MESSAGE ID

VC PORT TYPE
PAYLOAD SIZE LOW
PAYLOAD SIZE HIGH

SRC Addr 0
SRC Addr 1
SRC Addr 2
SRC Addr 3
DST Addr 0
DST Addr 1
DST Addr 2
DST Addr 3
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RAW_NEIGHBOUR

The RAW_NEIGHBOUR transfer is mainly used along with a discovery protocol that is
run by the main FPGA of the ring or 2-d mesh to locate all the other FPGAs, assign ids
to them and initialize their Routing Tables. Since at initialization the Routing Table for
each FPGA cannot be used, RAW_NEIGHBOUR packets get their DESTINATION in
the form of the Physical Interface they are going to be sent by. When received by the
next FPGA the Router assigns to them the Physical Interface they were received by as
SOURCE and forwards them to the NI. RAW_NEIGHBOUR transfers have a maximum
payload of 255 Bytes, and are of Medium priority.

The RAW_NEIGHBOUR transfer is fairly straightforward. Figure 3.3 is an example of a
RAW_NEIGHBOUR transfer. The PS writes the descriptor in the Tx_RAW FIFO, the
Tx_RAW Controller reads the descriptor and creates the packet. The packet is forwarded
to the Router, through which it is sent to the next node. The receiving router then sends
the packet to the Rx Controller, which creates the Rx descriptor and writes it to the
Rx_RAW FIFO. The receiving PS is informed with an interrupt that the Rx_RAW
FIFO is not empty and can at any time read the descriptor. RAW_NEIGHBOUR
transfers always go from one node to nodes directly connected to it and cannot hop from
node to node.

Fig. 3.3 RAW_NEIGHBOUR transfer
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RAW_DATA

The RAW_DATA transfer is used to send data directly from one PS to another.
RAW_DATA transfers have a maximum payload of 255 Bytes, and are of Medium
priority.

The RAW_DATA transfer is similar to the RAW_NEIGHBOUR transfer. Figure
3.4 is an example of a RAW_DATA transfer. The PS writes the descriptor in the
Tx_RAW FIFO, the Tx_RAW Controller reads the descriptor and creates the packet.
The packet is forwarded to the Router, through which it is sent to the next node. The
receiving Router then checks if it needs to forward the packet to the NI or the next node
of the network. When the packet reaches its destination, it is sent to the Rx Controller,
which creates the Rx descriptor and writes it to the Rx_RAW FIFO. The receiving PS
is informed with an interrupt that the Rx_RAW FIFO is not empty and can at any time
read the descriptor.

Fig. 3.4 RAW_DATA transfer
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LONG_DATA

The LONG_DATA transfer is used to send data from one node’s memory to another’s,
and as such it belongs in the RDMA category. LONG_DATA transfers have a maximum
payload of 64 KBytes and are of Medium priority. They are comprised of three different
types of packets, the INIT packet to start the transfer, the LONG_DATA packets to
transfer the payload 248 Bytes at a time and the ACK/NACK packet to acknowledge
or reject the transfer. LONG_DATA descriptors only include the payload size and the
source address of the memory to read the payload but not the destination address to write
it. That is because, for this type of transfer, a table in the form of BRAM memory exists
that is written by the PS and informs the Rx Controller for where to write incoming
LONG_DATA transfers according to payload size. If an empty space for the transfer is
not found, the transfer is rejected by the receiver.

As with the previous transfers, first the PS writes the descriptor in the Tx_DMA FIFO,
the Tx_DMA Controller reads the descriptor and creates the INIT packet. If node 1
is the sender and node n the receiver, after node’s n Rx Controller receives the INIT
packet, it tries to allocate the necessary resources, such as the counter for the payload,
the destination address and so on. If it is unable to do so the transfer is rejected.

In the case of a rejected transfer, as shown in figure 3.5, it generates a NACK packet
and sends it back. Meanwhile, node’s 1 Tx_DMA Controller has already started a local
DMA read, generating and sending LONG_DATA packets. When the NACK with the
current transfer’s Message ID is received by node’s 1 Rx Controller, a descriptor with S =
1 and E = 1 is written in the Rx_DMA FIFO and the Tx_DMA Controller is informed
about the NACK. It then completes the latest packet, empties the DMA read FIFO and
terminates the transfer. Any packets already sent are skipped by node’s n Rx Controller,
as their id does not belong to an active transfer.
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Fig. 3.5 LONG_DATA rejected transfer

Otherwise, if node’s n Rx Controller allocates the resources it needs successfully, as with
figure 3.6, a NACK is not sent and node’s 1 Tx_DMA Controller generates packets
until the DMA read FIFO empties. Every time node’s n Rx Controller receives a
LONG_DATA packet with this transfer’s Message ID, it starts a local DMA write for
the payload, updates the counters and checks if the transfer counter reached zero. If so,
all the payload is received, and it generates an ACK packet, sends it back to node 1 and
writes a descriptor in the Rx_DMA FIFO. When node’s 1 Rx Controller receives the
ACK, it also writes a descriptor in the Rx_DMA FIFO with S = 1 and the transfer is
completed successfully.

Fig. 3.6 LONG_DATA successful transfer
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RDMA_WRITE

The RDMA_WRITE transfer is very similar to the LONG_DATA transfer. RDMA_WRITE
transfers also have a maximum payload of 64 KBytes and are of Medium priority. They
too are comprised of three different types of packets, the INIT packet to start the
transfer, the RDMA_WRITE packets to transfer the payload 252 Bytes at a time and
the ACK/NACK packet to acknowledge or reject the transfer. The key difference is that
RDMA_WRITE descriptors include the payload size, the source address of the memory
to read the payload from at the sender’s side and the destination address to write it at
the receiver’s side. RDMA_WRITE transfers can also be rejected since only 32 RDMA
transfers can be active at a time. This means that if the network has more than 33 nodes,
and more than 32 of them begin RDMA transfers on the same node at the same time,
any more than the first 32 will be rejected.

As with the previous transfers, first the PS writes the descriptor in the Tx_DMA FIFO,
the Tx_DMA Controller reads the descriptor and creates the INIT packet. If node 1
is the sender and node n the receiver, after node’s n Rx Controller receives the INIT
packet, it tries to allocate the necessary resources, such as the counter for the payload,
the destination address and so on. If it is unable to do so the transfer is rejected.

In the case of a rejected transfer, as shown in figure 3.7, it generates a NACK packet
and sends it back. Meanwhile, node’s 1 Tx_DMA Controller has already started a local
DMA read, generating and sending RDMA_WRITE packets. When the NACK with
the current transfer’s Message ID is received by node’s 1 Rx Controller, a descriptor
with S = 1 and E = 1 is written in the Rx_DMA FIFO and the Tx_DMA Controller is
informed about the NACK. It then completes the latest packet, empties the DMA read
FIFO and terminates the transfer. Any packets already sent are skipped by node’s n Rx
Controller, as their id does not belong to an active transfer.
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Fig. 3.7 RDMA_WRITE rejected transfer

Otherwise, if node’s n Rx Controller allocates the resources it needs successfully, as with
figure 3.8, a NACK is not sent and node’s 1 Tx_DMA Controller generates packets
until the DMA read FIFO empties. In every packet’s destination address the offset
for the payload already sent is added. Every time node’s n Rx Controller receives an
RDMA_WRITE packet with this transfer’s Message ID, it starts a local DMA write
for the payload using the destination included in the packet, updates the counters and
checks if the transfer counter reached zero. If so, it generates an ACK packet, sends
it back to node 1 and writes a descriptor in the Rx_DMA FIFO. When node’s 1 Rx
Controller receives the ACK, it also writes a descriptor in the Rx_DMA FIFO with S =
1 and the transfer is completed successfully.

Fig. 3.8 RDMA_WRITE successful transfer
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RDMA_READ

The RDMA_READ transfer is used to receive data from a remote node instead of sending.
RDMA_READ transfers also have a maximum payload of 64 KBytes, and are of Medium
priority. They are comprised of four different types of packets, the RDMA_READ
packet to request a transfer from the remote node, the INIT packet to start the transfer,
the RDMA_RESPONSE packets to transfer the payload 252 Bytes at a time and the
ACK/NACK packet to acknowledge or reject the transfer. RDMA_READ descriptors
specify both the source address and the destination address, as do RDMA_WRITE
descriptors, only this time the source address is to read data from the remote node and
the destination address is to write the data in the local node. RDMA_READ transfers
can be rejected.

As with the previous transfers, first the PS writes the descriptor in the Tx_DMA FIFO,
the Tx_DMA Controller reads the descriptor and creates the RDMA_READ packet. If
node 1 is the sender and node n the receiver, after node’s n Rx Controller receives the
RDMA_READ packet, it creates an RDMA_RESPONSE descriptor and writes it to
the Tx_DMA FIFO. Node’s n Tx_DMA controller then creates an INIT packet and
sends it to node 1.

In the case of a rejected transfer, as shown in figure 3.9, node 1 generates a NACK packet
and sends it back. Since node 1 initiated the RDMA_READ transfer, a descriptor of
type RDMA_READ with S = 1 and E = 1 is written in the Rx_DMA FIFO. Meanwhile,
node’s n Tx_DMA Controller has already started a local DMA read, generating and
sending RDMA_RESPONSE packets. When the NACK with the current transfer’s
Message ID is received by node’s n Rx Controller the Tx_DMA Controller is informed
about the NACK. It then completes the latest packet, empties the DMA read FIFO and
terminates the transfer. Any packets already sent are skipped by node’s 1 Rx Controller,
as their id does not belong to an active transfer. Node’s n PS is not informed with a
descriptor about the failed transfer.



3.1 Supported transfers | 21

Fig. 3.9 RDMA_READ rejected transfer

Otherwise, if node’s 1 Rx Controller allocates the resources it needs successfully, as with
figure 3.10, a NACK is not sent and node’s n Tx_DMA Controller generates packets
until the DMA read FIFO empties. In every packet’s destination address the offset
for the payload already sent is added. Every time node’s 1 Rx Controller receives an
RDMA_RESPONSE packet with this transfer’s Message ID, it starts a local DMA write
for the payload using the destination included in the packet, updates the counters and
checks if the transfer counter reached zero. If so, it generates an ACK packet, sends
it back to node n and writes a descriptor of type RDMA_READ with S = 1 in the
Rx_DMA FIFO. When node’s n Rx Controller receives the ACK the transfer is completed
successfully. Node’s n PS is not informed with a descriptor about the successful transfer.

Fig. 3.10 RDMA_READ successful transfer
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3.2 Controllers

The Controllers are the most important part of the NI, as they handle the transfers. Each
controller is optimized to perform a certain task with minimum latency and resources. IN
earlier iterations the two Tx Controllers were implemented together as one Controller. But
as RDMA transfers generate many packets per transfer, while RAW transfers generate a
single packet, having a Controller for each transfer allows for RAW packets to be sent
in-between RDMA packets instead of waiting. That is very useful since the destination
can be different and that way RAW transfers are not delayed by RDMA transfers.

Tx_RAW Controller

The Tx_RAW Controller handles the RAW_NEIGHBOUR and RAW_DATA transfers.
It reads descriptors from the Tx_RAW FIFO and generates RAW_NEIGHBOUR or
RAW_DATA packets. To generate the RAW_DATA packets it also reads the Node id
from the corresponding Status Register. RAW transfers are of medium priority, so the
Tx_RAW Controller’s output is sent to the Vc1 FIFO through an interconnect. For every
transfer the Tx_RAW Controller also generates the packet’s destination in the form of
the physical interface it will be sent from and sends it along with the packet to the Router.
For RAW_NEIGHBOUR packets the destination is the descriptor’s DESTINATION
field, already in the form of a physical interface, while for RAW_DATA packets the
descriptor’s DESTINATION field is sent to a Routing Table and the returned value is
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the physical interface.

Figure 3.11 is the FSM of the Tx_Raw Controller. When the Tx_Raw Controller starts
receiving a RAW_DATA descriptor, it reads the Routing Table to get the destination,
and after one clock starts generating the packet. The descriptor is read and the packet is
generated 8 Bytes per clock.

Fig. 3.11 Tx_RAW Controller Packet Generation

Tx_DMA Controller

The Tx_DMA Controller handles the LONG_DATA, RDMA_WRITE and RDMA_READ
transfers. Figure 3.12 is the FSM of the Tx_DMA Controller. It reads descriptors
from the Tx_DMA FIFO, or the Rx Controller and generates INIT, LONG_DATA,
RDMA_WRITE, RDMA_READ and RDMA_RESPONSE packets. It also reads the
Node id from the corresponding Control Register as the Source id. Then it reads the
DMA_START and DMA_END Control registers to get the starting address and the
maximum ending address, to setup the DMA transfer. RDMA_READ packets are of
low priority and they are output to the Vc0 FIFO. All the other packets are of medium
priority, so they are output to the Vc1 FIFO through an interconnect. The Tx_DMA
Controller is also connected to the DMA engine. To start a transfer it sends a command
to the DMA engine, and when data is received, it adds them to packets as payload.
Similarly with the Tx_RAW Controller, for every transfer the Tx_DMA Controller also
generates the packet’s destination in the form of the physical interface it will be sent
from and sends it along with the packet to the Router. To generate the destination, the
descriptor’s DESTINATION field is sent to a Routing Table and the returned value is the
physical interface. Finally, the Tx_DMA Controller is connected to the Rx Controller,
in order to get informed whenever a NACK packet is received.
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Fig. 3.12 Tx_DMA Controller Packet Generation

When the Tx_DMA Controller starts receiving an RDMA_WRITE descriptor, it checks
the bounds of the address offsets given. In case the transfer is out of bounds, which
means that the starting address plus offset is higher than the maximum ending address,
it is rejected. If everything is ok, an INIT packet and a single command for the DMA
engine are generated. Then the controller waits for data from the DMA engine. When
the DMA engine starts sending data, the Controller starts creating packets, until all data
is processed.
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Rx Controller

The Rx Controller handles all the received packets. It reads descriptors from the
All_Vcs_In FIFO and writes descriptors in the corresponding Rx FIFO. It also generates
ACK/NACK packets, which are of high priority and are output to the Vc2 FIFO. As with
the other Controllers, it generates the ACK/NACK packet’s destination with the use of
a Routing Table and sends it along with the packet to the Router. The Rx Controller
keeps internally information about the ongoing RDMA transfers and is connected to the
Long Data Table Control Register, which is needed for LONG_DATA transfers. It also
needs to read the DMA_START Control register to setup the DMA transfer. The Rx
Controller is connected to the DMA engine. To start a transfer it sends a command
first and the data afterward. Finally, the Rx Controller is connected to the Tx_DMA
Controller, in order to inform it whenever a NACK packet is received.

When the Rx Controller starts receiving a RAW_DATA packet, it starts generating the
descriptor, as shown in Figure 3.13, the FSM of the Rx Controller. The packet is read and
the descriptor is generated 8 Bytes per clock. When the Rx Controller receives an INIT
packet, it tries to allocate the necessary resources to accept the transfer. If it succeeds,
every time an RDMA_WRITE packet is received, a command is sent to the DMA engine,
followed by the payload, and the controller awaits for another packet, not necessarily
of the same transfer. This is repeated for every RDMA_WRITE packet, which means
that many small transfers are sent to the DMA engine, instead of a larger one as with
the Tx_DMA Controller. Only when the internal transfer counter reaches zero, the Rx
Controller waits for the DMA engine to complete the transfer, before generating the
descriptor and the ACK packet.
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Interconnect

The Interconnect is used to receive packets for the Tx_RAW and Tx_DMA Controllers
and forward them to the Vc1 FIFO. It uses the Round-robin algorithm for packet priority
and if one of the two lanes is empty, the other is given priority in the same clock. To
implement the Round-robin algorithm a token variable is used that changes the priority
every time the input that has the token is read and has valid data. If that stream is
empty, the other stream is read in the same clock. If the stream that does not have
the token is read because the other stream is empty, the token remains to the other stream.

The Interconnect is an FSM, as shown in Figure 3.14. The first state reads the input that
has the token, and if it is empty the other input is read. If the first input is read with
valid data, the FSM goes to the second state, where it reads the rest of the packet from
that input and forwards it until the TLAST signal is asserted and then returns to the
first state. If the second input is read with valid data, the FSM goes to the third state,
where again it forwards the packet until the TLAST signal is asserted and then returns
to the first state. If the input that was read had the token, then the token changes input.

The same interconnect is also used to send descriptors to the Tx_DMA controller either
from the Tx_DMA FIFO or from the Rx Controller, in the case of RDMA_RESPONSE
descriptors.
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Fig. 3.14 Interconnect FSM
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3.3 DMA engine, Interrupt System, Control and
Status Registers

DMA engine

The DMA engine is used to transfer data directly to and from the memory without
interrupting the PS. It is connected to the PS’s slave HP port, and has two channels, one
for reading from the memory and one for writing to the memory. The reading channel is
connected to the Tx_DMA Controller, and when the Controller reads a descriptor, it
sends the corresponding command to start a read from the memory. The DMA engine
reads the command and starts a read transfer, and the received data are forwarded to the
Tx_DMA Controller. Similarly, the writing channel is connected to the Rx Controller,
and whenever the Rx controller receives and RDMA or LONG_DATA packet, it sends
the corresponding command to start a write to the memory, and then the data to be
written. The DMA engine reads the command and starts a write transfer, and as the Rx
Controller sends data to the DMA engine, they are forwarded to the memory.
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Interrupt Handler

The Interrupt Handler receives the status of the four FIFOs connected to the PS in
the form of a "Not Full" signal from the Tx FIFOs and a "Not Empty" from the Rx
FIFOs, masked by the MSKIRQ register, and a four bit wide reset signal, each reset
corresponding to one input. It also sends a four bit output to the PS through a register,
each bit indicating that an interrupt has been for the corresponding FIFO. Finally, it
generates an interrupt that is connected to the PS through the GIC.

Whenever one of the input signals goes from zero to one, an interrupt is generated
and the corresponding output bit is set to one. Every output bit that is set to one has to
be reset by the PS, and while set to one, the changes of the corresponding input are not
monitored, and interrupts are not generated for that bit. That is because until the PS
acknowledges the already generated interrupts and clears them, no more interrupts for
the same FIFO should be generated. The process that the interrupts work is:

1. A FIFO changes state.

2. The corresponding output bit of the Interrupt Handler is set to one and an interrupt
is generated.

3. The PS receives the interrupt.

4. The PS reads the GPIO that is connected to the Interrupt Handlers output, to
find out which FIFO is empty or full.

5. The PS resets the output bit by setting the reset bit to one, acknowledging the
interrupt. Then it proceeds to interact with the FIFO.

Control and Status Registers

The NI has several control and status registers to allow for communication between it
and the PS. The expected functionality is described in table 3.3
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Table 3.3 Registers

Name Width Access Description
VERSION 16 bits ro Version register
IFNUMBER 3 bits ro Number of interfaces used by the current

version
IFINFO_BASE_1 3 bits ro Interface 1 (Rx_1) status table, shows di-

rection (Rx/Tx) and status (connected or
not)

IFINFO_BASE_2 3 bits ro Interface 2 (Tx_1) status table, shows di-
rection (Rx/Tx) and status (connected or
not)

RAW_TX_STATUS 32 bits ro The Vacancy of the TX_RAW FIFO.
When greater than 0, in the Tx_RAW
FIFO there is space available for new de-
scriptors from the PS.

RAW_RX_STATUS 32 bits ro The Occupancy of the Rx_RAW FIFO.
When greater than 0, in the Rx_RAW
FIFO there are descriptors available to be
read from the PS.

RDMA_TX_STATUS 32 bits ro The Vacancy of the TX_DMA FIFO.
When greater than 0, in the TX_DMA
FIFO there is space available for new de-
scriptors from the PS.

RDMA_RX_STATUS 32 bits ro The Occupancy of the RX_DMA FIFO.
When greater than 0, in the RX_DMA
FIFO there are descriptors available to be
read from the PS.

NODEID 8 bits rw Node ID register, set by the PS after the
discovery protocol

DMA_START 64 bits wo DMA start Address register
DMA_END 64 bits wo DMA end Address register
MSKIRQ 4 bits rw Mask Interrupt Register. Used to en-

able/disable interrupts
PNDIRQ 4 bits rw Pending Interrupt Register. Used to report

which FIFO was the cause of the interrupt.
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Several BRAMs are also needed, mostly routing tables to read the destination interface
of the packets, as show below (table 3.4). All routing tables are mirrored, meaning that
they have the same values. We need more than one routing table because many modules
need access to it.

Table 3.4 BRAMs

Name Width Depth
PHY1_ROUTING_BASE 8 bits 256 lines
Description Routing table BRAM. The array index represents the

destination node id. The value represents the transfer
interface, or 0xff for unused ids. Setup by the PS after
the discovery protocol. Connected to the Router’s Link
Controller for Tx Interface 1.

RX_ROUTING_BASE 8 bits 256 lines
Description Routing table BRAM. Connected to the Rx Controller.
TX_DMA_ROUTING_BASE 8 bits 256 lines
Description Routing table BRAM. Connected to the Tx DMA Con-

troller.
TX_RAW_ROUTING_BASE 8 bits 256 lines
Description Routing table BRAM. Connected to the Tx Raw Con-

troller.
LONG_BUF_BASE 64 bits 32 lines
Description This BRAM represents the addresses and sizes of buffers

available for receiving the LONG messages. It is setup
by the PS and written to by the NI to indicate a used
buffer.



Chapter 4

System Implementation

4.1 Tools used

The NI was implemented using the Xilinx Vivado Design Suite - HL System Edition
2016.3. The tools used are the Vivado HLS, Vivado IDE and Xilinx SDK.

Vivado HLS

The Xilinx Vivado HLS tool provides a higher level of abstraction for the user by syn-
thesizing functions written in C into IP blocks, by generating the appropriate Vhdl and
Verilog code. Those blocks can then be integrated into a hardware system. Vivado HLS
is tightly integrated with the rest of the Xilinx design tools and provides comprehensive
language support and features for lower level optimizations, making it possible to optimize
the C code for hardware systems.

The Vivado HLS tool allows for C functions written in C, C++, SystemC, or an OpenCL
API C kernel. We decided to use C++, as some of the libraries we needed were for C++.
To debug the code Vivado HLS uses a C test bench to simulate the C function prior to
synthesis and to verify the RTL output using C/RTL Cosimulation. The tool also adds
some constraints to the exported IP block, like the clock period, clock uncertainty, and
FPGA target. The clock uncertainty defaults to 12.5% of the clock period if not specified.
The clock period we used was 6 ns to allow for frequencies up to 166,6 MHz. Finally,
the tool allows for directives to be added to the code to direct the synthesis process to
implement a specific behavior or optimization. Directives are optional and do not change
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the behavior of the c code in the simulations, only the synthesized IP block. The Vivado
HLS design flow follows the normal C design flow, but extends it to hardware design:

1. First we had to compile the code and create a C test bench with set inputs, then we
executed our function using the test bench to simulate the IP block’s functionality
and debug the C algorithm.

2. After making sure that our function works as intended, we synthesized the C
algorithm into an RTL implementation and verified the output with the use of the
C/RTL Cosimulation. At this point we could start adding directives to optimize
the design, but we thought it was best to try it first and confirm its functionality.
To do that we exported the IP to be used in Vivado IDE.

3. After making sure the basic function was working as intended, which we will explain
in the Vivado section, we returned to HLS and started adding directives to optimize
the running time and resources. The use of some directives notably the PIPELINE
directive changed the form and functionality of the IP block quite a bit, and we
had to retest it both in Vivado HLS and Vivado IDE.

This process was followed for all the Vivado HLS IP blocks we designed individually:

• Rx Controller

• Tx Raw Controller

• Tx Dma Controller

• Interconnect

• Interrupt Handler

• LongDataBramController

• PosFinder

After each module functioned as expected, we starting building a project with all of them
by adding them and the other needed IPs a few at a time and debugging the design using
Vivado IDE and Vivado SDK.
The directives we used are the following:
INTERFACE
Specifies how RTL ports are created from the function description. Several choices are
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available, and the ones we used are:
ap_ctrl_none : No block-level I/O protocol.
ap_none : No protocol. The interface is a data port.
ap_vld : Implements the data port with an associated valid port to indicate when the
data is valid for reading or writing.
bram: Implements array arguments as a standard RAM interface.
axis: Implements all ports as an AXI4-Stream interface. Only the optional signals
included in the C structure of the Stream are implemented.

e.g. #pragma HLS INTERFACE ap_vld port=longDataTable_out

PIPELINE
Reduces the initiation interval by allowing the concurrent execution of operations within
a loop or function.

e.g. #pragma HLS PIPELINE II=1

RESOURCE
Specifies that a specific library resource (core) is used to implement a variable (array, arith-
metic operation or function argument) in the RTL. The core we used is RAM_1P_BRAM
to specify that this IP has only one port of the BRAM available to use. The second port
of the BRAM is connected to a BRAM Controller XIlinx ip that allows the PS to edit
the BRAM.

e.g. #pragma HLS RESOURCE variable=LongDataTable core=RAM_1P_BRAM

ARRAY_PARTITION
Partitions large arrays into multiple smaller arrays or into individual registers, to improve
access to data and remove block RAM bottlenecks.

e.g. #pragma HLS ARRAY_PARTITION variable=RDMApayload complete dim=1

Vivado IDE

The Vivado IDE is the GUI for the Vivado Design Suite. All of the Vivado design Suite
tools are written with a native Tcl interface, and all of those commands are available
through the IDE either through the GUI or through the Tcl console. Tcl commands can
be entered in the Tcl Console in the Vivado IDE or using the Vivado Design Suite Tcl
shell. You can run analysis and assign constraints throughout the design process. Timing
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and power estimations are provided after synthesis, placement, and routing. Design
checkpoints are created after every part of the process and it is possible to interact with
the design at each design stage. The Vivado IDE is an evolution of the PlanAhead tool
that has shipped with the ISE Design Suite. While the Vivado Design Suite allows for
many options and changes to a design, we followed a fairly straightforward design flow:

1. First, we added to the IP repository the folders of our HLS and VHDL IPs. This
allows for the addition of instances of these modules to our block design. The
repositories were updated automatically whenever we exported new versions of our
IPs from HLS.

2. Secondly, we created a block design and added the Zynq Ultrascale+ IP that is the
PS. Then we edited the settings to our needs, by enabling the ports and modules
we needed, disabling those we did not need, and setting the correct parameters
for the DDR memory and the clock frequency. Also, when we started using the
AXIOM board, we imported a constraints file provided by SECO for the board.
The settings were edited several times, along with changes to the PL.

3. Many smaller block designs were created and synthesized, alongside their respective
testbenches to debug each IP individually. If an IP did not have the desired
functionality, we would find the problem and return to HLS to fix it.

4. Then, we started adding our working IPs to the main block design and connecting
them with the PS and the IPs provided by Xilinx that we would use, marked the
signals we wanted to monitor as "debug signals", and synthesized the main design.
Marking a signal as "debug signal" connects it to an ILA.

5. While the design was still fairly small and manageable, we used a testbench to
debug it first, but as the project grew, we would set up the debug signals and go
through implementation, place and route, and bitstream generation directly, since
it was more efficient to check it by downloading the bitstream to the FPGA.

6. To debug the downloaded Bitstream we used the Xilinx SDK.

The above process was repeated many times, ranging from major functionality changes
to minor speed optimizations, until we were within our goals.
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Xilinx SDK

The Xilinx SDK is an IDE for development of embedded software applications targeted
towards Xilinx embedded processors. The SDK works with hardware designs created
with Vivado Design Suite. The SDK is based on the Eclipse open source standard.
SDK features include a feature-rich C/C++ code editor and a compilation environment
with easy project management, application build configuration and automatic Makefile
generation and a well-integrated environment for seamless debugging and profiling of
embedded targets as well as system level performance analysis. The SDK also provides
focussed special tools to configure FPGAs and create bootable Images.

To use the Xilinx SDK, from the Vivado IDE, after exporting the project, including
the bitstream, we open the SDK using the preconfigured directories. That way, the
SDK automatically imports the hardware wrapper and generates the files needed for
the project. Then we create a new Hello World project, which generates not only the
project files, but also the needed BSP, which includes the needed drivers for the included
modules that the PS has access to.

The SDK is then used to create a basic program to be run by the PS to test and debug the
PL functionality. To be able to program the FPGA, the JTAG port has to be connected
to the pc, and to monitor and debug it we use the UART port as well. Another very
useful tool that is part of the Vivado ISE is the Hardware Manager, that connects to the
ILAs that have been added to the Vivado project and allows us to monitor in real-time
the values of the signals between our modules, while the program is running.

The debug program we wrote first initializes all the individual modules using the libraries
provided by Xilinx, then initializes the NI by writing to the registers and BRAMs and
waits for connection to another board, or to itself for loopback mode. After the connection
is up, the user can send raw and RDMA packets to check the data integrity and the
throughput of the design. In the case of an error the program informs the user, and
in combination with the Hardware Manager it is easy to identify the malfunctioning
module.

Another debug tool that should be noted is the XSCT console, which gives us direct
access to all the memory-mapped modules of the FPGA, and allows us to read any
register or DDR address we use. To use the XSCT console we have to be running the
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program in debug mode and pause it before requesting a memory read or any other
command.

4.2 Schematic of implemented NI - interface with
router

Fig. 4.1 NI implementation

The implemented design, as shown in figure 4.1, is comprised of six main groups. The
Registers group includes all the registers needed to initialize the NI and interact with
the PS. The Interrupt Handler monitors the Tx and Rx FIFOs and generates interrupts
when needed. The Datamover, which is a DMA engine module, is responsible for the
DMA transfers. The Rx channel consists of the Rx_RAW and Rx_DMA FIFOs that
connect the NI to the PS, the Rx Controller, and the All_Vcs_In FIFO to receive packets
from the Router. The Tx channel consists of the Tx_RAW and Tx_DMA FIFOs that
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connect the PS to the NI, the Tx_RAW and Tx_DMA Controllers and the Vc2, Vc1
and Vc0 FIFOs to send packets to the Router. Because the Vc1 channel is used by
both controllers, an interconnect is needed between the Controllers and the Vc1 FIFO.
Another interconnect is used between the Tx_DMA FIFO and Tx_DMA Controller, as
the Rx Controller also sends Descriptors to the Tx_DMA Controller. Finally, several
BRAMs are used as routing tables and connected to each Controller, as well as a BRAM
needed for the LONG_DATA transfers.

To transfer data to and from the PS, we used one of the available High Performance
Master (HPM) ports. The interface of that port uses the AMBA AXI4 protocol which is
targeted at high performance, high clock frequency system designs and includes features
that make it suitable for high speed interconnect:

• Separate address/control and data phases.

• Support for unaligned data transfers using byte strobes.

• Burst based transactions with only start address issued.

• Issuing of multiple outstanding addresses with out of order responses.

• Easy addition of register stages to provide timing closure.

We also utilized the slave High Performance Coherent port in connection to the DMA
engine for transfer of data to and from the memory, that uses the AXI4 interface too.

The NI communicates with the PS through the AXI4-Stream FIFOs, which are connected
to the HPM port of the PS through an interconnect and provide AXI4-Stream ports
for our IPs. The AXI4-Stream protocol (table 4.1) is used to transfer data efficiently
from point to point and without the use of addresses. Each AXI4-Stream acts as a single
unidirectional channel for a handshake data flow.
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Table 4.1 AXI4-Stream signals we Used

Name Direction Size Optional Description
TVALID Out 1 Bit No Indicates when TDATA contains

valid data.
TREADY In 1 Bit No Indicates if receiver is ready to

read data.
TDATA Out N Bits No Data to be transfered.
TLAST Out 1 Bit Yes Indicates the end of the packet.
TKEEP Out N/8 Bits Yes Indicates valid Bits. Used only

when TLAST is asserted.
TDEST Out M Bits Yes Normally used with Xilinx IPs.

In our implementation, this sig-
nal contains the interface id from
which the packet will be sent and
is read by the Router.

Not all optional signals were used for all our streams, only those needed per stream.
The controllers were designed as Finite State Machines using certain directives to produce
the intended functionality. The most important directive used is the PIPELINE directive,
which reduces the initiation interval by allowing the concurrent execution of operations
within our function.

Tx_RAW Controller

The Tx Raw Controller is an FSM of two states, as de-
scribed in Chapter 3.2. It uses the PIPELINE directive
and has a latency of 1cc. It also uses the "INTERFACE
ap_ctrl_none" directive, as the control signals HLS gen-
erates, notably "ap_start", "ap_ready" and other, are
not needed. The "INTERFACE axis" directive is used

for the txRawFifo input stream, with the optional signal TLAST enabled, and the
VC1_out_raw output stream, with the optional TLAST and TDEST enabled, and the
"INTERFACE ap_none" directive is used for the source_V data input. Finally, the
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RoutingTable interface that communicates with the Routing Table Bram is implemented
using the "INTERFACE bram" directive and the "RESOURCE core=RAM_1P_BRAM"
and the Bram is read and written to as if it was an array.

e.g. dest = RoutingTable[pos];

Whenever there is a descriptor in the Tx_Raw FIFO, the controller starts receiving it,
and with a latency of 1cc generating the packet, as shown in 4.2. The transfer shown
below has a payload of 124 Bytes. As the Controller is pipelined, there is no latency
between packets. The latency is the same for RAW_NEIGHBOUR transfers.

0 2 4 6 8 10 12 14 16 18

Descriptor In

Packet Out

Fig. 4.2 Tx_RAW Controller latency
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Tx_DMA Controller

The Tx DMA Controller is an FSM of 14 states, as
described in Chapter 3.2. It uses the PIPELINE
directive and has a latency of 1cc. It also uses
the "INTERFACE ap_ctrl_none" directive, as does
the Tx Raw Controller. Another directive, the "IN-
TERFACE axis" is used for all the stream inter-
faces.

• txDMAFIFO, from which the RDMA and LONG_DATA descriptors are received.
It has the optional signal TLAST enabled.

• DMAstsin, from which the Datamover transfer status is received. It has the optional
signal TLAST enabled.

• DMAcmd, from which the Datamover command is sent to start dma transfers. It
has no optional signals.

• DMAdataIn, from which the data from the Datamover is received and added to
packets. It has the optional signal TLAST enabled.

• VC1_out_dma, from which all the RDMA and LONG_DATA packets except
RDMA_READ are sent. It has the optional signals TLAST and TDEST enabled.

• VC0_out, from which the RDMA_READ packets are sent. It has the optional
signals TLAST and TDEST enabled.

For access to the Routing Table Bram, the RoutingTable interface is implemented using
the "INTERFACE bram" directive and the "RESOURCE core=RAM_1P_BRAM" simi-
larly to the Tx Raw Controller. Finally, the source, DMA_START, DMA_END, nack
and nack_vld data signals are implemented using the "INTERFACE ap_none" directive.

The latency of an RDMA_WRITE transfer is shown in Figure 4.3. First, the Controller
reads a Descriptor and generates an INIT packet for the Rx_Controller on the receiving
side, and a command for the local Datamover. Then the controller waits for data from
the Datamover, which has a latency of about 50 cc. When the Datamover starts sending
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data, the Controller starts creating packets of 252 Bytes max payload, until all data is
processed.
The transfer shown below has a payload of 320 Bytes, which means two packets are gen-
erated. The latency is very similar for LONG_DATA transfers and RDMA_RESPONSE
transfers.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Descriptor In

Cmd to Datamover

Payload from Datamover

INIT out

Packets Out

Fig. 4.3 Tx_DMA Controller latency

Rx Controller

Using the PIPELINE directive, HLS schedules all in-
put reads at the start of every clock, and determines
later the state to be executed. That means that some
BRAMs that were read in multiple states, had to be read
more than once in the same clock, but we had only one
available port, which created a dependence and added
latency to the controller. To avoid that, another IP, the
Long Data Bram Controller, was created, to manage the
BRAM read and write, and send the correct data back

to the Rx Msg Controller, adding 1 clock cycle of latency to the transfers. Also, because
of the PIPELINE directive, all loops are unrolled, and for every iteration a new state
tree is created. That means that for a 32 iterations loop at the start of the FSM, the
loop will be unrolled and the FSM will be created for every unrolled instance of the loop.
That was very inefficient, so another IP, the Pos Finder, was created to perform that loop
and send the outcome back. The Pos Finder IP stores the data for LONG_DATA and
RDMA transfers, if there is space, every time an INIT packet is received, and searches
for that data every time an RDMA or LONG_DATA packet is received. This IP is
responsible for rejecting transfers and skipping the packets of rejected transfers. These
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two IPs plus the Rx Msg Controller are connected as shown in figure 4.4 and a wrapper
is generated, that is the Rx Controller IP.

Fig. 4.4 Rx Msg Controller with Long Data Bram Controller and Pos Finder

The Rx Msg Controller is an FSM of 22 states, as described in Chapter 3.2. Other
than the PIPELINE directive, it uses several other directives. One is the "INTER-
FACE ap_ctrl_none" directive, as with Tx Raw and Tx DMA Controllers. Also, the
"INTERFACE axis" is used for all the stream interfaces.

• All_VCs_in, from which the packets are received. It has the optional signals
TLAST and TDEST enabled.

• DMAstsin, from which the Datamover transfer status is received. It has the optional
signal TLAST enabled.

• DMAcmd, from which the Datamover command is sent to start dma transfers. It
has no optional signals.

• DMAdataOut, from which the data received from the packets is sent to the
Datamover. It has the optional signals TLAST and TKEEP enabled.

• VC2_out, from which the ACK/NACK packets are sent. It has the optional signals
TLAST and TDEST enabled.

• rxDMAFIFO, from which the RDMA and LONG_DATA generated descriptors
are sent to the DMA FIFO. It has the optional signal TLAST enabled.
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• rxRawFIFO, from which the RAW_DATA and RAW_NEIGHBOUR generated
descriptors are sent to the RAW FIFO. It has the optional signal TLAST enabled.

• txDMAFIFO, from which the RDMA_RESPONSE generated descriptor is sent to
the Tx DMA Controller. It has the optional signal TLAST enabled.

The RoutingTable interface is implemented using the "INTERFACE bram" directive and
the "RESOURCE core=RAM_1P_BRAM" similarly to the other Controllers. Finally,
all the data signals used to connect the Rx Msg Controller to the Long Data Bram
Controller and the Pos Finder use the "INTERFACE ap_none" directive.

Long Data Bram Controller

The Long Data Bram Controller manages the Long Data BRAM reads and writes without
having dependences between signals. To perform a Write, it receives a write request and
the position from the Rx Msg Controller, and it waits for valid data. When it receives
the data it performs a write transfer to the Bram. To perform a Read, it receives a read
request and the position from the Rx Msg Controller, and then returns the data back to
the Rx Msg Controller.
The Long Data Bram Controller uses the "PIPELINE" directive with only two states,
one to receive the request from the Rx Msg Controller, send the position to the bram
and in the case of a write send the data too, and a second to send the data to the Rx
Msg Controller in the case of a read. As with the other controllers, the Long Data
Bram Controller also uses the "INTERFACE ap_ctrl_none" directive. The interface that
communicates with the Long Data Bram is implemented using the "INTERFACE bram"
directive and the "RESOURCE core=RAM_1P_BRAM" similar to the RoutingTable
interface of the Rx Msg Controller.

Pos Finder

The Pos Finder works similar to a fully associative CACHE. It has three internal tables
of 32 positions, id, src and used. Three types of transfers are supported. First is the
WRITE transfer, where it searches for an empty position and if it finds one, it stores
the id and src, sets used to 1, and returns the position, else it returns an out of bounds
position to indicate that it is full. Second is the READ transfer, where it searches for a
position with the id and src given, and if found it returns the position, else it returns an
out of bounds position to indicate that no transfer with that id and src combination is
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active. Finally, there is the CLEAR transfer, where it finds the position with the id and
src given, and sets used to 0 to indicate that the position is empty.
The Pos Finder uses the "PIPELINE" directive too, and the searches are performed by
loops that are unrolled automatically. The "INTERFACE ap_ctrl_none" directive is
used too. To allow for a latency of 1cc, the use of the "ARRAY_PARTITION complete"
directive was necessary for all three tables.

Whenever RAW_DATA or RAW_NEIGHBOUR packet is received, the controller starts
receiving it, and with a latency of 1cc generating the packet, as shown in Figure 4.5.
The transfer shown below is a RAW_DATA transfer has a payload of 124 Bytes. As the
Controller is pipelined, there is no latency between packets. The latency is the same for
RAW_NEIGHBOUR transfers.

0 2 4 6 8 10 12 14 16 18

Packet In

Descriptor Out

Fig. 4.5 Rx Controller RAW_Data latency

The latency of an RDMA_WRITE transfer is shown in Figure 4.6. First, the Controller
receives the INIT packet and allocates the necessary resources. Then the controller waits
for packets with a message id matching the INIT packet’s. The first packet arrives about
50cc later, as that is the latency of the Tx_DMA Controller. When the Rx Controller
starts receiving packets, it sends a command per packet to the Datamover, followed by
the payload of the packet. The status of every completed transfer is received about 50cc
after the data is written, but the next transfer has already started. only for the last
packet the Controller waits for completion before generating the Descriptor, to make
sure all the data is written before the PS accesses them. The latency is very similar for
LONG_DATA and RDMA_RESPONSE transfers.
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INIT In

Packets In

Cmd to Datamover

Payload to Datamover

Transfer Finished

Descriptor Out

Fig. 4.6 Rx Controller RDMA_WRITE latency

Interconnect

The Interconnect has a latency of 1cc.
The directives used are the "PIPELINE" directive for the
FSM, "INTERFACE axis" directive for the two inputs
and the output with the optional signals TLAST and
TDEST enabled, and the "INTERFACE ap_ctrl_none"
directive.

Interrupt Handler

The Interrupt Handler is the only IP that does not use the "PIPELINE" directive. It
receives a four bits wide signal named pndirq_in, which is the pending interrupts for the
two Rx and the two Tx FIFOs connected to the PS, and a four bits wide irqclear signal
that is sent from the PS with the use of an AXI GPIO. It’s outputs are the four bits
wide signal named pndirq_out, which is stored in registers, and the 1 bit wide interrupt
signal that is connected to the PS through the internal Interrupt Controller. Whenever
one of the pndirq_in bits goes from low to high and the same pndirq_out bit is low, the
interrupt signal is asserted and the same pndirq_out bit is also asserted, so that the PS
can read or write the corresponding FIFO. After the PS has received and processed the
interrupt, it then asserts the relevant irqclear bit to deassert the pndirq_out bit. Until
the PS clears the pndirq_out bits that are high, interrupts are not generated for these
bits. The Interrupt Handler uses the "INTERFACE ap_ctrl_none" directive and both
the inputs and outputs use the "INTERFACE ap_none" directive.
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Datamover

The AXI DataMover IP provides the basic AXI4 Read to AXI4-Stream and AXI4-Stream
to AXI4 Write data transport and protocol conversion. It is used to access the DDR mem-
ory without interrupting the PS. The IP has two channels, the MM2S channel which reads
data from the DDR and sends them to the Tx_DMA Controller, and the S2MM channel
which receives data from the Rx Controller and writes them to the DDR, each with its
own dedicated command stream, status stream, AXI4 Data port and AXI4-Stream Data
port. The MM2s channel handles transactions from the AXI4 to the AXI4-Stream do-
main and the S2MM channel handles transactions from the AXI4-Stream to AXI4 domain.

To start a transfer, a command is sent to the corresponding command port with the
command format explained in table 4.3. After that, for MM2S transfers the controller
waits for about 50cc until it starts receiving data and at the end the status word, and for
S2MM transfers the Rx controller starts sending data and after about 50cc after the last
data word it receives the status word. For both types of transfers the status word should
have bit 7 set to one and bits 6 - 4 set to zero, as described in table 4.2.

Table 4.2 Datamover Status Format

Bits Description
7 Transfer OKAY
6 Slave Error
5 Decode Error
4 Internal Error
3 - 0 TAG
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Table 4.3 Datamover Command Format

Bits Description
103 – 100 Reserved
99 – 96 TAG An arbitrary user assigned value that flows through the DataMover

execution pipe and gets inserted into the corresponding status word. Used
by the Rx Controller to assert if the transfer is complete.

95 - 32 Start Address This field indicates the starting address to use for the
memory-mapped side of the transfer requested by the command.

31 DRE Re-alignment Request This bit is only used if the optional DRE
is included by parameterization. The bit indicates that the DRE align-
ment needs to be re-established prior to the execution of the associated
command. The NI does not use the DRE.

30 End of Frame This bit indicates that the command is an End of Frame
command. This generally affects the MM2S element (Read Master)
because it causes the stream output logic to assert the TLAST output on
the last data beat of the last transfer needed to complete the command.
This bit should be set for S2MM commands when TLAST is expected to
arrive with the number of bytes programmed in the command. All the
NI transfers are set as EOF.

29 – 24 DRE Stream Alignment This field is only used by the MM2S and if
the optional MM2S DRE is included by parameterization. In this design,
the DRE is not included.

23 Type This field determines the type of AXI4 access. Setting this to 1
enables INCR. A value of 0 enables FIXED address AXI4 transaction.
All the NI transfers are set as INCR.

22 to 0 Bytes to Transfer This 23-bit field indicates the total number of bytes
to transfer for the command. In this design, only 16 of the 23 bits are
used and the transfers can be from 1 up to 64 KBytes. A value of 0 is
not allowed because it causes an internal error from the DataMover, so it
is checked by the controllers before starting a transfer. In the case of 0
Bytes to Transfer, the descriptor is discarded.
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FIFOs

Two kinds of FIFO were used in this design, both intellectual
property of Xilinx. The first is the AXI4-Stream FIFO
v4.1, that allows memory mapped access to AXI4-Stream
interfaces and is used to connect the PS to the controllers. It
can be configured as Tx, Rx or both. Both the AXI4 interface
and the AXI4-Stream interface are configured to have 64
bits width and the FIFOs were set to have the minimum
depth of 512 locations. It should be noted that the FIFO
was edited slightly to allow access to the Programmable Full
and Programmable Empty signals for the Interrupt System,

that were normally accessible only from the AXI4 interface. Four of these FIFOs were
used, the Tx_RAW, Tx_DMA, Rx_RAW and Rx_DMA FIFOs. The second FIFO used
is the AXI4-Stream Data Fifo, that is an AXI4-Stream to AXI4-Stream FIFO and was
used as a buffer between modules. The Vc0, Vc1 and Vc2 FIFOs, as well the All_Vcs_In
FIFO are of this type.

Registers and BRAMs

The registers were implemented using the AXI Gpio IP. The AXI GPIO design provides
a general purpose input/output interface to an AXI4-Lite interface. The AXI GPIO can
be configured as either a single or a dual-channel device. The width of each channel is
independently configurable with a maximum value of 32 bits. 32 bit or smaller registers
use only one channel, setup as input for WO, output for RO, or both for RW. For
RW registers the output of the Gpio has to be connected to its input. 64 bit registers
are implemented using the second channel of the Gpio and a Concat Xilinx IP that
concatenates the two 32bit wide values to a 64bit wide output.

BRAMs are implemented using the Xilinx Block Memory Generator IP and setup as
true dual-port. The first port of each BRAM is connected to the respective Controller,
and the second to an AXI BRAM Controller IP that connects the BRAM to the PS.
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4.3 Resources on the AXIOM board

The Resources our project occupied were measured after implementation, placement and
routing. To get the utilization data, we opened the implemented design and executed the
TCL command "report_utilization -hierarchical -file <location_of_the_report_file>",
which generates a hierarchical utilization report with data for all the included IPs. Table
4.4 shows the utilization of the HLS modules we designed for the NI, and table 4.5
shows the utilization of the NI, including the Datamover, the FIFOs, the registers and
everything else, the utilization of the Router and the utilization of the PS. It should
be noted that the PS utilization is very high because the interconnect connected to the
HPM port has 28 slaves, not all of which are mandatory.

Table 4.4 HLS modules Utilization

Module LUTs FFs BLOCKRAMs
Tx_Raw_Controller 119 170 0
Tx_DMA_Controller 1131 1118 0
Rx_Controller 4540 3930 0
Interrupt Handler 8 8 0
Tx_DMA_Interconnect 157 269 0
Vc1_Interconnect 165 283 0
Pos Finder 636 597 0
LongDataBramController 3 5 0
Total 6759 6380 0
Available 274080 548160 912
Utilization 2.47% 1.16% 0%

Table 4.5 Total Utilization

Module LUTs FFs BLOCKRAMs
NI 12438 4.54% 13841 2.52% 24 2.63%
Router 2038 0.74% 3632 0.66% 7 0.77%
PS 30451 11.11% 36195 6.61% 0 0%
Total 44927 16.39% 53668 9.79% 31 3.4%
Available 274080 548160 912





Chapter 5

Evaluation

5.1 Board description

Three different boards were used throughout the duration of this thesis. The Digilent
Zedboard was the first FPGA to be used. The Zedboard is an evaluation and development
board based on the Xilinx Zynq-7000 AP SoC, combining a dual Cortex A9 Processing
System (PS) with 85,000 Series-7 Programmable Logic (PL) cells. The Zedboard did not
have dedicated transceivers to use in our design, and we did not succeed in transferring
data from board to board with it, but it was used in the first steps of the design to
develop and debug the first versions of the controllers. Due to limitations of the board’s
32bit Processor and our very unoptimized code, the first controllers used 32bit wide
words and were very inefficient, with limited functionality and were never included in a
complete project, but they were the first steps, getting us familiarized with the tools and
the design process.

Later, the Xilinx ZC706 was used. The ZC706 evaluation board for the XC7Z045 AP
SoC provides a hardware environment for developing and evaluating designs. Because its
features include a GTX transceiver with SMA connection and a transceiver with SFP
connection, and the PS is the same as the Zedboard, this was the first board that was
programmed with a working demo of the project. That first demo was still very rough
and inefficient.

Finally, we ported our design to the AXIOM board. The AXIOM Board is designed to
be the perfect combination of High-Performance Computing, Embedded Computing and
Cyber-Physical Systems. It is meant to be an ideal platform for real-time data analysis of
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a huge amount of data in a short time frame, machine learning, neural networks, server
farms and so on. The Axiom board has four USB Type C ports, and also 2 USB Type
A – not to mention the mini-DP connector. The board also features an RJ-45 Ethernet
connector with a Gigabit Ethernet transceiver.
Its features include:

• Wide boot capabalities: eMMC, Micro SD, JTAG

• Heterogeneus 64-bit ARM FPGA Processor: Xilinx Zynq Ultrascale+ ZU9EG

– 64-bit Quad-Core ARM Cortex™-A53 MPCore @ 1.2GHz with L1 Cache
32KB I/D per core, L2 Cache 1MB, on-chip Memory 256KB

– 32-bit Dual-core ARM Cortex-R5 MPCore R5 @ 500MHz with L1 Cache
32KB I/D per core, Tightly Coupled Memory 128KB per core

– Mali-400 MP2 GPU with L2 Cache 64KB

– swappable DDR4 SO-DIMM RAM @ 2400MT/s (up to 32GB) for the Pro-
cessing System

– 600K System Logic Cells

– 548K CLB Flip-Flops

– 274K CLB LUTs

– 2,520 DSP Slices

– 12 GTH transceivers (8 on USB Type C connectors + 4 on HS connector)

• Easy rapid prototyping, because of the Arduino UNO Pinout

The processor is 64-bit, which allowed the use of 64bit words for our design, making it
much more efficient.
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5.2 Experimental results

To test the throughput of our design, we wrote a test code in the SDK, that sets the
NI up to send the packets through physical interface 2 (Tx) and receive them through
physical interface 1 (Rx), basically a hardware loopback mode. To get timestamps we
used the internal PS timer, and we took timestamps at several points during a transfer,
giving us values for the FIFO write latency, the PL packet generation and transfer latency,
the IRQ read latency and finally the FIFO read latency. For all RDMA and LONG
transfers the FIFO write latency, 270cc ,the IRQ read latency, 140cc, and the FIFO read
latency, 320cc, are exactly the same, as an average of 1000 runs for every transfer is
shown and the descriptors written and read are the same size for all transfers. The PL
packet generation latency and the throughput are as shown in table 5.1.

Table 5.1 RDMA and LONG PL latency and throughput

Type Payload Latency Throughput
LONG_DATA 15 Bytes 220cc 0.028 Gbps

255 Bytes 285cc 0.455 Gbps
4095 Bytes 1010cc 3.9 Gbps
16383 Bytes 3420cc 6.13 Gbps
65535 Bytes 12750cc 7.3 Gbps

RDMA_WRITE 15 Bytes 225cc 0.028 Gbps
255 Bytes 300cc 0.455 Gbps
4095 Bytes 1050cc 3.86 Gbps
16383 Bytes 3460cc 6.08 Gbps
65535 Bytes 12900cc 7.27 Gbps

RDMA_READ 15 Bytes 285cc 0.022 Gbps
255 Bytes 350cc 0.422 Gbps
4095 Bytes 1100cc 3.7 Gbps
16383 Bytes 3520cc 5.98 Gbps
65535 Bytes 12960cc 7.23 Gbps

For RAW_NEIGHBOUR and RAW_DATA transfers, the FIFO write and FIFO
read latencies do not stay the same, only the IRQ read latency is consistent, as shown in
table 5.2.
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Table 5.2 Raw latency and throughput

15 Bytes 127 Bytes 255 Bytes
FIFO write 800cc 1430cc 2730cc
PL transfer 100cc 114cc 135cc
IRQ read 110cc 110cc 110cc
FIFO read 550cc 870cc 1520cc
Throughput 0.06 Gbps 0.076 Gbps 0.085 Gbps

As shown below (figure 5.1), the Raw transfers have very low throughput, with the
bottleneck being the AXI4 write and read transfers to and from the FIFOs. The RDMA
and LONG transfers (5.2) for small payloads are also fairly inefficient, with 1̃.4 Gbps
throughput for 1 KByte payload, but scale up quite fast, with 3.8 Gbps throughput
for 4 KBytes payload, 5 Gbps throughput for 8 KBytes payload and finally 7.27 Gbps
throughput for the maximum payload of 64 KBytes. Also it should be noted that the
transfers are synchronous, meaning that before starting a new transfer, the PS waits for
the previous one to complete. Our partners at Evidence have a working PetaLinux version
that uses the NI and with asynchronous transfer report throughput of up to 9.3 Gbps for
RDMA_WRITE transfers of max payload. That is because by sending many transfers
together the FIFO write, IRQ read and FIFO read latency is pipelined. Unfortunately,
because in our basic SDK test project we have not implemented multitasking to handle
the interrupts, and receive packets while at the same time sending packets, we do not
have asynchronous test data.
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Fig. 5.1 Raw Transfer Throughput
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Fig. 5.2 DMA Transfer Throughput
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Finally, we calculated based on the payload size, how many packets were generated
per transfer, and from that we estimated the sum of the headers, as shown in table 5.3
and figure 5.3 below.
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Table 5.3 DMA Transfers with header size per payload size

LONG_DATA RDMA_WRITE RDMA_READ
Header Size % Header Size % Header Size %

15 Bytes 5 Bytes 33% 9 Bytes 60% 9 Bytes 60%
255 Bytes 10 Bytes 3.92% 18 Bytes 7.06% 18 Bytes 7.06%
4095 Bytes 85 Bytes 2.08% 153 Bytes 3.74% 153 Bytes 3.74%
16383 Bytes 335 Bytes 2.04% 594 Bytes 3.63% 594 Bytes 3.63%
65535 Bytes 1325 Bytes 2.02% 2349 Bytes 3.58% 2349 Bytes 3.58%

Fig. 5.3 DMA Transfers with header size per payload size
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That means that as the payload size gets bigger the transfer becomes more efficient,
with the overhead reaching a minimum of about 2% for LONG_DATA transfers and
about 3.6% for RDMA transfers. That explains why the LONG_DATA transfers have
slightly better throughput than the RDMA transfers. The reason the RDMA_WRITE
transfers are slightly faster then the RDMA_READ transfers is that the latter have
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the extra latency of the RDMA_READ packet reaching the remote node to start the
RDMA_RESPONSE transfer, as explained in Chapter 3.

5.3 Comparison to related work

As many-core and multi-core architectures become more relevant, the research on this
subject will expand even more. Our design is comparable to the existing research, as it
supports RDMA transfers, with the data written in a specific part of the memory, used
similarly to a scratch-pad memory, has event notification using interrupts and a 16 core
network of four AXIOM boards has been successful.





Chapter 6

Conclusions

With the expansion of research upon Cyber-Physical Systems, the Axiom project is very
relevant, as the outcome of this project will not only be a functional and very capable
board, but also a step forward in this research field.

6.1 Brief conclusions

This thesis’ outcome is a completely functional Network Interface, that along with the
Router comprise the Interconnect of the Axiom board. The Network Interface we designed
follows all the guidelines needed for it to be adapted into the Axiom project. It is cost
effective, with about 16% usage of the FPGA’s available resources. It is efficient, with
utilization of up to 7.3 Gbps of the available 10 Gbps USB type-c transceivers with our
tests, and with reports from the project’s partners of throughput up to 9.3 Gbps. The NI
we designed and implemented has already been integrated to the PetaLinux processing
system that will be provided along with the Axiom board, and the OmpSs programming
model is being tested in networks of Axiom boards with very promising results.

In Chapter 3 we analyze the Design Architecture, first by reviewing the needed function-
ality, the supported transfers, their usage and their limitations, and then by analyzing
the architecture of each module and it’s job as part of the whole. Then in Chapter 4 we
explain how through this thesis we became adept at the usage of the Xilinx Vivado Suite,
by presenting the tools and their basic functionality, along with their design flow and our
developing and debugging process. The second part of Chapter 4 is the implemented
design, with information about the creation of each module, the problems that occurred
and how we overcame them, and the detailed usage for the IPs provided by Xilinx. The
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final part of Chapter 4 is the resource utilization on the Axiom board. In Chapter 5 we
reference the boards we used for this project, and their basic functionality and proceed
to analyze the throughput we achieved for each transfer and extract several information
about the NI.

6.2 Next steps for improving the NI architecture /
implementation

While the outcome is functional and with good results, several improvements could be
made to the performance. Some examples would be:

• Enabling Cache Coherence. While the NI throughput is good, a great way to
speed up performance, if not apparent, is enabling Cache Coherence for the LONG
and RDMA transfers. Since the maximum payload of 64 KBytes is a fairly big
payload to read from the DDR, being able to use the cache would speed up both
the reads from the Datamover to send the data, and the reads from the PS after
a transfer is complete, a speedup that would not show in the NI, but would be
significant.

• Support for even larger transfers. As figure 5.2 shows, while for larger payloads,
the throughput has started to stabilize, it has not reached peak value yet. The idea
is that doubling the max payload size would provide even more efficient transfers
with higher throughput.

• Utilize more GP lanes than one per interface. The USB type-c cable and
interface provide two transceivers per interface. that means that it is possible to
utilize both of them for 128 bit words instead of the 64 bit words we use. in such a
case the speedup would be apparent, as while the whole project would have to be
reimplemented, the latency of each transfer would be cut almost in half, effectively
doubling our throughput.

We hope to revisit this project and tackle some of the suggested improvements, hopefully
attaining even greater result.
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