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Περίλθψθ 

 
Τα καρδιαγγειακά νοςιματα ςιμερα αποτελοφν μεγάλο ιατρικό, αλλά και κοινωνικό 

πρόβλθμα, κακϊσ κατζχουν τθν πρϊτθ κζςθ ςτισ αιτίεσ κανάτου τόςο ςτθν Ευρϊπθ, όςο και 

ςε παγκόςμιο επίπεδο. Μζχρι ςτιγμισ οι απεικονιςτικζσ μζκοδοι και οι ραγδαία ανάπτυξθ 

αυτϊν τθν προθγοφμενθ περίοδο ζχουν φζρει πολλαπλά οφζλθ για τθν εντόπιςθ και τθ 

διάγνωςθ πολλϊν καρδιοαγγειακϊν αςκενειϊν (ακθροςκλιρωςθ, ανεφρυςμα, κρομβϊςεισ). 

Οι εφαρμογζσ του μαγνθτικοφ τομογράφου αποτελοφν παράδειγμα τζτοιων μεκόδων, οι 

οποίεσ επεξεργάηονται τισ απεικονιςτικζσ ακολουκίεσ και αναςυνκζτουν τθν πλθροφορία ςτισ 

τρεισ διαςτάςεισ χρθςιμοποιϊντασ αδόμθτα δίκτυα γεωμετρίασ κακϊσ τα μοντζλα που 

ανακαταςκευάηουν προορίηονται μόνο για απεικόνιςθ. Παρ’ όλα αυτά, μετά από ενδελεχι 

μελζτθ τθσ ςχετικισ βιβλιογραφίασ, εντοπίηεται μεγάλθ ανάγκθ προςομοίωςθσ τθσ γεωμετρίασ 

με δομθμζνα πλζγματα ϊςτε να μπορεί να αξιοποιθκεί από ειδικζσ μθχανικζσ αναλφςεισ. Σε 

αυτι τθν κατεφκυνςθ γίνονται προςπάκειεσ να ςυνδεκοφν τα πεδία τθσ ιατρικισ 

τριςδιάςτατθσ απεικόνιςθσ με αυτά τθσ υπολογιςτικισ ςχεδίαςθσ (CAD) και τθσ υπολογιςτικισ 

ανάλυςθσ (CAE) με ςτόχο τθν εμβιομθχανικι ανάλυςθ με μεκόδουσ υπολογιςτικισ μθχανικισ. 

Η παροφςα διπλωματικι πρόταςθ πραγματεφεται τθν αυτοματοποιθμζνθ τριςδιάςτατθ 

ανακαταςκευι τθσ ανκρϊπινθσ κωρακικισ αορτισ από τα ιατρικά απεικονιςτικά δεδομζνα 

μαγνθτικοφ ι αξονικοφ τομογράφου και τθν μοντελοποίθςθ τθσ με τζτοια γεωμετρία ϊςτε να 

μπορεί τα καταςτεί δυνατι θ εμβιο-μθχανικι ανάλυςθ του οργάνου. Έχει γίνει χριςθ 

εξειδικευμζνων μεκόδων επεξεργαςίασ ιατρικϊν εικόνων ϊςτε να μπορζςουμε να 

εντοπίςουμε και να απομονϊςουμε τθν κοιλότθτα τθσ αορτισ και να εντοπιςτεί το εξωτερικό 

τοίχωμα τθσ μεγάλθσ αρτθρίασ. Έπειτα κάνοντασ χριςθ μεκόδων τριςδιάςτατθσ 

ανακαταςκευισ από ιατρικζσ εικόνεσ  δθμιουργοφμε το αρχικό μοντζλο. Τζλοσ αξιοποιϊντασ 

τεχνικζσ υπολογιςτικισ γεωμετρίασ ςτοχεφουμε τθ δθμιουργία του τελικοφ αξιόπιςτου 

μοντζλου με δομθμζνο δίκτυο γεωμετρίασ. Χρθςιμοποιοφμε για τθν τριςδιάςτατθ 

ανακαταςκευι NURBS επιφάνειεσ, οι οποίεσ μασ επιτρζπουν τθν πιο πιςτι αναπαράςταςθ ωσ 

προσ το φυςικό μοντζλο. 

Το NURBS μοντζλο που καταςκευάηουμε είναι και το κατάλλθλο μοντζλο προσ αξιοποίθςθ 

από τισ μεκόδουσ ανάλυςθσ, για τισ οποίεσ προορίηεται θ εφαρμογι μασ (Πεπεραςμζνα 

Στοιχεία, Ιςογεωμετρικι ανάλυςθ). Στόχοσ των μεκόδων ανάλυςθσ  είναι ο υπολογιςμόσ των 

ίδιων μεγεκϊν και ςυγκεκριμζνα του πεδίου των μετατοπίςεων (displacement field), των 

ανοιγμζνων παραμορφϊςεων (strain field) και των τάςεων (stress field) των τοιχωμάτων τθσ 

αορτισ. 
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Abstract 

 
This thesis was motivated by the need for both quick and accurate computer-aided 

measurement of human organs, which is vital for an early medical diagnosis. It deals with the 

thoracic aorta, whose abnormalities are often related to cardiovascular diseases. Also, it 

presents an innovative approach for semi-automated reconstruction and NURBS-based 

simulation, which has been applied on real patient data sets. We developed a basic pipeline, 

which starts with processing MRI DICOM files from the thoracic region. In the first stage, image 

processing techniques have been used to enhance the quality of the images and then the 

tracking of the aortic cross-sections’ boundaries ends up to the corresponding point cloud. 

Based on this cloud, a reverse engineering method generates Non-Uniform Rational B-SPLine 

(NURBS) surfaces. This is accomplished by fitting cubic B-SPLines to the cross-sections, which 

generate the 2D NURBS model, means the outer surface of the aorta. Our methodology was 

tested and evaluated on real MRI data from three different patients and the results indicate 

good potential for semi or even automated development of a personalized aortic model. 
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1 Introduction 

1.1 Thesis area of interest 

The cardiovascular system is made up of the heart and blood vessels. Cardiovascular disease 

(CVD) is defined as any serious, abnormal condition of the heart or blood vessels (arteries, 

veins). This kind of diseases includes coronary heart disease (CHD), stroke, peripheral vascular 

disease, congenital heart disease, endocarditis, and many other conditions. Risk factors are 

variables that predict who is most likely to develop CVD. Most of the risk factors for 

cardiovascular disease and stroke are modifiable or entirely preventable. By modifying risk 

factors, you decrease the chances of getting diseases. Modifiable risk factors include tobacco 

use, high blood pressure, physical inactivity, high blood cholesterol, obesity, heavy alcohol 

consumption, and poor nutrition. Non-modifiable risk factors are age and family history. The 

more risk factors one has, the higher the risk of developing disease. According to the European 

Heart Network, each year cardiovascular disease causes 3.9 million deaths in Europe, which 

makes them the main cause of death in western countries, responsible for hundreds of 

thousands of early deaths all over the world. CVD is not only a major threat to individuals’ lives, 

but also a major economic cost to all European countries [1]. 

For all these reasons scientists focused on the simulation of biological structures such as the 

cardiovascular system in order to enhance all the current methods for detection, prediction and 

fighting against of CVDs. Computer modeling and simulation, particularly when augmented with 

graphical methods, are playing an increasingly central role in changing both the way in which 

medicine is taught, and the way it is practiced. Medical imaging and medical visualization have 

risen in the last two decades to an essential tool in clinical diagnosis and follow-up. 

Visualization in medical research of cardiovascular system has emerged as a unique and 

significant discipline aimed at developing approaches and tools to allow researchers and 

practitioners to “see” and comprehend the living systems they are studying. Approaches to 

vascular visualization include generation of realistic displays for representation of images and 

related information in three or more dimensions, development of interactive and automated 

methods for manipulation of multidimensional images and associated parametric data and 

design and validation of models that enhance the decision-making processes in biomedical 

applications. As these techniques evolve, the number of available modalities increases steadily, 

offering new ways to detect pathologies and new alternative techniques for treatment. The 

potential benefits of medical simulations in medical practice have been recognized by the 

American National Board of Medical Examiners (NBME) are the decreased delay in reporting 

test results , increased accuracy and more life-like testing situations, compared to the 

traditional paper-based method of testing [2]. 
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This thesis presents a semi-automated algorithm for NURBS reconstruction of the thoracic 

aorta giving innovative solutions to analysis problems. A semi-automatic algorithm has been 

developed that combines digital image processing and computational geometry methods for 

segmentation and 3D NURBS surface reconstruction, using DICOM files. NURBS permit a 

smoother representation of curves and surfaces and the exact representation of any conic 

section. Parameterization by means of NURBS functions allows one to obtain a flexible and 

versatile modeling of surfaces. Once modeled by NURBS, the curve or surface offers flexibility in 

the representation of its form via the rearrangement of the control points or reassignment of 

the weight values. As a consequence, NURBS became the standard functions for description of 

curves and surfaces in Computer Science and Engineering. Last but not least there are of great 

need in order to take advantage of the new, enhanced isogeometric analysis. The highly 

demanding geometry of the thoracic aorta demands the isogeometric method as it vanishes all 

the main drawbacks of the finite element method [3]. Specifically, it merges the geometric 

design with the mesh generation into a single procedure, eliminates the geometric error, 

significantly increases the accuracy of the analysis, and drastically reduces the required 

computational time and cost [4]. 

 

 

1.2 State of the art 

Modern diagnostic imaging enables acquisition of angiography data such as magnetic 

resonance angiography (MRA), computed tomography angiography (CTA), and digital 

subtraction angiography (DSA) and storing the acquired information in DICOM datasets. 

Available software packages offer basic methods for volume rendering of DICOM files, they do 

not however provide automatic, easy methods for creating and exporting reusable 3D model of 

a specific segmented part, which is the first step for many further computer graphics and 

simulation applications. In current literature great work has been done by Grayhart et al in this 

work [5] in the automation of segmentation of aorta. An accurate 3D reconstruction of arteries 

can provide models that allow comprehensive visualization of the vessel geometry and 

assessment of the characterization of different abnormalities such as aortic calcification, 

atherosclerosis and aortic aneurysm. The scope of studying and analyzing these diseases is of 

great value because this gives to us great advantages in the process of prediction. A model of 

atheromatous plaque and it’s composition has been studied by Fotiadis et al in order to 

examine a stenting method in arteries with plaque [6]. Processing vessels geometry and 

producing three dimensional meshed, can permit blood flow simulation and evaluation of the 

role of the local hemodynamic forces on any vessel’s abnormality with finite element analysis 

or isogeometric analysis. A novel work has been done by Hughes et al describing an automatic 



 
Panagiotis Koulountzios                                                      3                                                            October 2017 

method for reconstructing aorta with NURBS geometries for isogeometric analysis of the blood 

flow [7]. 

Various treatment options are nowadays available for many CVD, such as the percutaneous 

minimally-invasive techniques such as stenting, grafting and angioplasty procedure, which have 

to be guided by the numerical results of the respective simulations according to computational 

methods. Patient cardiovascular modeling is a recently developed and even-growing medical 

imaging field which focuses on detecting Abnormalities in cardiovascular system and 

characterizing them as we see in [6], [7], [10]. Furthermore, the quantitative measurements of 

human cardiovascular parts are crucial for the diagnosis of cardiovascular diseases, such as 

aortic calcification, atherosclerosis and aortic aneurysm. Thus, medical visualization and 

geometry editing is a notable task for techniques, which focus on aiding medical treatments, 

such as 3D printing, rapid prototyping in medicine and virtual surgery. 

 

 

1.3 Thesis contribution 

As we see from the relative bibliography the issue of automatic or semi-automatic 

reconstruction of thoracic aorta has been studied in the past years. At first, medical 

visualization was developed for visualization purposes. As a consequence the geometry that has 

been used was of polygonal form with unstructured grid. Unstructured geometry grid intended 

only for visualization because of its great geometry description of an object and its low 

computational complexity as a model. Nowadays biomechanical applications have been 

developed enough to simulate such complicated systems as cardiovascular and they demand 

visual objects with such a structured grid that can be processed by the analysis methods. Even 

though the available software packages offer basic methods for volume rendering, they do not 

provide automated creation of the respective 3D NURBS model. Thorough investigation proved 

that medical industry doesn’t take advantage of NURBS, so far. 

This thesis’ contribution is the combination of novel methods both of semi-automatic 

segmentation and reconstruction of aorta and generation of NURBS geometry and its 

requested control mesh. As we stated before there are not such automatic ways in the medical 

practice to model and simulate the behavior of single portions of human’s body. 

Our proposed algorithm has two main stages. The first one is the segmentation of aortic 

cross-sections from consecutive axial images and the computation of the centerline, the point 

cloud and the polygon mesh from the aortic contours. The second one is the NURBS fitting, 

which take advantage of the centerline and the point cloud to form B-SPLine curves 

perpendicular to the centerline and define the NURBS surfaces according to lofting techniques 

[11]. Crucial points of our pipeline are the matching of centerline based both on axial and 
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sagittal slices in order to be precise. Moreover in the curves fitting stage we developed a basic 

method which is focused on decreasing the complexity model and increasing the accuracy of 

our final NURBS model. At first we translate image’s information (pixels) into points in 3D 

space, subsequently we applied a circular spline regression to the data points and choose and 

register specific amount of uniformly distributed points of the generated spline. Finally these 

points are the new optimized point cloud of our model. This technique gives us lesser and more 

appropriate points describing each aortic cross-section, furthermore, the harmonization of 

points in a polar coordinate system and more specifically at each specific axial angle give us a 

smoother surface, voiding overfitting problems. 

 

 

1.4 Composites steps of modeling and thesis outline 

Regardless the specific imaging modality, medical images contain information in the form of 

multidimensional arrays of numeric values, which are correlated with one or more physical 

properties of the imaged anatomical structures. Modeling the geometry of a vessel from 

medical images consists in extracting the location of the vessel wall from the values contained 

in the image volume. Since the image formation process in general alters the underlying 

anatomical information, and since the resolution with which the latter is acquired is bound to 

be finite, medical images are coarse representations of the underlying anatomy. In our 

proposed method we used DICOM 3D images in order to simulate the vascular structures. 

Vascular modeling pipeline that we follow consists of 5 steps: 

(1) Preprocessing. In scanned computed tomography (CT) or magnetic resonance imaging 

(MRI) data, the intensity contrast may not be clear enough, noise exists, and 

sometimes the blood vessel boundary is blurred. Therefore, we use image processing 

techniques to improve the quality of CT/MRI data, such as contrast enhancement, 

filtering. Moreover in this stage we used image registration techniques in order to 

compute a 3D volumetric dataset from the multiple slices of MRI/ CT images.  

(2) Segmentation and 3D-Reconstruction. In this stage we proposed a well-defined 

algorithm which process all the axial slices of the 3D dataset. The only input that 

algorithm needs is one inner point of aortic cross-section. Then our procedure is 

capable to segment all the cross-sections across the thoracic aorta. For this stage we 

relied on the anatomy of thoracic aorta and composed a procedure that is based on 

the curvature of aortic arch. Then we applied an isosurface algorithm to the 3D 

segmented dataset in order to compute the surface from the aortic contours. Vascular 

surface models can be constructed from the preprocessed imaging data via 

isocontouring. 
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(3) Path extraction. The goal is to find arterial paths. In the Segmentation stage we have 

computed a closed elliptical perimeter for each aortic cross-section, as well the 

approximate center of each perimeter. Storing all these centers and producing an 

interpolant B-Spline curve from to these, we can compute the centerline of the artery. 

(4) B-spline planar fitting. At first we have registered the specific planar cross-sections 

perpendicular to the centerline of aorta. After this step our main target is to compute 

a cubic B-Spline curve to the data points of these cross-sections. 

(5) NURBS surface generation– – a skeleton-based lofting method is developed to 

construct quad NURBS control meshes by sweeping the vessel’s cross-sections (cubic 

B-Splines) across the arterial path.  

In chapter 2 we state the anatomy and physiology of the aorta. We discuss the 

characteristics of the organ and its normal behavior. We also present the corresponding size of 

diameters of organ in some specific location, which numbers will aid to evaluate the accuracy of 

our simulations. In chapter 3 we present all the theoretical background needed for this thesis as 

we split it into meaningful subchapters. We give an overview on medical imaging modalities 

and their specialities. Moreover we introduce the importance of DICOM datasets as the 

international standard for medical images and related information. Continuing with the 

theoretical background we present some basic methods on digital image processing and 3D 

reconstruction techniques. Last, but no least, we provide basic information about NURBS 

theory and applications. In chapter 4 we describe our proposed automated algorithm, 

presenting our novel methods in the two basic subchapter that we present. First of all medical 

image processing techniques are combined in order our automatic algorithm to come of. Then 

the second stage of our work is the NURBS fitting techniques which are presented in the second 

subchapter. Interesting points of our approach is the matching of extracted vessel’s centerline 

matching from axial and sagittal slices, as well the compression of point cloud with an 

optimized manner giving us low complexity for the final model and avoiding overfitting with 

lesser points. In other words we construct the control net of our model with a novel and 

enhanced way which is very important step for further simulation applications in biomechanics. 

In chapter 5 we evaluate the results of our method with some pixel-based binary test metrics. 

We compute the accuracy sensitivity and precision of our total enclosed pixels by the NURBS 

surface and compare them with the amount of the total pixels which are enclosed in early stage 

segmentation. With this metrics we can compare our processing in two different stages and 

examine the divergence. Last but not least, chapter 6 acts as an epilogue for this thesis, 

presenting our conclusions along with future improvements. 
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2 Anatomy – Physiology of aorta 

2.1 Anatomy of the aorta 

The aorta is the main artery of the human body, often called the greatest artery, normally 

reaching 70 cm in length and 3.5 mm in diameter. It receives the cardiac output from the left 

ventricle and supplies the body with oxygenated blood via the systemic circulation. So, it arises 

from the left ventricle of the heart and extending down to the abdomen, where it splits into the 

two iliac arteries. The aorta is divided into six segments: 

 

 Aortic root 
 

 Sinotubular junction 
 

 Ascending aorta 
 

 Aortic arch 
 

 Descending thoracic aorta 
 

 Abdominal aorta 
 
 

 
Figure 2.1 Normal size of thoracic aortic segments and characterization of them. [12] 
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Aortic root 

The aortic root begins at the aortic valve annulus level and extends to the sinotubular 

junction. It is the section of the aorta closest to and attached to the heart as shown in Figure 

2.2. The aortic root consists of the aortic valve, the openings for the coronary arteries and the 

three aortic valve leaflets (Sinuses of Valsalva) surrounded by a fibrous ring (the annulus). 

Normal diameters of this segment are between 29 and 45 mm, with a variation depending on 

body size. The most common consequence of disease of the aortic root is impairment of the 

valve. In this case, dilation of the root reduces coaptation and an event like dissection reduces 

the suspension of the leaflets and lead to collapse of the aortic valve. 

 

 

Sinotubular junction 

The sinotubular junction is normally a well-defined region at which the rounded and wider 

sinuses of Valsalva join the narrower tubular shaped ascending aorta, see Figure 2.1. Normally, 

the sinotubular junction has the same dimension as the aortic annulus and constitutes a critical 

support to the superior part of the aortic valve commissures. Normal diameter of the 

sinotubular junction is 22 up to 36mm, with variation depending on body size. Effacement 

(marked dilation) of this junction suggests annuloaortic ectasia and often is seen in patients 

with Marfan syndrome. Dilation of the sinotubular junction confounds the correct spatial 

arrangement of the commissures and typically results in central maladaptation and aortic 

insufficiency. Replacement of an aneurysmal ascending aorta and sinotubular junction with a 

tube graft of correct diameter (stent) often corrects aortic insufficiency by reestablishing the 

correct spatial suspension of the aortic valve. Similarly, reestablishing integrity of a dissected 

sinotubular junction by sewing the dissected root components to a tube graft that supplies 

support to the repaired sinotubular junction may also correct aortic insufficiency from an aortic 

dissection. 

 

 

Ascending aorta 

The ascending aorta is the segment of the aorta from the sinotubular junction to the first 

great arch vessel, the brachiocephalic artery (innominate artery), see Figure 2.2. Identifying the 

distinction of the ascending aorta from the arch on the outside region is far easier than it is on 

the inside part of the aorta. The ascending aorta is often affected by dissections and 

aneurysms, it is intrapericardial, as the pericardium reaches distally the first supra-aortic vessel, 

see Figure 2.1. The ascending aorta measures approximately 5cm in length and up to 30±6mm 

in diameter, with variation appropriate for body size. 
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Figure 2.2 Segmental division of the aorta: the aortic root (LIGHT BLUE), the sinotubular junction 
(GREEN), the ascending aorta (YELLOW), the aortic arch (DARK BLUE), the isthmus and descending 
(thoracic) aorta (RED), and the abdominal aorta (PINK).[13] 

 

 

 
Aortic arch 

The aortic arch is the portion of the aorta from the first supra-aortic vessel (i.e., the 

brachiocephalic artery) to the left subclavian artery. See Figure 2.2 where the aortic arch is 

highlighted in a dark blue color. The aortic arch is mostly extrapericardial; normal diameter of 

the aortic arch is 30 ± 6mm, with variation appropriate for body size. The arch arcs over the 

right pulmonary artery. Branch vessels include right brachiocephalic artery (right subclavian 

artery and right common carotid artery), left carotid artery, and left subclavian artery as shown 

in Figure 2.3. Aortic arch branch variations are common. 

 

 

Descending aorta 

The isthmus is the narrower portion of the aorta (by approximately 3mm) between the left 

subclavian artery and ligamentum arteriosus, a remnant of the ductus arteriosus. Blunt 

traumatic deceleration injury, resulting in transection to the aorta often occurs at this site. The 

descending thoracic aorta begins at the ligamentum arteriosus and continues to the level of the  
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diaphragm. In Figure 2.2 the descending aorta is highlighted in red color. The esophagus runs 
alongside (within 0.5cm) the descending aorta. Normal diameter of the descending proximal 
aorta is 30mm. At the eleventh rib level, it is inferior to 23 mm. Branch vessels of the isthmus 
include the ductus arteriosus. Branch vessels of the descending aorta include intercostal 
arteries, spinal arteries, and bronchial arteries. 

 
 

 
Figure 2.3 The thoracic aorta. In this picture are emphasized the three supra-aortic branches - i.e., the 
brachiocephalic trunk, the left common carotid artery, and left subclavian artery. The figure shows also 
the coronary arteries (left and right coronary arteries). Those arteries are responsible to carry the 
oxygenated blood to the heart. 

 
 
 

Abdominal aorta 

The abdominal aorta starts at the hiatus of the diaphragm and courses retroperitoneal to its 

bifurcation, see Figure 2.2 pink color highlight the abdominal aorta. Major branch vessels 

include inferior phrenic arteries, celiac artery branches, renal arteries, superior mesenteric 

artery, inferior mesenteric artery, lumbar and spinal arteries, and iliac arteries. Normal 

diameter of the suprarenal abdominal aorta is 20mm, and normal diameter of the infrarenal 

abdominal aorta is inferior to 20mm. From a practical point of view the abdominal aorta is 

reasonably equal to the size of the patient’s thumb. 
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2.2 Histology of the aorta 

The intima 

Tunica intima is the layer at contact with the blood and it is made of a single layer of 

endothelial cells embedded in extracellular matrix and an underlying thin basal lamina, which is 

also referred to as basement membrane, providing structural support to the arterial wall. Such 

a layer provides a non-thrombogenic surface so that the blood can flow through the artery 

without forming thrombus. The basal lamina contains non-fibrillar collagen types, adhesion 

molecules laminin, fibronectin, and other extracellular matrix molecules. It has been observed 

that the orientation of the collagen fibers in the subendothelial layer through the thickness it is 

not uniform but dispersed. The intima is very thin, i.e., from 0.05 to 0.1mm, and its contribution 

to the mechanical properties in healthy young human arteries is not significant. Whereas, 

ageing and in the case of pathological conditions, the intima becomes thicker (from 0.2 to 

0.4mm) and stiffer, and develops a more complex and heterogeneous structure. These 

pathological changes are associated with alterations in the mechanical properties, which differ 

significantly from those of healthy arteries. Finally, it is separated from the media by the 

internal elastic lamina, which is often considered to be part of it. 

 

 

 
Figure 2.4 Structural organization and composition of the three different layers in the coronary vessel 

wall [13]. 
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The media 

Tunica media is the middle and thickest layer of the artery, i.e, from 0.1 to 0.5mm, made of 

smooth muscle cells, elastin and collagen immersed into an aqueous ground substance 

containing proteoglycans, known as matrix. Such fibers are arranged in repetitive lamellar units 

separated by thin fenestrated sheets of elastin, forming concentric medial layers. The thickness 

of such units is nearly independent of the radial location across the wall, but their number 

decrease as the distance from the heart increases, so that the lamellar units found absent in 

small muscular arteries. The laminated structure confers high strength to the media and 

explains how such a layer determines the mechanical properties of the whole vessel wall. In the 

media, collagen fibers are aligned along the circumferential direction with a very little 

dispersion. This structural arrangement gives the media the ability to carry loads in the 

circumferential direction. Apparently, the distribution of collagen does not show changes in 

atherosclerotic arteries. The media is separated from the adventitia by the external elastic 

lamina. 

 

 

The adventitia 

Tunica adventitia is the outermost layer of the artery and consists primarily of collagen 

fibers, elastin, nerves, fibroblasts, fibrocytes. The thickness size of the adventitia is thinner than 

the media, i.e., from 0.25 to 0.40mm. The adventitia is surrounded continuously by loose 

connective tissue, which often provides additional structural support. As for the intima, 

histological evidence has proven the dispersion of collagen fibers in the adventitial layer, which 

remains also in atherosclerotic arteries. Collagen fibers tend to maintain an axial orientation 

and remain slack at low pressures, but as the pressure increases they straightened, reinforcing 

the arterial wall and preventing the over-stretching and the rupture of the artery. The 

cardiovascular diseases are being addressed, as appropriate, through the prevention of risk 

factors, drug therapy and finally surgery. 
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3 Analytic background 
 

3.1 Medical imaging modalities 

3.1.1 Computed tomography angiography 

Computed Tomography Angiography has evolved from the traditional X-rays computed 

tomography. Its name comes from Greek words tomos - ’slice’ and graphien - ’to write or 

record’, because the result of CT imaging are (axial) slices from the object. This is achieved by 

rotating the X-rays source and detectors around the object, recording the individual cross-

attenuations. The slice images are then reconstructed from raw X-rays attenuation 

measurements by so called tomographic reconstruction, mathematically based on Radon’s 

transformation [14], [15]. With the development of fast CT scanners, the scan times have 

decreased substantially, which has allowed to scan a particular anatomic region of the body 

while contrast medium is injected intravenously at the same time. Figure 3.1 depicts the 

functionality principles of CT. The resulting bright vascular opacification combined with high-

spatial resolution CT acquisition gave rise to so called CT-Angiography, or CTA. Modern CTA has 

evolved within the last years into an accurate, robust, and cost effective non-invasive imaging 

technique in patients with coronary or arterial diseases, thanks to the advent of helical multi-

slice CT scanners which allow fast and precise 3D medical imaging of a human body. Current 

state-of-the-art 16- and 64-channel CT scanners allow acquisition of a set of transverse images 

representing the whole area of interest in less than 30 seconds. With a simultaneous use of 

contrast medium, the produced images are well-suited for angiographic purposes and due to 

the better contrast resolution of CT when compared to conventional angiography, contrast 

medium needs not be injected directly into the arterial system, but only into an arm vein, 

intravenously. CTA is thus much less invasive and less harmful for the patient. A CTA dataset of 

the lower extremity arterial tree (peripheral CTA) consists of approximately 1200–2000 images 

512×512 pixels each, with 4096 levels of grey and resolution below 1 mm3 is produced. Within 

such dataset, vessels manifest densities that are different to those of the surrounding tissue, 

due to the contrast-medium enhancement of blood. As the number of transverse slices is very 

high, the radiologic interpretation of CTA dataset is laborious and lengthy and dedicated post-

processing tools that generate a small set of easily interpretable images are typically used. 
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Figure 3.1 Spiral CT scanning principle. The X-rays source and oppositely mounted detectors in rows 
perform two motions: 1. rotation around the axis, 2. longitudinal movement along the axis. In this way, a 
large anatomic volume can be scanned rapidly [16]. 

 

 

 

3.1.2 Magnetic resonance angiography 

Magnetic resonance imaging (MRI) is a convenient medical imaging technique for 

visualization of soft tissues and functional imaging, for example of blood flow. Magnetic 

resonance use for imaging is within a frequency range between 10 and 200 MHz, i.e. in the 

radio frequency (RF) domain. The RF waves used for MRI have a wavelength between one and 

100 meters. For comparison, diagnostic x-rays have wavelengths between 10−12 and 10−9 m 

and ultrasound pulses for imaging result in a wavelength of 10−4 m in blood. A general 

electromagnetic spectrum is shown in Figure 3.2. The primary source of the MRI signal used in 

medical imaging originates from protons. Most of the protons in the human body are present in 

the form of water since the human body is approximately 70% water. The protons are magnetic 

and they rotate around their own axis, a motion referred to as spin. Because the protons are 

magnetic they act as tiny compass needles with the axis of rotation being the direction of 

magnetization. The scanner magnet produces a strong magnetic field in the longitudinal 

direction which aligns the spins according to the applied field. Due to the huge number of 

protons the effect of the spin alignment becomes measurable. 

Magnetic resonance angiography is a group of techniques based on magnetic resonance 

imaging (MRI) to image blood vessels. Magnetic resonance angiography is used to generate 

images of arteries (and less commonly veins) in order to evaluate them for stenosis (abnormal 

narrowing), occlusions, aneurysms (vessel wall dilatations, at risk of rupture) or other 

abnormalities. MRA is often used to evaluate the arteries of the neck and brain, the thoracic 

and abdominal aorta, the renal arteries, and the iliac arteries. There are special MRA 
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techniques that maximize vascular contrast by enhancing signal from flowing blood or 

suppressing signal from stationary tissues. MRA techniques include:  

Time of flight MRA (TOF-MRA)  

With this technique, signal depends on flow-related enhancement providing information 

about flowing blood perpendicular to the slice plane. It applies an incoherent gradient echo 

pulse sequence and gradient moment rephrasing to saturate stationary spins and fully 

magnetize inflow spins, producing a high vascular signal with proper flip angles and TR values. 

TOF-MRA can be acquired with 2D or 3D acquisitions. 3D acquisitions are optimal for obtaining 

high-resolution images and for evaluating smaller vessels with high-velocity blood flow 

(intracranial vessels). The advantages of TOF-MRA include sensitivity to slow flow, reduced 

sensitivity to intravoxel dephasing, and reasonable scan time. Its disadvantages include 

sensitivity to T1 effects and saturation of in-plane flow and enhancement are limited to flow 

entering the field of view or very high-velocity flow. 2D-TOF offers a large area of coverage yet 

has lower resolution than the resolution of 3D inflow studies. 2D-TOF also shows saturation of 

in-plane flow, and patient motion can cause data mis-registration between the individually 

acquired slices last but not least vessel borders may appear serrated. 3D-TOF offers high 

resolution for small vessels and is more tolerant of patient motion, demonstrating high SNR 

where vessels appear less serrated on the reformatted image. However, 3D-TOF also shows 

saturation of in-plane flow and has a small area of coverage. 

 

 

Phase-contrast MRA  

Phase-contrast MRA is a sequence related to in-phase change of flowing blood. This 

variation relies on blood velocity, flow direction, and the type of scan used. It provides 

information about vascular anatomy, flow velocity, and flow direction. Blood flow velocity 

differs based on physiologic status, type and size of vessel, and pathology within the vessel. An 

oscillator in the scanner electronics is used as a reference to detect phase shift and is also used 

for position encoding in MRI. Phase has a 360° range, beyond which the same values repeat, 

causing aliasing. The PC sequence has high sensitivity to fluid motion, so it can be used in 

clinical blood flow analysis. It can also be used to evaluate blood flow with multiple directions 

and multiple velocities. This technique can create two types of images: magnitude and phase 

images. In magnitude images, vessels show high signal and a suppressed background because 

of short TR, allowing incomplete recovery of magnetization. In phase images, the signal is 

linearly proportional to the velocity of the blood. The direction of flow appears bright when 

flow is in the same direction as the velocity encoding gradient, whereas flow in the opposite 

direction appears black. This technique can therefore be used to localize vessels that can then 

be more thoroughly evaluated with other techniques. 3D techniques offer an SNR and spatial 
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resolution better than those of 2D techniques and also offer the ability of reformatting. 3D PC-

MRA images are acquired for smaller vessels, when multidirectional vascular information (flow 

velocity and flow direction) is required. 2D PC-MRA techniques provide information about 

direction and velocity of flow in addition to information about multidirectional flow in a 

reasonable scan time. Precise lumen area delineation demands high in-plane resolution, which 

is necessary to accurately estimate the mean vessel velocity. The signal level of adjacent tissues 

controls the partial volume effects at vessel edges, and thicker slices will misalign; therefore, 

thin slices and high spatial resolution are important to overcome these effects. 

 

 

 
Figure 3.2 Electromagnetic spectrum (https://www.miniphysics.com/electromagnetic-
spectrum_25.html). 

 

 
 

3.2 DICOM 

Digital Imaging and Communications in Medicine (DICOM) is the international standard for 

medical images and related information. It defines the formats for medical images that can be 

exchanged with the data and quality necessary for clinical use. DICOM was originally developed 

by the National Electrical Manufacturers Association (NEMA) and the American College of 

Radiology for computerized axial tomography (CAT) and magnetic resonance imaging (MRI) 

scan images and it is now controlled by the DICOM Standards Committee. It is implemented in 
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almost every radiology, cardiology imaging, and radiotherapy device (X-ray, CT, MRI, 

ultrasound, etc.). Since its first publication in 1993, DICOM has revolutionized the practice of 

radiology, allowing the replacement of X-ray film with a fully digital workflow. Much as the 

Internet has become the platform for new consumer information applications, DICOM has 

enabled advanced medical imaging applications that have “changed the face of clinical 

medicine”. From the emergency department, to cardiac stress testing, to breast cancer 

detection, DICOM is the standard that makes medical imaging work — for doctors and for 

patients. DICOM files consists of a number of attributes that contain, as shown in Figure 3.3: 

 patient related  information (name, sex, age, etc.), 

 modality and imaging  procedure information (type of machinery, acquisition  

parameters, radiation dose, contrast media, etc.) and 

 image  related information (image dimension, in-plane resolution or  pixel size, slice 

thickness, slice distance). 

 

 

 
Figure 3.3 A representation of DICOM file’s information. 

 
 
  



 
Panagiotis Koulountzios                                                      17                                                            October 2017 

3.3 Image processing and techniques 

3.3.1 Introduction 

In physical world, any quantity measurable through time over space or any higher dimension 

can be taken as a signal. A signal is a mathematical function, and it conveys some information. 

A signal can be one dimensional or two dimensional or higher dimensional signal. One 

dimensional signal is a signal that is measured over time. The common example is a voice 

signal. The two dimensional signals are those that are measured over some other physical 

quantities. The example of a two dimensional signal is a digital image. Signal processing is a 

discipline in electrical engineering and in mathematics that deals with analysis and processing 

of analog and digital signals, and deals with storing, filtering, and other operations on signals. 

These signals include transmission signals, sound or voice signals, image signals, and other 

signals. Out of all these signals, the field that deals with the type of signals for which the input is 

an image and the output is also an image is done in image processing. Digital image a [m, n] 

described in a 2-D discrete space is derived from an analog image a(x, y) in a 2D continuous 

space through a sampling process that is frequently referred to as digitization. But actually, this 

image is nothing but a two dimensional array of numbers ranging between 0 and 255. The 2D 

continuous image a(x, y) is divided into N rows and M columns. The intersection of a row and a 

column is termed as a pixel. Figure 3.4 shows the data structure of a digital image. It has been 

divided into N rows and M columns. The value assigned to every pixel (a (i, j)) is the average 

brightness in the pixel rounded to the nearest integer value. The process of representing the 

amplitude of the 2D signal at a given coordinate as an integer value with L different gray levels 

is usually referred to as amplitude quantization or simply quantization. 

 Binary Image. This image has only two luminosity values, black which is zero value (0) and white 

which is one value (1). This image is also the simplest form of a digital image. 

 Gray-scale Image. A gray-scale image with N×M dimensions there is nothing more than a 2-D 

matrix. 

                                                         

The image’s value I(i, j) is proportionate with corresponding pixel’s luminosity value. Commonly 

variable m=8 and so G=256. So the commonly range value of a gray-scale image is [0 255] with 

0 correspond to black and 255 to white color. 

 Colored Image. This type of image use real colors and it is the most common for the human’s 

vision. It consists of three gray-scale images of N×M dimensions. 

        [                        ] 
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Figure 3.4 Data structure of a digital image. 

 

 
 

In an image processing context, the histogram of an image normally refers to a histogram of 

the pixel intensity values. The histogram plots the number of pixels in the image (vertical axis) 

with a particular brightness value (horizontal axis). For an 8-bit gray-scale image there are 256 

different possible intensities, and so the histogram will graphically display 256 numbers 

showing the distribution of pixels amongst those gray-scale values. In the field of computer 

vision, image histograms can be useful tools for thresholding. Because the information 

contained in the graph is a representation of pixel distribution as a function of intensity value 

variation, image histograms can be analyzed for peaks and/or valleys. This threshold value can 

then be used for edge detection, image segmentation, and co-occurrence matrices. In the 

Figure 3.5 there is a medical image taken from a CT that depicts a coronal thoracic slice and its 

histogram.  
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Figure 3.5 Original MRA image of thoracic region with its histogram. 

 

3.3.2 Image enhancement 

Image filtering allows you to apply various effects on photos. Filtering is a technique for 

modifying or enhancing an image. For example, you can filter an image to emphasize certain 

features or remove other features. Image processing operations implemented with filtering 

include smoothing, sharpening, and edge enhancement. 

Histogram equalization 

Histogram equalization is a technique for adjusting image intensities to enhance contrast. 

Let   be a given image represented as a    by    matrix of integer pixel intensities ranging 

from 0 to 1.   is the number of possible intensity values, often 256. Let   denote the  

normalized histogram of   with a bin for each possible intensity. So let   denote the normalized 

histogram of         . 

   
                              

                      
                  

The histogram equalized image g will be defined by, 

                ∑   

     

   

 

where floor() rounds down to the nearest integer. This is equivalent to transforming  pixel 

intensities,  , of   by the function 
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                ∑   

   

   

 

The motivation for this transformation comes from thinking of the intensities of   and   as 

continuous random variables  ,   on [     ] with   defined by 

            ∫         
 

 

 

where    is the probability density function of  . T is the cumulative distributive function of   

multiplied by     [17]. In Figure 3.6 we see the histogram equalized prior thoracic slice. 

 

 

 

 
Figure 3.6 Histogram equalization enhanced MRA image of thoracic region with its histogram. 

 
 

 

Adaptive Histogram Equalization 

For images which contain local regions of low contrast bright or dark regions, global 

histogram equalization won't work effectively. Ordinary histogram equalization uses the same 

transformation derived from the image histogram to transform all pixels. However, when the 

image contains regions that are significantly lighter or darker than most of the image, the 

contrast in those regions will not be sufficiently enhanced. A modification of histogram 

equalization called the Adaptive Histogram Equalization can be used on such images for better 

results. Adaptive histogram equalization works by considering only small regions and based on 
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their local CDF (cumulative distribution function), performs contrast enhancement of those 

regions. It transforms each pixel with a transformation function derived from a neighborhood 

region. In its simplest form, each pixel is transformed based on the histogram of a square 

surrounding the pixel, as in the figure below. The derivation of the transformation functions 

from the histograms is exactly the same as for ordinary histogram equalization: The 

transformation function is proportional to the cumulative distribution function (CDF) of pixel 

values in the neighborhood [18]. This method’s paradigm is shown in Figure 3.7. 

 

 

 
Figure 3.7 Histogram equalization enhanced MRA image of thoracic region with its histogram. 

 

 

Gamma correction and linear mapping 

Gamma, represented by the letter  , can be described as the relationship between an input 

and the resulting output. The relationship in this case between the input and output is that the 

output is proportional to the input raised to the power of gamma. The formula for calculating 

the resulting output is as follows: 

 

Note that with a gamma of 1 the input equals the output producing a straight line. For 

calculating gamma correction the input value is raised to the power of the inverse of gamma. 

The formula for this is as follows: 
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3.3.3 Image segmentation 

In computer vision, image segmentation is the process of partitioning a digital image into 

multiple segments (sets of pixels, also known as super-pixels). Image segmentation is a 

classification problem and therefore is one of the most important and difficult tasks in image 

processing. The goal of segmentation is the division of an image into meaningful structures 

which is often an essential step in image analysis, object representation, visualization, and 

many other image processing tasks. Image segmentation is typically used to locate objects and 

boundaries in images [19]. More precisely, image segmentation is the process of assigning a 

label to every pixel in an image such that pixels with the same label share certain 

characteristics. In many cases image segmentation remains an unsolved problem. The simplest 

form of segmentation is binarization. Binarization is the process of segmenting an image into 2 

classes, such as foreground and background, thus distinguishing the object(s) of interest from 

the rest of the image. The binary image is referred to as a mask when it is used to exclude pixel 

data from calculations. 

A great variety of segmentation methods has been proposed in the past decades, and some 

categorization is necessary to present the methods properly here. The categorization presented 

in this chapter is therefore rather a categorization regarding the emphasis of an approach than 

a strict division [20]. 

• Threshold based segmentation. 

• Edge based segmentation. 

• Region based segmentation. 

 

 

3.3.3.1 Threshold based segmentation 

Thresholding is probably the most frequently used technique to segment an image. If we 

have an image which contains bright objects on a dark background, thresholding can be used to 

segment the image. Since in many types of images the grey values of objects are very different 

from the background value, thresholding is often a well-suited method to segment an image 

into objects and background as shown in Figure 3.8. Many methods exist to select a suitable 

threshold value for a segmentation task. Perhaps the most common method is to set the 

threshold value interactively. The thresholding operation is a grey value remapping operation g 

defined by: 
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Where u represents a grey value, and t is the threshold value. Thresholding maps a grey-valued 

image to a binary image. After the thresholding operation, the image has been segmented into 

two segments, identified by the pixel values 0 and 1 respectively. 

When several desired segments in an image can be distinguished by their grey values, 

threshold segmentation can be extended to use multiple thresholds to segment an image into 

more than two segments as we see in Figure 3.8. All pixels with a value smaller than the first 

threshold are assigned to segment 0, all pixels with values between the first and second 

threshold are assigned to segment 1, all pixels with values between the second and third 

threshold are assigned to segment 2, etc. If n thresholds (t1, t2, . . . , tn) are used: 

                  

                              

                           

                 

After thresholding, the image has been segmented into n+1 segments identified by the grey 

values 0 to n respectively. 

 

 

 
Figure 3.8 Example of using multiple thresholds for segmentation. Top left: original image. Top right: 
thresholding result after using a low threshold value to segment the image into head and background 
pixels. Bottom left: result after using a higher value to segment the bone pixels. Bottom right: result 
after using both thresholds at once [21]. 
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3.3.3.2 Edge based segmentation 

It was realized early on that human vision is sensitive to contours and there is a duality 

between simple closed contours and objects. A contour is a frontier separating two objects or 

an object and its background in the binary case can be defined locally, while an object usually 

cannot because an object can have an arbitrary extent. A simple closed contour (or surface) is 

one that is closed and does not self-intersect. By the Jordan theorem [22], in the Euclidean 

space, any such contour or surface delineates a single object of finite extent. There are some 

classical difficulties with the Jordan theorem in the discrete setting, but they can be solved by 

selecting proper object/background connectivities.  

A gradient (first derivative) or a Laplacian (second derivative) operator can be used to define 

an object border in many cases, and gradients are less sensitive to illumination conditions than 

pixel values. As a result, contour detection through the use of gradient or Laplacian operators 

became popular, and eventually led to the Marr–Hildreth theory [23]. Given this, it is only 

natural that most segmentation method use contour information directly in some ways. Early 

methods used only this information to detect contours and then tried to combine them in some 

way. By far the most popular and successful version of this approach is the Canny edge detector 

[24]. In his classical paper, Canny proposed a closed-form optimal 1D edge detector assuming 

the presence of additive white Gaussian noise, and successfully proposed a 2D extension 

involving edge tracking using non-maxima suppression with hysteresis. The segmentation of an 

image into separate objects can be achieved by finding the edges of objects. A typical approach 

to segmentation using edges is done by following these steps: 

 Compute an edge image, containing all (plausible) edges of the original image. 

 Process the edge image so that only closed object boundaries remain. 

 Transform the result to an ordinary segmented image by filling in the object boundaries. 

The difficulty often lies in the middle step when transforming an edge image to closed 

boundaries often requires the removal of edges that are caused by noise or other artifacts, the 

bridging of gaps at locations where no edge was detected and intelligent decisions to connect 

those edge parts that make up a single object.  

 

 

Canny Edge Detection 

In industry, the Canny edge detection technique is one of the standard edge detection 

techniques. It was first created by John Canny for his Master’s thesis at MIT in 1983, and still 

outperforms many of the newer algorithms that have been developed. To find edges by 

separating noise from the image before find edges of image the Canny is a very important 

method. Canny method is a better method without disturbing the features of the edges in the 
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image afterwards it applying the tendency to find the edges and the serious value for threshold. 

The algorithmic steps are as follows: 

 Noise reduction 

The Canny edge detector uses a filter based on the first derivative of a Gaussian, 

because it is susceptible to noise present on raw unprocessed image data, so to begin 

with, the raw image is convolved with a Gaussian filter. The result is a slightly blurred 

version of the original which is not affected by a single noisy pixel to any significant 

degree. 

 

 Finding the intensity gradient of the image 

An edge in an image may point in a variety of directions, so the Canny algorithm uses 

four filters to detect horizontal, vertical and diagonal edges in the blurred image. The 

edge detection operator (Roberts, Prewitt, Sobel) returns a value for the first derivative 

in the horizontal direction (  ) and the vertical direction (  ). From this the edge 

gradient and direction can be determined: 

  √  
    

  

       
  

  
 

The edge direction angle is rounded to one of four angles representing vertical, 

horizontal and the two diagonals (0, 45, 90 and 135 degrees). 

 

 Non-maximum suppression 

Given estimates of the image gradients, a search is then carried out to determine if the 

gradient magnitude assumes a local maximum in the gradient direction. 

o If the rounded gradient angle is 0 degrees ( the edge is in the north and south 

direction) the point will be considered to be on the edge if its gradient 

magnitude is greater than the magnitudes in the west and east directions. 

o If the rounded gradient angle is 90 degrees (the edge is in the east-west 

direction) the point will be considered to be on the edge if its gradient 

magnitude is greater than the magnitudes in the north and south directions. 

o If the rounded gradient angle is 135 degrees ( the edge is in the north east-south 

west direction) the point will be considered to be on the edge if its gradient 

magnitude is greater than the magnitudes in the north west and south east 

directions. 
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o If the rounded gradient angle is 45 degrees (the edge is in the north west-south 

east direction) the point will be considered to be on the edge if its gradient 

magnitude is greater than the magnitudes in the north east and south west 

directions. 

From this stage referred to as non-maximum suppression, a set of edge points, in the 

form of a binary image is obtained. These are sometimes referred to as "thin edges". 

 

 

 Hysteresis thresholding 

The output of non-maxima suppression still contains the local maxima created by noise. 

Instead choosing a single threshold, for avoiding the problem of streaking two 

thresholds       and      are used. For a pixel M (i, j) having gradient magnitude G 

following conditions exists to detect pixel as edge: 

o If G <      than discard the edge. 

o If G >       keep the edge. 

o If      < G <       and any of its neighbors in a 3 ×3 region around it have 

gradient magnitudes greater than      , keep the edge. 

o If none of pixel (x, y)’s neighbors have high gradient magnitudes but at least one 

falls between     and,      search the 5 × 5 region to see if any of these pixels 

have a magnitude greater than      . If so, keep the edge. 

o Else, discard the edge.  

 

 

Edge Linking 

We have seen that the most edge detectors yield information about the magnitude, the 

gradient and the direction of the specific edge at an edge point. The latter information is 

obviously useful when deciding which edge points to link together since edge points in a 

neighborhood which have similar gradients directions are likely to lie on the same edge [25]. 

We can link adjacent edge pixels by examining each pixel-neighbor pair and seeing if they have 

similar properties: 

 Similar gradient magnitude: | ∇f(x, y) − ∇f(x, y) |≤ T for some magnitude difference 

threshold T. 

  Similar gradient orientation | φ(∇f(x, y)) − φ(∇f(x , y )) | ≤ A for some angular threshold 

A. 

Once the links are established, we take sets of linked pixels and use them as borders. Notice 

that unless you constrain the linked pixels in some sense (for example, by scanning along 
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horizontal or vertical lines), these can create clusters of linked pixels rather than long single-

pixel thick chains. Edge linking is usually followed by post-processing to find sets of linked pixels 

that are separated by small gaps– these can then be filled in. Edge detection is always followed 

by edge linking Local Processing. 

 Analyze pixels in small neighborhood of each edge point.  

 Pixels that are similar are linked. Edge pixel (x0, y0) is linked with (x, y) if both criteria 

are satisfied. 

 Principal properties used for establishing similarity:  

o Magnitude of gradient vector.  

   Edge pixel with coordinates (x0, y0) in neighborhood of (x, y) is similar in   

   magnitude to pixel at (x, y) if |∇f(x, y) − ∇f(x0, y0)| ≤ E.  

o Direction of gradient vector.  

Edge pixel with coordinates (x0, y0) in neighborhood of (x, y) has an angle   

similar to pixel at (x, y) if |α(x, y) − α(x0, y0)| < A.  

 

Edge linking, whose results are shown in Figure 3.9, bridges unconnected pixels, that is, sets 0-

valued pixels to 1 if they have two nonzero neighbors that are not connected. For example: 

1  0  0              1  1  0 

1  0  1   becomes   1  1  1 

0  0  1              0  1  1 

 

 

 

 
Figure 3.9 Edge-linking paradigm. Upper image is the original edge-tracked image and the lower image is 

the edge-linked image. 
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3.3.3.3 Region based segmentation 

In theory, finding an object by locating its boundary and finding it by establishing the region 

it covers will give you exactly the same object; the boundary and the region are just different 

representations of the same object. In practice, however, taking an edge based approach to 

segmentation may give radically different results than taking a region based approach. The 

reason for this is that we are bound to using imperfect images and imperfect methods, hence 

the practical result of locating an object boundary may be different from locating its region 

[26]. Region based segmentation methods have only two basic operations: splitting and 

merging, and many methods even feature only one of these. The basic approach to image 

segmentation using merging is: 

1. obtain an initial (over)segmentation of the image, 

2. merge those adjacent segments that are similar to form single segments 

3. go to step 2 until no segments that should be merged remain. 

The basic form of image segmentation using splitting is: 

1. obtain an initial (under)segmentation of the image 

2. split each segment that is inhomogeneous in some respect. 

3. go to step 2 until all segments are homogeneous. 

 

 

Region Growing 

Many merging methods of segmentation use a method called region growing to merge 

adjacent single pixel segments into one segment. Region growing needs a set of starting pixels 

called seeds. The region growing process consists of picking a seed from the set, investigating 

all 4-connected neighbors of this seed, and merging suitable neighbors to the seed. The seed is 

then removed from the seed set, and all merged neighbors are added to the seed set. The 

region growing process continues until the seed set is empty. The algorithm below implements 

an example with a single seed, where all connected pixels with the same grey value as the seed 

are merged. Below the algorithm is described [26].  

The data structure used to keep track of the set of seeds is usually a stack. Two operations 

are defined on a stack: push, which puts a pixel (or rather, its coordinates) on the top of the 

stack, and pop, which takes a pixel from the top of the stack. In the algorithm, the image is 

called f, the seed has coordinates (x, y) and grey value g = f(x, y). The region growing is done by 

setting each merged pixel’s grey value to a value h (which must not equal g). The pixel under 

investigation has coordinates (a, b). The final region can be extracted from the image by 

selecting all pixels with grey value h. To ensure the correctness of the result, we must select h 
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to be a value that is not present in the original image prior to running the algorithm. An 

example of this is shown in Figure 3.10. The algorithm runs: 

 

1. push (x, y) 

2. as long as the stack is not empty do 

 (a) pop (a, b) 

 (b) if f(a, b) = g then 

  i. set f(a, b) to h 

  ii. push (a − 1, b) 

  iii. push (a + 1, b) 

  iv. push (a, b − 1) 

  v. push (a, b + 1) 

 

 

 
Figure 3.10 Example of region growing based on a grey level range. On the left, an original 256×256 
image is shown, with a grey level range of 256. On the right, the result of region growing with the seed 
roughly at the center of the structure, allowing a grey value range of ±30 around the grey value of the 
seed [21]. 

 
 

3.4 Image Registration 

Image registration is the process of bringing two or more images into spatial correspondence 

(aligning them). In the context of medical imaging, image registration allows for the concurrent 

use of images taken with different modalities (e.g. MRI and CT), at different times or with 

different patient positions. In surgery, for example, images are acquired before (pre-operative), 

as well as during (intra-operative) surgery. Because of time constraints, the real-time intra- 

operative images have a lower resolution than the pre-operative images obtained before 

surgery. Moreover, deformations which occur naturally during surgery make it difficult to relate 
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the high-resolution pre-operative image to the lower-resolution intra-operative anatomy of the 

patient. Image registration attempts to help the surgeon relate the two sets of images. 

Registration has an extensive literature. Numerous approaches have been explored ranging 

from statistics to computational fluid dynamics and various types of warping methodologies. 

See [45, 46] for a detailed description of the field as well as an extensive set of references, and 

[47, 48] for recent papers on the subject. Registration typically proceeds in several steps. First, 

one decides how to measure similarity between images. One may include the similarity among 

pixel intensity values, as well as the proximity of predefined image features such as anatomical 

landmarks. Next, one looks for a transformation which maximizes similarity when applied to 

one of the images. To name a few examples, where registration is required: 

 

 Registration of image data acquired at different points in time. In dynamic imaging, 

image data are acquired at different time points. A robust mathematic analysis of these 

data requires the correction for motion artifacts.  

 Registration of pre- and intraoperative data. Therapy monitoring is based on 

intraoperative imaging. It is desirable to relate intraoperative data to analysis results 

derived from preoperative data. Together with navigation systems, a correct 

transformation of intraoperative data to preoperative data might be used to support the 

localization of a pathology. 

 Multimodal registration. A wide area of application is multimodal image registration, in 

which different acquisition techniques, such as CT and MRI, are used complementarily. 

 Atlas-based matching. Finally, image registration is often employed to compare the data 

of a particular patient with an atlas that represents normal anatomical variations. 

 

The goal of image registration is to deform or transform one dataset to optimally match 

another dataset that provides different information as well as similar information. Usually, 

single components of the registration process (transformations, similarity measures, 

optimization, interpolation, image representation) are considered as subclasses in research 

publications. As in segmentation, there is no standard approach. The registration problem can 

be formulated as follows:  

 

• Transformation: geometric transformation of voxel coordinates 

• Fitting: requires a quantification by means of a similarity measure 

• Optimally: The transformation should be accomplished in such a way that the similarity 

measure is maximized. 

• A given aspect: The criteria for optimal matching are chosen such that particular 

structures are matched as good as possible. As an example, the goal might be to match 

vascular structures, or skeletal structures, or organs. It is essential to note that optimal 
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correspondence with respect to a given aspect is often achieved at the expense of other 

aspects. 

 

Global Transformation. Translation and rotation of (all) coordinates are examples for global 

transformations. These transformations are described by a small set of parameters that is 

applied to all coordinates. With global transformations, simple movements may be corrected. 

The modification of one parameter has an influence on all voxels, which is not desirable if more 

complex transformations have to be represented. 

 

Local Transformations. These transformations are described by a large set of parameters 

that correspond to a mesh of control points. Modifications of a single parameter (control point) 

affect only a local neighborhood. Examples for local transformations are cubic b-spline 

transformations and Bezier transformations. For each voxel coordinate, a new set of 

parameters is employed. Local transformations enable the accounting of more complex 

movements. Other local approaches utilize elastic models or fluid models to characterize 

movements. The numeric solution of these models is accomplished by means of partial 

differential equations, which is computationally extremely expensive. 

 

Fitting Similarity measures characterize how similar two images are. Basically, similarity 

measures based on intensities of voxels and on geometric measures are discriminated: 

• Intensity-based similarity. Gray values of voxels in the floating image are compared with 

voxels in the reference image. 

• Geometry-based similarity. Positions of voxels in the floating image are compared to 

those in the reference image . 

 

There are three categories of intensity-based similarity measures : 

 

• Voxel-based. The intensities of the two images are compared for each voxel in a 1:1 

relation. This measure is only applicable if the two images have the same resolution and 

if both images contain the same content with similar intensities. This assumption is not 

fulfilled in multimodal registration where different modalities are involved. An 

application example is time-dependent data with limited motion artifacts, such as 

cerebral perfusion. 

• Statistic. The normalized correlation of intensities in both images is computed. The 

application of this measure also requires that the same content be represented in both 

images. Linear transformations of intensity values can be compensated. 
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• Entropy-based. These methods are based on information theory. The mutual 

information of the common 2D histogram of both images is computed. Normalized 

mutual information is a similarity metric, which may be used even if the content of the 

images is slightly different. The relationship between the intensity values may be 

statistical. Registration based on normalized mutual information is able to match 

multimodal image data, such as CT and MRI. 

 

All these similarity measures might be computed automatically (without any interaction). 

The determination of landmarks in the floating image, as well as in the reference image in 

general, requires user input. The automatic localization of corresponding landmarks is difficult. 

In many cases, branching points of vascular trees are appropriate. Intensity-based and 

similarity-based registration are also combined. Normalized-mutual information is the most 

frequently used similarity measure in particular for multimodal registration. However, the use 

of this measure also has considerable drawbacks. Typically, it has many local minima, which 

make the optimization process difficult. 

 

 Optimization Process For the maximization of the selected similarity measure, a numerical 

optimizer is used to approximate “optimal” transformation parameters. Numerical optimization 

is either applied to the similarity values (for example, simplex, Powell, or Hooke approach) or 

considers derived information. The registration with landmarks is often based on the 

Levenberg-Marquardt algorithm. 

 

 

3.4.1 Medical visualization 

The purpose of scientific visualization is to extract meaningful information from complex 

datasets through the use of interactive graphics. Volume visualization is concerned with the 

representation, manipulation, and rendering of 3D volumetric data. In the context of medical 

imaging this usually involves revealing underlying anatomy and organ morphology for 

diagnostic or treatment planning purposes [27]. Volume visualization involves three 

distinguishable aspects, data representation, data classification or surface extraction, and data 

viewing. The primary source of volume data in medical imaging is empirical. A discrete sampling 

of an object, usually as a sequence of cross-sectional scans, is generated by a medical scanner. 

Most viewing algorithms use the 3D voxel array representation. The volumetric dataset resides 

in a discrete voxel space which is a 3D integer grid of unit volume cells or elements called voxel. 

A voxel is the 3D counterpart of the 2D pixel. Each voxel is a quantum unit of volume and has 

a numeric value associated with it that represents some measurable properties of the sampled 
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objects (e.g. density, refractive index, acoustic impedance, velocity). Most visualization 

methods require that the voxels lie on a uniform orthogonal grid. The uniform voxel 

representation is convenient for the storage and manipulation of volumetric data within a 

computer, and also for interpolating between voxel centers. A voxel is either represented as a 

rectangular prism centered at a grid point or, inter- changeably, as a zero-dimensional point 

located at the grid coordinates. The aggregate of voxels tessellating the volume forms the 

volumetric dataset. CT and MRI datasets are conveniently reconstructed into a regular 3D voxel 

data by stacking parallel cross-sections. However, non-parallel slices, such as those acquired by 

a six degrees- of-freedom hand-held ultrasound probe, are not readily suited to this 

representation. These require the development of new viewing algorithms or alternatively, 

reconstruction techniques which generate a regular array of voxels from the data and therefore 

allow conventional methods to be used. 

 
Figure 3.11 Left: A 2D grid, where all pixels of an image are arranged on the grid points of the grid. Right: 
In volume datasets, the voxels are arranged on a 3D grid. 
 
 

Medical 3D image reconstruction is a part of a field called Visualization. All recent medical 

3D image reconstruction techniques create 3D images from sets of 2D slices, which can be 

recorded by various equipments such as CT, MRI, ultrasound etc. Each type of scanner has his 

own characteristics due to physical principles of image recording (images of CT scanner are 

often parallel slices with high contrast, images of ultrasound scanner are either parallel or 

divergent slices with low contrast). Thus there are different 3D reconstruction techniques for 

each type of data as shown in Figure 3.11 [27]. However, the general principle of 3D 

reconstruction is composed of following steps:  

 

 Step 1: 2D data slices need to be read and arranged exactly with the real spatial 

positions, the result is a data volume. This data volume is saved in any memory of 

computer. 
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 Step 2: use rendering techniques to visualize data volume as 3D image. Usual rendering 

techniques for medical image are multi-planar rendering (MPR), surface rendering (SR) 

and volume rendering (VR). 

 

Multi-planar rendering technique 

MPR does not require too many calculations, so it is appropriate for low configuration 

computers. This technique can be used to re-slice structure, i.e. with axial slices we can use 

MPR technique to re-slice according to different directions such as coronal, sagittal or diverse. 

 

Surface rendering technique  

SR technique visualizes a 3D object as a set of surfaces called iso-surfaces. Each surface 

contains points which have the same intensity (called iso-value) on all slices. This technique is 

used when we want to see the surfaces of a structure separately from near structure, e.g. skull 

from slices of head, blood vessel system from slices of body etc. SR technique is often used for 

high contrast data. 

Two main methods for reconstructing iso-surfaces can be considered as follows: 

 Contour based reconstruction: Iso-contours, which are extracted from each slice can be 

connected to create iso-surfaces  

 Voxel based reconstruction: Iso-surfaces are built directly from voxels having identical 

intensity (iso-value). One of the best algorithms is Marching Cubes. 

 
Figure 3.12 Parallel (a) and divergent (b) types of 2D slice [28]. 
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Isosurfacing – Marching Cubes 

Isosurfacing is an approach where a surface is formed from a cross connection of data 

points, within a volume, of equal value or density. Isosurface methods typically approximate an 

isosurface with a polygon mesh and shade the mesh in standard graphics pipeline. Since the 

polygon mesh is constructed in the object space, the graphics display can response rather 

quickly to a change of the view point. This makes isosurface approach well suited for an 

interactive environment.Isosuracing methods reduce the data to store. A popular method of 

constructing an isosurface from a data volume is the marching cubes algorithm. 

William E.Lorensen, Harvey E. Cline, has presented a basic algorithm for surface extraction 

known as Marching Cubes [29]. It uses the surface configurations of a cube for surface 

rendering of the volume data. In the marching cubes method, a volume data is first partitioned 

into cubes. Each cube consists of eight voxels. The fundamental problem is to form a facet 

approximation to an isosurface through a scalar field sampled on a rectangular 3D grid. Given 

one grid cell defined by its vertices and scalar values at each vertex, it is necessary to create 

planar facets that best represent the isosurface through that grid cell. The isosurface may not 

be pass through the grid cell, it may cut off any one of the vertices, or it may pass through in 

any one of a number of more complicated ways. Each possibility will be characterised by the 

number of vertices that have values above or below the isosurface. If one vertex is above the 

isosurface say and an adjacent vertex is below the isosurface then we know the isosurface cuts 

the edge between these two vertices. The position that it cuts the edge will be linearly 

interpolated, the ratio of the length between the two vertices will be the same as the ratio of 

the isosurface value to the values at the vertices of the grid cell (Figure 3.12). After determining 

the surface configuration of cube, the surfaces of every two adjacent neighbor cubes are 

combined to form the surface of an object. The surface of an object is then projected to a plane 

to form the final image. While generating triangles, Marching cubes sometimes results in false 

positive and negative triangles in the iso-surface. 

 

Volume rendering technique  
VR technique is used to visualize the entire volume transparence of the object. Images will 

be performed by projecting rays through volume data. Along each ray, opacity and color need 
to be calculated at every voxel. Then information calculated along each ray will to be 
aggregated to a pixel on image plane. This technique helps us to see comprehensively an entire 
compact structure of the object. One of disadvantages of this technique is enormous amount of 
calculations, which requires strong configuration computers. This technique is appropriate for 
low contrast data. Two main methods for rays projecting can be considered as follows: 

 Object-order or ray-tracing method: Projecting rays go through volume from back to 
front (from volume to image plane). 

 Image-order or ray-casting method: Projecting rays go through volume from front to 
back (from image plane to volume).There exists some other methods to composite 
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image, appropriate methods depending on the user’s purposes. Some usual methods in 
medical image are MIP (maximum intensity projection), MinIP (minimum intensity 
projection), AC (alpha compositing) and NPVR (non-photorealistic volume rendering). 

 
 

Ray casting 
Ray-casting is an image-oriented method which can be used to render opaque or trans- 

parent surfaces. At first it was applied to the display of binary volumetric data. Subsequent 
implementations have varied primarily in their use of transparency, shading and in coding 
details which improve the computational efficiency of the method. This discussion is restricted 
to rendering opaque, iso-value surfaces from regular voxel array data. Figure 3.8 illustrates the 
principle of the ray-casting method used to render surfaces in this thesis. This figure suggests a 
perspective projection, but parallel rays are often used in medical imaging [39]. 

For every pixel in the output image a ray is shot into the data volume. At a predetermined 
number of evenly spaced locations along the ray the color and opacity values are obtained by 
interpolation. The interpolated colors and opacities are merged with each other and with the 
background by compositing in back-to-front order to yield the color of the pixel. These 
compositing calculations are simply linear transformations. Specifically, the color of the ray 
Cout as it leaves each sample location, is related to the color Cin of the ray, as it enters, and to 
the color c(xi) and the opacity a(x) at that sample location by the transparency formula : 

 
Figure 3.13 Triangulated cubes [27]. 

 

 

         (       )             
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Performing this formula in a back-to-front order, i.e. starting at the background and moving 
towards the image plane, will produce the pixel color. It is clear from the above formula that 
the opacity acts as a data selector. For example, sample points with opacity values close to 1 
hide almost all the information along the ray between the background and the sample point 
and opacity values close to zero transfer the information almost unaltered. This way of 
compositing is equal to the dense-emitter model, where the color indicates the instantaneous 
emission rate and the opacity indicates the instantaneous absorption rate. 

 
 
 

 
Figure 3.14 The ray-casting algorithm used in this thesis. For each pixel Pi in the image plane a ray is cast 
into the data volume until a surface, determined by some function of the intensity profile, is 
encountered. The distance d; from the image plane to the surface is stored in a depth-buffer or Z-buffer 
together with the grey-level gradient computed locally at the surface point. Images are rendered from 
depth and gradient information in the Z-buffer [30]. 
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3.5 NURBS- Non Uniform Rational B-Splines 

The use of NURBS to properly represent the surface of biological tissues is superior to just 

using a typical triangular or quadrilateral mesh elements, due to the series of splines that can 

be generated to capture the surface compared to a series of lines [31]. When working with an 

ordered point cloud the complications increase. Generating a smooth surface from a point 

cloud without the use of NURBS is an issue because refining the mesh will not change how 

smooth the mesh is. However, when generating a NURBS surface which in turn generates a 

series of B-splines a smooth and continuous surface can be generated with smoother 

interpolations. The main idea of NURBS is the elimination of the node mesh in the analysis 

process [40]. The role and properties of the node mesh are inherited by two separate meshes, 

obtained directly from the geometrical representation: 

 

 The Control Point mesh, which defines geometry and the finite number of degrees of 

freedom that form the problem equation. 

 The Knot mesh, which provides appropriate discretization for numerical integration and 

boundaries for Shape function influence in the model. 

For the scope of this thesis, I have worked exclusively with Non-Uniform Rational B-SPLines 

(NURBS), as they are the most commonly used computational geometry technology. Despite 

the fact that quite more advanced SPLines have emerged, CAD industry still invests in NURBS. 

Both professionals and amateurs still use NURBS despite their disadvantages, such as difficulties 

in Patch connection and local Refinement [41]. The reason for this is that NURBS are not only 

much more simple in their definition and use, but also able to represent with accuracy smooth 

curves and all conic sections [35]. 

 

 

Index, Parameter and Physical Space 

Accurate geometrical representations of the natural model are designed in the familiar 

Cartesian system, called Physical Space. Additionally, it is very helpful to envision a complex 

structure in an imaginary, basic space, where all geometries can be represented as lines, 

rectangles and cuboids. This is Parameter Space. This approach is far from new; it is already 

known from the isoparametric concept in Finite Element Methods. The Parameter Space 

utilized in Isogeometric Analysis, however, holds some major differences. Furthermore, 

Isogeometric Analysis also introduces the Index Space. This additional space plays an important 

role for some kinds of SPLines, but it is only auxiliary for NURBS. 

Index Space is a representation of the model with respect to Knot Values. As shown in Figure 

3.15, it is a line in 1D, containing the corresponding Knot Values in equally spaced positions. 

This space focuses upon the sequence of Knot Values rather than their actual numerical 
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content. Index Space describes the contribution of each Knot Value to the creation of a certain 

B-SPLine basis function. This helps identify the level of interconnection between basis functions 

and the Knot Value support of each function. Control Points are also evaluated in the Index 

Space. In fact, Control Points are defined as the center of the support of Knot Value Spans. 

Expansion to 2D or 3D leads to the creation of rectangles or cuboids respectively. Due to tensor 

product properties, everything mentioned about 1D extends and applies to both 2D and 3D. 

Thus, Index Space provides information that can contribute to the comprehension of a complex 

representation. 

Parameter Space is a representation of the model with respect to Knots as shown in Figure 

3.15. SPLine entities are always represented as orthogonal shapes in Parameter Space. Only 

lines, rectangles and cuboids exist here. In order to transform those simple patterns to virtually 

unlimited, complex geometries, the application of a mapping from Parameter to Physical Space 

is required. Hence, Parameter Space is a primitive, abstract representation of Physical Space. 

The mapping between Parameter Space and Physical Space is achieved through the Jacobian 

Matrix and its inverse. This is something widely utilized in FEM as well. The illustration of basis 

functions in the Parameter Space allows for a better understanding of concepts such as 

support, Control Point coordinates and the role of Knots in basis function creation. Each Knot 

marks the beginning and the end of a basis function domain. By “domain” we mean the area in 

which the basis function is non-zero, as all basis functions are defined throughout the 

Parameter Space, but are non-zero only in specific Knot Spans. Basis functions sharing the same 

domain are overlapping in Parameter Space and controlling a common part of the entity in the 

Physical Space. 

Physical Space is the already known Cartesian Space, where the real model is represented. 

Simple orthogonal shapes from Parameter Space are transformed into complex entities in the 

Physical Space. Physical coordinates of the Control Points play a major role in the 

aforementioned mapping, but an equally drastic role is set upon basis functions. In fact, for a 

given set of Control Points, only a single set of basis functions can lead to the same geometry. 

We will examine this thoroughly later. Control Points can often be seen outside the model in 

Physical Space in contrast to FEM’s nodes which always belong to the mesh. It is one of the 

reasons NURBS and SPLine entities in general can accurately represent multiple types of 

geometries and the understanding of this peculiarity is one of the many challenges of 

Isogeometric Analysis. 
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Figure 3.15 Schematic illustration of NURBS of a surface. Open knot vectors and quadratic C1-
continuous basis functions are used. Also depicted are C1-quadratic (p = 2) basis functions determined 
by the knot vectors. The paradigm above is a clear explanation of physical, index and parameter space 
[32]. 

 
 

3.5.1 NURBS Basis Function 

The generation of the basis functions which when pieced together generated the NURBS 

curve or surface are generated using the knot values. The basis functions are a set of piecewise 

functions that are generated based on the desired degree (power). The basis function is 

generated in a way to smoothly fit through a set of points. Each basis function can be 

represented by Ni,p, where i is associated with the particular point and p represents the power. 
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Because each basis function is associated with a specific knot points the notations becomes 

Ni,p(u). This term is defined in the Equations below : 

i i 1

i,0

1, if  
N ( )

0, otherwise

    
  


 

 

i p 1i
i,p i,p 1 i 1,p 1
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For degrees greater than zero the basis function is simply an addition of two basis function 

with one lower degree. The basis functions have a triangular dependency this can be more 

visually seen in the Figure 3.16. 

 

 

3.5.2 NURBS Shape Functions 

In order to evaluate NURBS Shape functions, the Weighting function is defined: 
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In most engineering applications, Weights have positive values. Unless otherwise stated, 

they will be considered positive for the scope of this thesis. W( )  is in fact the Z-coordinate of 

the projective B-SPLine curve. Projective transformation is applied by dividing the other two 

coordinates of the B-SPLine curve with the Z-coordinate. NURBS Shape functions are calculated 

from 
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p

iR ( )  are piecewise rational functions. The expression “the order of NURBS” refers to the 

order of the projective B-SPLine curve. NURBS Shape Functions in multiple directions can be 

obtained as tensor products of one-directional basis functions: 

Shape functions for three directions: 
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The Weighting function is now defined as: 
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Observe that for 
ijkw 1 , i, j,k , it applies that NURBS Shape functions downgrade to B-

SPLine basis functions. Actually, NURBS entities are a generalization of B-SPLine entities. All the 

B-SPLine properties examined in this thesis apply for NURBS as well. 

 

 

 
Figure 3.16 Basis function triangular dependency each higher order basis function is dependent on two 

basis function of the one lesser orderLower-order basis functions required for the creation of        . 

 
 

 

3.5.3 NURBS curves and surfaces 

In order to generate a NURBS curve, it is important to make sure there are points in 

Cartesian space that can depict the position and direction the NURBS needs to take. These 

points are referred to them as control points. The control points are used as guidance for the 

basis function when generating a NUBRS curve. The NURBS curve may or may not actually lie on 

a control point. The connectivity between the control points form what is known as the control 

point polygon, an example of this can be seen in the Figure 3.17. NURBS entities are created as 
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a linear combination of NURBS Shape functions, exactly the same way as B-SPLine entities. The 

following is the equation for the creation of NURBS Curves: 
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 (a) (b) 

 
(c) 

Figure 3.17 NURBS elliptical Entities. (a) Curve, (b) Surface and (c) Solid. 
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4 Proposed approach of aorta reconstruction 
 

4.1  Image Processing, Segmentation and Reconstruction 

In the first main stage of segmentation and reconstruction, we create an automatic iterative 
algorithm which segments the aortic outer borders from each image of the stack and 
reconstruct the 3D volume using image registration methods. 

 

4.1.1 Pre-processing 

Our procedure begins with a stack of DICOM files, which is the international standard for 

medical images and related information. It defines the format for medical images that can be 

exchanged with the data and quality necessary for clinical use. Each of these files except from 

image information contains also multiple information about the patient, the study description 

and the specifications of the medical instrument which has been used for imaging. In vascular 

applications usually are used multi-frame datasets (bunch of single-frame images) for covering 

the whole abdominal or thoracic region. Single-frame gray-scale images represented as an M-

by-N array, on the other hand, single-frame true-color images represented as an M-by-N-by-3 

array. 

The optimal form to process our data is gray-scale images with 8 bit per pixel and pixel 

spacing from 0 (black) up to 255 (white). Pixel values represent the intensity values of images. 

So we use two methods. If the image information of DICOM files is in RGB format we use 

conversion to gray-scale format method. If the image information of DICOM files is in gray-scale 

format we use scaling method. There are several algorithms for converting an RGB image to 

gray-scale. In our case we applied the third technique. 

 The lightness method averages the most prominent and least prominent colors. 

(max (R, G, B) + min(R, G, B)) / 2. 

 The average method simply averages the values: (R + G + B) / 3. 

 The luminosity method is a more sophisticated version of the average method. It also 

averages the values, but it forms a weighted average to account for human perception. 

We’re more sensitive to green than other colors, so green is weighted most heavily. The 

formula for luminosity is 0.3 R + 0.6 G + 0.1 B. 
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In many applications are used gray-scale images of 16 bits per pixel coding. In our case we 

need to be sure that we convert the data into a common coding format before the main 

procedure starts. So we choose to scale the data of the images to the range of [0 255], which is 

the 8-bit per pixel coding format. We use the Min-Max scaling method also called 

“normalization”. In this approach, the data is scaled to a fixed range in our case *0 255+.The cost 

of having this bounded range - in contrast to standardization - is that we will end up with 

smaller standard deviations, which can suppress the effect of outliers. A Min-Max scaling is 

typically done via the following equation: 

      
      

          
 

So we convert the primary pixel values into values in the range of 0 (black) to 255 (full 

intensity or white). Each image that we have is a coronal slice of thoracic and abdominal region. 

These slices are vertical planar cross-sections of a specific upper human’s body. 

 

 

 
Figure 4.1 Anatomical planes. An anatomical plane is a hypothetical plane used to transect the human 
body, in order to describe the location of structures. Three principal planes are used: coronal, axial, 
sagittal. 
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Image enhancement 

In this stage we have already converted the coding format of images and we have to apply 

image enhancement techniques to improve the interpretability or perception of information in 

images for human’s eye. In other words we need to enhance contrast of images and to remove 

noise form them. The principle objective of image enhancement techniques is to process an 

image so that the result is more suitable than the original image for a specific application. Some 

of these techniques are: 

 Histogram equalization 

 Adaptive histogram equalization (AHE) 

 Gamma correction and linear mapping 

In our case we use these three methods in order to evaluate them and select the one with 

better results. At first we analyze the images generating each image histogram. Histogram of an 

image shows frequency of pixels intensity values. The x axis shows the gray level intensities and 

the y axis shows the frequency of these intensities. As shown in Figures 4.2, that most of the 

bars that have high frequency lies in the first half portion which is the darker portion. That 

means that the image we have got is darker. And this can be proved from the lightness of image 

too. 

 

 

 

 
Figure 4.2 Histogram of prior image. The information we can extract from this histogram is that the 
image should be a “dark” image. We can understand that from its histogram distribution. 
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 Firstly we inspect the “Histogram equalization”. The outcomes of this method are shown in 

Figure 4.3. 

 

 

 
Figure 4.3 Histogram equalization. The values of histogram have been equalized. The distribution of this 
histogram has small deviations. 

 

 

 

 Secondly we inspect the “Adaptive Histogram Equalization” method . The results are 

shown in Figure 4.4. 

 

 

 
Figure 4.4 Adaptive Histogram Equalization (AHE). Comparing the histogram of prior image with this 
histogram, we can understand that this technique transforms histogram peaks in order to make the 
image lighter, and to enhance the contrast. 
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 Lastly we inspect the “Gamma correction” method [33]. The results are shown in Figure 

4.5. 

 

 

 
Figure 4.5 Gamma Correction. Comparing the histogram distribution of processed image to the prior 
image we can see that gamma correction smooths image’s distribution function in order to have better 
contrast results. 

 

 

From the results of these three methods we can make some important conclusions. At first it 

makes sense that the method of “Histogram Equalization” does not fit in our method. This 

method gives to us much more information than we need. Furthermore it spoils the local 

contrast in the region of aortic boundaries, so we need to examine the other two methods. 

“Adaptive Histogram Equalization” is a very trustworthy method for image enhancement 

because it functions locally to images’ regions, so it enhances the contrast with local 

characteristics. In our approach we compare this method with the one of “Gamma Correction”. 

Both of these techniques give to us good results, because each one of them smooth the 

histogram’s curve, so we take more reliable contrast based results. At last we choose the 

“Gamma Correction” method because in our operation the only thing we need is to take good 

results in the region of our interest which is the region that includes aortic boundaries. 

Furthermore “Gamma Correction” is computationally more effective. 
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4.1.2 Cross-section detection (Segmentation) 

In this stage we process several images from the stack of axial slices in order to segment 

aortic boundaries’ cross-sections. Our goal is to find and locate the thoracic aortic boundaries 

along the whole aortic path. We apply many useful techniques of image processing to segment 

the requested part of the body. At first we need to compute credible contours of an image. We 

use the “Canny Edge Algorithm”. Canny edge detector is an edge detection operator that uses a 

multi-stage algorithm to detect a wide range of edges in images. It is also called the “optimal” 

edge detector. In this situation, an "optimal" edge detector means: 

 Good detection. The algorithm should mark as many real edges in the image as possible. 

 Good localization. The edges marked should be as close as possible to the edge in the 

real image. 

 Minimal response. A given edge in the image should only be marked once, and where 

possible, image noise should not create false edges. 

When we have finished with computing images’ credible contours, our images are in binary 

form and the morphological shape of them represents the edges of primary images. These 

images are shown in the Figure 4.6. These images display the contours of the elements that 

exist. In order our main algorithm to be functional from the previous contours at least the one 

that refers to aorta need to be continuous and closed. The second step of cross-section 

procedure is vital for our pipeline. This step is the edge linking algorithm. 

 

 

 
Figure 4.6 The first stack presents input axial images, the second stack outcomes of “Canny edge 
detection” algorithm and the third outcomes of the seeded region growing algorithm. Images are sorted 
from upwards to downwards. 
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Figure 4.7 Edge linking. The above figures are inputs and outputs of the proposed method. The right 
stack describes the inputs with the red circles denote the discontinuity of the contours and the left stack 
the fixed outcomes. 

 

  

 
Figure 4.8 GUI for selecting the first inner aortic seed point. 

 

 

The common issue that edge detection algorithms have is the incapability of producing 

closed edges. However this is a very important step to go on with segmentation algorithms and 

track the edge in need. In our approach we use edge linking algorithms to be sure that the 

images, which will be processed by any segmentation algorithm, have closed edges. The images 

in Figure 4.7 are inputs and outputs of the proposed algorithm. The red circle in the input 

images depicts the discontinuous segments of edges. 

The third and the last step of cross-section procedure is to segment the edges that belong to 

aortic cross-sections. For this task we decide to create a seeded region growing segmentation 

algorithm that uses one seed point that belongs to inner area of aortic cross-section and 

computes the specific edge which refers to aorta. The image in Figure 4.8 shows us the user 

interaction window for importing the inner seed point to the algorithm. When user specifies 

with the cursor one point inner the aortic cross-section of primary image algorithm starts and 

the outcome is a binary image containing the one and only edge of aorta volume. Figure 4.10 
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shows some inputs and outputs of our algorithm. The Region growing is a simple region-based 

image segmentation method. It is also classified as a pixel-based image segmentation method 

since it involves the selection of initial seed points [36]. This approach to segmentation 

examines neighboring pixels of initial seed points and determines whether the pixel neighbors 

should be added to the region. Our algorithm takes an initial point as an input and then scans 

the surrounding area for pixels of the same value. This procedure continues as long as the new 

pixel’s value is same as the old pixel’s value. Figure 4.10 depicts the input images and the 

output of this technique. In the end we create a stack of images containing the aortic 

boundaries which meets our target’s expectations. 

So we apply three main procedures for our arteries’ boundaries detection. Basic pipeline is 

shown in Figure 4.9. This procedure is used in every image which has been processed. 

 

 

 

 
Figure 4.9 The three basic algorithms we use for generating a common pipeline for arteries outer wall 
segmentation. 

 

 

 

 
Figure 4.10 “Seeded region growing algorithm”. The images above are shown how the seeded region 
growing algorithm works. Inputs exist in the right stack and outputs in the left one. The order of images 
is sorted from downwards to upwards. 
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4.1.3  Artery tracking (Registration) 

Image registration 

Once we have done with the appropriate formation of images we used image registration 

techniques to create one 3D solid structure from the dataset of images. Image registration is 

the process of transforming different images into one coordinate system. This part is vital in 

order to process our model in space and extract several important information from the 

dataset. Using image registration techniques we can compose a 3d volume matrix such as the 

paradigm in Figure 4.11. We align all the coronal slices into one common dimension which is 

the depth of our space. Provided that every coronal slice is a planar cross-section which moves 

in the axe of depth in 3D space then we use this attribute to synthesize 3D space form the 

images’ information. So we compute matrix          in which we store every single coronal 

slice for every value of variable  . In other words   represents the amount of coronal slices.   

and   represent the pixel resolution of images [37]. 

In this way we can synthesize multiple images in 3d space to create a digital object 

geometrically similar with an existed model. For these operations we shall focus on some 

specific DICOM image’s information such as pixel and voxel spacing, resolution of images and 

slice’s thickness. The outcome of these computations is the exact geometry of a model 

extracted by consecutives slices over it. The advantage of creating a 3d volume data matrix 

from medical images is that we can match the information of images and align it in 3D space. 

This is an important step for calculating and rendering the surface of various human organs. In 

addition we create other views of slices across the 3D structure such as axial and sagittal slices. 

We create them transforming the axes of slices that we produce each time form the 3D matrix. 

 

 

 
Figure 4.11 A schematic diagram of image registration technique.   denotes the3D volumetric matrix 
which has been generated for our processing. 
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Semi-Automatic Algorithm 

In this stage we will analyze the algorithm we developed for aorta tracking. The procedure is 

semi-automatic, this means that algorithm needs one inner aortic seed point, the starting and 

the ending layer to execute all the processing. Our benchmark is axial slices. Axial slices’ angle is 

vertical to 3D space and consequently to the aorta. In Figure 4.12 we present a flowchart of our 

algorithm. At first we need to examine the morphology of aorta in order to completely 

understand the generated method. From aortic shape we can conclude that our processing 

dealing with 3 parts. These three parts are descending, ascending and arch. We separate them 

because of its dissimilar shape. 

 

 

 
Figure 4.12 A flowchart diagram of the basic semi-automatic elliptical tracking algorithm. The only 
inputs that algorithm needs are the starting slice, ending slice and the first seed point for descending 
aorta. 

 

 

 

The main target of this stage is to segment the aortic boundaries from others edges of 

images. This would be an easy task if the algorithm knew one exact inner aortic point for each 

image that we process. Examining thoracic aorta’s shape from downwards to upwards we can 



 
Panagiotis Koulountzios                                                      54                                                            October 2017 

observe that aortic axial contours change position. So in order our effort to be semi-automatic 

we take advantage of an important property. This property is that consecutives cross-sections 

of aorta do not change dramatically its positions. Consequently we compute the geometrical 

center of each cross-section and we know that this point’s planar location is certainly an inner 

aortic point in the next slice we process. 

This technique works fine for ascending and descending part of aorta but do not work 

properly when we pass through the aortic arch. This happens because of the morphology of 

arch’s contours in axial slices. The basic problem is that in this part of aorta we don’t deal with 

elliptical formations, so the centroids that we compute do not satisfy the previous rule. In 

addition the only seed point that user gives is a seed point from inferior descending aorta layer. 

For these reasons we developed a method that renews the seed point with the previous aortic 

cross-section’s geometrical center. So when the slices processing goes upwards, the seed point 

renews for each slice and goes upwards too. The whole procedure describes in Figure 3.14. 

From the above morphological analysis we decide to split the procedure of semi-automatic 

segmentation in three parts. The descending’s, ascending’s and arch’s segmentation as shown 

in the Figure 4.13. 

 

 

 
Figure 4.13 This scheme shows an elliptical tracking algorithm that moves upwards for descending aorta 
and aortic arch and downwards for ascending aorta. Red line depicts the “aortic axe”. 
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Figure 4.14 Three basic segmentation problems. 

 

 

Descending Segmentation 

Our algorithm starts with descending segmentation. The slices are processed moving 

upwards in order to track aortic ellipsoids. The tracking works with a seeded region growing 

algorithm that we used. In addition algorithm computes and stores the Euclidean distance 

between consecutives geometrical centers of cross-sections. As we explained before, tracking 

the descending aorta this Euclidean distance from point to point is approximately equal. When 

a value of this variable is not approximately equal to the previous value means that algorithm 

ends with descending aorta segmentation because it finds the K layer which is the first layer 

that depicts the aortic arch’s cross-section. Now the procedure jumps to the ascending 

segmentation. Figure 4.14 describes this procedure. 

 

 

Ascending Segmentation 

Now, algorithm knowing the K and the ending layer, that user has given, starts the process of 

ascending aorta’s segmentation by moving downwards from K to end. The only thing that needs 

the whole process is the first inner seed point for the execution of the same region growing 

algorithm which has been used for descending, too. We developed an effective method for the 

computation of the ascending aorta’s first seed point that we describe below in the same-name 

subchapter. Finally when this process ends algorithm starts the segmentation of aortic arch. 

 

 

Aortic Arch’s Segmentation 

For arch’s segmentation we developed a different technique because of morphological 

dissimilarity. The algorithm goes on from layer K moving upwards for the specific amount of 

layers that aortic arch’s contours exists. This amount of layers is about the 17% of total layers as 

we compute from several datasets. This number came out from the anatomy of human’s body. 

Instead of using region based segmentation we labeled the contours counting on its 

discontinuity. Then we compute the red line which is shown in the above figure and transform 

it to a point in an axial plane. We call that line “aortic axe”. We compute each contour’s 

geometrical center and compare it with “aortic axe” point. The closest contour’s center to that 

point describes the right contour. This procedure is repeating for all the layers and has been 

showed in Figure 4.15. 
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Figure 4.15 Aortic arch’s segmentation. We label and separate the contours from the image shown in 
figure 21.Then the above images comes out. We compare the distances from the “aortic axe” to the 
centroids of every contour. Finally we keep the contour with the closest distance. 

 

 

 

Figure 4.16 First aortic arch’s slice after edge detection and the same slice after the segmentation. 

 

 

Computing ascending aorta’s seed point 

When the process comes to the first layer of aortic arch the image that we have to process is 

shown in the Figure 4.16. This image represents the aortic arch’s axial boundaries. We process 

it and compute the first inner seed point of ascending aorta’s perimeter. Our algorithm needs 

that point in order to segment ascending aorta’s boundaries in the same way like descending 

aorta segmentation works. First we put on this image the geometrical center of previous image. 

Then we compute the geometrical center of current image. And in this stage we take advantage 

of aortic symmetry. So we know that if we compute the symmetric point of the previous slice’s 

center from the current slice’s geometrical center then the point that we will produce there will 

be for sure an inner point of ascending aorta’s boundaries [5]. The procedure that we described 

is shown in the Figure 4.17. 
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Figure 4.17 Top-left, contour with previous geometrical center. Top-right, contour with previous and 
geometrical center. Mid-left, line between these points. Mid-right, computing the symmetric point. 
Bottom, line between the three points. 

 

 

4.1.4  Artery model (Reconstruction) 

Surface rendering techniques visualize a 3D object as a set of surfaces called iso-surfaces. 

Each surface has points with the same intensity (called iso-value). It is used when we want to 

see the separated structures e.g. skull from slices of head, blood vessel system from slices of 

body etc. Iso-surface refers to a 3D implicit surface defined as           . So the iso-surface is 

the set of points for which the function represented by the data taken on a common constant 

value, that value is the iso-value. So for each iso-value, you get a different iso-surface. This 

technique is used mostly for high contrast data. 

The implementation algorithm we use for visualization is the Marching Cubes algorithm. The 

algorithm proceeds through the scalar field, taking eight-neighbor locations at a time, then 

determines the polygons needed to represent the part of the iso-surface that passes through 

this cube. The individual polygons are then fused into the desired surface. 

In our approach in the images that we used to create the 3D volumetric data exists the 

segmented outer aortic boundaries only, in binary formation [0 1]. In that manner letting iso-

value to 1, we can produce the first polygon surface of our model. Figure 4.19 represents the 

polygonal mesh which has been produced from the marching cubes algorithm for the part of 

descending aorta. A complete polygonal model of aorta produced by our segmentation 

proposed method and marching cubes algorithm is shown in Figure 4.18. 
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Figure 4.18 Polygonal model of a thresholding segmentation procedure and the single aorta after the 
proposed segmentation method of aorta. 
 

 

 
Figure 4.19 Polygon model of Aorta generated by iso-contouring. 
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4.2 NURBS fitting techniques 

Digital image processing is the preprocessing stage of our work. We are developing these 

techniques in order to extract the exact point cloud of aorta. Extracting the accurate point 

cloud is crucial, because there is a need for accurate results which will ensure the accuracy of 

the final model. The point cloud of aorta is shown in Figure 4.20. 

We align all the axial slices into one common dimension in space. We compute a 3D 

volumetric matrix f(X,Y,Z) in which we store every single pixel of all axial slices. Z represents the 

number of coronal slices, while X and Y represent the pixel resolution of the axial images. 

Transforming our pixel values to points in 3D space, the point cloud is produced. Point cloud is 

intended to represent the external surface of an object. 

Setting up the problem of curve fitting, our target is to transform the crude arrangement of 

edge points into a smooth curve interpolation in every orthogonal cross section to the aortic 

centerline. Thus, we developed a pipeline that has four steps. We called first step the 

“Centerline extraction” the second step “Defining planar cross-sections perpendicular to the 

centerline”, the third step ” “NURBS curves fitting method” and the final, fourth step “NURBS 

surface generation”. 

We implemented this differentiation in order to use lofting techniques for generating and 

rendering the aortic surface. “Lofting” is a drafting technique whereby curved lines are 

generated to be used in plans for streamlined objects [11], [38]. Lofting approximates a surface 

from cross-sections along the centerline and is used widely in 3D modeling software packages. 

 

 

Centerline extraction 

Our first aim is to track the centerline path with a line to apply the NURBS surface fitting 

method. Centerline is the line across the aorta and the circles along it depicts the pre-selected 

planar cross-sections. In this section, based on axial slices we compute each aortic cross-section 

geometric center and construct a cubic B-spline that fits this 3D structure of points. In order to 

be precise, we use as benchmark sagittal slices, too. We compute the central line of the 

segmented aorta from a corresponding sagittal slice and matching formation by axial and 

sagittal slices. In figure 4.20 we can see the original corresponding sagittal slice in the left. In 

the middle there is the output image of our processing where the central line and the aortic 

boundaries are depicted.  The final aortic centerline, which has been matched from axial and 

sagittal slices, is shown in same figure at right. Defining the vessel’s path is a very important 

step to go on. In order to give a smooth curved surface for our object we need to define the 

path and the perpendicular to it cross-section of our tubular object. We register, on some 

selected locations across the pre-computed centerline, planes perpendicular it and store the 

aortic cross-sections on them. Now normal vector of such a cross-section should point in the  
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Figure 4.20 Left: initial sagittal slice. Middle: Boundaries of aorta and the computed central line. Right: 
Point cloud model of aorta with cross-sections perpendicular to its centerline. 

 

 

direction tangent to the centerline. This gives the second parametric direction for the NURBS 

surface representation. 

 

4.2.1  2D curves fitting 

Computing a curve to approximate data points is a problem encountered frequently in many 

computer graphics applications. We present a novel and efficient method for computing a 

planar closed and continuous B-Spline curve. Figure 4.21 below represents the basic procedure 

that every planar cross-section with data points gets processed by the 2D curve fitting 

algorithm, in order to generate an interpolant cubic B-Spline curve. Our target is to use these 

data points in order to compute the control points that describe the B-Spline curves in every 

pre-selected cross-section. 
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Figure 4.21 Basic pipeline for 2D curves fitting. 
 

 

1st step (constructing planar point cloud) 

At first we have a point cloud that describes the whole aorta. This point cloud model came of 

the process of axial slices so points’ of the cloud benchmark are the axial slices and as we see in 

Figure 4.20 these points’ positions are of high density in space. This fact is very good for us 

because it give to us more options to be precise.  

We have to move across the centerline and capture on selected points the ellipsoids that are 

perpendicular to that centerline. This technique is necessary for generating the NURBS model 

and giving to it the requested smoothness. We store data points that exist in the same plane in 

separate matrices. In the end we construct some matrices that contain the geometric 

information of the cross-sections that describes our tubular shape. In that manner, every matrix 

consists of points’ coordinates (X, Y, Z) and depicts separate planes of the point cloud model. 

Figure 4.22 represents a specific cross-section of descending’s aorta. Data points of aortic outer 

perimeter are the red points. The blue linear interpolation depicts the sorting order of these 

points in their matrix. 

 

 

2nd step (circle-like sorting) 

The sorting order that already exists in the matrices is useless because there is not a specific 

way that consecutives points connected with each other. We need a circle-like connection in 

order to generate linear interpolation that means something. A graphically circle-like 

interpolation, in the matrices we got, translates into a circle-like sorting order. So we develop a 

technique to sort data points in the 2D plane. First of all we compute the mean value of data 

points’ coordinate x and then the mean value of data points’ coordinate y. In this way we can 
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detect the geometrical center of the imaginable circle that data points perform. Then we 

compute each point’s four quadrant inverse tangent. This value represents the direction of 

each data point in the 2D space related to the circle’s center. The four-quadrant inverse 

tangent (atan2(Y, X)), returns values in the closed interval [-pi, pi] based on the values of Y and X 

as shown Figure 4.22. In this way we construct a direction marix and every data point has a 

direction value. Finally we sort the matrix of the data points according to each point’s direction 

value. The outcome of this procedure is shown in Figure 4.23. 

 

 

 
Figure 4.22 Primary sorting. 

 

 

 

 
Figure 4.23 Circle–like sorting. 
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3rd step (Convex hull) 

Having stored all the necessary cross-sections, now we have to process these matrices in 

order to smooth its form. As we see Figure 4.23 the formation of points, we have, is affected by 

the fact of tessellation. That’s the way, cross-sections’ formation in many cases is squared. In 

the 3rd step of the geometrical process that we followed is the basic convex hull algorithm. This 

algorithm returns the convex hull of a set of points in 2-D space. This is accomplished by a 

procedure that joins with linear parts every data points that exist in the input matrix. So the 

result of this action is the generation of many triangles. Then algorithm searches for points that 

do not belong into the area of each triangle that have been formed. The points that satisfy this 

criterion are the outer points of the point set. The result of the algorithm we used is shown 

below. The outcome of this procedure is a circle-like formation of only the previous, necessary 

points. The useless points have been deleted and our shape is smoother as we can see in figure 

4.24. So in the end of “2D curves fitting method”, we compute all the linear interpolations of 

the data points per cross-section. In Figure 4.25 we can see the results of that method in 3D 

space. 

 

 
Figure 4.24 Convex hull algorithm. A smother representation of previous cross-section of Figure 4.22. 
 

 
Figure 4.25 Linear Interpolations of aortic perimeter’s data points. 
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4th step (Enhanced planar point cloud) 

In this step we apply an enhancement technique for each cross-sectional point cloud of 

aorta. This is a vital part for generating smoothing and optimized NURBS surfaces. NURBS 

surfaces impose the existence of same amount of control points per cross-section. Furthermore 

in our case we give an amount of data points of a cross-section as an input and we produce the 

same number of control points of a curve that is interpolant to the data points. So we need to 

reduce the amount of every cross-section with a sufficient way to decrease complexity by using 

lesser data points and to avoid ovefitting by finding these points which are optimized and 

smoothed.  

The selected amount of points should represent as precise as possible the aortic geometry. 

So we applied a novel method for that. In this case the reduction of data points per cross-

section is necessary in order to proceed to have same length of data points’ matrices per cross-

section. We choose 20 points for every cross section and we register each one of them per 18 

degrees in the closed linear interpolation.  At first we applied a circular spline regression 

method to the initial data points. This give us a smoothed curve  and choose and register 

specific amount of 20 uniformly distributed points of the generated spline. Finally these points 

are the new optimized point cloud of our model. This technique gives us lesser and more 

appropriate points describing each aortic cross-section, furthermore, the harmonization of 

points in a polar coordinate system and more specifically at each specific axial angle give us a 

smoother surface, voiding overfitting problems. 

The compression of point cloud that we propose is of great value because it makes our 

procedure lower-complexity and avoids over-fitting with lesser points. Satisfying results were 

obtained when cross-section contours were approximated using 20 control points and a B-

spline of degree 3 as shown in Figure 4.27. Curves of higher orders generally demand a higher 

number of control points and produce curves that are prone to loops and wiggles. Results of 

these methods are shown in Figure 4.26. Red spline is interpolant to initial data points of a 

cross-section and blue one is interpolant to the new optimized data points. As we see blue 

spline is smoother and enhanced. The white area is the aortic cross-section area. The great 

advantage of this method is the selection of the enhanced data points in certain angles across 

each cross-section of our model. Applying this technique, our target is to align as much as we 

can the points of each cross section in a vertical connection. Namely, we want the first data 

point of the first cross-section to be in the closest possible area of the first point of the second 

cross section and the second point of the first cross section with the second point of the second 

cross-section respectively. The results of this technique are shown in Figure 4.28 where we 

interpolate linear the enhanced data points in order to create smooth horizontal and vertical 

cuts. 

 

 



 
Panagiotis Koulountzios                                                      65                                                            October 2017 

 
Figure 4.26 White area depicts an aortic cross-section. Red spline is an interpolant to initial data points 
and blue spline is an interpolant to optimized data points of the same cross-section. 

 

 

 
Figure 4.27 Registration of 20 points per 18 degrees angle in order to avoid over-fitting using lesser 
points. 

 

 

 

 
Figure 4.28 Linear interpolation to enhanced data points of model in order to create smooth horizontal 
and vertical cuts. 
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5th step (Computing control points) 

The contour points obtained in previous steps of the algorithm were used to fit a cubic B-

spline to each segmented cross-section contour. Given n data points, when you interpolate, you 

look for a function that is of some predefined form that has the values in that points exactly as 

specified. That means given pairs        you look for   of some predefined form that satisfies 

        . 

In this step we use mathematic models to generate smooth, closed interpolating curves 

using cubic B-Spline curves. Given a set of data points                        ,       

with       because our curves should be closed and continuous-  . 

 
Figure 4.29 Closed cubic B-Spline curves with 11(n) control points interpolating 9(n+2) data points. 

 

 

We notice from the Figure 4.25 above that the closed cubic B-Spline curve has n segments 

                    with      and    being the start and ending points of        We know such 

a curve must have       control points, where       is the amount of data points and we 

need 2 more control points to describe the interpolating curve. So the control points are 

               To guarantee    continuity at       control points must satisfy the following 

conditions: 

      ,          ,         

Such a curve needs       knots, where       is the amount of control points and 3 is the 

degree of the curve. So the 3 first and the 3 last points of knot value vector must repeat: 

              

To make thing easier, we shall assume that: 

       ,             

Such a cyclic curve can be defined as follows: 

     ∑                    [       ]

   

   

 [   ] 
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Such that: 

             ∑        
   
               where           

Analyzing the above system linearly: 

 

The last equation is the3 same as the first equation and, hence, can be ignored. The matrix of 

the above system is shown below. 

 

 

This system of equations can be solved using Gaussian elimination without pivoting as well. We 

used the above method to generate the control points of the interpolating curve to the specific 

data points which describes the outer perimeter of aorta. In Figure 4.30 we can see the 

outcomes of that method. Red colored points represent the data points that belong to the 

outer aortic perimeter; on the other hand blue points are the computed control points. The 

purple curve represents a cubic closed and continuous B-spline.  
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Figure 4.30 Cubic closed and continuous B-Spline interpolating aortic data points. Blue color points 
represent curve’s control points. 
 

 

4.2.2  3D Surface Generation 

Once we have computed the requested cross-sections as we said above we use the “Lofting” 

method to produce a 3D Nurbs surface from planar cross-sections[5]. Figure 4.31 shows at first 

all the control points of descending part of aorta and later has been zoomed in one of its areas 

to see that the control points are not interpolated by the linear interpolation of data points 

which has to be right because of control points’ properties. In the “Lofting” method, a 

 
Figure 4.31 Control points of descending aorta and a zoomed in area of it. 

 

 

templated quadrilateral mesh of a closed cubic B-Spline is projected onto each cross-section of 

the tube, then corresponding vertices in adjacent cross-sections are connected to form a 

quadrilateral mesh. 

We choose to parameterize the template cross-section as follows. One parametric direction 

is associated with each closed circular curve, while another parametric direction is associated 

with a radial coordinate. Rational quadratic basis is used to define the circular curve. Note that 
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the circular cross-section is unchanged geometrically and parametrically as more control points 

are chosen for its representation.  

In order to produce a smooth surface all approximated cross-section splines have to be 

made compatible - they need to have an equal degree (3 in our case) and must be defined on 

the same knot vector which means that we need same amount of control points for each cross-

section, as we stated before. Control points of all the cross-section curves (which are illustrated 

in Figure 4.31) are then taken column after column and a second family of curves is fitted to 

approximate these columns of control points. This way a second family of B- spline curves is 

obtained. The two sets of control point vectors form a control net of a tensor surface which 

forms a quadrilateral control mesh as we can see in Figure 4.32. These types of meshes usually 

are used for constructing tubular objects like blood vessels [7]. A quadrilateral NURBS control 

mesh should satisfy the following two requirements: 

 Any two cross-sections cannot intersect with each other. 

 Each cross-section should be perpendicular to the path line. 

The control net and 2 knot vectors (one for each family of curves) are enough to completely 

define the surface. Example of a fragment of the surface of the thoracic descending aorta is 

shown in the Figure 4.33. We choose 20 and 58 points for U and V directions, respectively. 

 

 

  
Figure 4.32 The requested control net of throracic descending aorta describing by B-Splines on 

the left and the same on the right describing with linear segments. 
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Figure 4.33 A quadrilateral NURBS surface of thoracic descending aorta. 
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5 Experimental results 

In the literature of heart blood vessel segmentation algorithms, most of the algorithms only 

handle 2D segmentation. Others segment the heart and arteries as a whole in 3D. In common, 

they do not provide separate segmentation’s results of different arteries. Our algorithm is semi-

automatic and able to segment and reconstruct the whole thoracic aorta including its three 

patches, descending, ascending and arch. First of all 2D image segmentation was applied to 

segment the aortic cross-sections. We used a technique for the identification of aortic arch and 

the specification of both upwards and downwards tracking of the model and then we create 

from these techniques the aortic point cloud and its centerline. The centerline of the object has 

been produced by the centroids of each aortic cross-section using axial slices as benchmark and 

has been evaluated and matched with the centerline produced by sagittal slices. Processing 

point cloud, we detect points, which form cross-sections perpendicular to the centerline. 

Finally, 2D curve fitting was proposed to the cross-sections in order to use them with the 

centerline and create the respective 2D NURBS model. We have successfully applied our 

promising method to three different patients’ datasets. 

 

 

The dataset 

The patients, enrolled by the Medical Center “Vioiatriki” at Athens, furthermore we 

managed to equip with additional datasets from open-source libraries from OSIRIX’s DICOM 

image library. We gained our data from MRA process. Although, our semi-automatic method is 

capable to work with data from other imaging modalities such as CTA or even IVUS 

(intravascular ultrasound). We evaluate our methods in two different patient’s data obtained 

from Siemens’ Magnetom Avanto 1.5 Tesla and one from General Electric’s Signa HDtx 1.5 tesla 

with different resolution level. First and second patient’s images’ dimensions are 512x416x88 

pixels with voxels of size 0.935x0.935 mm3 and its slice thickness is 1.4 mm. Third patient’s 

images’ dimensions are 512x512x104 pixels with voxels of size 0.823x0.823 mm3 and its slice 

thickness is 2.8 mm. 

 

 

5.1 Evaluation of image segmentation 

Automatic 3D model-based segmentation of all volunteer datasets was successful and the 

resulting segmented volume of interest is shown in Figure 5.3. We registered some variables to 

measure aortic characteristics. First of all as we process every aortic cross-section across the 

axial slices we registered the two diameters and the geometrical center of each elliptical cross-
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section. We computed two diameters, horizontal and vertical one because of the elliptical form 

of segmented boundary of aorta. In Figure 5.1 we represent a red and a blue signal for the 

horizontal and vertical diameter of descending aorta, respectively. These signals are close 

enough and the relation between them changes all the time (e.g. the bigger diameter of them) 

making difficult to characterize aorta as a circle or an ellipse by its form, which is definitely 

right. In Figure 5.2 we see two signals one for each 2 parts of aorta, descending and ascending 

respectively. The signal depicted at left in Figure 5.2 depicts the diameter of descending aorta 

with its values to be between 16.8-24 mm and its mean value to stand for 19.41 mm. On the 

other hand the signal depicted at right in Figure 5.2 depicts the diameter of the ascending aorta 

with its values between 23.8-32.2 mm and its mean value to stand for 27.39 mm. This fact is 

confirmed by the principles of the anatomy of aorta as we can see from Figure 1.2, back to the 

top. So it is confirmed that descending aorta has usually smaller diameters from the ascending 

one. In figure 5.3 we represent the signals of the descending aorta values from all the three 

volunteer’s data that have been processed. As we see the values of the three different signals 

are close enough. Signals do not have the same length in x axis because of the different 

properties of image acquisition. 

 

 

 
Figure 5.1 Capturing the diameters of descending aorta. Present a red and a blue signal for the 

horizontal and vertical diameter of descending aorta, respectively. 
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Figure 5.2 From left to right there is a signal representing the diameter of descending aorta and the 
diameter of ascending aorta, respectively. 

  
 

 

 

 
Figure 5.3 Signals of the descending aorta values from all the three volunteer’s data that have been 

simulated. 

 

 

Registering the geometrical center of every cross-section of aorta not only aids as with the 

semi-automatic process, but permits us to make some computations for the evaluation of our 

methods. In Figure 5.4 at left we can see the tracking of the geometrical center’s coordinate x 

across the cross-sections. We observe a slightly raise of coordinate’s x value and this in fact 

happens because of the aortic natural slight slope to the left side. Figure 5.4 at right depicts the 

signal of the coordinate’s y value. As we see the form of this signal looks alike to the slope that 

aorta makes from a sagittal view. This event confirms our correct tracking and measurement of 

aorta. 
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Figure 5.5 represents the convergence criterion that we use in order to apply the semi-

automatic method for the segmentation and reconstruction of aorta. As we compute each 

cross-section’s geometrical center we compute the distance between them and store all these 

distances. As we see the blue signal is very close to zero and its value does not change 

dramatically until the process come to a slice between 300th and 350th where the aortic arch 

extends. This specific slice is the first axial slice of the aortic arch as we see in Figure 4.16 and in 

this slice our proposed algorithm is not capable to compute a closed edge for the aorta, so the 

segmentation fails and so the geometrical center of the image will change dramatically. The 

results of all this criterion is that the distance value will raise abruptly. 

 

 

 
Figure 5.4 From left to right there is a signal representing the values of geometrical center of coordinate 
x and the values of geometrical center of coordinate y. 

 

 

 
Figure 5.5 This signal depicts the convergence criterion of our segmentation algorithm. 
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In order to evaluate our semi-automatic method and its functionality we compare its’ results 

with the initial slices. We registered the produced edges and to the initial slices, as we can see 

from Figure 5.6. Observing the slices, we can see that the location of white pixels is exactly 

where the intensity of the images changes sharply. We could state that the segmentation 

outputs are very credible. The only thing that does not seem to be right is the uncontinuous 

edges in the region of the heart. Despite that fact, we can definitely confirm that aortic edges 

will be closed because of the edge linking process. Based on the MRI, CT scans and the methods 

presented above the reconstruction results are illustrated in Figure 5.6. We can back-project 

the 3D Model in MRI slices in order to evaluate the results. Figure 5.7 shows simulation models 

intersected with original images. We can conclude that the morphology of simulated model 

agrees with the characteristics of the organ depicted on the 2D slices .We can see the 

comparison between polygon models and initial slices at Figure 5.6. In figure 5.9 we evaluate 

the NURBS model of aorta. 

 

 

 

 
Figure 5.6 Initial axial slices. We register the edge detection results with white color in these images. 
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Figure 5.7 Polygonal model of aorta.Three simulations of diffirent patient’s data input. 
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Figure 5.8 Aorta with back-projected initial slices in order to compare and evaluate model. 
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Figure 5.9 Single NURBS model of aorta and NURBS model back-projected with initial axial slices. 

 
 

 

5.2 Evaluation of NURBS model 

Receiving satisfactory evaluation results for the segmentation method in chapter 5.1, we can 

proceed to the evaluation of final NURBS model. As presented in previous chapter, our 

segmentation and, subsequently, polygon mesh results are credible enough in comparison with 

metrics of values of an average normal aorta. Although this fact cannot confirm the accuracy of 

our final model because of the additional processing which has been applied in order to 

generate smooth surfaces from a voxelized model (polygon model). To evaluate our final model 

we need to compare it with the segmentation results and examine any divergence that could 

be resulted. In Figure 5.8 we can see with white color the boundary of an aortic cross-section 

and with blue color the generated cubic B-Spline curve of it. As we can see there is a difference 

between the voxelized model and the parametric smooth B-spline. 
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Figure 5.10 White color the boundary of an aortic cross-section. Blue color is the generated cubic B-

Spline curve. 

 
 

 

An efficient way to measure those differences is the computation of total area that enclosed 

to both the voxelized perimeter and the B-Spline curve. Having already proved that the 

voxelized model is credible enough to the picture and also to the real physical values, we take 

that as the “ground truth” information of our metrics. The meaning of “ground truth” is 

something previously validated as true. In machine learning, the term "ground truth" refers to 

the accuracy of the training set's classification for supervised learning techniques. This is used in 

statistical models to prove or disprove research hypotheses. The term "ground truthing" refers 

to the process of gathering the proper objective (provable) data for a test. Therefore, in our 

case, ground truth represented by the pixels of voxelized perimeter’s area of each cross section. 

Then we track the pixels which are enclosed by the corresponding B-Spline curve and take that 

as the “approximation truth” of our model. Our target is to compare the “ground truth” and the 

“approximation truth” measurements with some metrics. 

The metrics which we will use is the accuracy, precision and sensitivity. These are the terms 

which are most commonly associated with a binary classification test and they statistically 

measure the performance of a test. In a binary classification, we divide a given data set into two 

categories on the basis of whether they have common properties or not by identifying their 

significance and in a binary classification test, as the name itself conveys, we deal with two 

datasets. Sensitivity indicates, in general, how well the test predicts one category. Whereas 

Accuracy is expected to measure how well the test predicts both categories. 

The characteristics of a test that reflects the afore-mentioned abilities are accuracy, 

sensitivity, precision, positive and negative predictive values and positive and negative 

likelihood ratios [42-44]. So, in order to get values for accuracy, preciosion and sensitivity, we 

need to define some other variables first. 
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Definitions 

 True positive: the number of pixels that belong to “ground truth” and to the 

“approximation truth” 

 

 False Positive: the number of pixels that belong to the “approximation truth” and do not 

belong to the “ground truth” 

 

 False Negative: the number of pixels that belong to the “ground truth” and do not 

belong to the “approximation truth” 

 

Accuracy: The accuracy of a test is its ability to differentiate the accepted and rejected cases 

correctly. To estimate the accuracy of a test, we should calculate the proportion of true positive 

and true negative in all evaluated cases. Mathematically, this can be stated as: 

TP+TN
Accuracy=

(TP+TN+FP+FN)  

Sensitivity: The sensitivity of a test is its ability to determine the accepted cases correctly. To 

estimate it, we should calculate the proportion of true positive in patient cases. 

Mathematically, this can be stated as: 

TP
Sensitivity=

TP+FN  

Precision:  

 

TP
Precision=

TP+FP
 

Examining those metrics for the slice in Figure 5.1 the “ground truth” value is 217 pixels and 

the “aproximation truth” value is . True Positive factor is 199, which means that 199 pixels out 

of 217 of “ground truth” matrix exist in the “approximation truth” matrix. False Positive factor 

is 18, which means that e pixels belong’s to the “approximation truth” and not to the “ground 

truth”. False Negative factor is 2, which means that 2 pixels belongs to “ground truth” and do 

not belong to “approximation truth”. Finally the Precision of this test is 0.91, the Sensitivity is 

0.99 and the Accuracy is 0.90. 

In order to test the whole procedure we computed the metrics for all the slices that belongs 

to the thoracic descending aorta and summarize them for each patient. We examined our 
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method thoroughly and applied this metrics in every simulation that has been done. The 

metrics for our 3 different simulated datasets are shown in table below. 

 

 

 

 

 

 

Hence, a good binary classification test always results with high values for all the three 

factors, Sensitivity, Presicion and Accuracy, whereas a poor binary classification test results with 

low values for all. If Sensitivity is high is low then, there is no need to bother about the excellent 

candidates but the poor candidates must be reexamined to eliminate false positives (poor 

candidates mistakenly selected). But If Sensitivity is low then, there is no need to bother about 

the poor candidates but the excellent candidates must be reexamined to eliminate false 

negatives (excellent candidates mistakenly rejected). An average binary classification test 

always results with average values which are almost similar for all the factors. 

 

  

 Sensitivity Accuracy Precision 

1st simulation 0.97 0.86 0.88 

2nd simulation 0.98 0.91 0.91 

3rd simulation 0.99 0.89 0.89 
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6 Conclusions 

This thesis presents a novel semi-automatic algorithm for segmentation and NURBS based 

reconstruction of human’s body aorta from MRI or CT DICOM datasets. The methods applied in 

this work are state of the art in both medical image analysis and computational geometry. Our 

great achievement is the semi-automatic segmentation of the organ. User has only to import a 

dataset of DICOM files from an MRA of a CTA image modality and to identify with cursor an 

inner aortic point on an axial slice of the body. Then our algorithm is capable to segment the 

boundaries of the aorta and using medical visualization algorithms to reconstruct the 

segmented volume in 3D space. Furthermore, we worked on methods for converting the 

geometric grid. As we firstly reconstruct the volume from MRI images using volume rendering 

and more specific isosurface method later, we work on converting the unstructured grid of 

polygon model into a structure grid.  

First of all the model is based on data points which has been preprocessed in order to create 

smooth horizontal and vertical cuts. These points form the input of NURBS approximation 

which enables fast modeling due to the already smoothened surface. We use the point cloud 

model to fit smooth NURBS surfaces in order to optimize our reconstructed volume and we 

follow novel techniques in order to create an enhanced control net for our model. A robust 

MATLAB based software was developed for image based reconstruction and meshing of blood 

vessels applied with minimal user intervention while allowing for multiple options for 

customization of biomechanical analyses. Moreover we measure the quality of NURBS surfaces 

and how to improve the mesh quality need to be studied further. We have successfully applied 

our method to three patient-specific examples. Quadrilateral solid NURBS surfaces are 

constructed for finite element analysis of blood flow to be performed.  

As part of the future work, we would like to work on biomechanical applications and analysis 

of the organ. Finite element analysis can be performed in this NURBS model, using two-

dimensional shell finite elements and three-dimensional hexahedral finite elements, in order to 

calculate the displacement, strain and stress field of the aortic walls, define the walls’ strength 

and evaluate the probability of aortic rupture. Unifying this whole procedure it would be of 

great advance in medical practice because of the need of valid biomedical simulations.  
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