
Efficient Support for
Partially Reconfigurable

Accelerators in an FPGA SoC for
the GNU/Linux Operating System

by

Ioannis Galanommatis

supervisor prof. D. Pnevmatikatos
committee assoc. prof. V. Samoladas

prof. A. Dollas

A thesis submitted in partial fulfillment
of the requirements for the degree

of

Master of Science

in

Electrical Engineering

Technical University of Crete
June, 2018

2018, Ioannis Galanommatis
Licensed under the Creative Commons BY-SA 4.0 license.

You may modify and redistribute this work in any medium for any purpose, provided
you give credit to the author and retain the same license. Full license text is found at:
https://creativecommons.org/licenses/by-sa/4.0/legalcode

The source code repository for this work is publicly available at:
 https://github.com/igalanommatis/zdma

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://github.com/igalanommatis/zdma

iii

Efficient Support for Partially Reconfigurable Accelerators
in FPGA SoC for the GNU/Linux Operating System

Abstract

Currently there is a rising trend in accelerating specialized computation, mostly
driven by the growing need for machine learning. The solutions can be classified to
two groups: novel processor architectures, tailored for the targeted computation prob-
lem, and hardware acceleration, which is representedmostly by the FPGAs due to their
capability to adapt or re-purposed to a different enviornment.

Partial reconfiguration further extends the FPGA flexibility by allowing the recon-
figuration of a part of the device during run-time without interrupting the overall sys-
tem operation. This technology makes possible to create a system that offers mutliple
accelerator cores that can be reconfigured on-demand during normal system operation.

This work implements such a system using the Zynq SoC from Xilinx. It consists
of the following parts:

• Hardware implementation of one homogeneous low-latency and one heteroge-
neous high-throughput accelerator system for Zynq-7000 SoC, as well as one ho-
mogeneous and balanced system for an UltraScale+ SoC.

• A Linux device driver supporting any system design under its specifications.

• A system library that provides a user-friendly API for managing the accelerators.

• An application in image processing that implements some common accelerators.

In this modular system, each component is isolated and provides an abstracted in-
terface to the others. At the user level, the system provides a simple API that hides all
hardware details. Using this API, the user can request a computation from the system
which will be scheduled for execution when a hardware resource is available. The sys-
tem administrator may add, remove or restrict the accelerator availablity to system slots
or may configure the behavior the scheduler and modify security policies, all without
interrupting the normal operation of the system.

iv

Finally, the system takes advantage of the system interconnect to provide concur-
rent data transfers and parallel access to memory, maximizing total I/O throughput.
In order to permit the exploration for the optimal design, we made the system flexi-
ble enough to accept any accelerator arrangement and any memory and interconnect
layout without any software modification.

Contents

1 Introduction 1

1.1 Motivation . 2
1.2 Our Approach . 3
1.3 Contributions . 4

2 Related Work 7

3 Background 13

3.1 The Hardware Platform . 13
3.2 The Communication Protocol . 15

3.2.1 The AMBA AXI Family 16
3.2.2 The AXI Implementation 18

3.3 The Physical Interconnect . 21
3.3.1 The Zynq 7000 Interconnect Architecture 22
3.3.2 The Zynq UltraScale+ Interconnect Architecture 25

3.4 Exchanging Data with the Programmable Logic 28
3.4.1 Programmed I/O from a Processor 28
3.4.2 Using the “hard” DMA controller in the PS 29
3.4.3 Implementing a DMA controller in the PL 30

3.5 Design Components . 34
3.5.1 The DMA controller . 34
3.5.2 The Interconnect . 36

3.6 Partial Reconfiguration . 43
3.6.1 The Partial Reconfiguration Workflow 46
3.6.2 Floorplanning . 48

v

vi CONTENTS

4 Hardware Architecture 51

4.1 The Implemented Designs . 51
4.1.1 An Accelerator Performance Oriented Approach 52
4.1.2 An Accelerator Count Oriented Approach 52
4.1.3 The Zynq UltraScale+ Port 55

4.2 Enabling Partial Reconfiguration 57
4.2.1 Challenges . 57
4.2.2 Implementation . 59
4.2.3 Partition Sizing . 61
4.2.4 Partition Heterogeneity . 64
4.2.5 Decoupling the Reconfigurable Logic 65

4.3 Accelerator Configuration . 65
4.4 System Debugging . 67
4.5 Describing the Hardware with a Device Tree 67

4.5.1 Writing a Device Tree for the System 69
4.5.2 Lying about the AXI DMA Interrupt Lines 72

5 Software Framework 75

5.1 System Initialization . 75
5.2 The System Library . 76

5.2.1 The System-Wide API . 77
5.2.2 The Task-Specific API . 78

5.3 Communicating with the Hardware 80
5.4 Performing DMA from the kernel 81

5.4.1 Allocating DMA’able Memory 82
5.4.2 Controller and Channel Selection 84
5.4.3 Termination of a DMA Transaction 85

5.5 Zero-Copy Transfers . 86
5.6 Security and Error Handling . 87
5.7 Configuring the Accelerators . 88
5.8 The Memory Allocator . 89
5.9 The Scheduler . 95
5.10 Partial Reconfiguration . 99

CONTENTS vii

5.10.1 Using the devcfg Interface 100

6 Application and Evaluation 103

6.1 Accelerator Description . 103
6.1.1 Trivial Pixel Transformations 105
6.1.2 Contrast and Brightness Transformations 107
6.1.3 The Sharpen, Emboss and Outline Filters 107
6.1.4 The Sobel/Scharr Filter . 108
6.1.5 The Gaussian Blur Filter 109
6.1.6 Resource Utilization and Latency 110

6.2 Accelerator Interface . 112
6.3 Evaluation . 116

7 Conclusion and Future Work 123

7.1 Challenges and Lessons Learned . 124
7.1.1 The Implementation Workflow 124
7.1.2 The Tool Quality . 125
7.1.3 The Efficiency of HLS . 126

7.2 Future Work . 127
7.2.1 Integration with FPGA Manager 127
7.2.2 Use of Advanced DMA Modes 128
7.2.3 Rethinking the Accelerator - DMAC Relationship 129
7.2.4 Task Buffer Migration . 130
7.2.5 Accelerator Control . 132
7.2.6 Accelerator Interrupts . 132
7.2.7 Portability . 133
7.2.8 Scheduler Improvements 133
7.2.9 Bitsteam Size . 134
7.2.10 Clock Management . 135
7.2.11 Extending Heterogeniety 135
7.2.12 Random-Access Model . 135
7.2.13 Scaling to Multiple Boards 136

Appendices 137

viii CONTENTS

A Partial Reconfiguration Scripts 139

A.1 Creating static design Device Checkpoint 139
A.2 Generating the Project Files . 140
A.3 TCL Client Script . 141
A.4 Partial Bitstream Manipulation . 145

B HLS Compiler Scripts 147

B.1 Generating and Exporting an Acccelerator Module 147

Glossary 149

Bibliography 161

Chapter 1

Introduction

There is little a modern processor cannot do. They are powerful machines, and this
power comes at low prices. Indeed, the abundance of processing power made the IoT
revolution possible, where a quite capable processing coremay be embedded in the sim-
plest and cheapest everyday devices.

So, if processing power is abundant, why do we often need to resort to specialized
computation machines? A general rule is that a general-purpose computing machine
would be less efficient in performing a task than a highly specialized machine that was
tailor-made for the execution for this specific task. In most cases we can tolerate this
inefficiency and this is why general-purpose computers do exist. There are other cases
however, where we are prepared to put a lot of effort in order to possess the most effi-
cient computer possible.

Before we become more specific with the FPGAs, let us first define our areas of
interest regarding efficiency:

• Energy: A general purpose processor utilizes many structural units to coordi-
nate a computation and typically requiresmore support logic at system level. All
this additional logic consumes energy. Evenworse, the additional generated heat
must be dissipated, and therefore we must spend additional energy to cool the
computer.

All of these are less insignificant on a personal computer but they do matter in
battery-powered portable devices. It is an equally important matter in scientific

1

2 CHAPTER 1. INTRODUCTION

computation, where the cost of energy consumption is usually more important
than the cost of the machine itself.

• Performance: A general-purpose has its silicon architected for offering optimal
overall performance. A specific computation could be benefited more by some
other design decisions or it may not benefit at all from themajority of the silicon
of a general-purpose computer. In contrast, a highly specialized computer has
defined its architecture and has dedicated all of its silicon for the sole purpose of
doing a specific task efficiently, making it the best machine to solve this problem.

Now, onemay pose the question conversely: Why is not everything specialized pro-
cessingmachines? The answer is that the cost of development andmanufactoring favor
mass production. A highly specialized machine will likely be produced in lower quan-
tities and therefore the effort put for producing a single unit is higher.

It is this trade-off that the FPGAdisrupts. The FPGAsilicon itself ismass produced
and is pre-validated on transistor-level. The FPGAdesigner will need to design and val-
idate only their own functionality, thus greatly lowering the non-recurring engineering
effort to produce specialized silicon.

1.1 Motivation

There is a consensus that FPGAs are a powerful tool for computation. However there
are certain unsolved problems that impede their spread. One of these is the lack of a
standardized interface to the operating system and a common framework to support
the building of accelerators.

At the operating system front, it is only recently that the Linux kernel gained aware-
ness of the dynamically reconfigurable hardware (see section 5.10) and the supporting
framework is under development. A generic userspace API andABI is yet to be defined
and currently, at its initial stage, it focuses on basic functionality like the abstracted view
of reconfiguration interface, the correct automatic probing and removal of dependent
device drivers and the software isolation during partial reconfiguration, etc. Clearly, a
lot of things will change in the near future – but for now, there is no way to have an
environment of dynamically reconfigurable accelerators without writing kernel code.

1.2. OUR APPROACH 3

At the system software front, the situation isworse. There is nouniversally accepted
method of time scheduling hardware accelerators in a dynamically reconfigurable envi-
ronment. There is some work done in proprietary systems. As for open source frame-
works, there exist a couple of frameworks that tackle the issue of parallel processing in a
heterogenious environment, but as their scope includes all types of processing devices,
they have grown large and complex. The few academic approaches to a simple and open
dynamically reconfigurable acceleration typically pass the burden of scheduling to the
end-user.

At the hardware front, fortunately, there is significant academic work to support
a reconfigurable accelerator framework, albeit dynamic partial reconfiguration is not
often used. All academic work is focused to the model of a PCIe attached FPGA. In
recent years, we saw the rise of integrated FPGA SoCs where the programmable logic is
closely connected to the processor, sharing access to a commonmemory controller. To
our knowledge, no academic work has yet published utilizing this novel architecture.

1.2 Our Approach

In this work we will explore the aforementioned shortcomings by creating a hardware
and software framework that supports on-demand loading of custom accelerators. We
decided to include a run-time scheduler to manage the tasks and the accelerator cores,
in order to relieve the end user of such a responsibility. A user request is posted to
the system and served asynchronously, in order to allow the user to perform their own
computation in parallel to the hardware processing.

The target usage is a server environment that offers hardware acceleration capability
to user applications that feature an a priori known set of computational kernels. This
environment was inspired by the upcoming Xeon hybrid CPU+FPGA processors, but
since we had no access to such hardware, our initial target platform was set to be the
Xilinx Zynq-7000 All Programmable SoC. Additionally, we will try to port our system
to the newer and more advanced Zynq UltraScale+.

Due to the nature of the intended environment, the systemmust bemulti-user and
security will matter. The end user software API must be simple and offer an abstracted
view of the hardware system. The user shall be allowed to configure their task’s affinity
to the system accelerator slots. The system administrator shall be able to add or remove

4 CHAPTER 1. INTRODUCTION

an accelerator to the system, as well as to configure its priority and its availability to
the system slots. Additionally, they shall be able to configure the scheduling algorithms
and security policies. Changes shall be effective immediately and without interruption
of normal operation.

The system adaptability will be realized by the use of dynamic partial reconfigura-
tion. Wewill attempt to create high performance architectures by exploiting the oppor-
tunities for parallelization that the hardware platform offers.

It is of paramount importance that the system would be flexible to support any
accelerator arrangement and anymemory and interconnect layout withminimal effort.

1.3 Contributions

The implementation of such a system was successful, as we achieved most of our goals.
We implemented a kernel driver that assumes the responsibility of programming,

configuration and exchange of data between the accelerator and the user. We opted for
an in-kernel scheduler which manages resources and synchronization. Several schedul-
ing algorithms were implemented, for selecting the most appropriate free slot and for
finding the best victim for eviction.

The system was made multi-user. A user posts a task for execution and the system
will schedule it. The user has no direct access to the scheduler and cannot steal priority.
No sensitive data cross the user-kernel barrier, so the user cannot discover other user’s
data. System-wide operations can be restricted to the system root user, in order to pre-
vent a user to affect system scheduling decisions in their favor or tounload an accelerator
that is desired by another user.

Nonetheless, our security model has weaknesses. The system is aware only of tasks
and accelerator resources. It is not aware of the task owner, the user, so in current form,
no user or group quotas may be assigned. This makes the system susceptible to DoS
attacks (see section 5.6). Also, proper operation by unpriviledged users still needs some
work.

The software API is made simple and is grouped to task operations, available to
all users, and to system operations, available to the system administrator. All intended
functionality was implemented.

In order to support efficient interconnect and memory usage, we implemented a

1.3. CONTRIBUTIONS 5

segmented memory model. Available memory is divided in zones, which serve as con-
figurable pools for allocation. The natural use of these zones is to match the intercon-
nect architecture. This way we achieve balancing of data traffic among the ports that
connect the programmable logic to the processor system which includes the memory
controller. We made possible to define a memory zone’s bandwidth capacity, in order
to indirectly affect its desirability for accelerator usage.

The system manages a degree of accelerator slot hetergeniety. Not all slots are re-
quired to be equal and certain accelerator types may not fit certain slots. The scheduler
will take into account this fact in order to assess how attractive a system slot is, and
the memory allocator will use this information to determine the potential scheduling
freedom a memory zone selection will provide.

The segmentedmemorymodel combined with the affinity capability allow the im-
plementation of basic quality-of-service and assignment of isolated or dedicated mem-
ory paths to a set of acccelerators. These are desirable capabilities for a mixed criticality
system.

Finally, the goal of flexibility was achieved with the proper use of the Flattened De-
vice Tree (FDT). A designer may implement any accelerator arrangement, any inter-
connect architecture and any memory layout. The implementation tool will generate
an hardware description file, out of which the FDT can be generated. Nonetheless, the
designer will still need to manually describe a certain amount of additional details re-
garding the organization of the hardware design. The final FDT will be passed to the
kernel and is sufficient to fully describe the hardware – no source code modification is
needed. For more information, please see section 4.5.1.

A shortcoming of our system is that memory layout, as well as the implemented
static hardware design cannot changewithout system reboot. This is due to older Linux
kernel limitations on modifying an active FDT. Please see section 5.10 for details.

Finally, the port to Zynq UltraScale+ had to be halted. We completed the hard-
ware design and the partial reconfiguration workflow, but we could not support it by
the driver. The reason is that Xilinx has yet to offer software support for the partial
reconfiguration capability through the PCAP interface.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

The concept of allowing a user software application an abstracted interface to the pro-
grammable logic on anFPGA is not new. The first attempts to offer such a functionality
involved commercial entities offering highly integrated solutions. Such solutions con-
sist a complete system that includes not only their own proprietary software but also
their hardware, or even, their own languages. Therefore, apart from being non-free,
the cost of purchase can be very high. The best known system vendors are Maxeler,
Convey (now Micron), Pico Computing (also aquired by Micron) and Impulse Accel-
erated Technologies, the latter being the only that targets commodity FPGAs. Xillybus
is also a commercial product, but unlike all others it only sells an IP core that drives
Xilinx PCIe endpoint block. Additionally, it offers their backing device driver as open
source which is actually mainlined in Linux kernel.

There exist free andopen source (F/OSS) solutionshowever. OpenCPI andOmpSs
try to create heterogeneous computation environments that make use any available
computing element be it a CPU, a GPU, an FPGA, etc. They utilise commodity hard-
ware and their existing languages and toolchains. They are ambitious projects with far-
reaching vision, being in development for several years and been grown to large and
complex systems.

A newer and even more ambitious project is ReconOS [1]. In this work they at-
tempt to unify the software and the hardware processing. They propose the idea of the
“hardware thead”, a hardware processing that is represented as a common thread. That
thread acts and is acted upon with the available multithreading programming model.

7

8 CHAPTER 2. RELATEDWORK

The first simple F/OSS framework came, ironically, from Microsoft Research by
K.Eguro. The SIRC [2] enables the communication of a PC with an FPGA through
an Ethernet link, which limits its attainable throughput and latency. Unsurprisingly,
it only supports MS Windows. These two major disadvantages impede most practical
use.

The MPRACE [3] framework is an attempt to create a library with useful hard-
ware cores (including an open source DMA engine) and corresponding device drivers
that would enable data exchange between an FPGA and the host PC. The MPRACE
repository has no activity after paper publication.

A major step forward was the RIFFA Framework [4] as it is the first to conceive
the idea of having multiple independent generic accelerator engines in a single FPGA
platform. RIFFA abstracts the data transfer between a user application and a PCI-e at-
tached FPGA accelerator by themeans of named pipes. It is minimalistic by design but
significant effort was put to offer the highest performance the data transport medium
offers, but equally importantly, to support asmany environments as possible. It can use
Xilinx Integrated Block for PCI Express, Altera IPCompiler for PCI Express andAltera
HardIP For PCI Express, effectively covering all modern large PCIe capable FPGAs. A
driver is provided for bothGNU/Linux andMSWindows, and anAPI is offered for C,
C++, Java, Python and MATLAB. It offers zero-copy data transfer through the means
of creating a scatterlist of the user buffer. It supports multiple FPGA boards but no
partial configuration. Apart from the two “big” systems, it appears to be the only one
framework that receives continued development and have three papers published. The
API is simple and the source code is very well written and commented. They also offer
extensive documentation and step-by-step instructions for using their work. The com-
bination of these characteristics rendered it as a baseline model for all future attempts
as well as a foundation to build upon.

Two years after SIRC publication, in 2012, R.Bittner of Microsoft Research pub-
lished a new system, Speedy [5], which solved the performance bottleneck by support-
ing the PCI-e bus and it uses a random-access interface to the end-user utiliting the on-
board DDR of Xilinx ML505. Authors even designed their own DDR2 controller, to
challenge theXilinxMIGperformance. However, as its forerunner, it isWindows-only
– even the source code is packed in a Windows executable, so it could not be studied.
Generally, due to its restrictions and narrower application it is overshadowed by the

9

significantly more extensive RIFFA, which predated it by a few months.
The EPEE [6] diversifies itself from RIFFA by implementing a user-controllable

register and user-defined hardware interrupts. The latter will interrupt a blocked sys-
tem call – no asynchronous notification mechanism (i.e. POSIX Signals) is offered. It
offers zero-copy by mapping a kernel buffer to the user and it also supports buffered
operations. It has a partial reconfiguration “plugin” that is a simple user function that
reads a partial bitstream and programs it to the FPGA. The system is not aware of the
reconfiguration and therefore no synchronization, queueing, scheduling or other kind
ofmanagement ofmodules takes place. In all fairness, they donot advertize their system
as partially reconfigurable. The API is simple and source code is clean, but it appears
the authors have no interest in further development of their work.

All published works make use of the Xilinx PCIe endpoint block to drive the PCIe
protocol. TheGen2block for 6-series [7] and 5-series [8] offers a low-level interface that
requires significant effort and knowledge of the PCIe protocol in order to be driven by
the designer logic. Indeed, the majority of the effort invested by the aforementioned
works focuses at the hardware block that interfaces the designer logic with the Xilinx
PCIe endpoint. Xilinx has since then released a Gen3 block for its 7-series [9] and Ul-
traScale devices [10] as well as the older 6-class [11]. These blocks present a significantly
different user interface compred to theGen2block. A significant addition is the offering
of a DMA bridge for PCIe [12] which drastically simplifies connectivity as it can be set
up to offer a generic Advanced eXtensible Interface (AXI)4 or AXI-Stream interface.

The introduction of these cores allow the creation of a PCIe-based accelerator
framework with minimal effort. A designer may still prefer a lower level interface if
they wish a finer control over the data transfer, or cannot tolerate the large amount of
logic [13] the DMA/PCIe bridge consumes. Or they may skip both the bridge and the
endpoint entirely if they require a fully custom or a pure F/OSS solution. But now,
there is little incentive to develop yet another one PCIe endpoint driver if none of the
above stand true.

The ffLink [14] is the first F/OSS work to be published that uses the new Gen3
endpoint and consequently offer PCIe 3.0 support. The authors found the resource
utilization ofDMA/PCIe bridge unacceptable and they used the generic AXIDMA IP
cores to drive theGen3 endpoint. Currently, ffLink is nomore available as a standalone
project – it is integrated in ThreadPoolComposer [15], which in turn was superceded

10 CHAPTER 2. RELATEDWORK

by TaPaSCo [16], a bigger project at TU-Darmstadt which appears to be current and
well maintained.

A very interesting work is done by Vipin et al, 2013 [17]. It is an attempt to cre-
ate a generic CUDA-like programming interface to the FPGAs. They abstract access
via PCIe, FPGA-based DRAM and Ethernet to generic AXI-Lite and AXI-Stream in-
terfaces. Additionally, they offer some FPGA device-related functionality such as pro-
gramming and restarting the programmable logic, and even provide diagnostic infor-
mation (power, voltage, temperature). An interesting feature is that they abstract the
workflow of three high level synthesis tools, Vivado HLS, Bluespec and SCORE. The
interface is very similar to CUDA orOpenCL: The user writes theHLS code inside the
application as an accelerator core to load. The framework assumes the responsibility to
synthesize and implement the code. It is an open-source work but source code could
not be found.

A year later, Vipin releasedDyRACT [18]. In this work they offer the functionality
of partial reconfiguration, more or less with the same limited way the EPEE does. They
have implemented a custom ICAP controller that offers superior performance toXilinx
implementation, achieving a throughput of 91%of themaximumICAPcapability. The
framework still does not support zero-copy transfers nor multiple boards. The API is
clean and the source is well-written and commented.

Another published work is JetStream [19]. This work attempts to cover all de-
sired features: partial reconfiguration, multiple DMA transfer modes, multiple board
support and direct FPGA to FPGA data transfer. Regarding the transfer modes, the
nomenclature they use is confusing, contradictory and even invalid, but they do sup-
port both buffered and zero-copyDMA.The feature of direct transfer between FPGAs
simply means that data will move via the PCIe root complex and will not traverse the
memory controller – there is no direct dedicated link between the accelerators as the
name would suggest. Finally, the partial reconfiguration feature is not described in the
paper and could not be found in the sources – it is certain however that there is no ac-
celerator scheduler. An inspection of the source code reveals that the driver frequently
delegates a lot of the work to the end user, leaking kernel data structures to the user-
space or exporting functionality that should not be at a user application’s authority.
Furthermore, the software code is completely undocumented, contains several rough
edges and the respository shows no activity since the paper publication. In our opinion,

11

it is half-finished and, at least regarding the software, a work of questionable quality.
A newer work is RACOS [20]. This work introduces the novel idea of multi-core

and multi-threaded accelerators. A multi-core accelerator consists of two discrete ac-
celerators sharing the same reconfigurable partition. A multi-threaded accelerator is
an accelerator that can save its context internally and context-swap to another user –
in both cases, the connection to the DMA controller is shared. RACOS is especially
focused in reconfiguration speed achieving a 99.6% efficiency in ICAP reconfiguration
throughput, while they have overclocked the interface from 100 to 125MHz. However,
the most important addition is that RACOS implements a task queue and a scheduler
that process it, so the end-user can post a request to be executed asynchronously. The
key disadvantage of the system is that it is the only academic work mentioned here that
is closed source.

Juxtaposing this work with the aforementioned published works, the most appar-
ent differentiation point is that the data transport is the AMBAAXI bus. This changes
the working environment and the role of the FPGA from an attached acclerator to a
closely connected co-processor that may have shared access to the main memory.

Feature-wise, our implementation of partial reconfiguration includes an asyn-
chronously executing scheduler, just like RACOS. Our implementation of zero-copy
DMA uses kernel allocated buffers mapped to the userspace. Compared to building a
scatterlist of user allocated pages, the choice ofRIFFA and some others, it is simpler and
offers higher performance from doing many small DMAs, even if the DMA controller
has Scatter-Gather support. However, the main reason we followed this way is so we
can build a custom memory allocator that has full control of all allocated buffers. This
was essential for supporting our novel feature of having segmented memory to control
and balance the flow of data throughout the interconnect.

Another important feature is that our system was designed from the beginning as
multi-user, in order to be applied in a FPGA accelerated server. Among other works,
only the architecture ofRACOSmay be capable of this feature, but this subject was not
touched in the paper. Despite that our system is not yet secure (see 5.6), its flaws can be
corrected.

In figure 2.1 we display a comparative table of the frameworks that were designed
with the multiple accelerator model in mind, partially reconfigurable or not.

12 CHAPTER 2. RELATEDWORK

Pa
rti

al
R
ec
on

fig
ur

at
io
n

A
cc
ele

ra
to

r
Sc

he
du

ler

Ze
ro

Co
py

U
se
rC

lo
ck

A
cc
ele

ra
to

r
Co

nf
ig
ur

at
io
n

A
cc
ele

ra
to

r
In

te
rr
up

t

M
ul
tip

le
FP

G
A
s

FP
G
A

to
FP

G
A

di
re
ct

lin
k

O/S FPGA

G
N
U
/L

in
ux

W
in
do

w
s

X
ili
nx

A
lte

ra

Framework F/OSS Transport

RIFFA v2.2 PCIe 3.0 x4
EPEE PCIe 2.0 x8
ffLink PCIe 3.0 x8
DyRACT PCIe 3.0 x4
RACOS PCIe 2.0 x4
JetStream PCIe 3.0 x8 ?
This work AXI

Figure 2.1: Comparison of present FPGA accelerator frameworks.

Chapter 3

Background

On this chapter, wewill discuss key technologies thatwere used in this work. The target
hardware platforms will be introduced. An emphasis will be given to the communica-
tion protocol and the interconnect architecture as they were a pivotal point for this
system’s design.

Afterwards, wewill analyze and compare the strategies for exchanging data between
the programmable logic and the processor. We will present the available IP cores that
implement the communication and therewill be a discussion on their operationmodes,
the possible configurations, and the design trade-offs involved in their implementation.

Finally, we will discuss the Partial Reconfiguration workflow, describing the bene-
fits and the pitfalls this technology encompasses.

3.1 The Hardware Platform

The primary hardware target of this work was the Zynq-7000 All Programmable SoC
family from Xilinx. An “All Programmable SoC“ in Xilinx terminology or an “SoC
FPGA” according to Altera/Intel and Microsemi, is a device that combines a “hard”
(i.e. implemented in silicon, not soft-IP) System-on-Chip and the fabric of an FPGA.

The notion of the “SoC” typically encompasses all the basic functional elements
of an embedded computer system capable to run a modern general purpose operating
system, excluding themainmemory and storage. Still, vendors deviate from this defini-
tion – Microsemi uses a microcontroller grade processing system based on Cortex-M3

13

14 CHAPTER 3. BACKGROUND

which does not feature an MMU restricting operating system choice * whereas Altera
and Xilinx use the Cortex-A9 and A53 application processors. Still, the assortment of
peripherals differ: Some devices omit even the GPUwhile others include secondary in-
dependent real-time processors.

The integrated FPGA fabric is comparable that of the standalone FPGAs these ven-
dors offer. For example, the lower members of the Zynq-7000 family contain Artix-7
class fabric, while the higher members contain a Kintex-7 class.

As a secondary hardware platform, a port for the ZynqUltraScale+ wasmade. The
port was intended to explore the significantly different (compared to Zynq 7000) me-
chanics of partial reconfiguration as well as affirming the system’s portability to a 64-bit
SoC.

In the following table, themost important technical specifications of these twoplat-
forms are described.

Zynq 7000 Zynq UltraScale+

Bo
ar
d

Development Board ZedBoard ZCU102 Evaluation Kit
Device Model Z-7020 (-1) ZU9EG (-2)
PS Memory 512MiB DDR3 (fixed) 4GiB ECC DDR4 SO-DIMM
PL Memory n/a 512MiB DDR4 (fixed)

Pr
oc

es
sin

gS
ys
te
m

Main Processor ARM Cortex-A9 ARM Cortex-A53
32bit, 2 cores, 866MHz 64bit, 4 cores, 1.5GHz
L1 32kiB i/d per core 32kiB i/d per core

L2 512KiB, OCM 256KiB L2 1024KiB, OCM 256kiB
Real-Time Processor n/a ARM Cortex-R5

32bit, 2 cores, 600MHz
Graphics Processor n/a Mali-400 MP2 667MHz

Pr
og

ra
m

m
ab

le
Lo

gi
c FPGA fabric Artix-7 (28nm) UltraScale+ EG (16nm FinFET)

LUT 53.2k 274k
FF 106.4k 548k
BRAM (Mb) 4.9 32.1
DSP (slices) 220 2520
Transceivers n/a 24 GTH (16.3Gbps)

Figure 3.1: Technical specifications of the target hardware platforms.

The internal interconnect of the Processing System (PS) and its connectivity with

*There is a port of GNU/Linux, the μClinux Project, that enables support of systems that do not
feature a Memory Management Unit. The port has been included in the mainline kernel.

3.2. THE COMMUNICATION PROTOCOL 15

the Programmable Logic (PL) will be covered in detail in section 3.3. Before that, it
is important to describe the communication protocol that all the on-chip interconnect
utilizes.

3.2 The Communication Protocol

In order for two (or more) entities to exchange data, there must be a well-defined pro-
tocol. With the growth of FPGA ecosystem, a need for a common and widespread
communication protocol arose in order to replace custom solutions that deemed too
inflexible for bigger designs comprising IP from different project teams and different
companies. The ARM’s proposal is the Advanced Microcontroller Bus Architecture
(AMBA) protocol suite which, as the name suggests, was initially deployed for micro-
controller use but later expanded to SoCs gaining momentum as a result of ARM’s
dominance in the smartphone market. Since all modern FPGA-SoCs from Xilinx use
ARM cores, AMBA became a natural choice for the company. Earlier products from
Xilinx, like Virtex-II Prowhich featured a PowerPC core, used IBM’s CoreConnect bus
architecture. The other big contender is the free and open source “Wishbone Proto-
col”, which, not unexpectedly, is the favorite of “OpenCores” open-source hardware
community.

The Zynq 7000 and the newer Zynq UltraScale+, the two platforms that are tar-
geted by this work, both feature ARM cores and are designed around the AXI proto-
col, part of the AMBA suite. As Xilinx tries to promote IP reuse with its IP Integrator
tool, it has expanded the use of AXI in its FPGAs that contain no ARM IP. The AXI
infrastructure and several basic AXI peripherals are offered by Xilinx in Vivado at no
additional cost. Therefore, AXI was chosen for the development of this system.

It is important to note that AMBA protocols are for on-chip interconnect only.
Although they can transverse the PS-PL border, they are never exposed outside of the
chip. This stands true not only forXilinx’s – orAltera’s – FPGAs, but also for all ARM-
based microcontrollers and SoCs.

16 CHAPTER 3. BACKGROUND

3.2.1 The AMBA AXI Family

The AXI itself is essentially a group of protocols that support different topologies, as
well as feature levels that position themselves differently at the trade-off between per-
formance and functionality versus silicon area. However, they all share a fundamental
bus concept: a multi-channel non shared-bus architecture that contains separate chan-
nels for each transaction type. It can be considered as a complementary to Advanced
High-performanceBus (AHB)protocol, alsomember ofAMBAsuite, which is a single-
channel multiple-master shared-bus architecture. Comparing these two families would
give an edge to AXI in throughput performance and clock frequency requirements,
while AHBwould favor better in terms of latency, wire count and power requirements.

The AXI family has several members, but for this system the following three were
used:

• AXI, was the initial and onlymember inAMBA3.0. With the advent ofAMBA
4.0 which introduced two new members described below, it is now usually re-
ferred as “Full AXI” or “AXI Memory Mapped”. The characterization of “full”
contrasts to the reduced capability AXI-Lite and “memory mapped” contrasts
to AXI-Stream which has no notion of address spaces.

The AXI comprises five channels: Read Data (R), Read Address (AR), Write
Data (W),Write Address (AW),Write Response (B). An AXI linkmay be unidi-
rectional, discarding the unneeded channels.

The addressing information must be communicated before a transfer to take
place, which consists a performance barrier. To amend this, AXI supports burst
mode, where sequential beats of datamay be transferredwithout re-transmitting
any addressing information. Between the two communicating endpoints, an in-
termediary “AXI Interconnect” must be inserted.

Its typical use in the FPGA realm is transferring data betweenmemory resources,
like (BRAM)s, processor RAM, FPGA memory controllers, etc.

• AXI-Lite. Introduced with AMBA 4.0, the AXI-Lite, as the name implies, is a
reduced capability version of AXI. Themost notable simplification is the lack of
support for burst transfers. In exchange, it offers a much lower silicon footprint.

3.2. THE COMMUNICATION PROTOCOL 17

It is best suited for low intensity traffic, typically for configuration or status reg-
isters.

• AXI-Stream. Also introduced with AMBA 4.0, AXI-Stream is a data stream-
ing protocol, which means that it has no notion of memory addressing. This
greatly simplifies implementation and reduces wire count. Data flows from the
one endpoint to the other, in one direction, without the need of any interme-
diary interconnect. Transmission size is not known in advance; data will flow
indefinitely until a control signal (TLAST) is asserted.

AXI-Stream allows the addition of user defined out-of-band data, typically for
synchronization, and it supports sender and receiver IDs, which enables stream
routing for virtual circuits.

None of these protocols supports cache coherency. In AMBA 3.0, ARMproposed
the Accelerator Coherency Port (ACP), an AXI slave port that connects an AXI mas-
ter directly to the processor. The coherency logic inside the processor will monitor the
transactions and update its caches accordingly. However, since the AXI master is not
aware of the cache coherency logic, ACP is only an IO Coherency mechanism; the pro-
cessor caches may be coherent but the accelerator’s are not.

In AMBA 4.0, ARM extended the AXI protocol with AXI Coherency Extensions
(ACE), which allows full coherency between the processor and the accelerator, and
ACE-Lite, an IO Coherent version. The latter differs from ACP in that its coherency is
managed by the interconnect and therefore the port requires no proximity to the pro-
cessor. These protocols are supported in the newer UltraScale+ but not in the Zynq-
7000.

Finally, in latest AMBA version, 5.0, ARM added Coherent Hub Interface (CHI),
which targets the multiprocessor’s local interconnect hub.

In the data streaming model that this work targets, there exists no spatial or tem-
poral locality. Cached transfers are not only useless but harmful, since they will cause
cache thrashing.

Indeed, the kernel driver uses the Linux DMA Streaming API which bypasses all
processor caches by marking the allocated DMA’able pages as non-cacheable. There-
fore, cache coherency will not matter our discussion any further; however, the hard-

18 CHAPTER 3. BACKGROUND

ware interconnect that implements these cache-coherent protocols may be of our use
and therefore it will be examined.

3.2.2 The AXI Implementation

The AXI implementation in Xilinx products consists of the hardware implementation
in Zynq 7000 and ZynqUltraScale+ devices, the soft-IP protocol infrastructure offered
in IP Integrator, and theAXI compatible IPbuildingblocks. Additionally,Xilinx offers
automation for creating custom cores with AXI interfaces. It is worth to cover this
functionality as part of understanding the connectivity of the system.

The Zynq Hard IP

The Zynq 7000 is built around AMBA 3.0. The interconnect will be presented at the
next section, but it is important tomention here that the use of AXI of this AMBAver-
sion carries two important restrictions: The original specification of AXI, as is present
in AMBA 3.0 has a maximum burst size of 16. Any AXI master residing in PL that
connects to the PS through a slave port, will have to obey this limit or use a protocol
converter. Secondly, AMBA 3.0 does not support AXI-Lite or AXI-Stream, therefore
all ports in Zynq-7000 are Full AXI.

The Zynq UltraScale+ is AMBA 4.0 compliant. Therefore, both of the aforemen-
tioned issues do not apply. Still, the AXI FIFO Interface (AFI) that supports the HP
ports is version 3 only, and protocol conversion takes place in silicon. This process in
transparent to the designer but is still important as it affects performance.

The Xilinx Soft IP

At the PL front, Xilinx offers a suite of IP cores thatmanipulate theAXI traffic. It offers
cores for conversion (stream combining, width conversion), buffering (clock conver-
sion, streampipelining, FIFObuffers) and routing (streambroadcasting, stream switch-
ing, AXI crossbar). Additionally there are some higher level AXI building blocks that
automate the interconnect of AXI endpoints. Due to their importance, it is worth to
be mentioned separately:

• AXI Interconnect. It can connectM AXI masters to AXIN slaves communi-
cating with either the Full AXI, both version 3.0 and 4.0, or the AXI-Lite pro-

3.2. THE COMMUNICATION PROTOCOL 19

tocol. The interconnect can be configured in full crossbarmode (shared address,
multiple data) for high performance, or in shared access mode (shared address,
shared data) for low area use, issuing only one transaction at a time.

The AXI Interconnect is build around the AXI Crossbar. The AXI Crossbar
implements the core switching functionality and the AXI Interconnect wraps it
with the appropriate port couplers that may perform necessary clock and width
conversion and/or append register slices or FIFO buffers, to help timing closure
and smooth traffic, respectively.

TheAXI Crossbar allows the definition of a connectivitymatrix for sparse cross-
bar implementation. However this feature is not used by AXI Interconnect and
if desired, the designer must instantiate the AXI Crossbar and its couplers man-
ually.

• AXI SmartConnect. This core is a newer design with functionality analogous
to AXI Interconnect. It is advertised to be highly optimized to mitigate wire
delays in UltraScale+. However that comes at some cost in FPGA resources. If
the design uses a slow clock for the targeted FPGA or if the slaves are AXI-Lite
configuration registers, the older AXI Interconnect should be preferred.

• AXI Stream Interconnect. The equivalent interconnect for AXI-Stream, as
it can interface M AXI-Stream masters to N slaves. Likewise its sibling, it is
built around the AXI-Stream Switch with the appropriate couplers in each of its
interfaces.

The stream routingmay either be defined externally through a configuration reg-
ister or by sender / receiver IDs. It should be stressed that in contrast to its Full
AXI counterparts, it is not an essential core if only a singlemaster is connected to
a single slave. Its use arises on shared physical links and/or where virtual circuit
switching is needed.

Xilinx offers a few DMA controllers, compatible with both the full AXI and the
AXI Stream. If implemented in the programmable logic, they can move data between
an addressable memory resource and either another one, or alternatively stream it to a
memoryless component. These are the solutions offered:

20 CHAPTER 3. BACKGROUND

• AXI DataMover: This is the central component of all DMA controllers. Its
role is to move data between the memory mapped and the streaming domain. It
needs external logic for control, a role that is assumed by the three DMA con-
trollers described below.

• AXIDMA: TheAXIDMAcan generateAXI-Stream compatible streams from
a full AXI compatible addressable memory resource. Its core are two unidirec-
tional or a single bidirectional * AXIDataMover. It is configured by anAXI-Lite
interface. The core has an optional scatter-gather engine that can continuously
fetch and execute transfer descriptors without any pause as well as optional mul-
tichannel support.

• AXI Video DMA: This core is a variation of the AXIDMA specialized in video
streams. Among other optimizations, it takes advantage of the user-defined out-
of-band channel of AXI-Stream for frame synchronization.

• Central DMA: The Central DMA, probably a misnomer, can move data be-
tween two Full AXI compatible slaves, e.g. the processor memory and an AXI
BRAMcontroller. It is implemented by a bidirectional DataMover and the con-
trol logic, with an optional scatter-gather engine.

The User IP

As it becomes clear, Xilinx does offer a significant amount of AXI infrastructure IP and
AXI compatible peripherals to support the implementation of an AXI-based system.
Still, implementation of AXI compliant custom logic is a non-trivial task to undertake.
Depending on the workflow and the designer’s experience and demands, there are five
options available.

• Custom Implementation: In case that maximum flexibility and performance
is desired, a custom implementation is the way to go. Xilinx offers anAXIVerifi-
cation IP which helps the designer to verify the functionality of an RTL design.

*This configuration is not supported byXilinxHSI forDeviceTree generation, which is the standard
method describing hardware to the Linux kernel

3.3. THE PHYSICAL INTERCONNECT 21

• IP Integrator: Xilinx offers a “Create andPackage IP”wizard in its IP Integrator
tool. The designer may define the desired AXI parameters and the wizard will
generate the corresponding RTL code to create the AXI interface. The designer
can afterwards tweak the code to adapt their needs.

• IP Interfaces (IPIFs): IPIFs are IP cores that alleviate the burdenofAXI confor-
mance from the end designer by performing the complex AXI signaling them-
selves while offering a simple memory-like interface on the other end. Xilinx
provides two such cores, one for Full AXI supporting burst transactions, and
one for AXI-Lite.

• Bridges: In case the user IP is already developed with an alternative protocol, it
maybe possible to be bridged to theAXI interconnect, if the additional overhead
can be tolerated. Xilinx provides only a handful of bridges, mostly of use within
theAMBAfamily, e.g. forAHB-Lite (both slaves andmasters) and forAdvanced
Peripheral Bus (APB) (slaves only). However, additional bridges may be found
at OpenCores or in other open-source libraries. In the simplest case possible, a
designer may even opt for the AXI GPIO core that can provide up to two 32 bit
general purpose I/O lines.

• HLS: If the designer uses the Vivado High-Level Synthesis workflow, the tool is
able generate AXI compliant IP using simpleHLS directives. This is particularly
useful to implement the HLS-core control protocol over AXI-Lite.

3.3 The Physical Interconnect

So far, we discussed the communication protocol and its implementation at both the
programmable logic and the silicondomains. Thenext logical stepwould be to examine
the underlying physical interconnect that supports it on the SoC-FPGAs that this work
targets.

Granted, in the FPGA fabric there is infinite flexibility and any topology may be
created. The presence of a hard IP however, presents a constraining factor. In both
Zynq 7000 and UltraScale+ series, there is a single multi-port memory controller that
resides on the PS side. Therefore, any traffic from/to the PL must first cross the PL-

22 CHAPTER 3. BACKGROUND

PS boundary, then be routed inside the PS interconnect, and finally reach a memory
controller port.

Understanding the nature of this path is not a trivial matter. Nonetheless, it im-
poses a number of hardware and software decisions in this work’s implementation, and
therefore it needs to be analyzed.

Since the architectural details of these two SoC-FPGA families are significantly dif-
ferent, they will be covered separately.

3.3.1 The Zynq 7000 Interconnect Architecture

The 7000 series glues the PL andPS togetherwith a number of high speed ports of vary-
ing functionality. Most are slave ports to the PL, which means the transaction initiator
must reside in the programmable logic. A couple of them aremaster ports, to be driven
by either theARMcores, the PSDMAcontroller or some I/Operipheral. One of them
is able to provide IO Coherency, but there is no support for two-way, full coherency.

The figure 3.2 presents the system architecture of Zynq 7000 series, emphasizing
the interconnect. Technical details are sourced from [21].

The High Performance Ports

The Zynq 7000 provides four HP ports, HP0 to HP3. These are all slave ports to the
PL, conforming to AXI version 3. If the AXI master is implemented in AXI4, as is the
usual case, protocol conversion must take place in the PL.

The ports are clocked by a PL clock at up to 150MHz, and can be 32 or 64 bit wide.
As the AXI protocol mandates, they have separate wires for each direction, offering a
per direction bandwidth of 1200MB/s for each port.

TheHP ports are connected to the memory controller through theMemory Inter-
connect which in turn drives two of the four ports of the memory controllers, as well
as one port of the On-ChipMemory (OCM) interconnect. The port clock will be con-
verted to 355MHz, offering a switching speed of 2840MB/s per direction, 5680MB/s
total. The switching scheme routes the traffic from the first two HP ports to the first
memory port, and the other two HP ports to the second. Any port can be routed to
the OCM.

3.3. THE PHYSICAL INTERCONNECT 23

X-Ref Target - Figure 3-2

PL Fabric

High Performance
AXI Controllers

(AXI_HP)

Application
Processing Unit

PL Clocks

M0

FIFO

ASYNC

M1 M2 M3

Cache
Coherent
ACP Port

Cortex-A9
NEON MMU

L1 I/D Caches

Slave Interconnect for
Master Peripherals

DMA
Controller

IOP

Instruction
Data Snoop

CPU_6x4x

M

General
Purpose

AXI Masters

M0 M1

General
Purpose

AXI Slaves

S0 S1

FIFOFIFO FIFO

32-/
64-bit

64-bit 64-bit

64-bit 64-bit

32-bit

32-bit

64-bit

ASYNC
ASYNC

Snoop Control Unit

32-/
64-bit

32-/
64-bit

ASYNC

ASYNC

ASYNC

32-/
64-bit

ASYNC
4

DevC

8

QoS

CPU_2x

DDR_3x

Read/Write
Requests
(e.g., 8 reads,
8 writes)

Clock
Synchronizer

Quality of
Service
Priority

CPU_1x

On-chip
RAM
256 kB

16

4 8 16

8

88 1

ASYNC

ASYNC
DAP

CPU_2x

L2 Cache
512 KB

M0 M1

IOP
Masters

IOP
Slave
Reg &
DataM

Central Interconnect

DDR Controller

CPU_2x
Master Interconnect
for Slave Peripherals

OCM
Interconnect

QoS

QoS

8

QoS

QoS

QoS QoS

ASYNC

ASYNC

ASYNC

1 84 8

M3 M2 M1 M0

8

64b @ 222MHz
1776MB/s /dir
3352MB/s total

32b @ 222MHz
888MB/s /dir
1776MB/s total

64b @ 222MHz
1776MB/s /dir
3352MB/s total

Memory
Interconnect

64b @ 355MHz
2840MB/s /dir
5680MB/s total

4 port, 32b @ 1066MHz
4264MB/s total

32b or 64b, up to 150MHz
1200MB/s /direction /port

32b, up to 150MHz
600MB/s /direction /port

High Performance Port
Accelerator Coherency Port
General Purpose Slave Port
General Purpose Master Port

Data Path of DMA Traffic

Figure 3.2: The Zynq 7000 system architecture. Note that port naming follows the controller role,
not the port’s. For example, the “GP AXI Masters” are connected to the “GP AXI Slave Ports”, titled
“M0” and “M1”. Conversely, the “GP AXI Slaves” are connected to the “GP AXI Master Ports”, titled

“S0” and “S1”. Modified image from [21].

24 CHAPTER 3. BACKGROUND

Thememory controller offers an aggregate bandwidth of 4264MB/s shared among
its four ports, irrespectively of the data flow direction. Therefore, if all HP ports are
used and configured at their maximum ratings, the maximum theoretical bandwidth
of 9600MB/s will saturate the memory interconnect, and if the OCMpath is not used,
will be further constricted by the memory controller.

The Accelerator Coherency Port

The ACP port, compared to the HP ports, has equivalent performance specifications.
The connectivity to thememory subsystem, however, is totally different. As itwasmen-
tioned in 3.2.1, the ACP port needs to be in close proximity to the processor in order
to provide cache coherency to traffic generated from a non-coherent AXI master. In-
deed, in Zynq-7000 series the ACP port is connected directly to the Snoop Control
Unit (SCU) of the L2 Cache. From there, it can access one dedicated port of the mem-
ory controller. This is a low latency path to memory, but its tight relationship with the
processor will complicate the potential usage scenarios.

The General Purpose Slave Ports

The GP slave ports offer the half of the data width of the HP ports as they are 32 bit
only, but they can operate at up to the same frequency of 150MHz. However, in order
to reach the memory controller they follow a much more complicated path.

Firstly they reach the Slave Interconnect. They occupy two of its four slave ports,
the other being dedicated to the Device Configuration controller (devc) and the De-
vice Access Port (DAP). Note that the former will be heavily used at run-time as it is
responsible for programming the FPGA during partial reconfiguration. The Slave In-
terconnect operates at 222MHz, offering an aggregate bandwidth of 888MB/s per di-
rection. Its master port is connected to the Central Interconnect, which operates also
at 222MHz but has a width of 64 bits, totaling at 1776MB/s per direction.

The Central Interconnect is shared by another two masters: The PS DMA con-
troller and the I/OPeripherals (the flashmemory interfaces, theUSB and Ethernet con-
trollers, etc). Itself is a master to three peripherals: The OCM interconnect to leads to
OCM memory, the Master Interconnect which connects the PS masters to the fabric
via the M_GP ports, and finally, one port of the memory controller.

3.3. THE PHYSICAL INTERCONNECT 25

It is obvious that in order for S_GP to reach the memory controller, it has to cross
two rather busy interconnects and resource competing could become an issue.

The General Purpose Master Ports

The GP master ports are the functional opposite of GP slave ports; they can connect
PL slaves and they route the traffic through the Master Interconnect which in turn is a
slave to the Central Interconnect. It is important to note that they are the only master
ports from the PS side. If any transaction has to be started with the initiative of the PS,
itmust pass from these ports.

3.3.2 The Zynq UltraScale+ Interconnect Architecture

TheUltraScale+ series has significantly improved the system interconnect. Apart from
the expected increase in number and bandwidth of the PS-PL ports and their pathway
to thememory, there ismuch better support for cache-coherent peripherals. Unlike the
7000 series, in UltraScale+ all ports are of equal maximum width and frequency; they
are all 128 bit wide andmay operate at up to 333MHz. Nonetheless, since they have dif-
ferent connectivity and offer different functionality, subsequently they will also differ
in access latency to the memory controller as well as produce distinct side effects. Ad-
ditionally, they are mapped differently in the processor address space and have varying
address widths; all of them however, are at least 32 bits. The UltraScale+ is updated to
AXI4, with the exception of the AFI.

An overview focused on interconnect is displayed in figure 3.3. The reference for
technical information presented here is [22].

High Performance Ports

The UltraScale+ features four HP ports that reside in the Full Power Domain. As one
can realize from figure 3.3, the path from an HP port to the memory controller is not
identical for all ports. Indeed, the memory port S3 is shared between the HP0 and the
DisplayPort controller while the S5 is shared between HP3 and the FPD DMA. The
interfaces HP1 and HP2 share exclusive access to memory port S4, a property to be
considered if the lowest latency or a deterministic performance is desired. Additionally,
if theDisplayPort controller is not used, theHP0will have full bandwidth access to the

26 CHAPTER 3. BACKGROUND

Figure 3.3: The Zynq UltraScale+ system architecture, image from Xilinx [22]. The naming
nomenclature denotes (in order) the master or slave role, the protocol (AXI), the port name with the
modifier “C” for “coherent” or repeating “M” for “master” then followed by the port number, and

finally the power domain designation.

3.3. THE PHYSICAL INTERCONNECT 27

S3memory port. TheHP3would be the least attractive to use, since thememory access
pattern of the FPD DMA may not always be known in advance.

High Performance Coherent Ports

As the name suggests, the HPC ports are cache-coherent versions of HP, albeit IO co-
herent only, much like the ACP port. However, in contrast to the ACP, the coherency
is not ensured by the SCU but by the CCI.

Decoupling the port from the processor has both its benefits and its shortcomings.
The HPC ports have higher latency than ACP to the memory controller, even higher
than HP ports since they have to cross CCI. On the other hand, it does not share a
path with the processor to the cache, alleviating the resource competing in a such an
important pathway. Xilinx labels the ACP as a “legacy” port, showing its preference in
HPC.

There are two such ports in UltraScale+. They share access to a single port of the
CCI, which they can reach after crossing two switches. From there, they can be routed
to the two memory ports that are visible to the CCI.

High Performance Master Ports

Essentially, theHPMports inherit the role of Zynq-7000’sM_GP ports. They aremas-
ters to the PL, so they are the gateway for any traffic generated with the initiative of the
PS, that being the ARM cores or the PS DMA controllers.

There are three such ports. Twoof themare in the FPDandone in theLPD.Unlike
Zynq-7000, their performance is not inferior to HP ports.

The AXI Slave Port of LPD

There is a single slave AXI port that connects the PL to the Low Power Domain. The
port is connected to the LPD Main Switch, and from there is routed to the RPU after
crossing two further switches. Along with the LPD HPM, they are the only means of
accessing the PL from RPU side without crossing the Full Power Domain.

28 CHAPTER 3. BACKGROUND

Accelerator Coherency Port

Retained albeit unfavored from the Zynq-7000 series, the ACP port is upgraded to
match theperformance of the otherUltraScale+ports. Only one such aport is available.

AXI Coherency Extensions Port

The ACE port is a unique addition to this FPGA-SoC family. With the help of CCI it
can offer two-way, full cache coherency. That is, it can support a cache-enabled periph-
eral and maintain coherency of both the processor’s and the peripheral’s cache.

3.4 Exchanging Data with the Programmable Logic

The diversity of the physical interconnect creates a number of possible methods for
transferring data between PS and PL. Each method may benefit a specific transfer pat-
tern ormay bemore appropriate for an application. The temporal characteristics of the
transfer, the amount of data to be transmitted, the requirements for latency or through-
put, the power consumption and the need of a higher level of determinism, all of them
will derive the optimal solution for each problem.

3.4.1 Programmed I/O from a Processor

The Zynq 7000 features two ARM Cortex-A9 processor cores that can generate load-
/store requests. These may target the DDR memory and the OCM directly from the
cache ports and the SCU respectively, or the PL through themeans ofMaster Intercon-
nect (see 3.2).1

The UltraScale+ is a bit more complicated since it features two processor clusters
that use different pathways. The high-power A53 cores in APU are connected to the
CCI and from there they may reach either the DDR memory controller, or be routed
from FPD Main Switch either to one of the High Performance Master ports to reach
the PL, or the OCM Switch to reach the OCM. The low-power R5 in RPU can only
send to the RPU Switch. From there it can reach three targets: The OCM Switch that
provides access to the OCM, the DDRmemory controller directly, and the LPDHPM
that gives access to the PL. Additionally, it has a link to the CCI through the LPDMain

3.4. EXCHANGING DATAWITH THE PROGRAMMABLE LOGIC 29

Switch fromwhere it can be routed anywhere in the Full Power Domain, including the
FPD HPMs.

Overall, the main advantage should already be obvious: The Programmed I/O
method can low-latency access to any component of the PS and the PL, without the
need of any PS or PL third-party actor, like a DMA controller. Thus, it saves resources
on both PS and PL.

The second big advantage is simplicity. From software point of view, it is sufficient
that the program issues the appropriate load / store instructions, with a possible mem-
ory barrier – no initialization of any component. As for hardware, an slave peripheral is
sufficient to implement an AXI-Lite interface, which is low demanding in complexity
and resources.

The major drawback derives from the very nature of programmed I/O and is not
Zynq specific. The fact that the traffic is generated by load / store instructions is a
twofold problem: First it keeps the processor busy issuing the instructions prevent-
ing it to perform any other useful work. The problem aggravates as the number of
slaves increases, as obviously there cannot bemore parallel transfers than the number of
processors executing I/O. Secondly, the load / store instructions cannot generate burst
transfers, essentially degenerating a full AXI to AXI-Lite. According to Xilinx ([21],
v1.11, pg. 656) one should expect transfer rates of around 25MB/s in Zynq-7000.

Themost common use case for this method is writing configuration registers, read-
ing status or other initialization work. Such small data exchanges are latency sensitive,
not throughput, making a perfect fit for programmed I/O.

3.4.2 Using the “hard” DMA controller in the PS

The Zynq-7000 features an eight-channel DMA controller on the PS side. Looking
back at figure 3.2 we can see that it is connected with a single link to the Central In-
terconnect. From there, it may reach the DDR Controller directly, the OCM memory
through the OCM Interconnect, and finally, through the Master Interconnect, it may
reach the PL by using one of the M_GPs (the coarsely dashed line).

TheUltraScale+ has twoDMA controllers, one in the Full PowerDomain and one
in the LowPowerDomain. The FPDDMA controller shares a linkwith theHP3. The
link is driven to a second switch that gives access to either theDDRmemory controller,

30 CHAPTER 3. BACKGROUND

or it is routed to the FPD Main Switch, in turn to the OCM Switch, and finally the
OCM.TheLPDDMAcontroller is connected to the I/OPeripheralOutbound Switch
that is connected to the LPDMain Switch. From there it can see the OCM Switch and
the OCM memory, the DDR memory controller, or it can enter the PL via the LPD
HPM.

The DMA controllers can be programmed by a PS processor. The programming
of a DMA controller is certainly a more complex matter than just issuing a load / store
instruction, so an increase of software complexity is for granted. However, the obvious
advantage is that they come “for free”, that is, they are already present in the silicon, not
consuming any PL resources. They are multi-channel and they can provide a through-
put of at least an order of magnitude higher than programmed I/O, without keeping
busy the processor.

However, aswe saw, the flowof data crosses a lot of already busy interconnects. The
sharing of bandwidth reduces all aspects of performance, including its predictability
and repeatability – of all users. We shall not forget also, that even the DMA controllers
are actually shared with other system components, eg the network driver will typically
use it to transfer data to/from the network interface. On top of that, the master ports
in both 7000 and UltraScale+ are fewer, and in the former, are also narrower.

Specifically for this work, it should be added that PS DMA is full AXI compatible
and has no AXI-Stream – and neither of the ports of 7000 or UltraScale+ are AXI-
Stream-compatible anyway. That means that once the traffic is in the PL, it must be
converted to AXI-Stream. The PL resources needed for this conversion are compara-
ble to implementing a DMA controller directly to the PL, making this choice appear
unattractive.

All in all, the use of the PS DMAs is a viable solution, albeit certainly not the best
performant. Tomake things worse, it does not map favorably to the goals of this work.
Therefore, this solution was abandoned.

3.4.3 Implementing a DMA controller in the PL

Modern FPGAs are large enough to allow us the possibility to implement our own
DMA controllers at a tolerable cost in PL resources.

The sacrifice of PL resources is not trivial. However this drawback could be offset

3.4. EXCHANGING DATAWITH THE PROGRAMMABLE LOGIC 31

by the number of advantages that this method gives us:

• Both Zynq series feature significantly more slave ports to the PL than master
ones. Their parallel use would increase aggregate bandwidth.

• There is the opportunity to use other interconnect pathways that are not being
used by the usual client peripherals, alleviating the potential issue of an intercon-
nect bottleneck.

• Using a path that does not cross theCentral Interconnect and theMaster or Slave
Interconnect would have the benefit of reduced andmore predictable latency. In
the extreme case, one could dedicate awhole pathway for a specific latency critical
accelerator.

• The PS DMA would be freed for use by other services, especially the network
driver.

• We gain the flexibility implement the PL DMA exactly according to our specific
needs. It could itself become grounds for research, as the capability of the DMA
controller plays a significant role in overall system performance.

• It opens the possibility for the design of more complicated architectures than
our case of an isolated accelerator that reads frommemory, processes, and writes
back. For example, output could be re-routed to another accelerator or to an
external device (ie chip to chip data exchange, data acquisition or data display)
without the need of going back and forth to the main memory.

The choice of slave port however, is a decisive factor as it can deny us several of the
aforementioned advantages. Therefore, they should be treated separately.

The HP ports

In Zynq-7000 series, the HP ports have an exclusive access to two memory ports
through the memory interconnect. This is an impressive feature, considering that the
processor and the Central Interconnect have only one each. Furthermore, by having
four of them, we gain significant flexibility on the AXI interconnect that it will need to
be implemented at the PL side.

32 CHAPTER 3. BACKGROUND

Similarly, inUltraScale+, the fourHPports have access to threememory ports, after
crossing two rows of switches.

The primary drawback of these ports is that they are not cache-coherent. In this
implementation, the access pattern is a continuous stream of data that flow through
the accelerator. That pattern has zero temporal locality – caching the data would be
useless if not harmful.

Therefore, these ports would be the prime candidates for connecting the accelera-
tors.

The HPC ports (UltraScale+ only)

TheHPC ports, in contrast to HP, cross the CCI to reach the memory controller. This
has two side effects: Firstly, they can optionally be cache-coherent, and secondly, the
crossing of CCI will induce a latency penalty.

Eventually, since cache coherency is not important for this implementation, theHP
ports would be preferable. However, despite thatHPC ports incur a small latency, they
offer a path to access two further memory controller ports, increasing our potential
bandwidth by 66%. Therefore, they could be used in addition to the HP ports, albeit
with cache coherency disabled.

The ACP port

The ACP port is an interesting addition not only due to its IO coherent nature, but
also due to its proximity with the processor. The ACP port would be ideal in an access
pattern where the processor and the PL accelerator work together, exchanging small
pieces of data or cooperatively working in the same dataset. Essentially, the “accelera-
tor” would be more of a “co-processor”. In this access pattern, the data generated from
the processor would stay in cache, from where the ACP-connected accelerator will re-
trieve it, without accessing the DDR memory at all. This would have a huge benefit
to memory throughput and would alleviate the traffic of the memory controller. Ad-
ditionally, since retrieving data from cache is an order of magnitude cheaper in energy
than retrieving from memory, the power efficiency of the system would dramatically
improve.

Nonetheless, this is not our case. Our streaming data pattern would cause continu-

3.4. EXCHANGING DATAWITH THE PROGRAMMABLE LOGIC 33

ous cachemisses and cache thrashing, increasing the latency and depriving the processor
any cached memory. Furthermore, the ACP and the processor core share the connec-
tivity of the SCU to the L2 cache, competing for access. Performance-wise it would be
a disaster and therefore it will not be attempted.

The ACE port

The ACE protocol differs from both HPC and ACP in that it offers full, two-way co-
herency. This permits maintaining cache coherency between the processor with caches
and a full AXI peripheral with cache in the form of BRAM.

In comparison to ACP, the ACE (and also the HPC) do not compete with the pro-
cessor for cache access. Yet, the ACE adds significant complexity to the slave and the
interconnect. Its access to the memory controller is through the CCI, an access already
gained through HPCs, leaving us little incentive to use this port.

The S_GP in 7000 and the LPD Slave AXI in UltraScale+

In section 3.3.1 it was described how S_GP can reach the memory controller. It is a
complex path that comprises crossing both the Slave Interconnect and the Central In-
terconnect. That cancels out a couple of our initial arguments for the use of the slave
ports. Further discouraging is the fact that we will compete with the devc which con-
trols the single Processor Configuration Access Port (PCAP) port used to reconfigure
the FPGA.

Still, the S_GP will open us access to one more port to the DDR controller. For
this very reason, it is worth to experiment using it.

The LPD Slave AXI port of theUltraScale+ shares some characteristics with S_GP.
However, studying the figure 3.3 we will see that the port can reach the memory con-
troller through the LPD Main Switch and the CCI, not the RPU Switch, whose only
master is the RPU itself. This actually the case even for the LPD DMA.

This was an intended design decision. TheRPUneeds exclusive access to themem-
ory controller in order to offer predictable and repeatable access latency, a key charac-
teristic of its real-time nature.

Therefore, there is notmuch incentive to use it, since we already access thememory
ports of the CCI via the HPCs.

34 CHAPTER 3. BACKGROUND

3.5 Design Components

3.5.1 The DMA controller

By initial problem statement it was decided that the system will feature streaming ac-
celerators. This narrows down the DMA controller selection to AXI DMA and AXI
VDMA. The latter is video oriented, offering additional functionality that is desir-
able in video applications – and even required by some controller cores of imaging pe-
ripherals. Our test application is indeed imaging oriented and would be benefited by
AXI VDMA in a few ways. Firstly, it would enable the possibility of using the Xilinx
OpenCV-compatible HLS video libraries. Secondly, the out-of-band synchronization
that is possible with the VDMAwould enable the accelerator to detect when the image
line changes and when the frame ends. Lastly, as VDMA was made for embedded use,
it would be beneficial in case it was decided to bring this system in an embedded setting.

However, the test application is just for testing and not the only intended use. The
loss of generality, or even the increased complexity due to specialization, was undesired.
That leaves us with only the AXI DMA.

The AXI DMA IP core has a few operating modes that are worthy of mentioning.

• Direct Register: This is the simplest operatingmode. ADMAoperation is ini-
tiated bywriting the control, source and destination registers. The processor can
query the status register for completion, either by polling or by interrupt notifi-
cation. Operation queuing is not supported, therefore there will be a time gap
between completion and re-programming with next operation. This operation
trades performance for resource utilization.

• Scatter-Gather: In this mode, the AXIDMA creates an auxiliary AXI port to a
memory resource that contains a list of transfer descriptors. The AXIDMAwill
execute sequentially all the descriptors without any intermediate pause. Upon
completion, it may pause or restart executing the same list. This mode offers
higher performance as the DMA controller never stalls.

• Multichannel: An option to the Scatter-Gather mode, that allows multiple vir-
tual channels on the streaming side. The AXI DMA will still have only two in-
terfaces and the channels will be differentiated by the sideband information that

3.5. DESIGN COMPONENTS 35

is carried over a standard AXI-Stream channel. This option is interesting in that
it permits a single DMA controller to handle multiple accelerators.

Themore complex operatingmodes show a lot of promise for our intended system.
However, the Direct Register mode was chosen, on the grounds of simplicity and as a
“starting point”. The potential of the other modes will be discussed at the “Future
Work” section.

In table 3.4 the resource cost of each operating mode is displayed.

LUT FF BRAM Nets

Zy
nq

70
00 32

bi
td

at
a DR 1571 1996 2/0 404

SG 2076 3235 2/0 593
MC 1ch 2696 3807 2/0 637
MC 8ch 3245 4188 2/0 637
MC 16ch 3877 4626 2/0 637

64
bi
td

at
a DR 1811 2394 2/2 544

SG 2362 3636 2/2 733
MC 1ch 2978 4208 2/2 777
MC 8ch 3527 4589 2/2 777
MC 16ch 4159 5027 2/2 777

Zy
nq

U
ltr

aS
ca

le+

32
bi
td

at
a DR 1544 2002 2/0 404

SG 2101 3244 2/0 593
MC 1ch 2722 3816 2/0 637
MC 8ch 3271 4197 2/0 637
MC 16ch 3905 4636 2/0 637

64
bi
td

at
a DR 1830 2403 2/2 544

SG 2380 3645 2/2 733
MC 1ch 3001 4217 2/2 777
MC 8ch 3550 4598 2/2 777
MC 16ch 4184 5037 2/2 777

Figure 3.4: Resource utilization of the AXI DMA core. Configuration: burst size 16, address width
32b. LUT: Look-up tables, FF: Flip-flops, BRAM: Block RAM (36kib/18kib), Nets: Boundary crossing

nets. DR: Direct Register, SG: Scatter-Gather, MC: Multi-channel, n-ch: number of channels

As a final note, it should be mentioned that each AXI DMA core outputs two re-
set signals, one for the MM2S and one for the S2MM channel, that are asserted when
the corresponding channel is also rest. It also outputs two interrupt signals, again, one

36 CHAPTER 3. BACKGROUND

for each channel. The Zynq-7 has an interrupt input of 16 bits and Zynq UltraScale+
has two 8-bit inputs. The maximum number of AXI DMA that could be directly con-
nected would be 8, which is very restrictive.

For the Zynq-7, a workaround approachwas employed. We only use the S2MM in-
terrupt output, and we “lie” at the operating system about MM2S. This is mandatory,
as the Xilinx DMA driver requires both interrupts to be defined. In our kernel driver
however, theDMA client to the LinuxAPI takes care not to query or place any callback
function on MM2S interrupt, and considers the transfer done when the S2MM inter-
rupt is asserted. With this workaround, we raise the maximum number of AXI DMA
instances to 16, which were sufficient given the Zedboard’s FPGA size.

For the Zynq UltraScale+, this does not suffice, as its size enables the instantiation
of much more than 16 AXI DMAs. Therefore, in our port, we made use of the AXI
Interrupt Controller IP Core, which supports up to 32 interrupts per instance. The
Zynq-7 workaround was still used, in order to reduce the interrupt controller instance
count and to avoid instantiating unnecessary wires.

3.5.2 The Interconnect

The choice of PL interconnect is a trade-off between several important metrics. The
interconnect must match the required clock. Using register slices to pipeline the AXI
channels is useful, but may not suffice if the critical path is within the switching logic.

A large and complex interconnect, one that connects many slaves to many masters
may achievemaximum flexibility butwill likely become the clock bottleneck, drastically
reduce design routability and consume significant FPGA resources.

As an attempt to break down complex interconnects, bothZynq families offermul-
tiple ports for pathways thatwillmost probably host a large number of peripherals. The
ports have either a silicon implemented switch that, from FPGA designer’s perspective,
comes “for free” or they are routed to another memory port.

In order to explore the potential solutions, a test designwas created forUltraScale+.
It features eight accelerators that transfer data with 16 unidirectional links. Wewill then
experiment on which interconnect will best match our needs.

Note that Xilinx does offer very detailed mathematical formulas for estimating re-
source utilization of each component of AXI Interconnect in 7-series FPGAs (see [23],

3.5. DESIGN COMPONENTS 37

pp 35-52).

A Naive Solution and Basic Configuration

Let us begin with using a single AXI Interconnect v2.1 with 16 slave interfaces (SI) and
1master interface (MI), connected to a singleHP port. The initial configurationwill be
a 32b data width crossbar, outer register slices in all interfaces, as well as a 32 byte FIFO.

The first thing to notice in this basic design, it that with the default memory map,
the PL has access not only to the DDR, but also to PCIe, QSPI and OCM address
spaces. This is made possible by appending an AXI MMU core on each slave inter-
face. As it can be seen on table 3.5, eliminating this unused flexibility reduces lightly
the resource usage. Other tweaks, like the map base or range have negligible effect.

Note that the “Nets” column refers to the core’s boundary crossing nets, and is a
metric that predicts routability.

LUT FF Nets

DDR, PCIe, QSPI, OCM 3002 5466 1792
DDR only 2883 5430 1792

Figure 3.5: The effect on memory map on resource utilization and routability.
Configuration: AXI Interconnect v2.1, 16 SI / 1 MI, 32 bit crossbar, outer register and 32 byte FIFO

per port.

The next challenge would be other two coupler components, the register slices and
the FIFObuffer. The register slices are applied to all five channels of the full AXI, albeit
using different structures (for details, see [23] pg 93). The optional FIFO buffer may
be implemented in distributed RAM as 32-deep or in BRAM as 512-deep. The latter
option will also add 32-deep FIFOs to address channels. Table 3.6 shows the effect of
these options.

Apparently, these couplers take up the lion’s share of the total interconnect
resources. Their importance however, differs greatly. The register slices, despite the
fact they cause a rise of about 40% in LUT usage, during the development of the high
core count design, they were found to permit a 10 to 20% higher clock in a congested
circuit. Their cost was therefore justified. The FIFO however is mostly useful when
data or clock conversion occurs in the interconnect. Therefore, the 32-deep version
might be used if the overall design has sufficient free LUTs. The 512-deep version

38 CHAPTER 3. BACKGROUND

LUT FF Nets

No register slices, no FIFO 1337 526 1792
No register slices, 32-deep FIFO 2362 2800 1792
No register slices, 512-deep FIFO 4459 7967 1792
Outer register slices, no FIFO 1858 3156 1792
Outer register slices, 32-deep FIFO 2883 5430 1792

Figure 3.6: The effect of register slices and FIFOs on AXI Interconnect implementation size.
Configuration: AXI Interconnect v2.1, 16 SI / 1 MI, 32 bit crossbar

however, not only dramatically increases resource usage, but also places area constraints
on the design since BRAMs are found in specific areas, that at least in Zynq-7000 are
scarce, since BRAM is also required by both the AXI DMA and our reconfigurable
partitions in order to implement the convolution line buffer.

Presumably, the most important parameter of an interconnect would be its data
channel’s width. The width should match both that of the peripheral’s and of the
Zynq’s connecting port. Table 3.7 demonstrate its effect on implementation size.

LUT FF Nets

32 bit 2883 5430 1792
64 bit 3777 7942 2404
128 bit 5605 12966 3628

Figure 3.7: The effect of the AXI Crossbar width on AXI Interconnect implementation size.
Configuration: AXI Interconnect v2.1, 16 SI / 1 MI, outer reg slices and 32-deep FIFO

Therefore, the resource utilization does increase, but there is little we can do. It
is a parameter normally decided by the data width of the accelerator. If we manually
override the crossbar width, the AXI Interconnect will place data width converters in
all interfaces where the remote endpoint of the channel disagrees.

Here comes a significant pitfall in the Vivado tool. The crossbar width is inherited
from the endpoint that connects to theMaster Interface. In our case, the UltraScale+’s
HP port. By default, these ports will be defined with the maximum possible value, i.e.
128 bits. The Slave Interfaces of AXI Interconnect are driven by the AXI DMA con-
trollers, whose memory mapped channel’s data width are inherited by the data width

3.5. DESIGN COMPONENTS 39

of the AXI stream, which is decided by the accelerator. Note that AXI DMA will not
allow a data width of less than 32 bits despite that it allows a stream data width down
to 8 bits.

It is unlikely these valueswouldmatch; datawidth converterswould be instantiated
by the AXI Interconnect, leading to severe increase in resource utilization. To illustrate
this, the table 3.8 shows the effect of using the default settings when connecting a 32-bit
accelerator to a 64-bit port (Zynq-7000 default) or 128-bit port (UltraScale+ default).

A special case that arose during the development of the UltraScale+ port, is the
AXI-Lite peripheral control interconnect. If the IP core is automatically placed by Vi-
vado Block Automation, it is instantiated with a data width converter on its single slave
interface and the crossbar hierarchy is implemented in 32 bits. However, if it is man-
ually placed, the data width converter will be placed at the slave interfaces of all tier-2
crossbars, while the tier-1 crossbar will be at the port width, i.e. 128 bits. This effect, in
our case, lead to a comparative 2.5x increase in LUT and 2x increase in FF utilization.

LUT FF Nets

32 bit SI, 32 bit MI 2883 5430 1792
32 bit SI, 64 bit MI 5421 5286 1826
32 bit SI, 128 bit MI 8053 8214 1962

Figure 3.8: The effect of master-slave interface data width mismatch on AXI Interconnect
implementation size. Configuration: AXI Interconnect v2.1, 16 SI / 1 MI, outer reg slices and

32-deep FIFO

Unless it is a purposeful choice*, it is advisable to configure the Zynq port at iden-
tical data width with the full AXI ports of AXI DMA.

Attempting Parallel Access to Memory

Since bothZynq families offermultiple PS-PLports that lead tomultiplememory ports
of the memory controller, it is an opportunity for access parallelization.

However, in section 3.3.1we saw that, regardingZynq-7000, the aggregate through-
put of just two HP ports is sufficient to saturate the memory controller, even if we do

* In our 16-core design, we did use an interconnect of 32b SI / 64bMI as a workaround. If the port
was configured as 32b it was seen that for each 4 correct pixels the accelerator was receiving 4 zeroed ones,
effectively creating black bars over the original image. The cause was not discovered but the workaround
resolved the issue.

40 CHAPTER 3. BACKGROUND

not take into account its other potential users, e.g. the processor or the I/O peripher-
als. Given the comparatively low throughput of the Zynq-7000 memory subsystem,
one may wonder if there is sufficient motivation for even attempting parallelization.
There are two arguments in favor of doing it – and virtually none against.

Firstly, themaximumtheoretical throughputof 2400MB/s thatXilinx asserts ([21],
pg 652) was calculated assumingmaximum port frequency, maximum port width, and
continuous bidirectional traffic. The latter is unlikely, but there is little we can do. As
for the other two, they are subject to design trade-offs between per-accelerator perfor-
mance vs. accelerator count and lower values might be chosen, effectively operating the
port at a fraction of its maximum rate. At the PS side however, the memory intercon-
nect and thememory controller operate in separate clock domains andwith fixedwidth
ports, so their maximum throughput is undifferentiated by the PL design.

Secondly, the complexity of the interconnect might limit the maximum attainable
clock. Breaking down a single big interconnect to several smaller will allow a far better
* maximum clock.

Therefore, the parallelization is worth of exploring, the only question is which is
the best architecture for our purpose.

Intuition would command us to increase the number of AXI Interconnect Master
Interfaces. Granted, it violates our second argument, but since it is the simplest archi-
tecture and actually the first that was attempted in this work, it is worth of assessing
it.

This configuration will complicate the processor memory map since a peripheral
must be able to reach a processor address using exactly one possible route. This could
be solved by segmenting the processor memory and offsetting the burden of access par-
allelization to the software, in the sense that if software chooses the memory buffers
properly it can balance the transaction rates between all ports.

What cannot be solved however, is the hardware cost that arises of the increased
complexity, as it is shown in table 3.9.

The resource increase is significant but not prohibitive. However one could see a
source of redundancy: Even if the problem of accessing a memory address by multiple

* According to [23] pg 23, for Artix-7 class FPGAs, like the smaller members of Zynq-7000 family,
the maximum attainable clock for speed grade 2 devices is 130MHz for a 64b interconnect of 16 slave / 1
master interfaces, and 205MHz for a 4 slave / 1 master.

3.5. DESIGN COMPONENTS 41

LUT FF Nets

1 MI 2883 5430 1792
2 MI 3590 6195 2046
3 MI 4044 6912 2300
4 MI 4849 7641 2554

Figure 3.9: The effect of MI count on AXI Interconnect resource utilization and routability.
Configuration: AXI Interconnect v2.1, 16 SI, 32 bit crossbar, outer register and FIFO size 32 per port.

routes can be solved by segmentation, it would be better if the redundant paths were
not available at all. This would not only simplify software, but most importantly we
would expect a simplification of the interconnect.

The solution is to break up the interconnect to several smaller. A 16 SI / 4 MI
interconnect could be broken to four 4 SI / 1MI interconnects. Thiswould yield several
advantages:

• Avoidance of segmentation would lead to software simplification.

• The removal of redundant paths is expected to reduce interconnect resource uti-
lization.

• An interconnect with fewer SI or MI interfaces can work in higher clock speeds.

• It opens the way of asymmetric access to memory, including exclusive memory
access for reconfigurable partitions hosting time-critical accelerators.

A secondary question would be how to split the interconnect. For example, if we
decide to split the interconnect by two, would we split it by assigning half of the DMA
controllers to the first part of the interconnect and half to the second, or it might be a
better idea to split by channel type, given that read and write channels are significantly
different? In order to answer this, a design with two 8 SI / 1 MI interconnects was
created. At first the AXI DMA were split equally and later split by interface type. The
results are in table 3.10.

Now, we can proceed to explore three interconnect architectures. The table 3.11
reveals the resource utilization for each one.

42 CHAPTER 3. BACKGROUND

LUT FF Nets

Split equally 3060 6290 2044
Split by interface type 2787 6006 2044

Figure 3.10: The effect of SI type homogeneity on AXI Interconnect resource utilization and
routability. Configuration: AXI Interconnect v2.1, 2x 8 SI / 1 MI, 32 bit crossbar, outer register and

FIFO size 32 per port.

Logic LUT FF Nets

32
bi
t 1 I/C of 16 SI 2883 5430 1792

2 I/C of 8 SI 2787 6006 2044
4 I/C of 4 SI 3282 7420 2544

64
bi
t 1 I/C of 16 SI 3777 7942 2404

2 I/C of 8 SI 3759 8790 2724
4 I/C of 4 SI 4400 10812 3360

12
8
bi
t 1 I/C of 16 SI 5605 12966 3628

2 I/C of 8 SI 5656 14359 4084
4 I/C of 4 SI 6874 17604 4992

Figure 3.11: Effect of interconnect architecture on resource utilization and routability.
Configuration: AXI Interconnect v2.1, outer register and FIFO size 32 for each port.

Apparently, splitting up the interconnect proved to only marginally increase re-
source utilization, essentially giving us all the aforementioned advantages at almost no
cost.

Comparing AXI Interconnect and SmartConnect

In 2016, Xilinx released a new IP core that implements the functionality of a Full AXI
interconnect, claiming remarkably higher maximum clock at UltraScale+ devices.

During the hardware design development, the new IP core was put to test. The
maximum clock frequency was sought in a moderately congested design, using a static
workflow but with all partial reconfiguration related pblock placement constraints en-
abled. The end result was that using SmartConnect a clock of 143MHz was achieved,
whereas with AXI Interconnect only 125MHz could be attained.

Unfortunately, this achievement came at the expense of resource utilization. As
the increase was significant, it was deemed necessary to quantify the overhead. The

3.6. PARTIAL RECONFIGURATION 43

table 3.12 summarizes the results of implementing a test-case of a single 16 SI / 1 MI
interconnect implemented with both the AXI Interconnect and the SmartConnect, in
both Zynq-7000 and UltraScale+ devices.

Zynq 7000 Zynq UltraScale+
LUT FF Nets LUT FF Nets

Si
ng

le
16

-M
I

32
bi
t AXI Interconnect v2.1 3305 5877 1756 2883 5430 1792

SmartConnect v1.0 12910 9381 1777 14151 10835 1817

64
bi
t AXI Interconnect v2.1 4231 8389 2368 3777 7942 2404

SmartConnect v1.0 15605 12351 2429 15605 12351 2429

Q
ua

d
4-
M

I

32
bi
t AXI Interconnect v2.1 4914 9150 2392 3282 7420 2544

SmartConnect v1.0 13748 10470 1972 12998 9920 2052

64
bi
t AXI Interconnect v2.1 6082 12542 3208 4400 10812 3360

SmartConnect v1.0 15046 12154 2652 14404 11608 2732

Figure 3.12: Comparison of AXI Interconnect and AXI SmartConnect, on 7000 and UltraScale+.
Configuration: 4 instances of 4 SI / 1 MI, 32 bit crossbar, outer register and FIFO size 32 per port.

Apparently, the 15% gain in clock speed was accompanied by a threefold increase in
LUT utilization. Therefore, its use may not be recommended in the following cases:

• If area is at a premium and functional completeness cannot be achieved with
SmartConnect.

• If the critical path resides inside the accelerator core.

• For the AXI-Lite peripheral control interconnect. Either way, AXI-Lite periph-
erals cannot be clocked as high as full AXI or AXI-Stream ones *. Given that
configuration ports, the typical users of AXI-Lite, are not performance critical,
it would be better that the AXI-Lite paths reside in a separate (lower) clock do-
main.

3.6 Partial Reconfiguration

The Partial Reconfiguration technology allows us to reconfigure a single accelerator
without affecting the rest of the system. To illustrate why this is so important, let us

*For the AXI DMA case, the figure is actually around 25% lower (see [24], pg 8).

44 CHAPTER 3. BACKGROUND

imagine how our system would be implemented without this technology and we will
discover the difficulties that will arise.

Our system needs to change its accelerators on-demand at run-time, and therefore
the FPGA programming state has to continuously change.

Let us assume a homogeneous system of n accelerator slots, with each accelerator
slot being able tohostmdifferent accelerator variants. Thenumber of different possible
system configurations would bemn. In a realistic scenariom can bemore than 10while
n can reach several dozens in a large FPGA.Apparently, it would be infeasible to create a
bitstream for every possible configuration, as the computational effort could exceed our
lifetime even if we used a mid-sized computer cluster. Even then, the bitstream storage
medium would be impractical for an embedded system.

If we opt for the most useful configurations, the implementation would be doable
but the systemwould be inflexible in case that the client load changes in an unpredicted
way and it usually would not be a perfect fit for our load.

The next thing to consider would be the reconfiguration mechanics. If the FPGA
had to be programmed all at once, we would have to stop accepting new requests, wait
pending ones to finish, program the FPGA and start again. There are three points to
consider here: If a pause in operation would be acceptable, if a full FPGA reset can be
tolerated by the external circuitry, and finally, how much would be the overall perfor-
mance degradation due to the pauses. The latter should be expected, as programming a
big FPGAwith 48-accelerators plus static logic would definitely incur a huge overhead,
if what we needed to change was just a single accelerator instance.

At the other extreme, let us consider a hypothetical single big computation task that
can be broken down to several stages, each of them able to fit in our FPGA. In order to
accommodate all stages in an FPGA, we would need a high-end model of prohibitive
cost. Alternatively, we could compute the stages sequentially in a small and inexpensive
FPGA. In this scenario,wewouldhave touse an externalmicrocontrollerwith sufficient
storage to hold the computation state while the FPGA is being re-programmed. The
cycle of restoring state, executing, saving state, and re-programming, is costly not only
in performance but also in power consumption.

The Partial Reconfiguration technology attempts to mitigate these issues by allow-
ing re-programming only a part of the FPGA while the rest of the circuit continues
operation unaffected.

3.6. PARTIAL RECONFIGURATION 45

In summary, partial reconfiguration:

• Allows continuous operation while part of the FPGA is being updated, elimi-
nating system downtime.

• Reduces silicon requirements by making it easier to time-share the FPGA re-
sources.

• Reduces bitstream storage demand as partial bitstream are a fraction of the full
bitstream in size and there are no redundant copies of the same accelerator in
multiple configurations.

• Reduces configuration time as a result of smaller bitstreams.

• Reduces static power consumption by enabling the use of smaller FPGAs and
smaller bitstream memory.

These effects combined allow the implementation of architectures that further im-
prove cost or power consumption. For example, a machine vision system may add a
low-power core version for object recognition and enable it when in low alertness level.
This could not have been done with full bitstream programming as the other sensors
need to remain online, or the frequency of swapping could harm responsiveness or per-
formance degradation.

However, partial reconfiguration has its own disadvantages:

• Design time and effort are significantly increased, and higher skilled engineers are
required. Relevant tools are less developed and not user-friendly.

• It may require additional license, further increasing the development cost. *

• It will reduce FPGA area utilization efficiency and/ormaximum attainable clock
due to the physical constraints the technology imposes.

• The partially reconfigurable region will unlikely be a perfect fit for all recon-
figurable modules. If the designer cannot divide their tasks evenly, additional
FPGA area will be lost.

*As of Vivado 2017.1, PR license is now included in System and Design editions.

46 CHAPTER 3. BACKGROUND

3.6.1 The Partial Reconfiguration Workflow

The Partial Reconfiguration workflow is a bottom-up hierarchical approach. All logic
that consists a functional unit we wish to be dynamically reconfigurable, the so called
reconfigurable module, has to be synthesized independently of the design. Xilinx calls
this technique as “out-of-context synthesis (OOC synthesis)” and is required to prevent
cross-boundary optimizations between the dynamic and static parts of the design. The
OOC synthesis will produce a netlist, saved as a “Device Check-Point (DCP)”, for each
reconfigurable module variant that will later be applied to the static design to form a
valid configuration, from which the partial bitstreams will be generated.

All reconfigurable module variants will be implemented in a certain physical re-
gion of the FPGA (a pblock) that we will need to define. A dynamically reconfigurable
pblock is called “reconfigurable partition”.

There can be as many reconfigurable module variants implemented for a specific
reconfigurable partition, provided we possess the means to store and deliver the bit-
streams in the embedded system. Each reconfigurable module variant may implement
any logic but the physical and logical interface to the static design must remain consis-
tent – in case that the reconfigurable logic of any reconfigurablemodule variant requires
different interconnect, a superset of all interface signalsmust be defined as the common
reconfigurable module interface.

Likewise, there is nomaximumnumber of reconfigurable partitions defined. How-
ever, as the implementation of a reconfigurable partition imposes physical constraints
that reduce resource utilization efficiency and decrease routability, there would be prac-
tical limits that vary depending the FPGA architecture.

If a module needs to instantiated more than once in different reconfigurable par-
titions, it has to be implemented separately and different bitstreams will be generated.
This is an important detail considering the limited storage capability of embedded sys-
tems. Several approaches can be attempted, frombitstream compression to hierarchical
storage systems.

The P.R. workflow defines these steps:

• Synthesis

1. Initially, a static design that incorporates any set of the possible reconfig-
urable module variant is synthesized.

3.6. PARTIAL RECONFIGURATION 47

2. The synthesized design must be floorplanned to define the pblocks that
will constitute the reconfigurable partitions. A reconfigurable partition
must encompass all the logic that is required to implement any reconfig-
urablemodule variant, usuallywith an added overhead of the order of 20%
depending the regularity of the reconfigurable module variants.

3. After floorplanning, all reconfigurable modules must be converted to
black-boxes, rendering all the reconfigurable partitions empty. The pro-
duced (incomplete) synthesized design, the so-called “static design”, is
saved as a DCP.

4. Each reconfigurable module must be synthesized using OOC synthesis.
The synthesized result will be saved as a DCP.

• Implementation

1. Thedesignermust create a set of “configurations”. Each configuration con-
sists of the synthesized static design with all of its black-boxes replaced by a
synthesized reconfigurable modules. Not all possible reconfigurable mod-
ule combinations have to be represented by the configurations *. It is suf-
ficient to define as many configurations are needed so that every reconfig-
urable module variant is present in every desired reconfigurable partition.

2. One configuration will be chosen as the initial one. This will lead to the
implementation of the top-level, static part of the design that will be saved
and later reused. It will therefore decide the partition pins, i.e. the physi-
cal sites that will serve as the connection points between the static and the
reconfigurable domains. These sites will be locked and all subsequent re-
configurablemodule implementationswill be constrained to respect them.
Therefore the initial configurationmust be chosen carefully, as a bad choice
may render some reconfigurable module variants unroutable for some re-
configurable partitions. It is recommended to begin with the configura-

* There is an exception in the case that a signal fromone reconfigurablemodule is connected directly
to another reconfigurable module without any intermediate register in the static part. This technique is
not recommended but it can be done. However, static timing analysismust be performed for every possi-
ble source and sink reconfigurable module variants. Therefore, these combinations must be represented
in the defined configurations.

48 CHAPTER 3. BACKGROUND

tion that contains the most difficult to route reconfigurable module vari-
ant of each reconfigurable partition. In order to find a partition pin set
that permits the routing of all module variants, some trial and error is un-
avoidable.

3. All subsequent configurations import the static part of previous step and
implement their reconfigurable module variants within its context.

• Bitstream Generation

1. After all configurations are implemented, they will be verified for compat-
ibility to ensure the consistency of partition pins.

2. For each implemented configuration a full bitstream will be generated.
From this bitstream, a partial bitstream will be extracted for each recon-
figurable module that was implemented with that configuration. It is pos-
sible that a specific module variant for a specific reconfigurable partition to
be extracted frommore thanone configuration, but shouldbe functionally
equivalent.

3.6.2 Floorplanning

Floorplanning for Partial Reconfiguration involves the placement and sizing of the
pblocks that will implement the reconfigurable partitions.

The physical constraints of the PartialReconfiguration technology in the respective
FPGA architecture have to be respected. Furthermore, certain restrictions are derived
from the implementation tools – most notably, reconfigurable partition nesting, over-
lapping or vertical stacking is not supported.

Apart from these, floorplanning in partial reconfiguration workflow is no different
than in static design; only that problems are more pronounced and a sub-optimal deci-
sion will be more punishing. The difficulty heightens as the number of reconfigurable
partitions increases.

As a starting point, a good practice proved to be to place the reconfigurable parti-
tions as far as possible between each other as this eases local congestion.

Timing closure is first achieved in a static workflow that is gradually constrained
to match the actual partial reconfiguration constraints. A reasonable workflow could

3.6. PARTIAL RECONFIGURATION 49

involve these steps:

1. Initial clock estimation and functional validation should be done in a static de-
sign instantiating themost difficult to route accelerator. No pblocks are defined.
This implementation will set our expectations on clock speed and accelerator ca-
pacity.

Since reconfigurable partition may not be stacked within a clock region, if a spe-
cial resource (BRAM or DSP) has to be included, the maximum number of re-
configurable partitions is bounded by the number of clock-region tall resource
columns in the device. In 7-series, if the resource is the BRAM, this upper bound
is further reduced because of the AXI DMA instances; ideally, five 32b or three
64bAXIDMA instancesmay be accommodated by a single clock region BRAM
(see table 3.4), but this packing may not be possible in actual design.

2. Pblocks are defined and accelerator instances are assigned to them. Pblocks are
placed as sparsely as possible and their size should target an 80% utilization.
While a utilization of 85% to 90% may be possible to implement, it might be
better left as an optimization after getting a first working P.R. implementation.
If at this step the design is unroutable or itmisses the clock target by far, the initial
floorplanning may be fundamentally flawed.

3. The constraints of partial reconfiguration should be applied. Setting
the HD.RECONFIGURABLE property will enable all the related constraints.
It is possible to gradually import the P.R. constraints by initially using
EXCLUSIVE_PLACEMENT, that pushes all static logic outside of the pblocks, and
CONTAIN_ROUTING, whichwill force all reconfigurablemodule routing tobe con-
tained within the pblock *

DRC for partial reconfiguration should be done now. Additionally, a good set
of implementation settings must be determined – for our pblock arrangement
it was usually a choice between the ExtraTimingOpt and RefinePlacement

strategies.

*In UltraScale+ this definition is relaxed to allow the reconfigurable module routing and partition
pin to expand outside the reconfigurable partition’s pblock borders, but no further than clock region
boundaries. This is to facilitate routing but as more reconfigurable frames are involved, it incurs a cost
at the size of the partial bitstreams.

50 CHAPTER 3. BACKGROUND

4. If implementation has failed despite DRC was successful, the first step to try
would be the placer parameters. Also, it must be ensured that pblock utiliza-
tion is below 90% and all reconfigurable partitions contain the required special
resources of their module variants.

5. InUltraScale+, if the initial reconfigurablemodule configuration succeeds place-
ment and routing but the subsequent fails at placement due to unavailable
BRAM or DSP tiles, a change of placer directive to ExtraPlacementOpt and
pblock reshaping will resolve the issue.

6. If the initial configuration achieves timing closure while some of the others do
not, the choice of initial configuration was incorrect and must be changed. If a
configurationwhose partition pins would satisfy all other configurations cannot
be found, re-floorplanning may be required.

7. If all but one or two configurations succeed, the designermay try to re-synthesize
the offending variant using an HLS output of lower target clock period. If this
increases utilization too much or if timing closure is very near, the designer may
attempt to tweak implementation settings of the specific variant only.

8. If the target clockwasmissed by awidemargin, e.g. aTotalNegative Slack (TNS)
of more than 10ns, a different floorplan may be required or the clock may be
needed to be stepped down.

9. If the target clock was missed by a moderate amount, e.g. a TNS of 1ns, the im-
plemented design must be examined in order to identify congestions that were
caused by too dense pblock placement. A pblock may be moved to the next col-
umn pair (7-series) or have its aspect ratio changed (UltraScale+). It is useful to
group the pblocks by the interconnect IP their reconfigurable modules use.

10. If timing closure is near, the specific settings of an implementation strategy can
be tweaked. The most sensitive tool appears to be the placer. A P.R. workflow
may be attempted – oddly enough, a case wasmet where a specific floorplan that
failed timing closure in static workflow, succeeded in P.R. workflow at the same
clock target (see figure 4.6).

Chapter 4

Hardware Architecture

This chapter is devoted to the system’s hardware architecture. We will present the final
hardware designs that were implemented, describing the reasoning behind the design
choices.

The discussion will conclude with the application of partial reconfiguration tech-
nology on this work. We will look into its physical aspects that affected our design, the
challenges of the floorplanning, and finally, the details of loading and configuring a new
accelerator.

4.1 The Implemented Designs

Taking into account all these observations, an architecture had to be designed. Firstly,
the design objectives must be stated:

• Correctness: The design will be the means to prove that the proposed system
does work. It shall function properly for any user input data within its specifica-
tions and process it in a timely manner.

• Flexibility: The software (i.e. the kernel driver) shall support, without recompi-
lation or additional user intervention, any possible interconnect architecture and
memory topology as long as it is properly described in the FDT. An accelerator
may have a restricted view of the addressablememory space ormight be given ex-
clusive access to a certain region. Thememory space itselfmight be a collectionof

51

52 CHAPTER 4. HARDWARE ARCHITECTURE

different memory resources with unequal proximity to the programmable logic.
The designer must be able to explicitly express a relative preference to one re-
source against another.

• Performance: The design will implement an efficient interconnect that enables
parallel memory access for the accelerators. Its architecture must permit suffi-
ciently high clock speeds. Finally the final system will show the performance
of partial reconfiguration as well as the flexibility of the accelerator scheduler.
However, we will not explore the optimal architecture for solving any specific
problem.

• Portability: A constant effort throughout both hardware and software design
was that they shouldbe as decoupled as possible. The software shall use standard-
ized operating system interfaces to ensure that porting the system to a different
would be done with least effort possible.

In order to pursue these objectives, three designs were developed.

4.1.1 An Accelerator Performance Oriented Approach

The first design is geared to accelerator performance, featuring accelerators with wider
interconnect that allow greater data processing parallelization. It has homogeneous re-
configurable partitionswith fullmemory viewof uniform access on the accelerator side,
allowing total freedomof accelerator placement thatmaximizes the scheduler’s decision
options.

The design was floorplanned and implemented with moderate difficulty. It was
madepossible to include 6 reconfigurable partitions of 64bdatawidth, achieving a clock
speed of 143MHz.

4.1.2 An Accelerator Count Oriented Approach

The second design is geared to high accelerator core count that sacrifices per-core per-
formance and flexibility.

More specifically, the following compromises have been made:

4.1. THE IMPLEMENTED DESIGNS 53

PL
PS

HP0 HP3HP1 HP2 INT M_GP0 M_GP1

Memory
Interconnect

OCM Switch

Memory
Controller DDR3

64
b
Fu

ll
A
X
II

nt
er
co

nn
ec
ts

64 bit AXI DMA

x6

MM2S

0
.
.
5

0
.
.
2

3..5

S2MM

0
.
.
5

0
.
.
2

3..5

64 bit Accelerator

x6

IN OUT

Master Interconnect
for Slave Peripherals

APU

�
6

S2MM Interrupt

0
.
.
5

CTL/ST

0
.
.
5

CTL/ST

A
X
I-L

ite
In

te
rc
on

ne
ct
s

AXI

AXI-Lite

AXI-Stream

multiple links

Figure 4.1: The accelerator performance oriented design’s block diagram.
Arrow direction is from master to slave.

• The accelerator data width has been reduced from 64 down to 16 bits. This
cuts down accelerator size, in our application by 50 to 70 %. Furthermore, it
helps routability by reducing the wire count of the incoming and outgoing AXI
streams.

The AXI DMA was accordingly reduced to 32 bit data width at its memory

54 CHAPTER 4. HARDWARE ARCHITECTURE

mapped channels, which in turn allows the reduction of AXI Interconnect’s
crossbar to 32 bits.

• The alternative pathwayof S_GPportswas also used, forming a secondary group
of accelerators with inferior connectivity to memory of higher latency and less
predictability. It still offers a throughput increase as long as the central intercon-
nect is not saturated by other peripheral traffic.

• Two accelerator sizes are defined. Both sizes consist of the samenumber ofLUTs,
however the “big” one contains BRAM and DSP slices. This was decided as the
Zedboard’s FPGA is rather poor in BRAMslices, a resource that AXIDMAalso
needs, and the reconfiguration technology of 7-series FPGAsmake it almost im-
possible for a single column of BRAM slices to be shared by static and reconfig-
urable design parts (see section 4.2.1). To ease the pressure on BRAM, a “small”
accelerator sizewith nomemory capabilitywas introduced. In our application, it
translates to an accelerator that can do pixel stream transformations but cannot
perform a 2D convolution.

• Memory view is segmented. Each Zynq port is assigned an exclusive memory re-
gion where the accelerator can read and another that can write. Initially this re-
striction was implemented as it was found that it improved routability, however
its real usefulness is to fulfill the stated flexibility goal of supporting a scenario
of heterogeneous memory resources as well as the possibility of exclusive region
access. Additionally, it allowed the implementation of allocator bias towards a
memory resource over another. This feature was indeed activated to discourage
the use of high-latency and congestion-prone S_GP ports over the lower latency
HPs that have a more direct access to the memory controller.

The floorplanning of this design proved to be very challenging in order to achieve a
clock of 133MHz. However it could be implemented at 125MHz with relative ease. A
total of 10 “big” reconfigurable partition and 6 “small” ones were included.

More importantly however, this design led to a complete rewrite of the kernel
driver’s special memory allocator to enable memory segmentation awareness. Further-
more, the scheduler needed to be revised in order to understand the partition schedu-
lability constraints due to the corresponding interconnect’s restricted view of memory.

4.1. THE IMPLEMENTED DESIGNS 55

PL
PS

HP0 HP3HP1 HP2 INT M_GP0 M_GP1 S_GP0 S_GP1

Memory
Interconnect

OCM Switch

Memory
Controller DDR3

32
b
Fu

ll
A
X
II

nt
er
co

nn
ec
ts

32
b
Fu

ll
A
X
II

nt
er
co

nn
ec
ts

32 bit AXI DMA

x12

32 bit AXI DMA

x4

MM2S

0
.
.
1
1

0
.
.
5

6..11

S2MM

0
.
.
1
1

0
.
.
5

6..11

MM2S

1
2
.
.
1
5

S2MM

1
2
.
.
1
5

16 bit Accelerator

x12

IN OUT

16 bit Accelerator

x4

IN OUT

Slave
Interconnect

Master
Interconnect

Central
InterconnectAPU

�
12

S2MM int �
4

S2MM int

�
16

0
.
.
1
5

0..11 12..15CTL/ST

0
.
.
1
5

0..11 12..15CTL/ST

CTL/ST

CTL/ST

AXI-Lite Interconnects

Figure 4.2: The accelerator core count oriented design’s block diagram.

4.1.3 The Zynq UltraScale+ Port

The final design is theUltraScale+ port. The accelerator complexity ismidway between
the two other designs.

The newer platform’s increased capacity, routing capabilities andmore relaxed par-
tial reconfiguration restrictions allowed the packing of several times more accelerator

56 CHAPTER 4. HARDWARE ARCHITECTURE

PL
PS HP0 HP3HP1 HP2 HPM0 HPM1 INT HPC0 HPC1 S_LPD

Memory
Controller DDR4

R
P
U

s
w
i
t
c
h

DP
FPD DMA

32
b
Fu

ll
A
X
II

nt
er
co

nn
ec
ts

32b Full AXI
Interconnects

32 bit AXI DMA

x32

32 bit AXI DMA

x16

32 bit AXI DMA

x15

MM2S

0
.
.
1
5

0
.
.
3
1

1
6
.
.
3
1

S2MM

0
.
.
3
1

1
6
.
.
3
1

0
.
.
1
5

MM2S

3
2
.
.
4
7

S2MM

3
2
.
.
4
7

MM2S

4
8
.
.
6
2

S2MM

4
8
.
.
6
2

32 bit Accelerator

x32

IN OUT

32 bit Accelerator

x16

IN OUT

32 bit Accelerator

x15

IN OUT

CoreSightSMMU

Cache Coherent
Interconnect

A
C
E

P
o
r
t

P
e
r
i
p
h
e
r
a
l
s
s
w

S
M
M
U

LPD
Switch

I
O
P

o
u
t
b
o
u
n
d

O
C
M

s
w
i
t
c
h

H
P
M
0
_
L
P
D

FPD Main Switch

O
C
M

s
w
i
t
c
h

L
P
D
i
n
b
o
u
n
d

APU ACP

IN
TC

IN
TC

�
32

S
2
M
M

i
n
t
r �

16

S
2
M
M

i
n
t
r

�2

0
.
.
6
2

CONTROL

0
.
.
6
2

63 63

AXI-Lite Interconnects

Figure 4.3: The UltraScale+ port block diagram.

4.2. ENABLING PARTIAL RECONFIGURATION 57

instances operating at significantly higher frequency.
In total, 63 homogeneous reconfigurable partitions of 32b data width were imple-

mented, running at 270MHz.

4.2 Enabling Partial Reconfiguration

4.2.1 Challenges

ThePartialReconfigurationworkflow is subject to several physical constraints that arise
from the FPGAarchitecture. These affectwhich hardware resources are reconfigurable,
the granularity of the reconfigurable elements, the reconfigurable partition shape and
placement, etc. These rulesmay range fromabsolute restrictions to gooddesignpractice
advisories and are usually architecture dependent.

Between the Xilinx 7-series and UltraScale+ there has been a significant improve-
ment inpartial reconfiguration capability. In 7-series, only theCLB, theBRAMand the
DSP tiles were partially reconfigurable. In UltraScale+, the clocking resources, the I/O
and the Multi Gigabit Transceivers (MGTs) are also reconfigurable, albeit with coarser
granularity. It is worth to note that in UltraScale+ the need of “clearing bitstreams”
that was imposed in UltraScale devices is now removed.

However, what really matters to our work is the flexibility in the physical layout.
This is because in this work we have several rather small accelerators. The shape and
placement of their container pblock is much more critical to the system performance
compared to, for example, a design with a single huge reconfigurable partition that
spawns across multiple clock regions.

It is in this respect that the architectural differences are more important. In 7-series
there are several physical constraints that lead to a rather coarse reconfigurable partition
placement. A reconfigurable frame is a clock region tall. A reconfigurable partition is
allowed to be shorter than this, however it will lose its automatic post-reconfiguration
initialization to a known state. Even worse, as we will see in the following example, the
vertical space between the reconfigurable partition and the clock region border would
be of less usability, as no memory resource can be placed there. On the horizontal axis
the reconfigurable partition is allowed to end at any column. In this architecture, each
resource column has an interconnect column placed next to it. The pairs of resource

58 CHAPTER 4. HARDWARE ARCHITECTURE

plus interconnect columns are placed sequentially but with mirrored orientation, that
is, two resource columns facing each other, two interconnect columns connected back
to back, and so on. Though it is legal that a reconfigurable partition ends between two
interconnect columns, this would cause the splitting of a clock distribution resource.
In order to avoid any disturbance, the tools will not place logic in any affected resource,
causing a significant utilization efficiency drop. Therefore, a reconfigurable partition
will almost always end at a resource column border. Effectively, theminimum reconfig-
urable partition size would be a clock region tall by two resource and their interconnect
columns wide.

InUltraScale andUltraScale+however, this has changed radically. A reconfigurable
partition can be as small as a pair of CLBs or a single BRAM/DSP with its five neigh-
boring CLBs. Xilinx actually recommends against having clock region tall partitions,
as this is restrictive to the router. This fine-grained reconfigurable partition definition
allows a far better FPGAutilization in the case ofmany small reconfigurable partitions.
It also makes easier to define non-rectangular reconfigurable partitions, though rout-
ing difficulty at the pblock corners will still be a limiting factor. It must be note that the
reconfigurable frame is still one clock region tall and all logic in that column will be re-
programmed. However, in contrast to 7-series, inUltraScale+ consistency is guaranteed
for any resource that is placed between the reconfigurable partition and the horizontal
clock region border, including memory resources. Still, a reconfigurable frame may be
controlled by one reconfigurable partition at most. Therefore, it is still prohibited for
two reconfigurable partitions to be vertically stacked within a clock region.

To illustrate this, let us discuss the development of the twoZynq-7000 designs. Ini-
tially, the intent was that a single design of 12 accelerators would be created. Each accel-
erator, in order to convolve an 1080p image with a 5x5 kernel would need a line buffer
of 1920 pixel by 5 lines by 1 byte/pixel for grayscale, which is 9600 bytes or 76.8 Kibits
and therefore the implementation would require two BRAM36 or three BRAM18 re-
sources. In figure 3.4 we saw that a single instance of a 32-bit AXI DMA requires two
BRAM36 tiles. In total, for 12 cores, we need 36 BRAM18 and 24 BRAM36 tiles.
The Z-7020 FPGA that Zedboard employs, has 14 clock region tall BRAM columns,
each column containing 10 BRAM36 or equivalently 20 BRAM18 tiles. A static design
would be easily implemented with a mere 30% BRAM utilization.

As a reconfigurable partition extends vertically to clock region border, each recon-

4.2. ENABLING PARTIAL RECONFIGURATION 59

figurable partition would be assigned an entire BRAM column, underutilized at 3 out
of 20 BRAM18 tiles. Out of the 14 columns the Z-7020 has, only two will be left for
static logic offering 20 BRAM36 tiles, falling short of the 24 required. The designed
was of course unplaceable.

A first thought was to make the reconfigurable partition shorter than a clock re-
gion, sacrificing the post-reconfiguration initialization. The accelerator reset signal was
instead driven by the reset-out signal of the AXIDMA core, which is assertedwhen the
AXI DMA itself is being reset. Since we anyways reset the corresponding AXI DMA
after the accelerator reconfiguration, it seemed a viable solution.

However, the placerwould fail, declaring such a placement illegal. Eventually, itwas
made clear that all logic within a reconfigurable frame is reconfigured, even if it is not
included in the reconfigurable partition. The hardware guarantees consistency for any
combinatorial logic, but any sequential element (flip-flop, LUTRAM, BRAM)would
be initialized, regardless of the post-reconfiguration reset enablement.

Despite that this could be tolerated if by location constraints we assigned this
BRAM only to the soon to be reset AXI DMA instance, the placer refused to be
“forced” to accept this placement. The only solution was to place both accelerator and
its DMA controller in the same reconfigurable partition but this was not materialized
as it would double bitstream size and reconfiguration time.

At this point, it was decided to split the design to two targets, one of high accel-
erator count where some of the instances would contain no memory and one of high
performance with no compromise in resource utilization.

As this physical constraint does not exist in UltraScale+, our design was imple-
mented using rows of shorter than a clock region reconfigurable partitions, which ad-
ditionally could be placedmore tightly in the horizontal axis as routing could pass from
the bottom part of the clock region.

4.2.2 Implementation

The final implementation of the three example designs is presented in table 4.4 and the
floorplanning of a static workflow implementation is shown in figure 4.5 for perfor-
mance oriented design and figure 4.6 for the accelerator count oriented. Finally, figure
4.7 displays the UltraScale+ port implementation.

60 CHAPTER 4. HARDWARE ARCHITECTURE

Accelerator Performance Accelerator Count UltraScale+ Port

Accelerator Count 6 10 + 6 small 63
Accelerator Data Width 64 16 32
Clock Frequency (MHz) 143 133 250
LUT6 capacity 3600 - 4000 800 1680 - 1800
LUT6 utilization* (%) 87.61 46.25 - 89.62† 76.67 - 89.05†

BRAM36 capacity 10 10 / 0 6 - 10
BRAM36 utilization (%) 25 25 / - 41.7
DSP48 capacity 20 - 40 20 / 0 16 - 24
DSP48 utilization (%) 100 80 / - 75
Bitstream size (kiB) 516 - 666 294 / 148 341 - 637
AXI DMA Data Width 64 32 32
AXI Crossbar Width 64 32 32
Interconnect buffering yes (32) no no
Interconnect IP SmartConnect AXI Interconnect AXI Interconnect

Initial Config gauss contrast gauss

HLS Target Clock (ns) 6.67 6.67, 7.5c 3.33, 2.0c

Logic Optimizer Explore Explore Explore
Placer ExtraTimingOpt ExtraPostPlacementOpt§ ExtraPostPlacementOpt

ExtraTimingOptg,s
Physical Optimizer Explore Explore Explore

AlternateFlowWithRetimingg,s

Router Explore Explore Explore
MoreGlobalIterationsc,h

Figure 4.4: Design parameters and implementation settings of each design.
s: sobel, g: gauss, c: contrast, h: sharpen. §: gauss is only placeable by forcing use of DSP48.

Despite the apparently high numbers of resource utilization in first design, it was
the second one that proved to be the most challenging. The two reconfigurable parti-
tion types, “big” and “small” refer to the specialized resource capacity. The “big” con-
tains BRAM and DSP tiles while the small does not. With respect to LUT6 capacity,
they are equivalent.

Both other designs were homogeneous. The variation of pblock size in first design
was used to help timing and there is no functionality difference. The UltraScale+ port
required some tweaking in the pblock shape, size and placement in order to avoid an
unexplained placer behavior of locking the specialized resources of initial configuration
and causing subsequent ones to fail. This caused a variation in resource capacity, uti-
lization and partial bitstream size, none of which has no further effect and will not be

4.2. ENABLING PARTIAL RECONFIGURATION 61

Figure 4.5: Floorplan of accelerator performance oriented design.

visible at the system level.

4.2.3 Partition Sizing

The size of a partition should be as small as possible, which roughlymeans a 10% bigger
than the biggestmodule variant. But howbig should amodule need be? A fine-grained
approach is problematic in many ways. It decreases routability by havingmore wires, it
complicates the interconnect by requiring bigger crossbar switches, it makes placement
more difficult and it wastes resources as practically a 10% of partition resources are left
unused so to allow efficient intra-partition routing. On top of that, in our architec-
ture there is a fixed overhead for each reconfigurable partition due to the necessary AXI
DMA IP block, which, as we see in table 3.4, is roughly the size of a 32-bit accelerator
slot in our system.

On the other hand, increase of partition size does not necessarily provide propor-
tional latency decrease, as other factors (e.g. data I/O rates, specialized logic constraints,

*Utilization of the biggest module variant in the smallest reconfigurable partition.
†The former is for the most difficult to route variant, the latter is for the most resource demanding.

62 CHAPTER 4. HARDWARE ARCHITECTURE

(a) Successful timing closure in PR workflow but not in static.

(b) Successful timing closure in static workflow but not in PR.

Figure 4.6: Floorplan of accelerator count oriented design.

4.2. ENABLING PARTIAL RECONFIGURATION 63

Figure 4.7: Floorplan of UltraScale+ port.

64 CHAPTER 4. HARDWARE ARCHITECTURE

etc) may limit throughput. Often, we could replace one bigger partition with two
smaller ones, where each could give an 80% of the bigger’s capability.

In section 6.3 we see that while accelerators that do pixel transformations scale lin-
early with data width increase, the ones that perform 2D convolution see very little im-
provement as the BRAMcannot keep upwith the increased bandwidth demands. The
HLS estimates (see table 6.7) were misleading but they did predict a sublinear perfor-
mance increase in these accelerators. In any case, it became evident that the advantage
of scaling the pipelinemust be verified by experiment as a resource contentionmay bot-
tleneck our application.

At the end of the day, the advantage of a bigger and more complex accelerator
strongly depends on the computation nature. However, it does also depend on FPGA
architecture and the quality of the generated HDL code. A hypothetical FPGA with
wider BRAM, with more read ports or with more BRAM columns, would allevitate
the contention and turn the tide in favor of larger accelerators. Finally, a better imple-
mentation of the linebuffer that could reduce the BRAM traffic by buffering the data,
could also achieve the same gain without changing the FPGA.

4.2.4 Partition Heterogeneity

Despite that having two types of reconfigurable partitions in the 16-core design was
initially driven by necessity, it still is a good design decision.

A system may require accelerators that vary significantly in complexity or demand
very specialized resources, like theMGTs thatweremade reconfigurable inUltraScale+.
In a different scenario, the same computation may be required in different degrees of
intensity andpower consumption. Or, aswe saw at the previous section, a computation
may benefit more or less from a wider, more pipelined accelerator.

At some point, taking the “one size fits all” path, it will essentially sacrifice area
efficiency, power efficiency, and functionality offered.

In our heterogeneuos design, a simple two-level approach was used. If an mod-
ule variant cannot fit a certain reconfigurable partition, a loopback variant is used as a
placeholder, which is later discarded. In this way, no partial bitstreamwill be produced
for this combination ofmodule variant and reconfigurable partition. The kernel driver
will detect its unavailability and will take this into account in scheduling decisions.

4.3. ACCELERATOR CONFIGURATION 65

4.2.5 Decoupling the Reconfigurable Logic

During the reconfiguration of a partition, themodule’s output is undefined and should
be ignored. Depending on the design, it is a common practice to register the outputs or
usemultiplexers. More complex busesmay require specialized IP, andXilinx provides a
PRDecoupler IP that supports theAXIbus. Additionally, the other parts of the system
must be aware of the downtime. It is important not to generate any AXI traffic to any
of the interfaces of the module that is being reconfigured or the bus may hang.

The Global Set/Reset (GSR) signal keeps the logic in quiescence during the pro-
gramming procedure. However, in Series-7 devices, this can be disabled by not using
the “RESET_AFTER_RECONFIG” pblock property and is always disabled if the reconfig-
urable partition does not extend vertically to clock region boundaries. In this case, even
inputs and clocks have to be decoupled as spurious interrupts or memory writes may
be generated.

In our case, all accelerator interfaces are slaves. Since no traffic is generated during
reconfiguration – and this was indeed enforced in software – it was thought that no
further decoupling was necessary.

However, it was noticed that frequently the AXI DMA that was responsible for
a reconfigurable module, was behaving unexpectedly after the specific module’s recon-
figuration. More specifically, during first DMA transaction after reconfiguration, four
identical groups of 8 bytes were prepended to data received. After that, the channel
hung andwould return to normal operation only by removing and re-inserting the ker-
nel module, which in turn causes the Xilinx DMA driver to re-initialize all AXI DMA
instances.

This phenomenon was never understood. However it was discovered by chance
that if we soft-reset the AXI DMA and re-enable its interrupts, the issue went away.
Since this solution costs no FPGA fabric and it does not disrupt normal operation, no
other decoupling measure was used.

4.3 Accelerator Configuration

Most accelerators that may need to be implemented, apart from the input and out-
put data stream, would need some kind of configuration input and/or status output.

66 CHAPTER 4. HARDWARE ARCHITECTURE

This configuration input will affect the accelerator processing and must remain con-
stant throughout the execution phase. After that, it is desirable that a status output
will be offered.

A first thought would be the use of a GPIO port. However since the implemented
functionality is not known in advance, the number of required signals is not known.
Since the interface between the static part of a design and the partially reconfigurable
must remain consistent throughout all reconfigurablemodule implementations, what-
ever choice is made, it has to apply for all reconfigurable modules that will be imple-
mented. This has many consequences. If the choice is too conservative, a new acceler-
ator type might not be able to be supported. If the choice is too lenient, many super-
fluous wires will be created, complicating routing. The choice may not be able to be
revised afterwards, if the final product is released.

A sophisticated approach was used in [25], where the researchers used micro-
reconfiguration, a technology of dynamically altering the configuration of an FPGA
element without creating any additional bitstream. The principal use of micro-
reconfiguration is for Single Event Upset (SEU) mitigation in space applications, for
correcting bit flips in the configuration SRAM caused by high energy particles pen-
etrating the silicon. When used in our context, it has the advantage of being able to
configure an accelerator in any way possible without using any additional routing re-
sources.

In this work, a simpler approachwas used. Taking into advantage the low footprint
of AXI-Lite (it was tested to cost about 100 LUTs for a slave port), a configuration port
was implemented in all accelerators. This defines an address space within the accelera-
tor, where the host may read or write any value. The wire count can be made constant
by defining the address bus width – in this work it was chosen to be 6, leading to a 64
bytes of addressable space. Since this approach uses a general purpose bus, any AXI
master can read or write this port, not only an owner of a FPGA programming port.
The choice was primarily driven by the ease of implementation – all interconnect logic
is available and the Vivado HLS is able to generate AXI-Lite compliant code through
the use of simple compiler directives. The acceleratormemory is mapped to the proces-
sor address space so communication is made through simple load/store instructions.

Nonetheless, long after its implementation, despite that it was proven to work reli-
ably, there were doubts cast regarding the efficiency of this solution. More on this will

4.4. SYSTEM DEBUGGING 67

be discussed in section 7.2.

4.4 System Debugging

There can be several approaches at debugging the system. In its most basic form, the
Linux kernel ring buffer can be used to post messages that can be later retrieved or be
printed directly to the console. This method can offer extensive information about the
system state and therefore is useful to analyze how the code entered an erroneous state
of execution. However it is rather slow, prohibiting its use as real-time perforamance
indicator.

An alternative pathwas to use the Zedboard’s OLED screen. An IPwas taken from
[26]. As the author offered only bare-metal software, a Linux kernel driver was devel-
oped, making the OLED accessible from both within the kernel and from userspace as
a character device. This solution proved to be much faster, but it still interferes with
system performance. As it takes up significant space on the FPGA, it was used only
during the first stages of development.

An FPGA-only solution had to be found. Thus, a simple IP core written in Verilog
was implemented. This core accepts a configurable number of input events and blinks
the correspondingoutputs at an also selectable rate, appropriate for thehumaneye. The
“events” were usually the DMA interrupts and the outputs were driven to the eight
Zedboard user LEDs. When the input events are more than 8, the Zedboard toggle
switches are used to select a group. A GUI for the IP Integrator was created.

Despite theminimal information than can be displayed, this is done at real time and
without any perfomance impact. The IP core is quite small and was used even at the
rather congested 16-core design. Using this core, one may discover possible scheduler
inefficiencies in a heterogeneous design, revealing which reconfigurable partitions were
under-utilized.

4.5 Describing the Hardware with a Device Tree

A general purpose operating system must gain knowledge of the platform it executes
on. There exist computer buses that allow the automatic discovery of their peripherals,
but for the majority of hardware, this is not a possibility.

68 CHAPTER 4. HARDWARE ARCHITECTURE

Traditionally, supporting Linux on an embedded system required forking or patch-
ing the kernel with board specific drivers and parameters. As the embedded systems
spread and the number of embedded platforms increased drastically, this technique
proved incapable to scale. The kernel development had to be decoupled from any ven-
dor implementation and a generic means of supporting any hardware configuration
had to be invented.

The Device Tree (DT) was proposed as a solution to this problem. It is an hierar-
chical data structure describing hardware topology, no imperative programming func-
tionality exists.

DEVICE TREE (DT) is not a new concept. It was designed by Sun for the Open
Firmware system, as a means for handing over the hardware topology information to
the operating system. Open Firmware is implemented commonly in PowerPC and
SPARC platforms and as a consequence Linux already had support for it. In 2005,
in order to ease platformmaintainability, Linuxmandated theDT support for all Pow-
erPC systems, even if they did not use Open Firmware. In order achieve this, the FDT
representation was created. FDT is compiled to a binary blob that is passed to the ker-
nel during boot by the bootloader – not the Open Firmware. More recently, in 2011,
the use of FDT was expanded to the ARM target when insurmountable difficulties
maintaining the BeagleBoard promptedTorvalds to stop supporting board files for any
ARMplatform. Today, the ARM implementation of FDT is done andmost hardware
companies support it, and Xilinx is not an exception.

For Zynq SoC FPGAs, the FDT is comprised of four parts:

• The description of the Zynq SoC with its on-chip peripherals.

• The board-specific information, e.g. thememory configuration and I/O periph-
erals.

• The hardware implemented in the FPGA fabric.

• The configuration of the implemented hardware.

The first two parts are created by Xilinx and are already in the mainline kernel,
therefore we do not need to care about them.

4.5. DESCRIBING THE HARDWARE WITH A DEVICE TREE 69

The part of FDT that describes the implemented hardware can be generated by
the Xilinx toolchain. Vivado can export the “Hardware Description File” of a design,
that in turn is input to the SDK or the HSM/HSI command line tools, that are able to
generate the FDT.

The last part, the one that describes the configuration and parameters of the imple-
mented hardware, has to be written manually, as it describes the intended functional
role and not a hardware instantiation. For example, an instance of the AXI DMA IP
core will be included automatically at the third part. However, our intention to make
it available to the Linux DMA Engine API has to be explicitly declared. The physical
memory geometry description can be generated; the definition of memory segments
and the description of which reconfigurable partition can read or write at eachmemory
segment, cannot.

Note that theDevice Treemay be in its source form, a .dts file, or its compiled form
(a “blob”), a .dtb file. Despite that decompilation is perfectly possible (and indeed, very
easy) one will lose label names and file hierarchy.

4.5.1 Writing a Device Tree for the System

As a guideline on how to write this part of FDT, we will use as an example the second,
16-core design.

To begin, we will declare the memory segments at the top level block “reserved-
memory”.

reserved-memory {

#address-cells = <1>;

#size-cells = <1>;

ranges;

/* ... */

hp0: hp0@10000000 {

reg = <0x10000000 0x02000000>;

compatible = "shared-dma-pool";

no-map;

};

/* ... */

Figure 4.8: Declaring reserved memory

In listing 4.8, the identifier “hp0” before the colon is a “phandle”, i.e. a label that

70 CHAPTER 4. HARDWARE ARCHITECTURE

will be referenced by the memory region user. The following unit@address syntax
is not of much use; it is the “reg” property that actually defines the memory region
at physical base address 0x10000000 (256MiB) and of length 0x02000000 bytes (i.e.
32MiB). The “compatible” property describes the entry for proper driver matching –
in this case it indicates it will be added to a shared pool of DMAbuffers. The “no-map”
property instructs the operating system to not create a virtual mapping.

The “reserved-memory” block states the existence of reserved memory, not the
usage. Inside our system’s sub-tree (the “zdma@0” node) we will define our system’s
memory zones:

amba_pl {

zdma@0 {

compatible = "tuc,zdma";

#address-cells = <1>;

#size-cells = <1>;

ranges;

/* ... */

zone@0 {

compatible = "tuc,zone";

memory-region = <&hp0>;

readers = <&pb0 &pb1 &pb2 &pb3 &pb4 &pb5>;

writers = <>;

bandwidth = <100>;

};

/* ... */

}

}

Figure 4.9: Memory zone definition

Here, we performed the following steps:

• We describe the node as a memory zone; our kernel driver will search the tree by
this property.

• We declare our intent to use the memory region that we previously declared as
reserved.

• We define a list of readers and writers permitted in this memory region. These
must be a subset of the accelerator physical container blocks that the intercon-
nect allows. In case we refer a physical block that instantiates an accelerator that

4.5. DESCRIBING THE HARDWARE WITH A DEVICE TREE 71

has no interconnect path to this memory region, an address decode error will be
generated by the AXI DMA.

• We declare the bandwidth of the path to this memory region. This is an arbi-
trary magnitude. The higher the number we declare, the more eager our driver’s
memory allocator will be to use this zone.

A physical block (pblock) is a physical area of the FPGA, be it static or dynamically
reconfigurable. In our system, it is a reconfigurable partition where an accelerator is
instantiated.

pb0: pblock@0 {

compatible = "tuc,pblock";

core = <&zcore16_0>;

transport = <&dma0>;

};

Figure 4.10: Reconfigurable partition definition

We define three parameters:

• The description of the entry as a “pblock”, so our driver will find it.

• A phandle to the accelerator instance. This is a reference to the Xilinx generated
files that describe the PL design. This reference is useful to discover the configu-
ration port of the accelerator.

• A phandle to the data mover that will serve this accelerator instance. It does not
refer to the PL implemented AXI DMA but rather a virtual client to it, which
we will define immediately after.

Finally, the declaration of the DMA clients. The “client” (in reference to the Linux
DMAEngine API, not the DMA controller) defines a set of DMA controller channels
that will be used by the API. The format of the node as seen in listing 4.11 is defined by
this API.

The “dmas” property is used to reference the hardware. It is a list of pair values,
with each pair describing a DMA channel. The first value is a phandle to the DMA
controller instance and the second is the channel index within that DMA controller.

72 CHAPTER 4. HARDWARE ARCHITECTURE

Here, “axi_dma_0” is the first instance of AXI DMA and it is a reference to the Xilinx
generated description of PL design. In this description, the channel with index 0 will
always be the transmit (MM2S) channel and index 1 will always be the receive (S2MM).
The “dma-names” property is just a textual description of the DMA channels.

dma0: dma-client@0 {

compatible = "tuc,dma-client";

dmas = <&axi_dma_0 0

&axi_dma_0 1>;

dma-names = "tx", "rx";

};

Figure 4.11: DMA client definition

These entries, repeated for every instance of the resource they describe, is all the
kernel driver needs to know about the hardware implemented in the PL. Should the
hardware design change, the FDTmust be revised to reflect the new design. The kernel
driver should not need any modification.

4.5.2 Lying about the AXI DMA Interrupt Lines

As it was mentioned in section 3.5.1, we only use the S2MM interrupt output of AXI
DMA.TheMM2S is not connected and theDTSgenerationnaturallywill not produce
any description for it. However, the Xilinx DMA driver requires it. As a workaround
for this issue, we “lie” about its presence, assigning to it the interrupt line of the S2MM
channel. This is done by modifying the generated .dts files that describe the PL part.

In listing 4.12 we see an example of AXI DMA IP core instance declaration along
with its two channels. The first channel will always be the MM2S and the second one
the S2MM. The “interrupts” property of S2MM (keyword in bold) was copied over
the MM2S side (keyword in bold-italics).

4.5. DESCRIBING THE HARDWARE WITH A DEVICE TREE 73

amba_pl: amba_pl {

#address-cells = <1>;

#size-cells = <1>;

compatible = "simple-bus";

ranges ;

axi_dma_0: dma@40400000 {

#dma-cells = <1>;

clock-names = "s_axi_lite_aclk", "m_axi_sg_aclk", "

m_axi_mm2s_aclk", "m_axi_s2mm_aclk";

clocks = <&clkc 15>, <&clkc 15>, <&clkc 15>, <&clkc 15>;

compatible = "xlnx,axi-dma-1.00.a";

interrupt-parent = <&intc>;

interrupts = <0 29 4>;

reg = <0x40400000 0x10000>;

xlnx,addrwidth = <0x20>;

dma-channel@40400000 {

compatible = "xlnx,axi-dma-mm2s-channel";

dma-channels = <0x1>;

interrupts = <0 29 4>;

xlnx,datawidth = <0x10>;

xlnx,device-id = <0x0>;

};

dma-channel@40400030 {

compatible = "xlnx,axi-dma-s2mm-channel";

dma-channels = <0x1>;

interrupts = <0 29 4>;

xlnx,datawidth = <0x10>;

xlnx,device-id = <0x0>;

};

};

/* ... */

}

Figure 4.12: Declaring an interrupt line for the MM2S

74 CHAPTER 4. HARDWARE ARCHITECTURE

Chapter 5

Software Framework

One of the primary goals of this work is to offer an abstraction layer that hides all the
hardware details from the end user. The software framework acts as an intermediary
which on the one end orchestrates all control and communication of the FPGA part,
while on the other, offers a simple software API ready to be used by a programmer who
needs not to have any understanding of the underlying hardware.

The software framework consists of two parts. The major work is done by a ker-
nel driver. It is responsible of the coordination of all system elements, from receiving
the command to process data, to the delivery of the results. However, the kernel driver
communicates to the userspace with the means of system calls and I/O control com-
mands, which is not an appropriate interface for the end user. A separate system library
was implemented, which is mostly used either as a wrapper, or to perform tasks that
cannot (or should not) be done in kernel mode, namely the file operations to read the
partial bitstreams.

The development was initially done in Xilinx PetaLinux, but later the work was
ported to the Yocto Project framework, which is officially supported by Xilinx.

5.1 System Initialization

Thekernel driver has two requirements: Aworkingbitstream loadedon theFPGA, and
a correct FDTthat describes faithfully the hardware implemented in that bitstream. Af-
ter system has initialized, further input comes from user requests via the system library.

75

76 CHAPTER 5. SOFTWARE FRAMEWORK

These requests consist of a control command and, optionally, a partial bitstream.

The timing that this input is provided is important for system initialization. The
FDT is supposed to describe existing hardware, and when the driver detects the hard-
ware via FDT it will attempt to access it. Therefore, initial FPGA programming must
precede the hardware declaration in the FDT if the kernel is running. This also stands
true for the other drivers – for example, when the AXI DMA IP FDT entry is visible,
the system will attempt to load the xilinx_dma driver which will attempt to initialize
the IP core, assuming it is there.

Currently, there is ongoingwork at the Linux implementation of theDT tomake it
more flexible for the reconfigurable hardware, FPGAs and modular single board com-
puters. Wewill briefly discuss this in section 5.10 but for now let us assume that FDT is
static. Therefore, the ideal solution would be to deliver the bitstream to the FPGA and
the FDT to the kernel before the kernel boots, when the bootloader is running. Xilinx
has patched U-Boot to allow it to program their FPGAs, and this is the recommended
way.

When system has booted and the driver is loaded, it assumes it is the sole user of the
FPGA. The end-user can interact with the driver either through the wrapper library
or directly with ioctl commands. Partial reconfiguration should be done only via this
interface, or it will go unnoticed and the systemwill behave as if the old accelerator was
still present.

A system shutdown is achieved by removing the driver. The driver will release all
the resources it claimed; memory, I/O space, DMA channels, etc. The user may reload
the driver, but if the intent was to perform a new full reconfiguration, the xilinx_dma
should also be removed.

5.2 The System Library

The system library, which functions as the interface to the end user, is implemented as
a dynamically linked shared library. The library offers a user-friendly API to the end
user. The API is comprised of two parts: the functions that affect the system as a whole
and the functions that affect the work of the caller. The kernel may be configured to
restrict the access to the first part at the root user only.

5.2. THE SYSTEM LIBRARY 77

5.2.1 The System-Wide API

The system-wide API is comprised of the following functions:

int zdma_core_register(const char *name, signed char priority, unsigned long

affinity);

int zdma_core_unregister(const char *name, unsigned long affinity);

int zdma_barrier();

int zdma_config(enum config arg);

int zdma_debug();

Figure 5.1: System-wide API functions.

The first function is called to load an accelerator core to the system, while the sec-
ond un-loads it. All bitstreams are expected to be at /lib/firmware/zdma/ direc-
tory, and the naming convention would be <CORE_NAME>.<RP_IDX>.bin.xz, where
<CORE_NAME> is the accelerator core name (i.e. “sobel”) and <RP_IDX> is the recon-
figurable partition index, an integer that matches the zcore{16,32,64}_i naming in
the DT (see section 4.5.1). All bitstream naming and compression is done by the P.R.
scripts (see appendix section A.4), while the decompression is done inside the kernel.
There is no user intervention.

In both functions, the name parameter is the accelerator core name and affinity is
anOR-mask of the reconfigurable partition indices that the core is permitted to execute
on. The library will search for all bitstreams that match the aforementioned pattern
for reconfigurable partition index range of 0 to 8*sizeof(affinity)-1 (that is 31 for
Zedboard and 63 for zcu102), omitting the ones that are i) excluded by affinity ii)
not physically present, either by purpose (e.g. to reduce storage requirements) or due
to core variant unavailability for the specific reconfigurable partition in a heterogeneous
design. The priorityparameter affects the scheduler decisions andwill be discussed in
section 5.9. These functions are not just initialization and termination of a core variant;
theymay actually be called several times to dynamically adjust the bitstream availability
to the kernel driver.

The zdma_barrier() flushes thework queue of all tasks of all users. It blocks until
all tasks have finished. However, it does not block nor wait for any tasks that may have
been queued after its call, potentially by another user/thread.

The zdma_config() is used to configure the system-wide operational parameters.

78 CHAPTER 5. SOFTWARE FRAMEWORK

It may be used for experimentation or in case a specific access patern is expected. In
figure 5.2 a list of possible configuration commands is presented. As most of the com-
mands affect the behavior of the memory allocator and the scheduler, in order to un-
derstand their function, one should first consult the respecive sections.

Finally, the zdma_debug() function is used to output the state of the system. It is
useful only during development.

5.2.2 The Task-Specific API

Here is the task-specific API. Note that despite the system registers the user that creates
a task, in its present form it does not affect its decisions. Therefore, there are no user-
related actions, all functions affect the task.

• CONFIG_ALLOC_ZONE_DEFAULT

Set the memory resource selection algorithm. Currently only the default algo-
rithm is available.

• CONFIG_ALLOC_BITMAP_*

Set the allocation algorithm from within a specific memory resource. Possible
choices are FIRST_FIT and BEST_FIT.

• CONFIG_SECURITY_IOCTL_{ALLOW,BLOCK}_USER

Allow / Block unprivileged users to issue system-wide commands.

• CONFIG_SECURITY_BUFFER_{KEEP,CLEAR}

Keep / Clear the contents of the task buffers after allocation and before dealloca-
tion.

• CONFIG_SCHED_ALGO_*

Set the reconfigurable partition selection algorithm for the case eviction is not
needed. Possible choices: FIRST_FIT and BEST_FIT.

• CONFIG_SCHED_VICTIM_ALGO_*

Set the victim reconfigurable partition selection algorithm. Possible choices:
FIRST (First-Available), LP (Least Popular), First-Programmed FIFO, LRU (Least
Recently Used) and LFU (Least Frequently Used).

Figure 5.2: Valid configuration commands.

5.2. THE SYSTEM LIBRARY 79

int zdma_task_init(struct zdma_task *task);

int zdma_task_configure(struct zdma_task *task, const char *core_name,

unsigned long affinity, int tx_size, int rx_size, int argc, ...);

int zdma_task_enqueue(struct zdma_task *task);

int zdma_task_enqueue_nb(struct zdma_task *task);

int zdma_task_waitfor(struct zdma_task *task);

void zdma_task_destroy(struct zdma_task *task);

Figure 5.3: User task API functions.

A task’s lifetime begins with the init(). The library opens a file descriptor with
the driver’s /dev entry, which simply registers the task. No resource allocation happens
at this time except for the task control structures.

The configure() is responsible for all reservations that take place and therefore
it can easily fail, so return value must always be checked. The core_name parameter is
self-explanatory, but it should be noted that the core must be already registered using
zdma_core_register(). The affinity parameter is similar to the one of core’s reg-
isteration, the only difference is that now it is enforced in per-task basis. A user may
define a task affinity that allows execution on an accelerator slot where the core is disal-
lowed to be placed. However, if the combined affinities, further restricted by bitstream
availability, lead to a void slot set, the request will fail. The tx_size and rx_size,
the transmit and receive buffer respectively, must be fulfillable by at least one memory
zone. Finally, argc is the number of accelerator variant configuration parameters. If
non-zero, the parameter arguments must follow argc. If the number of supplied ar-
guments does not match with argc, a software undefined behavior will occur. If the
list is valid but not legal for the specific core, a hardware undefined behavior will occur.
Specifically for our application, if the user does not specify a legal value for line width,
it will default to 1080.

The enqueue() and enqueue_nb()will place the configured task to the execution
queue. Their difference is that, in case the previous execution of the same task is not
yet complete, the former will block whereas the latter will return an error. Neither will
block for the current task execution – one should use waitfor() for this.

Finally, the destroy()will release the task resources. It implicitly calls waitfor()
to terminate the task gracefully.

80 CHAPTER 5. SOFTWARE FRAMEWORK

5.3 Communicating with the Hardware

One of the most frequent reasons for implementing something in kernel space, is the
need to communicate directly to the hardware. In processor architectures that support
hierarchical protectiondomains, the hardware is exposedonly to code running in a priv-
ileged mode, typically the operating system. If the user application requires access to a
device, it has to call the operating system to execute on its behalf. This way, the system
enforces security policies and offers hardware abstraction.

Since for our work we do need to manipulate hardware directly, we have to do it
from within the kernel. Programming the kernel however, is a challenging feat. It is a
completely different environment, lacking all the tools and libraries any user is familiar
with – including the standard C library. Many everyday operations that are taken for
granted, like file I/O or floating point arithmetic, are not allowed or at least greatly
discouraged. Debugging is much more restricted and complicated while many of the
system safety nets are not present – a programming error is not isolated at the running
process and its resources, butmay affect thewhole system. Last but not least,modifying
kernel code is not as direct as it is in the userspace.

A naive workaround at these apparent difficulties is offered though the /dev/mem
Linux device. It consists a direct interface to the machine’s physical address space and it
can bemapped to a user virtual space. Its primary use is for debugging the system and is
always disabled inproduction systems, butmanyhardware engineers find it convenient,
since it allows them to program a Linux based FPGA SoC as if it was a bare-metal en-
vironment, with the only restriction that interrupts cannot be detected. Nonetheless,
this solution was rejected on principle, as it negates the operating system’s raison d’être
– security and hardware abstraction.

A much more “clean” solution is given by the Linux Userspace I/O system. Writ-
tenwith industrial I/O cards inmind, this system allows the control of an interrupt and
memory capable device using only aminimal device driver that just declares the device’s
hardware resources. All control and data processing can be done at the userspace using
the tools and libraries the programmer is familiar with. The device memory resources
can be mapped to the virtual address space and its interrupts may be detected with the
use of blocking read or the select system call. This solution can be made even more
attractive from the fact that Vivado HLS is able to generate the aforementioned mini-

5.4. PERFORMING DMA FROM THE KERNEL 81

mal device driver automatically during IP packaging. However, UIO may be ideal for
simple I/Odevices but it is too restrictive and inflexible for anythingmore complicated.
Since the control logic is written in userspace, the programmer loses all access to kernel
facilities and data structures that are usually necessary formore complex tasks involving
other kernel subsystems. A degree of uncertainty on whether or not UIO is a feasi-
ble and efficient solution led to the decision of implementing the core system entirely
in-kernel.

5.4 Performing DMA from the kernel

In a bare-metal environment one would program a PL peripheral by manipulating its
control / status register. This is also entirely possible in an operating system, and some
times it might be the only way. However it has twomajor downsides. The first is that it
sacrifices portability, as the programming sequence of an IP core is fundamentally de-
pendent on the specific hardware. A newer core revision, a different core configuration,
a different host platform, or even worse, an IP core from a different provider, may have
significantly different programming interface. For the designer, this means that they
have to learn the low-level programming details of the IP core, and in case it needs to be
updated or replaced, they must put a significant effort to port the software to the new
version. The other downside is that direct manipulation of hardware control registers
bypasses all OS subsystems that may offer useful support functionality and integration
with other kernel services.

The Linux kernel supports myriads of DMA controllers on the several computing
platforms it is ported. Likewise, there are several kernel subsystems that wish to use
these DMA controllers. In order to offer abstraction, the “DMA Engine API” is of-
fered. The API has a “memory-to-memory” part as well as a “Slave DMA” one. The
SlaveAPI provides hookswhere theDMAcontroller vendormay register their backend
driver specific to their hardware. Following this approach, Xilinx has written a backend
driver for AXI DMA, CDMA and VDMA drivers, called “xilinx_dma”. When an
API client attempts to reserve a DMA controller channel, it specifies explicitly which
hardware resource it needs, through the use of DT, so the kernel knows how to pair the
client with the correct backend driver.

Essentially, the steps to program the AXI DMA core are the following:

82 CHAPTER 5. SOFTWARE FRAMEWORK

1. Allocate DMA’able memory.

2. Request both the MM2S and the S2MM channel of an AXI DMA instance us-
ing dma_request_channel().

3. Create a transaction and get a descriptor from both channels using
dmaengine_prep_slave_single().

4. Submit the descriptor to the driver queue with dmaengine_submit().

5. Force queue processing with dmaengine_issue_pending().

6. Wait for transaction completion.

Now, some questions may come naturally: What is DMA’able memory and how is
it allocated? How can one chose which DMA controller and channel to request? How
can one know when a transaction is complete? We will discuss these questions one by
one.

5.4.1 Allocating DMA’able Memory

A“DMA’ablememory” is amemory regionwhere a slaveDMAcontrollermayperform
DMA transfers. There are two criteria that must be fulfilled:

Firstly, theDMAcontroller and the systembus that connects it,must be able to gen-
erate addresses for the buffers. The AXI DMA IP by default generates 32 bit addresses
and the AMBA bus is able to support them. So, for Zynq, which features 32-bit ARM
cores, we do not need to do anything. For ZynqMP, which is capable of 40-bit address-
ing, if one desires to take advantage of it they must configure AXI DMA accordingly
and also use the dma_set_mask*() family to set up the proper DMA address mask, as
it defaults to 32 bits.

Secondly, the region must be physically contiguous. A user-space allocation with
malloc() is not, as is the case with it’s kernel counterpart, vmalloc(). A special case is
kmalloc(). This function returns physically contiguous memory mapped at a linear

5.4. PERFORMING DMA FROM THE KERNEL 83

address *. However, the maximum allocation is currently limited to 4MiB † for ARM.
This a significant limiting factor, as even for a single DMA transaction, the AXI DMA
is capable of moving 8Mi-4 bytes.

As this was a long-standing issue in all architectures, there have been many
workarounds, especially in the past, where the maximum allocation was only 128kiB.
On systems equippedwith an IOMMU, onemay setup a contiguous bus address space
that can be discontiguous in the physical space. This could be an option forUltraScale+
but not for Z-7000. Another approach is to use scatterlists, a software construct in
the Linux kernel that abstracts the Scatter-Gather functionality. Despite that this does
work, it adds an unnecessary and significant overhead in computation and implementa-
tion effort. A simpler solutionwould be to keep somememory out of kernel’s reach and
manipulate it manually. This can be done by either a kernel command line parameter
or by reserving the memory in early boot, before the buddy allocator is started. Apart
from consisting not-so-nice trickeries, they also inhibit the system from ever using this
memory even if we do not actually use it.

To overcome all these issues, a new kernel facilitywas introduced in 2012. TheCon-
tiguousMemory Allocator (CMA) allows the allocation of indefinitely large physically
contiguous memory. The memory assigned to the CMAwill be lent to the buddy allo-
cator under the precondition that it may not be pinned. Should the CMA need these
pages back, the buddy allocator will migrate away the offending pages and will return
them to the CMA. This way, the memory assigned to the CMA is still available for
general usage until it is requested. This also permits changing the size of the reserved
memory without the need of a reboot.

The CMA is integrated at the DMA Engine API and is automatically called when
using the dma_alloc_coherent(). This function performs two actions – it allocates
the requested DMA’able memory amount, and also creates a coherent mapping. Co-
herent (or consistent) memory is a memory that can be accessed by both the CPU and
the device without caching side-effects. In an architecture that offers two-way cache co-
herency, this is a normal mapping, but in our case, this is ensured by marking all the

*The linear address is the kernel’s mapping of the physical address space to a virtual address space
whose address is a constant offset from the physical.

†The maximum allocation order, KMALLOC_SHIFT_HIGH, is defined at linux/slab.h as min(25,
MAX_ORDER+PAGE_SHIFT-1), where 1ul<<PAGE_SHIFT is the page size, defined at asm/page.h, and
MAX_ORDER is the maximum allocation order of the buddy allocator, defined at linux/mmzone.h.

84 CHAPTER 5. SOFTWARE FRAMEWORK

allocated pages as uncacheable.
Still, we are not done yet. By using the CMA alone, we can receive an arbritrarily

sizedDMAcapable buffer that is aligned at a boundary set at kernel configuration time.
However, we cannot force the exact physical placement of the buffer. This is a critical
requirement, as the physical address defines which PS-to-PL port will be used, whih
in turn leads to a certain AXI interconnect. Effectively, each accelerator may be reach-
able from different physical address regions and by controlling the physical address we
balance the traffic between the interconnects. Traditionally this effect was achieved the
same way contiguous memory was reserved – by excluding it from any kernel access,
which comes with the disadvantages already discussed.

A newer, cleaner solution is now available with the combined usage of the CMA
and the DT. In section 4.5.1 it was shown how a memory bank is described in the DT
file. This file is loaded by the first-stage bootloader and passed to the Linux kernel and
can bemanupulated by theOpenFirmware support functions. So, what has to be done
is that the DT be traversed to reach the node that describes the memory bank, and
from there one must use the of_reserved_mem_device_init_by_idx() to instruct
the CMA that the subsequent dma_alloc_coherent() will use the specific memory
pool. The CMA already has this memory under its authority as we have already de-
scribed it as reserved (see listing 4.8 at section 4.5.1). A final detail would be that in fact,
the assignment of reserved memory regions is done by Linux on device basis. A single
device shall not have multiple active reserved memory regions. To overcome this, the
driver declares a pseudo-devices for every memory bank (or “zone”) defined, and the
reservation is instantiated on its behalf *.

5.4.2 Controller and Channel Selection

The selection of the hardware resource that will perform a DMA transaction is done
with the help of the DT. Let us recall the accelerator slot declaration, listing 4.10 at
section 4.5.1:

*The technique was exemplified by the Samsung Exynos Multi-Format Codec to support
parallel memory access for left and right audio channel. See s5p_mfc_alloc_memdev() at
drivers/media/platform/s5p-mfc/s5p_mfc.c on recent kernels (4.8+).

5.4. PERFORMING DMA FROM THE KERNEL 85

pb0: pblock@0 {

compatible = "tuc,pblock";

core = <&zcore16_0>;

transport = <&dma0>;

};

Figure 5.4: Reconfigurable partition definition

We see that an accelerator slot may be served by only a specific DMA controller, de-
fined with the transport property. This is logical, as we chose to dedicate one DMA
controller for each accelerator. The dma0 is a phandle, that is, a reference to another
DT leaf. If we dereference it, we will obtain the DMA client definition, which is what
dma_request_channel() needs to know. Let us recall however, that the DMA client
definition is not the actual hardware definition. It just states our intent to use the hard-
ware, which is pointed by the DMA client description.

5.4.3 Termination of a DMA Transaction

The AXI DMA offers two ways to signal the completion of a DMA transaction. One
may poll its S2MM_DMASR, the receive channel status register, to find out if the channel
has reached an idle state. Additionally, the DMA controller has two interrupt outputs,
one for each channel, which we have driven to the interrupt inputs of the Zynq APU.
The standard procedure would be to wait for an interrupt on the S2MM channel, and
when received, check the status register for a possible error condition.

Fortunately, these are handled by the Xilinx back-end driver which is hooked at the
DMAEngine API. The completion notification functionality is provided by the Linux
Asynchronous Transfer API, or simply “async_tx API”. Technically, this API is a client
to the DMA Engine API, however it is now integrated with it.

The async_tx API is frequently used with the “completions”
synchronization mechanism. As soon as a DMA transaction is is-
sued using dma_async_issue_pending(), the programmer calls
wait_for_completion_timeout() which will block until either a complete()

is called or the timer has expired. Completions are implemented using work queues,
which in turn are implemented with semaphores, but the indirect use is more readable
and less error prone.

86 CHAPTER 5. SOFTWARE FRAMEWORK

But who is going to call complete()? The async_tx API has a transaction descrip-
tor, which we get when we call dmaengine_prep_slave_single(). This descriptor
has a field named callback, a pointer to a function that is executed when the transac-
tion is complete. This is an ideal place to call the complete(), waking up the blocked
kernel thread.

When code flow is resumed, the programmer may check two conditions: If the
timer has expired and if the DMA controller has reported an error. The latter is re-
trieved by dmaengine_tx_status().

5.5 Zero-Copy Transfers

Traditionally, a DMA transfer between a device and a user application was done
through bounce buffers. A bounce buffer is an intermediate memory buffer that re-
sides in kernel spacewhere all data are temporarily stored before being sent to the device
or the userland. This technique arose for several reasons. Some older buses or devices
might not offer a sufficiently large DMA’able address space. Some 32-bit architectures
offer the notion of highmemory, where not all physical address spacemay bemapped at
the same time, a propterty that is a requirement for DMA. The difficulty of allocating
large physically contiguous memory contributed to the problem. And finally, it is also
the simplest way of dealing with protected memory.

The use of intermediate buffers has three strong drawbacks: The increased latency,
the decreased bandwidth and the doubling ofmemory footprint. The first issuemay be
alleviated by using multiple buffering, but it does not help the other two. The advent
of IO-intensive peripherals like the GPUs necessitated a solution to this bottleneck.

In our target systemswe have all the hardware support we need to avoid any buffer-
ing. TheAXIDMA IP core can be configured to support the full address space of both
Zynq-7000 (32 bit) and UltraScale+ (40 bits). Neither the ARM A9 cores in the for-
mer nor the A53 ones in the latter support Large Physical Address Extensions (LPAE),
ARM’s implementation of high memory. At the software front, the support of the
Open Firmware’sDevice Tree and the creation of ContiguousMemoryAllocator, elim-
inated any remaining software obstacles.

The support for zero-copyDMAtransfers could be incarnated in two forms. Either
bymapping the user memory to the kernel address space or bymapping a kernel buffer

5.6. SECURITY AND ERROR HANDLING 87

to the calling process’ virtual address space. The former is already there, as the installed
memory in both platforms is small enough compared to the address space so it is fully
and permanently mapped as the kernel’s linear address space. However, userspace allo-
cations are not physically contiguous and the overhead of working around this through
the use of scatterlists is not worth the effort. Conversely, mapping a kernel buffer to the
userspace is a straightforward process.

The allocation is done in two steps. First, the user applicationwill inform the kernel
about its desire to acquire memory buffers. The kernel will attempt to make a reserva-
tion from thememory allocator and report the result. If successful, the application will
issue a mmap() system call for each buffer. The kernel will create a coherent mapping of
the buffer it previously created to the virtual space of the calling process and hand over
the address.

The mapping is done with dma_mmap_coherent() and not directly by
remap_pfn_range(). This is because before performing the actual remapping,
the kernel must set the protection bits of all pages to non-cacheable, so the new
mapping will also be coherent. Recall that we initially reserved the memory from the
system by dma_alloc_coherent() for the exact same reason.

5.6 Security and Error Handling

A hardware fault may reduce the system’s functionality, i.e. a certain accelerator slot
may become inoperable, or even make it fail completely. A proper failure path was
established in ordrer to roll back any half-done operations. The Managed Device Re-
source (devres) was used, a framework that guarantees that any reserved resource can
be later reclaimed. Overall, it is very likely that normal operation can be restored, in the
worst case by unloading and re-inserting the kernel module.

Nonetheless, there is at least one knownweakness: If the hardware designer has not
implemented the AXI-Lite control interface of an accelerator, a data abort will ocurr at
the first configuration attempt andwill cause the kernel to hang. It must be added that,
in case the hardware design does not meet timing, the AMBA bus may hang, causing
thewhole system (PL and PS) to become inoperable. There is nothing that can be done
to counter it.

A lot of effort is put to make the system foolproof, in the sense that it will not

88 CHAPTER 5. SOFTWARE FRAMEWORK

fail by a user mistake. Furthermore, the system offers basic security and isolation to
prevent leakage of data between user tasks. However, the system does not implement
user quotas and therefore it is vulnerable to a DoS attack. A malevolent non-root user
can create a large number of small tasks thatwill eventually deplete all reservedmemory,
denying access to any newuser until the system is restarted by removing and re-inserting
the kernel module. In amore simple case, a greedy user is able to abuse the task priority
mechanism to dominate processing power.

5.7 Configuring the Accelerators

Configuring the accelerators is quite simple. By using the AXI-Lite, the accelerator reg-
isters are all mapped to the APU address space. Once we create a virtual mapping, we
can use load/store instructions to query/modify them.

At the listing 5.4 of the previous section, we say how an accelerator slot is defined.
There, the property “core” was defined. This is a reference to the accelerator instance.
The record for the accelerator is contained in the automatically generated part of DT,
using the hardware information file (.hdf) extracted from the static workflow. How-
ever, since the partial reconfiguration workflow requires the interface to remain con-
sistent, the record would be valid for all accelerator variants. The record would be like
this:

zcore16_0: zcore64@43c00000 {

compatible = "xlnx,zcore16-3.7";

reg = <0x43c00000 0x10000>;

xlnx,s-axi-control-addr-width = <0x6>;

xlnx,s-axi-control-data-width = <0x20>;

};

Figure 5.5: Accelerator instance definition.

The value of interest is the reg property. The first part is the base of the address
space and the second is its length. The internal organization of this address space is
described in section 6.2. We see that the control and status signals are at stable posi-
tions of the control register at the offset 0x00. The accelerator-specific registers start at
0x10 with a step of 8 bytes. However, the argument count and the data represented are

5.8. THE MEMORY ALLOCATOR 89

strictly accelerator variant specific and cannot be retrieved by neither the hardware nor
the kernel module as they have no prior knowledge of the logic they will execute. This
informationmust be passed at runtime, when the end user registers the accelerator core
to the system.

To sum up, the communication to the accelerator follows these steps:

1. Initialize the control/status register (CSR, 0x00) to zero. This de-asserts
ap_start and auto_restart.

2. Read back the CSR. The ap_idle should be asserted. Abort if not.

3. Write all the user arguments at the corresponding offsets.

4. Assert the ap_start of the CSR.

5. Issue the DMA transaction and wait for completion.

6. Read the CSR, ap_done should be asserted. Abort if not.

7. Read the accelerator return code at register with offset 0x38.

A final note would be that the programmer shall not use the pointer dereference
operator to access the registers. Instead, they must use the Linux kernel provided func-
tions ioread32() and iowrite32(). The functions are for I/Omemory and they will
disable write-combine and enforce the proper memory barriers.

5.8 The Memory Allocator

In section 5.4.1 we saw how a set of pre-defined memory regions can be reserved and
allocated to the kernelmodule. The allocation takes place only once duringmodule ini-
tialization and itsmanagement is passed to a custommemory allocatorwhich is charged
with fulfilling accelerator requests.

Although this functional segregation reduces memory efficiency as it prevents
CMA from lending unused memory to the buddy allocator, it offers multiple advan-
tages:

90 CHAPTER 5. SOFTWARE FRAMEWORK

1. Reduction of run-time latency, as the page frames are guaranteed to be unused,
no page migration is going to happen.

2. Elimination of uncertainty. Although the buddy allocator will not make any
borrowed page frame unmoveable, kernel code may freely do so.

3. Control of allocation range. In our system our memory resources are not re-
quired to be equal. Furthermore, they are not accessible by all accelerator slots
and if they do, they may not use a path of similar latency. To handle all this
heterogeniety, we need an allocator that is aware of the implemented hardware
details.

4. Flexibility. Although currently not implemented, itwouldbeuseful if the system
could re-balance thememory bank utilizationmigrating pages betweenmemory
resources. This can be donemuch easier if we have full control of all the available
space.

The allocator executes in two stages. At first, itwill attempt to find themost suitable
zones that fulfill all requirements for the transmit and receive buffer. After a selection
was made, it will attempt to reserve the requested amount of memory. Initially, the al-
locator was implemented using the genalloc subsystem. This subsystem is intended
for allocation of special-purposememory resources, typically from on-board SRAMor
OCMof embedded devices. It was a quick and easy implementation but the subsystem
was too restrictive for our purposes as it does not differentiate the memory zones and
their selection was only on a first-fit basis. The subsystemwas patched to allow custom
algorithms for zone selection and zone metadata were held at the kernel driver. How-
ever, it was an unclean solution that became difficult to maintain and extend. It was
decided that the first stage should be re-written to our needs while keeping its original
concept. The second stage that involves the per-zone bitmap manipulation continues
to use the genalloc library.

In figure 5.6we can see anoverviewof thememory allocator function. A reservation
always takes place in pairs: a transmit and a receive buffer, one of them can be of zero
size for a transmit-only or a receive-only function*. If the calling process already holds

*Note that this operation mode is not tested.

5.8. THE MEMORY ALLOCATOR 91

buffers, they will be deallocated. When allocating or de-allocating a buffer, the “popu-
larity” of the memory zone, a metric needed by the scheduler, is updated accordingly.
For brevity, both functions are not represented in the diagram. Initially, the allocator
will attempt to reserve the transmit buffer, and afterwards, the receive. If the latter fails,
it will try the allocation in the reverse order. This is because the scoring algorithm, in
critically lowmemory situations,may suggest amemory zone for onebuffer that renders
the other unplaceable due to external fragmentation. Reversing the order of allocation
may resolve this issue.

Figure 5.7 depicts the algorithm of the actual allocation. The inner loop scans the
list of memory zones and calculates a score metric. The default scoring algorithm is
given by:

score =
ZoneBandwidth · (MemoryAvailability/8 + Schedulability)

1 + ZoneOccupancy

where ZoneBandwidth is a designer-supplied memory zone parameter, defined
in the zone description in the DT. Although it was implemented to compensate for the
actual interconnect bandwith, it actually needsnot tomatch any literal hardware specifi-
cation– it is rather ameans for the designer to affect the desirability of onememory zone
versus the others. TheMemoryAvailability is the integral ratio of the memory zone
size to the requested memory amount while ZoneOccupancy represents the number
of clients that have a reservation on this memory zone, irrespectively of the amount of
memory allocated. These parameters aim to spread the memory utilization among the
zones, under the assumption that they are served by different interconnects, therefore
balancing the data traffic at the underlying hardware. The Schedulability represents
the scheduler freedom to place the task if this zone is chosen. It is quantified as the pop-
ulation count (i.e. the number of ones in a word) of theSchedulabilityMask, which
we will define as the AND product of the following three masks:

• Core Availability, that represents the bitstreams that are available to the kernel
driver for the specific core variant. In turn, this is a product of two factors:

– BitstreamAvailability, which refers to the physical availability of the bit-
streams on the storage medium.

92 CHAPTER 5. SOFTWARE FRAMEWORK

– Core Affinity, which refers to the system administrator’s decision to re-
strict a core variant placement to a set of accelerator slots. See the affinity
parameter of zdma_core_register(), section 5.2.1.

• Task Affinity, which is the client’s request to constrain the slots where their
task may run. See the affinity parameter of zdma_task_configure(), sec-
tion 5.2.2.

• Partition Affinity Mask, which refers to the physical interconnect constraints
that restrict core placement. It is determined by two factors:

– First Interconnect Path. Each memory zone has defined a reader and a
writer mask at their entry in the DT, defined by the interconnect architec-
ture. If we are allocating a transmit buffer we may select a slot from the
reader mask and, conversely, in receiver buffer we are constrained by the
writer mask.

– Second Interconnect Path. After we choose a memory zone for one di-
rection, our choice for the otherwill not only be constrained by the specific
direction’s mask, but by its intersectionwith the othermask. A core can be
scheduled only in a slot that can both read from the transmit buffer and
write to the receive buffer.

The score function will always return zero if either MemoryAvailability or
Schedulability are zero.

5.8. THE MEMORY ALLOCATOR 93

Start

TX size > 0 ?

allocate TX buffer

success?

RX size > 0 ?

allocate RX buffer

success?

Finish

yes

yes

yes

yes

no

no

TX size > 0 ?

free TX buffer

allocate RX buffer

success?

allocate TX buffer

success?

yes

no

yes

yes

Failure

no

no
no

free RX buffer no

no

Figure 5.6: Memory Allocator: Overview

94 CHAPTER 5. SOFTWARE FRAMEWORK

Start

For every memory zone

Failure

done

For every memory zone
excluding previously selected

Select Best Zone

Find contiguous pages

success?

Reserve pages

Finish

Calculate Zone Score

done

next

next

yes

no

Figure 5.7: Memory Allocator: Making a Reservation

5.9. THE SCHEDULER 95

5.9 The Scheduler

The system’s scheduler is charged with finding a suitable accelerator slot for a task wish-
ing to execute. The scheduler is completely dynamic; it will accept the queueing of
a task at anytime and possess no knowledge of future requests. The scheduler queue
is implented using the Concurrency Managed Workqueue API of the Linux kernel.
Using this API provides a safe and well-tested work queue implementation that auto-
matically handles synchronization and forward progress. Furthermore, the API makes
use of pre-allocated kernel worker threads, which eases memory pressure on resource
constrained environments.

The work queue is not strictly FIFO, although it can bemade so with trivial source
modifications*. When the user enqueues a task, it is placed in the work queue to be
processed asynchronously. A task execution includes the following steps, listed in order
of execution:

1. Call the scheduler to get an accelerator slot. The scheduler may instruct a slot
reconfiguration, therefore the call is possible to block for a few milliseconds but
will always return successfully.

2. Query, configure and start the accelerator.

3. Configure the transmit and receive channels for the new transaction.

4. Submit the transaction descriptors to the DMA Engine API.

5. Configure the completion notification (async_tx API).

6. Force issue of all pending DMA transactions.

7. Block waiting for completion (or timer expiry).

8. Check DMA return status.

9. Check the accelerator return value.

10. Release the accelerator slot.

*The creation of the work queue by alloc_workqueue() should enable the WQ_UNBOUND flag and
set the maximum active workers to 1.

96 CHAPTER 5. SOFTWARE FRAMEWORK

Depending the system load and work queue configuration, the kernel will wake up
a number of threads to process the work queue. Since this number is not predictable
(only upper bounded) the scheduler does not make any assumptions and take all nec-
essary synchronization measures to ensure atomicity and critical region locking. The
scheduler pseudocode is presented below, in algorithm listing 1.

We can see that an execution loop consists of two attempts to reserve a
slot, each passing a different bitmask as an argument. The bitmask repre-
sents the slots that ReserveSlot() is allowed to consider. The common term,
Task.EffectiveAffinity, represents the user defined task affinity further con-
strained by the interconnect restraints (see Task Affinity and Partition Affinity Mask
in section 5.8).

The first attempt used the additional mask CoreMask, which we construct by
placing a 1 wherever the already programmed core (Slot.Core) is the same with
the one the task intends to use (Task.Core). Essentially, this restricts the search
space only the slots that will not require reconfiguration. If the search is unsuccess-
ful, the second attempt will be with the Task.Core.Availability mask, i.e. all the
slots that have a bitstream available for this core variant, which after constrained by
Task.EffectiveAffinitywouldbe equal toSchedulabilityMask, i.e. all the pos-
sible legal slots for this task. Of course, thiswould require us to re-configure the slot and
suffer the corresponding time penalty.

The SelectSlot is actually a function pointer, and the selection algorithm can be
configured by the system administrator as we saw at the figure 5.2 at section 5.2.1. The
functions that implement the two calls are common, however the configurationoptions
are seperate since the context is a different and asmost are replacement algorithms, they
have no purpose in the first stage. A detailed list of algorithms implemented is given
below, of whomonly the first two are for the first stage selectionwhile all are offered for
second stage (victim) selection.

• Least Popular represents the slot where the smallest number of tasks can be
scheduled into. The systemmaintains a popularity counter for each slot and it is
calculated by counting the tasks forwhose theirSchedulabilityMask contains
that slot. A slot with low popularity is expected to not be claimed frequently as
is suitable for fewer tasks. In a way, it is a form of an a priori variant of LFU.

5.9. THE SCHEDULER 97

Being the least desirable is likened to being the “smallest” and by this analogy is
used by the Best-Fit configuration option of the first selection.

• First Fit / Available is the simplest algorithm, as it returns the first free and
suitable slot.

• Lowest Priority algorithm will return the slot with the lowest priority (least
important, therefore best victim).

• FIFOwill chose the oldest slot, counting from the time of reconfiguration. The
time ticks at every scheduler call.

• Least Recently Used is similar to FIFO, but counts from the last time it was
chosen by the scheduler.

• Least Frequently Used uses as a measure of period the ratio of the time since
the slot was last chosen over the “hit counter” which is incremented every time
it is chosen in the first stage, i.e. for re-use with no reconfiguration. The counter
is initialized to 1 for an empty (never configured) slot and to 2 during reconfigu-
ration – there is no persistence between reconfigurations.

98 CHAPTER 5. SOFTWARE FRAMEWORK

Algorithm 1 The Scheduler algorithm
1: procedure Scheduler(Task, AcceleratorSlots, Config)
2: for all Slot∈AcceleratorSlots do . needed by most replacement algo
3: if Slot.Core 6=∅ then
4: Slot.CreationAge +←− Slot.Core.Priority
5: Slot.AccessAge +←− Slot.Core.Priority
6: end if
7: end for
8:
9: repeat
10: CoreMask←0
11: for all Slot∈AcceleratorSlots do
12: if Slot.Core = Task.Core then . slot is already programmed
13: CoreMask |= Slot.id
14: end if
15: end for
16: SelectedSlot←ReserveSlot(CoreMask

andTask.EffectiveAffinity)
17: if SelectedSlot 6=∅ then
18: ifTryLock(SelectedSlot) then
19: Slot.HitCount++ . needed by LFU algo
20: break
21: else
22: SelectedSlot.State← ∅
23: end if
24: end if
25: SelectedSlot←ReserveSlot(Task.Core.Availability

andTask.EffectiveAffinity)
26: if SelectedSlot 6= ∅ andTryLock(SelectedSlot)=FALSE then
27: SelectedSlot← ∅
28: end if
29:
30: if SelectedSlot 6= ∅ then
31: Reconfigure(SelectedSlot, Task.Core)
32: else
33: YieldProcessor .wait for progress to be made
34: end if
35: until SelectedSlot 6= ∅
36:
37: SelectedSlot.AccessAge← 0
38: return SelectedSlot
39: end procedure

5.10. PARTIAL RECONFIGURATION 99

5.10 Partial Reconfiguration

The mechanism of performing FPGA configuration, partial or not, is undergoing ma-
jor restructuring as of the timeofwriting. There are twoFPGAprogramming interfaces
supported by Xilinx, none of them fully.

The older interface is devcfg. It is a Xilinx driver which implements a character de-
vice. The user may perform read/write operations to the appropritate device file from
userspace and a degree of configuration is possible through sysfs. For example, to per-
form partial reconfiguration from a Linux console, one should type

> echo 1 > /sys/class/xdevcfg/xdevcfg/device/is_partial_bitstream

> cat bitstream_file.bin > /dev/xdevcfg

> cat /sys/class/xdevcfg/xdevcfg/device/prog_done

1

Figure 5.8: Programming a partial bitstream to an FPGA from Linux console.

The driver will read the contents of the bitstream (only in .BIN format, the .BIT is
not supported) and will use the PCAP DMA to transfer it.

There is a critical design flawwith this programming interface. It is a very basic and
purpose-built driver, made to address the need of programming the FPGA from the
command line, and nothing more. It offers no kernel API at all and therefore it cannot
be integrated with any Linux subsystem. Of course, it is Xilinx-specific and completely
incompatible with any other vendor.

As bothmajor FPGAmanufacturers, Xilinx andAltera/Intel offer FPGASoCs and
are trying hard to penetrate the supercomputing sector, the need of a complete and
standardized interface between an FPGA and the Linux kernel became aparent.

In 2015, a novel approach was presented at ELC [27], the “FPGAManager Frame-
work”. The framework abstracts the FPGA to the Linux kernel, offering a stable API
which is vendor andhardware agnostic. However, the FPGAManager is not just a hook
that FPGA vendors attach a driver function; it is integrated to the kernel and it makes
it aware of the FPGA presents. It abstracts the notion of the FPGA, the reconfigurable
partition, the isolation logic. Furthermore, a parallell development in DT support, the
Device Tree Overlay (DTO)s [28], enabled the dynamic modification* of a live FDT

* The Linux kernel already supported dynamic FDT update, albeit in a very basic level and used

100 CHAPTER 5. SOFTWARE FRAMEWORK

and the automatic reaction of the Linux bus driver model (i.e. associated device prob-
ing, removal, etc). Although thework primarily targeted the BeagleBone and its remov-
able extension boards, it permitted the FPGAManager to provide automated handling
of FPGA state change, e.g. partition isolation or driver probing/removal upon full or
partial reconfiguration.

The FPGA Manager was admitted to the mainline kernel recently (2016, v4.4)
whereasDTOswere accepted a bit earlier (2015, v3.19). At the time ofwriting, themost
recent developments may be found at [29]. Support for Intel and Xilinx SoC FPGAs
is here, with ZynqMP not yet mainlined. PCIe attached FPGAs are not yet supported
but support is worked on. At the vendor front, both Altera/Intel and Xilinx support
the framework. Xilinx has deprecated the devcfg and has completely removed it from
its latest kernel. Xilinx offers an FPGA Manager backend driver for both Zynq and
ZynqMP, albeit the driver lacks partial reconfiguration functionality for ZynqMP as it
is not yet supported by the Xilfgpa library which implements FPGA programming
through PCAP. Although it is expected to change soon, currently it seems there is no
way to perform partial reconfiguration in ZynqMP from the PS under either Linux or
bare-metal. This blocks our porting effort for this platform.

Xilinx proposed devcfg for partial reconfiguration in Zynq and it is this interface
it uses on both partial reconfiguration application notes [30] and [31]. Combinedwith
the at that time lack of proper understanding of FPGAManager’s nature, lead us to use
devcfg, a choice that only much later became apparent that it was a mistake.

5.10.1 Using the devcfg Interface

First of all, using devcfg means that the kernel will not be aware of the presence of
the FPGA. That could be a significant problem if any bus master peripherals resided in
the reconfigurable partition as we would need to find a way to properly initialize and
de-initialize their drivers externally. Thankfully this was not the case, as the accelerator
that resides inside the reconfigurable partition is a slave to its correspondingAXIDMA,
which we take care to manipulate properly in our driver.

The major issue with devcfg is that it has no kernel API at all. Even worse, its

only in very specific corner cases. It does not offer any advanced feature that DTO offer; modifications
are not atomic, cannot be reverted and the bus driver model does not react to the changes.

5.10. PARTIAL RECONFIGURATION 101

structure does notpermit an easymodification for external linkage, as everything is done
within the implementation of read() file operation.

Accessing a file from kernel space is technically possible but it is a practice always
frowned upon. Furthermore, the reconfiguration time could be affected. If the filesys-
tem resides in an SD card, the file access time would dominate the reconfiguration pro-
cess. File caching would help, but performance would be unpredictable.

The idea of a cooperating userland library was considered, but was not realized as,
despite it is a safer approach, it is complicated and it still suffers the same, in fact worse,
performance penalty.

In order to bypass this obstacle, a not so clean workaround was employed. The
devcfgdriver implementationof theread() systemcallwas brokendown to its pream-
ble (accessing the file data), itsmain body (perfoming the reconfiguration) and epilogue
(clean up), and moved the main body as an independent function with external link-
age. Our kernel driver creates the data structures expected by the reconfiguration part
and calls it directly. The reconfiguration part is still callable by the original system call
implementation, therefore the devcfg is still reachable from userspace.

This approach has an advantage in performance. First, no file I/O is done at re-
configuration time; actually the whole file system and the Linux VFS layers are circum-
vented. Second, it was observed thatwhen accessed fromuserspace, file readswere done
in 4096-byte steps and each caused a PCAP DMA transaction. This means that for a
half-megabyte partial bitstream, there need to be done 128 DMA transactions. As we
were not restricted by such a limit, our driver performs a single big DMA transaction.

To demonstrate the reconfiguration perfomance, we measured the reconfigura-
tion time of our driver. Interestingly, reconfiguration throughput was usually just
marginally less thanhalf ofmaximum theoretical, which is 400MB/s for non-encrypted
bitstreams. Infrequently, the attained throughput was further halved. A summary is
shown in table 5.9.

102 CHAPTER 5. SOFTWARE FRAMEWORK

Throughput Occurrence
(MB/s) (%)

≥200 0.0
199 to 200 88.0
85 to 115 10.3
other 1.7

Figure 5.9: P.R. performance of our system.

The overall meanwas 188.36MB/s. Themeasurementwas taken from a sample size
of 40K reconfigurations of almost evenly distributed accelerator slots, using the sym-
metrical 6-core design. To make a comparison, we also measured the reconfiguration
time from userspace, copying the partial bitstreams from a RAM-based filesystem to
/dev/xdevcfg. For a sample size of 10K iterations per core slot, for two module vari-
ants, wemeasured an average of 31.58 to 31.80MB/s for the five 5̃30KB sized bitstreams,
and 33.88MB/s for the larger 6̃82KBone. A speedup of 6xwas actuallymore thanwhat
was expected.

Chapter 6

Application and Evaluation

In order to demonstrate and evaluate the proposed system, an example application was
created. The chosen fieldwas digital image processing, and a number of common filters
were implemented in Vivado HLS to be used as accelerators.

VivadoHLS is an attempt fromXilinx to use a software language to describe hard-
ware. It accepts a subset of C/C++ and produces HDL code, that can be synthesized
with the existing synthesis tools.

The advantage of this approach is that it a allows a very fast production of a work-
ing prototype, in order to assess the feasibility of an idea. Since the code describes an
algorithm function and not its implementation, design exploration can be automated.

6.1 Accelerator Description

In image processing, from computational aspect, there are two main categories of fil-
ters. The first applies a transformation at pixel level. Using a mathematical formula or
a look-up table, it maps one pixel value to another irrespectively of any other factor.
The second category is spatial, in the sense that the new pixel value does not depend
only on its old value, but also on its neighbors. To quantify this dependency, a “mask”
or “kernel” is created, which is usually an odd-dimension square (or less often, rect-
angular) matrix whose each value represents a contribution weight. The kernel will
scan the whole image pixel after pixel, and for each pixel it will calculate the sum of the
products of the kernel’s weights and the corresponding pixel values. This mathematical

103

104 CHAPTER 6. APPLICATION AND EVALUATION

procedure is called “two-dimensional discrete convolution” and is symbolized with an
asterisk. To summarize,

p′(x, y) = f [p(x, y)]

(a) Pixel transformation

p′(x, y) =

M/2∑
m=−M/2

N/2∑
n=−N/2

hm,n · p(x−m, y − n)

(b) 2D Filtering

Convolution has a very interesting property: It is corresponds to element-wisemul-
tiplication in the frequency domain. Therefore, we could calculate a discrete Fourier
transform our image and our kernel, after padding the latter to the size of the former,
multiply the transformed images, and apply the inverse discrete Fourier transform to
return to spatial domain. In simpler words,

p′ = IDFT {DFT{h} ·DFT{p}}

In respect to filter size, the lattermethodhas a per pixel complexity ofO(1), whereas
the former hasO(n ·m). As crossing the spatial and frequency domains has a computa-
tional cost, the latter method is cheaper for smallm,n. For CPUs, the OpenCV library
uses the kernel dimension of 11x11 as the turning point.

In our work, we use only 3x3 and 5x5 kernels. However, the principal deciding
factor is that the former method has an obvious implementation in a streaming envi-
ronment with no random memory access capability like ours. A line buffer that keeps
the last n lines is sufficient*. For a 1080p and a 5x5 kernel, this translates to a BRAM
usage of around 42kibits or 3 BRAM18 instances, which is perfectly affordable.

It should be noted that this method normally requires some special treatment of
the border pixels, as the convolution kernel will attempt to access pixels outside the
image. Several techniques exist, from padding with zeros, mirroring the edges, etc. For
simplicity shake, we do not take care of this. As a consequence, a thin line of undefined
contents will be visible at the upper and the right border.

For pixel transformations, an actual computation was used instead of look-up ta-
bles. This is because the transformations are either trivial (negative, threshold) or user

*Theoretically, only an−1 line buffer is necessary but the implementationwould bemore complex.

6.1. ACCELERATOR DESCRIPTION 105

(a) loopback (b) contrast (contrast -32, brightness +32)

(c) negative (d) threshold, th=127

Figure 6.2: Pixel Transformations. Test image is in public domain.

configurable (contrast) and it is impractical to create table entries for every possible user
choice.

6.1.1 Trivial Pixel Transformations

In total, there are three pixel transformation accelerators:

• loopback: p′(x, y) = p(x, y) – A dummy accelerator that justs returns the in-
put image. It is used for debugging and has no actual use.

• negative: p′(x, y) = 255−p(x, y) – It returns the negative of the input image.

• threshold: p′(x, y) =

{
255, p(x, y) ≥ th

0, p(x, y) < th
– It replaces all pixel values

above a certain threshold to maximum (255 for 8 bit depth) and all others to
minimum (zero). Essentially, it transforms a greyscale image to a black andwhite.

106 CHAPTER 6. APPLICATION AND EVALUATION

(a) gauss (b) sharpen

(c) emboss (d) outline

(e) sobel (original kernel) (f) sobel (Scharr kernel)

Figure 6.3: Two-dimensional Filtering Kernels

None of this accelerators posed any difficulty to implementation.

6.1. ACCELERATOR DESCRIPTION 107

6.1.2 Contrast and Brightness Transformations

The “contrast” accelerator adjusts the contrast and the brightness of the image. It uses
the following equation:

α = 259 · (c+ 255)/ [255 · (259− c)]

β = b+ 128

p′ = α · (p− 128) + β

As it can be seen, it uses both multiplication and division. An attempt to imple-
ment this transformwith fixed point arithmetic was fruitless, as the accelerator was not
placeable. The formula was simplified, with some precision loss, to ease the computa-
tion.

α = [256 · (c+ 256)] /(256− c)

β = b+ 128

p′ = [α · (p− 128) + β] /256 + β

This simplification allowed the use of integer arithmetic, while multiplication and
division by 256 were done with shift operations. This version is placeable, however it is
very sensitive in routing. Changing the width ofα and β by a couple of bits may render
the accelerator from achieving timing closure to fail with unrouted nets. Reducing b
and c to byte sized operands cause the simplification of the divider from 32b to 8b,
which reduced core LUT6 utilization by more than 30%, ensuring successful routing
and timing closure.

However, despite that a pblock LUT6 utilization of only 50%was achieved for the
accelerator core count oriented design, this core remained very sensitive at routing with
respect to the partition pins selection. For this reason, it was chosen to implement the
initial configuration, despite the presence of much bigger cores, like the Gaussian Blur
accelerator which reaches an 80% utilization.

6.1.3 The Sharpen, Emboss and Outline Filters

These three accelerators are grouped together as they all use a 3x3 kernel, the compu-
tation was quite straightforward and implementation was easy. The “sharpen” filter,

108 CHAPTER 6. APPLICATION AND EVALUATION

as the name suggests, is used for sharpening the image. It is quite often used at low in-
tensity for improving the aesthetic result of photographs or for compensating excessive
blurrness due to out-of-focus errors, albeit with moderate results. The “emboss” ker-
nel is used to increase the sense of depth in an image. The “outline” kernel is a simple
method of edge detection, used in computer vision applications.

 0 −1 0
−1 5 −1
0 −1 0

(a) Sharpen

 −1 −1 −1−1 8 −1
−1 −1 −1

(b) Outline

 −2 −1 0
−1 1 1
0 1 2

(c) Emboss

6.1.4 The Sobel/Scharr Filter

The Sobel filter is a filter used to emphasize local pixel differences, for edge detection
in computer vision. The filter uses two 3x3 kernels, one for horizontal difference and
one for vertical. Essentially, there are two 2Dconvolutions taking place concurrently on
the same dataset. The two convolution results produced for every pixel are combined
to form the output pixel. After the original kernel by Sobel and Feldman, there were
subsequent attempts to optimize its properties. A common variant, by Scharr, is also
implemented within the same accelerator and is user selectable at run-time.

hx =

 1 0 −1
2 0 −2
1 0 −1

(a) Horizontal Difference Filter

hy =

 1 2 1
0 0 0
−1 −2 −1

(b) Vertical Difference Filter

Figure 6.5: The Sobel kernel

hx =

 3 0 −3
10 0 −10
3 0 −3

(a) Horizontal Difference Filter

hy =

 3 10 3
0 0 0
−3 −10 −3

(b) Vertical Difference Filter

Figure 6.6: The Scharr kernel

6.1. ACCELERATOR DESCRIPTION 109

The final pixel that represents the gradient at that spatial point is calculated by
combing p′x and p′y as:

p′ =
√

p′2
x + p′2

y ≈ |p′x|+ |p′y|

The approximation above is quite frequently used even for software implementa-
tions. It is also used in this accelerator of course, as the space of 800 LUT6 would not
permit the implementation of square root calculation. The visual difference is negligi-
ble.

The implementation was made possible only by forcing the HLS to use DSP48
tiles to perform themultiplication. For this reason, it is compatible only with the “big”
reconfigurable partitions of the 16-accelerator design.

6.1.5 The Gaussian Blur Filter

The Gaussian Blur filter is an image smoothing filter. It is used for various purposes,
mostly for noise suppression. The kernel derives from the two-dimensional Gaussian
function:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2

The σ is the standard deviation of the Gaussian distribution and effectively con-
trols the intensity of the blurring. For our accelerator, we attempted to implement the
following kernel:

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

Note that the sum of all weights are 256, and the final pixel will be divided by this

value to avoid saturation and maintain image brightness.
As in Sobel, the use ofDSP48 tileswere essential in order to fit the accelerator in 800

LUT6s. The initial attempts were unsuccessful, until it was discovered by pure chance

110 CHAPTER 6. APPLICATION AND EVALUATION

that the following kernel is implementable to our requirements:
1 4 6 4 1

4 16 25 16 4

6 25 32 25 6

4 16 25 16 4

1 4 6 4 1

Note that the central termwas reduced to 32, and the difference of four was spread

equally to its four perpendicular neighbors. Without any other change in source code
or synthesizer settings, the estimated utilization was reduced by 11% for LUTs and 9%
for flip-flops, most probably due to increased symmetry.

6.1.6 Resource Utilization and Latency

An effort is made to quantify the resource utilization of the acceleration cores, as well
as to obtain a primary performance indicator. In table 6.7 we can see the results coming
from two sources: The latency is an estimation which is provided after compiling the
HLS code to HDL. The resource utilization may be also provided post-compilation,
however it appears the estimation is highly inaccurate and a post-synthesis result is pre-
sented, after exporting the core to a .dcp file. A comparison between resource utiliza-
tion and expected latency is displayed in figure 6.8. As we see, accelerator size increases
almost linearly with data width whereas latency gain is linear only at pixel transforma-
tions. On accelerators performing 2D convolution the gain decreases with the increase
of width. This can be attributed to a sub-optimal BRAM access by the code HLS gen-
erates.

6.1. ACCELERATOR DESCRIPTION 111

loo
pb

ac
k

ne
ga
tiv

e

th
res

ho
ld

co
nt
ras

t

sh
arp

en

em
bo

ss

ou
tli
ne

ga
us
s

ga
us
s/d

sp

so
be

l

so
be

l/d
sp

8
bi
t

LUT 125 110 111 288 300 326 346 587 466 454 635
FF 142 114 111 303 290 357 394 553 502 492 628
DSP 0 0 0 0 0 0 0 4 8 0 2
BRAM 0 0 0 0 3 3 3 5 5 3 3
Latency 2.07 2.07 2.07 2.07 4.15 8.29 8.29 6.22 6.22 4.15 4.15

16
bi
t

LUT 147 122 136 420 423 429 507 887 770 706 1048
FF 182 154 137 398 386 443 578 942 741 765 970
DSP 0 0 0 0 0 0 0 8 16 0 4
BRAM 0 0 0 0 3 3 3 5 5 3 3
Latency 1.04 1.04 1.04 1.04 3.11 6.22 6.22 4.15 4.15 3.11 3.11

32
bi
t

LUT 171 146 166 680 598 662 722 1600 1339 1268 1968
FF 262 234 189 561 620 702 873 1658 1267 1294 1950
DSP 0 0 0 0 0 0 0 12 28 0 8
BRAM 0 0 0 0 3 3 3 5 5 3 3
Latency 0.52 0.52 0.52 0.52 2.59 5.18 5.18 3.11 3.11 2.59 2.59

64
bi
t

LUT 231 206 238 1206 1057 1235 1362 3175 2541 2291 3784
FF 422 394 293 907 1099 1342 1608 3168 2585 2413 3559
DSP 0 0 0 0 0 0 0 20 52 0 16
BRAM 0 0 0 0 3 3 3 5 5 3 3
Latency 0.26 0.26 0.26 0.26 2.33 4.66 4.66 2.59 2.59 2.33 2.33

Figure 6.7: Accelerator resource utilization (post-synthesis) and latency (HLS estimation). Target
FPGA was Z-7020 at 7.5ns. BRAM is in 18k units and latency is measured in millions of cycles.
The “/dsp” suffix denotes that the integer multiplication was assigned manually to a DSP48 core.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

8 16 32 64

LU
T

 u
til

iz
at

io
n

C
or

e
La

te
nc

y

Accelerator Data Width

loopback
negative

threshold
contrast
sharpen
emboss

outline
gauss
sobel

Figure 6.8: Resource Utilization vs. Core Latency

112 CHAPTER 6. APPLICATION AND EVALUATION

6.2 Accelerator Interface

Each accelerator connects to the system via two pathways – one AXI-Stream that ex-
changes data with the AXI DMA using two channels, a read for incoming data and a
write for outgoing, and one AXI-Lite for status and control. As already discussed in
section 3.6.1, the reconfigurable module must remain consistent throughout all imple-
mentations. In Vivado HLS this translates to:

• The width of the AXI-Stream interface must remain consistent throughout re-
configurable modules.

• All reconfigurable modules will have exactly one read and one write channel.

• The address width of AXI-Lite interface must remain consistent for all reconfig-
urable modules.

• The implementation tools expect themodule name to be consistent throughout
all reconfigurable module implementations.

Thewidth of the data stream is themost important design choice for the accelerator
performance. Our system does not care for the value and the kernel driver does not
see it; still, it must remain consistent throughout all reconfigurable module variants of
each reconfigurable partition. The reconfigurable partitions themselves however, do
not need to match each other.

In our application, we made the accelerator width a user configurable parameter.
The script that builds the HLSmodules (see appendix B.1) will generate a C header file
that is included by all HLS C++ source files and contains the appropriate definitions to
allow a 8b, 16, 32b or 64b accelerator width. Higherwidths are possible butwill require
source modifications.

The accelerator will take advantage of wider stream by loading two, four or eight
pixel at once, and process them in parallel. Whether the HLS synthesizer does this effi-
ciently and if performance scales linearly, it will have to be determined by benchmark-
ing.

Regarding the number of channels, it was decided to be two. This was an obvious
choice, given the exact mapping with AXI DMA channels – one receive, one trasmit.

6.2. ACCELERATOR INTERFACE 113

int CORE_NAME(axi_stream_t& src, axi_stream_t& dst, int brightness, int contrast)

{

#pragma HLS INTERFACE axis port=src bundle=INPUT_STREAM

#pragma HLS INTERFACE axis port=dst bundle=OUTPUT_STREAM

#ifdef CLK_AXILITE

pragma HLS INTERFACE s_axilite clock=axi_lite_clk port=brightness bundle=

control offset=0x10

pragma HLS INTERFACE s_axilite clock=axi_lite_clk port=contrast bundle=control

offset=0x18

pragma HLS INTERFACE s_axilite clock=axi_lite_clk port=return bundle=control

offset=0x38

#else

pragma HLS INTERFACE s_axilite port=brightness bundle=control offset=0x10

pragma HLS INTERFACE s_axilite port=contrast bundle=control offset=0x18

pragma HLS INTERFACE s_axilite port=return bundle=control offset=0x38

#endif

#pragma HLS INTERFACE ap_stable port=brightness

#pragma HLS INTERFACE ap_stable port=contrast

/* module implementation */

}

Figure 6.9: An HLS reconfigurable module function declaration.

However, it is still the simplest choice and a lot more sophisticated architectures can be
built. For a discussion on this, see section 7.2.3.

As for the AXI-Lite channel, its width is strictly 32 bits, as defined by the protocol.
However, the address width is variable and depends on the addressable space of the ac-
celerator. This is decided indirectly by themapping of the accelerator input and output
variables.

In order to demonstrate how all this is done, in listing 6.9, a reconfigurable module
function declaration is displayed, among with its HLS directives.

It is an example from the “contrast” accelerator. The first thing to notice is that
the function name does not mention the reconfigurable module’s variant and it is a
generated constant. Its contents are actually related to the “axi_stream_t” typewhich
is a user defined type. A few lines of code are worth a thousand words of comments:

/* generated.h */

#define CORE_NAME zcore16

typedef uint16_t axi_data_t;

/* ... */

114 CHAPTER 6. APPLICATION AND EVALUATION

/* common.h */

typedef ap_axiu<sizeof(axi_data_t)*8, 1, 1, 1> axi_elem_t;

typedef hls::stream<axi_elem_t> axi_stream_t;

/* ... */

The file “generated.h” is generated by the script shown in appendix B.1. The
“axi_data_t” is essentially our accelerator word size, and we see it is used to define
“axi_elem_t which describes the full AXI-Stream signal set. From left to right, it de-
fines the effective data (TDATA)width, the user-defined (TUSER)width, themaster/-
source identity (TID) and the slave/sink identity (TDEST). All quantities are in bits
and names in parenthesis express the standard’s nomenclature. The “axi_stream_t”
represents the AXI stream itself and it is a standard C++ IO stream. The implemented
accelerator functionality, i.e. the contrast and brightness adjustment, is not represented
in the function name as it will be the name of the reconfigurable module in design hi-
erarchy, not solely of this variant. All variants have to share the same name. However,
the wordwidth is represented – this is to allow the system to implement reconfigurable
partitions of varying sizes. However, no such an implementationwas done in thiswork.

Back to our listing, we can now discuss the AXI-Lite status/control port. Every
such an input must be mentioned in three places:

1. At function declaration. If the variable is an output, it must be declared as a
pointer.

2. At HLS INTERFACE s_axi_lite pragma, where each variable is defined as a
member of a specific AXI-Lite interface (“port” and “bundle” properties) and
is assigned an address (“offset” property). It is called an offset as its value repre-
sents the address of this variable in respect to the start of this AXI-Lite interface’s
address space.

3. AtHLS INTERFACE ap_stable. This forms an explicit promise onourpart that
the bus master will not modify the contents of these variables during module
execution.

It is the value of the “offset” property that actually defines the address width of
the AXI-Lite interface, i.e. the size of AWADDR for the write channel and ARADDR for the
read channel. Their size will be theminimum sufficient to accommodate themaximum

6.2. ACCELERATOR INTERFACE 115

offset among all memory mapped registers that represent the variables. The compiler
will not differentiate between read-only or write-only variables, so a safe way to impose
the width of both channels is to place the return variable at the end of the addressable
space. Here, by placing return at 0x38 (variables are aligned at 8 bytes boundaries) we
are defining a space of 0x00..0x3F,which corresponds to 6bits of addresswidth. Within
this address space, the first 16 bytes are reserved byHLS. The first accelerator argument
is placed at 0x10, and subsequent arguments at 8 bytes distance between them. This
conventionmay be altered but a header file (param.h) modification of the kernel driver
is necessary.

The property “clock” was made optional and it allows the AXI-Lite to be clocked
by a different source from the input and output streams. This is because generally AXI-
Lite slaves achieve lower frequency than AXI-Stream ones and it might be worthy to
explore if higher clock can be achieved by using separate clock domain.

Apart from the explicit memory mapped registers, some implicit are instantiated
that form the status and control protocol of the HLS core, the default signal set being
the ap_ctrl_hs. The programming sequence consists of the steps described in the
following list, and an example memory map is given in figure 6.10.

1. The signal ap_idle should be asserted, indicating the core is idling.

2. All memorymapped registers corresponding to core parametersmust be written
now.

3. The user asserts ap_start, commencing the execution. In response, the core
will de-assert ap_idle.

4. When all input is read, the ap_ready is asserted, and when all output is written,
the ap_done is also asserted. The return value may now be read.

5. The ap_idle is asserted, indicating that the core has finished execution and is
now idle.

116 CHAPTER 6. APPLICATION AND EVALUATION

au
to
_r
es
ta
rt

re
se
rv
ed

re
se
rv
ed

re
se
rv
ed

ap
_r
ea
dy

ap
_i
dl
e

ap
_d
on
e

ap
_s
ta
rt

831

Control/Status 0x00

Global Interrupt Enable
G

I

E

0x04

Core Interrupt Enable

r
e
a
d
y

d
o
n
e 0x08

Core Interrupt Status

r
e
a
d
y

d
o
n
eH
LS

re
se
rv
ed

0x0C

reserved brightness 0x10

reserved 0x14

reserved contrast 0x18

reserved 0x1C

unused
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

return 0x38

unused 0x3C

Figure 6.10: The “contrast” accelerator address space.

6.3 Evaluation

In this section we will try to quantify the performance of our system and measure the
effect of certain parameters on the achieved throughput.

The most basic test was to find out the effect of DMA transaction size on overall
performance. This is important so to figure howmuch of a compromise was to use the
AXI DMA inDirect Register mode, as we will how important is the time lost between
two consecutive transactions.

The test was performed for twomodule variants: the “loopback” which is themost
I/O intensive and the “gauss” which the least. As each test uses only one accelerator
variant, no partial reconfiguration will take place to pollute our results. We see in table
6.11 that the impact of the transaction size was mild; a load which is more than three

6.3. EVALUATION 117

times bigger yielded a gain of around 2%.

Throughput (MB/s)
size→ 600kiB 2025kiB
↓QD loopback sharpen loopback sharpen

1 1437.9 158.4 1547.3 159.5
2 1511.2 316.4 1571.9 319.0
3 1595.8 474.2 1598.6 478.4
4 2090.8 632.7 2103.0 637.8
5 2564.5 791.1 2606.5 797.2
6 3090.5 948.8 3134.8 956.7
7 3092.5 945.2 3127.6 958.4
8 3027.3 947.4 3131.3 958.7
9 3019.2 938.3 3124.6 957.7
10 3029.7 951.5 3130.0 958.8

Figure 6.11: The effect of DMA transaction size on performance. Test: 6-core design, 10K
iterations of each queue. QD: Queue depth, i.e. the number of concurrently executing tasks.

Next, we assess the effectiveness of our scheduler algorithms. As a load we make
equal use of all accelerator variants. We compare all replacement algorithms but the
“Priority” as it has only specific uses that do not apply here, and the test is repeated for
“First Fit” and “Best Fit” as the first-stage empty slot selection algorithm.

The results are shown in table 6.12. As for the 16-core design, the biggest surprise is
that the “First Fit” slot selection algorithm performs better than Best Fit. Among the
replacement algorithms, the “Least Popular” performed significantly better than any
other.

As a reminder, the “Least Popular” chooses its victim slot by finding which slot has
least probability to be selected by another currently registered task and therefore mini-
mizing the probability to cause a reconfiguration at a later time. It is identical to “Best
Fit”, which uses this probability as the fitness criterion. Conversely, “First Available”
and “First Fit” simply return the first suitable free slot. Interestingly, the algorithm that
is best for the first stage is the worst for the second stage, and vice versa.

All other algorithms are implementations of the generic replacement algorithms
mostly used in caching applications. They fail to perform as good, most probably be-
cause they lack the hardware awarness the “Least Popular” possesses – they are based
only the so far collected statistics.

118 CHAPTER 6. APPLICATION AND EVALUATION

Theoverall picture in 6-core design is different. Given that thedesignhomogeneous
andwedidnot alter the core or task affinitymask, the “popularity” criteriondegenerates
to something similar to first-fit, losing its advantage to other algorithms. Generally,
differences among all algorithms were not characteristic and they could be reversed at
another load.

Throughput (MB/s)
Algorithm Homogeneous 6-core Heterogeneous 16-core
↓2nd stage 1st stage→ First Fit Best Fit First Fit Best Fit

Least Popular 318.9 319.6 926.0 832.6
First Available 317.8 324.7 743.7 721.5
First In First Out 318.8 320.4 732.7 780.8
Least Recently Used 320.0 324.9 778.8 735.6
Least Frequently Used 311.3 313.6 787.6 749.5

Figure 6.12: The effect of scheduler algorithms on performance (QD=45).

Last but certainly not least, we will test how the application scales with the queue
depth, or in effect, with the number of slots. We use a single accelerator variant for
each test in different queue depths, and we repeat the proceedure for both 6-core and
the 16-core design. To remind, out of the 16 cores, only 10 are capable of holding a
linebuffer for 2D filters.

The results are displayed in figure 6.13. Looking at the 6-core design, the first to
observe is the significantly sub-linear increase of throughput with the number of active
slots for the pixel transformation accelerators. The culprit here is the single flatmemory
zone we chose to define. Despite that the design utilizes all four HP ports which see
two separate ports of the memory controller, this is not visible to the driver’s memory
allocator (see section 5.8). Therefore it assigns the next few tasks at address regions that
correspond to the same HP port, which is saturated at 2272MB/s (142MHz by 64b
per direction). The effect is not observed in 2D filter accelerators, as the cumulative
throughput of all slots running concurrently is not sufficient to saturate the port.

On the contrary, in 16-core design we segmented the memory address space to four
zones, one per HP port. As we saw in design architectural diagram in figure 4.2, the
memory controller ports are shared by the HP ports in pairs. For this reason, we pur-
posefully designed the interconnect so the reader of HP0 cannot be writer to HP1,

6.3. EVALUATION 119

which both share the same memory controller port. Thus, as it is seen in the results,
throughput scales perfectly linearly.

On 16-core design, the pixel transformation accelerators saturate quite early due
to the interconnect, as the Zynq ports are clocked lower and are configured to 32b.
Still, given the count of ports we used (all four HPs and both S_GPs), we expected
the saturation to happen later. Moreover, the ripple at higher queue depths cannot be
explained.

However, the 2D filter accelerators scale perfectly up to 10 slots, which is the num-
ber of slots that are capable of supporting them. Therefore, for these accelerators the
saturation comes from the computational resources and not the I/O.

Studying the saturation points of these two groups, we can conclude that the de-
sign of the 16-core systemwas not an optimal fit for our application. The group of pixel
transformation cores is eight times faster than of 2D filters, so unless the task count of
the former is overwhelmingly higher than of the latter, the 6 cores that cannot execute
2D filtering are severely underutilized. But even in the scenario that pixel transforma-
tion tasks are so many that these 6 cores are fully occupied, their performance would
be capped by our I/O capability before we even factor in the traffic from the other 10
cores.

Within the accelerator, we see that the throughput ratio of pixel transformations
to 2D filtering is set to 8-to-1 on 16-core design. However, this advantage fades away to
a mere 1.33-to-1 in the 6-core design. Apparently the BRAM is saturated by the 8-pixel
pipeline of the 6-core design, giving an advantage to the 2-pixel pipelined 16-core design
which has more 2D filtering capable slots by a 1.66-to-1 ratio.

Thus, in pixel transformation workloads, the 16-core design saturates at around 2.1
GB/s or 1700 fps whereas the 6-core saturates at 3.1GB/s or 2500 fps. Conversely, in
2D filtering the 16-core can reach 1250MB/s while the 6-core is limited at 1050MB/s.
As we observe from table 6.12, in a balanced scenario the performance of the 16-core
design is overall higher than of the 6-core design.

Concluding, if we were to chose a better architecture for our benchmark applica-
tion, it would be beneficial to sacrifice the 6 small core slots of the 16-core design in
favor of allowing larger slots for the remaining 10. On the other hand, we saw that
the 8-pixel pipeline of the 6-core design saturates the BRAM. The middle ground of a
32-bit (4-pixel pipeline) accelerator appears attractive. We can assume that the BRAM

120 CHAPTER 6. APPLICATION AND EVALUATION

will still saturate the 2D filter performance, but we should factor in our 16-core design
all interconnects are already 32-bit wide, as well as the memory-mapped section of the
AXI DMA controllers. If we convert our 16-bit accelerators to 32-bit, we would dou-
ble the resource consumption of the reconfigurable partitions themselves but not of the
static part. This is a rather modest price to pay, compared to the transition from 32b to
64b (or to 128b in ZynqMP) where all DMA controllers and interconnect need to be
upgraded to the new data width. Finally, the fewer accelerator slots might ease routing
and make possible to attain a slightly increased PL clock.

6.3. EVALUATION 121

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 2 3 4 5 6 7 8 9 10
 0

 350

 700

 1050

 1400

 1750

 2100

 2450

 2800

T
hr

ou
gh

pu
t (

M
B

/s
)

T
hr

ou
gh

pu
t (

fp
s)

Queue Depth

loopback
negative

threshold
contrast
sharpen
emboss

outline
gauss
sobel

(a) 6-core design

 0

 500

 1000

 1500

 2000

 2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

T
hr

ou
gh

pu
t (

M
B

/s
)

T
hr

ou
gh

pu
t (

fp
s)

Queue Depth

(b) 16-core design.

Figure 6.13: Accelerator performance scaling with queue depth increase. Upper line group consists
of pixel transformation accelerators whereas lower group is 2D filters. The line at the very bottom is
the gaussian blur filter (5x5 kernel). QD=45, iterations: 5k+, image frame size 600kiB (960x640x8b).

122 CHAPTER 6. APPLICATION AND EVALUATION

Chapter 7

Conclusion and Future Work

Wedeveloped a complete reconfigurable system, capable of providing hardware acceler-
ators on-demand to the end user. The system was designed with a server environment
in mind – that is, a capable GNU/Linux system performing random user tasks in an
unpredictable timing but of somewhat predictable nature, whose computational ker-
nel can be off-loaded to the FPGA. As such, it is capable of handling any dynamic load
within the system’s memory limits, with no pre-defined static schedule or any other
prior knowledge.

Usage scenarios may include a web server, which can use the FPGA to perform the
common encryption/decryption and compression/decompression tasks that are typi-
cal to such a workload. Our specific application could be made useful in a server that
performs image or other media processing over a vast number of user content. Fi-
nally, it could also find place in an interactive multimedia application, allowing high-
performance video editing or other media transformation.

The design of the system tried to cover many possible scenarios, including the need
of accelerators with a dedicated path to the memory, accelerators of different degree
of criticality, heterogeneous memory resources of different speed, etc. It is designed
right from the start with concurrent memory access in mind and it takes advantage of
the platform hardware capabilities for parallelization. Acknowledging the variety of
usage scenarios, several scheduling and accelerator replacement algorithms were imple-
mented. Additionally, the administrator may define an affinity mask of the accelerator
variants to the available slots, wheras the user may define a similar mask for their tasks.

123

124 CHAPTER 7. CONCLUSION AND FUTURE WORK

Thisway it is possible to enforce isolation, either for quality of service and predictability
or for security.

A system shared library is provided that abstracts all systemdetails, making it easy of
the application developer to use the system without any need of hardware knowledge.

The framework was successfully implemented in the Zynq-7000 based Zedboard
from AVNET. Two different architectures were realized in order to assess design pa-
rameters such as the interconnect architecture, the memory layout, the accelerator data
width and pipeline depth, etc.

A digital image processing application was implemented and used as a benchmark.
Certain interesting observations were made from which we can deduct the validity of
our design choices.

An attempt to port the system to the UltraScale+ based zcu102 was thwarted at
the software porting phase, as Xilinx had yet to provide required software support for
PartialReconfiguration on this device class. Nonetheless, the hardware designwas com-
plete, and this allowedus to assess the new architecture’s capabilities, including the com-
plete overhaul of partial reconfiguration support.

7.1 Challenges and Lessons Learned

The development of this systemwas not without unpredicted or underestimated prob-
lems. In this section we will try to discuss some of the noteworthy issues that arose
during development.

7.1.1 The Implementation Workflow

The first and foremost is our underestimation of the difficulty that arises with the hard-
ware implementation of such a system and of partial reconfiguration in general. A basic
working system to be used as a proof-of-concept is rather easy to implement. However,
as the clock frequency and the number of reconfigurable partitions rise, things change a
lot. A major issue is that there is no partition placer tool despite that proper size, shape
and placement is critical for attaining the highest perfomance. Thus, the work of the
placer had tobedonemanually. The effort of this endeavor increases exponentiallywith
the target clock. For example, our 16-core design could possibly be successfully routed

7.1. CHALLENGES AND LESSONS LEARNED 125

with the first attempt at 100MHz. Increasing the clock to 125MHz requiresmanyhours
or tweaking. In order to reach the final goal of 133MHz it required several days of ex-
perimentation with partition moving or swapping, changing tool settings, chosing the
correct initial configuration, finding per-variant optimal implementation settings, etc.
As performance difference proved to be minimal, it is a question if it was worth the
effort.

The partition sizing was a decision that if it was to be taken again, it would be taken
differently. In section 4.2.3 we discussed the sizing trade-offs. A factor not properly
weighed was the availability and capability of routing resources. Each partition comes
with a fixed cost which does not constitute only the LUTs of AXI DMA, but also the
wires that connect it, the interconnect crossbar, the wires that implement the control
interfaces of both the accelerator and the AXI DMA, as well as their own, seperate in-
terconnects. Routing can become difficult and at some point, it will necessitate a clock
frequency reduction.

7.1.2 The Tool Quality

An important issue proved to be the implementation tool maturity. The partial recon-
figuration TCL scripts that Xilinx offers are not optimized at all. They are not multi-
threaded even in cases it would be easy to do so, e.g. a parallel OOC synthesis synthesis
ofmodule variants or parallel implementation ofmodule variants. Somework could be
reused, e.g. the implementation of each variant needs carving out themodules of initial
configuration, and this is repeated for each variantwhen the carved configuration could
be saved and reused.

As of version 2017.2, the Vivado implementation tool support for UltraScale de-
vices appear to be immature. Partial reconfiguration frequently causes locking of special
resources (BRAM and DSP tiles) during initial configuration, causing the placement
failure of the next. This is irrespectively of the variant used for each configuration. The
issue was worked around by reshaping the affected partitions, but no golden rule could
be figured out for what consists a favorable shape, and no help could be gained from
Xilinx forums.

A final and very important issue is the tool speed. At the GUI front, designing
larger systems visually is virtually impossible. The slightest action causes a sequence

126 CHAPTER 7. CONCLUSION AND FUTURE WORK

of object property propagation which can be an excruciating for a large design. This
can manifest at some unexplainable ways, like refreshing the custom IP directory data
when the user changes the floorplanner’s color palette. The designer must not hesitate
to learn operating Vivado from the TCL console – the effort invested will pay out fast.

At the backend front, the workflow on ZynqMP target is sluggish in every possi-
ble way. Implementation is much more time consuming that the four-fold increase of
LUTcount betweenZ-7020 ofZedboard andXCZU9EGof zcu102 could justify. Even
marking a module as a black-box is considerably slower; a process that takes less than
a minute on Z-7020 would take more than an hour on XCZU9EG. A full partial re-
configuration synthesis, implementation, verification and bitstream generation would
need several hours atmost for the former but around aweek for the latter in a dualXeon
X5660.

Clearly, in any new project an UltraScale-class device should not be used for initial
development. It would be preferrable that first stages to be done in a 7-class device if
possible, and then switch to an UltraScale-class device when the design requires device-
specific development.

7.1.3 The Efficiency of HLS

Finally, the usefulness of the HLS tool should be reconsidered. The HLS was chosen
for accelerator implementation as it allows quick prototyping. The time from the initial
algorithm conception to a validated working bitstream can be more than an order of
magnitute less than of a traditional HDL workflow.

However, from that stage to the final optimized version is a completely different
story. The resource consumption and attained latency of HLS is difficult to control
and even more difficult to predict. As we saw at section 6.1.5, a minor chage of filter
values reduced overall LUT utilization by 11%.

Extreme caution should be paid to variable sizes as they dictate the inferred execu-
tion unit size – e.g. in contrast accelerator (see 6.1.2) we used int types to express the
brightness and contrast parameters, as from theprocessorweonly do32-bit load/stores.
This inadvertently later caused a 32-bit divider to be inferred when an 8-bit would suf-
fice. In many cases, when the bounds of the values a variable will receive in its lifetime
can be known at compile-time, HLS will trim the variable accordingly – a typical ex-

7.2. FUTURE WORK 127

ample is the index of a constant bounds loop. Integer promotion oftentimes may be
inconsistent. For example, if a product of two shorts (16 bits) is stored to a char (8
bits), an 8-bit multiplier will be inferred. However, if operands were ints (32 bits), a
32-bit multiplier would be inferred. Usually these discrepancies will be sortened out by
the synthesizer. Finally, the effect of setting the clock target can be odd. If HLS fails to
achieve the desired period, one could try an evenmore difficult target and theHLSmay
restructure the code to achieve the original, previously failed, target.

Tomake thingsworse, theHLS resource utilization and latency estimates should be
treated as randomly generated numbers. In order to confirm resource utilization, the
designer should export the compiled output to a synthesized device checkpoint. The
post-synthesis resource utilization report is far more precise. Regarding latency, num-
bersmay be deceptive. For example, in figure 6.13 we see that themeasured throughput
does not match the HLS latency estimation shown in table 6.7.

At the end of the day, the use of HLS was a regretful decision. The effort spent
to control resource utilization and latency was unexpectedly high and the result was
mediocre. It was viewed as a quick and easy solution to implement a simple test appli-
cation to evaluate our system but it proved to be neither easy, and certainly, nor quick.

7.2 Future Work

The are several opportunities to optimize or extend this work. They range from sim-
ple additions and improvements to revising significant architectural decisions. In this
section, we will discuss some of these ideas.

7.2.1 Integration with FPGAManager

We discussed FPGA Manager in section 5.10. It is imperative to replace the partial re-
configuration driver from devcfg for two main reasons:

• Portability: FPGAManager is a Linux kernel API and that offers hardware ab-
straction to FPGA manipulation. Using it, it will not only provide future sup-
port for ZynqMP, but it will allow porting the system to other architectures like
Microblaze or even to Altera/Intel SoCs.

128 CHAPTER 7. CONCLUSION AND FUTURE WORK

• Integration: Making Linux to be aware of the FPGA is a big step forward. We
already discussed the advantages of this framework but we should stress again
that this is not just an FPGAprogramming interface. As the frameworkmatures,
more and more FPGA related functionality will be added, obsoleting custom
and out-of-tree solutions.

If that reasoning does not sound compelling enough, we should add that Xilinx
has stopped development of devcfg and has completely removed it in its latest kernel
(v4.14).

7.2.2 Use of Advanced DMAModes

The AXI DMA IP core was used in Direct Register mode because it is the simplest so-
lution, not the most efficient. The drawback of this method is that there is a significant
time interval between one transaction completion and next transaction start, during
which the controller is idling.

The interrupt service latency shouldnot be blamed as it is usually at the 100μs range,
a value quite small compared to the transaction processing latency or the reconfigura-
tion time, both at the order of a milliseconds. The problem arises from the fact that we
do not immediately know what transaction is going to be processed afterwards. The
corresponding slot will be marked as free, and it will wait to be chosen at a later sched-
uler invocation. How long this will be, depends on the system load and how frequently
the Linux process scheduler is called, which is configurable.

Even if we manage to quantify and/or reduce it, we still need to analyze whether it
is avoidable. If the system includes many accelerators and few slots, it is highly prob-
able that the slot that has just finished will be reconfigured, which closes the door for
any optimization. On the contrary, if there is a good probability this slot will re-use
the same accelerator, it would be very beneficial if we could immediately schedule next
transaction.

The LinuxDMAEngine API supports scatterlists, an abstraction ofDMAScatter-
Gather. It is a software construct; an array of transaction descriptors that the API uses
the program the DMA controller, to avoid the unnecessary controller pauses. It does
not reqire hardware support, but if present, it will be taken advantage of. The AXI

7.2. FUTURE WORK 129

DMA ip core does support scatter-gather, but at a cost of an one-third increase of re-
source utilization (see table 3.4).

Regardless from whether it is beneficial in most situations, the driver should pro-
vide this possibility.

7.2.3 Rethinking the Accelerator - DMAC Relationship

Initially, the systemwas envisioned to be capable of supporting a handful of accelerator
slots, with four being the initial target. With that in mind, using one AXI DMA for
each accelerator slot was not an issue. An assumption that may still hold true for the
6-core design, but was first challenged at the 16-core design. When the capacity of the
XCZU9EG permitted the implementation of 63 accelerator slots, it cast a doubt on
whether 63 AXI DMA controllers were really necessary.

There are two reasons that drive us to object the current design:

1. An accelerator is not always capable of pulling an AXI beat per cycle. Our con-
volutional filters pull data once per 8 cycles, so theAXIDMA IP is forced towait
for 7 out of every 8 cycles. If we could time-share the DMA controller, we could
theoretically support 8 accelerators from a single DMA controller.

2. It is common that a single compuational task is consisted of multiple stages of
processing, each being represented as an accelerator core. Instead of pushing in
and out data from and to every accelerator, each accelerator could drive directly
the next stage. If we could do this, we would have another major gain: the data
streamwould flow directly within the PL realm, without reachingmainmemory
until the last link of the processing chain has finished. This would greatly reduce
latency and relieve the pressure on the memory controller.

For the first case, we can propose exploring Multi-Channel DMA operation. In
this configuration, a DMA controller can control multiple AXI streams from a single
interface, by time-sharing its resources. The streams can then be routed to their cor-
rect destination after setting the user AXI signal TDEST. The AXI DMA IP has this
capability and recently Xilinx released the AXI MCDMA IP core. The routing can be
performed using an AXI Stream Switch. Of course, both the mutli-channel support
and the routing take up FPGA resources. For the former, the table 3.4 can be advised,

130 CHAPTER 7. CONCLUSION AND FUTURE WORK

and as for the latter onemay refer to [32]. Despite the idea is to share aDMAcontroller
amongmultiple accelerators, the sameprinciple can alsobe aplied in casewewouldneed
multiple input or output streams for a single accelerator.

The second case ismore complex and the ideas behind itmay bematerialized in sev-
eral ways, depending the target application. The possible approach would be to chain
accelerator slots. It could be implemented either as a set of peers or as a big main core,
accompanied by smaller pre andpost processing cores. In any case, the output streamof
the one core is driven to the input stream of the other. It would be a direct connection,
no interconnect is necessary. If a corewithin a chain is not needed, it will be loadedwith
a loopback module.

One could object that in a scenario that we have few and large accelerator slots serv-
ing tasks that cannot be easily broken down to elementary computations, such an ar-
rangement would lead to far too many wasted FPGA resources by cores loaded with a
loopbackmodule. We couldwithdraw our idea of having only a singleDMAcontroller
but keep our idea to directly connect cores, just to avoid unnecessary main memory ac-
cess. We could even extend it, to include the possibility of sourcing or sinking data
from/to a hardware peripheral, to support a real-time embedded setting.

7.2.4 Task Buffer Migration

The system allocates a buffer pair each time the user application configures a task. If
a configured task declares a new configuration, the old buffers are released and new
buffers, of the new requested sizewill be allocated. The newbufferswill be placedwher-
ever the memory allocator deems best – there is no connection to the old buffers, and
data will not be preserved.

Since this action is initiated by the user, the data loss is acceptable since we assume
the user will only issue such a request when they have finished processing and/or saved
their data. However, there might be cases it would be beneficial to perform an involun-
tary buffermove. For example, the external fragmentation of amemory zonemight not
permit a creation of a new task despite that there is enough free space. In another case,
there might be free and contiguous space in a zone where a task in not allowed to be
placed due to hardware or affinity restrictions. Finally, a re-arrangement of user buffers
among memory zones may be help re-balance data traffic to maximize parallellization.

7.2. FUTURE WORK 131

MC AXI DMA

Accelerator 3

Accelerator 2

Accelerator 1

Accelerator 0

1M
Ix

4S
I

4M
Ix

1S
I

MM2S MM2S

(a) Multichannel DMA

AXI DMA

Acc. 1Acc. 0 Acc. 2

MM2S S2MM

(b) Chaining Accelerators

AXI DMA

Accelerator

MM2S

from main
memory

S2MM

to main
memory

next
accelerator

sinking
peripheral

previous
accelerator

sourcing
peripheral

(c) Routing streams to/from other hardware

Figure 7.1: Alternative accelerator and DMA controller arrangements.

Since these scenarios are determined by the kernel without the consent of the user
application, they have to be made transparently and without data loss. Indeed, a key
reason we implemented a custommemory allocator was to make this feature easier and
simpler to implement. Implementation should be straiforward:

1. Ensure that no DMA transaction is currently taking place on behalf of this task
and prevent this from happening while the migration takes place.

132 CHAPTER 7. CONCLUSION AND FUTURE WORK

2. Find the new optimal buffer location.

3. Update allocator bitmap to reserve the new space.

4. Migrate the page frames to the new location, updating the user process page ta-
ble.

5. Update allocator bitmap to release the old space.

7.2.5 Accelerator Control

The AXI-Lite protocol rightfully gained its name as it requires only a few dozen of
LUT instances to implement a slave interface. Nonetheless, this slave interface consists
of 94 wires. Despite that we have so modest demands for throughput from a configu-
ration port, the interface still implements seperate address, read and write channels, as
all members of the AXI family do. On top of that, we should add the implementation
of the required interconnect.

It is worth exploring the use of a simpler protocol, even a serial one. The I2C is
rather slow but it uses only two wires (clock and data) shared between all slaves. The
SPI needs a clock, a data-in and a data-out plus one slave select per slave, but it is signif-
icantly faster. A more efficient solution would be to embed configuration data in the
data stream. It adds some implementation complexity and might be a bit restrictive in
some cases, but it comes at no cost in routing resources.

Moreover, currently, the accelerator control is modeled after the Vivado HLS con-
trol signals. While it would not be very difficult to generate these signals from anHDL
or anotherHLS tool, a cleaner solution would be to define a custom interface and offer
wrappers for any HLS tool.

7.2.6 Accelerator Interrupts

We assumed an accelerator would have a input and an output stream, with no other
side-effects. However, an accelerator may need to generate interrupts. Support of this
feature may take the form of offering a system call that blocks until the interrupt is
acknowledged, as it is done in EPEE[6]. Another approach would be by delivering

7.2. FUTURE WORK 133

POSIX Signals, in order to allow the user application to perform useful work while
waiting for the notification.

7.2.7 Portability

The system was designed using the Xilinx tools on a Zynq platform. As it is already
discussed, FPGA Manager will solve the unportable nature of partial reconfiguration.

Two additional points that tie us to a specific architecture are the AXI interconnect
and the ARMprocessor. The former is not expected to be an issue, at least if we fix the
accelerator control protocol (see above). The latter is a bit more a senstive issue. While
we do not bind to the processor architecture, we extensively use the FDT. GNU/Linux
has decoupled it from Open Firmware and the current trend is to expand support to
more platforms. Despite that support for x86 was introduced back in 2011, it is uncer-
tain how easy would be the transition to the future x86-connected FPGAs.

However, the biggest -by far- burden is the heavy dependence onXilinx IP cores. It
is certain that Intel/Altera would have an equivalent core for every basic core of Xilinx,
however they would differ on configuration and interface.

While it is unavoidable to get rid of all of them, as some provide support for vendor
specific hardware, they could be reduced to a minimum by replacing generic function-
ality (like a DMA controller) with other academic and/or open-source alternatives.

7.2.8 Scheduler Improvements

So far, the scheduler may decide only by taking into account the past (frequency of use,
time elapsed from an event) or a user wish (e.g. priority, affinity). The scheduler has
no knowledge of the future except from the tasks that are in-flight trying to find a free
core.

A useful feature would be to help the scheduler by stating an intent to execute a
certain list of tasks. This way it can collect information thatwillmore accurately predict
which accelerator core would less likely be needed or it could postpone or re-arrange
scheduling of tasks so to minimize the number of slot reconfigurations.

134 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.2.9 Bitsteam Size

In our work, for each module variant we produced a partial bitstream for every recon-
figurable partition. One might wonder, why not just use one for every variant?

In modern FPGAs, the routing of the static design is permitted to cross a reconfig-
urable partition in order to reduce pressure on router. This had as a consequence that
every partial bitstream is totally different for each reconfigurable partition it is imple-
mented. Xilinx does not provide a way to restrict this routing apart from constraining
all static routing to a static pblock, with whatever impact it would have on the qual-
ity of the result. The recent Altera Stratix 10 has a different architecture what permits
bitstream relocation. There are several academic works that try to approach the prob-
lem from different angles, either at run-time or with bitstream manipulation prior to
storage. For a detailed discussion on bitstream relocation and other current PR-related
topics, one can address to [33].

In ourwork, bitstream storagewas a significant burden for thememory constrained
Zedboard, especially sincewe use a ramdisk for all storage. For 16-core design, to sumof
all bitstreams were 30MB. Using XZ compression we reduced it to 2.2MB, but we au-
tomatically decompress a bitstream when it is first registered to the kernel driver. If we
chose to decompress the bitstream just before programming, it would incure a latency
penalty at the order of 25ms, which is an order of magnitude of the partial reconfugra-
tion itself, usually a couple of milliseconds.

A future improvement should explore possibilities for relieving this issue. Xilinx of-
fers bitstream compression, where unused reconfiguration frames are not stored. This
method is not very efficient in compression ratio, but a compressed bitstream can be
programmed directly, therefore a minimal, if at all, latency cost is paid.

The XZ algorithm has very high compression ratio but it is slow. There are several
high speed algorithms, for example lz4, zstd or snappy, that can be tested and if the addi-
tional latency is tolerable we could decompress the bitstream just before programming.

The on-board SD card is usuable for permanent bitstream storage but it is unac-
ceptable for run-time use. Another, high performance storage medium could be tried.
If the board accepts DDR memory, it is an ideal solution.

7.2. FUTURE WORK 135

7.2.10 Clock Management

The system was not designed with power consumption in mind. There can be found
opportunities for lowering the power envelope. For static power, there is little we can
do. The Zynq platform does have programmable voltage regulators but they are global
to the PL and therefore we cannot power down a single reconfigurable partition.

However, it is possible to reduce dynamic power consumption. Even without an
external clock source, Zynq and ZynqMP can create and distribute four configurable
clocks. Either by deliveringmultiple pre-set clocks or byusing clock converters, itwould
be possible to offer more than one clock to an accelerator slot.

Depending user desire, policy or simply wheter system is operating from battery,
the clock source could be switched to save energy. Furthermore, it would be beneficial
for more complex accelerator designs that may fail timing closure at maximum clock to
be given the oportunity to run at a slower one.

7.2.11 Extending Heterogeniety

In our work, support for heterogeniety is minimal. It is simply offered with the notion
that if a certain module variant doesn’t fit, it’s ok, we’ll schedule the task somewhere
else.

This model has to be extended and the scheduler must be aware of the slot size and
the special resources it contains. We already take into account the slot parameters for
defining a slot attractiveness, but if the scheduler hadmore information about the slots
and/or the taskdemands, it could even affect its decision taking into account time slacks,
power consumption, and even chose an appropriate slot data width.

7.2.12 Random-Access Model

We used the streaming model under the assumption it is the most appropriate for an
FPGA, as they typically lack sufficient memory resources.

However, Xilinx recently presented UltraRAM, an on-chip memory resource for
the UltraScale+ that offers significantly higher capacity but lower performance com-
pared to BlockRAM. Additionally, we should add that a designer may implement a
memory controller in the programmable logic. Xilinx offers the “Memory Interface

136 CHAPTER 7. CONCLUSION AND FUTURE WORK

Generator” IP core to create such an interface to any supported FPGA. Altera/Intel of-
fers hard blocks for memory controllers in their Arria V SoCs. As the manufacturers
advance their capabilities in 2.5DCMOS, it reasonable to assume that FPGAswill gain
access to large on-chip memories.

Support for a random-access co-processor model will become significant. Further-
more, cache-coherency is possible and should be offered in such a model. For a discus-
sion on cache-coherence in Zynq and ZynqMP, please see section 3.3.

7.2.13 Scaling to Multiple Boards

A very interesting possibility for exploration would be extending the system to more
than one FPGA. Amaster-slave architecture could allow the master Zynq to utilize the
PL of other boards, not necessarily equipped with a SoC. Essentially all control and
mainmemory resides in a single nodewhereas all other FPGAswould be used to stream
data to, process, and streamback theoutput tomainnode. If all boards areZynq, a peer-
to-peer architecture could be implemented, where any Zynq could reserve and utilize
an accelerator slot from any other Zynq.

Exchanging control signals throughout all the boards would be a trivial problem
which canbe solved evenusing theFPGApins exposed at thePmod connectors. Higher
level connectivity could be used, like Ethernet, but with a significant impact in latency.
The high-speed data transport would be a more complex issue. As a physical layer for
the link, single-ended or LVDS I/O pins can be used but if the FPGA contains serial
transceivers they would be a superior choice. AnAXI channel can pass over the Aurora
link-layer protocol, which can utilize the FPGA transceivers. Xilinx offers two IPs for
bridging an AXI Stream, the Aurora 8B/10B and Aurora 64B/66B.

It is worth to mention that Xilinx also offers the AXI Chip2Chip IP core. This
core can utilize the Aurora IPs to allow briding of the full, memory-mapped AXI. This
wouldmakepossible for a processor to accessmemorybuffers residing in another board,
essentially creating a non-uniform shared memory system of FPGA nodes. However,
this would not be just an extension but a radically new approach.

Appendices

137

Appendix A

Partial Reconfiguration Scripts

The Partial Reconfiguration workflow, currently (early 2018) is not fully integrated at
the Vivado GUI. In newer versions a designer may use the GUI to create anHDL-only
design, but the use if IP Integrator is still not supported. For now, only the initial design
can be created in Vivado GUI. After floorplanning, the synthesized result will be saved
in a DCP and the main P.R. workflow has to be done with the help of TCL scripts.

Xilinx has implemented a sample design that uses a single reconfigurable module
for implementing an imaging filter. It is an integrated embedded system, that accepts a
video stream from a HDMI capable daughtercard connected via the FMC, it performs
the filtering and it outputs it to an HDMI capable output. It is implemented and doc-
umented in both ISE (see [31]) and Vivado (see [30]).

From this application, the core TCL scripts were extracted, and the client script was
rewritten to match our application.

All scripts were created in GNU/Linux and use the UNIX directory structure.
They will not work in a Microsoft Windows environment.

A.1 Creating static design Device Checkpoint

This script, run from within Vivado with the synthesized design open, will replace the
instantiated accelerators with black-boxes and save the result to a DCP.

set top [string trim [get_cells *_i] "*_i"]

set modules [list [get_cells -hierarchical zcore16_?]\

[get_cells -hierarchical zcore16_??]]

139

140 APPENDIX A. PARTIAL RECONFIGURATION SCRIPTS

foreach module $modules { update_design -cell $module -black_box }

write_checkpoint -force dcp/base/$top

A.2 Generating the Project Files

After static design floorplanning and synthesis, a project file must be created for each
reconfigurable module version of each reconfigurable partition. These project files are
a requirement for Xilinx TCL scripts.

#!/usr/bin/env sh

proj_dir="../base/"

proj_name="base"

top="zed_asym_cc_alt"

instance_name="zcore16"

solution="solution_16"

cores_dir="../cores"

INSTANCE_LIST=`printf "${instance_name}_%d " {0..15}`

CORE_LIST="loopback gauss sobel emboss outline sharpen negative contrast

threshold"

rm -rf ./prj/* ./synth ./bit ./hd_visual ./impl ./dcp/*.dcp *.log \

*.html *.xml vivado* fsm_encoding.os

design_dir="${proj_dir}/${proj_name}.srcs/sources_1/bd/${top}"

for instance in $INSTANCE_LIST

do

module_name=`grep -E ${top}.*${instance}$ ${design_dir}/hdl/${top}.v |

gawk '{print $1}'`

module_file="${design_dir}/ip/${module_name}/synth/${module_name}.v"

for core in $CORE_LIST

do

core_files="${cores_dir}/${core}/${solution}/impl/ip/hdl/verilog/*"

for file in ${core_files} ${module_file}

do

A.3. TCL CLIENT SCRIPT 141

[! -f ${file}] && echo "File ${file} was not found, please fix

the script!" && exit

echo "verilog xil_defaultLib ${file}" >> ./prj/${instance}_${core

}.prj

done

done

done

A.3 TCL Client Script

This script is the client to Xilinx partial reconfiguration TCL scripts. It has to be mod-
ified to match the FPGA and hardware design of the designer. It was made to be as
flexible as possible for future adaptation to other projects.

#!/usr/bin/env vivado -mode batch -source

Xilinx-provided scripts

set tclDir "./tcl"

source $tclDir/design_utils.tcl

source $tclDir/log_utils.tcl

source $tclDir/synth_utils.tcl

source $tclDir/impl_utils.tcl

source $tclDir/hd_floorplan_utils.tcl

FPGA part number

set zedboard "xc7z020clg484-1"

set zcu102 "xczu9eg-ffvb1156-2-i"

set part $zedboard

check_part $part

Setup Variables

set tclParams [list <param1> <value> <param2> <value> ... <paramN> <value>]

set tclParams [list hd.visual 1]

Workflow control

set run.rmSynth 0

set run.prImpl 1

set run.prVerify 0

set run.writeBitstream 0

set run.flatImpl 0

142 APPENDIX A. PARTIAL RECONFIGURATION SCRIPTS

Report and DCP controls - values: 0-required min; 1-few extra; 2-all

set verbose 1

set dcpLevel 1

Output Directories

set synthDir "./synth"

set implDir "./impl"

set dcpDir "./dcp"

set bitDir "./bit"

set srcDir ""

###

Top Definition

###

set proj_dir "../base/"

set proj_name "base"

set top "zed_asym_cc_alt"

set top_dcp "${dcpDir}/base/${top}.dcp"

set top_xdc [list "${proj_dir}/${proj_name}.srcs/$top/new/pblocks.xdc" \

"${proj_dir}/${proj_name}.srcs/$top/new/io.xdc"]

set static "${top}_static"

add_module $static

set_attribute module $static moduleName $top

set_attribute module $static top_level 1

set_attribute module $static synthCheckpoint $top_dcp

##

RP Module Definitions

##

set core_basename "zcore16"

set core_easiest "loopback"

set core_hardest "contrast"

set cores_with_alt_settings [list "gauss" "sobel"]

A.3. TCL CLIENT SCRIPT 143

set core_list [list "gauss" "loopback" "contrast" "sobel" "sharpen" "emboss"

"outline" "negative" "threshold"]

set pblock_list [list 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]

Heterogenuous case: Define which modules require big partitions...

set core_big_list [list "gauss" "sobel" "sharpen" "emboss" "outline"]

...and which partitions cannot fit them

set pblock_small_list [list 4 5 10 11 14 15]

Homogenuous case: $core_big_list is equal to $core_list and

pblock_small_list is empty

set core_big_list $core_list

set pblock_small_list [list]

##

Configuration generation

##

foreach core $core_list {

The hardest to route module shall be used to define the partition pins

between static and reconfigurable regions. It will be the "initial

configuration".

set partition_list [list [list $static $top [expr {$core == $core_hardest

? "implement" : "import"}]]]

foreach pblock $pblock_list {

The generic reconfigurable module,

in the form of ${module}_${pblock}

set instance "${core_basename}_${pblock}"

The logic implemented in that reconfigurable module

set variant "${instance}_${core}"

HDL modules created by Vivado have the form of

${design_name}_${module}_n_m, usually n=[0,1,2...] and m=0,

but if module was copied-pasted in IP-Integrator,

naming is not well predictable and therefore we do not attempt

to guess it. The prj file has discovered it by parsing

the top module, therefore it will be correct.

144 APPENDIX A. PARTIAL RECONFIGURATION SCRIPTS

set module_name [exec /bin/grep "${instance}_" ./prj/${variant}.prj |

sed s@.*/@@ | sed s/.v$//]

Assume two sizes of pblocks. If the logic is ``big'' and the

pblock is ``small'', then use a simple placeholder logic.

The generated bitstream will be discarded.

if {((${core} in ${core_big_list}) && (${pblock} in ${

pblock_small_list}))} {

lappend partition_list [list "${instance}_${core_easiest}" "${top

}_i/${instance}" "implement"]

} else {

lappend partition_list [list ${variant} "${top}_i/${instance}" "

implement"]

}

Create Xilinx TCL variables for this module variant

add_module $variant

set_attribute module $variant moduleName ${module_name}

set_attribute module $variant prj "./prj/${variant}.prj"

set_attribute module $variant xdc "${proj_dir}/${proj_name}.srcs/

sources_1/bd/${top}/ip/${module_name}/constraints/${core_basename

}_ooc.xdc"

set_attribute module $variant synth ${run.rmSynth}

}

Define configuration. There will be one configuration for each

module design, that will be implemented in all reconfigurable

partitions. If the design is too big for the module,

placeholder was assigned in previous step

set config "config_${core}"

add_implementation $config

set_attribute impl $config top $top

Implementation parameters.

Xilinx scripts were created for Vivado 2014.2 and therefore some

newer options are recognized or some older may no longer be valid.

Modify tcl/implementation.tcl if that problem arises.

set_attribute impl $config opt_directive "Explore"

A.4. PARTIAL BITSTREAMMANIPULATION 145

if {$core in $cores_with_alt_settings} {

set_attribute impl $config place_directive "ExtraTimingOpt"

set_attribute impl $config phys_directive "Explore"

} else {

set_attribute impl $config place_directive "ExtraPostPlacementOpt"

set_attribute impl $config phys_directive "AlternateFlowWithRetiming

"

}

set_attribute impl $config route_directive "Explore"

Xilinx PR script parameters. The user-configurable ones (ie run.*) are

defined above

set_attribute impl $config pr.impl 1

set_attribute impl $config implXDC ${top_xdc}

set_attribute impl $config impl ${run.prImpl}

set_attribute impl $config partitions ${partition_list}

set_attribute impl $config verify ${run.prVerify}

set_attribute impl $config bitstream ${run.writeBitstream}

set_attribute impl $config cfgmem.pcap 1

}

Configuration is done, call Xilinx PR scrips

source $tclDir/run.tcl

exit

A.4 Partial Bitstream Manipulation

The Xilinx TCL scripts will generate a large number of files, including all partial bit-
streams. This script will install them to our software framework, after first renaming
according to the naming conventions set by the system library and compressing them
with the XZ compresison tool.

#!/usr/bin/env bash

TARGET="../../yocto/meta-local/recipes-bsp/zdma-firmware/files"

rm -f $TARGET/*

for f in bit/*pcap*bin

146 APPENDIX A. PARTIAL RECONFIGURATION SCRIPTS

do

core=`echo $f | awk -F_ {'print $2'}`

pblock=`echo $f | awk -F_ {'print $4'}`

if ls bit/write_cfgmem_config_${core}_*_${pblock}_${core}_pcap.log 1> /

dev/null 2>&1; then

xz --check=crc32 --lzma2=dict=512KiB --stdout $f > $TARGET/${core}.${

pblock}.bin.xz

fi

done

install -m 644 bit/config_loopback.bit ../../image/download.bit

Appendix B

HLS Compiler Scripts

B.1 Generating and Exporting an Acccelerator Mod-

ule

#!/opt/Xilinx/Vivado_HLS/2017.2/bin/vivado_hls

set cores [list gauss sobel emboss outline sharpen contrast threshold

loopback negative]

set sizes [list 16 64]

foreach core $cores {

foreach size $sizes {

set fd [open "generated.h" "w"]

puts $fd "#pragma once\n#define FORCE_DSP48\n#define CORE_NAME zcore$

{size}\ntypedef uint${size}_t axi_data_t;"

close $fd

open_project -reset $core

set_top zcore$size

add_files ${core}.cpp

add_files -tb testbench.cpp

add_files -tb sample.jpg

add_files -tb csim/build/out.jpg

open_solution -reset "solution_${size}"

set_part {xc7z020clg484-1}

##set_part {xczu9eg-ffvb1156-2-i}

147

148 APPENDIX B. HLS COMPILER SCRIPTS

create_clock -period 6 -name default

csynth_design

export_design -rtl verilog -format ip_catalog \

-description "ZDMA Core $core/${size}" \

-vendor "tuc" \

-version "3.6" \

-display_name "ZDMA Core $core/${size}"

close_project

}

}

exit

Glossary

ACE

AXI Coherency Extensions: A cache coherent port in AMBA AXI version 4. It
offers full (two-way) coherency between a processor and a peripheralwith caches.
17, 28, 33, 149, 151, see ACE-Lite

ACE-Lite

AXI Coherency Extensions, Light : A lightweight version of the ACE protocol.
It offers only IO (one-way) coherency between a processor and a peripheral with-
out caches. 17, see ACE

ACP

Accelerator Coherency Port : An AXI port that offers IO-Coherency to a non
cache-aware AXI Master. 17, 24, 27, 28, 32, 33, 154

AFI

AXI FIFO Interface: FIFO buffers placed in silicon just after the HP ports.
Their purpose is to smooth out traffic in order to make DDR access more ef-
ficient. 18, 25

AHB

AdvancedHigh-performance Bus: Ahigh-performance, single-channelmultiple-
master shared bus, introduced with AMBA version 2. 16, 149

AHB-Lite

Advanced High-performance Bus, Light : A lightweight version of AHB, intro-
duced with AMBA version 2. It simplifies the protocol by allowing only one

149

150 Glossary

master in the bus. 21

AMBA

Advanced Microcontroller Bus Architecture: A family of interconnect protocols
that originates fromtheARMmicrocontrollers butnow it is usedwidely inmod-
ern ARM SoCs, including the FPGA-SoCs from Xilinx. 15–18, 21, 87, 149, 150

APB

Advanced Peripheral Bus: A low-complexity, low-performance shared-bus, de-
fined in the original specification of AMBA. 21

APU

Application Processing Unit : The hardware unit that encompasses the applica-
tion processors (ie the Cortex-A cores), the SCU and the cache. 28

AXI

Advanced eXtensible Interface: A high-performance burst capable protocol in-
troduced in AMBA version 3. In AMBA version 4 it was extended to support
a burst size of up to 256, up from 16 in version 3. It does not support cache co-
herency. 9, 11, 15–25, 29, 30, 33, 34, 36, 37, 39, 42, 43, 66, 114, 132, 149, 150, 152,
see AXI-Lite

AXI-Lite

Advanced eXtensible Interface, Light : A lightweight version of the AXI proto-
col. It does not support burst transactions. 10, 16, 18–21, 29, 39, 43, 66, 87, 88,
112–115, 132, see AXI

AXI-Stream

A streaming version of AXI. It has no notion of address spaces and therefore it
exchanges no addressing information. This results in both higher performance
and (much) lower complexity. 9, 10, 16–20, 30, 35, 43, 112, 114, 115, see AXI

beat

A transfer of an elementary datum through the Full AXI or AXI-Lite channel.
16, 129, 151

Glossary 151

BPD

Full Power Domain: A small power domain in UltraScale+ that contains the
most basic components, like the oscillator, the RTC, etc. see power domain

BRAM

: A specialized type of on-chip FPGA memory resource with one cycle access la-
tency. Each tile may be used as a single 36kibit element (BRAM36) or as two
18kibit (BRAM18). Optionally, BRAM may be configured as a FIFO and is ca-
pable of ECC. see 16, 33, 37, 38, 49, 50, 58–60, 104, 157

buddy allocator

The standard Linux kernel memory allocator. It is called so after the allocation
algorithm it implements. 83, 89, 90

burst

A sequence of AXI Beats that transmits the transaction payload. Does not in-
clude handshaking and address information.. 16, 18, 21, 29, 150

CCI

Cache Coherent Interconnect : A cache-coherent interconnect by ARM. It can
provide both full (two-way) cache coherency between the processor and a pe-
ripheral with caches or IO (one-way) coherency to cache-less peripherals. Used
in UltraScale+ devices. 27, 28, 32, 33, 154, see IO Coherency

CHI

Coherent Hub Interface: An evolutionary step from ACE, this protocol the
newer multi-core SoCs. It is not present in UltraScale+. 17, see ACE

CLB

Configurable Logic Block: The fundamental configurable block in an FPGA. It
consists of a few Slices (the number depends on the architecture) and a switch
matrix that provides access to the general routing matrix. 58, 157, see slice

152 Glossary

CMA

ContiguousMemory Allocator: A Linux kernel facility that allows the allocation
of indefinitely large physically contiguous memory. 83, 84, 89

DAP

Device Access Port : An external debug interface to an ARM core. It can debug
a running system without the intervention of the CPU. It is available in Xilinx
FPGA-SoCs. 24

DCP

Device Check-Point : The saved state of a design. It may be at post-synthesis,
post-placement or post-routing. 46, 47, 139

devc

A configuration controller for the Zynq-7000. It contains an AXI to PCAP
bridge and therefore is the intermediary for programming the FPGAduring par-
tial reconfiguration. 24, 33

distributed RAM

Distributed RAM or LUT RAM : Memory implemented in generic LUTs that
are distributed over all the FPGA silicon area. 37, 152, see BRAM & LUT

DRC

Design Rule Checking : A process of design verification in order to conform to
the requirements of the implementing technology. 49, 50

DSP

A specialized FPGA resource that implements an integer pre-adder, a multiplier
and an accumulator. In 7-series a DSP48E1 is implemented, where the pre-adder
is 25 bits wide, themultiplier is 25 by 18 bits wide, and the accumulator is 48 bits
wide (hence the name). The UltraScale/UltraScale+ feature a more advanced
version, the DSP48E2, which features a 27 by 18 bit wide multiplier. 49, 50, 58,
60, 157

Glossary 153

DT

An hierarchical device structure that describes hardware topology, originally de-
veloped by Sun for the system. 68, 76, 77, 81, 84, 85, 88, 91, 92, 99

DTO

An extension to the Flattened Device Tree that allows the dynamic (run-time)
modification of the kernel’s live Device Tree. 99, 100, see DT

fabric

The programmable structural units of an FPGA. 13, 14, 21, 24, 68, 159

FDT

ADeviceTree representation used byLinux thatmay also be passed to the kernel
by the bootloader, thus supporting systems that do not implement . 5, 51, 68,
69, 72, 75, 76, 99, 133, see DT & Open Firmware

FIFO

First-In First-Out, a method of queueing access, however almost universally
refers to the buffering hardware that implements this policy. 18

FPD

Full Power Domain: The UltraScale+’s power domain where the A53 cores re-
side, along with the high-speed peripherals (PCIe, SATA, GPU, etc). 25, 27, 29,
see power domain

GP

General Purpose port : AnAXI compatible port, found in Zynq-7000 but not in
UltraScale+. It is present both as a slave to PS and as a master. It is 32 bit wide
and runs at up to 150MHz. see M_GP & S_GP

GPIO

General Purpose I/O, ie unstrctured data port. The handshaking, synchroniza-
tion and error correction is left as a responsibility of the communicating end-
points. 21, 66

154 Glossary

GSR

Global Set/Reset : A globally routed signal that forces logic to quiescence while
the device is being programmed. 65

hard-IP

A non-programmable hardware component implemented in silicon. see

HLS

High Level Synthesis: A Xilinx tool that can compile an algorithm expressed in
C/C++ to a hardware description language (Verilog) ready for synthesis by the
standard toolchain. 112, 113, 115

HP

High Performance port : A high-performance non-coherent port that interfaces
the PS with the PL in Xilinx Zynq FPGA-SoCs. In Zynq-7000 it can be config-
ured as a 32 or 64 bit port, running at up to 150MHz. In Zynq UltraScale+ it
can also be configured as a 128 bit port and the maximum frequency is raised to
333MHz. 18, 22, 24, 25, 27, 29, 31, 32, 37–39, 54, 118, 119, 149, 154

HPC

A coherent version of HP, present in UltraScale+. The coherency is provided by
the CCI. It is destined to replace the ACP in many usage scenarios. 27, 32, 33,
see HP & ACP

HPM

High Performance Master port : A high-performance non-coherent port of Ul-
traScale+. It offers equivalent performance to HP ports but it a master port to
the PL. In Zynq-7000 this funcionality was offered by theM_GP ports. 27–30,
see M_GP

ICAP

Internal Configuration Access Port : The port to the FPGA configuration inter-
face from the PL side. 157, see PCAP

Glossary 155

IO Coherency

IO Coherency, or one-way coherency, is weaker form of coherency where the pe-
ripheral can snoop the processor but the processor cannot snoop the peripheral.
That is, the peripheral can read directly from the processor caches while writing
to memory will automatically invalidate them. The processor cannot, therefore
the peripheralmay either donot posess any caches at all, or they are non-coherent
and manually managed. 17, 22, 27, 32

LPD

Full Power Domain: TheUltraScale+’s power domainwhere theR5 cores reside,
along with the I/O peripherals and the OCM memory. 27, 28, 30, see power
domain

LUT

Look-Up Table: A programmable function generator. It decides n outputs ac-
cording tom inputs over constant time. The number of the inputs, the outputs
and the legal configurations are architecture dependant. Essentially, it is a bit-
addressable array of SRAMmemory cells that stores the boolean function truth
table. 54, 66, 110, 159

M_GP

General Purpose Master port : A General Purpose port that is a master from the
PS. In Zynq-7000 there are available two of such ports. 24, 27, 29, 154, see GP

memory locking

Marking a memory region as not swappable. The locked pages can still be mi-
grated, therefore a soft page fault may still occur. see migration & memory pin-
ning

memory pinning

Marking a memory region as not moveable. That is, the pages may not be mi-
grated or swapped out. Access to this memory region is guaranteed not to pro-
duce any page fault. 83, see migration & memory locking

156 Glossary

MGT

Multi Gigabit Transceiver: A programmable high-speed serial interface. 57, 64

migration

The move of an allocated page to a different PFN while updating reference to
maintain consistency. This is useful in NUMA systems, where if a process is
moved to another node, its allocated pages may also be transparently moved at a
memory bank which has closer physical proximity to the new node. 83

OCM

On-Chip Memory: A small on-chip SRAM in the PS of both Zynq-7000 and
UltraScale+. Its primary role is a low-latency synchonization point between the
ARM cores. 22, 24, 28–30, 155

OOC synthesis

out-of-context synthesis: A bottom-up hierarchical approach in design synthesis.
Each design module is synthesized independently of the final design. This ap-
proach disables optimizations accross the boundaries of the synthesized module
as it has no knowledge of the final design. This characteristic is essential to a P.R.
design, however it is also used in normal workflow as it greatly reduces total syn-
thesis time by re-synthesizing only the affected logic. 46, 47, 125

Open Firmware

A computer firmware standard, originally created by Sun and commonly imple-
mented in PowerPC and SPARC architectures. 68, 133

partition pin

A logical pin and physical site of a P.R. design that serves as a connection point
between the static and the reconfigurable logic. 47–50, 107

pblock

Partition Block: A group of physical FPGA resources. It may be dynamically
reconfigurable or not. If it is, the architecture will impose several shape, content

Glossary 157

and placement restrictions. If it is not, it acts as its assigned module container
but it may as well share logic from other modules. 42, 46–50, 57, 58, 60, 65,
107, 158

PCAP

Processor Configuration Access Port : The port to the FPGA configuration inter-
face from the PS side. In Xilinx FPGA-SoCs it is the default port from boot-up.
In any time, the processor may relinquish the control to Internal Configuration
Access Port (ICAP), as well as reclaim it back. It is not available on the non-SoC
FPGAs. 33, 152, see ICAP

PFN

Page FrameNumber: An index to thephysicalmemorywhere a page is physically
stored. 156

PLPD

Full Power Domain: The UltraScale+’s power domain that contains the pro-
grammable logic, including the high-speed tranceivers. see power domain

power domain

A logical partition of the UltraScale+ system that can be individually isolated
and powered. A power cut-off in one power domain, even accidental, can be
configured to not affect the correct functional behavior of the others. There are
four power domains in total. 151, 153, 155, 157, see PLPD, FPD, LPD & BPD

reconfigurable frame

The smallest reconfigurable physical region of the FPGA. In 7-series it is one
element (CLB, BRAMorDSP) wide by one clock region high. In UltraScale+ it
is a pair of DSPs or a single BRAM/DSP tile and their neighboring CLBs. 49,
58, 59

reconfigurable logic

Logic that is part of a reconfigurable module. 46, see reconfigurable module

158 Glossary

reconfigurable module

Anhierarchical designmodule that is defined as partially reconfigurable. 46–50,
65, 66, 112–114, 139, 140, 157, 158

reconfigurable partition

A physical region of the FPGA, defined by pblocks, that instantiates a single re-
configurable module. 11, 46–50, 52, 54, 57–61, 64, 65, 67, 77, 78, 99, 100, 109,
112, 114, 120, 124, 134, 135, 140, see pblock & reconfigurable module

RPU

Real-time Processing Unit : The hardware unit that encompasses the real-time
processors (ie the Cortex-R cores). 27, 28, 33

S_GP

General Purpose Slave port : A General Purpose port that is a slave to the PS. In
Zynq-7000 there are available two of such ports. 25, 33, 54, 119, see GP

scatterlist

A software construct in the Linux kernel that abstracts the DMA scatter-gather
functionality. Depending the architecture itmayoptimize transfers by coalescing
or by processing the list in hardware if the DMA controller can support it. 8,
83, 87

SCU

Snoop Control Unit : The logic that implements cache coherency at the processor
side. 24, 27, 28, 33, 150

SEU

Abit flip inmemory caused by ionizing radiation penetrating the semiconductor
and releasing charge inside a transitor diffusion terminal. It is non-destructive for
the semiconductor itself but if the FPGA configuration memory is affected, its
operation will be altered. 66

Glossary 159

slice

The “Slice” in Xilinx terminology or “Adaptive LogicModule” in Altera’s, is the
most basic group of configurable elements. It contains a few LUTs, fixed logic
such as multiplexers and fast carry propagation logic, as well as some memory
elements (flip-flops). An FPGA architecture may define several slice types that
co-exist in the same chip. 151, see LUT

soft-IP

A programmable hardware component implemented in the FPGA fabric. 13,
18, see

TNS

Total Negative Slack: A metric of how far the timing closure is. It represents the
sum of negative slacks of all paths that fail timing constraints. 50

transaction

A complete set of handshaking, addressing, data transfer and acknowledge on an
AXI channel. 16, 40, 151

VFS

Virtual File System (VFS), An abstraction layer between a concrete file system
and the rest of the operating system. All file access is routed to the VFS before it
reaches the kernel block layer. 101, 159

160 Glossary

Bibliography

[1] A. Agne,M.Happe, A. Keller, E. Lübbers, B. Plattner,M. Platzner, and C. Plessl,
“ReconOS:An operating system approach for reconfigurable computing,” IEEE
Micro, vol. 34, pp. 60–71, Jan 2014.

[2] K. Eguro, “SIRC:An extensible reconfigurable computing communicationAPI,”
in 2010 18th IEEEAnnual International Symposium on Field-Programmable Cus-
tom Computing Machines, pp. 135–138, May 2010.

[3] G. Marcus, W. Gao, A. Kugel, and R. Männer, “The MPRACE framework: An
open source stack for communication with custom FPGA-based accelerators,” in
2011 VII Southern Conference on Programmable Logic (SPL), pp. 155–160, April
2011.

[4] M. Jacobsen,D.Richmond,M.Hogains, andR.Kastner, “RIFFA2.1: A reusable
integration framework for FPGAaccelerators,”ACMTrans. Reconfigurable Tech-
nol. Syst., vol. 8, pp. 22:1–22:23, Sept. 2015.

[5] R. Bittner, “Speedy busmastering PCI express,” in 22nd International Conference
on Field Programmable Logic and Applications (FPL), pp. 523–526, Aug 2012.

[6] J. Gong, J. Chen, H. Wu, F. Ye, S. Lu, J. Cong, and T. Wang, “EPEE: An effi-
cient PCIe communication library with easy-host-integration property for FPGA
accelerators (abstract only),” in Proceedings of the 2014 ACM/SIGDA Interna-
tional Symposium on Field-programmable Gate Arrays, FPGA ’14, (New York,
NY, USA), pp. 255–255, ACM, 2014.

[7] Xilinx, LogiCORE IP Virtex-6 Integrated Block for PCI Express – User Guide.

161

162 BIBLIOGRAPHY

[8] Xilinx,Virtex-5 FPGA Integrated Endpoint Block for PCI Express Designs – User
Guide.

[9] Xilinx, 7 Series FPGAs Integrated Block for PCI Express v3.3 – LogiCORE IP
Product Guide.

[10] Xilinx, UltraScale Devices Gen3 Integrated Block for PCI Express v4.4 – Logi-
CORE IP Product Guide.

[11] Xilinx, Virtex-6 FPGA Integrated Block for PCI Express – User Guide.

[12] Xilinx,DMA/Bridge Subsystem for PCI Express v4.1 – Product Guide.

[13] Xilinx, Resource Utilization for DMA/Bridge Subsystem for PCI Express (PCIe)
v4.1.

[14] D. de la Chevallerie, J. Korinth, and A. Koch, “ffLink: A lightweight high-
performance open-source PCI express Gen3 interface for reconfigurable accelera-
tors,” SIGARCH Comput. Archit. News, vol. 43, pp. 34–39, Apr. 2016.

[15] J. Korinth, D. d. l. Chevallerie, and A. Koch, “An open-source tool flow for the
composition of reconfigurable hardware thread pool architectures,” in 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom Comput-
ing Machines, pp. 195–198, May 2015.

[16] TU-Darmstadt, “TaPaSCo - The Task Parallel System Composer.”
git.esa.informatik.tu-darmstadt.de/tapasco/tapasco.

[17] K. Vipin, S. Shreejith, D. Gunasekera, S. A. Fahmy, and N. Kapre, “System-level
FPGAdevice driverwith high-level synthesis support,” in 2013 International Con-
ference on Field-Programmable Technology (FPT), pp. 128–135, Dec 2013.

[18] K. Vipin and S. A. Fahmy, “DyRACT: A partial reconfiguration enabled accel-
erator and test platform,” in 2014 24th International Conference on Field Pro-
grammable Logic and Applications (FPL), pp. 1–7, Sept 2014.

git.esa.informatik.tu-darmstadt.de/tapasco/tapasco

BIBLIOGRAPHY 163

[19] M. Vesper, D. Koch, K. Vipin, and S. A. Fahmy, “Jetstream: An open-source
high-performance PCI express 3 streaming library for FPGA-to-Host and FPGA-
to-FPGA communication,” in 2016 26th International Conference on Field Pro-
grammable Logic and Applications (FPL), pp. 1–9, Aug 2016.

[20] C. Vatsolakis and D. Pnevmatikatos, “RACOS: Transparent access and virtual-
ization of reconfigurable hardware accelerators,” in 2017 International Confer-
ence on Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), pp. 11–19, July 2017.

[21] Xilinx, Zynq-7000 All Programmable SoC – Technical Reference Manual.

[22] Xilinx, Zynq UltraScale+ Device Technical Reference Manual.

[23] Xilinx,AXI Interconnect v2.1 – LogiCORE IP Product Guide.

[24] Xilinx,AXI DMA v7.1 – LogiCORE IP Product Guide.

[25] G. Charitopoulos, “Implementing a run-time systemmanager on partially recon-
figurable FPGA systems,” Master’s thesis.

[26] A. Aljaani, ZedboardOLED IP.

[27] A. Tull, “Reprogrammable hardware under linux,” in Embedded Linux Confer-
ence, 2015.

[28] P. Antoniou, “Transactional device tree& overlays,” inEmbedded Linux Confer-
ence, 2015.

[29] M. Fischer, “What’s new with FPGA manager,” in FOSDEM, 2018.

[30] Xilinx, Partial Reconfiguration of a Hardware Accelerator with Vivado Design
Suite for Zynq-7000 AP SoC Processor.

[31] Xilinx, Partial Reconfiguration of a Hardware Accelerator on Zynq-7000 All Pro-
grammable SoC Devices.

[32] Xilinx,AXI4-Stream – Infrastructure IP Suite v2.2.

164 BIBLIOGRAPHY

[33] K. Vipin and S. A. Fahmy, “FPGA dynamic and partial reconfiguration : a survey
of architectures, methods, and applications,” ACM Computing Surveys, March
2018.

	Introduction
	Motivation
	Our Approach
	Contributions

	Related Work
	Background
	The Hardware Platform
	The Communication Protocol
	The AMBA AXI Family
	The AXI Implementation

	The Physical Interconnect
	The Zynq 7000 Interconnect Architecture
	The Zynq UltraScale+ Interconnect Architecture

	Exchanging Data with the Programmable Logic
	Programmed I/O from a Processor
	Using the ``hard'' DMA controller in the PS
	Implementing a DMA controller in the PL

	Design Components
	The DMA controller
	The Interconnect

	Partial Reconfiguration
	The Partial Reconfiguration Workflow
	Floorplanning

	Hardware Architecture
	The Implemented Designs
	An Accelerator Performance Oriented Approach
	An Accelerator Count Oriented Approach
	The Zynq UltraScale+ Port

	Enabling Partial Reconfiguration
	Challenges
	Implementation
	Partition Sizing
	Partition Heterogeneity
	Decoupling the Reconfigurable Logic

	Accelerator Configuration
	System Debugging
	Describing the Hardware with a Device Tree
	Writing a Device Tree for the System
	Lying about the AXI DMA Interrupt Lines

	Software Framework
	System Initialization
	The System Library
	The System-Wide API
	The Task-Specific API

	Communicating with the Hardware
	Performing DMA from the kernel
	Allocating DMA'able Memory
	Controller and Channel Selection
	Termination of a DMA Transaction

	Zero-Copy Transfers
	Security and Error Handling
	Configuring the Accelerators
	The Memory Allocator
	The Scheduler
	Partial Reconfiguration
	Using the devcfg Interface

	Application and Evaluation
	Accelerator Description
	Trivial Pixel Transformations
	Contrast and Brightness Transformations
	The Sharpen, Emboss and Outline Filters
	The Sobel/Scharr Filter
	The Gaussian Blur Filter
	Resource Utilization and Latency

	Accelerator Interface
	Evaluation

	Conclusion and Future Work
	Challenges and Lessons Learned
	The Implementation Workflow
	The Tool Quality
	The Efficiency of HLS

	Future Work
	Integration with FPGA Manager
	Use of Advanced DMA Modes
	Rethinking the Accelerator - DMAC Relationship
	Task Buffer Migration
	Accelerator Control
	Accelerator Interrupts
	Portability
	Scheduler Improvements
	Bitsteam Size
	Clock Management
	Extending Heterogeniety
	Random-Access Model
	Scaling to Multiple Boards

	Appendices
	Partial Reconfiguration Scripts
	Creating static design Device Checkpoint
	Generating the Project Files
	TCL Client Script
	Partial Bitstream Manipulation

	HLS Compiler Scripts
	Generating and Exporting an Acccelerator Module

	Glossary
	Bibliography

