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Abstract 
This work introduces an innovative gamified rehabilitation platform comprising of a 

mobile game and a custom sensor placed on the knee, intended for patients that have 

undergone Total Knee Replacement surgery, in collaboration with the General Hospital in 

Chania. The application uses a single custom-made, light, portable and low-cost sensor node 

consisting of an Inertial Measurement Unit (IMU) attached on a lower limb in order to capture 

its orientation in space in real-time, while the patient is completing a physiotherapy protocol. 

An IMU measures and reports a body's specific force (accelerometer), angular rate 

(gyroscope), and sometimes the magnetic field surrounding the body (magnetometer). IMUs 

provide the leading technology used in wearable devices and are employed in this thesis as 

they meet the main design constraints of this framework, maximizing portability and 

minimizing cost. Previous work indicates that when multiple IMUs are employed, satisfactory 

rehabilitation exercise classification accuracy results are achieved based on three, two and one 

IMUs. Such results drive the further investigation of the challenging classification problem 

using just a single IMU in this thesis, enhancing maximum portability compared to multiple 

IMU systems, in conjunction with sufficiently high success rates of movement detection. 

Our goal is to reduce the need for the physical presence of a physiotherapist by aiding 

the efficient performance of exercise sessions at any location and increase patient 

engagement during physiotherapy by motivating the user to participate in a game using the 

current ultra-portable framework of just a single IMU sensor and an Android device. The 

proposed sensor node attached on the lower limb provides input to the gamified experience 

displayed on an Android mobile device, offering feedback to the patient in relation to whether 

the performed exercises were accurately conducted. A classification algorithm is proposed that 

automatically classifies an exercise in real-time as correct or incorrect, according to 

physiotherapists’ set criteria. Initial testing of the system is conducted in the Chania’s General 

Hospital Orthopaedic Clinic, Greece, in collaboration with Orthopaedic Surgeons and 

Physiotherapists. This testing indicates that patient engagement is enhanced in most cases. 
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1 Chapter 1 – Introduction 
The term ‘Serious’ applied to 3D games denotes the application of 3D gaming 

technologies and playful design strategies to domains of society and culture that are 

traditionally not associated with entertainment such as the medical domain. What sets Serious 

Games (SGs) apart from entertainment games is their focus on intentional learning outcomes 

which are measurable promoting sustained changes in the attitude and performance of 

individuals. SGs have been successfully employed to promote transformation of processes and 

protocols to education, as well as practical training and medical activities (Tsekleves et al. 

2014, Paraskevopoulos et al. 2014). SG academic research, in combination with several 

successful practical applications, promoted the ‘serious’ use of 3D games to the forefront of 

the agendas of diverse fields. 

Among diverse areas, research has shown that SGs are effectively enhancing 

motivation as well as efficiency of rehabilitation training (Wouters et al. 2013, Pirovano et al. 

2016). Research challenges that are still prominent in this area include accuracy of training 

performance, accuracy of motion capture when sensors attached to patients’ body are 

involved, efficient feedback to the doctor in clinical settings as well as to the patient in home 

or in any location, therefore, portability of the training environment and implementation of 

medical and physiotherapy protocols in SG training environments which are equally if not 

more efficient than traditional rehabilitation methods (Levin et al. 2012). 

Portability is most often restricted to either the home or clinical environment because 

of motion capture and other associated equipment, while the need of a rehabilitation patient 

who is often required to perform repetitive exercises for a long time, is to be able to perform 

them anywhere - at home, in the park, outdoors and indoors based on the use of a mobile 

phone or tablet and a small sensor. The above requirements as well as enhanced portability in 

any setting are met by the system proposed in this thesis. 

The work presented in this thesis puts forward the design and implementation of a 

custom-made ultra-portable, mobile and low cost 3D rehabilitation application intended for 

patients that underwent Total Knee Replacement (TKR) (Convery & Beber 1973) using only an 

Android mobile device and a small sensor placed on the patient’s limb to track movement. The 

first weeks following knee surgery are crucial so that the Range of Motion (ROM) of the 

operated knee is deemed fully operational. If the patient fails to perform the exercises 

appointed by the physiotherapist during this recovery period, an, otherwise, technically 

accurate operation might result in poor functional outcome leading to reduced quality of life. 

The aim of our gamified application is to motivate the patient to exercise efficiently by 

providing feedback, while the physiotherapy exercises are performed in any setting, e.g. 

clinical, at home, indoors, outdoors or even in public areas. 

Initially, a randomly selected control group performs the exercises under 

physiotherapist supervision who marks them as accurately performed or not. An Inertial 

Measurement Unit (IMU) node was utilized worn by the patient recognizing limb rotation and 

acceleration. It is challenging to identify whether the proposed application can classify the 

exercises as accurately performed or not reliably utilizing just a single sensor node and provide 
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classification feedback of comparable quality with the physiotherapist feedback. Providing 

gamified feedback to the patient at home or in other locations in relation to performance 

using widely available mobile devices, is also challenging, minimizing the need for expensive 

physiotherapy under supervision, resulting in more engaging and accessible rehabilitation. 

This thesis focuses on the description of the rehabilitation system involving the 

hardware sensor, the implementation of the gamified 3D environment, as well as the initial 

testing of the software framework in the hospital, while patients are undergoing 

physiotherapy treatment. The scope of this project involves the development of an integrated 

ultra-portable gamified platform, including gamified tasks to be utilized for rehabilitation 

exercises commonly performed after TKR surgery (Figure 1). The main goal is to improve 

compliance to the physiotherapy protocol, increase patient engagement, monitor physiological 

conditions and provide feedback based on rewards via a gamified experience. 

 

Figure 1: End Application Example. 
 

1.1 Contribution 
The current framework introduces an ultra-portable rehabilitation application 

comprising of just a single IMU sensor linked to a 3D gamified environment, to be adopted by 

patients that have undergone TKR surgery for their highly repetitive, but very significant post-

operative physiotherapy. Although this framework uses a custom made sensor incorporating a 

Raspberry Pi Zero W singe-board computer, the framework can be generalized to any wearable 

device that employs an accelerometer and gyroscope and complies with the specified raw data 

communication format. A first iteration of an automatic exercise classification algorithm is 

proposed, that uses angular and acceleration predefined thresholds to fine-tune the system. In 

future iterations, these thresholds can be inferred from variant Machine Learning techniques, 

e.g. RVMs (Tipping 2003), using the filtered sensor data collected. Such methods will maximize 

the success rate of the current algorithm, using just a single node as long as there is a capable 

number of samples collected by patients. 

This application engages the patient to accurately perform the recovery exercises 

through a gamified 3D experience, ultimately minimizing physiotherapist supervision, at most 

locations. The goal is to understand in a qualitative manner the feedback collected from the 

patients. In this iteration, quantitative measures that include ROM and classification feedback 

were provided. The collected data provide qualitative feedback towards understanding the 

user’s and physiotherapist expectations in relation to the proposed rehabilitation system. A 

relationship between quantitative measures (ROM) and quality of physiotherapy and knee 

recovery is investigated. Results from the experiments with patients in the hospital in this first 
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iteration effectively encourage this investigation. In 80% of the collected samples, the 

maximum ROM percentage measurements are following an ascending pattern. The same 

patients were still trying to improve their previous repetition while engaging in a serious game 

using the proposed framework. Short term measurements encourage the use of rehabilitation 

using serious games. Nevertheless a long term study will be necessary to provide accurate 

results on the quality of knee recovery using the proposed gamified approach in 

physiotherapy. 

1.2 Thesis Outline 
This thesis is divided into a number of chapters, which will be outlined below. 

Chapter 2 – Existing Work & Background: This chapter introduces a set of 

fundamental terms regarding medical background concerning anatomy of the knee, causes 

that can lead to Knee Replacement surgery and recovering process through physiotherapy. The 

basic rehabilitation techniques after TKR and exercises are analyzed. Subsequently, a technical 

background of state of the art technologies for limb rehabilitation is provided. Furthermore, 

Inertial Measurement Unit (IMU) technology is analyzed which enables low-cost and portable 

limb motion tracking as it is the building block used in this thesis. The IMU MPU-9150 utilized 

is presented along with an overview of common filtering methods. Moreover, the Raspberry Pi 

single-board computer is described which along with an IMU sensor compose the motion 

tracking node of the proposed system.  

Chapter 3 – Overview of IDE & Development tools: In this chapter, the 

development tools employed in this project are introduced. An overview of popular game 

engine choices is summarized that leads to the current project game engine, Unity 3D. Building 

blocks of Unity are described along with methods for scripting objects, design patterns used 

and profiling tools. These tools enable Game and Mobile development for android. Technical 

details are discussed that enable the combination of android native development with Unity. 

The resulting plugin is necessary for Bluetooth communication between the sensor node and 

the android mobile device. 

Chapter 4 – Design: Chapter 4 describes in detail the design of the proposed 

gamified mobile rehabilitation system involving the hardware sensor, the gamified 3D 

environment, the patient role as a player of a rehabilitation game, the exercise repetition 

protocol and the received gamification feedback after a single repetition. This feedback can be 

either real-time visual feedback of events happening in the game or the binary classification 

feedback of the implemented algorithm that classifies a single repetition as correct / incorrect 

under the specified physiotherapist criteria. This design in turn leads to the fundamental User 

Interface implementation of the application. Main Menu Design, Gameplay Design and 

Statistical Graph Generation of the application are described here. Statistical Graph 

Generation is an additional feedback type of all the performed repetitions that provides 

classification error and ROM statistics for each patient. These graph statistics are used 

extensively in the results section. 

Chapter 5 – Implementation: Chapter 5 describes in detail the implementation of 

the proposed gamified mobile application framework. Details about the custom made motion 
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tracking sensor node implementation are provided in a hardware and software level. These 

details include the I2C connection of the hardware node which is the way the IMU 

communicates with the Raspberry PI and the setup of the sensor as a Bluetooth server to 

accept incoming connections from android mobile devices that use the implemented 

application. Key elements of the application functionality in the mobile device are provided. 

These elements include Bluetooth communication between application and sensor node, 3D 

Scene Implementation and a first iteration of an automatic exercise classification algorithm. 

Here the game levels functionality implemented is described along with the whole 

rehabilitation exercise pipeline of a single repetition from the moment a patient starts the limb 

orientation till the patient returns to the neutral exercise pose. Snippets of code are provided 

that handle Bluetooth connectivity, game events, exercise serialization events. 

Chapter 6 – Experiments: This chapter is concerned with the Experimental Methods 

employed when the actual experiments were conducted in the Orthopaedic Clinic of the 

Chania General Hospital. The experimental procedure included healthy subjects as well as TKR 

patients. These patients could be either recovering TKR patients, in physio follow up, 12-14 

days post-op, or TKR patients 48h post op after the removal of the drain. The exercise studied 

was Knee Extension and the implemented game, the Airplane game, where the patient is 

instructed to raise the knee and observe the movement of the airplane along with the 

movement of the knee. At the same time a manual training / fine-tuning of the classification 

algorithm parameters was performed on healthy subjects and recovering TKR patients. This led 

to the testing of the framework on the 48h post op TKR patients and the extraction of 

qualitative and quantitative results. The quantitative results are based on the automatically 

generated application ROM and classification graphs. The qualitative results are based on 

patient behavior and engagement while using the proposed framework. ROM improvements 

(quantitative measure) over different testing sessions contribute to enhanced user 

engagement (qualitative measure), while ROM declination is observed on patients that failed 

to engage in the game experience. 

Chapter 7 – Conclusions & Future Work: In the final chapter, the conclusions of 

this thesis are presented as well as limitations & hints about future work. Limitations include 

poor User Experience on the unsupervised positioning of the sensor node, few TKR 

measurements in Chania municipality, lack of long term observations, fixed algorithm 

thresholding. Future work should strive to address these issues by improving UX of the 

framework, using commercial smartwatch sensors, gathering long term observations and 

capable amount of data to apply machine learning technics thus improving classification 

algorithm success rates. 
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2 Chapter 2 – Existing Work & Background 
   

2.1 Medical Background 

2.1.1 Knee Anatomy & Reduced Functionality Causes 

The knee is the largest joint in the body and having healthy knees is required to 

perform most everyday activities. The knee is made up of the lower end of the thighbone 

(femur), the upper end of the shinbone (tibia), and the kneecap (patella) (Figure 2). The ends 

of these three bones where they touch are covered with articular cartilage, a smooth 

substance that protects the bones and enables them to move easily. The menisci are located 

between the femur and tibia. These C-shaped wedges act as ‘shock absorbers’ that cushion the 

joint. Large ligaments hold the femur and tibia together and provide stability. The long thigh 

muscles give the knee strength. All remaining surfaces of the knee are covered by a thin lining 

called the synovial membrane. This membrane releases a fluid that lubricates the cartilage, 

reducing friction to nearly zero in a healthy knee. 

Normally, all of these components work in harmony. But disease or injury can disrupt 

this harmony, resulting in pain, muscle weakness, and reduced function. 

 

Figure 2: Normal knee anatomy. In a healthy knee, these structures work together to ensure smooth, natural 
function and movement (https://orthoinfo.aaos.org/). 

 

The most common cause of chronic knee pain and disability is arthritis. Although there 

are many types of arthritis, most knee pain is caused by just three types: osteoarthritis, 

rheumatoid arthritis, and post-traumatic arthritis. 

 Osteoarthritis. This is an age-related ‘wear and tear’ type of arthritis. It usually occurs 

in people 50 years of age and older, but may occur in younger people, too. The 

cartilage that cushions the bones of the knee softens and wears away. The bones then 

rub against one another, causing knee pain and stiffness. 

 Rheumatoid arthritis. This is a disease in which the synovial membrane that surrounds 

the joint becomes inflamed and thickened. This chronic inflammation can damage the 

https://orthoinfo.aaos.org/
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cartilage and eventually cause cartilage loss, pain, and stiffness. Rheumatoid arthritis is 

the most common form of a group of disorders termed ‘inflammatory arthritis’. 

 Post-traumatic arthritis. This can follow a serious knee injury. Fractures of the bones 

surrounding the knee or tears of the knee ligaments may damage the articular 

cartilage over time, causing knee pain and limiting knee function. 

 

Figure 3: Osteoarthritis often results in bone rubbing on bone. Bone spurs are a common feature of this form of 
arthritis (https://orthoinfo.aaos.org/). 

 

All the aforementioned conditions can effectively limit joint Range of Motion (ROM) 

(Figure 4). ROM is the measurement of movement around a specific joint or body part. It is 

measured in degrees from the center of the knee. ROM includes flexion (bending), extension 

(straightening), adduction (movement towards center of the body), abduction (movement 

away from center of the body), rotations (inward and outward). 

 

Figure 4: ROM Measurement Example (https://study.com/). 
 

ROM is measured using an instrument called a ‘goniometer’ (Figure 5). For instance, a 

completely straight knee joint measure 0° while a fully bent knee clocks in at about 135° 

degrees of flexion. 

 

https://orthoinfo.aaos.org/
https://study.com/
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Figure 5: Goniometer used by orthopaedics and physiotherapists for measuring ROM 
(http://www.medigauge.com/). 

 

2.1.2 TKR 

Total Knee Arthroplasty (TKA), also known as Total Knee Replacement (TKR), is one of 

the most commonly performed orthopedic procedures (Figure 6). As of 2010, over 600,000 

total knee replacements were being performed annually in the United States and were 

increasingly common (Martin et al. 2014). Among older patients in the United States, the per 

capita number of primary total knee replacements doubled from 1991 to 2010 (from 31 to 62 

per 10,000 Medicare enrollees annually). The number of total knee replacements performed 

annually in the United States is expected to grow by 673 percent to 3.48 million procedures by 

2030. A variety of pathologic conditions affecting the knee can be treated with total knee 

replacement, leading to pain relief, to restoration of function, and to mobility. 

 

Figure 6: Knee before TKR and after adding Implant (http://www.jaipurjointreplacement.com/). 

 

Total knee replacement is one option to relieve pain and to restore function to an 

arthritic knee. The most common reason for knee replacement is that other treatments 

(weight loss, exercise/physical therapy, medicines, and injections) have failed to relieve 

arthritis-associated knee pain. The goal of knee replacement is to relieve pain, improve quality 

of life, and maintain or improve knee function. The procedure is performed on people of all 

ages, with the exception of children, whose bones are still growing. It is important to have 

significant pain and/or disability prior to considering this procedure. Because the replacement 

parts can break down over time, and healthcare providers generally recommend delaying knee 

replacement until it is absolutely necessary. 

http://www.medigauge.com/
http://www.jaipurjointreplacement.com/
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2.1.3 Rehabilitation Exercises for TKR 

Physical therapy is an essential part of rehabilitation after total knee replacement. The 

first weeks following knee surgery are crucial so that the Range of Motion (ROM) of the 

operated knee is deemed fully operational. Insufficient exercise at this phase predisposes 

patients to disability with increasing age (Stevens-Lapsley et al. 2012). Traditionally a 

physiotherapist instructs a number of exercises to the patient. The patient should repeat these 

exercises in regular basis in order to successfully recover motion of the knee. The exercises in 

question are selected by the physiotherapists based on the American Academy of Orthopaedic 

Surgeons TKR exercise guide (Parvizi et al. 2008). The physiotherapists supervise patients 

during each exercise repetition in order to determine whether it was performed in a compliant 

manner, involving the appropriate body posture speed rate. The physiotherapist evaluates the 

performance of the exercises. Common Exercises utilized are shown in Table 1. These exercises 

form the base of the current rehabilitation framework implementation. Moreover, the knee 

extension exercise is used extensively throughout our experimental procedure. 

Exercise Sensor 
Placement 

Description 

Knee Extension Shin From sitting position, the leg is extended, then 
lowered back to starting position. 

Straight Leg Raise Shin From lying on back position, the leg is lifted and 
then slowly lowered back to starting position. 

Heel Slide Shin From lying on back position, the heel is slowly 
moved up and then slowly moved down to 
starting position. 

Lying Kicks Shin From lying on back position, an object is inserted 
under the knee, thus, raising it. Then, the leg is 
raised and lowered back again. 

Table 1: Common Rehabilitation Exercises for TKR. 

 

There can be variant categories of post-operative physiotherapy interventions. 

Hydrotherapy, e.g. exercise in a warm water environment when recovering from knee surgery, 

was associated with comparable outcomes with land-based rehabilitation up to 26 weeks post-

surgery (Harmer et al. 2009). Hydrotherapy, though, requires specific environmental set-up 

restricting rehabilitation portability. Electrotherapy through muscle neuromuscular electrical 

stimulation (NMES), initiated 48 hours after TKR, effectively improved functional performance 

following TKR (Stevens-Lapsley et al. 2012). Physiotherapist attaches patches to the patient 

that give a small electrical shock. This shock empowers the muscles of the knee and help in 

performing the required exercise. This method is suitable for recovering patients a few weeks 

after surgery. For inpatients while it can be done, it can cause undesirable pain to the patient. 

 

 

Figure 7: Left, Hydrotherapy example (http://sportsmed.in/). Right, Electrotherapy (NMES) example 
(http://nmesquadrehabpostkneesurgery.blogspot.com/). 

http://sportsmed.in/
http://nmesquadrehabpostkneesurgery.blogspot.com/
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The method proposed in this work motivates the patient to actively put effort in order 

to perform the exercises, in contrast with electrotherapy for which the motion is performed 

passively based on electrical stimulation of the muscle cells. The scope of this project is to 

examine if a visual interactive stimulation through gaming can help the patient to focus on the 

game instead of the pain or discomfort of the exercise. 

 

2.2 Existing Technologies for Limb Motion Tracking 

2.2.1 Optical Systems 

They use visual data captured by one or more cameras to triangulate the 3D position 

of a set of points detected, with the aid of markers attached to the body (Figure 8). Some of 

them can reach a high precision (i.e, in the range of few millimeters), but also have very high 

costs, like for example the Vicon. A cheaper solution is represented by Microsoft Kinect, which 

uses only one RGB camera and an infrared depth sensor composed by an infrared laser grid 

scanner and a related infrared camera. It is not as precise as the more expensive systems: it's 

precision is in the order of centimeters instead of millimeters, and has a limited maximum 

range (5m). It also suffers by all typical disadvantages of optical systems, the most important 

are the need of instrumenting the scene, preparing a setup of cameras and the possibility of 

operating properly only in the presence of line of sight between the cameras and the object 

being tracked. There are other kind of systems that exploit the high frequency interference 

patterns caused by lasers (Zizka et al. 2011) and sense direct or reflected light using a high 

framerate lensless 2D image sensor. They can be used to track fast (i.e, up to 1000Hz) motion 

using minimal hardware. Despite their lower cost and much simpler hardware requirement 

than camera-based sensor, these systems still need the instrumentation of the scene. 

 

Figure 8: Vicon motion capture platform (https://www.vicon.com/). These technologies often use markers for 
successful motion. 

 

2.2.2 Exo-skeletons 

They are rigid structures of jointed, straight metal or plastic rods linked together with 

potentiometers or encoders that articulate at the joints of the body (Solazzi et al. 2010, Iqbal & 

Baizid 2015) (Figure 9). These systems offer real-time, high precision acquisition and have the 

https://www.vicon.com/
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advantage of not being influenced by external factors (Menache 2000), such as visual 

occlusion, quality and the number of cameras, and they have no limit on maximum capture 

volume. Some systems also provide haptic limited force feedback. Their main disadvantage is 

the movement limitation imposed by the mechanical constraints of the exoskeleton structures 

(Harada et al. 2004). 

 

Figure 9: HEXOSYS-II Exoskeleton Prototype, for stroke rehabilitation (Iqbal & Baizid 2015). 
 

2.2.3 Electrogoniometers 

Flexible electrogoniometers are widely used to measure human joint movements, with 

applications ranging from medicine (e.g. kinesiology, rehabilitation, diagnostics) to virtual 

reality interfaces and computer peripherals (Wang et al. 2011). Their advantage over 

conventional potentiometric goniometers is that they adapt better to body parts and are not 

sensitive to misalignments concomitant with the movement of polycentric joints. On the other 

hand, the major weakness of this technology is its relatively high cost (Figure 10). 

 

Figure 10: Electrogoniometer System (Wang et al. 2011). 
 

2.2.4 Magnetic Systems 

They calculate the position and orientation of a magnetic sensor probe moving in a 

magnetic field generated by 3 orthogonal coils (Figure 11). The main disadvantage of these 

systems is that they are susceptible to magnetic and electrical interference from metal objects 
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in the environment, which affect the magnetic field, or electromagnetic sources, such as 

monitors, lights, cables and computers. 

 

Figure 11: Polhemus Patriot magnetic system (http://polhemus.com/). 

2.2.5 Inertial Measurement Units 

Inertial Motion Capture (Roetenberg et al. 2009) technology is based on miniature 

inertial sensors, biomechanical models, and sensor fusion algorithms (Figure 12). The motion 

data of the inertial sensors (inertial guidance system) is often transmitted via wireless to a 

computer, where the motion is recorded or viewed. Most inertial systems use gyroscopes to 

measure rotational speed. These rotations are translated to a skeleton by the software. Inertial 

motion systems capture the full 6 degrees of freedom body motion of a human in real-time 

and can also include a magnetic sensor, although these have a much lower resolution and are 

susceptible to electromagnetic noise. Benefits of using inertial systems include low cost, small 

dimensions, portability, and large capture areas. Disadvantages include lower positional 

accuracy and positional drift. 

 

Figure 12: Xsens motion capture suit employs 17 MIMUs (Roetenberg et al. 2009). 
  

On the current project, IMUs were preferred over the aforementioned technologies. 

IMUs respect the current framework’s main design constraints of low cost and portability. By 

employing a single IMU the portability can be maximized while the accuracy remains in 

acceptable levels (Giggins et al. 2014, Huang et al. 2016). There are trade-offs to consider 

when selecting a desired technology concerning factors such as accuracy, portability, cost. In 

that aspect, exo-skeletons provide high accuracy in measurements but limited portability and 

http://polhemus.com/
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very high cost at the time of writing. Optical systems and specifically the Kinect system could 

also be an interesting choice and can be seen in rehabilitation systems at home due to its 

acceptable accuracy and low cost. On the other hand, a single IMU sensor offers enhanced 

portability since it doesn’t limit rehabilitation only at home. Instead it allows rehabilitation 

anywhere in the park, outdoors and indoors based on the use of a mobile phone or tablet and 

a small sensor allows rehabilitation at practically any place. These trade-offs are to be 

considered in the multiple IMUs solution compared to a single IMU solution. Multiple IMUs 

provide higher accuracy (Huang et al. 2016) but raise the cost while lowering portability. The 

accuracy provided by a single IMU solution after applying Kalman filtering to the sensor data 

can be acceptable for the case of simple knee rehabilitation exercises provided that critical 

factors are handle properly. One such factor is the proper node placement of the sensor on the 

appropriate body part. IMUs are very sensitive to misalignments. Users of the application must 

be instructed to properly position the sensor, so they will be able to use it by themselves when 

performing rehabilitation without supervision. 

2.3 Related Works & Applications 
Several approaches listed below have been employed to track limb motion of diverse 

precision, cost and complexity. Although the focus is mainly on the low-cost solutions inertial 

sensor systems can provide, useful results are provided from existing frameworks in costly 

applications. 

2.3.1 Rehabilitation Projects 

An Augmented reality (AR) system is proposed for the rehabilitation of hand 

movements which have been impaired due to illness or accident (Shen et al. 2008). Through 

the proposed system, the patient can practice daily at home utilizing a standard computer, a 

webcam and two wireless 5DT data gloves (Figure 13). Using AR technology, a highly 

controllable environment including tasks of varied difficulty levels is provided to the patients 

for them to perform the exercise gradually and systematically. A similar technique was used 

and tested on 8 stroke patients (Cameirão et al. 2011). The results were positive compared to 

conventional therapy. The rehabilitation gaming system group displayed significantly improved 

performance in paretic arm speed. The use of the data gloves, however, raises the cost and the 

technical complexity of this system which may require specialized technical support and 

maintenance. 

 

Figure 13: Hand movement rehabilitation using motion capture and data 5DT gloves (Shen et al. 2008). 
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Furthermore, 3 methods were proposed for representing changes in human motion 

symmetry during injury rehabilitation (Field et al. 2013). In this context, a motion capture suit 

was employed with 17 inertial sensors (each worth about 2000 $) to measure body postures 

(Figure 14). The methods are tested on an injured athlete over 4 months of recovery from an 

ankle operation and validated by comparing the observed improvement to the variation 

among a group of uninjured subjects. The results indicate that gradual changes are detected in 

the motion symmetry, thus providing quantitative measures to aid clinical decisions. Methods 

such as this one that employ a sensor network provide higher measurement accuracy as 

mentioned in the previous section but greatly increase the application cost and decrease 

portability. 

 

 

Figure 14: 17 inertial sensor network (Field et al. 2013). 
 

Several rehabilitation studies using motion tracking employ the Kinect optical system, 

which, however, requires specialized set-up and technical support (Figure 15). Previous 

research has identified patients’ general expectations for rehabilitation games and evaluated 

two newly developed low-cost puzzle and archery rehabilitation games through surveys 

(Crocher et al. 2013). Testing on 3 post-stroke patients identified the need to improve 

reliability and precision of the low-cost hardware as well as to demonstrate clinical benefits. 

 

Figure 15: Use of Kinect in conjunction with p5 glove (Crocher et al. 2013). 
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There also exists iPad applications (Rand et al. 2013) that exploit sensory input (light, 

touch and accelerometer) in order to improve hand function post-stroke (Figure 16). 

Preliminary findings point to the potential of using apps in the process of post-stroke hand 

rehabilitation. However, the input for this method is limited at finger tapping, not suitable for 

more complex exercises and not based on motion tracking data providing feedback to the 

patient. 

 

Figure 16: A screenshot of the Dexteria App developed to train fine motor skills (Rand et al. 2013). 
 

2.3.2 IMU Example Applications 

There are several AR experimental applications that employ IMUs, in virtual 

rehabilitation. There are frameworks that correct sensor measurements with the use of Kinect 

(Figure 17) and Kalman Filtering (Bo et al. 2011). In other projects combination of sensors were 

assessed in order to be implemented as a multi-sensor unit for a portable arm rehabilitation 

device (Ambar et al. 2012). These sensors include, besides an accelerometer, a flex sensor 

instead of a gyroscope for specific angle measurement during limb bending and a force 

sensitive sensor to measure limb pressure. 

 

Figure 17: Estimation of 3D joint positions using Kinect (Bo et al. 2011). 
 

Typically multiple IMUs are used to create a network that computes body limb 

orientation. One such sensor network system is used to automate a portion of the Upper-
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Extremity Fugl-Meyer Assessment (FMA), which is widely used to quantify motor deficits in 

stroke survivors (Lee et al. 2014). The system has the ability to automatically identify the 

assessment item being conducted for the FMA test and calculate the maximum respective 

joint angle achieved. The system has shown comparable levels of accuracy in measuring a 

range of joint angles (Figure 18) when compared to the goniometer used by clinicians 

(compared measurements from 2 therapists). 

 

Figure 18: Joint angle estimation through sensor network for mobile app (Lee et al. 2014). 
 

IMUs are widely used for gait cycle observation. An example framework on this topic 

describes an improved IMU-based gait analysis processing method that uses gyroscope angular 

rate reversal to identify the start of each gait cycle during walking (Hundza et al. 2014). In 

validation tests with 6 subjects with Parkinson disease (PD), including those with severe 

shuffling gait patterns, and 7 controls, the probability of True-Positive event detection and 

False-Positive event detection was 100% and 0%, respectively. 

Having a large sensor network can increase the computational demands and cost of an 

application. Reducing number of sensors can provide portable results with some loss in 

accuracy (Giggins et al. 2014, Huang et al. 2016). An example of such a framework uses a 

network of 2 wireless sensor nodes (arm, wrist) in order to classify 6 rehabilitation exercises 

(Figure 19) for the frozen shoulder condition by means of an artificial neural network (ANN) 

algorithm (Lee et al. 2013). As results, 5 of 6 exercises are successfully recognized with 85-90% 

of accuracy rates but the complex one (i.e. the spiral rotation exercise) reached only around 

60%. 

 

Figure 19: Sensor network consist of 2 IMUs: (a) on arm, (b) on wrist (Lee et al. 2013). 
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There are also projects that examine the use of a single IMU allowing maximum 

portability. One such work uses a single IMU node on the shin (Figure 20) to examine if it is 

capable of identifying conditions of poor technique during 7 lower limb exercises (Giggins et al. 

2013). The data presented has revealed that a single IMU can be used to identify the 

conditions of poor technique during 5 of the 7 exercises studied. Moreover, a single IMU 

system is also designed capable of measuring tibia angle using a shank mounted wireless 

inertial sensor. The system employs a simple setup with a single skin-mounted triaxial 

accelerometer and gyroscope module attached to the tibia segment, and an algorithm to 

estimate the tibia angle, achieving an RMSE of 1.6±1.1 and 2.5±1.6 degrees in tibia-flexion and 

tibia-adduction angles. Such results further encourage the use of a single inertial unit in Total 

Knee Replacement (TKR) patients additionally using the gamification strategy proposed in this 

thesis in order to extract quantitative results on the Range of Motion (ROM) of the patients. 

 

Figure 20: Single IMU placed on shin (Giggins et al. 2013). 
 

New interactive technologies have been recently applied to rehabilitation sessions 

with the aim to increase strength and balance while improving patient stimulation, compliance 

and satisfaction with treatment. The effectiveness of an activity coaching system including an 

accelerometer-based activity sensor, alongside a home-based exercise program has been 

examined (Harmelink et al. 2017). A hand-held electronic device was connected to a mobile 

application on a smartphone providing information and advice on exercise behavior during the 

day. There are no conclusive results yet, but the expectation is that using the system will result 

in an increase of physical functioning in the group receiving the activity coaching system. This 

coaching system can be a very useful addition to be used alongside with a gamification system 

since it can improve user experience and provide useful statistics during the day that later can 

be send to health professionals for assessment (e.g. doctors or physiotherapists). 

 

Figure 21: Activity coaching system, consisting of a smartphone and an accelerometer based activity sensor 
(Harmelink et al. 2017). 
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The use of integrating the Wii-Fit game into a rehabilitation paradigm after TKA has 

also been investigated (Fung et al. 2012). In addition to standard therapy, users received 15 

minutes of Wii-Fit gaming activity, while the control group received 15 minutes of additional 

lower extremity exercise. There were no differences between groups for ROM. These findings 

suggest that the addition of Wii-Fit as an alternative to lower extremity strengthening may be 

an appropriate rehabilitation tool further encouraging gamification strategies on 

rehabilitation. Wii-Fit provides a low cost solution to rehabilitation practices, although 

restricting the rehabilitation mostly at home, similarly to Kinect based approaches. 

The use of new digital technologies encourages the further investigation of automatic 

exercise rehabilitation classification. There exists an increasing number of past research that 

employ IMU nodes for evaluation of limb rehabilitation exercises (Lee et al. 2013, Giggins et al. 

2013, Huang et al. 2016). Previous work indicates that when multiple IMUs are employed, 

satisfactory exercise classification accuracy results are achieved based on three, two and one 

IMUs (Lee et al. 2013). Such results drive the further investigation of the challenging 

classification problem using just a single IMU in this thesis, enhancing maximum portability 

compared to multiple IMU systems, in conjunction with sufficiently high success rates of 

movement detection. Employing more than two sensor nodes can achieve higher accuracy in 

ROM measurement under certain conditions, e.g. when accurate node placement is ensured 

(Huang et al. 2016), however, such systems are difficult to operate and of limited portability. 

2.4 IMU Functionality 
The desired portability can be provided by the use of inertial sensors in the application 

design process. Inertial 9-axis or 6-axis sensors provide a low-cost solution for rehabilitation 

procedures. 6-axis sensors contain accelerometer and gyroscope, for relocation and angle 

measurement respectively. 9-axis sensors additionally include a magnetometer for more 

accurate and complete results. On the other hand magnetometer measurements are 

susceptible to noise caused by gravitational fields and electricity. One should consider the 

application requirements in order to choose which type of sensor to use.  

2.4.1 MPU-9150 Overview 

Inertial Measurement Units (IMUs) provide the leading technology used in 

smartphones and wearable devices in order to measure rotational and translational 

movements. In this project, the IMU MPU-9150 is used, which is small in size, cheap and 

portable. The utilized sensor node contains several sensors: 

 3-axis Accelerometer. The accelerometer measures inertial force caused by 

gravity and acceleration. It can accurately measure rotation, however, it is 

susceptible to noise caused by rapid changes of acceleration. In order to be able 

to capture orientation along the z-axis, a magnetometer (compass) is used 

complementary to the accelerometer. 

 3-axis Gyroscope. The gyroscope measures the rate of change of any angle at a 

specified frequency, e.g. 100 Hz. This makes it suitable for short-term 

observations and fast rotational signal changes. In relation to long-term 



Chapter 2 – Existing Work & Background 
 

 30 

observations, it is susceptible to drift errors. Then, measurements should be 

sampled in exact intervals according to a specified frequency. 

 3-axis Magnetometer. The magnetometer measures the earth’s magnetic field. 

It is used in conjunction to the gyroscope sensor in order to capture rotation 

around z-axis. 

 Temperature sensor. Measuring environmental temperature. 

The suggested IMU to be used is the MPU-9150 9-Axis (Gyro + Accelerometer + 

Compass) MEMS MotionTracking™ Device. Accuracy error measurements for relocation and 

angle for this IMU are presented (Figure 22). 

 

Figure 22: Left, relocation measurement error. Right, angle measurement error (Buonocunto & Marinoni 2014). 
 

For more information on setting up and reading data from MPU 9150, there are 2 

documents that must be studied: 

 MPU-9150 Product Specification. 

 MPU-9150 Register Map. 

Below these 2 documents are briefly described. 

2.4.2 MPU-9150 Product Specification 

The product specification provides information regarding the electrical specification 

and design related information for the MPU-9150™ Motion Processing Unit™ or MPU™. 

Electrical characteristics are based upon design analysis and simulation results only. 

The MPU-9150 is the world’s first integrated 9-axis MotionTracking device that 

combines a 3-axis MEMS gyroscope, a 3-axis MEMS accelerometer, a 3-axis MEMS 

magnetometer and a Digital Motion Processor™ (DMP™) hardware accelerator engine. The 

MPU-9150 is an ideal solution for handset and tablet applications, game controllers, motion 

pointer remote controls, and other consumer devices. The MPU-9150’s 9-axis MotionFusion 

combines acceleration and rotational motion plus heading information into a single data 

stream for the application. This MotionProcessing™ technology integration provides a smaller 

footprint and has inherent cost advantages compared to discrete gyroscope, accelerometer, 

plus magnetometer solutions. In smartphones, it finds use in applications such as gesture 
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commands for applications and phone control, enhanced gaming, augmented reality, 

panoramic photo capture and viewing, and pedestrian and vehicle navigation. With its ability 

to precisely and accurately track user motions, MotionTracking technology can convert 

handsets and tablets into powerful 3D intelligent devices that can be used in applications 

ranging from health and fitness monitoring to location-based services. Key design constraints 

are small package size, low power consumption, high accuracy and repeatability, high shock 

tolerance, and application specific performance programmability – all at a low consumer price 

point. 

The MPU-9150 features three 16-bit analog-to-digital converters (ADCs) for digitizing 

the gyroscope outputs, three 16-bit ADCs for digitizing the accelerometer outputs and three 

13-bit ADCs for digitizing the magnetometer outputs. For precision tracking of both fast and 

slow motions, the parts feature a user programmable gyroscope full-scale range of ±250, ±500, 

±1000, and ±2000°/sec (dps), a user programmable accelerometer full-scale range of ±2g, ±4g, 

±8g, and ±16g, and a magnetometer full-scale range of ±1200µT. The MPU-9150 is a multi-chip 

module (MCM) consisting of two dies integrated into a single LGA package. One die houses the 

3-Axis gyroscope and the 3-Axis accelerometer. The other die houses the AK8975 3-Axis 

magnetometer from Asahi Kasei Microdevices Corporation. Additional features include an 

embedded temperature sensor and an on-chip oscillator with ±1% variation over the operating 

temperature range. 

 

Figure 23: MPU-9150 Pins, Axes of Sensitivity for Accelerometer, Gyroscope, Magnetometer 
(https://www.invensense.com/). 

 

2.4.3 MPU-9150 Register Map 

This document provides preliminary information regarding the register map and 

descriptions for the MPU-9150™ Motion Processing Unit™ or MPU™. The outputs from MPU-

9150 are not analog signals expressed in e.g. Volts. They are digitized signals that use ADCs as 

mentioned in the specification above.  The output from MPU-9150 as well as the configuration 

input to MPU-9150 is stored in 8 bit registers. Communication with all registers of the device is 

performed using I2C at 400 kHz. I2C is a bus protocol that allows short-distance, serial data 

transfer. The addresses on the bus are 7 bits wide. So a register address can range between 0-

27. This follows that the device can have maximum 128 registers to read or write. The Register 

Map document contains information about the available Registers for read/write (Figure 24). 

https://www.invensense.com/
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Figure 24: MPU-9150 Register Map Contents. Short description of each register functionality 
(https://www.invensense.com/). 

 

For each one of the device registers the Register Map shows detailed information on 

each individual register functionality and how to write or read data to or from the register. As 

a simple example we will examine the registers needed in order to read temperature data. For 

simplicity let’s assume that the device is configured correctly except the temperature sensor. 

So in order to receive correct output, the temperature sensor must be enabled. This can be 

achieved by checking the Register Map documentation for Register 107 (Figure 25). 

 

Figure 25: MPU-9150 Register 107 Schematic (https://www.invensense.com/). 
 

The bus address for this sensor is 6B in Hex or equivalently 107 in Decimal. This is a 

Read/Write sensor. The temperature sensor configuration is achieved using bit TEMP_DIS 

https://www.invensense.com/
https://www.invensense.com/
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(Bit3). The documentation for this bit states: When set to 1, this bit disables the temperature 

sensor. The temperature sensor can be enabled by simply setting this bit to 0. In order not to 

change the existing value of the register it is advised to first read the register existing value and 

then apply an ‘AND mask’ for Bit3 (11110111). The Register Map documentation points to 

Registers 65 and 66 for reading temperature measurement (Figure 26). 

 

Figure 26: MPU-9150 Registers 65, 66 Schematic (https://www.invensense.com/). 
 

These registers store the most recent temperature sensor measurement. This 

measurement is a 16-bit value so it uses two 8-bit registers to compute TEMP_OUT. 

Documentation states that the temperature in degrees C for a given register value may be 

computed as: 

Temperature in degrees C = (TEMP_OUT Register Value as a signed quantity)/340 + 35 

Before starting using the device all registers must be set to correct settings, registers 

such as Sample Rate, Accelerometer & Gyroscope configuration etc. The configuration for this 

project is discussed in the Implementation section of the sensor node. 

2.5 IMU Filtering Methods 
IMUs have the disadvantage of lower positional accuracy and positional drift as 

mentioned above. There are ways to minimize the error accumulation with the use of an 

appropriate filtering method (Buonocunto & Marinoni 2014). Such methods include 

Complementary filter, Kalman Filter, Madgwick Filter. Although the errors are minimized, it 

still remains a challenge to maintain accurate angle and relocation measurements of limb 

motion. Especially if the rate of these movements is relatively fast.  

2.5.1 Complementary Filter 

These filters follow a frequency-based approach, and this is one of the first 

methodologies used to address these issues. The key idea is to filter one signal through a low-

pass filter, the other one through a high-pass filter, and combine them to obtain the final rate. 

In case of IMUs, it can be better to combine slow moving signals from the accelerometer and 

magnetometer, and fast moving signals from the gyroscope. The result is to favor 

accelerometer measurements of orientation at low angular velocities and the integrated 

gyroscope measurements at high angular velocities. Such an approach is simple but may only 

be effective under limited operating conditions. There are algorithms (Bachmann et al. 2001, 

Mahony et al. 2008) that employ a complementary filter process, using adaptive parameters. 

This algorithm structure has been shown to provide a good trade-off between effective 

performance and computational expense (Figure 27). 

https://www.invensense.com/
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Figure 27: Quaternion-Based Complementary Orientation Filter (Mahony et al. 2008). 
 

2.5.2 Kalman Filter 

The Kalman filter (Kalman 1960, Grewal 2011) has become a basis for the majority of 

orientation algorithms and commercial inertial orientation sensors, like Xsens, Intersense, and 

many others. The widespread use of Kalman-based solutions is a guarantee of their accuracy 

and effectiveness. Nevertheless, the Kalman filter implementation imposes a high 

computational load due to a lot of recursive formulas that need to be calculated to minimize 

the least mean squared error. Kalman filter is the methodology used in the current 

implementation. Refer to Derivation of Kalman filter parameters section below for justification 

of this choice. 

 

Figure 28: Simple block diagram of Kalman filter design (Grewal 2011). 

 

 

Figure 29: Kalman filter process model (Grewal 2011). 
 

2.5.3 Madgwick Filter 

The algorithm uses a quaternion representation, allowing accelerometer and 

magnetometer data to be used in an analytically derived and optimized gradient descent 

algorithm to compute the direction of the gyroscope measurement error as a quaternion 

derivative (Madgwick et al. 2011). The algorithm achieves levels of accuracy matching that of 
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Kalman-based methods, but with lower computational load, and the ability to operate at small 

sampling rates.  

 

Figure 30: Block diagram of Madgwick orientation estimation algorithm for IMU (Madgwick et al. 2011). 

 

2.5.4 Derivation of Kalman Filter Parameters 

The filtering procedure in the present study is not handled in the sensor node 

containing the IMU. Instead it is handled by the application software. The application software 

runs on Android devices. These devices usually follow ARM architecture using new generation 

multicore CPUs that can handle higher filtering computational load. So Kalman filtering is 

preferred for its optimality over different methods discussed. Complementary filtering was 

also tested and provided very similar results to these of Kalman filtering. Below the Kalman 

filtering method is analyzed for Accelerometer and Gyroscope data. This analysis leads to the 

detailed implementation provided in the Implementation Section. 

The algorithm works in a two-step process. In the prediction step, the Kalman filter 

produces estimates of the current state variables, along with their uncertainties. Once the 

outcome of the next measurement (necessarily corrupted with some amount of error, 

including random noise) is observed, these estimates are updated using a weighted average, 

with more weight being given to estimates with higher certainty (Figure 31). 

 

Figure 31: Kalman Algorithm Steps (https://www.wikipedia.org/). 

 

https://www.wikipedia.org/
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The Kalman filter model assumes the true state at time k is evolved from the previous 

state (at k-1) according to: 

 

Where xk is the state matrix which is given by: 

 

The output of the filter will be the angle θ but also the bias θb based upon the 

measurements from the accelerometer and gyroscope. The bias is the amount the gyro has 

drifted. This means that one can get the true rate by subtracting the bias from the gyro 

measurement. The next is the F matrix, which is the state transition model which is applied to 

the previous state xk-1. In this case F is defined as: 

 

Where Δt is the gyroscope constant rate which is configured at e.g. 100 Hz. This will 

result in a Δt = 0.01 s = 10 ms. Following there is the control input uk, in this case it is the 

gyroscope measurement in rad (or degrees) per second (°/s) at time k. This is denoted as the 

rate . The state equation then becomes:  

 

The matrix B is independent of k, since it depends on the constant gyroscope rate Δt. 

So Β notation is used instead of Bk. This is the control-input model, which is defined as: 

 

The wk vector is process noise which is Gaussian distributed with a zero mean and with 

covariance Q to the time k: 

 

Qk is the process noise covariance matrix and in this case the covariance matrix of the 

state estimate of the accelerometer and bias. In this case we will consider the estimate of the 

bias and the accelerometer to be independent, so it’s just equal to the variance of the 

estimate of the accelerometer and bias. The final matrix is defined as so: 

 

At time k an observation (or measurement) zk of the true state xk is made according to: 
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H is the observation model and is used to map the true state space into the observed 

space. The true state cannot be observed. Since in this case the measurement is just the 

measurement from the accelerometer, H is independent of k so the notion Hk is dropped and 

is given simply by: 

 

The noise of the measurement have to be Gaussian distributed as well with a zero 

mean and R as the covariance: 

 

But as R is not a matrix, the measurement noise is just equal to the variance of the 

measurement, since the covariance of the same variable is equal to the variance. Now R can be 

defined as so: 

 

Assuming that the measurement noise is the same and does not depend on the time k 

then the resulting R becomes: 

 

The Kalman algorithm requires the fine tuning of the noise variance parameters for Qk 

and R. In this project an estimation of these parameters is achieved by observing the variance 

of the accelerometer and gyroscope signals on their resting state where their initial values are 

known. 

Now that the accelerometer and gyroscope variables have been defined, the 

computation of the Kalman algorithm steps can commence. By replacing the current model 

parameters, the following results are derived: 

 Step 1. Predicted apriori state estimate. 

 
 

 
 

 Step 2. Predicted (a priori) estimate covariance. 

 
 

 
 

 Where 
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 Step 3. Innovation or measurement pre-fit residual. 

 
 

 
 

 Step 4. Innovation (or pre-fit residual) covariance. 

 
 

 
 

 Step 5. Optimal Kalman gain. 

 
 

 
Where, 

 
 

 Step 6. Updated (a posteriori) state estimate. 

 
 

 
 

 Step 7. Updated (a posteriori) estimate covariance. 

 
 

 
 

2.6 Embedding the IMU 

2.6.1 Single-board Computer vs Microcontroller 

Controlling any sensor requires the connection of this sensor to either a 

microcontroller or single-board computer (SBC) configured as a microcontroller. A 

microcontroller (or MCU for microcontroller unit) is a small computer on a single integrated 

circuit. Popular MCU examples are Arduino products. On the other hand a single-board 

computer is a complete computer built on a single circuit board, with microprocessor(s), 
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memory, input/output (I/O) and other features required of a functional computer. Popular SBC 

examples are the Raspberry Pi series. 

For reading/writing sensor data MCUs are preferred due to lower power consumption. 

On the other hand SBCs have the advantage of the Operating System drivers support in order 

to customize and configure functionalities like I2C and networking in a simple manner without 

the need of external Bluetooth shields like in Arduino. This project will not focus on the low 

level consumption hardware design. It will focus on simplicity of hardware and the software 

application framework that should be independent of the sensor hardware. It follows that the 

software application should work with any hardware implementation if data are received in a 

consistent manner. Simplicity and Bluetooth connectivity are the main reasons we have 

chosen Raspberry Pi for this project in order to create a prototype node. There is also the 

option of Andruino BT which is still costly at the time of writing, about 5 times more than the 

Bluetooth equivalent of Raspberry Pi, model Zero W. 

 

Figure 32: Left, Arduino BT (https://www.arduino.cc/). Right, Raspberry Pi Zero W 
(https://www.raspberrypi.org/). 

 

2.6.2 Raspberry Pi Overview 

The Raspberry Pi is a series of small single-board computers developed in the United 

Kingdom by the Raspberry Pi Foundation to promote the teaching of basic computer science in 

schools and in developing countries. Raspberry Pi series consist of several models with 

different specifications. For use in an embedded project the Raspberry Pi Zero family is ideal 

due to its smaller size and lower power consumption. On 28 February 2017, the Raspberry Pi 

Zero W was launched, which is like Raspberry Pi Zero with Wi-Fi and Bluetooth, for US$10. This 

is the specific Raspberry Pi model used in the current thesis for the hardware node 

implementation. The Raspberry Pi Zero W extends the Pi Zero family. The Pi Zero W has all the 

functionality of the original Pi Zero, but comes with added connectivity, consisting of: 

 802.11 b/g/n wireless LAN. 

 Bluetooth 4.1. 

 Bluetooth Low Energy (BLE). 

For the current project, this is the ideal candidate since the sensor data are to be 

transferred in the application through a Bluetooth Connection. Like the Pi Zero, it also has: 

 1GHz, single-core CPU. 

https://www.arduino.cc/
https://www.raspberrypi.org/
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 512MB RAM. 

 Mini HDMI and USB On-The-Go ports. 

 Micro USB power. 

 HAT-compatible 40-pin header. 

 Composite video and reset headers. 

 CSI camera connector. 

An external sensor like an IMU can be attached on the 40-pin header provided by the 

Raspberry Pi for General Purpose Input and Output (GPIO) (Figure 33). This is the case in the 

current project as the IMU is connected to 4 pins of the GPIO using the I2C interface as 

described in detail in the Hardware Node Implementation section. 

 

Figure 33: Raspberry Pi 40 GPIO pin header (https://www.raspberrypi.org/). 
 

2.6.3 Configuring Raspberry Pi as a Microcontroller 

By default Raspberry boots in the Linux OS installed in desktop mode. The default 

Linux distribution on Raspberry Pi is Raspbian. Running in desktop mode consumes 

unnecessary resources and is not suitable for embedded development. This behavior can 

change using the command raspi-config. This command starts the configuration utility of 

Raspberry Pi. There, under Boot Option there is the option of Automatic login in Console mode 

(Figure 34). This has 2 benefits. Using only the Console and allowing for the Raspberry Pi to 

boot automatically without using any credentials. This way a custom made script can run 

automatically on boot, as described further in this section. 

 

https://www.raspberrypi.org/
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Figure 34: Setting Console Autologin through Boot Options in raspi-config. 
 

A useful option for development is to also change the default layout for the keyboard 

to match the one used. Raspbian doesn’t detect localization settings automatically like many 

desktop Operating Systems do. The user must change the Localisation Option using raspi-

config to much the keyboard layout in order for the keyboard input to be correct (Figure 35). 

  

Figure 35: Main Screen in raspi-config. Localisation Options are selected. 
 

The next important setting is to enable I2C in order to communicate with the sensor 

using this protocol. This can be achieved through Interfacing Options (Figure 36). 
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Figure 36: Enable I2C. 
 

These are the necessary configuration through the raspi-config interface. The next 

important thing is to configure Bluetooth and Wi-Fi as needed. Both should be enabled by 

default. In the current application however, Wi-Fi is not needed. It consumes resources and 

depletes the battery faster. So it must be disabled. This can be done by editing 

/etc/modprobe.d/raspi-blacklist.conf and adding the following lines in order to blacklist the 

wifi. 

#wifi 
blacklist brcmfmac 
blacklist brcmutil 

 

This way should suffice although there are other techniques like editing config.txt or 

removing wpa-conf from interfaces.d. 

 Finally to fully automatize the process, the Raspberry Pi can run a custom bash script 

upon start up. There are again several ways to achieve this. One of them is to use the file 

/home/pi/.bashrc and append the script path in the end of the file. The script path can be of 

the following form: /home/pi/MyCustomPath/MyCustomScript.sh. In order for a custom script 

to automatically start it must be an executable. This can be done by changing its permission 

with the following command: 

sudo chmod +x /home/pi/MyCustomPath/MyCustomScript.sh 
 

At this point the basic configuration for using raspberry pi as a microcontroller is 

completed. This process will later be used in the implementation section in order to connect 

the MPU-9150 to the Raspberry Pi. 
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3 Chapter 3 – Overview of IDE & Development 

Tools 
 

3.1 Game Development 
With the advance of technology and increase in processing power, the development of 

more complex games became a reality. At first rendering engines emerged that focused on 

projecting 3D models on the screen. The use of a graphics processing unit (GPU) enabled very 

efficient manipulation of computer graphics. Modern GPUs highly parallel structure make 

them more effective than general-purpose CPUs for algorithms where processing of large 

blocks of data is done in parallel. Besides graphic engines a game nowadays needs more 

functional components such as sound engine, physics engine, etc. All these subsystems of 

game functionality (often called middleware) are the components of a system called game 

engine (Eberly 2006, Gregory 2009). Game engines are used primarily for developing next 

generation games by allowing the developers to focus on higher level aspects of a game 

(interaction between objects) instead of building a game from scratch as in earlier eras (the 

game had to be designed from the bottom up to make optimal use of the display hardware). 

As game engine technology matures and becomes more user-friendly, the application of game 

engines has broadened in scope. They are now being used for serious games: visualization, 

training, medical, and simulation applications. To facilitate this accessibility, new hardware 

platforms are now being targeted by game engines, including mobile phones and web 

browsers. 

 

Figure 37: Game Engine Architecture (Gregory 2009). 
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Often, game engines are designed with a component-based architecture (Figure 37). 

Component-based software engineering (CBSE), also called as component-based development 

(CBD), is a branch of software engineering that emphasizes the separation of concerns with 

respect to the wide-ranging functionality available throughout a given software system. It is a 

reuse-based approach to defining, implementing and composing loosely coupled independent 

components into systems. At the game engine context, the core engine components include a 

rendering engine (renderer) for 2D or 3D graphics, a physics engine or collision detection (and 

collision response), sound, scripting, animation, artificial intelligence, networking, streaming, 

memory management, threading, localization support, scene graph, and may include video 

support for cinematics. 

The end user of the game engine can focus on the topmost level components of this 

architecture which include game logic aspects such as interaction of 3D Entities and AI 

Intelligence. This fact simplifies the development process. Often though it is important to 

understand the functionality of lower level middleware components, such as the rendering 

procedure. An end user doesn’t have to be concerned exactly how the Rendering process 

occurs. Often though it is important to understand underlying mechanisms in order to 

configure the respective subsystem in an optimized way. So in the rendering component, the 

user may have to choose between different rendering APIs (Direct3D or OpenGL), different 

render techniques (Forward rendering, Light pre-pass rendering or Deferred rendering), and 

even game logic decisions that help in rendering optimizations (Object Occlusion & Frustum 

Culling, Camera Clipping). 

 

Figure 38: Rendering Optimization Example. Left, No Culling. Right, Oclusion & Frustum Culling 
(https://unity3d.com/). 

https://unity3d.com/
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3.2 Game Engine Systems 
Many game engines have immersed over the past years giving the developer a wide 

range to choose from. Main criteria for the current project is ease of use and community 

support. This limits our search to popular commercial game engines mostly. These engines 

have large communities and can provide extended support in the development process. Also 

they usually include sophisticated Editors that simplify the Level Design process of a game. 

Two popular choices on this aspect are Unity and Unreal game engines. We will briefly 

summarize each one of them below. Although commercial engines provide ease of use, it is 

worth supporting and contributing to less popular middleware engine frameworks for custom 

projects. These engine frameworks may need a lot more work to be done to reach the quality 

of popular frameworks but can achieve similar results under a free software license instead of 

using a commercial license. One such engine is Urho 3D which is a free lightweight, cross-

platform 2D and 3D game engine implemented in C++ and released under the MIT license and 

is greatly inspired by OGRE and Horde3D (Figure 39). For the current research project, a more 

restrictive license can also be used in order to account for the tradeoff between development 

time and license requirements. 

 

Figure 39: Urho 3D Simple Editor Interface (https://urho3d.github.io/). 

 

3.2.1 Unreal Engine Overview 

Unreal is one of the most popular game engines to develop high-end triple-A titles for 

years now. The Unreal Engine is developed by Epic Games and was first released in 1998. 

Although primarily developed for first-person shooters, it has been successfully used in a 

variety of other genres, including stealth, MMORPGS and other RPGs. With its code written in 

C++, the Unreal Engine features a high degree of portability and is a tool used by many game 

developers today. Its blueprint system in the newer version makes scripting almost non-

existent as it gives the developers the ability to create game logic by simply connecting lines 

and blocks of commands. Finally, it has its own version of an asset store providing its users 

with content both premium and free to add into their projects. 

https://urho3d.github.io/
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Advantages: 

 Built-in beginner solution with Blueprint. 

 Multi-platform export including consoles. 

 Outstanding next-gen graphics. 

 Good online resources. 

 Free to use until a game starts making a profit. 

Disadvantages: 

 Heavy and demanding on performance. 

 Steep learning curve. 

 Marketplace not as full as Unity’s. 

 

Figure 40: Unreal Engine Sophisticated Editor Interface (https://www.unrealengine.com/). 

 

3.2.2 Unity 3D 5.6 Overview 

Unity is a cross-platform game engine developed by Unity Technologies, which is 

primarily used to develop video games and simulations for computers, consoles and mobile 

devices. Unity is marketed to be a multiple purpose engine, and as a result supports both 2D 

and 3D graphics, drag and drop functionality and scripting through its 3 custom languages C#, 

Boo and UnityScript (basically JavaScript with type annotations). The Unity’s development kit 

community has widely adopted C# and the majority of plugins and examples use it. It also 

provides cross platform publishing, millions of ready-made assets in the Asset Store and a 

growing online community. For individual developers and studios, Unity’s environment 

reduces the time and cost allowing its users to develop advanced interactive games. It 

provides flexibility to deploy projects on multi-platforms like iOS, Windows and Android. 

Advantages: 

 Strong community of asset and plugin creators. 

 Excellent resources and tutorials. 

https://www.unrealengine.com/


Chapter 3 – Overview of IDE & Development Tools 
 

 47 

 Produces high quality results without any complex configuration. 

 Free license provides the majority of features. 

Disadvantages: 

 Can be slower in terms of performance compared to Unreal Engine 4. 

 

Figure 41: Scene in Unity Editor (https://unity3d.com/). 

3.2.3 Comments 

Both engines offer great support and quality results. Which one is going to be utilized 

is a matter of personal preference. The choice for this project will be Unity as it has less steep 

learning curve than Unreal Engine. It is also a choice of programming language preference. C++ 

can be faster in terms of performance, but the developer must handle memory management 

explicitly. C# on the other hand utilizes an automatic Garbage Collector that handles memory 

management implicitly. This may not be however the ideal situation. When an object is 

marked to be garbage collected there is not any guarantee if and when the garbage collector 

will be executed. Therefore it is not known when the reserved memory will be released in 

contrast with C++ where memory is immediately released when explicitly stated. The 

developer should employ best practices in order to improve performance and minimize 

created garbage and allocations in the memory heap. So by working with C# instead with C++ 

we sacrifice performance for ease of use. For the current project this is acceptable. The serious 

game created has minimal requirements and can work quite efficiently in current and 

outdated Android devices. 

3.3 Unity Gameplay Creation 

3.3.1 Scenes 

Scenes contain the environments and menus of the game. Each unique Scene file 

corresponds to a unique gameplay level. A Scene consists of multiple GameObject, which 

create the environment of a virtual scene along with the behavior and interactions between 

them. Unity Editor provides a very friendly way of viewing and transforming a GameObject 

inside a scene (Figure 41). Note that Unity Editor is not an asset creation software. It imports 

https://unity3d.com/
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and utilizes assets that are created from within a 3D creation software, for example Blender 3D 

or 3D Studio Max. 

3.3.2 GameObject 

Every object in a Unity game is a GameObject, from characters and collectible items to 

lights, cameras and special effects. However, a GameObject can’t do anything on its own. The 

user needs to specify its properties before it can become a character, an environment, or a 

special effect. GameObjects are the fundamental objects in Unity that represent characters, 

collectible items, lights, cameras, special effects and scenery. They do not accomplish much by 

themselves but they act as containers for Components, which implement the real 

functionality. 

 

Figure 42: Four different types of GameObject: an animated character, a light, a tree, and an audio source 
(https://unity3d.com/). 

 

3.3.3 Components 

A GameObject contains components. Components control the behaviors of a GameObject 

in a game. They are the functional pieces of every GameObject. A component connects a 

GameObject with the functionality of each individual game engine subsystem. For example, if 

we want a 3D mesh to be rendered we need to add 2 components to our game object: 

 A mesh filter component to hold the mesh data for the 3D model. 

 A mesh renderer component to render the mesh data in the scene. 

Similarly to the Rendering functionality a Component can be used to provide Physics, 

Audio, Video, Network functionality to a GameObject or even yet our custom game logic 

functionality through script components. Unity provides a variety of components to choose 

from (Figure 43). Each one of these components is related to the subsystems that are on the 

middle layers of the game architecture as described above. 

 

Figure 43: Component browser (https://unity3d.com/). 

https://unity3d.com/
https://unity3d.com/
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Each GameObject by default has the transform component which specifies the 

physical presence of an object in 3D space using translation, rotation and scale 

transformations. Even when an object is purely functional and doesn’t have a model 

connected to it (so it is not visible in the scene), it has the transform component in 3D space. 

3.3.4 Assets 

An asset is a representation of any item that can be used in a game or project. An asset 

may come from a file created outside of Unity, such as a 3D model, 3D animation, an audio file, 

an image, or any of the other types of files that Unity supports. There are also some asset 

types that can be created within Unity, such as an Animator Controller, an Audio Mixer or a 

Render Texture. 

The Unity Asset Store is home to a growing library of free and commercial assets 

created both by Unity Technologies and also members of the community (Figure 44). A wide 

variety of assets is available, covering everything from textures, models and animations to 

whole project examples, tutorials and editor extensions. The assets are accessed from a simple 

interface built into the Unity Editor and are downloaded and imported directly into a working 

project. 

 

Figure 44: Unity Asset store (https://unity3d.com/). 

3.3.5 Script Life Cycle 

Unity allows custom Components creation using scripts. These allow to trigger game 

events, modify Component properties over time and respond to user input. The initial contents 

of a newly created script file will look something like this: 

using UnityEngine; 
 
namespace Assets.Scripts 
{ 
    public class MainCamera : MonoBehaviour { 
 
        // Use this for initialization 
        void Start () { 

https://unity3d.com/
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        } 
  
        // Update is called once per frame 
        void Update () { 
   
        } 
    } 
} 

 

It is important to note that a Unity Script extends the MonoBehaviour class. 

MonoBehaviour is the base class from which every Unity script derives. This class exposes very 

specific event functions. In Unity scripting, there are a number of event functions that get 

executed in a predetermined order as a script executes. In the example above there are 2 

event functions declared with empty implementation. When the scene loads a GameObject 

which has the above Component, it will execute these functions in a specific order. This 

execution order can be seen in Figure 45. 

 

Figure 45: Execution Order of Event Functions (https://unity3d.com/). 

 

https://unity3d.com/


Chapter 3 – Overview of IDE & Development Tools 
 

 51 

Below common events are described which are used frequently during 

implementation of a game logic component: 

 First Scene Load. These functions get called when a scene starts (once for each object 

in the scene). 

o Awake: This function is always called before any Start functions and also just 

after a prefab is instantiated. If a GameObject is inactive during start up Awake 

is not called until it is made active. 

o OnEnable: Only called if the Object is active. This function is called just after 

the object is enabled. This happens when a MonoBehaviour instance is 

created, such as when a level is loaded or a GameObject with the script 

component is instantiated. 

o OnLevelWasLoaded: This function is executed to inform the game that a new 

level has been loaded. 

 Before the first frame update. 

o Start: Start is called before the first frame update only if the script instance is 

enabled. 

 Update Order. When keeping track of game logic and interactions, animations, camera 

positions, etc., there are a few different events available. The common pattern is to 

perform most tasks inside the Update function, but there are also other functions that 

can be utilized. 

o FixedUpdate: FixedUpdate is often called more frequently than Update. It can 

be called multiple times per frame, if the frame rate is low and it may not be 

called between frames at all if the frame rate is high. All physics calculations 

and updates occur immediately after FixedUpdate. FixedUpdate is called on a 

reliable timer, independent of the frame rate. 

o Update: Update is called once per frame. It is the main workhorse function for 

frame updates. 

o LateUpdate: LateUpdate is called once per frame, after Update has finished. 

Any calculations that are performed in Update will have completed when 

LateUpdate begins. 

o  

 When the Object is destroyed. 

o OnDestroy: This function is called after all frame updates for the last frame of 

the object’s existence (the object might be destroyed in response to 

Object.Destroy or at the closure of a scene). 

 On Application Quit. These functions get called on all the active objects in a scene. 

o OnApplicationQuit: This function is called on all game objects before the 

application is quit. In the editor it is called when the user stops play mode. 

o OnDisable: This function is called when the behavior becomes disabled or 

inactive. 

These are the main events a developer must utilize in order to create custom behaviors 

or override existing ones. 
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3.3.6 Unity Singleton 

In programming Singleton is a commonly used design pattern. A software design pattern 

is a general, reusable solution to a commonly occurring problem within a given context in 

software design. Design patterns are formalized best practices that the programmer can use to 

solve common problems when designing an application or system. The singleton pattern is a 

software design pattern that restricts the instantiation of a class to one object. This is useful 

when exactly one object is needed to coordinate actions across the system. In Unity there isn’t 

a concept of global variables (global Gameobject). A GameObject has Scene scope. When 

another Scene is loaded all GameObjects are destroyed. Unity however offer the 

DontDestroyOnLoad method which enables a GameObject to survive in consecutive scenes. 

Using this method a Unity Singleton can be implemented. Below is an example of a Singleton 

implementation: 

using System.Collections.Generic; 
using UnityEngine; 
 
//Marks any GameObject it is attached to as a Singleton 
//Game Objects with same name are considered the same 
public class MySingleton : MonoBehaviour { 
 
    //Use a custom hash of objects to check if object already exists 
    //Making it static readonly, compiler ensures it will be initialized 
    //in the beginning of the app in a non lazy manner 
    private static readonly HashSet<string> Objs = new HashSet<string>(); 
 
    //Singleton should be the only method to use Awake 
    private void Awake() 
    { 
        //If object is already created then Destroy new copy 
        //If it is first time to create this add to hash 
        //and instruct DontDestroyOnLoad to keep it alive 
        //through different scenes 
        if (Objs.Contains(gameObject.name)) 
        { 
            Destroy(gameObject); 
        } 
        else 
        { 
            Objs.Add(gameObject.name); 
            DontDestroyOnLoad(gameObject); 
        } 
    } 
 
    //Helper method to check if object exists 
    //It should only be used on beginning of Awake of a Singleton 
    //GameObject in case that GameObject wants to use Awake 
    public static bool IsCached(string name) 
    { 
        return Objs != null && Objs.Contains(name); 
    } 
} 
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3.3.7 Unity Profiler 

The Unity Profiler Window helps in optimizing a Unity application (in general a game). 

It reports how much time is spent in the various areas of a game. For example, it can report 

the percentage of time spent rendering, animating or in game logic. It provides performance 

analysis of the GPU, CPU, memory, rendering, and audio. As mentioned previously C# uses 

automatic garbage collection for memory management. 

The profiler is a very useful tool to find heap allocations (Figure 46). Then it is up to the 

programmer to apply best practices and strategies in order to reduce the impact of garbage 

collection in the game: 

 Organize the code to in order to have fewer heap allocations and fewer object 

references. Fewer objects on the heap and fewer references to examine means that 

when garbage collection is triggered, it takes less time to run. 

 Reduce the frequency of heap allocations and deallocations, particularly at 

performance-critical times. Fewer allocations and deallocations means fewer 

occasions that trigger garbage collection. This also reduces risk of heap fragmentation. 

 Attempt to time garbage collection and heap expansion so that they happen at 

predictable and convenient times. This is a more difficult and less reliable approach, 

but when used as part of an overall memory management strategy can reduce the 

impact of garbage collection. 

 

Figure 46: Using Unity profiler to track heap allocations (https://unity3d.com/). 

 

3.4 Combining Unity & Android 

3.4.1 Unity & Android Limitations  

Unity is a cross platform game engine. It supports multiple environments including PC, 

Mac, Linux, Android, iOS, WebGL, PS4, Xbox One. Sometimes though there is a functionality 

that is platform specific. This is the case in this project for Android. Bluetooth communication 

with a custom sensor must be handled explicitly using a plugin specifically targeting the 

https://unity3d.com/
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Android platform. The incoming Bluetooth connection cannot be handled in a cross platform 

manner. Bluetooth data must first be received with native Android development using a Java 

Activity. So there are 2 requirements: 

 Run a native java activity as a background process in the Android device with the use 

of a custom plugin.  

 Pass the Bluetooth sensor data received by the Java activity to Unity application and 

handle it using C#.   

Fortunately, Unity provides functionality for Building and using plugins for Android. In 

order to implement such a plugin the Android Studio is used.  

3.4.2 Android Studio 

Android Studio is the official integrated development environment (IDE) for Google's 

Android operating system, built on JetBrains' IntelliJ IDEA software and designed specifically 

for Android development. It is a replacement for the Eclipse Android Development Tools (ADT) 

as the primary IDE for native Android application development. 

 

Figure 47: Android Studio Workspace (https://developer.android.com/). 

 

 Android Studio is not needed by Unity to build an application in Android and create 

the necessary plugins. The process only requires the installation of Android SDK which is 

included in Android Studio. However it is a powerful tool for debugging and monitoring the 

data collected from the sensor. Another requirement is the specification of the minimum 

Android API used. This guarantees backward compatibility with Android devices that use the 

minimum version. Here the tradeoff for a commercial application is number of devices that 

can install the application versus number of features supported. The latest version of Android 

may not be used in the majority of the population but contains many new features. In our case 

an older minimum API version of 4.2 (JellyBean) is used that provides a good balance between 

number of devices and features supported (Figure 48). 

https://developer.android.com/
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Figure 48: Left, Android Studio SDK Manager Installed APIs (https://developer.android.com/). Right, Unity 
minimum API defined as 4.2 (Jelly Bean). 

 

 This basic setup allows building Unity projects in Android. The next step would be the 

creation of a sample plugin with Android Studio. 

3.4.3 Creating Sample Plugin 

The goal is the development of a java activity that will communicate with Unity. When 

developing a Unity Android application, it is possible to extend the standard 

UnityPlayerActivity class (the primary Java class for the Unity Player on Android, similar to 

AppController.mm on Unity iOS) by using plugins. An application can override any or all of the 

basic interaction between the Android OS and the Unity Android application. Two steps are 

required to override the default activity: 

 Create the new Activity which derives from UnityPlayerActivity. 

 Modify the Android Manifest to have the new activity as the application’s entry point. 

The following is an example UnityPlayerActivity file: 

package com.company.product; 
import android.content.Context; 
import com.unity3d.player.UnityPlayer; 
import com.unity3d.player.UnityPlayerActivity; 
import android.os.Bundle; 
import android.util.Log; 
 
public class OverrideExample extends UnityPlayerActivity { 
    protected void onCreate(Bundle savedInstanceState) { 
        // call UnityPlayerActivity.onCreate() 
        super.onCreate(savedInstanceState); 
        // print debug message to logcat 
        Log.d("OverrideActivity", "onCreate called!"); 
  //Send actual data from Java to Unity. 
  //Send them to the script MyUnityScript 
  //which will call the function MyUnityFunction 

https://developer.android.com/
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  //with String arguments "Hello World!" 
  //MyUnityFunction should be defined as follows 
  //public void MyUnityFunction(string someStr) { };  
  UnityPlayer.UnitySendMessage("MyUnityScript", "MyUnityFunction", "Hello World!"); 
    } 
} 

The data are send to Unity with the UnitySendMessage function. This is necessary for 

implementing the Bluetooth plugin later on. More info is provided in the Implementation 

Section. The following is an example AndroidManifest.xml file to initialize the implemented 

activity in the background: 

<?xml version="1.0" encoding="utf-8"?> 
<manifest xmlns:android="http://schemas.android.com/apk/res/android" 
package="com.company.product"> 
  <application android:icon="@drawable/app_icon" android:label="@string/app_name"> 
    <activity android:name=".OverrideExample" android:label="@string/app_name" 
android:configChanges="fontScale|keyboard|keyboardHidden|locale|mnc|mcc|navigation|orientation
|screenLayout|screenSize|smallestScreenSize|uiMode|touchscreen"> 
      <intent-filter> 
        <action android:name="android.intent.action.MAIN" /> 
        <category android:name="android.intent.category.LAUNCHER" /> 
      </intent-filter> 
    </activity> 
  </application> 
</manifest> 
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4 Chapter 4 – Design 
The work presented in this thesis puts forward the design and implementation of a 

custom-made ultra-portable, mobile and low cost 3D rehabilitation application intended for 

patients that underwent Total Knee Replacement (TKR) using only an Android mobile device 

and a small sensor placed on the patient’s limb to track movement. The first weeks following 

knee surgery are crucial so that the Range of Motion (ROM) of the operated knee is deemed 

fully operational. If the patient fails to perform the exercises appointed by the physiotherapist 

during this recovery period, an, otherwise, technically accurate operation might result in poor 

functional outcome leading to reduced quality of life. The aim of our gamified application is to 

motivate the patient to exercise efficiently by providing feedback, while the physiotherapy 

exercises are performed in any setting, e.g. clinical, at home, indoors, outdoors or even in 

public areas. 

This thesis focuses on the description of the rehabilitation system involving the 

hardware sensor, the implementation of the gamified 3D environment, as well as the initial 

testing of the software framework in the hospital, while patients are undergoing 

physiotherapy treatment. The scope of this project involves the development of an integrated 

ultra-portable gamified platform, including gamified tasks to be utilized for rehabilitation 

exercises commonly performed after TKR surgery (Figure 1). The main goal is to improve 

compliance to the physiotherapy protocol, increase patient engagement, monitor physiological 

conditions and provide feedback based on rewards via a gamified experience. 

4.1 Application Functionality 
An Inertial Measurement Unit (IMU) node was utilized worn by the patient recognizing 

limb rotation and acceleration. It is challenging to identify whether the proposed application 

classifies the exercises reliably utilizing just a single sensor node. Providing gamified feedback 

to the patient at home or in other locations in relation to performance using widely available 

mobile devices, is also challenging, minimizing the need for expensive physiotherapy under 

supervision, resulting in more engaging and accessible rehabilitation. 

4.1.1 Application Procedure 

The IMU is fitted at a specified limb location depending on the exercise performed. 

The session starts with the person in a neutral pose ready to perform one of the 

predetermined exercises. The raw data collected from the IMU is sent via Bluetooth to a 

mobile device. The application computes an orientation measurement with the use of Kalman 

filtering. Real-time visualization on a mobile device offers feedback in the form of a 3D game 

presented to the patient. The filtered data received are then provided as input to an automatic 

exercise classification algorithm. The algorithm decides if the exercise was accurately 

performed. This classification feedback is displayed on the mobile device in a readable form 

translated to a 3D visualization, after the end of the motion. The procedure is then concluded 

and the participant can perform another repetition of the same exercise or can select a 

different exercise.  
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4.1.2 Gamification Feedback 

The main goal of the application is to improve compliance to the physiotherapy 

protocol, increase patient engagement, monitor physiological conditions and provide feedback 

using a reward process via a gamified experience, using the following methods: 

Real-time IMU feedback. Raw data from the IMU are filtered and limb orientation is 

determined. By collecting this data, the proposed framework visualizes in real-time an 

approximation of the user’s motion in a 3D scene. In this context, a user engages in a serious 

game of a specific objective, for instance, the patient is instructed to try and fly an airplane 

while moving the knee (Figure 49) in the vertical axis in order to collect coins. In this specific 

context the user engages to the Knee Extension exercise that requires the user to perform 

extension of the knee while moving it up / down along with the movement of the airplane. 

 

Figure 49: Airplane Game example. The user raises the airplane by moving the operated knee. 

 

The game is designed so as to motivate the user. A number of mini-games are 

designed (Table 2) for the four TKR exercises specified by the physiotherapists. The exercises in 

question are selected by the physiotherapists based on the American Academy of Orthopaedic 

Surgeons TKR exercise guide (Convery & Beber 1973). For testing purposes, the user can select 

any combination of gamified TKR exercises listed in Table 1 for every game implemented. The 

application’s main menu provides a simple way of selecting exercises, games, as well as adding 

users as can be seen in later section of the Main Menu Design (Figure 51). 

Game Screen Shot Description 

Airplane 

Game 

 

When the user moves the operated knee, the 

airplane also moves vertically following the 

movement of the knee in order to gather coins. 

Fish Game 

 

When the user moves the operated knee, the fish 

also moves horizontally following the movement 

of the knee in order to gather coins. 

Table 2: Implemented Games for exercises in Table 1 
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Classification feedback. The raw data of the IMU are inserted in the classification 

algorithm. The algorithm decides whether the exercise has been accurately performed. If by 

the end of a single repetition, the exercise was classified as accurately performed, the player is 

rewarded, e.g. by increasing a coin score attribute and by providing animated information 

related to the success of movement. If the exercise was classified as inaccurately performed, in 

which case the movement violates angle or acceleration constraints, the application informs 

the user of the correct movement, e.g. by providing a limb movement animation and 

encourages the patient to try again. Along with the classification result, the algorithm also 

outputs the maximum ROM percentage of the achieved movement for this repetition. A 100% 

percentage means that the patient achieved maximum rotation of the knee. The maximum 

rotation of the knee differs in each designated exercise. For instance, in relation to the Knee 

Extension, it is 90° degrees. When a patient achieves a maximum ROM percentage of 50% in a 

single repetition then this corresponds to 45° degrees orientation. The generated repetition 

data are serialized in a local mobile database and are used through the Automatic Graph 

Generation procedure of this application. 

4.1.3 Binary Classification 

Having briefly discussed the layout of the application, it is worth summarizing the 

training procedure. The exercises in question are selected by the physiotherapists based on 

the American Academy of Orthopaedic Surgeons TKR exercise guide (Convery & Beber 1973) as 

mentioned in the Medical Background section. The physiotherapists also supervise each 

exercise in order to determine whether it was performed in a compliant manner with the 

correct body posture and speed rate. The sensor is worn by the subject on the appropriate 

limb location. The physiotherapist evaluates the exercise result. 

A binary evaluation would indicate if an exercise is successful or unsuccessful under 

the specified criteria. The raw data of the IMU for each exercise are saved on a local mobile 

database. The participant proceeds to the next exercise in the same manner. When sufficient 

data are collected, the same procedure is repeated for the next participant. When all 

participants have completed the procedure, the data gathered can be used to train and test 

the classification algorithm. The training and testing procedures take place at the Orthopaedic 

Clinic of Chania General Hospital under the supervision of a physiotherapist. This procedure 

gave sufficient feedback in order to improve and impose custom constraints on the procedure 

offering feedback to the user. The classification algorithm input is the sensor filtered data 

using Kalman filtering along with complementary filtering for testing (Bachmann et al. 2001, 

Mahony et al. 2008, Kalman 1960, Grewal 2011). The first iteration of this algorithm checks the 

filtered accelerometer measurements. If these measurements exceed a predefined threshold, 

inferred from the training procedure, the user is advised to lower the rate of limb motion. 

Along with the filtered gyroscope measurements an estimation for the current user ROM is 

evaluated. The ROM is evaluated only if the filtered angle measurements are constantly within 

the specified by the training process acceptable thresholds. In any other case the 

measurement is labeled incorrect. 
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Figure 50: Airplane game with repetition classified as incorrect. Patient is advised to try again. 

 

The angle of rotation of the limb must be in a specified range during motion, as well as 

of certain speed. If each movement is performed too fast, then the participant is informed 

indicating inaccurately performed movement and is advised to try again (Figure 50). This, 

alone, represents the initial classification feedback. The next iteration of the classification 

algorithm should automatically fine-tune angular and speed constraints inferred from training 

data with the help of machine learning methods. 

4.2 Mobile Application UI Design 
The proposed gamification framework is designed to be ultra-portable utilizing just a 

single Inertial Measurement Unit (IMU) sensor for tracking limb orientation and an android 

mobile device. The users of the application are TKR patients that have undergone the 

respective surgery and are in need of rehabilitation to restore their knee functionality. Most 

people who undergo a knee replacement are between the ages of 50 and 80. It is important 

for the User Interface of the application to be friendly to use to these people maximizing their 

experience. This is not always the case since elderly people may not always share the 

familiarity with technology that younger age groups probably have. Still the Main UI of the 

described application should be as simplistic as possible in order to increase usage 

probabilities even from people less acquainted with technology. Also the UI should provide 

more advanced features for those who are familiar with mobile use. Example of basic features 

are the Start Game, Select Game, Select Exercise functionalities. In each most basic form the 

patients must just press the Start Game button. Then the game guides them to fulfill a series of 

repetitions. Advanced features include the Statistics Menu (Stats) along with advanced 

gameplay features of each specific game described in the following sections. 

4.2.1 Main Menu Design 

The discussed implementation leads to a very specific design of the Main Menu and 

sub menus. The Main Menu should implement the following button functionality: 

 Select User: Displays the Users sub menu. There an already existing user can be 

selected or a new user can be inserted. 
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 Select Exercise: Displays the Exercises sub menu. There the user has a choice between 

the 4 basic physiotherapy exercises implemented in the game. 

 Select Game: Displays the Games sub menu. There users can select a game of their 

liking from the implemented games. 

 Start Game / Resume Game: Starts the selected game for the selected exercise type 

and for the selected user. If the user is already in game then this option unpauses the 

game. 

 Stats: Displays the Graphs sub GUI. There automated graph statistics are displayed for 

the current user and exercise type. 

 Exit / Exit to Menu: Exits the application. If the user is already in game then this option 

exits to Main Menu screen. 

Main Menu was designed in Unity Editor with the help of the UI System. It resides in 

the MenuCanvas Singleton. Its button events are handled by the MyMenuManager Singleton. 

The current values of user, exercise, game and stats are handled and accessed with the help of 

MyGameManager. The resulting GUI can be seen in Figure 51: 

 

Figure 51: Application Main Menu. 

 

A menu button is also added in the top right corner of the screen which also displays 

the menu when the user is in game. This is done for consistency with Android devices menu 

type. Furthermore, the application is always built in Landscape mode to maintain the aspect 

ratio of GUI elements. Portrait version limits the game usable area a lot and its use is 

discouraged in this kind of application. Finally the app logo can be seen in the upper left corner 

of the main screen. 

The first of the submenus is the User Menu. It is triggered on Select User Button. It 

shows the existing users to choose from. It also allows the insertion of a new user with custom 

name. When the event is triggered the MyMenuManager passes the event to 

MyGameManager: 

   //Triggered on AddUser Button event 
    public void AddUser() 
    { 
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        //Send handling of new user to game manager 
        var newUsername = _addUserInput.GetComponent<InputField>().text; 
        _myGameManager.AddUser(newUsername); 
 
        //Update all text values with the new ones provided by _myGameManager 
        _currentExerciseLabel.GetComponent<Text>().text = _myGameManager.GetExerciseName(); 
        _currentGameLabel.GetComponent<Text>().text = _myGameManager.CurrentScene; 
        _userLabel.GetComponent<Text>().text = _myGameManager.CurrentUsername; 
        //Deactive all submenus 
        DeactivateAllSubMenus(); 
    } 
 
    //Triggered on ChangeUser event. List button index corresponds to user id 
    public void ChangeUser(int index) 
    { 
        //Send handling of change user to game manager 
        _myGameManager.ChangeUser(index); 
 
        //Update all text values with the new ones provided by _myGameManager 
        _currentExerciseLabel.GetComponent<Text>().text = _myGameManager.GetExerciseName(); 
        _currentGameLabel.GetComponent<Text>().text = _myGameManager.CurrentScene; 
        _userLabel.GetComponent<Text>().text = _myGameManager.CurrentUsername; 
        //Deactive all submenus 
        DeactivateAllSubMenus(); 
    } 

 

The User Menu buttons are created dynamically by the application by passing them 

the appropriate text and event delegates. This way scrolling is handled by Unity. This is done in 

a lazy manner when the Select User button is pressed and the ShowUserMenu method is 

called: 

     //ShowUserMenu event is triggered when Select User Option of Menu is pressed 
    //This method dynamically creates the buttons if they don't exist and handles scrolling 
    public void ShowUserMenu() 
    { 
        //Request ordered usernames from game manager 
        var names = _myGameManager.GetAllUsernamesOrdered(); 
        for (var i = 0; i < names.Length; i++) 
        { 
            //If index greater than current buttons then add new button 
            //Happens in the beginning or when new user is added 
            if (i >= _userContent.childCount) 
            { 
                //Instatiate new button 
                var button = Instantiate(_userPrefabButton, _userContent) as GameObject; 
                //Add the change user event as a button action. Encapsulalte the ChangeUser 
                // event to a delegate and pass as parameter to button click listener 
                button.GetComponent<Button>().onClick.AddListener( 
                                                                           delegate { ChangeUser(button.transform.GetSiblingIndex()); }); 
                //set button text to username 
                button.transform.Find("Text").gameObject.GetComponent<Text>().text = names[i]; 
            } 
            //Differently just change name of existing button 
            //No users are added so no need to check for removing buttons 
            else 
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            { 
                _userContent.GetChild(i).Find("Text").gameObject.GetComponent<Text>().text = names[i]; 
            } 
        } 
        _addUserInput.GetComponent<InputField>().text = "User " + names.Length; 
        //Deactivate all submenus first and then enable this user submenu 
        DeactivateAllSubMenus(); 
        _userPanel.SetActive(true); 
    } 

 

 In MyGameManager the insertion or update of the current user is handled properly 

and all the user button text labels are updated in order to get the appropriate values from 

MyGameManager. The submenu design can be seen in the following figure (Figure 52): 

 

Figure 52: User Submenu. 

 

Following is the design of the Exercise Submenu. The user can choose from the 4 

available exercises implemented here (Figure 53): 

 

Figure 53: Exercise Submenu. 
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The same principle applies for the Select Game submenu. The user can play any game 

for any exercise. So the implementation allows the user to play the same game for different 

exercises as long as the appropriate option through the main menu is selected (Figure 54). 

 

Figure 54: Game Submenu. 

 

Finally the Stats submenu shows automatically generated graphs for the selected user. 

It also allows to iterate through them through the arrow buttons. Once again 

MyMenuManager sends events for handling current graph selection to MyGameManager. 

When users want to exit this menu they can press either the Back to Main Menu button or the 

shortcut menu button in the top right corner of the screen (Figure 55). 

 

Figure 55: Stats Submenu. Iterate through graphs using arrows. 

 

4.2.2 Gameplay HUD 

MyGuiManager Singleton uses Immediate Mode GUI (IMGUI) in order to create 

common HUD functionality in between game scenes. Immediate Mode GUI is an entirely 

separate feature to Unity’s main GameObject-based UI System. IMGUI is a code-driven GUI 

system, and is mainly intended as a tool for programmers. It is driven by calls to the OnGUI 
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function on any script which implements it. The IMGUI provides a useful tool for debugging the 

sensor data received and for creating the game HUD. The MyGuiManager HUD Singleton has 

the following custom functionality for displaying IMU information (Figure 56): 

 ROM bar: Provides real-time feedback on the Range of Motion (ROM) percentage. 

 Acceleration bar: Displays information about the Acceleration of the movement. It also 

points the maxAcceleration threshold below which the motion must be during the 

calibration phase. 

 Main Angle: The MainAngle value computed by the filtering process. It is used to 

determine the ROM of motion. It also indicates the limits of the main angle 

(minimumMainAngle, maximumMainAngle) within which the motion must be during 

the calibration phase. 

 Side Angle: The SideAngle value computed by the filtering process. It indicates the 

limits of the side angle (minimumSideAngle, maximumSideAngle) within which the 

motion must be during the calibration phase. 

 

 

Figure 56: IMU HUD Elements. Rom bar, Acceleration Bar, Main and Side Angle Indicators. 

 

In MyMenuManager there is also a GUI element specific to the current Exercise state 

of the detection algorithm. This gives the user feedback in form of text and texture hints in 

order to prepare for the exercise accordingly. The hints are described below (Figure 57). 

 Calibrating: Algorithm is still in Calibration phase. User must make sure that angles are 

within limits as indicated by the IMU HUD Elements (Figure 56). 

 Ready for move: The limb is within the appropriate constraints and the movement can 

commence. 

 Move in progress: There is an ongoing repetition in progress right now. 

 Completed Please Rate: At this point the exercise is completed and users are advised 

to rate the amount of pain they felt during the repetition. 

 Place Sensor Correctly: The user performed wrong repetition and is advised to check 

sensor placement and comfort to neutral limb position. 
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Figure 57: Different Repetition state hints. 

 

Additionally to this hint messages, users are notified with a success or failure message 

when they finish a repetition (Figure 58). 

 

Figure 58: Correct and Wrong Repetition messages. 

 

As mentioned above when the user completes a repetition, the user is asked to rate it 

according to how painful the whole procedure was. In that aspect 1 of 5 stars means no pain at 

all, and 5 of 5 stars means intense pain (Figure 59). This is optional and users can choose to 

ignore the rating of the repetition. If users however rate the repetition, then their feedback is 

recorded with the help of MyGameManager. 

 

Figure 59: Pain Rating GUI. 

 

Putting it all together, a snapshot of the result can be seen in Figure 60 during 

gameplay: 

 

Figure 60: Final Gameplay HUD. 

 



Chapter 4 – Design 
 

 67 

In each game level there are is also game logic GUI specific to a scene. In the example 

above, the coin score is visible, along with the number of airplanes currently available on the 

scene. The coin score is also a gameplay element that exists in all the implementations of mini-

games in the current framework and is also used to the repetition description serialization as 

explained in detail on the Implementation section (Scene Hierarchy & Persistent Game 

Objects). Expanding the Coin Score, shows exactly how many coins a user has gathered in a 

pop-up panel. This screen is visible while the user is touching the Coin Score panel in the 

Android device (Figure 61). 

 

Figure 61: Coin Score panel and detailed score in pop-up panel. 

 

The next GUI element visible is game level specific. In this mini-game it allows the user 

to buy more planes. In the same manner as before, by touching this element a hint pop-up 

panel appears that informs the user of its action (Figure 62). 

 

Figure 62: Specific game hint pop-up panel. 

 

4.2.3 Automatic Graph Generation 

An important feature of this framework is its graph generation capability. It is used 

during the testing of the application on inpatients in order to track their progress during 

physiotherapy sessions and analyze collected data. This data serves as an initial assessment of 

the physiotherapy framework capabilities and improvements. It also helps the users monitor 

their daily exercise progress through easily readable graphs. Moreover, it can be a useful tool 

for physiotherapists and orthopaedic surgeons in relation to tracking ROM improvements of 

patients over time. The generated graphs track the progress of users for each repetition in 

respect to the maximum achieved Range of Motion (ROM) and record which physiotherapy 



Chapter 4 – Design 
 

 68 

exercises were accurately conducted and which were not.  Two graph types are extensively 

utilized as indicated in the Results section, in this thesis. The percentage in relation to ROM per 

correct repetition plot graphs and the Correct/Wrong pie graphs (Figure 63, Figure 64). 

 

Figure 63: ROM Percentage Graph for correct repetitions. 

 

 

Figure 64: Correct / Incorrect repetitions pie graph. 

 

The tool to produce this graph is a Unity package named Graph Maker. This package 

isn’t free, but it can produce quality graphs in a very simplistic manner. Graph Maker in its turn 

uses another free Unity plugin named NGUI. NGUI stands for Next-Gen UI and is a package for 

creating custom User Interfaces. It is used though only to make easier the graph generation. In 
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all other aspects the Unity UI system is preferred. The graph templates reside in the 

GraphCanvas Singeton. When the MenuManager is instructed to display a graph it first 

requests the data from MyGameManager. Then it updates the graph template with the 

updated data. Finally the resulting graph can be displayed on screen. An example of the ROM 

Percentage Plot implementation is the following: 

//Generate ROM Graph for current Exercise and User 
    public void RomPercentageGraphForExercise() 
    { 
        //First get the ROM percentages for siccessful repetition from _myGameManager 
        IEnumerable<float> correctPercentages = _myGameManager.GetUserSuccessRomPercentage(); 
        //Then initialize plot data and title 
        WMG_Series series1 = _graphAnchor.Find("LineGraphRomPercentageCorrect").Find("Series") 
                                                                           .Find("Series1").gameObject.GetComponent<WMG_Series>(); 
        series1.pointValues = new List<Vector2>(); 
        series1.seriesName = "ROM percentage for Correct " + 
                                                _myGameManager.GetExerciseName() + " Iterations"; 
        //Then add _myGameManager data to the plot 
        foreach (var percentage in correctPercentages) 
        { 
            series1.pointValues.Add(new Vector2(0, percentage)); 
        } 
    } 

 

MyGameManager code then returns the successful repetition ROM data using a Linq 

query. LINQ stands for Language Integrated Query. It is a Microsoft .NET Framework 

component that adds native data querying capabilities to .NET languages such as C# used here: 

//Get ROM percentage data for correct repetitions 
    public IEnumerable<float> GetUserSuccessRomPercentage() 
    { 
        //First request the data of current User and exercise from the cache 
        var infos = GetInfoForUserAndExerciseType(CurrentUser, CurrentUserExercise); 
        //Then use Linq query to select the RomPercentage only from the correct repetitions. 
        //The percentage are 0 - 1. Convert to 0 - 100 for displaying on graphs 
        return from info in infos where info.Correct select 100 * info.RomPercentage; 
    } 
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5 Chapter 5 – Implementation 
  

5.1 Node Implementation 

5.1.1 Hardware Setup 

The accelerometer and gyroscope readings received by the Inertial Measurement Unit 

(IMU) are independent of the hardware setup. The application is responsible for filtering the 

received data and not the sensor node. This configuration provides two axes of rotation which 

is adequate for the majority of simple rehabilitation exercises and applications. These axes 

correspond to the pitch and roll angle measurements (x and y axes respectively as seen on 

Figure 23). The yaw measurement (z axis) additionally needs magnetometer data to be 

computed. This however adds extra complexity to the current project with small gain since two 

axes of movement are adequate for the scope of a physiotherapy application. The current 

project setup can be used by any wearable device that employs an accelerometer and 

gyroscope and complies with the raw data communication format. The sensor node consists 

of: 

 Raspberry Pi model Zero W. 

 IMU model MPU-9150. 

 Rechargeable Li-Ion battery 1200 mAh. 

 

Figure 65: Node Components. Left, Raspberry Pi. Center, IMU. Right, Battery. 

 

A summary of hardware component functionality used for the custom-made sensor 

node creation in this project follows. Raspberry Pi model Zero W is a credit card sized 

computer that runs Raspbian with Pixel (Linux Based kernel). It includes a pin header of 40 pins 

used for connections with all sorts of hardware peripherals, in our case an IMU. The IMU 

model used in the current work is the MPU-9150. It contains an accelerometer, a gyroscope, a 

magnetometer and a temperature sensor. It is connected to Raspberry Pi and sends the raw 

data captured signifying rotational motion. The connection to Raspberry Pi is achieved via the 

I2C protocol. This protocol employs the use of 4 pin connections: VCC, GND, SDA and SCL. The 

IMU pins are simply connected to the appropriate Raspberry Pi pins that implement the I2C 

protocol. This results to the following schematics (Figure 66): 
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Figure 66: I2C Connection implementation between Raspberry Pi Zero W and MPU-9150. 

 

The resulting node also has a Raspberry Pi Zero W case to protect it along with the 

IMU and the I2C connection in between them. An important issue that arises is the stabilization 

of the implemented sensor to the patient’s knee. The node will be attached on the patient’s 

limb during the training / testing phases.  IMU is sensitive to misalignments and this can affect 

the collected data from the two axes of rotation and furthermore the observed results. To 

address this issue an elastic bandage is used that keeps the sensor node in place at the patient 

shin of the knee (Figure 67). 

 

Figure 67: Resulting sensor node & Elastic bandage for stabilization on patient’s knee. 

 

Raspberry Pi Zero W integrates Bluetooth 4.1 and LE which makes it possible to send 

the raw data received from the node to our designed application that runs on an Android 

mobile device. By employing a rechargeable 1200 mAh Li-ion battery, the node can send data 

for 7 hours on full capacity. This is more than enough in order to perform the initial testing of 

the designed framework to Total Knee Replacement (TKR) patients. 

5.1.2 Software Setup 

The data are collected by Raspberry Pi using a custom script implemented in the 

Python programming language. Then the sensor node acts as a Bluetooth server waiting for 

incoming connections from Android devices. When a connection is established, the sensor 
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begins sending the raw IMU data to the client (Android device). When a connection is received 

by the client, it sets up the IMU, e.g. the gyroscope is sampled at 100 Hz. A received 

connection means the application is running on the end-user. The accelerometer, gyroscope 

and temperature data are collected and sent via Bluetooth to the application at a rate of 100 

Hz. This continues until the user exits the application, or the battery depletes. 

In order for the custom python script to work we must setup Raspberry Pi as a 

microcontroller. This procedure is discussed in the Embedding the IMU section above. The 

custom python script that implements the Bluetooth server is named bserver.py. This script in 

order to run automatically needs a bash script to run at system startup. As previously 

described in the Embedding the IMU section this script should be of the following form: 

/home/pi/MyCustomPath/MyCustomScript.sh. In the current implementation this script is: 

/home/pi/bser/runBTServer.sh. This script sets up the raspberry pi Bluetooth in order to be 

discoverable by nearby Android devices. It then goes to the Bluetooth server folder and runs 

the bserver.py. Its contents are the following: 

#!/bin/bash 

sudo hciconfig hci0 piscan 

cd pythonScripts 

sudo python bserver.py 

 

The bserver.py script waits for incoming connections from nearby devices. If one is 

found it configures the sensor using the appropriate I2C registers and continuously sends data 

till the connection is interrupted. This happens if the Android device gets out of range and the 

connection is reset, or if the battery on the sensor depletes and script stops executing. If 

connection is reset the process is repeated, sensor device is reset and data are sent 

continuously in a frequency of 100 Hz per second. Bluetooth socket creation and service 

advertisement is implemented below: 

#Create Bleuetooth socket 
#initialize to listen at any port 
server_sock=BluetoothSocket( RFCOMM ) 
server_sock.bind(("",PORT_ANY)) 
server_sock.listen(1) 
port = server_sock.getsockname()[1] 
 
#Advertise Bluetooth service to be visible to android devices 
advertise_service( server_sock, "MyBTServer", 
                   service_id = UUID, 
                   service_classes = [ UUID, SERIAL_PORT_CLASS ], 
                   profiles = [ SERIAL_PORT_PROFILE ] ) 
 

 

Then follows code responsible for resetting the IMU and configuring sensor 

parameters. After the configuration of the sensor, the thread blocks until data are ready. Then 

data are read from the sensor in the designated rate. Consequently a checksum is computed 

and the resulting bytes are send through the Bluetooth socket: 

 while True:           
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  try: 
   #Wait till data are ready 
   #Data will be ready with a frequency of 100 Hz 
   while bus.read_byte_data(address, REG_INT_STATUS)!=1: 
    pass 
    
   #Read consecutive data from registers containing 
   #Accelerometer, Temperature & Gyroscope measurements 
   result = bus.read_i2c_block_data(address, REG_START, DATA_LENGTH) 
   #make it into an array and compute checksum 
   resultArray = bytearray(result) 
   checksum = sum(resultArray) 
   #Store checksum in 2 bytes high and low 
   #Shift high byte, mask low byte 
   checksumHigh = checksum >> 8 
   checksumLow = checksum & 255 
   #append bytes to the result to send 
   resultArray.append(checksumHigh) 
   resultArray.append(checksumLow) 
   #Convert and send bytes 
   #The received result is 16 bytes 
   #14 data bytes described above and 2 bytes checksum 
   result = bytes(resultArray) 
   client_sock.send(result) 

 

The register configuration reading and writing is achieved using the Register Map 

documentation for MPU-9150 as described in the IMU Functionality section. The data sent to 

the application are 16 bytes in a frequency of 100 Hz. This results to a constant throughput in 

the Bluetooth connection of 16 * 8 bits * 100 s-1 = 12.8 Kbit/s. It follows, that every hour of full 

sensor activity 5.76 Mb of data are created. The 16 bytes correspond to 6 byte measurements 

for accelerometer, 2 byte measurements for temperature sensor, 6 byte measurements for 

gyroscope and 2 bytes which are the checksum. Note that Bluetooth uses a reliable connection 

for sending data and checksum could be omitted. Nevertheless it is implemented as a good 

practice to check if the data are received correctly on the client. The additional data being sent 

are only a few Kbit overhead that the Bluetooth connection can handle. Note, that the 

bottleneck is not the Bluetooth connection but the sensor sampling rate which is configured to 

100 samples/s. Although there is the possibility, there is no need to configure faster sampling 

frequency as this frequency is adequate in order to track human motion of a limb for 

rehabilitation. 

One last implementation detail is the choice of the BUS_ADDRESS = 0x68 for the IMU 

sensor device. If the I2C connection is correctly setup, then the bus address for the connected 

I2C device can be obtained using the i2cdetect command in the bash of the raspberry pi OS 

environment: 

sudo i2cdetect –y 1 

 

The -y argument points to the specific i2c device. For this Raspberry Pi model it is 1 by 

default. The following ascii schematic will appear that specifies the desired address (Figure 68). 
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Figure 68: i2cdetect show the address an I2C device is connected. 

 

If there are more devices connected with I2C protocol they will also appear in this 

schematic in a different address. So in the same Raspberry PI multiple IMUs could be 

connected if the application required to do so, but this is not the case in the current project. 

5.2 Mobile Application Core Implementation 
The client receives the data using an Android activity implemented in Java. The Unity 

Game Engine is utilized for visualization. The Java Native Interface (JNI) is used in order to 

transfer data from Java to C#, because C# is the programming language used by Unity. Unity 

provides leading architecture for game development along with a number of assets available 

for free. The application guides the users in order to become familiar with the application 

gameplay and furthermore to try and improve their ROM through guided exercises. 

The user selects the exercise to be performed, e.g. Knee Extension. The system then 

guides the user in order to perform a few initial training exercises. The system classifies the 

exercise performed as correct or incorrect and provides visual feedback to the user. When the 

users feel comfortable performing the selected exercise, they can select to engage in a series 

of mini-games. By performing the limb motion, e.g. moving the knee, users interacts with 

objects in 3D space.  

Indicative games are the Airplane Game and Fishes Game (Table 2). When selecting 

the Airplane game, the user tries to move an airplane in the vertical axis and gather as many 

coins as possible while performing the physiotherapy exercises. High ROM percentage means 

greater coin score, so greater reward. Lower ROM represents lower reward. Both cases are 

rewarded depending on their ROM percentage. When a movement is incorrect, the system will 

not reward the users but will give them hints in order to continue by correcting limb motion 

(Figure 58). The reward is greater for larger ROMs in order to engage users to improve their 

movement. 

Similarly, when engaging with the Fishes game, the user moves a fish horizontally this 

time with the movement of the knee and tries to collect as many coins as possible depending 

on the ROM achieved. Along the whole process, the system prompts the user by offering 

additional visual hints according to detection of motion as captured by the sensor (Figure 57). 
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5.2.1 Android Plugin for Bluetooth Data 

In the Embedding the IMU section the process for creating a sample plugin extending 

the UnityPlayerActivity was described. Here this description is used along with specific 

implementation details in order to create a plugin using Java that will receive Bluetooth data 

from the sensor and will transfer them to Unity. There C# language is used for manipulation 

and filtering of the received data. 

What the Java activity does, is that it tries to establish a connection with the Bluetooth 

server implemented in the sensor node as described in the Software Node Implementation 

section. For this purpose client and server use the same UUID. UUID stands for Universally 

Unique Identifier. It is a unique Bluetooth service identifier used by Bluetooth sockets to 

establish a connection. The bserver.py advertises this service and the java client finds the 

device and connects to the service. When a connection is established the Java Activity 

initializes a background thread that constantly receives byte packages from the sensor server. 

There the data are checked for correctness using their byte length and checksum. If not correct 

a package is discarded. If everything is ok then the actual data are sent to Unity through C# for 

further processing. The background thread method that receives the data and then forwards 

them to Unity is shown below: 

    //Inner class that handles background receiving of data from the sensor 
    //And asynchronous sending of the data to Unity Application and C# 
        public void run() 
        { 
            while(!Thread.currentThread().isInterrupted()) 
            { 
                    //Check available bytes at the stream 
                    //If it is not the expected data length discard them and try again 
                    int bytesAvailable = mmInputStream.available(); 
 
                    if(bytesAvailable != DATA_LENGTH) 
                    { 
                        mmInputStream.skip(bytesAvailable); 
                        continue; 
                    } 
 
                    byte[] packetBytes = new byte[bytesAvailable]; 
                    mmInputStream.read(packetBytes); 
 
                    //Get received checksum from last 2 bytes of data sent 
                    int checksumReceived = (packetBytes[packetBytes.length - 2] << 8) +   

                                                 (packetBytes[packetBytes.length - 1] & 0xFF); 
 
                    //Compute checksum for the actual data (excluding the checksum bytes) 
                    //NOTE: Server sends unsigned bytes. Java receives signed bytes. 
                    //Bytes are received correctly but must be masked in order to 
                    //handle the received bytes as unsigned int 
                    int checksumComputed = 0; 
                    for(int i = 0; i < packetBytes.length - 2; i++) 
                    { 
                        checksumComputed += (packetBytes[i] & 0xFF); 
                    } 
 
                    //If the 2 checksum are not the some discard package 
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                    if(checksumComputed != checksumReceived) 
                    { 
                        mmInputStream.skip(bytesAvailable); 
                        continue; 
                    } 
 
                    //Keep only the data bytes exluding checksum bytes 
                    byte[] receivedBytes = new byte[packetBytes.length - 2]; 
                    System.arraycopy(packetBytes, 0, receivedBytes, 0, DATA_LENGTH - 2); 
                    //Convert bytes to string to be compatible with UnitySendMessage 
                    final String data = Arrays.toString(receivedBytes); 
                    //And finally send asynchronous message to Unity with sensor data! 
                    //Data are sent to MyController script that is part of an active GameObject 
                    //MyController must have a method BluetoothData with a string argument(data) 
                    //This argument is our actual byte data 
                    UnityPlayer.UnitySendMessage("MyController", "BluetoothData", data); 
            } 
        } 

 

When this activity is configured properly and starts running in the application 

background it will send asynchronous messages every update with any newly received data. 

Then the application method is responsible for filtering the received data. The functionality is 

kept simple at this point. No filtering is performed. The end application in Unity is responsible 

for processing the received byte data. Finally for this configuration to work, the 

AndoidManifest.xml file must be specified: 

    <?xml version="1.0" encoding="utf-8"?> 
<manifest xmlns:android="http://schemas.android.com/apk/res/android" 
package="com.tuc.kneePhysio"> 
  <uses-permission android:name="android.permission.BLUETOOTH" /> 
  <uses-permission android:name="android.permission.BLUETOOTH_ADMIN" /> 
  <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" /> 
  <application android:icon="@drawable/app_icon" android:label="@string/app_name" 
android:theme="@style/UnityThemeSelector"> 
    <activity android:name=".MainActivity" 
             android:label="@string/app_name" 
             
android:configChanges="fontScale|keyboard|keyboardHidden|locale|mnc|mcc|navigation|orientation
|screenLayout|screenSize|smallestScreenSize|uiMode|touchscreen"> 
      <intent-filter> 
        <action android:name="android.intent.action.MAIN" /> 
        <category android:name="android.intent.category.LAUNCHER" /> 
      </intent-filter> 
    </activity> 
  </application> 
</manifest> 

 

It is important to have correct package naming that should be the same in MainActivity 

and in Unity Android Player Settings. The last step towards building the plugin is compiling java 

code and build the jar file for the project location Plugins folder: 

ProjectPath\Assets\Plugins\Android\src>javac MainActivity.java -source 1.7 -

target 1.7 -classpath "C:\Program 
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Files\Unity\Editor\Data\PlaybackEngines\AndroidPlayer\Variations\mono\Developm

ent\Classes\classes.jar" -bootclasspath 

C:\Users\grego\AppData\Local\Android\sdk\platforms\android-21\android.jar -d . 

 

ProjectPath\Assets\Plugins\Android\src>javap -s 

com.tuc.kneePhysio.MainActivity 

 

ProjectPath\Assets\Plugins\Android\src>jar cvfM ../bluetoothPlugin.jar com/ 

 

5.2.2 Filtering Received Data 

The data from the Java Activity are received by Unity in MyController Singleton using 

the BluetoothData method. The data are received in a frequency of 100 Hz as configured by 

the gyroscope which is the bottleneck of the communication. This method is responsible for 

parsing the received Bluetooth data as byte values from the string and computing the 2’s 

complement of the sensor data according to the MPU-9150 specifications. The gyroscope data 

are converted from degrees/s to rad/s for ease of computations in filtering methods. 

Consequently the received data are filtered. Although Kalman filter is used in the visualization 

of data, there is also an implementation of complementary filtering with and without 

gyroscope data. This is done mainly for debugging reasons and for sanity check that the 

aforementioned filtering methods behave in a similar manner. Actually the results received 

from both filters are very similar if the filter parameters are properly fine-tuned. So 

complementary filter can also be used to provide results on the data collected. 

When filtering methods using gyroscope measurements are applied, it is important to 

change the sign of the rate of gyroscope, when appropriate, before feeding it as filter input. 

This is the case for Side Angle gyroscope rate. Side Angle is restricted to [-π...π]. If the rotation 

vector resides below the horizontal 3D plane then a change in gyroscope rate must occur. This 

happens when Main Angle of rotation (pitch angle) resides in either [π, 2π] or [-2π, -π]. 

Regarding the filtering implementation, there is a base MyFilter abstract class that all 

implemented filters use. This base class simply defines a filter storing the computed angle in 

each step. It exposes the ComputeAngle method to client code and allows the overridden 

classes which are the implemented filters to override ComputeAngleInternal in order to 

provide the respective functionality for each implemented filter. Kalman filtering is 

implemented according to the derivation of Kalman filter parameters for IMU discussed in the 

IMU Filtering Methods section: 

    //Implementation of Kalman filter 
    protected override void ComputeAngleInternal(float newAngle, float newRate) 
    { 
        // Discrete Kalman filter time update equations - Time Update ("Predict") 
        // Update xhat - Project the state ahead 
        /* Step 1 */ 
        _rate = newRate - _bias; 
     Angle += Dt * _rate; 
 
     // Update estimation error covariance - Project the error covariance ahead 
     /* Step 2 */ 
     _p[0][0] += Dt * (Dt * _p[1][1] - _p[0][1] - _p[1][0] + QAngle); 
     _p[0][1] -= Dt * _p[1][1]; 
     _p[1][0] -= Dt * _p[1][1]; 
     _p[1][1] += QBias * Dt; 
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     // Discrete Kalman filter measurement update equations - Measurement Update ("Correct") 
     // Calculate Kalman gain - Compute the Kalman gain 
     /* Step 4 */ 
     float s = _p[0][0] + RMeasure; // Estimate error 
     /* Step 5 */ 
     float[] K = { _p[0][0] / s , _p[1][0] / s }; // Kalman gain - This is a 2x1 vector 
 
     // Calculate angle and bias - Update estimate with measurement zk (newAngle) 
     /* Step 3 */ 
     float y = newAngle - Angle; // Angle difference 
 
     /* Step 6 */ 
     Angle += K[0] * y; 
     _bias += K[1] * y; 
 
     // Calculate estimation error covariance - Update the error covariance 
     /* Step 7 */ 
     float p00Temp = _p[0][0]; 
     float p01Temp = _p[0][1]; 
 
     _p[0][0] -= K[0] * p00Temp; 
     _p[0][1] -= K[0] * p01Temp; 
     _p[1][0] -= K[1] * p00Temp; 
     _p[1][1] -= K[1] * p01Temp; 
    } 
} 

 

The noise parameters of the filter are initially configured by checking the variance of 

the sensor signals in resting state. Then through the testing procedure in actual limbs of Total 

Knee Replacement (TKR) patients some further corrections in these thresholds occurred to 

represent more accurately the desired movement pattern. Complementary filter is 

implemented on a similar manner but with simpler representation due to its nature. 

5.2.3 Automatic Exercise Classification Algorithm 

A first iteration of the automatic exercise classification algorithm (Figure 8) uses 

angular and acceleration predefined thresholds to fine-tune the system. In future iterations, 

these thresholds can be inferred from variant Machine Learning techniques, e.g. RVMs 

(Tipping 2003), using the filtered sensor data collected. Such methods will maximize the 

success rate of the current algorithm, using just a single node. A significant requirement is the 

correct and stable sensor placement on the Shin of the patient’s limb. Correct placement can 

be illustrated by a doctor or physiotherapist. Additionally if the wearable device isn’t placed 

with the correct orientation, when patients try to perform an exercise they will be notified that 

the sensor is not positioned correctly. The input data of the algorithm are the filtered 

smoothed data of the sensor listed below and are acquired using Kalman filtering (Kalman 

1960, Grewal 2011): 

 mainAngle. The angle in the direction of the exercise movement (corresponds to pitch 

angle in popular notation). It determines the maximum achieved ROM of the patient. 
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 sideAngle. The angle that detects sideways limb motion (corresponds to roll angle in 

popular notation). It is used along with mainAngle to determine when user movement 

deviates from what is perceived to be an accurately performed exercise. 

 acceleration. Limb acceleration is used to detect motion activity and probable wrong 

movement, e.g. if the limb movement is too fast. 

The output of the algorithm is a computational decision whether the physiotherapy 

exercise is performed correctly or incorrectly by the patient. The training parameters are the 

following angle and acceleration thresholds: 

 minimumMainAngle, maximumMainAngle. The main angle’s minimum and maximum 

thresholds in the direction of motion. If mainAngle exceeds these thresholds, the 

exercise is deemed incorrectly performed. 

 minimumSideAngle, maximumSideAngle. The side angle’s minimum and maximum 

thresholds in the direction of motion. If sideAngle exceeds these thresholds, the 

exercise is deemed incorrectly performed. 

 maxAcceleration. The maximum allowed acceleration. If acceleration exceeds this 

threshold, the exercise is deemed incorrectly performed. 

The implemented algorithm is designed to work for each one of the specified 

rehabilitation exercises (Table 1) and can be generalized to additional exercises of similar 

format. Each exercise will just require different training parameters. Currently, these 

parameters are manually defined, always taking into account the training samples collected. 

When the first iteration of the designed application is completed and more samples are 

collected from patients with TKR, these parameters can be automatically adjusted using 

machine learning techniques in order to reliably measure success rate. This is not a trivial task 

as the data collected from training must be of a significant amount and variance in order to 

provide reliable and generalized results. 

 

Figure 69: Automatic Exercise Classification Algorithm Simplified Diagram. 
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The Algorithm is implemented by MyExercise abstract class. The states are 

represented by the DetectionState enumeration: 

    //Automatic Algorithm Detection States 
    public enum DetectionState 
    { 
        StartCalibration, 
        Calibration, 
        EndCalibration, 
        StartMoveUp, 
        StartMoveDown, 
        EndMoveDown, 
        WrongMove 
    } 
    //Current Algorithm State 
    private DetectionState _currentState = DetectionState.StartCalibration; 

 

MyExercise implements the first iteration of the algorithm depicted in the figure 

above. It then exposes custom events to the programmer that can use these events to add 

game logic functionality by overriding MyExercise class.  

5.2.4 Scene Hierarchy & Persistent Game Objects 

In earlier section the Singleton pattern was defined. This is used extensively through 

the application design. The singletons can communicate safely between each other and 

between specific multiple GameObject in a scene, since their functionality is unaffected by 

Scene change. In the current game there are 6 objects acting as MySingleton. 

 MyController: Receives Bluetooth data, performs filtering on these data and helps in 

recording and debugging. 

 MyGameManager: Manages serialization and deserialization of MyExercise repetition 

data. It is the placeholder for storing current data. Finally it helps with Scene 

transitions and parallel task management. 

 MyMenuManager: Uses Unity UI System to Handle Button Events from MenuCanvas 

Singleton and displays GraphCanvas Singleton. 

 MyGuiManager: Uses Immediate Mode GUI to implement Custom GUI logic for the 

Game HUD. Also helps for custom debugging. 

 MenuCanvas: GameObject that just holds the Menu GUI designed in Unity. 

 GraphCanvas: GameObject that holds the automatically generated plots of the 

application. It uses the Graph Maker and NGUI packages for displaying the generated 

graphs. 

MyController as a Singleton is responsible for filtering the data and providing values 

for MainAngle and SideAngle as described in the Filtering Received Data section. The 

application then is responsible for managing and visualizing the data provided. This data 

management is performed by MyExercise base class along with the help of MyGameManager 

Singleton for managing the application data. 

MyExercise is responsible for providing the rules under which one Exercise Repetition 

is recognized and visualized on the screen. As described in the Gamification Feedback section 
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there are 4 exercises implemented (Table 1). Each Exercise handles the data using the same 

algorithm. The core differences are that they use different angle thresholds such as MainAngle 

limits (minimum, maximum), starting repetition MainAngle, and ending repetition MainAngle. 

Using the computed angles and thresholds, the ROM Percentage is computed every frame. For 

each exercise repetition a Maximum Achieved ROM Percentage is also computed. 

The frames are drawn in a slower rate than the actual data are received and filtered. 

The data are filtered by MyController in a rate of 100 Hz. The visualization frame rate varies on 

the platform. For the current target platform (Android device) a typical frame rate is 30 Hz. 

This however doesn’t impose a restriction. Since the data are filtered asynchronously in a rate 

of 100 Hz, the visualization can be slower. Even if an Android device could run to a rate of 100 

Hz the difference to the human eye would not have been easily perceived compared to a rate 

of 30 Hz.  

In order to gather the required results the exercise repetition data must be stored and 

handled appropriately. An exercise repetition is characterized by the following attributes: 

 User: The user that performed the exercise. 

 Type: The type of this Exercise. 

 Correct: If the implemented algorithm detected the movement as Correct or not. 

 StartDate: The beginning of the repetition. 

 StartActiveDate: When the repetition became active. This happens when a user stops 

being idle and moves the limb for the first time. 

 StopDate: The ending of the repetition, either correct or wrong. 

 Duration: The total duration of repetition including idle and active phases. 

 ActiveDuration: The total duration of repetition only in active phase. 

 Rom: Maximum Rom in degrees. 

 RomPercentage: Maximum Rom in percentage. 

 Score attributes: The implemented exercise games use Coin Score as award feedback 

to the user. That can be either Gold, Silver, Bronze Coins depending on the maximum 

ROM achieved. 

 Raw Data: The raw byte data recorded through the repetition for future analysis. 

Each repetition information is serialized for further analysis. A custom serialization 

scheme is employed instead of a commercial database scheme. There are 3 reasons that lead 

to this implementation choice. 

 The data stored locally are just a few with simple format. 

 Simpler to test in both PC and Android platforms. 

 No extra initialization overhead and technical requirements is added to the 

application. 

For each repetition the information created is serialized using 2 files. These file paths 

use the following format: 

{PersitentDataPath}\users\{userId}\{ExerciseType}\{RepetitionId}.info 

{PersitentDataPath}\users\{userId}\{ExerciseType}\{RepetitionId}.data 
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{PersistentDatapath} is the OS specific data path that Unity uses. All the data are 

stored in the custom users folder. Inside it there is the {userNum} folders. These folders 

contain data for each user with the specific unique auto increment id. Then each user has 

exercises performed. The {ExerciseType} folder specifies the type of exercise currently stored. 

Finally inside this folder are the actual data. The {RepetitionId} is unique auto increment id for 

the current repetition. The .info file has all the information of the repetition except the raw 

data. An example repetition info file is the following: 

Correct|True 

StartDate|2018-01-05 00:31:55.332 

StartActiveDate|2018-01-05 00:31:57.915 

StopDate|2018-01-05 00:31:58.746 

duration|3411 

activeDuration|831 

Rom|45.94853 

RomPercentage|0.6054431 

CoinScore|6 

GoldScore|0 

SilverScore|1 

BronzeScore|4 

 

The Raw data are separately stored to a different .data file (due to larger size 

compared to the .info repetition summary data) with the same id {RepetitionId}. An example 

repetition data file is the following: 

[1, 96, 64, -56, -4, 116, -7, 96, 0, -118, 0, 107, 0, -120] 

[1, 112, 64, 120, -5, -4, -7, 112, -1, 16, 0, 110, 0, -113] 

[1, 36, 64, -116, -4, 48, -7, -128, -2, 67, 0, 36, 0, -127] 

. 

. 

. 

[2, -64, 66, 88, -14, 88, -7, -128, 16, 28, 0, 74, -2, -86] 

[3, 96, 63, -56, -14, 80, -7, -112, 17, 36, -2, -74, -3, -20] 

 

This serialization is implemented in a separate thread. The serialization process is CPU 

demanding task and if not handled asynchronously the game execution will freeze for a few 

frames till serialization is completed. Until the asynchronous serialization is completed the 

exercise remains in the Calibration phase. The MyGameManager singleton handles the custom 

implemented serialization of users and exercises. 

The MyGameManager singleton is also responsible for deserializing repetition data. 

This is useful for the automated graph generation performed by the application and for 

keeping track of the user repetitions. The implementation of the deserialization uses a 

Dictionary Cache to avoid extra computations when data are not changed. So data in memory 

are updated only when changes are detected. This way stale data are avoided and the access 

to the data remains fast using O(1) complexity when data are not changed and O(n) when data 

do change, where n is the number of repetitions performed by the user for this Exercise type. 

In order to use an exercise in a game it must be inherited from MyExercise base class 

to be given custom functionality. As an example, consider the Airplane Game. This game 

overrides MyExercise base class. This base class is a custom component that should be 

attached in a GameObject in the current scene. In this example this GameObject is 
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PlaneExerciseManager and its children GameObjects are the airplane models imported to 

Unity. The base class handles the detection of the repetition. The derived class handles the 

game logic by using the events and data provided by the base class. This way the algorithm 

implementation is hidden from the derived class. In the Airplane Game the implemented 

methods handle the moving in the vertical direction (up and down) along with the movement 

of the user’s limb. They also specify the correct or wrong repetition events. On a correct 

repetition the score is updated and the appropriate success message is appeared on the UI. On 

a wrong repetition a meteor shower is activated that can destroy additional airplanes and the 

user is prompted to try this exercise again. 

//Event that is triggered when move has finished successfully 
public override void OnMoveCompleted(float tpf) 
{ 
   //Compute Scores for serialization before changing in base 
   coinEmitter.ComputeScore(); 
   base.OnMoveCompleted(tpf); 
} 
 
//Event that is triggered when move has finished unsuccessfully 
public override void OnWrongMoveDetected(float tpf) 
{ 
   base.OnWrongMoveDetected(tpf); 
   //On detection of wrong move return plane to starting position 
   transform.position = startPos; 
   //And do custom event. Here Activate Meteor Shower 
   _myMeteor.ActivateMeteor(true); 
   //Reset the coin score 
   coinEmitter.RestoreScore(); 
} 

5.2.5 Game Levels Functionality 

Once the basic architecture is setup then the specific game scene creation can take 

place. Games Scenes are characterized by the following features and constraints: 

 There is common HUD functionality concerning IMU feedback (angles, ROM, 

acceleration), Exercise feedback (Exercise state feedback, success / failure feedback) 

and award feedback (Coin Score). These elements are described in the UI 

Implementation Section. 

 There is different HUD functionality depending on the specific scene gameplay. An 

example description of HUD is provided in the UI Implementation Section. 

 Each Game Level is available for each user and each exercise type. If a user would like 

to change game level or exercise type this should be easily achievable from the main 

menu. More info on this functionality is provided in the UI Implementation Section. 

 There is one GameObject that has a Custom Component derived from MyExercise 

class. This component handles the real-time visualization feedback of the IMU. This 

GameObject is attached to one or more 3D model that interacts / moves analogically 

to the ROM achieved. This is done by appropriately handling MyExercise events as 

described in the Scene Hierarchy & Persistent Game section. 

 There is a common award system for all game scenes. This consists of Coin Score. 

Users gather coins if a repetition is successful. Depending on the ROM achieved they 
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gain highest value coins. Detailed description of the award system is provided 

furthermore. 

 There is gameplay specific functionality and game assets in every scene. Some 

examples of these specific scenes are described below. 

The award system of each game is kept the same for consistency of observed results. 

This shouldn’t be an absolute constraint in future development, as different kind of awards can 

provide a sense of personalization to the framework. On the current implementation though, 

each case is handled in a similar manner. This simplifies the experimental and result 

generation processes. 

An example game level description can clarify the award process. The example game 

level used is the Airplane Game Level. This level is chosen because it is the game level used for 

testing the framework to patients at the Orthopaedic Clinic of the Chania General Hospital. 

The specific exercise that was used was Knee Extension. But the same game works 

appropriately with any exercise that might be chosen. In this game there is basic gameplay 

functionality and advanced functionality. 

The basic gameplay functionality is the core of the game process. When players raise 

their knee in order to perform Knee Extension then they can see an airplane going upwards 

along with their Knee movement. In the same manner the airplane goes downwards when 

patients lower their knee to the neutral position. Above the plane there are some ordered 

coins that the plane gathers when collision is detected. Collision is detected when the airplane 

model bounding box touches the coin bounding box. In that event the coin score is increased 

depending on the Coin value (Bronze, Gold, Silver coins give 1, 2, 3 points respectively). The 

goal here is to maximize award on higher ROM but also provide award for lower ROM 

achieved. This happens in order to engage even the patients with weaker knee recovery to put 

more effort to gain higher reward. So when in neutral position and after calibration phase the 

user sees the following (Figure 70): 

 

Figure 70: Neutral Position when Ready for Move after Calibration phase. 

 

When users perform Knee Extension then they will observe that the airplane starts 

gathering coins and their score will increase (Figure 71): 
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Figure 71: Upwards Movement. 

 

The user maximum ROM Percentage during this movement was at a 65%. This user 

performed well but didn’t manage to gather all the coins available. The current achieved score 

is 3 Bronze Coins x 1 point + 1 Silver coin x 2 points = 5 points. If however the user could 

achieve higher percentage, the Gold Coin will additionally be collected thus achieving 

maximum possible reward of 5 points + 1 Gold Coin x 3 points = 8 points. At this point however 

the movement has not yet been completed. The repetition can still be labeled incorrect. If the 

movement is labeled incorrect then the user doesn’t gain any additional score. The user must 

return into neutral position. In order to provide additional motivation in this direction, when 

the downward movement is detected a last coin appears further down to the original airplane 

position that corresponds to the neutral position of the knee in reality (Figure 72): 

 

Figure 72: Downwards Movement. 

 

The award system described was implemented with the help of physiotherapists and 

postoperative patients to make sure it can engage the patients to perform an exercise. As 

discussed further this is achieved mostly with the visual Coin motivation than the Coin Score 

itself. 

The advanced gameplay functionality is an extension of the basic functionality. It 

provides additional gameplay features. The advanced feature in this game constitutes of the 

ability of a player to buy more airplanes and gather more coins faster (Figure 73). The player 

can control multiple airplanes with the same knee movement and collect coins and points 

faster. The user cannot buy more planes if there are no more coins available. 
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Figure 73: Multiple airplanes advanced game play feature. 

 

When a user performs some incorrect movement additional effects can take place. In 

this case for example a meteor shower appears and destroys the smaller plains if it hits them 

(Figure 74). This way a player needs to add more effort in order to perform correct Knee 

Extension Repetitions, gather more coins and get the airplanes back.  

 

Figure 74: Wrong Repetition Implementation. 

 

A similarly implemented game is the Coin Fishes game. In this game there are fishes 

that gather coins in the horizontal direction instead of vertical as in the airplane game (Figure 

75). 
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Figure 75: Fish Game. 

 

There are 2 advanced features in this game. One is similar to the airplane game. There 

can be multiple fishes gathering coins. This however is triggered automatically if the user 

gathers enough coins. The next feature is that the user can increase the size of the fish if there 

are enough coins to spend (Figure 76). 

 

Figure 76: Multiple fishes and larger fishes advanced game play features. 

 

All the implemented mini-games employ several game assets. These assets are either 

visual content or game logic content. Visual content consists mainly of 3D mesh models 

(airplane, fish, mountains, plants), particle systems (cloud system, bubbles), Sprite Textures 

(Coins). Visual content is not created from scratch. It is imported through Unity packages. 

Game logic Content on the other hand is created from scratch. Game logic content constitutes 

of implemented scripts that are added to the 3D models as custom components attached to a 

GameObject, thus providing the desired functionality to the game. Such custom components 

are the Singletons described above. There are also lesser script components that add some 
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functionality that constitutes mostly on moving, rotating, enabling, disabling a specific 

GameObject. They do this by simply handling the transform component of a GameObject or by 

changing a flag value of a GameObject Component. 
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6 Chapter 6 – Experiments 
 

6.1 Materials  
This experiment was designed to track Total Knee Replacement (TKR) patients 

recovery after surgery using the proposed rehabilitation application. The goal was to motivate 

the patient to exercise correctly with minimum physiotherapist supervision. From a computer 

graphics point of view this experiment investigated whether a visual stimulus with elements of 

serious gaming could trigger the patient in order to perform the exercises appointed by the 

physiotherapists willingly and ignore the factor of pain up to a certain degree. Two groups of 

experiments were conducted. The first stage was essentially a training & parameter fine-tuning 

stage of the application and algorithm. It was conducted on healthy individuals as well as 

walking TKR patients on the path to recovery. The second stage took place at the Orthopaedic 

Clinic of the General Hospital of Chania. It was conducted on TKR patients after surgery. 

6.1.1 Participants 

The first training round was performed on 6 individuals (3 healthy ages 30 – 50, 3 

walking TKR patients, ages 64 – 80). 10 patients (eight female, two male, range 64 - 80) 

underwent TKR surgery at General Hospital of Chania and agreed to participate in the second 

testing round of this framework that drove the results presented in this study. 1 patient 

refused to participate in this process. The patients had no background with Android devices or 

gaming. 

6.1.2 Apparatus 

Given the portability and low-cost design constraints of the application, the setup for 

the experiment was minimalistic. The designed sensor node was first placed in the shin of the 

patient’s knee using an elastic bandage with Velcro (Figure 67). The goal was to stabilize the 

sensor node since Inertial Measurement Unit (IMUs) are very sensitive to placement 

misalignments. Then the patient was presented an Android device that run the designed 

application and was asked to follow the experimental procedure as described below. The 

selected device can be anything that meets the minimum hardware requirements for Android 

that Unity 3D specifies. These requirements are: 

 OS 4.1 or later. 

 ARMv7 CPU with NEON support or Atom CPU. 

 OpenGL ES 2.0 or later. 

6.2 Methods 

6.2.1 Qualitative and Quantitative Research  

Quantitative and qualitative research are commonly considered to differ 

fundamentally. Yet, their objectives as well as their applications overlap in numerous ways. 

Quantitative Research is considered to have as its main purpose the quantification of 

data. This allows generalizations of results from a sample to an entire population of interest 
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and the measurement of the incidence of various views and opinions in a given sample. Yet, 

quantitative research is frequently followed by qualitative research which aims to explore the 

observed findings further. 

Qualitative research is considered to be particularly suitable for gaining an in-depth 

understanding of underlying reasons and motivations. It provides insights into the setting of a 

problem. At the same time, it frequently generates ideas and hypotheses for later quantitative 

research. 

Qualitative analysis involves a continual interplay between theory and analysis. In 

analyzing qualitative data, we seek to discover patterns such as changes over time or possible 

causal links between variables. Combining of qualitative and quantitative research is becoming 

more and more common. It is important to keep in mind that these are two different 

philosophies, not necessarily polar opposites. In fact, elements of both designs can be used 

together in mixed-methods studies. 

Here we will primary employ qualitative research to try and understand patient 

engagement in the current framework. We will combine this qualitative research with 

quantitative findings such as ROM and classification rates. Although the quantity of these data 

is small they can provide a useful feedback in understanding patient engagement and recovery 

progress. 

6.2.2 Experimental Procedure 

The proposed framework implements 4 common rehabilitation exercises for the Total 

Knee Replacement (TKR) condition (Table 1). In order to simplify the testing procedure and 

reduce experiments duration, only one of these was used. The same procedure would apply to 

every exercise and the qualitative results acquired can be expected to share similar attributes 

with the ones acquired by a single exercise testing. Time constraints along with patient 

compliance could not allow testing all exercises. The selected exercise was Knee Extension. The 

patient positioned himself in a neutral sitting pose. He was presented with the Airplane Game 

as described in the Implementation Section. The goal was to raise the knee as high as possible 

and at the same time perform the exercise correctly and observe the visual stimulus. This 

stimulus was the movement of the airplane along with the movement of the knee as described 

in the Game Levels Functionality section. Patients were instructed to perform a minimum of 4 

repetitions of this exercise. There was of course the possibility to perform more and stop when 

they feel tired or in pain. This procedure was common in both training and testing phases. 

Below the differentiations of each case are discussed. 

6.2.3 Training – Healthy Subjects & Recovering TKR Patients 

Firstly the application was applied to healthy subjects. This contributed in a first 

iteration of fine-tuning neutral position angle constraints for each exercise. A main issue when 

trying the application in healthy subjects is that these angle constraints are not representative 

for the case of TKR patients. Healthy subjects can have full ROM while TKR patients even at the 

stage of recovery have limited ROM of their knees. So a second iteration was deemed 

necessary in order to fine-tune angle constraints with respect to patient limited ROM. 
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Recovering TKR patient, is an outpatient in physio follow up, 12-14 days post-op after 

suture removal. This patient still has a limited ROM but can operate the knee normally and 

walk. We applied the same procedure to the recovering patient. An operated knee with limited 

ROM when bend has a neutral position angle smaller than a healthy subject angle. This fact 

allowed us to record new neutral pose angle constraints and automatic classification algorithm 

thresholds and make the appropriate changes in the respective implementations. 

In both cases a single session was performed with each subject. Each subject only used 

the application one day compared to hospital inpatients where multiple data readings could be 

collected in a span of several days as described below. The duration of this training phase was 

15 days. 

Physiotherapist feedback during this training phase was invaluable as it helped finalize 

the experimental procedure and the reward system the game should provide, along with the 

gameplay mechanics functionality itself. They insisted that the coin reward system used should 

be as clear and simple as possible in order to be understandable by as many patients as 

possible independently of age criteria or other comorbidities. Also they noted that the 

movement of the knee for a specific exercise, should correspond to the visual stimulus in the 

virtual world. So for example, the upwards movement of the airplane corresponds to the 

upwards movement of the Knee Extension exercise. At this point the application was modified 

to tolerate limited ROM and the testing on the hospital orthopaedic clinic could commence. 

6.2.4 Testing – TKR Inpatients 

The initial testing of the application on patients after TKR surgery has been conducted 

in a similar manner at the Chania General Hospital under the supervision of a physiotherapist 

using the same postoperative procedure (Figure 77). All patients were operated by the same 

surgical team using the medial parà patellar approach and started their physiotherapy protocol 

48h post op after the removal of the drain. Exclusion criteria were neurological deficit, 

previous operation on the ipsilateral or contralateral hip or knee, or functional deficit. 

 

Figure 77: Chania General Hospital premises (http://www.chaniahospital.gr/). 

 

10 TKR patients consented to try the application in order to gather motion data. TKR 

surgery is a common operation. The frequency of this operation in the public general hospital 

of Chania is approximately 5 patients per month. The data were collected in approximately 2 

months of testing. A patient that underwent TKR surgery can stay in the hospital orthopaedic 

http://www.chaniahospital.gr/
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clinic for a period of 4 days up to 12 days depending on recovery progress. A patient’s recovery 

progress depends on the patient’s age, physical condition and variant comorbidities. Younger 

patients tend to recover faster and people with obesity, respiratory problems or other 

comorbidities tend to recover slower. 

We performed one to three sessions with each patient. A session is the testing of the 

application for a single day on a patient. In each session the patient is advised to perform a 

number of repetitions for the Knee Extension exercise. The first session for each patient was 

performed two to five days after surgery depending on recovery. Second session for the same 

patient, was performed four to five days after the first. Lastly the third session if any, was 

performed eight to nine days after the first. This could happen if a patient’s recovery progress 

was slow and the patient had to stay longer in the hospital orthopaedic clinic. The number of 

the repetitions in a session can be four to thirteen depending on the patient’s physical 

condition. Through these repetitions, motion data was collected by the application which in 

turn produces graphs in real-time that show statistics about the ROM of the patient. These 

statistics are used for data analysis and are presented further on. 

6.3 Data Analysis 
The focus is on the qualitative analysis of the data collected. At the current stage of 

the application, the focus is mainly on the tracking of recovery progress of each patient using 

ROM information extracted by the repetitions performed. Secondly an initial intuition along 

with preliminary results for the first iteration of the automated classification algorithm are 

provided. 

6.3.1  ROM Graphs 

In this section, the Range of Motion (ROM) percentage graphs generated by the 

application are presented. From the total of 10 patients, 4 were selected illustrating the 

variant cases that can occur. The data are presented in the following form: 

 Patient Id: A unique number indicating the current patient. 

o Gender: Male or Female. 

o Number of sessions: Can be 1 – 3. 

o Number of days after surgery: Indicates when first session occurred. 

o Comments: Comments on health or reactions of the patient. 

o Photo: A photo of the patient when available. 

o ROM graph: The automatically generated graph of the application. The vertical 

axis is achieved ROM percentage (0% - 100%). The horizontal axis represents 

the number of repetitions performed grouped by specific dates. Note: Only the 

correct repetitions are used for ROM measurement, incorrect are discarded. 

Below these results are presented: 

 Patient Id: 1. 

o Gender: Female. 

o Number of sessions: 3. 

o Number of days after surgery: 2. 
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o Comments: Patient was immersed in the game. She tried to improve the score 

constantly. There is increasing progress during each session as seen in the 

graph. In the end of some sessions there are some decreasing ROM values. 

This is the outcome of the patient becoming tired while exercising. 

o Photo: 

 

Figure 78: Photo for patient 1. 

 

o ROM graph: 

 

Figure 79: Generated ROM Graph for patient 1. 

 

 Patient Id: 2. 

o Gender: Female. 

o Number of sessions: 3. 

o Number of days after surgery: 2. 

o Comments: Indicate declining progress. Patient was not immersed by the 

game and couldn’t understand the goal. She performed the repetitions only 

because she was asked to do so. A minimum peak is an exercise with lower 
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ROM. Still it is a correct movement, but the patient performed some limited 

ROM repetitions in the process. 

o Photo: 

 

Figure 80: Photo for patient 2. 

 

o ROM graph: 

 

Figure 81: Generated ROM Graph for patient 2. 

 

 Patient Id: 4. 

o Gender: Female. 

o Number of sessions: 1. 

o Number of days after surgery: 4. 
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o Comments: Stayed in the hospital orthopaedic clinic only a few days. Only a 

single session performed. Shows signs of engagement and constant effort to 

performed higher ROM repetitions. Last declining repetition indicates that the 

patient starts to become tired. 

o Photo: 

 

Figure 82: Photo for patient 4. 

 

o ROM graph: 

 

Figure 83: Generated ROM Graph for patient 4. 

 

 Patient Id: 8. 

o Gender: Male 

o Number of sessions: 1. 

o Number of days after surgery: 5. 

o Comments: Younger patient with good physical condition. The achievable 

ROM was still limited but he actually scored high ROM by ‘cheating’. He 
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performed the repetitions by driving the whole body backwards along with the 

movement of the knee which was still bent. The sensor captures the angle in 

the axis of movement resulting in classifying the repetitions as correct while in 

fact they were incorrect. 

o Photo: Not available. 

o ROM graph:  

 

Figure 84: Generated ROM Graph for patient 8. 

 

6.3.2 Classification Examples 

In this section 2 graphs are presented that indicate the percentage of correct / 

incorrect repetitions for 2 patients respectively. These graphs are given in conjunction with the 

actual percentages for these cases. The actual percentage is essentially the physiotherapist 

estimation on how the movement should be performed. This way an intuition is provided on 

the first iteration of the classification algorithm and future improvements that are needed. The 

data presented here are discussed in the Results section and conform to the following format: 

 Patient Id: A unique number indicating the current patient. 

o Algorithm Classification Percentage: 0 - 100 %. 

o Physiotherapist Classification Percentage: 0 - 100 %. 

o Algorithm Classification graph: The generated graph that indicates the 

Algorithm classification percentage. 

Below these results are presented: 

 Patient Id: 2. 

o Algorithm Classification Percentage: 73.1 %. 

o Physiotherapist Classification Percentage: 69.2 %. 

o Algorithm Classification graph:  
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Figure 85: Classification Graph for patient 2. 

 

 Patient Id: 8. 

o Algorithm Classification Percentage: 85.7 %. 

o Physiotherapist Classification Percentage: 16.6 %. 

o Algorithm Classification graph:  

 

Figure 86: Classification ROM Graph for patient 8. 

 

6.4 Results 
In this chapter we will discuss the results that are provided in the Data Analysis 

section. 

6.4.1 ROM Graphs 

ROM graphs that are generated in the experimental procedure along with patient 

behavior provided feedback about the strengths and weaknesses of the proposed 

rehabilitation system. The majority of the patients understood the goal of the game and were 

immersed in the simple airplane scene. In 80% of the collected samples, the maximum ROM 

percentage measurements are increasing and follow a similar pattern as that of patient with id 

= 1 shown in Figure 79. This indicates that patients were constantly trying to improve their 

previous repetition performance by raising the airplane even higher and gather more coins. At 
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the end of certain sessions, the ROM measurements declined, in some cases, indicating that 

the patient was tired by the performed repetitions. This was mostly the case for patients 

demonstrating slower recovery due to other comorbidities. The slower recovery of these 

patients didn’t necessarily result in lower engagement during the airplane game. Patients were 

still trying to improve their previous repetition 80% of the examined cases. 

A minority of patients didn’t improve their ROM (Figure 81). On these cases the 

patients didn’t understand well the goal of the game and were not engaged with it. Therefore, 

patients only performed the repetitions because they were instructed to do so. 

There was also a single case of a patient who performed a higher ROM repetition as 

recorded while the knee had actually a lower functional ROM. The patient achieved that by 

slowly positioning the entire body backwards in the direction of movement while sitting on a 

bed. The acceleration or angle constraints were not violated, so the maximum ROM 

percentage was measured and was close to 100% (Figure 84). 

6.4.2  Classification Examples 

While this testing was focused mainly on measuring the ROM of the patient, gathering 

feedback and recording their reactions, an initial evaluation is also provided regarding the 

implementation of the exercise classification algorithm in this first iteration. Automatically 

generated graphs show the detected classification percentage of the algorithm. The 

classification percentage indicates how many of the total repetitions performed for an exercise 

are classified as correct and therefore also indicates the repetitions classified as incorrect. 

This percentage is compared with the actual classification percentage that is provided 

by the supervising physiotherapist. Then the error percentage of the algorithm can be 

measured by comparing the actual physiotherapist percentage with the application’s 

generated percentage using the relative difference of the values.  One way to define the 

relative difference of two numbers is to take absolute difference divided by the 

maximum absolute value of the two numbers. So the error percentage is described by the 

following formulae (Figure 87): 

 

Figure 87: Formulae for error percentage calculation of designed algorithm. 

 

For instance, a patient achieving a correct classification percentage of 73.1% according 

to the automated algorithm (Figure 85), that has an actual correct percentage of 69.2% 

according to the physiotherapist, provides an algorithm error percentage of 5.6% for this 

patient. For a different patient who employed a strategy of demonstrating higher ROM than 

possible based on body positioning as explained above, the respective percentages were an 

algorithm correct percentage of 85.7% (Figure 86), a physiotherapist’s actual percentage of 

14.3%, resulting in an algorithmic error percentage of 83.3%. The observed data indicates that 

there can exist large variation in resulting accuracy of the algorithm. It is challenging to 

implement a generalized algorithm that avoids overfitting based on having only a few samples 
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during these two months of testing. Future iterations should optimally rely on a larger amount 

of data including data from different hospitals. 

Detecting ‘cheating’ patient strategies when employing a single IMU sensor is 

significant. For such cases, there should be a minimum of two sensors, one placed on the shin 

and one on the thigh of the patient. However, this increases the cost of the application and 

reduces portability which were the main design constraints of the proposed system. There are 

two supplementary ways to resolve this issue. Firstly, the physiotherapist should train the 

patient to accurately perform the exercise such as the knee extension exercise so that, later, 

the patient can repeat the exercises alone with minimum supervision. Secondly, the user 

interface of the application should instruct the patient to maintain a neutral pose. This should 

be preferably implemented to include animations of humanoid postures rather than only text 

and image hints. Therefore, it is essential to provide a solid setup for the application. For 

example, while a knee extension exercise can be performed in bed, using a chair to sit on 

instead can avoid this form of ‘cheating’ by helping the patient to support the back and 

accurately exercise. 

Throughout the experimental procedure it became apparent that the classification 

error is greatly influenced by the starting position of the sensor. It is essential that the sensor is 

accurately oriented so that side angle is close to 0° degrees in order to avoid inaccurate 

exercise repetitions. The IMU is very sensitive to misalignments. If the sensor is not placed 

correctly, the data collected from the sensor can lead to inaccurate results. 

6.5 Comments 
Insight gained throughout the experimental procedure while working with TKR 

patients, is note-worthy. When the patients were asked to perform an exercise based on the 

proposed rehabilitation system, they were reluctant or hesitant at best. One of them even 

refused to perform the experiment. Once the orthopedic surgeon or physiotherapist explained 

the procedure, they cooperated well and contributed to this research project although still 

hesitant in some cases. It was common for a patient to focus on the experienced pain before 

embarking on the experimental procedure. This fact negatively influenced the psychological 

state of the patient. After performing a single repetition, though, the patient was usually more 

tolerant of pain of the knee, ignoring it to a certain degree. There were many cases when after 

only a few repetitions, patients were heavily engaged in the game as indicated by their 

behavior and facial expressions. Examples of such expressions were smiling facial expressions, 

laughing or eagerness to start the next repetition. On the other hand, this eagerness could 

result in hasty movement and, thus, incorrect repetitions. In such cases, the patient was 

advised to perform slower and steadier movements of the knee. After a certain amount of 

repetitions, the pain was again more dominant than user engagement and the ROM 

percentage started to decline. By the end of the session, 80% of the participants were eager to 

perform another session. 

Physiotherapist feedback was invaluable in both testing and training phases. As 

discussed in this section, during the testing phase in recovering patients, physiotherapist 

requirements helped in simplifying the design of the gameplay and reward procedure of the 

game. During this testing phase in inpatients, physiotherapists informed the patients on the 

experimental procedure which greatly helped in gaining their consent to proceed with our 
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measurements. Additionally they helped in sensor placement at the shin of the knee. They 

instructed the patients how to perform correct exercise repetitions using correct body posture 

and movement of the knee. When a patient needed help to perform a repetition they provided 

manual aid in the movement of the knee. Despite the physiotherapist guidance, there were 

cases of patients performing wrong repetitions or ‘cheating’. Still these cases give valuable 

feedback about the designed system response and provide some insight about future 

improvements needed such as more user friendly visual hints and improved UX. 

When patients were asked if they had found the games helpful, only one patient 

doubted their effectiveness for training, although physiotherapists recorded noticeable 

improvement of the patient’s limb motion. Other patients realized they were applying 

enhanced personalized effort into their physiotherapy protocol when utilizing the gamified 

application. Another thing to note is that none of the participants used advanced gameplay 

features, e.g. buy more airplanes. All the participants were not acquainted with mobile 

technology, android devices and gaming. They participated however in the game in its basic 

form. 

6.6 Discussion 
We analyzed the data collected and interpreted the results. The goal is to understand 

in a qualitative manner the feedback collected from the patients. In this iteration quantitative 

measures that include ROM and classification feedback were provided. The collected data 

have a small quantity and cannot provide generalized results in terms of numbers, but 

nonetheless provide qualitative feedback for understanding user and physiotherapist 

expectations for the application.  

Physiotherapists expect the patient to be able to understand the designated exercises 

and be able to perform them correctly with minimal guidance. Physiotherapists are also 

interested in the generated application graphs that can be a useful tool for monitoring patient 

recovering progress. Future improvement of the designed system, can include a mechanism 

for real-time measurement monitoring. The data gathered from Bluetooth can be sent via Wifi 

to a remote database. Then a designed web service can access this database and produce the 

same graphs for different users. So when a user is exercising from home or effectively from 

anywhere, the physiotherapist will be able to view a user’s progress remotely, provided that 

the user has access to the internet. 

The user of the application expects fast recovery of the knee with minimum achievable 

pain in the process and minimum physiotherapist supervision. The goal of this application 

however is not to replace the physiotherapist. The monitoring of the physiotherapist is 

required in any case. Assuming that the aforementioned online monitoring is implemented, an 

interesting feature of this framework can be that a user can request the physiotherapist 

feedback on demand through the implemented application. The WiFi restriction still applies. 

This however is an advanced feature that should be designed carefully because as observed in 

the current experimental procedure, the user can have little involvement with mobile 

technology. So features like this should be designed in a way that both experienced and 

inexperienced mobile users can understand: Experienced users by employing Wi-Fi technology 
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and inexperienced users possibly through direct mobile network communication by enabling 

direct call to or from a supervising physiotherapist or orthopaedic.  

The testing sessions were focused in providing feedback on the user engagement of 

this framework. As mentioned above, user expressions and notions through the exercise 

indicate a positive attitude towards this gamified approach in physiotherapy. A percentage of 

the users though, roughly 20% of them, failed to get immersed in the designed environment. 

This was indicated by their lack of attention or interest during the experimental procedure as 

well as from the resulting ROM graphs that were declining. These users performed the 

repetitions only because they were told to do so in contrast with immersed users that 

performed the repetitions willingly until they were instructed to stop or they were getting 

tired from the exercise. 

A solution to this situation can be provided using the notion of personalization. So 

instead of testing only one game for a single exercise, try multiple games and observe if there 

are changes in user engagement. In preliminary testing of the proposed framework, some 

prototype games were tested. An example of such a game was something visually simple such 

as scaling a 3D Sphere using the movement of the knee. This kind of game was actually more 

helpful in some patients than more complex games. A more complex game introduced an 

animated character that was climbing a wall using the movement of the knee. This was a highly 

personalized example that a certain user might enjoy a lot, but another user cannot 

understand it that easily. 

The airplane game was chosen for the experimental procedure as a more generalized 

and neutral game. The games designed should be simple and understandable. It is important 

to keep in mind that the users of this application are unrelated with technology and gaming. 

Additionally the majority of the users belong to an older age group (above 60 years old). It is 

not a trivial task to design games that target these age groups. One important constraint is 

that a user should be willing to undergo this kind of gaming procedure. Without the help of the 

majority of the patients these results would completely fail in assessing user engagement. 
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7 Chapter 7 – Conclusions & Future Work 
Wearable technologies over the past years have been emerging for wide use in 

everyday activities. The need of utilizing wearable sensors is receiving wide attention, mostly 

for applications that exploit wearable sensors in order to improve quality of life. The current 

framework introduces an ultra-portable rehabilitation application comprising of just a single 

Inertial Measurement Unit (IMU) sensor linked to a 3D gamified environment, to be adopted 

by patients that have undergone Total Knee Replacement (TKR) surgery for their highly 

repetitive, but very significant post-operative physiotherapy. This application engages the 

patient to accurately perform the recovery exercises through a gamified 3D experience, 

ultimately minimizing physiotherapist supervision, at most locations. A 3D mini-game 

connected to each limb exercise appointed by the physiotherapist is implemented. This 

framework can run on Android smartphones with the use of a single sensor node maximizing 

portability and ease of use. Accurate patient exercise and compliance can be achieved by 

succeeding at each mini-game objective. Feedback offered based on angle measurement 

constraints enhances patient engagement. Future development should overcome limitations 

of few testing samples and derive a reliable accuracy result from the classification process. 

Furthermore a long term observation of TKR outpatients is required in order to provide 

meaningful and reliable results. 

7.1 Limitations 
Throughout this project there were several limitations during the development phase 

as well as the experimental phase. Recording these limitations can be really helpful to provide 

some insight on future improvements of this framework as well as improvements on the 

experimental procedure. These improvements will also lead to additional test phases design 

that can produce generalized results regarding physiotherapy of TKR patients using gamified 

technologies. 

To begin with, the design constraints criteria selected, already impose very specific 

limitations. Note that the main design constraints of this framework are portability and low 

cost. Using 2 sensor nodes instead of one could achieve better motion tracking, but would 

violate our main design constraints. Future development will also respect these constraints. 

While employing a second sensor node can be more accurate (Huang et al. 2016), the goal is to 

obtain the optimal achievable result using 1 sensor node thus maximizing portability and 

minimizing cost. 

A very significant factor and at the same time limitation of the experimental procedure 

is the positioning of the sensor node. IMUs are very sensitive to misalignments. The starting 

position of the sensor node is critical when measuring ROM and classifying a repetition as 

correct / incorrect. During the experimental procedure the placement was performed in a 

supervised manner by a physiotherapist. Eventually when a patient uses the application at 

home or anyplace unsupervised, that patient should be able to position the sensor node 

correctly to the shin of the knee and have the correct pose at the same time. Although the 

designed UI indicates the main and side angle rotation and the allowed margins, people with 

limited knowledge of technology may have trouble understanding what to do. This fact 
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indicates the need for a more visually descriptive UI rich in animations that will be 

understandable by the majority of the users if not all of them. 

 Another point to consider is the experimental process itself. It took place at the 

Chania General Hospital Orthopaedic Clinic. Although the results gained through the 

procedure would not be possible without the consent of the Hospital, it is very time consuming 

to gather just a few measurements on a number of patients. The TKR procedure is a common 

procedure, but in smaller communities like the city of Chania there are just 1-2 TKR patients 

per week compared to larger city hospitals that can have multiplied rate of operations per 

week. Gathering measurements from a second hospital would allow us to compute concrete 

quantitative results and have more diverse samples. Another difficulty is that although we 

tried to gather measurements at fixed time intervals in order to be more consistent with the 

results, this was not always possible. This is due to each patient having variable recovering 

times. So while one patient was available for measurement in the 2nd day after surgery, 

another patient would be available in the 3rd day after surgery. 

The testing in the hospital as mentioned in the Methods section focused mainly in the 

ROM measurement and initial reactions of patients. Ideally though we want a testing 

procedure that will compare traditional physiotherapy with the proposed gamified one. To 

achieve this, there should be testing done that will track patients for a period of time even 

after they have exited the hospital. It will also require patient dedication on performing either 

therapy (traditional or gamified) assigned to them. Again this cannot easily be done in a 

smaller municipality like this of Chania and not every patient will be willing to agree to more 

long term tracking. To achieve such comparisons, measurements from larger municipalities will 

be required. 

Furthermore, the testing in the hospital provided some insight on the first iteration of 

the automatic classification algorithm of physiotherapy exercises. Throughout the testing 

phase the algorithm parameters were fine-tuned manually to provide more accurate results. 

Still this process should be generalized. This generalization can be provided by gathering more 

measurements from more patients and applying machine learning techniques to compute 

algorithm parameters. 

7.2 Implications for Future Work 
In the section above, the major limitations of the current work were discussed. 

Following this discussion some ways to overcome these limitations are required. Here we will 

briefly overview these ways and how they can be integrated to the current project.  

More effort should be put to improve User Experience (UX) of the application. The 

application should be used with the same ease by experienced and inexperienced mobile users 

and by users of any Age Group. Implementing visual hints, animations and strict user 

instructions can make the proposed framework more user friendly even for inexperienced 

users. It is not possible to satisfy all the users, but it is achievable to satisfy the majority of the 

TKR patients. 

A difficult problem to address is to increase the user engagement for diverse 

populations. These can be achieved by the notion of personalization as mentioned in the 
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experiment section above. So the experimental procedure should change in a way that 

different users have more than one game to choose for each TKR exercise. This way there is 

increased probability that a person will be immersed to at least one game. The experimental 

procedure then can provide more meaningful results. This project already implements variant 

TKR games. More mini-games on various topics can be designed and implemented that can 

increase personalization and incorporated in the experimental procedure in future testing.  

The online monitoring feature is already described in the results section. This feature 

along with more graph generations and quantitative data, can provide the supervising 

physiotherapist valuable data on the patient recovery progress and ROM improvement. 

Additionally the patient can have the option to consult the physiotherapist through the 

application and request feedback when there are questions concerning the recovery period 

and performed exercises. 

Finally the focus should be on testing the application and comparing it with traditional 

physiotherapy. This, as mentioned in the limitations section, requires tracking patients for 

longer periods of time after TKR rehabilitation, for example up to 5 weeks. When we ensure 

that this is feasible and patients are available to cooperate for that long, the second round of 

clinical trials can commence. Clinical trial will include 20 randomly selected subjects that have 

undergone TKR performed by the orthopaedic surgical team. Patients should be randomly 

selected to receive a course of 10 treatments over 5 weeks, half of them will use a traditional 

set of exercises for post op rehabilitation and the other half will use the gamification process. 

By the end of the rehabilitation we will measure and compare parameters such as Range of 

Motion (ROM), gait speed and overall patient satisfaction in order to establish the potential 

benefits of the interactive approach. 

 The ultimate goal of this project would be to form the base of a commercial low-cost, 

portable mobile application. A very important factor towards this goal would be the 

replacement of the custom-made sensor with a commercial sensor. The cost of the custom 

sensor implemented in this project is 30 $. It would be an interesting project to introduce such 

a sensor in the market, although at the time of writing there isn’t a device incorporating only 

IMUs. Usually IMUs are embedded in a wearable device along with additional functionalities. 

This is the case of the smartwatches. A smartwatch is a touchscreen wearable computer in the 

form of a wristwatch. Smartwaches incorporate IMUs additionally with more systems such as 

heart rate, proximity sensor, GPS, speakers etc. This raises the cost of the application since the 

cheapest smartwatches that incorporate IMUs come at a cost of 130$ at the time of writing. In 

the near future though this cost can be even smaller. Already at this cost the wearable 

watches are the strongest candidate for replacing the custom made sensor. 

 A low-cost smartwatch on this category is Ticwatch E. Ticwatch at the time of writing is 

the cheapest smartwatch that uses Wear OS (130$). Wear OS, formally known as Wear OS by 

Google, and previously known as Android Wear, is a version of Google's Android operating 

system designed for smartwatches and other wearables. By pairing with mobile phones 

running Android version 4.3 or newer, or iOS version 8.2 or newer with limited support from 

Google's pairing application, Wear OS integrates Google Assistant technology and mobile 

notifications into a smartwatch form factor. Wear OS supports Bluetooth, Wi-Fi, 3G and LTE 
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connectivity, as well as a range of features and applications. In the first six months of 

availability, it is estimated that over 720,000 Android Wear smartwatches were shipped. As of 

15 March 2018, Wear OS had between 10 and 50 million application installations. Wear OS 

was estimated to account for 10% of the smart watch market in 2015. 

 

Figure 88: Ticwatch E smartwatch (https://www.mobvoi.com/). 

 

Ticwatch E features include, Heart rate Monitor, Proximity Sensor, Accelerometer, 

Gyroscope, E-Compass, GLONASS, GPS. Google Assistant, Google Play, Sport and Fitness app, 

calorie counter, distance counter, pedometer, social app notifications, call and message 

notifications. Although the current work is implemented to be independent of the hardware, it 

is not a straight forward task to replace the custom made sensor with Ticwatch E. The main 

technical issue that needs to be addressed regards the integration of Wear OS with Unity 

Game Engine. As is the case in the current implementation a platform specific unity plugin 

must be implemented that handles Bluetooth connection between the smartwatch sensor 

with both Android and iOS devices through Wear OS functionality. On the other hand, as soon 

as this connection is established the data received from the smartwatch IMU will be already 

filtered or in worst case will require minimal post processing. Then the exercise classification 

algorithm can be applied. 

Recent works (Bevilacqua et al. 2018) study the automatic classification of knee 

rehabilitation exercises using a single inertial sensor as a continuation of previous studies in 

the same topic (Giggins et al. 2014, Huang et al. 2016). The proposed methodology employs 

machine learning techniques to automatically analyze inertial measurement unit data collected 

during these exercises, and then assess whether each repetition of the exercise was executed 

correctly or not. It would be a useful addition for this methodology to be incorporated to the 

current framework and validated from the collected dataset. Still the dataset remains small in 

size. Incorporating a smartwatch can provide a solution to this issue mainly for two reasons: a) 

The Smartwatch can allow data to be gathered from a lot of healthy users and patients 

providing variant samples among population and b) Greater number of identical smartwatches 

can be configured for each user / patient, in order to enable long term monitoring of users 

providing solid results for the gamified rehabilitation approach. 

 

https://www.mobvoi.com/
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