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Abstract

In this day and age, an important part of our daily interaction with our electronic

devices is on-line payments, which results in a great amount of transactions. In order

to handle these transactions, to determine if they are fraudulent, we need an efficient,

distributed and streamable machine learning algorithm, that can process big amount

of incoming data and react to it instantly. Thus, we implemented the distributed

Adaptive Model Rules on Spark Streaming, which is an extension of the Spark Core

API, that enables the development of scalable, fault-tolerant streaming applications.

Adaptive Model Rules is an one-pass algorithm for training its model from stream-

ing data and is robust to outliers and irrelevant features. The experimental results

concluded, that there is a noticeable speedup from Vertical Adaptive Model Rules to

Hybrid Adaptive Model Rules at the cost of reducing accuracy.
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Chapter 1

Introduction

New technologies allow us to generate data by interacting with software on our daily

activities [15]. A important part of our daily interaction with these technologies is

the use of credit cards. Credit cards dominate among other payment methods, thus

fraud appears as a huge issue in credit card transactions. Therefore, it is important

for applications to be able to process incoming data and react to it in an online fashion

using comprehensive detection mechanisms.

Since, credit card transactions can be produced anywhere, anytime, anyhow, there

is major interest in preventing or detecting fraudulent transactions [5]. Fraud preven-

tion is the process of blocking fraudulent transactions at source with some common

techniques for fraud prevention to be Card Verification Method (CVM), Personal

Identification Number (PIN) etc. On the other hand, fraud detection is the mecha-

nism that classifies a transaction as fraudulent or genuine. A Fraud Detection System

can be constructed, so that it can detect frauds from a massive online sample of trans-

actions.

A predictive model can use rules, that are based on the knowledge acquired from

fraud experts, but these rules need to be maintained by the fraud experts. However,

a machine learning approach can detect fraud patterns and predict transactions as
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possibly fraudulent, without human supervision [6]. Automatic fraud detection sys-

tems are vital, considering the fact that fraud analysts can not easily process large

samples of a dataset, that update over time. In 2013, the Adaptive Model Rules

(AMRules) were presented as the first rule-based learning algorithm for regression

problems on streaming samples of data [1]. And in 2014, the distributed implemen-

tation of AMRules was presented in order to achieve scalability and handle big data

streams.

Nowadays, machine learning algorithms are scalable, adaptable and streamable.

However, there are some challenges in producing a machine learning algorithm, that

detects fraudulent transactions. The main challenge is that, there are not enough

samples, since the datasets contain sensitive information and the available datasets

provide us with small portion of fraud transactions, hence the fraud data are highly

unbalanced. Finally, there is also the problem, that the fraud distribution changes as

the adversaries’ strategies evolve.

1.1 Contributions

In this thesis, it is presented a distributed implementation of AMRules on Spark

Streaming. The goal is to reduce the complexity of implementation as well as the

processing time, since Spark Streaming is a fast, scalable and fault-tolerant analytics

engine.

1.2 Outline

The Chapter 2 provides us with the theoretical backround needed to be able to un-

derstand main concepts discussed in this thesis. Chapter 3 and Chapter 4 give us the

main concept behind the algorithms in this diploma thesis and the implementation

of them using Spark Streaming, respectively. In Chapter 5 we would see the exper-
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imental results of this work and finally the Chapter 6 concludes the work and gives

recommendations for future interest.
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Chapter 2

Background

Over the years, data were processed offline, but now there is no reason to wait for the

complete dataset. Streaming analysis provides the ability to identify patterns and

make predictions based on them simultaneously. Moreover, the amount of streaming

data presented the need for a distributed system, that can efficiently implement ma-

chine learning algorithms. The theoretical background behind these concepts will be

discussed in this Chapter. In Section 2.1 we will see what machine learning is and,

how and where can be applied. In Section 2.2 we will see from what components

the distributed system Apache Spark is made of and we will also dive into Spark

Streaming for more information.

2.1 Machine Learning

Machine learning (ML) [12] gives the ability to a machine to learn from data, in order

to create a model. The model adapts with the purpose of detecting patterns and

making predictions based on these patterns. The most common machine learning

models are described below.
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• Supervised Learning : In this type of machine learning model, two types of data

are available, labeled and unlabeled. The labeled data are used to train the machine

learning model and the unlabeled data are used to test the model and make predic-

tions.

• Unsupervised Learning : Contrariwise, this type of model does not have histor-

ical data to learn from. It tries to find regularities in the given data or extract the

most significant features from that data.

Online Learning

There is the assumption that all the training data should be available beforehand,

but not with online learning. In this case, the complete sample is not accessible, but

only streams of data. In online learning there are intervals of time. In each interval,

a new training example becomes available to the learning algorithm, which uses its

current model to predict the label. After that, the correct label is revealed to the

learner so that it can incur loss and update its model.

Credit Card Fraud Detection Use Case

A model in machine learning, that is created with the purpose of detecting fraud,

it is called Fraud Detection Model. More specific with the help of ML models, we

can detect credit card frauds. Credit card frauds [11] are unauthorized transactions,

made or attempted by a malicious entity. The patterns of fraud [7] are dynamic, and

with that arises the need for the credit card fraud detection model to be adaptive.

2.2 Apache Spark

Apache Spark [3] is a lightning-fast cluster computing engine for Big Data and Ma-

chine Learning. It is an open source framework, which allows you to write general-
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purpose distributed programs and build applications on top of it. Spark [18] was

developed in UC Berkeley and was first introduced in 2010 by Matei Zaharia et al..

Apache Spark provides the following features.

• Speed : Spark is 100 times faster in memory and 10 times faster on disk, when

compared with Hadoop MapReduce.

• Ease of use : Spark has build-in APIs for multiple languages like Java, Scala,

Python or R. So, it is easy to create applications, that run multiple parallel opera-

tions.

• Generality : The Apache Spark Ecosystem is designed to combine SQL, stream-

ing, machine learning and graph analytics. It includes libraries for each of them in

order to be combined in the same application.

• Support : Spark is able to run on Hadoop, Mesos, Kubernetes, standalone, or

in the cloud. It is capable of accessing diverse data sources like HDFS, Cassanda,

HBase and S3.

The Spark project [9] contains different closely integrated components. The base

of these components is Spark Core, which provides support for Spark SQL, Spark

Streaming, MLlib and GraphX. A description for the components, shown in Fig-

ure 2.1, follows below.

Spark Core

Spark Core [9] holds the basic functionality of Spark. Spark Core’s APIs can provide

support such as task scheduling, memory management, fault recovery, interaction

6



Figure 2.1: The Spark Stack [3]

with storage systems etc, for a wide range of applications. Furthermore, the Resilient

Distributed Datasets [17] (RDDs) are the main concept of Spark. RDDs allow in-

memory computations on large clusters in a fault-tolerant way. RDDs can be divided

into partitions, they are also immutable and lazily evaluated, which means they can-

not be altered and the transformations are not performed immediately, respectively.

Spark SQL

Apache Spark’s package Spark SQL [3] [4] processes structured data. One of Spark

SQL’s main characteristics is its integration between relational and procedural pro-

cessing, which is achieved by the DataFrame API. Moreover, it has the ability to

connect uniformly to different data sources, including Hive, Avro, Parquet, ORC,

JSON and JDBC. Spark SQL also enables to write queries using HiveQL, access

existing Hive warehouses and connect to Hive UDFs.

Spark Streaming

Spark Streaming [3] allows scalable, high-throughput, fault-tolerant stream process-

ing of data received in real time. Spark Streaming will be discussed extensively in

Section 2.2.1.
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MLlib (machine learning)

MLlib [3] [10] is Spark’s scalable library, that contains multiple types of machine

learning algorithms. MLlib is supported by several programming languages like Java,

Scala, Python and R, and its high-level API manages to simplify the construction,

evaluation and tuning of end-to-end machine learning pipelines. Finally, MLlib’s

performance excels in terms of quality and speed, because of Spark’s iterative com-

putation.

GraphX (graph processing)

GraphX [3] [16] is a distributed graph computation engine that combines graph and

data parallel computation. GraphX contains fundamental operators as well as the

Pregel API.

2.2.1 Spark Streaming

As it is mentioned earlier Spark Streaming enables the development of scalable, fault-

tolerant streaming applications. Spark Streaming was build to match the scalability,

fault recovery and throughput of Spark cluster with the help of the programming

model, called Discretized Streams [20] [19](DStreams). A DStream groups together

a series of RDDs and allows the user to perform various operations on them.

A Spark Streaming program is able to accept data by loading it periodically from

various storage sources such as Kafka, Flume, HDFS/S3, Kinesis, or TCP sockets.

Both transformations and output operations can be applied on the incoming streams.
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Transformations produce a new DStream each interval and they can be stateless

(i.e. map, reduce, groupBy) or steteful (i.e. window, reduceByWindow), and output

operations (i.e. save or foreachRDD) let the program save data to an external system

or run a user code snippets on each RDD. The Spark Streaming Architecture described

above is shown in Figure 2.2.

Figure 2.2: The Spark Streaming Architecture [3]

Discretized Streams (DStreams)

Discretized Streams or DStreams are a high-level abstraction on Spark Streaming

and correspond to incoming streams of data. A DStream is a continuous series of

RDDs, which is an immutable, distributed dataset. Each transformation or output

operation is applied on the RDDs through the DStreams. Each RDD in a DStream

holds incoming data from a time interval. Discretized Stream is shown in the following

Figure 2.3.

Figure 2.3: DStream per interval [3]
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2.3 Samza vs Spark Streaming

For the implementation of distributed AMRules, Spark Streaming was chosen instead

of Samza, which is the chosen distributed stream processing framework for the original

implementation. A comparison between these two distributed frameworks follows

below.

Table 2.1: Samza vs Spark Streaming [13] [2]

Samza Spark Streaming
Ordering native streaming micro-batching

Latency milliseconds seconds

Guarantee at-least-once exactly-once

Fault-tolerance YARN cluster manager, automatic

Parallelism processing processing, receiving

Deployment YARN, local Spark Standalone, Apache
Mesos, Hadoop Yarn, Ama-
zon EC2

Language Java, Scala Java, Scala, Python, R

Maturity young big community

One of the main differences these distributed frameworks have, as shown in Ta-

ble 2.1, is their stream processing model. Samza’s model is native streaming, while

Spark Streaming’s is micro-batching, meaning that Samza processes incoming records

as they come and Spark Streaming processes incoming records in micro-batches per

interval. This impacts their performance possibilities and leads into latency, which is

milliseconds for Samza and seconds for Spark Streaming.

Samza is able to provide us with an at-least-once message delivery guarantee, but

Spark Streaming can guarantee an exactly-once message delivery. Moreover, failure

in Samza and Spark Streaming can happen on worker or driver nodes. Samza’s

way to fault-tolerance is to work with YARN in both worker and driver nodes, in

contrast with Spark Streaming’s way, which is using cluster manager and standalone

(automatic) for worker and driver nodes, respectively.
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Furthermore, they have differences in parallelism and partitioning, Samza’s par-

allelism lies in splitting processing into independent tasks, but Spark Streaming’s

lies in splitting jobs in small tasks and sending them to executors. A distinction

regarding their stream computations is that Spark Streaming requires deterministic

transformation operations, but Samza does not.

These distributed systems also differ in their support in deployment and languages.

While Samza only supports YARN and local execution, Spark streaming supports

Spark standalone, Apache Mesos and Hadoop YARN, and also has script for launching

in Amazon EC2. In Addition, Samza supports only Java and Scala, while Spark

Streaming has APIs for Java, Scala, Python and also R. In Conclusion, it is important

to mention that Spark Streaming has a bigger community behind it, since it is older

than Samza.
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Chapter 3

Preliminaries

Training a machine learning model from streaming data requires incremental learning,

using restricted computational resources as well as adjusting to changes in time. In

this Chapter we present the Adaptive Model Rules (AMRules) algorithm, which is the

first one-pass algorithm for training its model from streaming data. Model rules are

among the most efficient regression algorithms due to the fact that rules do automatic

feature selection and are robust to outliers and irrelevant features. In Section 3.1 we

present the AMRules algorithm and in Section 3.2 its distributed versions Vertical

and Hybrid AMRules.

3.1 Adaptive Model Rules (AMRules)

The AMRules [1] algorithm is an incremental regression algorithm for learning model

rules. The AMRules algorithm is analyzed in this Section.

Firstly, the consistence of the decision rule needs to be described. In AMRules

each rule consists of a head and a body. The body of the rule is composed of various

conditions called features, each of which correspond to an attribute of the instances.

The head of the rule is a function that reduces the mean square error of a specific

attribute. Moreover, the rule is equipped with an online change detector, so that the

12



mean square error can be monitored, in order to get knowledge about the process.

The rule has also statistics about the previous instances. Finally, the rule can be

summed up in the following expression : head← body.

The training process starts by initializing a set of rules (RS) and a default rule,

both of which are set as empty. Each instance, is checked if it is covered by a rule

in the rule set (RS), as presented in line 6 of Algorithm 1, where rule is referenced

as ’r’ and instance as ’example’. If a rule covers the instance, then both the change

detection tests and the statistics of the rule covered are updated, as we can see in

lines 7 and 15 of Algorithm 1, respectively. If the RS is unordered, the statistics of

each rule covering the instance are updated. Otherwise, if the RS is ordered, the

statistics of only the first rule, that covers the instances, are updated. We are able to

notice in line 17 of Algorithm 1, that the loop in line 5, breaks if the RS is ordered.

If none of the rules in the RS covers the instances, the default rule’s statistics are

updated, which is shown in line 21 of Algorithm 1.

The rule tries to expand, when Nm updates are applied on a rule, as it is shown

in lines 13, 14 of Algorithm 1. The Standard Deviation Reduction (SDR) measure

is computed for each feature of the instance and the ones with the higher SDR are

chosen, in order to compute the ratio of the second-higher over the highest SDR,

where the computation of the ratio is presented in line 5 of Algortithm 2. A high

confidence interval ε is computed with the help of Hoeffding bound alongside the ratio,

as we can see in lines 4 and 6 of Algorithm 2, so the decision of the rule expansion

can happen. If ratio+ ε < 1, then the rule can be expanded, based on the feature of

the highest SDR value. In order not to miss a valuable feature, a rule is expanded

also when the Hoeffding bound ε is below a given threshold. Finally, if the default

rule is expanded, a new rule is being created with the default rule statistics, and we

can notice that in line 10 of Algorithm 2, and the default rule is being initialized.
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Algorithm 1: AMRules Algorithm

Input: S : Stream of examples
ordered-set : Boolean flag
Nmin : Minimum number of examples
λ : Threshold
α : the magnitude of changes that are allowed

Result: RS Set of Decision Rules
1 begin
2 Let RS ← {}
3 Let defaultRule← 0
4 foreach example (x, yk) ∈ S do
5 foreach Rule r ∈ RS do
6 if r covers the example then
7 Update change detection tests
8 Compute error = xt − x̄t − α
9 Call PHTest(error,λ)

10 if Change is detected then
11 Remove the rule

12 else
13 if Number of examples in Lr > Nmin then
14 r ← ExpandRule(r)
15 Update sufficient statistics of r

16 if ordered-set then
17 BREAK

18 if none of the rules in RS triggers then
19 if Number of examples in L mod Nmin = 0 then
20 RS ← RS ∪ ExpandRule(defaultRule)
21 Update sufficient statistics of the defaultRule

14



Algorithm 2: ExpandRule: Expanding one Rule

Input: r : One Rule
τ : Constant to solve ties
δ : Confidence

Result: r′ Expanded Rule
1 begin
2 Let Xa be the attribute with greater SDR
3 Let Xb be the attribute with second greater SDR

4 Compute ε =
√

R2 ln(1/δ)
2n

(Hoeffding bound)

5 Compute ratio = SDR(Xb)
SDR(Xa)

(Ratio of the SDR values for the best two

splits)
6 Compute UpperBound = ratio+ ε
7 if UpperBound < 1 ∨ ε < τ then
8 Extend r with a new condition based on the best attribute
9 Release sufficient statistics of Lr

10 r ← r ∪ {Xa}
11 return r

As mentioned earlier, the RS in AMRules can be ordered and unorderd, where

only the first rule that covers the instance is used to make a prediction about the

target instance and all the rules covering the instance are used to make predictions,

aggregating them to compute the mean, respectively. Each rule implements 3 predic-

tion strategies: i) the mean of the target attribute computed from instances covered

by the rule (TargetMean), ii) a linear combination of the independent attributes (Per-

ceptron), iii) an adaptive strategy, that chooses between the first two strategies, the

one with the lower MSE in the previous instances.

3.2 Distributed AMRules

In this Section, we analyzed the steps that were followed in order to parallelize the

AMRules algorithm based on the paper ”Distributed Adaptive Model Rules for mining

Big Data Streams” [15] by Vu et. al.
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3.2.1 Vertical AMRules

Based on the fact that a rule is able to expand individually and that this process is

computationally expensive, the training of the rules it is delegated to multiple learner

processors to achieve parallelization.

In order to filter and redirect the incoming instances to the correct learners, a

model aggregator processor is essential. The model aggregator handles a rule set,

the rules of which only consist of head and body, meaning the rules do not keep

statistics. The body of a rule determines if the rule’s covering an instance, while

the head computes the prediction. Furthermore, the model aggregator manages the

statistics of the default rule, which is updated with the instances not covered by any

rule in the RS. Finally, if the default rule is eligible for expansion, it expands and

appends a new rule to the RS, then the model aggregator sends the new rule with

the corresponding instance to one of the learners based on the rule’s ID.

The model aggregator sends instances and rules to the learners. Each learner

manages rules that are assigned to it based on the rule ID. At the learners, the rule’s

statistics are updated with the forwarded instance, which ensures that the generated

rules are the same as in the sequential algorithm. If a rule expansion happens, the new

feature is sent to the model aggregator to update the body of the rule. Concurrently,

learners are capable of detecting changes and removing existing rules, when this occurs

the learners notify the model aggregator with a message containing the removed rule

ID. We can observe the design of Vertical AMRules (or VAMR) in Figure 3.1.

Since for each rule in model aggregator there is a duplicate rule in a learner, the

statistics of the rule might not be updated. There can be a delay between the learner

and the model aggregator regarding the update of the expanded rule, and this lies on

the queue length on the model aggregator. The queue length is a result of the volume

and speed of the incoming data stream. Thus, there is a chance that instances might

be forwarded to a recently expanded rule, which no longer covers the instance.
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Figure 3.1: Vertical AMRules (VAMR) [15]

For the above reason, a coverage test is performed at the learner, so that the

instance can be discarded, if it was incorrectly forwarded. Based on this test and

that the rule expansion can only increase the selectivity of a rule, the accuracy of

the algorithm stays the same for unordered rules. Although, for ordered rules these

temporary inconsistencies are able to affect the statistics of the rules, considering that

the instance should have been forwarded to a different rule.

3.2.2 Hybrid AMRules

The first step of creating the hybrid AMRules is to vertically parallelize the execution

of the model aggregator with the help of a horizontally based parallelism. This can

be accomplished by replicating the model aggregator, so that each replica contains

the exact copy of the rule set (RS), but processes only a part of the incoming data

stream. The basic concept is to integrate multiple model aggregators in to the design,

so that each of them can process a proportional amount of instances to the number

of model aggregators. In conclusion, this will affect both the prediction and the
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training statistics of the default rules. In Figure 3.2 we can observe the design of the

horizontally parallelized model aggregator.

Figure 3.2: AMRules with multiple horizontally parallelized Model Aggregators [15]

Concerning the fact that each of the model aggregators can process a partition

of the incoming data stream, each default rule is trained independently. Therefore,

model aggregators will be creating overlapping or conflicting rules, so it is important

to be able to synchronize and order the rules created by different model aggregators.

Moreover, this design is less reactive compared to VAMR, since it needs more in-

stances, so that the default rules can expand. The prediction function of each rule

adapts depending on the attribute and label values of past instances, concluding that

having only one part of the data stream will lead to having less information and

maybe lower accuracy.

To fix the problems created by parallelizing the model aggregators, a centralized

rule is created. The distribution in the creation of the rules created issues, that can

be avoided by moving the default rules from the model aggregators to one special-

ized default rule learner processor. In result, all the model aggregators now will be

synchronized.
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Since the default rule is in an independent component, the instances, that are

not covered by any rules in the model aggregators, are forwarded to the default rule

learner. This learner updates its statistics with the input instances and when the

default rule expands, it sends the new rule to the model aggregator as well as the

learner, selected based on the rule ID.

The design of the Hybrid AMRules (HAMR), which is a combination of vertical

and horizontal parallelism, is shown in Figure 3.3.

Figure 3.3: Hybrid AMRules (HAMR) with multiple Model aggregators and separate
Default Rule Learner
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Chapter 4

Implementation on Spark

Streaming

In this thesis, we provide an alternative implementation for the distributed versions of

the Adaptive Model Rules (AMRules) algorithm, Vertical and Hybrid AMRules. The

original implementation was based on Samza, while this one will be based on Spark

Streaming. To adjust the algorithm for Spark Streaming, we chose Scala instead of

Java, since Spark is written in Scala and provides flexibility in terms of coding. In

the following Sections, we show how the algorithms were implemented, so that they

could run with Spark Streaming.

4.1 Distributed AMRules Model

Firstly, the basic model should be described for both Vertical and Hybrid AMRules.

As shown in Figure 4.1, three main Processor Interfaces (PIs) are needed to create

the model. These PIs are the Source PI, the Classifier PI and the Evaluator PI.

The Source PI is responsible for processing the files received from HDFS

(Hadoop File System) and forward the data to the Classifier PI. The Source PI

receives files from HDFS and transforms the data into Instances, a type in library

20



Figure 4.1: AMRules Model

org.apache.samoa.instances. In this process, the attribute values and the class value

are assigned to the correct Instance fields. After a batch of data are converted

into Instances, an InputDStream is being created, which we can see in lines 3-18 of

Listing 4.1, to forward the Dstream to the Classifier PI. Along with the Instance,

three more fields are forwarded, one of type Long, which is the instance ID, and two

of type Boolean, which suggest the purpose the instance should be used, testing and

training, as we are able to see in line 13 of Listing 4.1. Dstreams are being sent to

the Classifier PI per certain batch interval. Finally, the Classifier PI receives from

the Source PI the DStream of the following type: DStream[(Long, Instance, Boolean,

Boolean)]. We are able to see in Table 4.1 an example of what the DStream looks

like as it enters the Classifier PI with our chosen dataset. Further details about the

dataset itself are given in Section 5.2. Since the AMRules algorithm is an one-pass

algorithm, the Booleans representing the testing and training are both set to true.

The ’Source PI’ process runs in lines 8 and 9 of Listing 4.3 (and in lines 9 and 10

of Listing 4.4 for HAMR). In line 8 (line 9 for HAMR listing) we see the initialization

of FileReader. We initialiaze the FileReader constractor with the batch interval, the

file location and the size of the batch. FileReader is a class that reads the files from

HDFS from a certain location and creates the input DStream for the Classifier PI.

We get the desirable DStream, which is stored as variable called sourcepi, by running

the getExamples function in line 9 (line 10 for HAMR). In Listing 4.1 is shown the

getExamples function, which takes as parameter the spark streaming context.
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Listing 4.1: FileReader’s function getExamples Scala Code

1 def getExamples(ssc: StreamingContext): DStream[(Long, Instance, Boolean,

Boolean)] = {

2 prepareForUseImpl()

3 new InputDStream[(Long, Instance, Boolean, Boolean)](ssc) {

4 override def start(): Unit = {}

5 override def stop(): Unit = {}

6 override def compute(validTime: Time): Option[RDD[(Long, Instance,

Boolean, Boolean)]] = {

7 val examples = Array.fill[(Long, Instance, Boolean, Boolean)]

8 (FileReader.this.batchsizeOption)({

9 FileReader.this.instanceID += 1

10 if (FileReader.this.instanceID ==

FileReader.this.instanceLimitOption.getValue())

11 FileReader.this.instanceID = -1

12 /* one pass algorithm -> isTraining=true && isTesting=true*/

13 (FileReader.this.instanceID, nextInstance().getData,true,true)

14 })

15 Some(ssc.sparkContext.parallelize(examples))

16 }

17 override def slideDuration = Seconds(slideDurationOption)

18 }

19 }

Table 4.1: Classifier PI Input Example

Long Instance Boolean Boolean
621 471, 1.37749, ... 0.00380, 48, 0 true true

622 472, -1.10091, ..., -0.05723, 0.92, 0 true true

623 472, 1.01705, ..., 0.02079, 17.57, 0 true true

624 472, -3.04354, ..., 0.03576, 529, 0 true true

625 472, 1.04078, ..., 0.01902, 59.88, 0 true true

626 476, -0.86755, ..., 0.14624, 1, 0 true true
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The Classifier PI receives the DStreams and processes the RDDs inside the

DStream to obtain a prediction for each Instance. The model differs between Vertical

and Hybrid AMRules, and will be explained further in Sections 4.1.1 and 4.1.2. The

result of the Classifier PI has the following form: DStream[Option[((Long, Instance,

Boolean, Boolean),Array[Double])]], the second field represents the prediction that

was computed for the instance in the first field. The predictions have been defined

as type Option, a type in Scala library, so that we can avoid NullPointerException

by taking the only the ones, which have been defined. Finally, the result DStream

is being sent to the Evaluator PI. We can see an example of the resulting DStream

in Table 4.2. We notice in this example, that the instance with instance ID 624 has

not been detected as fraud, and that is because the model has not had yet enough

fraud transactions to be trained, so that the transaction can be detected correctly.

A transaction is considered fraud if the prediction is above 0.5, an example with

correctly predicted fraud transaction is displayed in the Table 4.3, where prediction

of the transaction with ID 6642 is 0.771200.

Table 4.2: Classifier PI Output Example 1

(Long, Instance, Boolean, Boolean) Array[Double]
621, 471, 1.37749, ..., 0.00380, 48, 0, true, true 0.001612

622, 472, -1.10091, ..., -0.05723, 0.92, 0, true, true 0.001610

623, 472, 1.01705, ..., 0.02079, 17.57, 0, true, true 0.001607

624, 472, -3.04354, ..., 0.03576, 529, 1, true, true 0.001605

625, 472, 1.04078, ..., 0.01902, 59.88, 0, true, true 0.003205

626, 476, -0.86755, ..., 0.14624, 1, 0, true, true 0.003200

Table 4.3: Classifier PI Output Example 2

(Long, Instance, Boolean, Boolean) Array[Double]
6642, 8169.0, 0.85732, ..., 0.14846, 1.0, 1, true, true 0.771200

6643, 8169.0, 1.42249, ..., 0.00325, 10.95, 0, true, true 0.024292

6644, 8170.0, 1.03006, ..., 0.02752, 118.08, 0, true, true 9.850599E-4

23



The Evaluator PI computes the binary classification metrics in order to define

the accuracy of the algorithms. Spark provides us with the MLlib library, that can

compute easily these metrics. The constructor for the metrics is initialized with an

RDD, which holds two Double values, one for the predicted value and one for the real

class label. Metrics like the precision, ROC Curve or area under ROC Curve, which

are accessible through BinaryClassificationMetrics, define accuracy. In Listing 4.2 is

shown the scala code of the Evaluator PI. The resulting DStream of Classifier PI is

stored as a variable called results, as shown in Listings’ 4.3 and 4.4 twelfth lines, and

is processed in the Evaluator PI to acquire metrics like ROC Curve and area under

ROC Curve, as shown in lines 5 and 8 of Listing 4.2, respectively.

Listing 4.2: Evaluator PI Scala Code

1 results.foreachRDD { rdd =>

2 val predandlabels = rdd.filter(_.isDefined)

3 .map(_.get).map{case (x,y) => (y(0), x._2.classValue())}

4 // ROC Curve

5 val roc = metrics.roc

6 roc.foreach(case (x,y) => println(s"$x\t$y"))

7 // area under ROC

8 val auROC = metrics.areaUnderROC

9 println(s"Area under ROC = $auROC")

10 }

4.1.1 Vertical AMRules Design

Figure 4.2 shows the design of Vertical AMrules. The two components the Model

Aggregator PI and the Learner PI constitute the Classifier PI. Though, only the

Learner PI is distributed, as it was described in Chapter 3, and is represented with

blue.
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Figure 4.2: Vertical AMRules Classifier Model

The Model Aggregator PI receives the input RDD and processes its data. The

operations on the Model Aggregator is non-distributed and will be explained in

Section 4.2.1. The Model Aggregator forwards an RDD, which holds the predictions

along with the corresponding instance, to the Classifier PI output. Moreover,

the Model Aggregator sends the RDD to the Learner PI for the training pro-

cess. Besides the input RDD from the Source PI, the Model Aggregator receives

an RDD from the Learners, in order to update or remove rules in the Rule

Set. This RDD is of the following type : RDD[Option[(Int,ActiveRule,Boolean),

(Int,RuleSplitNode,RulePassiveRegressionNode)]], where Int type fields represent the

ruleID and Boolean type field suggests if the rule is removing. Examples of rule

updates and removals are shown in Tables 4.4, 4.5. More specifically, the rules with

ruleIDs 10 and 11 in Table 4.4 are being removed from Model Aggregator’s rule set,

since the Boolean type field is true, and the rules with ruleIDs 6,7 and 8 in Table 4.5

update the corresponding rules in Model Aggregator’s rule set. In conclusion, the

rule type (Int,ActiveRule,Boolean) is used to remove a certain rule from the rule set

and the rule type (Int,RuleSplitNode,RulePassiveRegressionNode) is used to update

a certain rule in the rule set.

The Model Aggregator sends rules and instances with the corresponding ruleID

to the Learners, so that the classification model can be trained. The Learner PI
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Table 4.4: Rule Data Example

Int ActiveRule Boolean
6 ActiveRule false

7 ActiveRule false

10 null true

11 null true

Table 4.5: Predicate Data Example

Int RuleSplitNode RulePassiveRegressionNode
6 RuleSplitNode RulePassiveRegressionNode

7 RuleSplitNode RulePassiveRegressionNode

8 RuleSplitNode RulePassiveRegressionNode

receives from the Model Aggregator, a RDD of type: RDD[(Int,ActiveRule,Boolean)]

and RDD[(Instance,Int)], for adding and updating rules, respectively. For example,

in Table 4.4 the rules with ruleID 6 and 7 are added to the corresponding Learners

since the Boolean field is false and in Table 4.6 the instances are used to update

the rule with ruleID 2. These RDDs are being sent separately, so that they can be

partitioned by ruleID and achieve a correct parallelism. Finally, after the Learners

have processed the RDDs, they send an RDD to the Model Aggregator, so that the

rule set can be updated.

Table 4.6: Assignment Data Example

Instance Int
2923.0, -0.14540, ..., 0.15118, 59.95, 0 2

2923.0, -1.72590, ..., 0.13050, 202.41, 0 2

2923.0, -1.07508, ..., 0.14501, 96.52, 0 2

4.1.2 Hybrid AMrules Design

The design in Figure 4.3 represents the model of Hybrid AMRules classifier. This

Classifier PI consists of the Model Aggregator PI, the Learner PI, which are dis-
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tributed components, and the Default Rule PI, which is a non-distributed component.

Here, as well the distributed components are represented with blue.

Figure 4.3: Hybrid AMRules Classifier Model

Firstly, the Model Aggregator PI receives the input RDD : RDD[(Long,Instance,

Boolean,Boolean)], as shown in Table 4.1, and processes the instances to acquire

predictions for each of them. However, if none of the rules in the rule set satisfies an

instance, it is sent to the Default Rule PI in the form of the above RDD, first to be

tested by the default rule and then to train the default rule. The Model Aggregator

PI also sends RDDs to the Learner PI with rule updates, each update is being sent

to the correct Learner PI based on the ruleID, which is being updated, to achieve

parallelism.

The Learner PIs receive RDDs from the Model Aggregator PI and the Default

Rule PI to update each the corresponding rule and to add new rules. The type of

RDD the Model Aggregator PI sends to the Learner PI is RDD[(Int,Instance)] and

the one Default Rule PI sends is RDD[(Int,(Int,ActiveRule,Boolean))], as displayed

in Table 4.6 and in Table 4.4 (rules with ruleIDs 6 and 7), respectively. The key
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for both RDDs is the ruleID, so that the RDDs can be assigned properly among the

Learners.

Finally, the Model Aggregators receive RDDs from the Learners and the

Default Rule, in order the rule set to be updated. From the Default Rule PI

they receive the following RDD type: RDD[Option[(Int,ActiveRule,Boolean)]]

and from the Learner PI the RDD of type RDD[Option[(Int,ActiveRule,Boolean),

(Int,RuleSplitNode,RulePassiveRegressionNode)]], where again the rule type (Int,

ActiveRule,Boolean) is used to remove a certain rule from the rule set and the rule

type (Int,RuleSplitNode,RulePassiveRegressionNode) is used to update a certain rule

in the rule set.

4.2 RDD Operations

Spark RDDs support two types of operations: transformations and actions [14]. A

Spark transformation is a function that produces new RDD from the existing RDDs.

Some basic transformations are map, filter etc. On the other hand, actions are Spark

RDD operations, that return values to the driver program after running a computa-

tion on the RDD. For example, foreach and collect are some actions. Furthermore,

transformations are lazy, meaning that they get executed only when an action is

called.

Each operation performed on the RDDs to implement the algorithms is explained

in Sections 4.2.1 and 4.2.2. However, A generic description of each operation, which

is performed either on a RDD or on a DStream, is shown in Tables 4.7 and 4.8.

4.2.1 VAMR Operations

A complete representation of each operation performed on RDDs for the VAMR

algorithms is shown in Figure 4.4. Distributed operations are displayed in blue,
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Table 4.7: RDD Operations

Operations Description

Transformations
filter(func) Returns a new RDD, containing only el-

ements that meet the predicate function
func.

map(func) The map function iterates over every line
in RDD and creates a new RDD. The
map() transformation uses any function
func, and that function is applied to ev-
ery element of the RDD.

partitionBy(prt) Returns a copy of the RDD partitioned
using the specified partitioner prt.

Actions
foreach() The foreach() function is used, when

there is a need to apply some operations
on each element of an RDD without re-
turning anything to the driver.

collect() Returns the RDD’s content to driver pro-
gram.

whereas non-distributed are displayed in orange. The classifier receives the DStream

with the instances and for each RDD in DStream we perform operations to first test

and then train the model.

Figure 4.4: Operations VAMR

In the interest of the actions on the Model Aggregator to be non-distributed,

the instances are mapped with 1 as key, thus all the instances will be forwarded to

one partition after partitionBy operation, we can see these operations in line 14 of
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Table 4.8: DStream Operations [3]

Operations Description
Transformations transform(func) Returns a new DStream by applying a

RDD-to-RDD function to every RDD of
the source DStream. This can be used
to do arbitrary RDD operations on the
DStream.

Actions foreachRDD(func) This function should push the data in
each RDD to an external system, such
as saving the RDD to files, or writing
it over the network to a database. Note
that the function func is executed in the
driver process running the streaming ap-
plication, and will usually have RDD ac-
tions in it that will force the computation
of the streaming RDDs.

Listing 4.3. Now, that all the instances are in one partition, they can be tested to

acquire the predictions, which will be sent to the output. The result is an RDD

which is stored as a variable called model. This RDD is cached, as it is shown in

line 15 of Listing 4.3, so it can persist in memory and will not be recomputed until

the next batch of data. It is important to mention, that all of these operations are

transformations, hence non of these are executed until an action is performed on the

resulting RDD.

The RDD called model is of type RDD[(Option[(Long,Instance,Boolean), Ar-

ray[Double]], (Int,ActiveRule,Boolean),(Instance,Int))] and is used in two separate

occasions for the Learner PI. Firstly, it is used to update the learners by adding a

new rule, referring to the lines 17-19 of Listing 4.3, in order to do that, the predic-

tions and assignments are removed from the RDD using Spark transformations filter

and map. The resulting RDD’s type is RDD[(Int,(Int,ActiveRule,Boolean))] and the

RDD’s contents are being distributed among partitions based on the key, which is
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the ruleID. Then a foreach action is executed to add the rules to the corresponding

learners. Now that an action is being performed on the resulting RDD, every trans-

formation before that is being executed. Secondly, the RDD called model is used to

train rules with instances, as shown in lines 20-22 of Listing 4.3, and for that reason,

the predictions and rules are removed from the RDD, resulting in an RDD of type

RDD[(Int, Instance)]. The contents of the RDD are partitioned based on the ruleID,

so that the rules can be updated with the instances, they covered. The RDD is stored

as a variable called learner.

The RDD learner is called only once to update the Model Aggregator and for

that reason there is no need to cache it. On this RDD a filter is applied to filter

out undefined updates and also is mapped using 1 as key, so that the process by the

Model Aggregator will be non-distributed. We can see the above operations in line 24

of Listing 4.3. In conclusion, the foreach action is performed on the resulting RDD

to update the Model Aggregator’s rule set.

As a result on the complete DStream operation, an RDD with the predictions is be-

ing returned. The resulting DStream is of type DStream[(Long,Instance,Boolean,Boolean),

Array[Double]] and it is used to evaluate the Vertical Adaptive Model Rules algo-

rithm.

Listing 4.3: VAMR Scala Code

1 /* Configuration and initialization of model */

2 val conf: SparkConf = new SparkConf().setAppName("VAMR")

3 // Spark Streaming Context

4 val ssc = new StreamingContext(conf, Seconds(args(0).toInt))

5 val myhashpartitioner = new HashPartitioner(ssc.sparkContext.defaultParallelism)

6

7 /* SourcePI */

8 val sourcepi: FileReader = new FileReader(args(0).toInt, args(1),args(2).toInt)

9 val instances = sourcepi.getExamples(ssc)

31



10

11 /* Classifier PI */

12 val results = instances.transform{ rdd =>

13 /* Model Aggregator PI (Test)*/

14 val model = rdd.map((1, _)).partitionBy(myhashpartitioner)

15 .map(x => classifierpi.aggregator.processInstance(x._2)).cache()

16 /* Learner PI (Train) */

17 model.filter(_._2 != null).map { case (_, r, _) => (r._1, r) }

18 .partitionBy(myhashpartitioner)

19 .foreach(data => classifierpi.learner.addProcess(data._2))

20 val learner = model.filter(_._3 != null).map{case (_, _, a) => (a._2,a._1)}

21 .partitionBy(myhashpartitioner)

22 .map(a => classifierpi.learner.trainProcess(a.swap))

23 /* Model Aggregator PI (Rule Updates) */

24 learner.filter(_.isDefined).map((1, _)).partitionBy(myhashpartitioner)

25 .foreach(input => classifierpi.aggregator.updateProcess(input._2.get.swap))

26 model.map { case (pred, _, _) => pred }

27 }

It is important to note, that the decision for choosing to use 1 as key for the non-

distributed operation of the algorithm and to use partitionBy to assign the data in to

partitions based their key was made in the interest of time improvement. Originally,

it was chosen repartition and groupBy for the respective operations. Repartition is

an operation that can change the number of partitions of an RDD. This operation

was chosen to repartition the RDD to one partition, so that the non-distributed

process could be implemented, though it was noticed that repartitioning the RDDs it

was a time consuming process and as result of that it was decided to leave the RDD

partitions as is and forward the data to one partition based on their key. Furthermore,

groupBy is an operation that groups the data based on a key. GroupBy was used to

group data base on the given key, so that they could be processed together, but to
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group and iterate afterwards through them made it time consuming. And for that

reason it was chosen partitionBy, which only defines the partition of each instance

based on the key and does not need to iterate through the data afterwards, so that

they can be processed as a group, which is less time consuming.

4.2.2 HAMR Operations

Here as well, each operation is shown in the following Figure 4.5 and distributed from

non-distributed operations are distinguishable through the color difference.

Figure 4.5: Operations HAMR

Firstly, the Model Aggregators process the input RDD and test the instances with

the rule set to get a prediction. Since, in this algorithm the Model Aggregator PI

is implemented in a distributed fashion, there is no need to forward any instance

to a particular partition. Besides the predictions, assignments (rule updates) and

instances, that were not able to be covered by any rule, are forwarded to Learner PI

and DefaultRule PI, respectively.
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The transformed RDD, that resulted from the Model Aggregator PI, is being

transformed further, so that it can be processed by the Default Rule PI. The contents

of the RDD are mapped with 1 as key to achieve non-distributed implementation for

the Default Rule PI, as shown in line 14 of Listing 4.4. The instances, that they were

not covered are tested with the default rule, as shown in line 23 of Listing 4.4, to get

the predictions and then the default rule is trained by them, as shown in line 31 of

Listing 4.4. The resulting RDD of these operations is cached and stored in a variable

named model. Since all the above operations are transformations, none of these have

been processed yet.

The RDD model is called in the next step, so that learners can be updated. Since,

the Learners’ updates conclude in a foreach action, as we are able to see in line 46

of Listing 4.4, all the transformations stored in model are performed. The model

RDD is transformed with filter to exclude undefined rule updates’ field and with

map to set ruleID as key, so that partitionBy transformation can be used to partition

the contents properly to the learners and update the correct rule. Moreover, model

RDD’s contents are used to train a rule with the instance that covered the rule, as

we can see in line 49 of Listing 4.4. For that reason, it is being filtered to exclude

the undefined assignments’. A map transformation is performed, which results in the

following RDD type: RDD[(Int,(Instance,Int))], with the Int types defining ruleIDs

and Instance types the corresponding covered instances, this RDD is used to train

the rules.

Finally, the Model Aggregator PI’s rule set needs to be updated with the updates

from the Default Rule PI and Learner PI, and that is shown in lines 52-55 of List-

ing 4.4. To achieve that the defined updates are selected with the filter transformation

and then foreach action is used to update the rule set.
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Listing 4.4: HAMR Scala Code

1 /* Configuration and initialization of model */

2 val conf: SparkConf = new SparkConf().setAppName(s"HAMR-${2/*args(3)*/}")

3 // Spark Streaming Context

4 val ssc = new StreamingContext(conf, Seconds(args(0).toInt))

5 val myhashpartitioner = new HashPartitioner(ssc.sparkContext.defaultParallelism)

6 val myhashpartitionerLearner = new HashPartitioner(args(3).toInt)

7

8 /* SourcePI */

9 val sourcepi: FileReader = new FileReader(args(0).toInt, args(1), args(2).toInt)

10 val instances = sourcepi.getExamples(ssc)

11

12 val results = instances.transform{ rdd =>

13 /* Model Aggregator PI*/

14 val model = rdd.map(classifierpi.model.processInstance).map((1,_))

15 .partitionBy(myhashpartitioner)

16 .map{case (_,prediction) =>

17 /* Default Rule PI ( Test Instance and Train Rule) */

18 val defaultRulePrediction: scala.Option[((Long, Instance, Boolean,

Boolean),Array[Double])] = {

19 if (prediction._3.isDefined){

20 if (prediction._3.get._4)

21 // Test Instance

22 Some(prediction._3.get,

23 classifierpi.root.processInstance(prediction._3.get._2).get)

24 else None

25 } else None

26 }

27 val ruleUpdatesRoot: scala.Option[(Int, ActiveRule, Boolean)] = {

28 if (prediction._3.isDefined){

29 if (prediction._3.get._3)

30 // Train default rule

31 classifierpi.root.trainOnInstanceImpl(prediction._3.get._2)
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32 } else None

33 else None

34 }

35 val predResult = {

36 if (prediction._1.isDefined) prediction._1

37 else if (defaultRulePrediction.isDefined) defaultRulePrediction

38 else None

39 }

40 (predResult, ruleUpdatesRoot, prediction._2)

41 }.cache()

42

43 /* Learner PI */

44 model.filter(_._2.isDefined).filter(_._2.get != null)

45 .map{case (_,r,_) => (r.get._1,r.get)}.partitionBy(myhashpartitioner)

46 .foreach(r => classifierpi.learner.updateProcess(r._2))

47 val learner = model.filter(_._3.isDefined).filter(_._3 != null)

48 .map{case (_,_,a) => (a.get._2,a.get)}.partitionBy(myhashpartitioner)

49 .map(a => classifierpi.learner.trainRuleOnInstance(a._2._2,a._2._1))

50

51 /* Model Aggregator (Rule Updates) */

52 model.filter(_._2.isDefined).map{case (_,r,_) => (r.get)}

53 .foreach(r => classifierpi.model.updateProcess(null, r))

54 learner.filter(_.isDefined)

55 .foreach(x => classifierpi.model.updateProcess(x.get._2,x.get._1))

56

57 model.map{case (pred,_,_) => pred} // return predictions

58 }
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Chapter 5

Experimental Results

In this Chapter, we provided results of the experiments performed for each algorithm

measuring their accuracy and scalability. The accuracy of the algorithms will be

shown through the BinaryClassificationMetrics and the scalability through various

changes in batch size and parallelism.

5.1 Setup

For the evaluation of the algorithms, the experiments were conducted using Spark on

YARN cluster, the services of which run on HDP 2.6.3.0 (Hortonworks Data Plat-

form). The Softnet Lab of Technical University of Crete cluster holds 22 servers,

where the operating System of each server is Ubuntu 14.04. Finally, we used the

HDFS to store our files.

5.2 Dataset

The dataset used for the experiments acquired from Kaggle [8].The dataset has been

collected and analyzed during a research collaboration of Worldline and the Machine
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Learning Group of ULB (Universit Libre de Bruxelles) on big data mining and fraud

detection.

The dataset contains transactions made by credit cards in September 2013 by

European cardholders. It presents transactions that occurred in two days, where 492

out of 284,807 transactions are frauds. It is highly unbalanced, since the positive

class (frauds) account for 0.172% of all transactions.

Table 5.1: Dataset Class Statistics

Class Rows Percentage
Negative (legit) 284315 99.827

Positive (fraud) 492 0.1727

The dataset contains only numerical attributes which are the result of a PCA

transformation. Obviously, due to confidentiality issues, the original features and

more background information about the data cannot be provided. Features V1, V2,

... V28 are the principal components obtained with PCA, the only features which have

not been transformed with PCA are ’Time’ and ’Amount’. Feature ’Time’ contains

the seconds elapsed between each transaction and the first transaction in the dataset.

The feature ’Amount’ is the transaction Amount. Feature ’Class’ is the response

variable and it takes value 1 in case of fraud and 0 otherwise.

Table 5.2: Dataset Example

Time V1 V2 ... V28 Amount Class
471 1.37749 -0.66256 ... 0.00380 48 ”0”

472 -1.10091 1.02958 ... -0.05723 0.92 ”0”

472 1.01705 -0.18504 ... 0.02079 17.57 ”0”

472 -3.04354 -3.15730 ... 0.03576 529 ”1”

472 1.04078 0.10956 ... 0.01902 59.88 ”0”

476 -0.86755 -0.41863 ... 0.14624 1 ”0”
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5.3 Accuracy Evaluation

BinaryClassificationMetrics of spark.mllib provides a suite of metrics for the purpose

of evaluating the performance of machine learning models. The current application of

Credit Card Fraud Detection falls under the classification type of machine learning.

The evaluation of classification models all share similar principals. In a supervised

classification problem, like this one, exists a true output and a model generated

predicted output for each data point, where each data point can be assigned to one

of the four categories :

• True Positive : label is fraud and the prediction is also fraud

• True Negative : label is legit and the prediction is also legit

• False Positive : label is legit, but the prediction is fraud

• False Negative : label is fraud, but the prediction is legit

In Table 5.3, the predictions for the instances are shown based on the four cate-

gories described above. It is noticeable that the True Positives are almost half total

number of frauds, that is because the chosen dataset is highly unbalanced. The choice,

to leave the dataset as is and not make any alterations to balance frauds and legits,

has been made, in order to simulate a real life experiment with real life data, and see

how the algorithms perform under these circumstances.

Table 5.3: Evaluation

Algorithms TP TN FN FP
VAMR 262 284292 230 23

HAMR 254 284297 238 18

At the TP column, we notice that a slight difference in predictions occurs. The

reason behind it is, that in VAMR implementation 4.3 we only have rule set updates
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to the Model Aggregator from the Learner PI, in contrast with HAMR implemen-

tation 4.4, where we have rule set updates to model aggregator from both Default

Rule PI and Learner PI. This means that the updates from Default Rule PI do not

happen concurrently in HAMR like in VAMR. And to be more specific, in line 53 of

Listing 4.4 is shown, that the updates on the Model Aggregator PI from the default

rule do not happen, while the Model Aggregator PI first processes the instance like

in VAMR implementation, where if there are any updates from default rule, these

happen as the Model Aggregator PI processes the Instance in line 15 of Listing 4.3.

However, pure accuracy is not generally a good metric, when a dataset is highly

unbalanced. A good way to examine an algorithm’s accuracy is metrics like ROC

curve, because they take into account the type of error. The way to examine the

algorithms and evaluate their accuracy is to get their Receiver Operating Character-

istic (ROC) curves. In statistics, ROC curves illustrate the diagnostic ability of a

binary classifier system as its discrimination threshold is varied. Basically, the way

to compare algorithms based on their ROC curve is to calculate the area under ROC

using the following type
∫ 1

0
TP
P

d(FP
N

). The auROC for VAMR equals with 0.9317

and the auROC for HAMR is 0.9315. Due to the fact that the area under curve is

about the same, we are able to conclude that the algorithms have the same level of

accuracy. Moreover, since the area under curve for both algorithms is close to 1, we

can confidently say, that we have a great classifier.

In order to get a clearer picture about the algorithms’ accuracy, we used the same

dataset for the Samza implementation and the results, that were obtained, are shown

in Table 5.4 as well as the ROC curve in Figure 5.3. As it is presented in the table,

the TPs and the TNs are about the same as the VAMR implementation in Spark

Streaming, despite the fact that Samza streams the instances sequentially and Spark

streams micro-batches of instances. On the subject of the ROC curve and the area

under it, there is similarity but it is lower in Samza implementation. The area under
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Figure 5.1: VAMR ROC curve

Figure 5.2: HAMR ROC curve

ROC in Samza implementation equals with 0.9060, that is because there are more

FPs in comparison with Spark Streaming implementations.

Table 5.4: Samza results

TP TN FN FP

Samza implementation 261 284288 231 27

5.4 Performance Evaluation

To evaluate the performance regarding time on Spark Streaming implementation,

experiments were performed on the Softnet cluster of the Technical University of

Crete.
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Figure 5.3: Samza ROC curve

The first experiment shows the scalability of the algorithms. For each experiment

performed, the timeout was set to 250 secs, the interval was set to 1 sec and the

amount of instances per interval was set to 5K. Meaning that, for each experiment

the total amount of instances, that were processed, was 1.125mil. Algorithms HAMR-

1 and HAMR-2 represent the Hybrid AMRules algorithm with one and two learners

assigned to it, respectively. Furthermore, the parallelization of Model Aggregator for

the HAMR algorithm corresponds to the assigned executors. To show the scalability

of the algorithms, the number of executors was increased. Each algorithm run for 1,

2, 4 and 8 executors.

The results for the scalability experiments are shown in the plots above. As

expected the run-time for each algorithm decreases, when the number of executor

increases. For example, in VAMR algorithm, when the number of executors increases

from 1 to 2, to 4, to 8 the total processing time increases from 138, to 87, to 57, to 40

secs. It noticeable that the time does not completely cuts down in half, the reason is

that in VAMR algorithm the Model Aggregator PI is a non-distributed component,

hence it is not expected the time to decrease fully in half. Moreover, there is an

apparent time difference from VAMR to HAMR-1 and HAMR-2, due to the fact that

in HAMR algorithm the Model Aggregator PI, which processes the input instances,

is also parallelizable. As shown in plot, when there is no parallelization, meaning
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Figure 5.4: Experimental Time Results
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there is only one executor, the runtimes are about the same, the reason for that is

that the algorithm is the same without any parallelization, so it takes the same time

to process.

In the second experiment, that was performed, we increased the batch size on

VAMR, HAMR-1 and HAMR-2. For all the experiments of increasing batch size,

we assigned 2 executors, that is because we have already concluded that the time

decreases as we increase the number of executors and we wanted to see how our

Spark Streaming implementation reacts with 2 worker nodes, regarding the run-time.

Moreover, we set the timeout to 250 seconds. As a result of that, for 1K, 2K, 4K, 6K

and 8K instances per second, the application will process 250K, 500K, 1.mil, 1.5mil

and 2mil instances in total until it finishes running. And to be more exact, the tasks

process a total input size of 153.1MB, 301.2MB, 1GB, 2.4GB and 4GB, respectively.

As it is shown in the figure above, the HAMR-1 and HAMR-2 plots are below

the VAMR plot. That is because VAMR parallelizes only the Learner PI, where

HAMR parallelizes both Model Aggregator PI and Learner PI. Furthermore, it is
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Figure 5.5: Increasing Batch Size
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noticeable, that when the amount of instances per second increases the total time of

processing the data increases. Finally, it is apparent that after the 6K instances per

second mark (1.5mil) the algorithms VAMR and HAMR-1 slow down, in comparison

with algortihm HAMR-2, where this algorithm has parallelization both in the Model

Aggregator PI and the Learner PI.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Our goal for this thesis was to utilize the community of Apache Spark and adapt the

distributed Adaptive Model Rules algorithm to Spark Streaming. The accessibility

to data is creating new opportunities for machine learning applications like Credit

Card Fraud Detection, where it is important to be useful and effective. Nowadays,

credit cards are used all the time for our daily transactions, it is of course useful to

develop an algorithm, that can detect fraudulent transactions. Spark’s distributed

environment, is designed to address the challenges of data’s volume, velocity and

variety. The algorithm’s effectiveness is proven by the experiments performed, which

show the fast processing of big amount of data as well as good accuracy. With our

adaption of the algorithm from Samza to Spark Streaming we were able to further

improve some of the problems at hand.

6.2 Future Work

The fact that there is a reduction of accuracy in VAMR and HAMR lies on the

existence of cyclic topology of the algorithm, i.e., model aggregators send instances
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to learners and learners are expected to send back updates to model aggregator. These

cycles contribute to the rule update delay in model aggregators. Besides the fact that

there is a slim reduction of accuracy in the evaluation, it is expected to increase as we

give input more instances. Thus, it would be useful to design an acyclic topology to

improve accuracy. Otherwise, the support for priority in streams could also remove

this problem.
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