
TECHNICAL UNIVERSITY OF CRETE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Greedy Algorithms for Reconstruction of

High-Dimensional Sparse Vectors

by

Ioanna Siaminou

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DIPLOMA DEGREE IN

ELECTRICAL AND COMPUTER ENGINEERING

October 2018

THESIS COMMITTEE

Professor Athanasios P. Liavas, Thesis Supervisor
Associate Professor George N. Karystinos
Associate Professor Michail G. Lagoudakis

2

ABSTRACT

Reconstruction of signals from measured data is often encountered in
various fields of science. However, the dimension of the target signal is of-
ten much larger than the number of the collected measurements. In these
cases, signal reconstruction is practically impossible in general. Luckily, by
assuming that the signal we wish to reconstruct has certain structure, the
reconstruction becomes feasible.

In Compressed Sensing, we deal with the system y = Ax, where the so-
called measurement matrix A has dimensions (m× n), with m ≪ n. In this
area, the notion of sparsity is used as a constraint on the target signal x. In
this thesis, we concentrate on greedy algorithms, studied extensively in the
literature, and the conditions that guarantee successful reconstruction. First,
we provide a theoretical background of Compressed Sensing and, afterwards,
we proceed with the presentation and analysis of greedy algorithms, such as
Orthogonal Matching Pursuit (OMP) and Compressive Sampling Matching
Pursuit (CoSaMP). We complement our presentation with numerical exper-
iments, using as performance metric the relative signal reconstruction error.

Then, we investigate the extension of sparse vector reconstruction in non-
linear scenarios. For this purpose, we consider a greedy algorithm, the Gradi-
ent Support Pursuit (GraSP), which is an extension of CoSaMP. We present
the conditions that must be satisfied in this framework for successful recon-
struction, and compare the performance of GraSP to LASSO, of the GLMnet
package, for the logistic model.

Finally, we propose a method for non-linear scenarios inspired by GraSP
and OMP, test it for the logistic model, and compare the results to those of
GraSP and GLMnet.

3

Acknowledgements

I would first like to thank my thesis supervisor Prof. Athanasios Liavas for his
continuous guidance throughout this thesis. His enthusiasm to motivate us
study new aspects of science, is one of the most valuable assets I gained as a
student. Furthermore, I would like to thank Paris, Alex, and Giannis for their
advices and help. Also, I am deeply grateful to my friends here in Chania for
their support and the beautiful moments we shared all these years. Last but
not least, I would like to thank Giorgos for his continuous encouragement
and support all this time. Finally, I must express my gratitude to my family,
who were always there for me throughout my years of study. This thesis
would not have been possible without them. Thank you.

4 Acknowledgements

5

Table of Contents

Table of Contents . 5

List of Figures . 7

1 Introduction . 9

2 Compressed Sensing . 13

2.1 Formulation of the problem 13

2.1.1 Metrics on measurement matrix 14

2.1.2 Choosing measurement matrix 17

2.1.3 Uniform and Nonuniform Recovery 18

3 Algorithms for sparse recovery 19

3.1 Greedy Algorithms . 19

3.1.1 Matching Pursuit . 19

3.1.2 Orthogonal Matching Pursuit 20

3.1.3 Compressive Sampling Matching Pursuit 20

3.1.4 Iterative Hard Thresholding Algorithm 21

3.2 Greedy Algorithms - Analysis 21

3.2.1 Orthogonal Matching Pursuit 22

3.2.2 Compressive Sampling Matching Pursuit 30

3.2.3 Iterative Hard thresholding 30

3.3 Simulations . 31

4 Non-Linear Problem and algorithms 35

4.1 Formulation of the problem 35

4.2 Gradient Support Pursuit . 36

4.2.1 Conditions on the cost function 36

4.2.2 Main theorems of convergence 38

4.3 Simulations . 39

4.3.1 The Logistic Model 39

4.3.2 Testing GraSP . 40

6 Table of Contents

5 General Method . 45
5.1 Motivation . 45
5.2 Simulations . 46

6 Conclusion and Future work 51

Appendices

A Proofs of theorems . 53

B Basic results . 73

Bibliography . 75

7

List of Figures

3.1 Relative signal estimation error vs (m/s ln(n)), for MP and
OMP algorithms . 32

3.2 Relative signal estimation error vs (m/s ln(n)), for CoSaMP
and IHT algorithms . 33

4.1 Relative signal estimation error and number of correct entries
in the support vs (m/n) for the cost function (4.14), using
GraSP. 41

4.2 Relative signal estimation error and number of correct entries
in the support vs (m/n) for the cost function (4.15), using
GraSP. 43

4.3 Relative signal estimation error and number of correct entries
in the support vs (m/n) for GLMnet 44

5.1 Gradient(red line) and relative signal estimation error(blue
line) vs iterations . 47

5.2 Relative signal estimation error and number of correct entries
in the support vs (m/n), for Algorithm 7 48

5.3 Relative signal estimation error and number of correct entries
in the support vs (m/n), for Algorithm 7 + ℓ2-penalty 50

8 List of Figures

9

Chapter 1

Introduction

In this thesis, we consider the problem of reconstructing high dimensional
signals from measured data. This type of problem is encountered in many
applications of statistics, biomedical, and signal processing. Unfortunately,
in the majority of these applications, acquiring the number of measurements,
indicated by the Shannon - Nyquist sampling theorem, may be too costly,
infeasible (due to hardware limitations) or even dangerous. For example,
in Magnetic Resonance Imaging (MRI), the measurement time could be so
high that necessitates extended exposure of patients to radiation. These
limitations can be overcome by assuming a structure on the underlying high
dimensional signal. This structure is sparsity.

In Chapter 2, we consider the concept of Compressed Sensing, where we
wish to reconstruct a sparse signal, having its measurements acquired in a
linear manner. Through extensive work, a number of efficient algorithms are
available for this setting. In this chapter, we will refer to the properties that
must be satisfied to guarantee sparse signal recovery. Furthermore, we will
mention the types of recovery emerged in Compressed Sensing as well as the
limitations imposed on the number of measurements.

The main results concerning greedy algorithms are presented in Chapter
3. At first, we refer to the core ideas behind each algorithm and then we pro-
ceed with their theoretical analysis (also in Appendix A). Then, we present
the sufficient conditions for sparse recovery, emerged from the analysis pre-
sented in Chapter 3. Finally, based on these results, we test the performance
of the aforementioned greedy algorithms in terms of relative signal estimation
error and illustrate the results.

While the linear setting is widely encountered in numerous areas of sci-
ence, there are many applications that deal with high-dimensional signals
that are measured in a non-linear manner. For example, in binary classi-
fication, the relation between the measurements and the underlying target
signal is determined by a non-linear function. Consequently, it is essential
to consider this topic as well. In Chapter 4, we present GraSP, a greedy
algorithm that deals with this task. The GraSP algorithm shares ideas with
the methods used in Compressed sensing area, thus, the transition becomes
easier. In addition, we refer to the properties that must be met in this set-

10 Chapter 1. Introduction

ting as well as to the main results. The proofs of the main theorems can be
found in Appendix A. We conclude this chapter with simulations of GraSP
and GLMnet for the logistic model.

In Chapter 5, we investigate a slightly different approach for the non-
linear setting, by modifying GraSP based on ideas of OMP, a greedy algo-
rithm presented in Chapter 3. We test the performance of this method in
terms of relative signal estimation error and, finally, we conclude with some
ideas for future work concerning the extension to other Generalized Linear
Models (GLMs).

Proofs of the main theorems mentioned in Chapter 3 and 4 can be found
in Appendix A. Moreover, Appendix B contains basic results, necessary for
the analysis of the presented algorithms.

11

List of Symbols

C(A) Column space of matrix A

N (A) Null space of matrix A

Z Complement of a set

A Bold upper case letters denote matrices

A† pseudoinverse of matrix A

AH conjugate transpose or Hermitian transpose of matrix A

AT transpose of matrix A

AS restriction of matrix AS to columns indicated by the set S

Id Identity matrix

PS Restriction of the identity matrix to the columns indicated by the set
set S

x Bold lower case letters denote vectors

xS restriction of vector xS to the elements indicated by the indices in the
set S

12 List of Symbols

13

Chapter 2

Compressed Sensing

2.1 Formulation of the problem

Reconstruction of signals from their measurements is a common task in var-
ious fields of science such statistics, machine learning, signal and, image pro-
cessing. In cases where the measurements are obtained linearly, the problem
can be formulated as

y = Ax, (2.1)

where y ∈ Rm is the measured data vector associated with the vector (or
signal) of interest x ∈ Rn. The matrix A ∈ Rm×n is called the measurement
or sensing matrix. In many applications in the aforementioned areas, we have
m < n 1, a fact that renders problem (2.1) underdetermined. Fortunately, by
imposing some constraints to the vector x, the reconstruction of x becomes
possible. Compressed Sensing exploits the notion of sparsity for this cause.
A vector x is called sparse if most of its elements are zero. Also, the support
of a vector x, denoted supp(x)), is the index set of its nonzero elements.

Definition 1. [1, p. 41] A vector x is called s-sparse if at most s of its entries
are nonzero, i.e. if

∥x∥0 := card(supp(x)) ≤ s. (2.2)

Note that the support in most cases is not known. Otherwise, the problem
of signal recovery from linear measurements would be trivial.

In compressed sensing, significantly large amount of work has been pub-
lished concerning the adequacy of matrix A and the efficiency of algorithms.
Actually, the design of the measurement matrix A is a tricky task with a
huge impact on the success of reconstruction. Meanwhile, a variety of al-
gorithms have been introduced in this area. It seems natural, at first, to
perform ℓ0-minimization, namely

(P0) : min
z∈Rn

∥z∥0, s.t., y = Az. (2.3)

1A possible measurement matrix encountered in statistical inference applications could
hold measurements acquired by sensors during a period of time. It is obvious that the
number of sensors would be much smaller than the number of measurements for all the
days of the experiment

14 Chapter 2. Compressed Sensing

However, this problem is NP-hard. A tractable method, that is a convex
relaxation of (P0), is basis pursuit or ℓ1-minimization (P1)

(P1) : min
z∈Rn

∥z∥1, s.t., y = Az. (2.4)

An alternative approach to optimization are the so-called greedy algorithms.
These strategies find the support of the solution iteratively and are some-
times preferable due to their simplicity. In this work, we will reflect on greedy
methods for sparse recovery such as Orthogonal Matching Pursuit (OMP)
and Compressive Sampling Matching Pursuit (CoSaMP). Various applica-
tions of compressed sensing can be found in [1, Chapter 1], [2, Chapter 1].

2.1.1 Metrics on measurement matrix

Compressed sensing relies on the appropriate design of the measurement
matrix A. In fact, the algorithms demand strong properties on matrix A
in order to deduce sufficient conditions for sparse recovery. Specifically, we
wish to recover all sparse vectors, so, every set of 2s columns of A must
be linearly independent [1, p. 49]. There is an extensive literature on the
conditions that the measurement matrix must satisfy. In the sequel, we shall
introduce several metrics which will be used for the characterization of the
measurement matrix A.

The mutual coherence is a simple metric to assess the quality of matrix
A. Its computation is an easy task, therefore it is widely used in the analysis
of algorithms of sparse recovery. The concept of mutual coherence was first
introduced by David Donoho and Michael Elad [3]. The definition of mutual
coherence follows.

Definition 2. [1, p.110] Let A ∈ Rm×n be a matrix with ℓ2-normalized
columns a1,...,an, i.e. ∥ai∥2 = 1 for all i ∈ [n]. The mutual coherence
of the matrix is defined as

µ (A) := max
1≤i ̸=j≤n

| ⟨aiaj⟩ |. (2.5)

We notice that mutual coherence µ (A) is a measure of the correlation be-
tween the columns of A. An orthogonal (or unitary) matrix has pairwise
orthogonal columns, thus µ (A) = 0. Moreover, it is obvious that mutual co-
herence is strictly positive for general matrices. In compressed sensing area,
where m ≪ n, in order to design an appropriate measurement matrix A, we
have to keep µ (A) small. It is proven than mutual coherence for general
matrices is bounded from below by

µ (A) ≥
√

n−m

m(n− 1)
. (2.6)

2.1. Formulation of the problem 15

The lower bound (2.6) is known as Welch bound [4], and it is achieved
by special structure matrices called Grassmannian Frames [5, p. 29]. In
cases where m ≪ n, the lower bound for mutual coherence is approximately
µ (A) ≥ 1/

√
m.

An other metric concerning the matrix A is spark [3]. We proceed with
the definition of spark.

Definition 3. [5, p. 23] The spark of a matrix A is the smallest number of
columns from A that are linearly-dependent.

The definition of spark resembles to the definition of rank, however, spark
is NP-hard to compute, as it demands combinatorial evaluation over all pos-
sible subsets of columns from A. In some cases though, evaluation of spark
becomes easier. For instance, if the entries of A are independent and iden-
tically distributed random variables, then, with probability one, spark =
m + 1, where m is the rank of matrix A [5, pp. 23-24]. The spark gives us
an intuition about the vectors in the null-space of A, N (A) [6, p. 17]. Vec-
tors in N (A) must have at least spark nonzero entries. Also, large values of
spark are suitable for good measurement matrices [5, pp. 23-24]. Combining
these two findings, we conclude that the vectors in N (A) of a matrix A with
large spark, are far from being sparse. A relation between spark and mutual
coherence is provided by the next lemma.

Lemma 1. For any matrix A ∈ Rm×n, it holds true that

spark(A) ≥ 1 +
1

µ(A)
. (2.7)

Mutual coherence is a very useful quantity and is used frequently in the
analysis of algorithms of sparse recovery. However, small mutual coherence
means small sparsity level, a result that emerges from the analysis of various
algorithms [1, p. 125]. To counter this problem, the Restricted Isometry
Property (RIP) was introduced by Emmanuel Candes and Terence Tao [7].

Definition 4. The s-th restricted isometry constant δs = δs (A) of matrix A
∈ Rm×n is the smallest δ ≥ 0 such that

(1− δ)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δ)∥x∥22, (2.8)

for all s-sparse vectors x ∈ Rn.

The relation (2.8) states that, for sufficiently small δs, every set of s
columns of A approximates an orthonormal system. An implication of the
relation (2.8) is that if a matrix A satisfies the RIP of order 2s, then A
approximately preserves the distance between every pair of s-sparse vectors

16 Chapter 2. Compressed Sensing

[6, p. 19]. It can be proved that it ensures stability over the reconstruc-
tion error when the signal is not exactly sparse or when measurements are
contaminated with noise [6, p. 20].

The definition of the RIP is equivalent to:

δs = max
S⊂[N],card(S)=s

∥AH
S AS − Id∥2→2, (2.9)

where AS is a submatrix of A which is restricted to the columns indicated
by S and Id is the identity matrix. ∥X∥2→2 is the spectral norm. By (2.9),
we can conclude that each submatrix AS has its singular values in the inter-
val

[√
1− δs,

√
1 + δs

]
or, equivalently, the eigenvalues of AH

S AS are in the
interval [1− δs, 1 + δs].

Finally, all submatrices AS are well conditioned and injective when δs <
1 (in the opposite case, the null space of AS would be nontrivial). More
formally, due to the fact that we want to recover all s-sparse vectors from
their measurements as well as the fact that distinct s-sparse vectors have
different measurement vectors, the definition δ2s < 1 is more appropriate.

In the sequel, we present some useful results that are essential for the com-
prehension of RIP. At first, we note that the sequence of restricted isometry
constants behaves as follows [1, p. 134]

δ1 ≤ δ2 ≤ ≤ δs ≤ δs+1 ≤ ... ≤ δn. (2.10)

In addition, the following theorem states the relationship between RIP and
mutual coherence.

Proposition 1. [1, p. 134] If the matrix A has ℓ2-normalized columns a1,
a2, a3 ,... an i.e ∥aj∥2 = 1 for all j ∈ [n], then

δ1 = 0, (2.11)

δ2 = µ(A), (2.12)

δs ≤ (s− 1)µ(A), s ≥ 2. (2.13)

The following theorem yields a lower bound for RIP constant δs.

Theorem 1. [1, p. 139] For a matrix A ∈ Cm×n and 2 ≤ s ≤ n, one has

m ≥ c
s

δ2s
, (2.14)

provided n ≥ Cm and δs ≤ δ∗, where the constants C, c, δ∗ depend only on
each other and c ≪ 1.

2.1. Formulation of the problem 17

For the special case of matrices with mutual coherence of optimal order,
µ(A) ≤ c/

√
m, and, by (2.13), we deduce that

δs ≤ (s− 1)µ(A) ≤ cs/
√
m. (2.15)

Thus,

m ≥ c′s2, (2.16)

in virtue of (2.15), with the quadratic scaling, keeps δs small.
Using Theorem 1, it can be shown that

δs ≥
√
cs/m. (2.17)

Now, the result deduced from Theorem 1 yields

m ≥ c′s. (2.18)

The bound (2.18) has not been achieved up to this day in the deterministic
framework. For random matrices, drawn from a subgaussian distribution,
the restricted isometry constants δs ≤ δ are satisfied with high probability,
by requiring [1, p. 271]

m ≥ Cδ−2s ln(eN/s). (2.19)

2.1.2 Choosing measurement matrix

Based on the previous properties, a suitable measurement matrix should
have small mutual coherence, large spark and, finally, small RIP constant.
In [1, Chapter 5], various constructions of matrices with small mutual co-
herence are presented. Using the mutual coherence, sufficient conditions are
obtained for the recovery of all s-sparse vectors from y = Ax. Precisely, for
ℓ1-minimization and OMP, we require that (2s − 1)µ(A) < 1. This yields
that m ≥ Cs2 measurements are necessary for recovery of all s-sparse vectors
[1, p. 125]. Moreover, the available estimation methods for RIP constants of
explicit matrices are based on (2.9) and Gershgorin disk theorem. However,
these tools, combined with (2.13), also lead to a quadratic scale of measure-
ments. In the majority of compressed sensing applications, m should be kept
small enough, thus, finding matrices that surpass this quadratic bottleneck
becomes essential.

Random matrices seem to overcome this issue. It has been shown that
random matrices satisfy RIP, with high probability, when m is of order
s ln(n/s) [1, Chapter 9]. This result concerns matrices with entries drawn

18 Chapter 2. Compressed Sensing

independently from a subgaussian distribution. Gaussian and Bernoulli ran-
dom variables are included in this scheme. In [1, Chapter 9], one can find
interesting results concerning ℓ1-minimization.

The same type of guarantees are deduced for greedy algorithms that en-
sure successful recovery under RIP such as OMP and CoSaMP as we will
see in Chapter 3. Especially, OMP, under RIP-based analysis, recovers exact
sparse vectors with m = O(s ln(n)). For matrices with random entries that
satisfy certain type of concentration inequalities, it can be proved that such
recovery guarantees apply [1, Chapter 9].

2.1.3 Uniform and Nonuniform Recovery

In compressed sensing, one can encounter two different kinds of recovery
results. Uniform recovery is the recovery, with high probability, of all s-
sparse vector using a single random measurement matrix. On the other
hand, nonuniform recovery concerns a single s-sparse vector and its recovery,
with high probability, using a random measurement matrix. To this day,
numerous papers have been investigating this issue, especially for greedy
algorithms.

Briefly, for ℓ1 - minimization, uniform and nonuniform recovery results are
available for different kinds of random matrices with number of measurements
of the optimal order. For example, for a Gaussian measurement matrix and
for large n, having m > 2s ln(n/s), the recovery of a fixed s-sparse vector
will succeed with high probability. More on this issue in [1, p. 281].

For greedy algorithms, things are more intriguing. It is showed that, for
some matrices (either deterministic or random), OMP will fail to recover
all s-sparse vectors [1, p. 156], [8]. In [9], an analysis of OMP exploiting
RIP property is used, stating uniform recovery. However, the number of
measurements scale quadratically in sparsity level. Uniform guarantees with
m = O(s ln(n)) for OMP are proved in [10], although a number of iterations
proportional to the sparsity level is required. In [11], new guarantees for
uniform recovery are proposed. CoSaMP was the first greedy algorithm with
similar guarantees with ℓ1-minimization. The respective theorems of recovery
are presented in Chapter 3.

19

Chapter 3

Algorithms for sparse recovery

3.1 Greedy Algorithms

In this chapter, we present an overview of the greedy algorithms used for
sparse recovery reconstruction. An algorithm is characterized as greedy if, in
each step, it makes a selection among predictors (columns of the measurement
matrix), usually according to an optimization criterion. Greedy algorithms
are well known to signal processing and statistics communities. We consider
the most representative methods, broadly used in the compressed sensing
area.

3.1.1 Matching Pursuit

Matching Pursuit (MP) is a simple greedy algorithm widely used in signal
processing since the ’60s. At each iteration, one predictor (column of A) is
chosen and the associated coefficient is updated. The full algorithm is listed
in Algorithm 1. In Approximation theory, MP is often called Pure Greedy
Algorithm (PGA).

Algorithm 1: Matching Pursuit Algorithm

Input: measurement matrix A ∈ Rm×n, y ∈ Rm

1 initialization r0 = y, x0 = 0
2 for iteration i = 1 ; i = i + 1 till the halting criterion is met do
3 gi = AT ri−1

4 ji = argmax
j

|gij|/∥aj∥2

5 xiji = xi−1
ji

+ giji/∥aji∥22
6 ri = ri−1 − gijiaji/∥aji∥22
Output: ri, xi

At i-th iteration, the selected predictor is denoted by aji . The coefficient
update in step 5 minimizes the cost function ∥y −Axi∥22 with respect to the
coefficient associated with the selected predictor.

20 Chapter 3. Algorithms for sparse recovery

3.1.2 Orthogonal Matching Pursuit

An interesting variation of MP is the Orthogonal Matching Pursuit (OMP),
known also as Orthogonal Greedy Algorithm. The main difference between
these two strategies is the way the coefficients are updated at each iteration.
In OMP, the elements of x at each iteration are updated by projecting y
onto the space spanned by the predictors already in the support. Thus, it
is obvious that OMP minimizes the ∥y −Axi∥22 over the current support
T i. As a result, the residual becomes orthogonal to the active predictors.
Consequently, a variable already in the support set can not be selected again.
The steps of the OMP algorithm are summarised in Algorithm 2.

Algorithm 2: Orthogonal Matching Pursuit Algorithm

Input: measurement matrix A ∈ Rm×n, y ∈ Rm

1 initialization r0 = y, x0 = 0
2 for iteration i = 1 ; i = i + 1 till the halting criterion is met do
3 gi = AT ri−1

4 ji = argmax
j

|gij|/∥aj∥2

5 T i = T i−1 ∪ ji

6 xiT i = A†
T iy, xi

T i
= 0

7 ri = y −Axi

Output: ri, xi

A stopping criterion for OMP could be ∥ri∥2 ≤ ϵ, for a small positive
tolerance ϵ. In case where there is no measurement error, y = Axi is valid.
Moreover, if the sparsity level s of the target vector x is known, then we can
perform s iterations of OMP. Thus, after s iterations, xs will have s nonzero
entries. However, if a wrong index is chosen, it will remain in the support,
and eventually it will be included in the solution. This weakness is surpassed
by the next algorithm, Compressive Sampling Matching Pursuit.

3.1.3 Compressive Sampling Matching Pursuit

Compressive Sampling Matching Pursuit (CoSaMP) algorithm has been in-
troduced by Needell and Tropp [12]. CoSaMP is an iterative algorithm used
for the recovery of sparse signals when the sparsity level s is known. Mean-
while, CoSaMP provides uniform recovery guarantees (like ℓ1- minimization)[12].
The pseudocode of CoSaMP follows in Algorithm 3.

In step 8, the operator Hs keeps the s largest absolute values of the input
vector and sets the others to zero.

3.2. Greedy Algorithms - Analysis 21

Algorithm 3: Compressive Sampling Matching Pursuit Algorithm

Input: measurement matrix A ∈ Rm×n, y ∈ Rm, sparsity level s
1 initialization r0 = y, x0 = 0
2 for iteration i = 1 ; i = i + 1 till the halting criterion is met do
3 gi = AT (y −Axi−1)
4 T = support(xi−1)
5 L = support(gi2s) : index set of 2s largest absolute values
6 S i = T ∪ L
7 bi = argmin

z∈Rn

∥y −Az∥2, supp(z) ⊆ S i

8 xi = Hs(b
i)

Output: xi

3.1.4 Iterative Hard Thresholding Algorithm

The Iterative Hard Thresholding (IHT) algorithm is based on the non-linear
operator Hs, which keeps the s largest absolute values of the input vector
and sets the others to zero. IHT is presented in Algorithm 4.1

Algorithm 4: Iterative Hard Thresholding Algorithm

Input: measurement matrix A ∈ Rm×n, y ∈ Rm, sparsity level s
1 initialization r0 = y, x0 = 0
2 for iteration i = 1 ; i = i + 1 till the halting criterion is met do
3 gi−1 = AT ri−1

4 xi = Hs (x
i−1 + µigi−1): Hs keeps its s largest absolute values and

sets the other ones to zero.
5 ri = y −Axi

Output: xi

3.2 Greedy Algorithms - Analysis

The characteristics of greedy algorithms have been investigated extensively.
The key to their appeal is surely their simple implementation and their speed.
For example, OMP is used in the Single Pixel Camera of Rice University [14].
In this section, we will present a number of results for the aforementioned
algorithms, based on the properties on the measurement matrix A.

1In the literature, IHT algorithm is encountered without the constant µ. However, as
pointed out in [13], µ is essential for better performance.

22 Chapter 3. Algorithms for sparse recovery

3.2.1 Orthogonal Matching Pursuit

The Two-Ortho Case

For the analysis of OMP we are based on [15]. First, we discuss the case where
A is a concatenation of two orthogonal (unitary) matrices, A = [Ψ,Φ]. The
result that is derived from this initial assumption is over-pessimistic as it
demands strong constraints on A.

Some notation is essential to make the analysis easier to the reader. First,
we assume that a solution x exists with s nonzero elements. Second, the
vector y is a linear combination of the first sp columns of Ψ and the first sq
columns of Φ, with s = sp+ sq. Finally, we define the respective supports Sp
and Sq, with card(Sp) = sp and card(Sq) = sq. So

y = Ax =

sp∑
i=1

xψi ψi +

sq∑
i=1

xϕi ϕi, (3.1)

where xψi and xϕi are the coefficients of the linear combination of the active
columns of Ψ and Φ, respectively. At the first iteration of the algorithm, we
have the residual r0 set to y. The algorithm chooses one of the s elements in
the proper support if its associated column has the maximum correlation with
the residual. Supposing that, without loss of generality, xψ1 is the largest in
magnitude nonzero element in x, for all j /∈ Sp and j /∈ Sq we should require
that

|ψT
1 y| > |ψT

j y|, (3.2)

|ψT
1 y| > |ϕTj y|. (3.3)

In the sequel, we substitute in (3.2) the relation (3.1). So, we conclude that∣∣∣∣ sp∑
i=1

xψi ψ
T
1ψi +

sq∑
i=1

xϕiψ
T
1ϕi

∣∣∣∣ > ∣∣∣∣ sp∑
i=1

xψi ψ
T
j ψi +

sq∑
i=1

xϕiψ
T
j ϕi

∣∣∣∣. (3.4)

We proceed with estimating lower and upper bounds for (3.4) to obtain the
worst-case scenario. At first, we consider the left-hand side of the inequality
(3.4). Using the triangle inequality, we have∣∣∣∣ sp∑

i=1

xψi ψ
T
1ψi +

sq∑
i=1

xϕiψ
T
1ϕi

∣∣∣∣ ≥ ∣∣∣∣ sp∑
i=1

xψi ψ
T
1ψi

∣∣∣∣− ∣∣∣∣ sq∑
i=1

xϕiψ
T
1ϕi

∣∣∣∣. (3.5)

Then, we exploit the orthogonality of Ψ. So, (3.5) gives∣∣∣∣ sp∑
i=1

xψi ψ
T
1ψi +

sq∑
i=1

xϕiψ
T
1ϕi

∣∣∣∣ ≥ |xψ1 | −
∣∣∣∣ sq∑
i=1

xϕiψ
T
1ϕi

∣∣∣∣. (3.6)

3.2. Greedy Algorithms - Analysis 23

Also, we have ∣∣∣∣ sq∑
i=1

xϕiψ
T
1ϕi

∣∣∣∣ ≤ sq∑
i=1

|xϕiψ
T
1ϕi| ≤

sq∑
i=1

|xϕi |µ(A), (3.7)

where we used the definition (2.5). Moreover, having that xψ1 has the largest
absolute value of all the elements of x, we obtain

sq|xψ1 | >
sq∑
i=1

|xϕi |. (3.8)

Finally, using the relations (3.7) and (3.8) in (3.6), we obtain∣∣∣∣ sp∑
i=1

xψi ψ
T
1ψi+

sq∑
i=1

xϕiψ
T
1ϕi

∣∣∣∣ ≥ |xψ1 |−
sq∑
i=1

|xϕi |µ(A) ≥ |xψ1 |(1−sqµ(A)). (3.9)

In the same manner, we develop an upper bound for the right-hand side for
the inequality (3.4)∣∣∣∣ sp∑

i=1

xψi ψ
T
j ψi +

sq∑
i=1

xϕiψ
T
j ϕi

∣∣∣∣ ≤ |xψ1 |sqµ(A), (3.10)

where

∣∣∣∣∑sp
i=1 x

ψ
i ψ

T
j ψi

∣∣∣∣ = 0. Having these two tighter bounds for both sides

of the inequality (3.4), we can write

|xψ1 |(1− sqµ(A)) > |xψ1 |sqµ(A), (3.11)

which leads to

sq <
1

2µ(A)
. (3.12)

If we change our initial assumption, and assume that xϕ1 is the largest in
magnitude nonzero element of x, then the same bound is valid for sp. Then,
following analogous steps we can prove that

sq <
1

2µ(A)
. (3.13)

Now, we proceed with the second requirement (3.3). We use (3.1) in (3.3)
to obtain∣∣∣∣ sp∑

i=1

xψi ψ
T
1ψi +

sq∑
i=1

xϕiψ
T
1ϕi

∣∣∣∣ > ∣∣∣∣ sp∑
i=1

xψi ϕ
T
j ψi +

sq∑
i=1

xϕi ϕ
T
j ϕi

∣∣∣∣. (3.14)

24 Chapter 3. Algorithms for sparse recovery

The lower bound for the left-hand side of (3.14) is obviously the same. How-
ever, the upper bound for the right-hand side of (3.14) is slightly different.
So ∣∣∣∣ sp∑

i=1

xψi ϕ
T
j ψi +

sq∑
i=1

xϕi ϕ
T
j ϕi

∣∣∣∣ ≤ |xψ1 |spµ(A). (3.15)

This leads to the requirement

|xψ1 |(1− sqµ(A)) > |xψ1 |spµ(A). (3.16)

Finally, we have

sp + sq <
1

µ(A)
. (3.17)

The relation (3.17) does not add anything to the analysis, as it is covered by

sq, sp <
1

2µ(A)
.

Having the requirements (3.2) and (3.3) satisfied, OMP selects a nonzero
from the proper support at the first iteration.

Then, the residual r1 is updated by subtracting the column chosen in the
first step of the algorithm (the column with the biggest correlation with the
current residual) multiplied by a coefficient. Thus, the residual is still a linear
combination of s columns at most. Using the same arguments presented
above, OMP will perform well at the following iterations. Moreover, due
to orthogonality, the OMP algorithm never chooses the same column twice.
Finally, the same result holds for the s-th iteration of OMP, and the algorithm
terminates successfully. The following theorem summarises these results.

Theorem 2. [15, p. 57] For a system of linear equations Ax = [Ψ,Φ]x = y
with two ortho-matrices Ψ,Φ with dimensions n × n, if a solution x exists
such that it has sp nonzeros in its first half and sq nonzeros in the second,
and the two obey

max(sp, sq) <
1

2µ(A)
, (3.18)

then OMP run with threshold parameter e0 = 0 is guaranteed to find x exactly
in s = sp + sq iterations.

The General Case

The result of the two-ortho case provides us with intuition to proceed with a
generalisation of the Theorem 2 concerning general matrices A. The analysis
of this scenario is very close to the analysis of the previous section but the

3.2. Greedy Algorithms - Analysis 25

provided result is weaker. In fact, in the two-ortho case, we could drop some
inner products due to the strict structure that was assumed. Here, we have
to do with arbitrary matrices so this is not the case.

Theorem 3. [15, p. 65] For a system of linear equations Ax = y, A ∈ Rm×n

full-rank with m < n, if a solution x exists obeying

∥x∥0 <
1

2

(
1 +

1

µ(A)

)
, (3.19)

then OMP run with threshold parameter e0 = 0 is guaranteed to find it ex-
actly.

Theorem 3 implies that, for arbitrary matrices, the solution x must have
a small sparsity level. The proof is given in the Appendix A. Using Lemma
(2.7), the relation of Theorem 3 becomes

∥x∥0 <
spark(A)

2
. (3.20)

The above inequality gives the relation between spark(A) and the sparsity s
of the solution.

Number of measurements

The results that have been considered so far exploit the property of mutual
coherence of the measurement matrix. For both of the two cases presented,
we obtain sufficient conditions that guarantee the exact recovery of every
s-sparse vector from its linear measurements Ax = y. In Chapter 2, we have
mentioned that mutual coherence is bounded from below as follows

µ (A) ≥
√

n−m

m(n− 1)
. (3.21)

For large n, the right-hand side of the inequality scales like
1√
m
. Also,

matrices with small coherence are favorable for the problem.
Now, considering the result for general matrices, Theorem 3, with mutual

coherence of optimal order, namely µ (A) ≥ c
1√
m
, we derive the bound

s <
1

2

(
1 +

1

µ(A)

)
<

1

2

(
1 +

√
m/c

)
⇒ m ≥ Cs2. (3.22)

This bound implies that the number of measurements scales quadratically in
the sparsity level. More precisely, (3.22) states that for a matrix A ∈ Rm×n

with near optimal coherence, in order to recover sparse vectors, m of order
s2 are required.

26 Chapter 3. Algorithms for sparse recovery

Exact Recovery Condition

The Exact Recovery Condition (ERC) was introduced by J.A. Tropp in his
work concerning sparse approximation [16]. By satisfying ERC, sufficient
conditions for sparse recovery are deduced, following a slightly different path
for the analysis of OMP algorithm. We follow the analysis presented in [15].

Definition 5. [15] For a given support S and for a matrix A, the Exact
Recovery Condition (ERC) is given by

ERC (A,S) := max
i/∈S

∥A†
Sai∥1 < 1, (3.23)

where AS is the submatrix of A constructed from the columns that corre-
spond to the given support S.

Using the definition of the pseudo-inverse matrix, the above definition
considers linear systems of the form ASx = ai, with ai a column of A
outside of the support. Moreover, by the relation between least-squares and
pseudoinverse we can deduce

∥ASx− ai∥2 ≥ ∥ASx
∗ − ai∥2, (3.24)

where x∗ = A†
Sai.

We conclude that ERC states that the minimum ℓ2-norm solutions to
all systems of the form ASx = ai, must all have ℓ1-norm smaller than 1.
In the following theorem, the connection between ERC and successful OMP
performance is given.

Theorem 4. [15] For a sparse vector x over the support S, which is the
solution of the linear system Ax = y, if the ERC is met, then OMP is
guaranteed to succeed in recovering x.

This is a stronger condition than those we have mentioned before con-
cerning the mutual coherence. However, Theorem 4 requires that the support
S is given. As a consequence, if we only know the cardinality of the support,
the usage of ERC to guarantee successful recovery is not appropriate as it
demands

(
n
s

)
tests to verify. In the sequel, we proceed with the proof of

Theorem 4.

Proof. We assume that we are in the first step of the algorithm. In order to
have a successful outcome out of this step, we require that

∥AT
Sy∥∞ > ∥AT

Sy∥∞. (3.25)

3.2. Greedy Algorithms - Analysis 27

The relation (3.25) claims that the maximal correlation between the active
predictors (or atoms) of A and y must be larger than the maximal correlation
between predictors outside the support. Thus, we require that

ρ =
∥AT

Sy∥∞
∥AT

Sy∥∞
< 1. (3.26)

Also, we have ASxS = y, thus y belongs to the column space of AS . More-
over, Py = y ∈ C (AS), where P is the projection matrix onto the column
span of AS . Consequently,

y = Py =
(
AS
(
AT

SAS
)−1

AT
S

)
y =

(
AT

S
)†
AT
Sy. (3.27)

Substituting the relation (3.27) in (3.26), we have

ρ =
∥AT

Sy∥∞
∥AT

Sy∥∞

=
∥AT

S

(
AT

S
)†
AT

Sy∥∞
∥AT

Sy∥∞
≤ ∥AT

S

(
AT

S
)† ∥∞,

where, in the last inequality, we used the definition of ℓ∞-induced norm.
Using the properties of matrix norms (see Appendix B), we obtain

∥AT
S

(
AT

S
)† ∥∞ = ∥ (AS)

† AS∥1. (3.28)

So, by requiring ∥ (AS)
†AS∥1 < 1 (ERC property), we guarantee that ρ < 1.

Consequently, the first step of OMP is successful.
In the following steps, y is replaced by the residual which is in the span

of AS , so the analysis above remains the same. Thus, the OMP algorithm
succeeds in recovering x in s steps. The original proof can be found in
[15].

We need to find a way to guarantee that ERC property is satisfied. The
next theorem is showed by Tropp in [16]. We proceed with the theorem.

Theorem 5. [15] For a matrix A with mutual coherence µ (A), if s <
1

2

(
1 +

1

µ (A)

)
, then, for all supports S with cardinality equal or smaller

than s, the ERC is satisfied.

28 Chapter 3. Algorithms for sparse recovery

Proof. For a column outside the support, suppose ai, we require ∥A†
Sai∥1 =

∥
(
AT

SAS
)−1

AT
Sai∥1 < 1. If we substitute the previous relation with a more

strict one, we obtain ∥
(
AT

SAS
)−1 ∥1∥AT

Sai∥1 < 1. We notice that the vector
AT

Sai has its elements bounded from below by the value −µ (A) and from
above by the value µ (A) (by exploiting the definition of mutual coherence
(2.5)). Thus, ∥AT

Sai∥1 ≤ sµ (A).

To provide a bound for ∥
(
AT
SAS

)−1 ∥1, we work as follows. At first, the
matrix AT

SAS = G is a Gram matrix thus is positive-semidefinite. This
means that its eigenvalues are nonnegative. The values of the elements in
the diagonal of G are equal to Gii = 1 (due to the normalization of the
columns of A). Using the Gershgorin disk theorem, the radius is

ri =
∑
i̸=j

|Gij| < (s− 1)µ (A) . (3.29)

Thus, the eigenvalues of G lie in the disk with center Gii = 1 and radius ri.
Formally, in the interval

[1− (s− 1)µ (A) , 1 + (s− 1)µ (A)] . (3.30)

Since AT
SAS has nonnegative eigenvalues, (s− 1)µ (A) ≤ 1.Using the above

result, we conclude that the matrix AT
SAS is strictly-diagonally dominant.

Using this property of AT
SAS , we can use the bound by J. M. Varah in his

work ”A Lower Bound for the Smallest Singular Value of a Matrix” [17].
Finally, we have

∥
(
AT

SAS
)−1 ∥1 ≤

1

1− (s− 1)µ (A)
. (3.31)

Combining the bounds obtained, we conclude in the final requirement

∥
(
AT

SAS
)−1 ∥1∥AT

Sai∥1 ≤
sµ (A)

1− (s− 1)µ (A)
< 1. (3.32)

Working in the relation (3.32), we obtain s <
1

2

(
1 +

1

µ (A)

)
. This condition

is the same for all columns outside the support. The proof is complete. The
proof follows the one given in [15].

The above results exploit the notion of mutual coherence as well as the
ERC introduced by Tropp to analyse the performance of OMP. As we have
already seen, OMP behaves very well for exact recovery of s-sparse vector
from its measurements. However, this is not the case for uniform recovery of

3.2. Greedy Algorithms - Analysis 29

s-sparse vectors (recovery of all s-sparse vectors from their linear measure-
ments) using m of optimal order. To reflect more on this subject, we have
to recall the definition of RIP (2.8).

The RIP for a matrix A holds, by definition, for all s-sparse vectors.
However, for specific matrices with special structure, the RIP is not enough
to guarantee the recovery of all s-sparse vectors via OMP, in at most s
iterations [1, p. 156].

To bypass this issue, we can perform more iterations. In the sequel, we
simply state a general result (in the complex setting) for successful recovery
using the RIP.

Proposition 2. [1, p. 156] Given A ∈ Cm×n, let y = Ax + e for some x
s-sparse ∈ Cn with S = supp(x) and e ∈ Cm. Let (xi) denote the sequence
defined by step 6 of Algorithm 2 started at an index set S0. With s0 =
card(S0) and s′ = card(S \ S0), if δs+s0+12s′ < 1/6, then there is a constant
C > 0 depending only on δs+s0+12s′ such that

∥y −Axi∥2 ≤ C∥e∥2, (3.33)

where i = 12s′.
For standard OMP with S0 = ∅ and e = 0, the above implies that exact

recovery via OMP is guaranteed in 12s iterations. Indeed, this is satisfied
since δ13s < 1.

Signal recovery from random measurements

A serious improvement concerning the number of linear measurements re-
quired for signal recovery has been made by J. A. Tropp and A. C. Gilbert
[18]. They showed both empirically and theoretically that OMP can reli-
ably recover a s-sparse vector using O(s lnn) random linear measurements.
This result for the OMP algorithm is quite similar to those of Basis Pursuit
approach.

The theorem, which is the main result of the paper mentioned before,
states that OMP can recover a sparse vector with high probability.

Theorem 6. [18] Let A be a m×n Gaussian matrix, and fix a s-sparse signal
x ∈ Rn. Then OMP recovers x from its measurements y = Ax correctly with
high probability, provided that the number of measurements is m ∼ s lnn.

The authors state a list with the properties an admissible matrix should
satisfy in their paper. The proof of the previous theorem exploits probabilis-
tic tools. Finally, we have to mention that, even though this result gives a
huge improvement, it does not provide OMP with uniform guarantees.

30 Chapter 3. Algorithms for sparse recovery

Next, we mention the results for CoSaMP and IHT, using the RIP prop-
erty. Precisely, under the condition

δκs ≤ δ∗, (3.34)

for some integer κ, and δ∗ ≤ 1 both depending on the algorithm, uniform
recovery is guaranteed. The condition 2 is of the same type.

3.2.2 Compressive Sampling Matching Pursuit

In virtue of the limitations of OMP in recovering all s-sparse vectors, D.
Needell, J. A. Tropp presented CoSaMP algorithm that has guarantees anal-
ogous to ℓ1-minimization. We proceed with a result concerning the CoSaMP
(see Algorithm 3) using the RIP property.

Theorem 7. [1, p. 164] Suppose that the 4s-th restricted isometry constant
of the matrix A ∈ Rm×n satisfies

δ4s <

√√
11/3− 1

2
. (3.35)

Then, for x ∈ Rn, e ∈ Rm, S ⊂ [n] with card(S) = s, the sequence (xi)
defined by the algorithm with y = Ax+ e satisfies

∥xi − xS∥2 ≤ ρi∥x0 − xS∥2 + τ∥AxS + e∥2, (3.36)

where constants 0 < ρ < 1 and τ > 0 depend only on δ4s.
The proof of Theorem 7 can be found in Appendix A.

3.2.3 Iterative Hard thresholding

In this section, a result for s-sparse recovery via Iterative Hard thresholding
is considered. Here, we will only refer to the result for approximately sparse
vectors measured with some errors, as it demands a weaker condition than the
one of exact sparse vectors (the sufficient condition for exact sparse recovery
can be found in [19]). The success of this algorithm is based on the simple
intuition that for small RIP constants the matrixATA behaves as an identity
matrix when its domain and range are restricted to small supports.

Theorem 8. [1, p. 148] Suppose that the 3s-th restricted isometry constant
of the matrix A ∈ Rm×n satisfies:

3.3. Simulations 31

δ3s <
1√
3
. (3.37)

Then, for x ∈ Rn, e ∈ Rm, S ⊂ [n] with card(S) = s, the sequence (xi)
constructed by the algorithm with y = Ax+ e satisfies

∥xi − xS∥2 ≤ ρi∥x0 − xS∥2 + τ∥AxS + e∥2, (3.38)

where constants ρ =
√
3δ3s < 1 and τ ≤ 2.18/(1− ρ).

The proof is similar to the proof of CoSaMP algorithm in the Appendix A,
thus is ommited.

It is possible to construct deterministic matrices that satisfy the condi-
tion (3.34). However, these constructions demand m to be relatively large,
for example m = O(s2 lnn). It is already mentioned that, by randomiz-
ing the measurement matrix, the quadratic bottleneck is overcome. In our
simulations, we use random matrices.

3.3 Simulations

In our simulations, we conducted the following experiment. We generate a
s-sparse vector (s = 20) and a m × n, with n = 1000, measurement matrix
with entries drawn from i.i.d. N (0, 1). We test the performance of OMP,
MP, CoSaMP and IHT for the nonuniform recovery framework for different
dimension m in the interval m = [50; 10; 350]. The parameter µ of IHT is set
to 0.4. For each value of m, we run 30 trials.

At first, we point out that all algorithms require m ≥ Cs ln(n) to recover
s-sparse vectors, although, the constant C > 0, which depends on the algo-
rithm, may be slightly different. In Figure 3.1, we plot the results in terms
of relative signal estimation error for MP and OMP. We observe that OMP
succeeds in recovering s-sparse vectors for smaller ratio (m/s ln(n)) (actu-
ally, for smaller constant C) than MP. Next, we illustrate the performance of
CoSaMP, and IHT in Figure 3.2. In general, we observe that CoSaMP out-
performs IHT. Specifically, CoSaMP succeeds s-sparse recovery for smaller
constant C than IHT.

From Figures 3.1 and 3.2, we observe that OMP and CoSaMP have better
performance. However, CoSaMP attains large relative signal estimation error
for C = 0.5. In Figure 3.1, a smoother decrease of relative signal estimation
error is observed for OMP.

32 Chapter 3. Algorithms for sparse recovery

m/(s ∗ log(n))
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
el
a
ti
v
e
er
ro
r

‖x
−
x
∗
‖ 2

‖x
∗
‖ 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

MP

(a)

m/(s ∗ log(n))
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
el
a
ti
v
e
er
ro
r

‖x
−
x
∗
‖ 2

‖x
∗
‖ 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

OMP

(b)

Figure 3.1: Relative signal estimation error vs the ratio (m/s ln(n)), for
MP(a) and OMP(b) algorithms.

Summary

From the experiment we conducted, we observe that the performance, in
practice, of the greedy algorithms we tested, is aligned with theoretical results

Summary 33

m/(s ∗ log(n))
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
el
a
ti
v
e
er
ro
r

‖x
−
x
∗
‖ 2

‖x
∗
‖ 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CoSaMP

(a)

m/(s ∗ log(n))
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
el
a
ti
v
e
er
ro
r

‖x
−
x
∗
‖ 2

‖x
∗
‖ 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

IHT

(b)

Figure 3.2: Relative signal estimation error vs the ratio (m/s ln(n)), for
CoSaMP(a) and IHT(b) algorithms.

presented in this chapter. Especially, the requirement of m = O(s ln(n))
measurements is valid for all algorithms in the experiment. However, as we

34 Chapter 3. Algorithms for sparse recovery

have already pointed out, slightly different constants C are observed for each
algorithm. In general, OMP and CoSaMP outperform MP and IHT for the
case we examined.

35

Chapter 4

Non-Linear Problem and
algorithms

4.1 Formulation of the problem

In Chapters 2 and 3, we considered the case of reconstructing x∗ from the
linear measurements y (Compressed Sensing). As we have seen already, this
approach is very useful in a variety of fields in scientific research, however,
it is not applicable in several cases of interest. For instance, in statistics
and machine learning, a broader class of functions are massively used to
perform classification and prediction. Consequently, new methods should be
developed, suitable for these applications.

Several works have been proposed using the sparsity inducing ℓ1-norm as
penalty to problems that consider nonlinear models. For example, in [20] the
ℓ1 penalty is added to the logistic cost function. Moreover, in [21], variable
selection by logistic regression, using ℓ1 and ℓ1+ℓ2 (elastic - net penalty in the
literature) is investigated. Finally, a work concerning the ℓ1-regularization
on general exponential families of functions is [22].

In [23], the definition of nonlinear Compressed Sensing is considered. In
this work, the linear scheme used to obtain the measurement vector is re-
placed by a nonlinear mapping from one vector space to another. Also, an
extensive analysis of IHT algorithm for this setting is provided. In addi-
tion, some methods are proposed for problems of generic cost functions with
sparsity constrains in [24].

An issue that arises from the requirements that guarantee accuracy of ℓ1
methods is the characterization of the sparsity level of the solution. As it
has been showed in [22], the sparsity level of the solution is not known to be
optimal. In this chapter, we will consider a greedy algorithm, which does not
exploit the ℓ1-norm, proposed by Sohail Bahmani [25]. In his work, a generic
function with specific properties, that will be mentioned in the sequel, is
used. The GraSP algorithm (Gradient Support Pursuit) is presented below.

36 Chapter 4. Non-Linear Problem and algorithms

4.2 Gradient Support Pursuit

The GraSP algorithm provides an approximate solution to the problem

argmin
x

f(x), s.t. ∥x∥0 ≤ s, (4.1)

The name of the algorithm implies that the gradient (or subgradient) is used
to identify the directions of minimization. At a given point x̂ , we select the
2s largest in magnitude elements of the gradient. These indices, as well as the
support of the current estimate x̂, are merged to the set T , with cardinality
at most 3s. Then, the cost function is minimized over the set T . Finally,
the next point x̂ is the best s-term approximation of the minimization. The
algorithm is summarised in Algorithm 5.

Algorithm 5: Gradient Support Pursuit

Input: f(·), sparsity level s
1 initialization x̂ = 0
2 repeat
3 z = ∇f(x̂)
4 Z = support(z2s)
5 T = support(x̂)∪Z
6 b = argmin

x
f(x), s.t. xT = 0

7 x̂ = bs : keeps its s largest absolute values and sets the other ones
to zero.

8 until until halting condition
Output: x̂

In the linear setting with squared error as a cost function, several con-
ditions should be satisfied in order to obtain an accurate solution. Observe
that, using the squared error as a cost function, GraSP reduces to CoSaMP.
Following the same path, by imposing some properties on the cost function,
the analysis of GraSP algorithm becomes tractable.

4.2.1 Conditions on the cost function

The properties that guarantee accurate solution for the GraSP algorithm,
namely SRH (Stable Restricted Hessian) and SRL (Stable Restricted Lin-
earization), are analogous to RIP. These properties require that locally the
curvature of the cost function over the sparse subspaces is bounded from both
sides, with bounds of the same order. The definitions of these two properties
follow.

4.2. Gradient Support Pursuit 37

Definition 6. Suppose that f is a twice continuously differentiable function
whose Hessian is denoted by ∇2f(·). Furthermore, let

Ak(x) = sup

{
∆T∇2f(x)∆

∣∣∣∣|supp(x) ∪ supp(∆)| ≤ k , ∥∆∥2 = 1

}
, (4.2)

and

Bk(x) = inf

{
∆T∇2f(x)∆

∣∣∣∣|supp(x) ∪ supp(∆)| ≤ k , ∥∆∥2 = 1

}
, (4.3)

for all k-sparse vectors x. Then, f(·) is said to have a Stable Restricted Hes-

sian (SRH) with constant µk, or in short µk-SRH, if 1 ≤ Ak(x)

Bk(x)
≤ µk.

Note that the SRH property implies convexity over canonical sparse sub-
spaces, but not everywhere.

To generalize the notion of SRH for the case of nonsmooth functions, first
we define the restricted subgradient of a function.

Definition 7. We say that vector ∇f (x) is a restricted subgradient of f :
Rn → R, at point x if

f(x+∆)− f(x) ≥ ⟨∇f (x),∆⟩, (4.4)

holds for all k -sparse vectors ∆.
Notice that x is not necessarily sparse. The directions of movement ∆ must
be sparse. The existence of restricted subgradients implies convexity in sparse
directions. Also, for convex functions, every subgradient can be a restricted
subgradient.1 Finally, we introduce the Bregman Divergence. This notion
may be considered as a measure of curvature for non-smooth functions where
the Hessian matrix is not defined. The definition of Bregman Divergence is
as follows

Bf (x
′∥x) = f(x′)− f(x)− ⟨∇f (x),x

′ − x⟩. (4.5)

Now, we proceed to the main definitions for non-smooth functions

Definition 8. Let x be a k-sparse vector in Rn. For function f : Rn −→ R,
we define the functions

1Note that every function (convex or non-convex) has a set of subgradients (the subd-
ifferential) at each point, and if the function is differentiable and convex then it has only
one subgradient, the gradient.

38 Chapter 4. Non-Linear Problem and algorithms

αk(x) = sup

{
1

∥∆∥22
Bf (x+∆∥x)

∣∣∣∣|supp(x)∪supp(∆)| ≤ k , ∆ ̸= 0

}
, (4.6)

and

βk(x) = inf

{
1

∥∆∥22
Bf (x+∆∥x)

∣∣∣∣|supp(x)∪ supp(∆)| ≤ k , ∆ ̸= 0

}
, (4.7)

respectively. Then, f(·) is said to have a Stable Restricted Linearization with

constant constant µk, or in short µk-SRL, if 1 ≤ αk(x)

βk(x)
≤ µk for all k-sparse

vectors.
Definition 8 implies that for any k - sparse vector x, αk(x) and βk(x) are in
order the smallest and largest values that

βk(x)∥∆∥22 ≤ Bf (x+∆∥x) ≤ αk(x)∥∆∥22, (4.8)

holds for all vectors ∆ ∈ Rn, with card(supp(x)∪ supp(∆)) ≤ k.

4.2.2 Main theorems of convergence

Having defined all the essential quantities, we can proceed with the main
theorems for both cases. At first, suppose that:

x∗ = argmin
x

f(x), s.t. ∥x∥0 ≤ s. (4.9)

Theorem 9. Suppose that f is a twice continuously differentiable function

that has µ4s - SRH with µ4s ≤
1 +

√
3

2
. Furthermore, suppose that for some

ϵ > 0 we have ∥∇f(x∗)I∥2 ≤ ϵB4s(x) for all 4s-sparse x, where I is the
position of the 3s largest entries of ∇f(x∗) in magnitude. Then, x̂i, the
estimate at the i-th iteration, satisfies

∥x̂i − x∗∥2 ≤ 2−i∥x∗∥2 + (6 + 2
√
3)ϵ. (4.10)

Observe that the gradient ∇f(x∗) indicates the accuracy of the result.
Suppose that the sparse minimum x∗ is sufficiently close to the unconstrained
minimum of the cost function, then the estimation error floor will be small
because the gradient ∇f(x∗) has small magnitude. Also, in cases where
x∗ is arbitrary rather than the minimum of the cost function (in statistical
estimation x∗ is the target parameter that explains the data), large values of
ϵ are implied. Thus we have to expect large estimation error. In this kind of
problems, quantity ∥∇f(x∗)∥2 can provide a certain interpretation in order
to tune the accuracy of the result.

4.3. Simulations 39

Theorem 10. Suppose that f is a function that is not necessarily smooth,

but it satisfies µ4s - SRL with µ4s ≤
3 +

√
3

4
. Furthermore, suppose that for

β4s(·) there exists some ϵ > 0 such that ∥∇f (x
∗)I∥2 ≤ ϵβ4s(x) holds for all

4s-sparse vectors x where I is the position of the 3s largest entries of ∇f (x
∗)

in magnitude. Then, x̂i, the estimate at the i-th iteration, satisfies

∥x̂i − x∗∥2 ≤ 2−i∥x∗∥2 + (6 + 2
√
3)ϵ. (4.11)

4.3 Simulations

4.3.1 The Logistic Model

We investigate the performance of GraSP in the logistic model, which is
broadly used in machine learning and statistics. In this model, a vector
a ∈ Rn of explanatory variables is associated with its label y ∈ {0, 1} by the
formula of conditional probability,

P (y|a;x) = exp(y⟨a,x⟩)
1 + exp(⟨a,x⟩)

, (4.12)

where x denotes a target vector. Form independent data samples {(ai, yi)}mi=1,
we can write the joint likelihood as a function of x (the joint likelihood is
the product of the probability (4.12), since the samples are independent).
It is easier to maximize the log-likelihood or minimize the negative of the
log-likelihood. Thus, the logistic loss,

f(x) = − 1

m
log

(
m∏
i=1

P (yi|ai)

)
= − 1

m

m∑
i=1

logP (yi|ai). (4.13)

Finally

f(x) =
1

m

m∑
i=1

log(1 + exp(⟨ai,x⟩))− yi⟨ai,x⟩. (4.14)

The function (4.14) for the case m < n is merely convex, consequently, they
may exist multiple minima. To counter this problem, a regularization penalty
is often used. The ℓ2-norm is the most common regularization term. The
cost function (4.14),

g(x) = f(x) +
η

2
∥x∥22, (4.15)

for a constant η becomes strongly convex, thus, it has a unique minimum.
For the ℓ2-regularized logistic loss cost function, the SRH property can be
verified [25].

40 Chapter 4. Non-Linear Problem and algorithms

4.3.2 Testing GraSP

In our simulation, the sparse target vector x∗ has dimension n = 1000, and
sparsity level s = 10, with its entries drawn independently from the standard
Gaussian distribution. The measurement matrix is a random draw of a m×n
Gaussian matrix. Each row ai of the measurement matrix is associated with
a label yi via the relation (4.12).

We tested the performance of GraSP algorithm in terms of relative sig-
nal estimation error and identification of the support of the target vec-
tor, via both the logistic loss cost function (4.14) and ℓ2-regularized logis-
tic loss cost function (4.15). Also, for the sake of comparison, we ran the
LASSO, implemented in the GLMnet package [26] available for MATLAB.
The regularization parameter η for the ℓ2-regularized logistic loss is set to

η = (1 − ω)

√
log(n)

m
, with ω = 0.8. For different values of m, namely

m = [50 : 50 : 1000], we create the data and run the algorithms for 40
Monte-Carlo trials.

The described process is similar to the one used in [25]. However, we
chose to show the accuracy of identifying the target support, as it seems
more intuitive in this context. We note that for the minimization step of
GraSP in Algorithm 5, we used the gradient descent algorithm. Finally, as
stopping criterion, we use a fixed number of iterations (max iters = 100) in
conjunction with the norm of the gradient at each iteration.

In Figures 4.1, 4.2 and 4.3, we show the performance of the aforemen-
tioned methods considering the relative signal estimation error and the ac-
curacy of the estimated support. First, we observe that GraSP for (4.15)
attains lower relative signal estimation error than GraSP for (4.14). Both al-
gorithms attain the same accuracy in the estimation of the support. Second,
GraSP for (4.15) and the GLMnet attain almost the same performance in

terms of relative error ∥x−x∗∥2
∥x∗∥2 . However, the GLMnet estimates the support

better than GraSP for (4.15).

Summary

In this chapter, we examined the extension of Compressed Sensing for non-
linear measurements. These days, huge amounts of data are collected, usually
in a non-linear manner. Numerous scientific fields handle with this type of
data and the development of methods that apply to this framework has
become crucial. The GraSP algorithm provides an approximate solution to
the problem (4.1). Both the properties that the cost function must satisfy

Summary 41

m/n
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el
a
ti
v
e
er
ro
r

‖x
−
x
∗
‖ 2

‖x
∗
‖ 2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

GraSP algorithm

(a)

m/n
0 0.2 0.4 0.6 0.8 1

N
u
m
b
e
r
o
f
c
o
rr
e
c
t
e
le
m
e
n
ts

in
th
e
su
p
p
o
rt

0

1

2

3

4

5

6

7

8

9

10

GraSP algorithm

(b)

Figure 4.1: Relative error ∥x−x∗∥2
∥x∗∥2 and number of correct entries in the support

versus the ratio (m/n) for the (4.14), using GraSP.

42 Chapter 4. Non-Linear Problem and algorithms

and the main theorems for the algorithm are introduced. Simulations showed
that GraSP for (4.15) has comparable performance with the GLMnet, which
is based on optimization methods. The results for the logistic model, are a
strong motivation to examine the performance of GraSP for other Generalised
Linear Models (GLMs).

Summary 43

m/n
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el
a
ti
v
e
er
ro
r

‖x
−
x
∗
‖ 2

‖x
∗
‖ 2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

GraSP algorithm ℓ2-regularised

(a)

m/n
0 0.2 0.4 0.6 0.8 1

N
u
m
b
e
r
o
f
c
o
rr
e
c
t
e
le
m
e
n
ts

in
th
e
su
p
p
o
rt

0

1

2

3

4

5

6

7

8

9

10

GraSP algorithm ℓ2-regularised

(b)

Figure 4.2: Relative error ∥x−x∗∥2
∥x∗∥2 and number of correct entries in the support

versus the ratio (m/n) for the (4.15), using GraSP.

44 Chapter 4. Non-Linear Problem and algorithms

m/n
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el
at
iv
e
er
ro
r

‖x
−
x
∗
‖ 2

‖x
∗
‖ 2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

GLMnet (LASSO)

(a)

m/n
0 0.2 0.4 0.6 0.8 1

N
u
m
b
er

o
f
co
rr
ec
t
el
em

en
ts

in
th
e
su
p
p
o
rt

0

1

2

3

4

5

6

7

8

9

10

GLMnet (LASSO)

(b)

Figure 4.3: Relative error ∥x−x∗∥2
∥x∗∥2 and number of correct entries in the support

versus the ratio (m/n) for GLMnet.

45

Chapter 5

General Method for sparse
recovery from non-linear
measurements

5.1 Motivation

In Chapter 4, we pointed out that GraSP is a generalization of CoSaMP for
the non-linear framework. Via the experiments we conducted, we observed
that not only this generalization is feasible, but also achieves performance
similar to the state-of-the-art GLMnet, for some cases. Motivated by these
results, we attempt to generalize another familiar greedy algorithm, the OMP
algorithm, for the non-linear scenario, namely for the problem (4.1).

In Algorithm 6, we present OMP once again, with an interesting highlight
though. Specifically, we notice that gi = AT ri−1 is actually the gradient at
point x, of the cost function f(x) = ∥y−Ax∥22 (line 3 of Algorithm 6). Hence,
likewise GraSP, we will use the gradient, ∇f(x), to choose the directions of
minimization for this variation of OMP. Since OMP chooses one element at
each iteration, we select the index of the maximum (in magnitude) element
of ∇f(x).

Unfortunately, the main property of OMP, that is, the orthogonalization,
is not preserved in the non-linear case. To prevent multiple selections of the
same element, we perform an extra check at point (!). More formally, in
case one element is already in the support, the second largest in magnitude
element is selected. Then, the selected index is merged with the support of
the current estimate. Finally, for the minimization step, (line 6), we perform
restricted gradient descent. The general method is described in Algorithm 7.

46 Chapter 5. General Method

Algorithm 6: OMP Algorithm

Input: measurement matrix A ∈ Rm×n, y ∈ Rm, function
f(x) = ∥y −Ax∥22

1 initialization r0 = y, x0 = 0
2 for iteration i = 1 ; i = i + 1 till the halting criterion is met do
3 gi = AT ri−1 = ∇f(xi−1)
4 ji = argmax

j
|gij|/∥aj∥2

5 T i = T i−1 ∪ ji

6 xiT i = A†
T iy, xi

T i
= 0

7 ri = y −Axi

Output: ri, xi

Algorithm 7: General method for generic cost function

Input: function f(·)
1 initialization x0 = 0
2 for iteration i = 1 ; i = i + 1 till the halting criterion is met do
3 gi = ∇f(xi−1)

4 ji
!
= argmax

j
|gij|

5 T i = T i−1 ∪ ji

6 bi = argmin
x

f(x), s.t. xT i = 0

7 xi = bi

Output: xi

In Algorithm 7, at point (!) the extra check is performed, to avoid the
selection of the same element in the support.

5.2 Simulations

We test the general method described above for the logistic loss cost function
(4.14) and (4.15), described in Section 4.3.1. The data are created in the same
manner, as described in Section 4.3.2.

At first, we test the performance of the algorithm for a single instance of
the created data, namely, for a fixed m, several times. Quantity ∥∇f(x)∥2 is
used as a stopping criterion of the method. We observe that the minimum
signal estimation error was attained at s iterations of the algorithm, for all

5.2. Simulations 47

iterations

0 5 10 15 20 25 30 35 40 45

R
e
la
t
iv
e
e
r
r
o
r

‖x
−
x
∗
‖ 2

‖x
∗
‖ 2

0

0.5

1

1.5

2

2.5

3

Rel. error

gradient

Figure 5.1: Gradient and relative error ∥x−x∗∥2
∥x∗∥2 vs iterations.

trials. We illustrate one of this experiments, specifically for m = 400, in
Figure 5.1.

Hence, using this observation, we set iterations = s as the stopping
criterion of Algorithm 7. In Figure 5.1, we also observe that since the target
x∗ is not the minimizer of the (4.14), the gradient at the estimate x with the
smallest relative signal estimation error is not zero.

In the sequel, we proceed with testing the performance of Algorithm 7 for
30 Monte-Carlo trials, for different dimensions m. The results are collected
and plotted below.

In Figures 5.2 and 5.3, we illustrate the performance of Algorithm 7 for the
cost functions (4.14) and (4.15), respectively. At first glance, the proposed
iterative method for the different cost functions attain similar performance
in terms of relative signal estimation error. In Figures 5.2(b) and 5.3(b), we
notice that the method is able to identify most elements of the target support
even for small ratios (m/n), for some trials. For larger ratios the number of
correct entries in the support also increases.

The performance illustrated in Figures 5.2(a) and 5.3(a) is similar to the
performance of GraSP for (4.14), Figure 4.1(a). The proposed method for
(4.14) and (4.15) is outperformed by GraSP + ℓ2 penalty and GLMnet.

48 Chapter 5. General Method

m/n
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
la
t
iv
e
e
r
r
o
r

‖x
−
x
∗
‖ 2

‖x
∗
‖ 2

0

1

2

3

4

5

(a)

m/n
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m
b
e
r
o
f
c
o
rr
e
c
t
e
le
m
e
n
ts

in
th
e
su
p
p
o
rt

0

1

2

3

4

5

6

7

8

9

10

(b)

Figure 5.2: Relative error ∥x−x∗∥2
∥x∗∥2 and number of correct entries in the support

versus the ratio (m/n), for Algorithm 7.

Summary 49

Summary

In this chapter, we have investigated the possibility of using a modification
of OMP for non-linear Compressed Sensing, introduced in Chapter 4. The
Figures 5.2 and 5.3 illustrate that this kind of extension is possible, how-
ever, the method is outperformed by the existing algorithms presented in
the previous chapter. It would be interesting, though, to work on theoret-
ical guarantees for successful sparse recovery, similar to those for GraSP in
Section 4.2.1, for this iterative method. Finally, similar experiments using a
class of optimization methods would be an intriguing field of research.

50 Chapter 5. General Method

m/n
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
la
t
iv
e
e
r
r
o
r

‖x
−
x
∗
‖ 2

‖x
∗
‖ 2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(a)

m/n
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m
b
e
r
o
f
c
o
rr
e
c
t
e
le
m
e
n
ts

in
th
e
su
p
p
o
rt

0

1

2

3

4

5

6

7

8

9

10

(b)

Figure 5.3: Relative error ∥x−x∗∥2
∥x∗∥2 and number of correct entries in the support

versus the ratio (m/n), for Algorithm 7 + ℓ2-penalty.

51

Chapter 6

Conclusion and Future work

In this thesis, we considered the problem of sparse signal reconstruction for
both the linear (Compressed Sensing) and the non-linear settings, via greedy
algorithms. For the linear model, we observed that the performance of the
greedy algorithms we tested is aligned with the theoretical results. Specifi-
cally, we observed that, OMP and CoSaMP algorithms outperform MP and
IHT. For the non-linear case, we focus on GraSP, a greedy algorithm inspired
by CoSaMP. We concluded, through numerical experiments, that GraSP +
ℓ2 regularization attains similar performance with the state-of-the-art GLM-
net. Finally, motivated by the results of GraSP, we modified OMP for the
non-linear setting. The proposed method is outperformed by the existing
algorithms on this framework.

Non-linear models are broadly used in the high-dimensional regime, how-
ever, they have attracted less attention than the familiar linear model. The
results for the logistic model, though, are a strong motivation to examine the
performance of GraSP for other Generalised Linear Models (GLMs). Also, it
would be interesting to work on theoretical guarantees, similar to those for
GraSP, for successful sparse recovery via the method we proposed in Chap-
ter 5. Finally, similar experiments using a class of optimization methods,
modified for this framework, would be an intriguing field of research.

53

Appendix A

Proofs of theorems

Here we present some proofs that were mentioned in the previous chapters.

Proofs chapter 3

Proof of theorem 3[15, p. 64]

Proof. First, we assume that the sparsest solution of the familiar to us linear
system, has all its nonzero values at the beginning of the vector, sorted in
decreasing order of values |xj|. Consequently, we can write

y = Ax =
s∑

k=1

xkak. (A.1)

It is obvious that the measurement vector y is a linear combination of the
first s columns of the matrix A.

At the first iteration of the algorithm the residual is set r0 = y. To
require that OMP will choose one of the nonzero entries of the vector, we
must have that for all i > s (outside the support)

|aT1 y| > |aTi y|, (A.2)

holds. We use the definition of the linear system (A.1) in the relation (A.2)
to obtain ∣∣∣∣ s∑

k=1

xka
T
1 ak

∣∣∣∣ > ∣∣∣∣ s∑
k=1

xka
T
i ak

∣∣∣∣. (A.3)

To proceed, we work in the same manner as in the two-ortho case in Chapter
3. We estimate a lower bound for the left-hand side and an upper bound
for the right-hand side, respectively. First, we consider the left-hand side of
(A.3) ∣∣∣∣ s∑

k=1

xka
T
1 ak

∣∣∣∣ ≥ |x1a
T
1 a1| −

s∑
k=2

|xk||aT1 ak|. (A.4)

In the above inequality, we exploit the triangle inequality. Using the fact
that the columns of matrix A are normalized, the definition (2.5) of mutual

54 Appendix A. Proofs of theorems

coherence and the descending order of the entries of x, we obtain

|x1a
T
1 a1| −

s∑
k=2

|xk||aT1 ak| ≥ |x1| −
s∑

k=2

|xk|µ(A) ≥ |x1| (1− µ(A) (s− 1)) .

(A.5)
Similarly, we treat the right-hand side of the inequality (A.3). We use the
same tricks as before ∣∣∣∣ s∑

k=1

xka
T
i ak

∣∣∣∣ ≤ s∑
k=1

|xk||aTi ak|

≤
s∑

k=1

|xk|µ(A)

≤ |x1|µ(A)s.

(A.6)

Combining the deduced bounds into (A.3), we have

|x1| (1− µ(A) (s− 1)) > |x1|µ(A)s. (A.7)

The above implies

1 + µ(A) > 2µ(A)s ⇒ s <
1

2

(
1 +

1

µ(A)

)
. (A.8)

Satisfying condition (A.8), OMP succeeds in the first step of the algorithm.
Next, the residual after its update is still a linear combination of the same s
columns of A. Obeying this condition in the next iterations, in conjunction
with the orthogonality in the minimization step of Algorithm 2, OMP keeps
selecting correct elements in the support. Finally it terminates when the
residual is zero at s iterations.

Proof of Theorem 7[1, p. 165]

Proof. The inequality (3.36) states that the sequence (xi) is bounded. Thus,
using the Bolzano-Weierstrass Theorem, the existence of accumulation points
is guaranteed.
In order to prove Theorem 7, we have to focus on (3.36). At first, some
notation must be introduced, to facilitate the structure of the proof. The
steps 4,5,6 of the algorithm in Algorithm 3 are merged to (CoSaMP1), step
7 is from now on (CoSaMP2) and finally (CoSaMP3) refers to step 8.

To prove the inequality (3.36), we work as follows. At first, we note that
it is sufficient to prove the inequality for i ≥ 0,

∥xi+1 − xS∥2 ≤ ρ∥xi − xS∥2 + (1− ρ)τ∥AxS + e∥2, (A.9)

55

with 0 < ρ < 1 and τ > 0. The relation we have to prove is implied
by induction. Using the definition of each step (CoSaMP1), (CoSaMP2),
(CoSaMP3) at a time, we obtain estimates that are eventually combined to
produce the inequality (A.9). At first, we begin with the step (CoSaMP3).
We notice that, xi+1 is a better s-sparse approximation (or equally good at
least) to bi+1 than xS

∩
Si+1 . We make the definition T i+1 = supp(xi+1), so

it follows that T i+1 ⊂ S i+1.
Thus, overall we have

∥(xS − xi+1)Si+1∥2 = ∥xS
∩

Si+1 − xi+1∥2
= ∥xS

∩
Si+1 − bi+1 − xi+1 + bi+1∥2

= ∥bi+1 − xi+1 − (bi+1 − xS
∩

Si+1)∥2
≤ ∥bi+1 − xi+1∥2 + | − 1|∥bi+1 − xS

∩
Si+1∥2

= ∥bi+1 − xi+1∥2 + ∥bi+1 − xS
∩

Si+1∥2
≤ 2∥bi+1 − xS

∩
Si+1∥2 = 2∥(xS − bi+1)Si+1∥2.

(A.10)

Using the fact that (xi+1

Si+1
) = 0 and (bi+1

Si+1
) = 0, because they are restricted

on the indices with zero values (outside the support), we obtain

∥xS − xi+1∥22 = ∥(xS − xi+1)Si+1∥22 + ∥(xS − xi+1)Si+1∥22
≤ ∥(xS − bi+1)Si+1∥22 + 4∥(xS − bi+1)Si+1∥22,

(A.11)

where in the final expression of (A.11), we used the estimate (A.10).
In the sequel, from (CoSaMP2), we have for the vector Abi+1

⟨y −Abi+1,Az⟩ = 0 whenever supp(z) ⊆ S i+1, (A.12)

because the residual y − Abi+1 is orthogonal to vectors restricted on sets
⊆ S i+1. If we elaborate more on the previous relation, we obtain

⟨y −Abi+1,Az⟩ = zHAH(y −Abi+1)

= ⟨AH(y −Abi+1), z⟩ = 0.
(A.13)

We conclude by (A.13) that ⟨AH(y − Abi+1), z⟩ = 0, whenever supp(z) ⊆
S i+1, or (AH(y−Abi+1))Si+1 = 0. Having y = AxS+e′, where e′ := AxS+e,
we obtain

(AH(AxS + e′ −Abi+1))Si+1 = 0 ⇔ (AHAxS +AHe′ −AHAbi+1)Si+1 = 0

⇔ (AHAxS −AHAbi+1)Si+1 = −(AHe′)Si+1

⇔ (AHA(xS − bi+1))Si+1 = −(AHe′)Si+1 .

(A.14)

56 Appendix A. Proofs of theorems

Our aim is to provide an estimate for ∥(xS − bi+1)Si+1∥2 in terms of ∥(xS −
bi+1)Si+1∥2. By adding the term (xS − bi+1)Si+1 to both sides of (A.14) and
rearranging, we obtain

(AHA(xS − bi+1))Si+1 + (xS − bi+1)Si+1 = −(AHe′)Si+1 + (xS − bi+1)Si+1

(xS − bi+1)Si+1 = −(AHA(xS − bi+1))Si+1 − (AHe′)Si+1 + (xS − bi+1)Si+1 .

(A.15)

Next, by extracting the common term in the right-hand side of the deduced
equality (A.15), and finally, taking norms, it follows that

∥(xS − bi+1)Si+1∥2 = ∥(Id−AHA)((xS − bi+1)Si+1)− (AHe′)Si+1∥2
≤ ∥(Id−AHA)((xS − bi+1)Si+1)∥2 + ∥(AHe′)Si+1∥2
(a)

≤ δ4s∥xS − bi+1∥2 + ∥(AHe′)Si+1∥2,
(A.16)

where at point (a), we used Lemma 8. We make the assumption, ∥(xS −
bi+1)Si+1∥2 > ∥(AHe′)Si+1∥2/(1− δ4s).

1 Using this fact, more precisely that
∥(xS − bi+1)Si+1∥2 > ∥(AHe′)Si+1∥2 we elaborate on (A.16), as follows(
∥(xS − bi+1)Si+1∥2 − ∥(AHe′)Si+1∥2

)2 ≤ (δ4s∥xS − bi+1∥2
)2

≤ δ24s∥(xS − bi+1)Si+1∥22 + δ24s∥(xS − bi+1)Si+1∥22.
(A.17)

Handling the above using the common identity a2 − b2 = (a + b)(a − b), it
follows

δ24s∥(xS − bi+1)Si+1∥22 ≥
(
∥(xS − bi+1)Si+1∥2 − ∥(AHe′)Si+1∥2

)2 − δ24s∥(xS − bi+1)Si+1∥22
≥
(
∥(xS − bi+1)Si+1∥2 − ∥(AHe′)Si+1∥2 + δ4s∥(xS − bi+1)Si+1∥2

)
×
(
∥(xS − bi+1)Si+1∥2 − ∥(AHe′)Si+1∥2 − δ4s∥(xS − bi+1)Si+1∥2

)
≥ (1 + δ4s)

(
∥(xS − bi+1)Si+1∥2 −

1

(1 + δ4s)
∥(AHe′)Si+1∥2

)
× (1− δ4s)

(
∥(xS − bi+1)Si+1∥2 −

1

(1− δ4s)
∥(AHe′)Si+1∥2

)
≥ (12 − δ24s)

(
∥(xS − bi+1)Si+1∥2 −

1

(1 + δ4s)
∥(AHe′)Si+1∥2

)
×
(
∥(xS − bi+1)Si+1∥2 −

1

(1− δ4s)
∥(AHe′)Si+1∥2

)
.

(A.18)

1In case the assumption is not true, the inequality (A.19), that is, the estimation we
wish to deduce, would be trivial.

57

We observe that the middle term of the final expression of inequality (A.18),
is larger than the last term. Using this observation, as well as dividing with
the first term, we deduce

δ24s
(1− δ24s)

∥(xS−bi+1)Si+1∥22 ≥
(
∥(xS − bi+1)Si+1∥2 −

1

(1− δ4s)
∥(AHe′)Si+1∥2

)2

.

In the sequel, by taking the square root of both sides, we obtain

δ4s√
(1− δ24s)

∥(xS−bi+1)Si+1∥2 ≥
(
∥(xS − bi+1)Si+1∥2 −

1

(1− δ4s)
∥(AHe′)Si+1∥2

)
.

Finally, we have

∥(xS−bi+1)Si+1∥2 ≤
δ4s√

(1− δ24s)
∥(xS−bi+1)Si+1∥2+

1

(1− δ4s)
∥(AHe′)Si+1∥2.

(A.19)
For the (CoSaMP1) step, we work as follows. As Li+1, we will define

the set of indices of the 2s largest absolute entries of AH(y − Axi). We
have already defined that T i is the support of the vector xi. Thus, the next
inequality holds, since the restriction to Li+1 of AH(y−Axi), contains the 2s
largest absolute values of the vector, while, the restriction to T i∪S contains
at least the s largest (see step 7 of Algorithm 3).

Indeed,

∥(AH(y −Axi))T i∪S∥22 ≤ ∥(AH(y −Axi))Li+1∥22. (A.20)

Next, we notice that if we subtract the intersection of the sets T i and Li+1,
the previous inequality still holds. As a matter of fact

∥(AH(y −Axi))T i∪S\Li+1∥2 ≤ ∥(AH(y −Axi))Li+1\T i∪S∥2. (A.21)

For the left hand side, we derive by adding and subtracting the terms xi,xS

∥(AH(y−Axi))(T i∪S)\Li+1∥2 ≥ ∥(xi−xS)Li+1∥2−∥(xi−xS+AH(y−Axi))(T i∪S)\Li+1∥2.
(A.22)

The right hand of the equation (A.21) satisfies,

∥(AH(y−Axi))Li+1\(T i∪S)∥2 = ∥(xi−xS+AH(y−Axi))Li+1\(T i∪S)∥2, (A.23)

because (xi − xS)Li+1\T i∪S = 0. Now, rearranging the inequality (A.22) and
using (A.21) and (A.23), we deduce

∥(xS − xi)Li+1∥2 ≤ ∥(xi − xS +AH(y −Axi))(T i∪S)\Li+1∥2
+ ∥(xi − xS +AH(y −Axi))Li+1\(T i∪S)∥2
!
≤

√
2∥(xi − xS +AH(y −Axi))(T i∪S)△Li+1∥2

≤
√
2∥
(
(Id−AHA)(xi − xS)

)
(T i∪S)△Li+1 ∥2

+
√
2∥(AHe′)(T i∪S)△Li+1∥2.

(A.24)

58 Appendix A. Proofs of theorems

The set (T i ∪ S)△Li+1 represents the symmetric difference of the two sets,
(Li+1 \ (T i ∪ S))∪((T i ∪ S) \ Li+1)). Observe that (Li+1 \ (T i ∪ S))∩((T i ∪ S) \ Li+1)) =
∅. The sets where the vectors

(
xi − xS +AH(y −Axi)

)
(T i∪S)\Li+1

and
(
xi − xS +AH(y −Axi)

)
Li+1\(T i∪S) are supported, are consequently dis-

joint. Thus, using a version of the Pythagorean theorem at point (!) of (A.24),
we conclude in the final expression (one may see the analogy in the familiar
Cartesian coordinate system). In the sequel, the equality y = AxS + e′ is
used. Finally, having Li+1 ⊂ S i+1 and T i+1 ⊆ S i+1 we derive a lower bound
for left hand-side of (A.24)

∥(xS − xi)Li+1∥2 ≥ ∥(xS − xi)Si+1∥2 = ∥(xS)Si+1∥2 = ∥(xS − bi+1)Si+1∥2.
(A.25)

Thus, combining (A.24) and (A.25), we obtain

∥(xS − bi+1)Si+1∥2 ≤
√
2∥
(
(Id−AHA)(xi − xS)

)
(T i∪S)△Li+1 ∥2

+
√
2∥(AHe′)(T i∪S)△Li+1∥2

(b)

≤
√
2δ4s∥xi − xS∥2 +

√
2∥(AHe′)(T i∪S)△Li+1∥2,

(A.26)

where at point (b), Lemma 8 is used.

Finally, having derived relations for (CoSaMP1), (CoSaMP2), (CoSaMP3)
the thing that remains is to combine them. At first, by applying the relation
(A.19) to (A.11) and then the identity a2 + (b2 + c2) ≤ (

√
a2 + b2 + c)2 we

obtain

∥xS − xi+1∥22 ≤ ∥(xS − bi+1)Si+1∥22 + 4∥(xS − bi+1)Si+1∥22
≤ ∥(xS − bi+1)Si+1∥22

+ 4

(
δ4s√

(1− δ24s)
∥(xS − bi+1)Si+1∥2 +

1

(1− δ4s)
∥(AHe′)Si+1∥2

)2

≤

(√
∥(xS − bi+1)Si+1∥22 +

4δ24s
1− δ24s

∥(xS − bi+1)Si+1∥22 +
2

1− δ4s
∥(AHe′)Si+1∥2

)2

≤

(√
1 + 3δ24s
1− δ24s

∥(xS − bi+1)Si+1∥2 +
2

1− δ4s
∥(AHe′)Si+1∥2

)2

.

(A.27)

Taking the square root in the above inequality and applying (A.26), we de-

59

duce

∥xS − xi+1∥2 ≤

√
2δ24s(1 + 3δ24s)

1− δ24s
∥xi − xS∥2 +

√
2(1 + 3δ24s)

1− δ24s
∥(AHe′)(T i∪S)△Li+1)∥2

+
2

1− δ4s
∥(AHe′)Si+1∥2

(c)

≤

√
2δ24s(1 + 3δ24s)

1− δ24s
∥xi − xS∥2 +

√
2(1 + 3δ24s)

1− δ24s

√
1 + δ4s∥e∥2

+
2

1− δ4s

√
1 + δ4s∥e∥2,

(A.28)

where at point (c), we used Lemma 9. If we set

ρ =

√
2δ24s(1 + 3δ24s)

1− δ24s

(1− ρ)τ =

√
2(1 + 3δ24s)

1− δ24s

√
1 + δ4s +

2

1− δ4s

√
1 + δ4s,

(A.29)

the inequality (A.9) holds. The constant ρ must be smaller than one. By
solving the inequality 6δ2 + 3δ − 1 < 0, we observe that it holds when(

− 1−
√

11

3

)
4

< δ <

(√
11

3
− 1

)
4

(between the solutions). Thus, we con-

clude that requiring 0 < δ24s <

(√
11

3
− 1

)
4

, the inequality holds, leading to

the initial statement.

Proofs chapter 4

Proof of Theorem 9[25, p. 85]
In the beginning, four intermediate results are presented with their proofs,

which are then used to prove the first of the main results of Chapter 4.

Proposition 3. Let M(t) be a matrix-valued function such that for all t ∈
[0, 1], M(t) is symmetric and its eigenvalues lie in interval [B(t), A(t)] with
B(t) > 0. Then for any vector v we have

(∫ 1

0

B(t)dt

)
∥v∥2 ≤

∥∥∥∥∥
(∫ 1

0

M(t)dt

)
v

∥∥∥∥∥
2

≤

(∫ 1

0

A(t)dt

)
∥v∥2. (A.30)

60 Appendix A. Proofs of theorems

Proof. At first, denote as λmax and λmin the largest and smallest eigenvalue
functions for a set of symmetric positive-semidefinite matrices. At first, the
function λmax is convex in virtue of Weyl’s inequalities.2 Also, since t ∈ [0, 1],
the Jensen inequality (integral form) can be exploited. Thus

λmax

(∫ 1

0

M(t)dt

)
≤
∫ 1

0

λmax(M(t))dt ≤
∫ 1

0

A(t)dt, (A.31)

where A(t) is the possible maximum eigenvalue of M(t). Moreover we have∥∥∥∥∥
(∫ 1

0

M(t)dt

)
v

∥∥∥∥∥
2

≤ λmax

(∫ 1

0

M(t)dt

)
∥v∥2. (A.32)

Combining the three above inequalities the right hand-side of the target
inequality 3 is implied. The left-hand side is proved in a similar manner
using though the fact that λmin is concave.

Proposition 4. Let M(t) be a matrix-valued function such that for all t ∈
[0, 1], M(t) is symmetric and its eigenvalues lie in interval [B(t), A(t)] with
B(t) > 0. If Λ is a subset of a row/column indices of M(·), then for any
vector v we have

∥∥∥∥∥
(∫ 1

0

PT
ΛM(t)PΛdt

)
v

∥∥∥∥∥
2

≤
∫ 1

0

A(t)−B(t)

2
dt∥v∥2. (A.33)

Proof. The matrix M(t) is symmetric, hence it is also diagonalizable. So, for
every vector v holds

B(t)∥v∥22 ≤ vTM(t)v ≤ A(t)∥v∥22. (A.34)

Now, for the diagonalizable matrix

(
M(t)− A(t) +B(t)

2
Id

)
, derives from

2For a more formal explanation, one can visit https://terrytao.wordpress.com/

2010/01/12/254a-notes-3a-eigenvalues-and-sums-of-hermitian-matrices/

61

the previous inequality

B(t) ≤ vTM(t)v

∥v∥22
≤ A(t)

B(t)− A(t) +B(t)

2
≤

vT

(
M(t)− A(t) +B(t)

2
Id

)
v

∥v∥22
≤ A(t)− A(t) +B(t)

2

−A(t)−B(t)

2
≤

vT

(
M(t)− A(t) +B(t)

2
Id

)
v

∥v∥22
≤ A(t)−B(t)

2
.

Next, let M̂(t) =

(
PT

Λ

(
M(t)− A(t) +B(t)

2
Id

)
PΛ

)
. Since M̂(t) is a sub-

matrix of

(
M(t)− A(t) +B(t)

2
Id

)
, we obtain

∥M̂(t)∥ ≤

∥∥∥∥∥
(
M(t)− A(t) + B(t)

2
Id

)∥∥∥∥∥ ≤ A(t)−B(t)

2
(A.35)

Finally, using the convexity of the norm, Jensen’s inequality gives∥∥∥∥∥
(∫ 1

0

M̂(t)dt

)∥∥∥∥∥ ≤
∫ 1

0

∥M̂(t)∥dt ≤
∫ 1

0

A(t)−B(t)

2
dt (A.36)

To proceed this notation is used for simplicity:

αk(p,q) =

∫ 1

0

Ak(tq+ (1− t)p)dt,

βk(p,q) =

∫ 1

0

Bk(tq+ (1− t)p)dt,

γk(p,q) = αk(p,q)− βk(p,q),

where A(t),B(t) are defined in Chapter 4. This notation will be used in the
following proofs.

Lemma 2. Let R denote the set supp(x̂−x∗). The current estimate x̂ then
satisfies

62 Appendix A. Proofs of theorems

∥(x̂− x∗)Z∥2 ≤
γ4s(x̂,x

∗) + γ2s(x̂,x
∗)

2β2s(x̂,x∗)
∥x̂− x∗∥2

+
∥∇f(x∗)R\Z +∇f(x∗)Z\R∥2

β2s(x̂,x∗)
.

Proof. From the Algorithm 5, Z =supp(z2s) and card(R) ≤ 2s. Thus, we
obtain

∥zR∥2 ≤ ∥zZ∥2.

Since Z is the set of the indices with the largest in magnitude elements from
the vector z, it is implied

∥zR\Z∥2 ≤ ∥zZ\R∥2. (A.37)

From the step 3 of the algorithm, z = ∇f(x̂), the left-hand side of the
inequality (A.37) becomes

∥zR\Z∥2 = ∥∇f(x̂)R\Z∥2
= ∥∇f(x̂)R\Z +∇f(x∗)R\Z −∇f(x∗)R\Z∥2
≥ ∥∇f(x̂)R\Z −∇f(x∗)R\Z∥2 − ∥∇f(x∗)R\Z∥2.

The first term of the previous expression, is a difference of gradients at points
x∗,x̂. By exploiting the the fundamental theorem of calculus

∥∇f(x̂)R\Z−∇f(x∗)R\Z∥2 =

∥∥∥∥∥
∫ 1

0
PT

R\Z∇
2f(tx̂+(1−t)x∗)(x̂−x∗)dt

∥∥∥∥∥
2

, (A.38)

thus, we obtain

∥zR\Z∥2 ≥

∥∥∥∥∥
∫ 1

0
PT

R\Z∇
2f(tx̂+ (1− t)x∗)(x̂− x∗)dt

∥∥∥∥∥
2

− ∥∇f(x∗)R\Z∥2

≥

∥∥∥∥∥
∫ 1

0
PT

R\Z∇
2f(tx̂+ (1− t)x∗)PR\Z(x̂− x∗)R\Zdt

∥∥∥∥∥
2

− ∥∇f(x∗)R\Z∥2

−

∥∥∥∥∥
∫ 1

0
PT

R\Z∇
2f(tx̂+ (1− t)x∗)P(R∩Z)(x̂− x∗)(R∩Z)dt

∥∥∥∥∥
2

,

where we split the set R to the sets R\Z and R∩Z. Then, we used the
triangle inequality to derive the final inequality. Finally, using the the Propo-

63

sition 4 and the notation given above, we derive

∥zR\Z∥2 ≥

(∫ 1

0
B2s(tx̂+ (1− t)x∗)dt

)
∥(x̂− x∗)R\Z∥2

−
∫ 1

0

A2s(tx̂+ (1− t)x∗)−B2s(tx̂+ (1− t)x∗)

2
dt∥(x̂− x∗)R∩Z∥2 − ∥∇f(x∗)R\Z∥2

= β2s(x̂,x
∗)∥(x̂− x∗)R\Z∥2 −

γ2s(x̂,x
∗)

2
∥(x̂− x∗)R∩Z∥2 − ∥∇f(x∗)R\Z∥2

≥ β2s(x̂,x
∗)∥(x̂− x∗)R\Z∥2 −

γ2s(x̂,x
∗)

2
∥(x̂− x∗)∥2 − ∥∇f(x∗)R\Z∥2.

For the right-hand side of the inequality (A.37), we have

∥zZ\R∥2 = ∥∇f(x̂)Z\R∥2
= ∥∇f(x̂)Z\R +∇f(x∗)Z\R −∇f(x∗)Z\R∥2
≤ ∥∇f(x̂)Z\R +∇f(x∗)Z\R∥2 + ∥∇f(x∗)Z\R∥2

=

∥∥∥∥∥
∫ 1

0
PT

Z\R∇
2f(tx̂+ (1− t)x∗)PT

R(x̂− x∗)Rdt

∥∥∥∥∥
2

+ ∥∇f(x∗)Z\R∥2

≤ γ4s(x̂,x
∗)

2
∥(x̂− x∗)R∥2 + ∥∇f(x∗)Z\R∥2

=
γ4s(x̂,x

∗)

2
∥(x̂− x∗)∥2 + ∥∇f(x∗)Z\R∥2.

Finally, by combining the inequalities for each side, we obtain

γ4s(x̂,x
∗)

2
∥(x̂− x∗)∥2 + ∥∇f(x∗)Z\R∥2 ≥ ∥zZ\R∥2

≥ ∥zR\Z∥2

≥ β2s(x̂,x
∗)∥(x̂− x∗)(R\Z)∥2 −

γ2s(x̂,x
∗)

2
∥(x̂− x∗)∥2

− ∥∇f(x∗)R\Z∥2.
(A.39)

With some reordering of (A.39), we deduce

β2s(x̂,x
∗)∥(x̂− x∗)(R\Z)∥2 ≤

γ4s(x̂,x
∗)

2
∥(x̂− x∗)∥2 + ∥∇f(x∗)Z\R∥2 +

γ2s(x̂,x
∗)

2
∥(x̂− x∗)∥2

+ ∥∇f(x∗)R\Z∥2.

Observe that ∥(x̂−x∗)(R\Z)∥2 = ∥(x̂−x∗)Z∥2, since R = supp(x̂−x∗). Thus,
we derive

∥(x̂−x∗)Z∥2 ≤
γ2s(x̂,x

∗) + γ4s(x̂,x
∗)

2β2s(x̂,x∗)
∥(x̂−x∗)∥2+

∥∇f(x∗)R\Z∥2 + ∥∇f(x∗)Z\R∥2
β2s(x̂,x∗)

.

(A.40)
The desired result is deduced.

64 Appendix A. Proofs of theorems

Lemma 3. The vector b given by

b = argminf(x), (A.41)

s.t. xT = 0, (A.42)

satisfies

∥x∗
T − b∥2 ≤

∥∇f(x∗)T ∥2
β4s(b,x∗)

+
γ4s(b,x

∗)

2β4s(b,x∗)
∥x∗

T ∥2. (A.43)

Proof. At first, the fundamental theorem of calculus is used, namely,

∇f(x∗)−∇f(b) =

∫ 1

0

∇2f(tx∗ + (1− t)b)(x∗ − b)dt. (A.44)

Since b is the solution of (A.41) optimization problem, it is necessary that
∇f(b)T = 0. So, back to (A.44),

∇f(x∗)T =

(∫ 1

0
PT

T ∇2f(tx∗ + (1− t)b)dt

)
(x∗ − b)

=

(∫ 1

0
PT

T ∇2f(tx∗ + (1− t)b)PT dt

)
(x∗ − b)T

+

(∫ 1

0
PT

T ∇2f(tx∗ + (1− t)b)PT dt

)
(x∗ − b)T .

(A.45)

From the assumptions of the main theorem, f has µ4s − SRH and card(T ∪
supp(tx∗ + (1− t)b)) ≤ 4s for all t ∈ [0,1]. Thus, using (4.2), (4.3), we can
write

B4s(tx
∗ + (1− t)b) ≤ λmin(P

T
T ∇2f(tx∗ + (1− t)b)PT)

β4s(b,x
∗) ≤

∫ 1

0
λmin(P

T
T ∇2f(tx∗ + (1− t)b)PT) ≤ λmin

(∫ 1

0
PT

T ∇2f(tx∗ + (1− t)b)PT dt

)
where in the last expression, the use Proposition 3. Similarly

α4s(b,x
∗) ≥

∫ 1

0
λmax(P

T
T ∇2f(tx∗+(1−t)b)PT) ≥ λmax

(∫ 1

0
PT

T ∇2f(tx∗+(1−t)b)PT dt

)
.

(A.46)

Since 0 is not an eigenvalue of the matrixW =
(∫ 1

0
PT

T ∇2f(tx∗ + (1− t)b)PT dt
)
,

the matrix is invertible, and in fact positive-definite. Thus, for the inverse
matrix holds

1

α4s(b,x∗)
≤ λmin(W

−1) ≤ λmax(W
−1) ≤ 1

β4s(b,x∗)
. (A.47)

65

By multiplying both sides of (A.45) with the inverse, we obtain

W−1∇f(x∗)T = W−1

(∫ 1

0
PT

T ∇2f(tx∗ + (1− t)b)PT dt

)
(x∗ − b)T

+W−1

(∫ 1

0
PT

T ∇2f(tx∗ + (1− t)b)PT dt

)
x∗
T

= (x∗ − b)T +W−1

(∫ 1

0
PT

T ∇2f(tx∗ + (1− t)b)PT dt

)
x∗
T ,

where the vector bT = 0. Denote S∗ = supp(x∗). We use the triangle
inequality, the relation (A.47) and finally Proposition 4 to obtain

∥x∗
T − b∥2 = ∥W−1∇f(x∗)T ∥2 −W−1

(∫ 1

0
PT

T ∇2f(tx∗ + (1− t)b)PT dt

)
x∗
T

≤ ∥W−1∇f(x∗)T ∥2 +W−1

(∫ 1

0
PT

T ∇2f(tx∗ + (1− t)b)PT ∩S∗dt

)
x∗
T ∩S∗

≤ ∥∇f(x∗)T ∥2
β4s(b,x∗)

+
γ4s(b,x

∗)

2β4s(b,x∗)
∥x∗

T ∥2.

Lemma 4. (Iteration Invariant). The estimation error in the current iter-
ation, ∥x̂ − x∗∥2 and that in the next iteration, ∥bS − x∗∥2, , are related by
the inequality

∥bS − x∗∥2 ≤
γ4s(x̂,x

∗) + γ2s(x̂,x
∗)

2β2s(x̂,x∗)

(
1 +

γ4s(b,x
∗)

β4s(b,x∗)

)
∥x̂− x∗∥2

+

(
1 +

γ4s(b,x
∗)

β4s(b,x∗)

)
∥∇f(x∗)R\Z∥2 + ∥∇f(x∗)Z\R∥2

β2s(x̂,x∗)

+ 2
∥∇f(x∗)T∥2
β4s(b,x∗)

.

Proof. At first, we have x̂T = 0 by definition. Also, since Z ⊆ T , T ⊆ Z
holds. So

∥(x̂− x∗)T ∥2 ≤ ∥(x̂− x∗)T ∥2. (A.48)

Thus, from Proposition 2,

∥x∗
T ∥2 = ∥(x̂− x∗)T ∥2 ≤

γ2s(x̂,x
∗) + γ4s(x̂,x

∗)

2β2s(x̂,x∗)
∥(x̂− x∗)∥2

+
∥∇f(x∗)R\Z∥2 + ∥∇f(x∗)Z\R∥2

β2s(x̂,x∗)
.

(A.49)

66 Appendix A. Proofs of theorems

Moreover, from Algorithm 5, bS = x̂ and bS∩T = 0. Then, by triangle
inequality (splitting the support to two complementary sets)

∥bS − x∗∥2 ≤ ∥(bS − x∗
T ∥2 + ∥x∗)T ∥2

≤ ∥x∗
T − b∥2 + ∥bS − b∥2 + ∥x∗

T ∥2
≤ 2∥x∗

T − b∥2 + ∥x∗
T ∥2,

(A.50)

where we added and subtracted the vector b, and we used the triangle in-
equality in the deduced expression. Furthermore, we have ∥x∗

T − b∥2 ≥
∥bS − b∥2, because bS is the best s-approximation of b. Finally, we use
Lemma 3 to bound 2∥x∗

T − b∥2 term of (A.50) and (A.49) to deduce the
desired result.

Now, having these intermediate results, the proof of theorem for smooth
functions follows. It is obvious by definition that for k ≤ k′, and any vector
z, the bounds become less tight. So Ak(z) ≤ Ak′(z). Consequently, µk ≤

µk′ . Also, since
Ak(x)

Bk(x)
≤ µk,

αk(p,q)

βk(p,q)
≤ µk is easily implied, and thereby

γk(p,q)

βk(p,q)
≤ µk − 1. If we apply these results to Lemma 4, we have

∥x̂i − x∗∥2 ≤ (µ4s − 1)µ4s∥x̂i−1 − x∗∥2 + 2
∥∇f(x∗)T ∥2
β4s(b,x∗)

+ µ4s

∥∇f(x∗)R\Z∥2 + ∥∇f(x∗)Z\R∥2
β2s(x̂i−1,x∗)

≤ (µ2
4s − µ4s)∥x̂i−1 − x∗∥2 + 2ε+ 2µ4sε.

Having,
∥∇f(x∗)T ∥2
β4s(b,x∗)

≥
∥∇f(x∗)R\Z∥2 + ∥∇f(x∗)Z\R∥2

β2s(x̂i−1,x∗)
, and the assump-

tion µ4s ≤
1 +

√
3

2
, we derive

∥x̂i − x∗∥2 ≤
1

2
∥x̂i−1 − x∗∥2 + (3 +

√
3)ε. (A.51)

Similarly with proof of Theorem 7 the proof is obtained recursively.

Proof of theorem 9[25, p. 92]

Similarly, we proceed with the second result for non-smooth cost func-
tions. Using the definition of Bregman divergence of Chapter 4 and inter-

67

changing x and x+∆ we deduce for the sum

Bf (x+∆∥x) +Bf (x∥x+∆) = f(x+∆)− f(x)− ⟨∇f (x),∆)⟩
+ f(x)− f(x+∆)− ⟨∇f (x+∆),−∆⟩
= −(⟨∇f (x),∆)⟩+ ⟨∇f (x+∆),−∆⟩)
= ⟨∇f (x+∆)−∇f (x),∆⟩.

(A.52)

Also, from relation (4.8) it is obvious

[βk(x+∆)+βk(x)]∥∆∥22 ≤ ⟨∇f (x+∆)−∇f (x),∆⟩ ≤ [αk(x+∆)+αk(x)]∥∆∥22.
(A.53)

We provide some notation to make the following results easier to the
reader. At first, we focus on two vectors x1, x2 in Rn and we denote
card(supp(x1) ∪ supp(x2)) ≤ r. Also, ∆ = x1 − x2 and supp(∆) = R.
Similarly ∆′ = ∇f (x1) − ∇f (x2). Moreover, we denote αk(x1) + αk(x2) as
well as βk(x1)+βk(x2) by αk(x1,x2) or αk and βk(x1,x2) or βk, respectively.
Finally, we have γk = γk(x1,x2) = αk(x1,x2)− βk(x1,x2).
In the sequel, some intermediate results are presented concerning the Breg-
man divergence. The way this proof is structured is similar to Theorem’s
8.

Proposition 5. The following inequalities hold for R′ ⊆ R

∣∣∣∣∥∆′
R′∥22 − αr⟨∆′,∆R′⟩

∣∣∣∣ ≤ γr∥∆R′∥2∥∆∥2,∣∣∣∣∥∆′
R′∥22 − βr⟨∆′,∆R′⟩

∣∣∣∣ ≤ γr∥∆R′∥2∥∆∥2.

Proof. From (4.8), for any t ∈ R we have

βr(x1)∥∆′
R′∥22t2 ≤ Bf (x1 − t∆′

R′∥x1) ≤ αr(x1)∥∆′
R′∥22t2, (A.54)

βr(x2)∥∆′
R′∥22t2 ≤ Bf (x2 + t∆′

R′∥x2) ≤ αr(x2)∥∆′
R′∥22t2. (A.55)

Observe that

Bf (x1 − (∆− t∆′
R′)∥x1) = Bf (x2 + t∆′

R′∥x1). (A.56)

Thus, we can write

βr(x1)∥∆− t∆′
R′∥22 ≤ Bf (x2 + t∆′

R′∥x1) ≤ αr(x1)∥∆− t∆′
R′∥22. (A.57)

68 Appendix A. Proofs of theorems

Similarly, for x2

βr(x2)∥∆− t∆′
R′∥22 ≤ Bf (x1 − t∆′

R′∥x2) ≤ αr(x2)∥∆− t∆′
R′∥22. (A.58)

By taking the sum for (A.54), (A.55) and using (A.52), we obtain

[βr(x1) + βr(x2)]∥∆′
R′∥22t2 ≤ Bf (x1 − t∆′

R′∥x1) +Bf (x2 + t∆′
R′∥x2) ≤ [αr(x1) + αr(x2)]∥∆′

R′∥22t2
(A.59)

βr∥∆′
R′∥22t2 ≤ ⟨∆′,∆′

R′⟩t− f(x1)− f(x2) + f(x1 − t∆′
R′) + f(x2 + t∆′

R′) ≤ αr∥∆′
R′∥22t2.

(A.60)

Similarly, for (A.57) and(A.58)

βr∥∆−t∆′
R′∥22 ≤ ⟨∆′,∆−t∆′

R′⟩−f(x1)−f(x2)+f(x1−t∆′
R′)+f(x2+t∆′

R′) ≤ αr∥∆−t∆′
R′∥22.

(A.61)
Now, by subtracting (A.61) from (A.60), we derive

βr∥∆′
R′∥22t2 − αr∥∆− t∆′

R′∥22 ≤ ⟨∆′,∆′
R′⟩t− ⟨∆′,∆− t∆′

R′⟩ ≤ αr∥∆′
R′∥22t2 − βr∥∆− t∆′

R′∥22
(A.62)

βr∥∆′
R′∥22t2 − αr∥∆− t∆′

R′∥22 ≤ 2⟨∆′,∆′
R′⟩t− ⟨∆′,∆⟩ ≤ αr∥∆′

R′∥22t2 − βr∥∆− t∆′
R′∥22.

(A.63)

Next, we expand the familiar identity a2 − b2 in (A.63). Then, we separate
the deduced inequality to the two sides, that is

γr∥∆′
R′∥22t2 + αr∥∆∥22 + 2

(
⟨∆′,∆′

R′⟩ − α⟨∆,∆′
R′⟩

)
t− ⟨∆′,∆⟩ ≥ 0, (A.64)

γr∥∆′
R′∥22t2 − βr∥∆∥22 − 2

(
⟨∆′,∆′

R′⟩ − β⟨∆,∆′
R′⟩

)
t+ ⟨∆′,∆⟩ ≥ 0. (A.65)

The above inequalities are quadratics in terms of t. The constants of the
polynomials, in both (A.64) and (A.65), are bounded from above by γ∥∆∥22
(an implication of (A.53)). Thus, we have

γr∥∆′
R′∥22t2 + 2

(
⟨∆′,∆′

R′⟩ − α⟨∆,∆′
R′⟩

)
t+ γr∥∆∥22 ≥ 0, (A.66)

γr∥∆′
R′∥22t2 − 2

(
⟨∆′,∆′

R′⟩ − β⟨∆,∆′
R′⟩

)
t+ γr∥∆∥22 ≥ 0. (A.67)

Since the above quadratics are non-negative for all t∈ R, their discriminant
is negative. So(

⟨∆′,∆′
R′⟩ − α⟨∆,∆′

R′⟩

)2

− γr∥∆′
R′∥22γr∥∆∥22 ≤ 0, (A.68)

(
⟨∆′,∆′

R′⟩ − β⟨∆,∆′
R′⟩

)2

− γr∥∆′
R′∥22γr∥∆∥22 ≤ 0, (A.69)

which implies the desired result.

69

Proposition 6. Suppose R′ ⊆ R. The following inequalities hold

∣∣∣∣αr∥∆R′∥22 − ⟨∆′,∆R′⟩
∣∣∣∣ ≤ γr∥∆R′∥2∥∆∥2,∣∣∣∣βr∥∆R′∥22 − ⟨∆′,∆R′⟩
∣∣∣∣ ≤ γr∥∆R′∥2∥∆∥2.

The proof of Proposition 6 is analogous to the proof of Preposition 5. Thus
it is ommited.

Corollary 1. The inequality

∥∆′
R′∥2 ≥ βr∥∆R′∥2 − γ∥∆R\R′∥2, (A.70)

holds for R′ ⊆ R.

Proof. We have

α2
r∥∆R′∥22 − ∥∆′

R′∥22 = −∥∆′
R′∥22 + αr⟨∆′,∆R′⟩+ αr

[
αr∥∆R′∥22 − ⟨∆′,∆R′⟩

]
.

(A.71)

Now, from Propositions 5 and 6, holds

−∥∆′
R′∥22+αr⟨∆′,∆R′⟩+αr

[
αr∥∆R′∥22−⟨∆′,∆R′⟩

]
≤ γr∥∆′

R′∥2∥∆∥2+αrγr∥∆R′∥2∥∆∥2.
(A.72)

Hence

∥∆′
R′∥2 ≥ αr∥∆R′∥2 − γr∥∆∥2

≥ βr∥∆R′∥2 − γr∥∆R\R′∥2,

where we split the set R to the sets R′ and R\R′.

Proposition 7. Suppose that K is a subset of R with at most k elements.
Then we have

∥∆′
K∥2 ≤ γk+r∥∆∥2. (A.73)

Proof. For any t ∈ R,

βk+r(x1)∥∆′
K∥22t2 ≤ Bf (x1 + t∆′

K∥x1) ≤ αk+r(x1)∥∆′
K∥22t2, (A.74)

βk+r(x2)∥∆′
K∥22t2 ≤ Bf (x2 − t∆′

K∥x2) ≤ αk+r(x2)∥∆′
K∥22t2. (A.75)

70 Appendix A. Proofs of theorems

So

βk+r(x1)∥∆+ t∆′
K∥22 ≤ Bf (x2 − t∆′

K∥x1) ≤ αk+r(x1)∥∆+ t∆′
K∥22, (A.76)

βk+r(x2)∥∆+ t∆′
K∥22 ≤ Bf (x1 + t∆′

K∥x2) ≤ αk+r(x2)∥∆+ t∆′
K∥22. (A.77)

By subtracting the sum of (A.76) and (A.77) from the sum of (A.74) and
(A.75), we obtain

βk+r∥∆′
K∥22t2−αk+r∥∆+t∆′

K∥22 ≤ −2t⟨∆′,∆′
K⟩−⟨∆′,∆⟩ ≤ αk+r∥∆′

K∥22t2−βk+r∥∆+t∆′
K∥22.

(A.78)

Observe that ⟨∆′,∆′
K⟩ = ∥∆′

K∥22 and ⟨∆,∆′
K⟩ = 0, since K is a subset of R.

Thus, using (A.78) and (A.53), we deduce

γk+r∥∆′
K∥22t2 ± 2∥∆′

K∥22t+ γk+r∥∆∥22 ≥ 0, (A.79)

hold for all t. Therefore, the above quadratics of t must not have positive
discriminants. Thus we must have

∥∆′
K∥42 − γ2

k+r∥∆∥22∥∆′
K∥22 ≤ 0, (A.80)

which yields the result.

In the sequel, we present the proof of a lemma similar to Lemma 2.

Lemma 5. Let R denote the set supp (x̂−x∗). The current estimate x̂ then
satisfies

∥(x̂− x∗)Z∥2 ≤
γ4s(x̂,x

∗) + γ2s(x̂,x
∗)

β2s(x̂,x∗)
∥x̂− x∗∥2

+
∥∇f (x

∗)R\Z +∇f (x
∗)Z\R∥2

β2s(x̂,x∗)
.

Proof. In a similar manner, Z =supp(z2s) and card(R) ≤ 2s. Thus, we
obtain

∥zR∥2 ≤ ∥zZ∥2.
Then,

∥zR\Z∥2 ≤ ∥zZ\R∥2. (A.81)

We are going to bound each side of the inequality (A.81).
For the left-hand side, we obtain

∥zR\Z∥2 = ∥∇f (x̂)R\Z∥2
≥ ∥
(
∇f (x̂)−∇f (x

∗)
)
R\Z∥2 − ∥∇f (x

∗)R\Z∥2
≥ β2s(x̂,x

∗)∥(x̂,x∗)R\Z∥2 − γ2s(x̂,x
∗)∥(x̂,x∗)R∩Z∥2 − ∥∇f (x

∗)R\Z∥2
(d)

≥ β2s(x̂,x
∗)∥(x̂,x∗)R\Z∥2 − γ2s(x̂,x

∗)∥(x̂,x∗)∥2 − ∥∇f (x
∗)R\Z∥2,

71

where at point (d), the Corollary 1 is used (R is split to R\Z and R∩Z).
The last expression is straightforward from the assumptionR = supp(x̂−x∗).

Also,

∥zZ\R∥2 = ∥∇f (x̂)Z\R∥2
≤ ∥
(
∇f (x̂)−∇f (x

∗)
)
Z\R∥2 + ∥∇f (x

∗)Z\R∥2
≤ γ4s(x̂,x

∗)∥(x̂,x∗)∥2 + ∥∇f (x
∗)Z\R∥2

Combining the bounds and relation (A.81), we deduce

γ4s(x̂,x
∗)∥(x̂,x∗)∥2+∥∇f (x

∗)Z\R∥2 ≥ β2s(x̂,x
∗)∥(x̂,x∗)R\Z∥2−γ2s(x̂,x

∗)∥(x̂,x∗)∥2−∥∇f (x
∗)R\Z∥2.

(A.82)

Reordering (A.82), followed by the observation (x̂,x∗)R\Z = (x̂,x∗)Z , leads
to the desired result.

Lemma 6. The vector b where

b = argminf(x), (A.83)

s.t. xT = 0, (A.84)

satisfies

∥x∗
T − b∥2 ≤

∥∇f (x
∗)T ∥2

β4s(x
∗,b)

+

(
1 +

γ4s(x
∗,b)

2β4s(x
∗,b)

)
∥x∗

T ∥2. (A.85)

The proof is deduced by the Corollary 1.

Lemma 7. The estimation error of the current iterate ∥x̂ − x∗∥2 and that
of the next iterate ∥bS − x∗∥2 are related by the inequality

∥bS − x∗∥2 ≤

(
1 +

2γ4s(x
∗,b)

β4s(x
∗,b)

)
γ4s(x̂,x

∗) + γ2s(x̂,x
∗)

β2s(x̂,x
∗)

∥x̂− x∗∥2

+

(
1 +

2γ4s(x
∗,b)

β4s(x
∗,b)

)
∥∇f (x

∗)R\Z∥2 + ∥∇f (x
∗)Z\R∥2

β2s(x̂,x
∗)

+ 2
∥∇f (x

∗)T ∥2
β4s(b,x

∗)
.

Finally, using all the above the proof of Theorem 10 follows.

72 Appendix A. Proofs of theorems

Proof. Theorem 10. Let the vectors involved in the j - th iteration of the

algorithm be denoted by superscript (j). Given that µ4s ≤
3 +

√
3

4
we have

γ4s(x̂
j ,x∗)

β4s(x̂
j ,x∗)

≤
√
3− 1

4
, (A.86)(

1 +
2γ4s(x

∗,b)

β4s(x
∗,b)

)
≤ 1 +

√
3

2
. (A.87)

Thereby,(
1 +

2γ4s(x
∗,b)

β4s(x
∗,b)

)
γ4s(x̂

j ,x∗) + γ2s(x̂
j ,x∗)

β2s(x̂
j ,x∗)

≤

(
1 +

√
3

2

)
×

(
2γ4s(x̂

j ,x∗)

β4s(x̂
j ,x∗)

)

≤

(
1 +

√
3

2

)(√
3− 1

4

)
=

1

2
.

Now, from Lemma 7 we can write

∥x̂(j+1) − x∗∥2 ≤
1

2
∥x̂j ,x∗∥2 + (3 +

√
3)ε. (A.88)

Recursively the above inequality for j = 0, 1,, i− 1 yields

∥x̂− x∗∥2 ≤
(
1

2

)i
∥x∗∥2 + (6 + 2

√
3)ε. (A.89)

73

Appendix B

Basic results

Vector and Matrix Norms

We are familiar with the notion of euclidean norm from basic linear algebra.
Here a more general definition is presented.

Definition 9. The p-norm (or ℓp norm) is on Rn or Cn for 1 ≤ p < ∞ is

∥x∥p =

(
n∑
j=1

|xj|p
)1/p

, (B.1)

and for p = ∞
∥x∥∞ = maxj∈[n]|xj|. (B.2)

The p-norm satisfies the familiar properties of homogeneity and triangle in-
equality. Now, we proceed with definitions for the matrix norms.

Definition 10. Let A : X −→ Y be a linear map between two normed spaces
(vector spaces endowed with a norm). The operator norm of A is

∥A∥ = sup∥x∥=1∥Ax∥. (B.3)

In particular, we have for a matrix A and 1 ≤ p,q ≤ ∞ between the spaces
lp and ℓq, the matrix (operator) norm as

∥A∥p→q = sup∥xp∥=1∥Ax∥q. (B.4)

The above definition is the induced matrix norm. An intuition of this defi-
nition is that ∥A∥ is the maximum extend of stretching of unit ball vector
by matrix A. Some special cases,

∥A∥1→1 = maxk∈[n]

m∑
j=1

|ajk|, ∥A∥∞→∞ = maxj∈[m]

n∑
k=1

|ajk|.

The first equation is maximum absolute column sum of the matrix and the
other one is the same for the rows of the matrix. Also a very common norm
is, for A ∈ Rm×n

∥A∥2→2 =
√

λmax (ATA) = σmax (A) . (B.5)

74 Appendix B. Basic results

If the A is a symmetric (hermitian) matrix, then ∥A∥2→2 is the maximum
eigenvalue of A. Next, a very important theorem is stated, used thoroughly to
relate the properties of the measurement matrix. Gershgorin circle theorem
gives information about the position of eigenvalues of a square matrix.

Theorem 11. The eigenvalues of a n× n matrix A, with entries ai,j, lie in
the union of n disks di = di(ci, ri) centered at ci = ai,i and with radius

ri =
∑
j ̸=i

|ai,j|. (B.6)

Note that theorem (11) implies that, if λ is an eigenvalue of a square matrix,
then

|λ− ai,i| ≤
∑
j ̸=i

|ai,j|. (B.7)

Tools useful to Appendix A

A theorem used during this work is the Bolzano-Weierstrass Theorem that
states

Theorem 12. Every bounded infinite subset of Rp has an accumulation point.

Also a form of the previous theorem applicable to sequences is

Theorem 13. A bounded sequence (ak) has a convergent subsequence.

The proofs are ommited.

Lemma 8. Given vectors u,v, ∈ Cn and an index set S ⊂ [n], the following
holds

|⟨u, (Id−AHA)v⟩| ≤ δt∥u∥2∥v∥2, (B.8)

if card(supp(u)∪supp(v)) ≤ t, and

∥((Id−AHA)v)S∥2 ≤ δt∥v∥2, (B.9)

if card(supp(S)∪supp(v)) ≤ t.

Lemma 9. Given e ∈ Cn and an index set S ⊂ [n] with card(S) = s,

∥(AHe)S∥2 ≤
√
1 + δs∥e∥2, (B.10)

holds.

Fin.

75

Bibliography

[1] S. Foucart and H. Rauhut, A mathematical introduction to compressive
sensing, vol. 1, no. 3.

[2] I. Rish and G. Grabarnik, Sparse modeling: theory, algorithms, and
applications. CRC press, 2014.

[3] D. L. Donoho and M. Elad, “Optimally sparse representation in general
(nonorthogonal) dictionaries via l1 minimization,” Proceedings of the
National Academy of Sciences, vol. 100, no. 5, pp. 2197–2202, 2003.

[4] L. Welch, “Lower bounds on the maximum cross correlation of signals
(corresp.),” IEEE Transactions on Information theory, vol. 20, no. 3,
pp. 397–399, 1974.

[5] M. Elad, “Uniqueness and uncertainty,” in Sparse and Redundant Rep-
resentations. Springer, 2010, pp. 17–33.

[6] G. Kutyniok, “Compressed sensing: Theory and applications,” 2012.

[7] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE
Trans. Inf. Theor., vol. 51, no. 12, pp. 4203–4215, 2005.

[8] H. Rauhut, “On the impossibility of uniform sparse reconstruction using
greedy methods.”

[9] M. A. Davenport and M. B. Wakin, “Analysis of orthogonal matching
pursuit using the restricted isometry property,” IEEE Transactions on
Information Theory, vol. 56, no. 9, pp. 4395–4401, Sept 2010.

[10] T. Zhang, “Sparse recovery with orthogonal matching pursuit under
rip,” IEEE Transactions on Information Theory, vol. 57, no. 9, pp.
6215–6221, 2011.

[11] J. Zhao, R. Song, J. Zhao, and W.-P. Zhu, “New conditions for uniformly
recovering sparse signals via orthogonal matching pursuit,” Signal Pro-
cess., vol. 106, no. C, Jan. 2015.

76 Bibliography

[12] D. Needell and J. A. Tropp, “Cosamp: Iterative signal recovery from in-
complete and inaccurate samples,” Applied and computational harmonic
analysis, vol. 26, no. 3, pp. 301–321, 2009.

[13] T. Blumensath and M. E. Davies, “Normalized iterative hard threshold-
ing: Guaranteed stability and performance,” IEEE Journal of selected
topics in signal processing, vol. 4, no. 2, pp. 298–309, 2010.

[14] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F.
Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sam-
pling,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 83–91,
2008.

[15] M. Elad, Pursuit Algorithms – Guarantees. New York, NY: Springer
New York, 2010, pp. 55–77.

[16] J. A. Tropp, “Greed is good: algorithmic results for sparse approxima-
tion,” IEEE Transactions on Information Theory, vol. 50, no. 10, pp.
2231–2242, Oct 2004.

[17] J. Varah, “A lower bound for the smallest singular value of a matrix,”
Linear Algebra and its Applications, vol. 11, no. 1, pp. 3 – 5, 1975.

[18] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measure-
ments via orthogonal matching pursuit,” IEEE Transactions on infor-
mation theory, vol. 53, no. 12, pp. 4655–4666, 2007.

[19] S. Foucart, “Sparse recovery algorithms: sufficient conditions in terms
of restricted isometry constants,” in Approximation Theory XIII: San
Antonio 2010. Springer, 2012, pp. 65–77.

[20] S. A. Van de Geer et al., “High-dimensional generalized linear models
and the lasso,” The Annals of Statistics, vol. 36, no. 2, pp. 614–645,
2008.

[21] F. Bunea, “Honest variable selection in linear and logistic regression
models via l 1 and l 1 + l 2 penalization,” 2008.

[22] S. Kakade, O. Shamir, K. Sindharan, and A. Tewari, “Learning expo-
nential families in high-dimensions: Strong convexity and sparsity,” in
Proceedings of the Thirteenth International Conference on Artificial In-
telligence and Statistics, 2010, pp. 381–388.

77

[23] T. Blumensath, “Compressed sensing with nonlinear observations and
related nonlinear optimization problems,” IEEE Transactions on Infor-
mation Theory, 2013.

[24] A. Beck and Y. Eldar, “Sparsity constrained nonlinear optimization:
Optimality conditions and algorithms,” SIAM Journal on Optimization.

[25] S. Bahmani, Algorithms for sparsity-constrained optimization. Springer
Science & Business Media, 2013, vol. 261.

[26] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for
generalized linear models via coordinate descent,” Journal of statistical
software, vol. 33, no. 1, p. 1, 2010, package available in https://web.
stanford.edu/∼hastie/glmnet matlab/.

