

1.1 – Problem Statement

1 2 3 4 5

4

What problem are we trying to solve?

Let’s assume a 3D environment, filled with obstacles and markers (targets).

A UAV (drone) is spawned in a random location inside the environment.

1 2 3 4 5

1.1

OBJECTIVE: The UAV’s goal is to approach the marker in the environment
without crashing into any obstacle.

CAUTION: No rules are given to the UAV about its objective or its environment
whatsoever.

5

How do we solve this problem?

REQUIREMENTS: The agent must be able to safely navigate through the environment, detect and approach a predefined set of ArUco
markers (landmarks).

RELATED WORK: Several approaches have been investigated to create autonomous navigation systems such as Simultaneous
Localization and Mapping (SLAM).

IDEA: Reinforcement leaning (RL) is a promising alternative that focuses on learning by trial-and-error procedure, in which an agent
interacts with its environment and receives continuous feedback based on each action.

THESIS CONTRIBUTION: This thesis explores a mapless approach to UAV autonomous navigation in completely unknown 3D
environments using deep reinforcement learning (DRL), a reinforcement learning subfield that incorporates deep learning techniques
(deep neural networks) to overcome dimensionality limitations.

1 2 3 4 5

1.1

2.1 – Reinforcement Learning

1 2 3 4 5

2.2 – Deep Reinforcement Learning

2.3 – Tools & Frameworks

2.4 – Sensors

7

Overview

In RL, the agent learns from its own experience by
interacting with the environment.

The agent performs an action in the environment.

The performed action yields a new state.

The environment evaluates the agent’s action through a
reward.

1 2 3 4 5

2.1

State: collection of variables and conditions that describe a situation of the environment at a specific point in time.

8

General Terms

Step: smallest possible unit of time. Episode: collection of steps (from an initial state to a terminal state).

fatal conditions lead to terminal states Episode ends, environment needs to be reset

State space: set of every possible state in the environment (discrete / continuous)

Action: the agent’s method of interaction with the environment.

Action space: set of every possible action the agent can make (discrete / continuous)

1 2 3 4 5

2.1

Policy: strategy to determine the next action based on the current state.

Reward: immediate feedback returned to the agent by the environment evaluating its previous action.

Q-value: overall expected reward for an agent (when being in a current state s, performing an action a and obeying a policy π).

9

RL GOAL: find an optimal sequence of actions that lead to the maximum cumulative reward in search for a goal (optimal policy).

Goal & Rewards

REWARD IMPORTANCE: Rewards are an integral part of a reinforcement learning problem.

higher rewards motivate the agent to repeat an action in a similar situation

lower rewards teach the agent to avoid a certain behavior

Subsequent rewards are increasingly discounted, to reduce their importance
(future rewards hold less accurate reward information due to uncertainty)

1 2 3 4 5

2.1

10

There is currently a large variety of
reinforcement learning algorithms to
choose from.

Algorithm Taxonomy

This thesis focuses on model-free,
value-based, off-policy approaches.

Q-Learning is an algorithm to learn
the Q-value of an action in a
particular state.

Q-Learning seems
promising. Let’s take
a look.

1 2 3 4 5

2.1

11

The Q-Learning Algorithm: Overview & Limitations

OVERVIEW: Q-Learning is a TD off-policy algorithm, finds optimal policy using a Q-function.

SUMMARY: Iteratively updates Q-Values for each state-action pair using the
bellman equations until the q-function converges to the optimal q-value.

Q-Values are stored in a Q-table, a table of states and actions in which Q-values are stored for each pair.

PROBLEM: Curse of dimensionality. Q-Learning only works well with small discrete state and action spaces. Larger spaces render the
tabular approach incredibly inefficient.

SOLUTION: Value function approximation, generalize value estimation of similar states to reduce complexity. DQN uses neural
networks to approximate the value function.

1 2 3 4 5

2.1

12

The DQN Algorithm: Overview & Major Features

DQN CONCEPT: DQN incorporates deep learning techniques (deep neural networks) for value function approximation.

Practically, it can handle very large state spaces.

MAJOR FEATURE 1: Experience Replay, breaks sample correlation → improves performance

MAJOR FEATURE 2: Target Network, uses 2nd network for loss calculation with frozen weights improves stability

1 2 3 4 5

2.2

MINOR FEATURE 1: Clipping Rewards, cuts off extreme reward values → solves instability

MINOR FEATURE 2: Skipping Frames, consecutive frames contain overlapping information → increases training speed

MINOR FEATURE 3: History Preprocessing, train neural network with a stack of last several frames

13

The DQN Algorithm: Processing Diagram

Initialize replay
memory 𝐷𝐷 with

capacity𝑁𝑁

Initialize the policy
network with random

weights 𝜃𝜃

Initialize the target
network with random

weights 𝜃𝜃𝜃 = 𝜃𝜃

Initialize the starting
state (new episode

begins)

Initialized the
preprocessed history
sequence of states

Select action 𝑎𝑎𝑡𝑡
according to policy
(explore or exploit)

Apply action in
environment

Observe reward 𝑟𝑟𝑡𝑡+1
and next state 𝑠𝑠𝑡𝑡+1

Every 𝐶𝐶 steps, target network
weights catch up to the policy

network

Update network weights
θ using gradient descent

Calculate loss between Qvalues
and target Q-values

Pass batch of preprocessed
states to policy network

is 𝑠𝑠𝑡𝑡+1
terminal?

Perform pre-processing of
state and next state

NO

YES

For each step of the
episode

For each episode
Episode

Step

1 2 3 4 5

2.2

16

Optical Camera, 2D LIDAR, SONAR

Optical Camera: Sealed Box with small hole (aperture) that allows light to reach a light-
sensitive sensor. Captures RGB image frames.

LIDAR Technology: Pulses of light moving outwards, reaching objects and reflecting the light
back to the receiver.

Calculates distance by bouncing time difference

Creates 2D map of estimated distances

SONAR Technology: Similar to LIDAR, except it uses sound waves instead of light pulses.

Lower Accuracy, lower Cost than LIDAR.

1 2 3 4 5

2.4

3.1 – UAV & Sensors

1 2 3 4 5

3.2 – Environment

3.3 – Deep Reinforcement Learning Pipeline

MODEL: “hector_quadrotor” (category of general-purpose ROS
packages related to modeling, control and simulations of UAV
quadcopter systems). It contains:

18

UAV Model Overview

Optical Camera
Marker detection

2D Laser Rangefinder (LIDAR)
Horizontal distance measurements

2 x Ultrasonic Sensor (SONAR)
Vertical distance measurements

1 2 3 4 5

3.1

19

Environment Requirements

TRAINING SPEED: Training process of a deep reinforcement learning algorithm requires
many iterations in order to converge. Training speed is a very important factor to consider.

REQUIREMENTS

ROBUSTNESS: We need a robust enough environment which offers a variety of situations for our agent to
experience, without being overly complicated and thus affecting training speed.

IMPLEMENTATION: a highly-configurable custom world generation system was created

variable obstacle and marker generation

Enables creation of difficulty levels for benchmarking

1 2 3 4 5

3.2

20

Environment Variety

1 2 3 4 5

3.2

21

Environment Examples (Gazebo Images)

1 2 3 4 5

3.2

22

OBSERVATION: Snapshot of the UAV’s sensor measurements

OBSERVATION REQUIREMENTS: Two types of observations are required!

Target Information: required to find and approach the target

Surroundings Information: required to avoid collisions with obstacles and walls (situational awareness)

States & Observations: Overview

1 2 3 4 5

3.3

23

States & Observations: Target Information

TARGET INFORMATION: Can be achieved in two ways!

APPROACH 1: Optical Camera (Real-World Scenario)

Scan Image Plane for ArUco Markers using OpenCV detection algorithm.

The algorithm estimates the marker’s pose (position + rotation) relative to UAV’s camera.

Estimate final relative pose between UAV and marker using Transformations.

APPROACH 2: Simulator Information (Training purposes only)

Skip camera setup, extract information from the simulator itself!

Isn’t this Cheating?

Marker position is now estimated. UAV’s optimal approach point is defined as 2 meters (arbitrarily selected) in front of the marker!

Target Information Vector: 𝑻𝑻 = 𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑧𝑧𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑦𝑦𝑦𝑦𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑦𝑦𝑦𝑦𝑦𝑦𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (5 values)

No! From RL perspective, we are only interested in training our neural network.

1 2 3 4 5

3.3

24

States & Observations: Surroundings Information

SURROUNDINGS INFORMATION: Contains LIDAR and SONAR data!

LIDAR SENSOR
180 values

Split LIDAR DATA into 6 zones
of 30 values (60◦ areas)

Pick the MIN value of each zone

𝑳𝑳𝟏𝟏 𝑳𝑳𝟐𝟐 𝑳𝑳𝟑𝟑 𝑳𝑳𝟒𝟒 𝑳𝑳𝟓𝟓 𝑳𝑳𝟔𝟔

(30 x 6) values

(1x 6) values

BOTTOM SONAR SENSOR
1 value

𝑺𝑺𝟐𝟐

TOP SONAR SENSOR
1 value

𝑺𝑺𝟏𝟏

1 value1 value

Surroundings Information Vector: 𝑫𝑫 = 𝐿𝐿1 𝐿𝐿2 𝐿𝐿3 𝐿𝐿4 𝐿𝐿5 𝐿𝐿6 𝑆𝑆1 𝑆𝑆2 (8 values)

1 2 3 4 5

3.3

25

States & Observations: Terminal States

If a terminal state occurs, the environment is reset, and a new episode begins.

Mission Fatal: if any distance measurement is less than 0.4 meters, we presume a collision has occurred!
𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 = ∃𝑫𝑫𝒊𝒊 < 𝟎𝟎. 𝟒𝟒,𝑫𝑫𝒊𝒊 ∈ 𝑫𝑫

Mission Complete: If the maximum distance of every dimension between the drone and the target point is less or
equal than 0.8 meters, we presume a successful target point approach!
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 = 𝒎𝒎𝒎𝒎𝒎𝒎 𝒙𝒙𝒓𝒓𝒓𝒓𝒓𝒓 , 𝒚𝒚𝒓𝒓𝒓𝒓𝒓𝒓 , 𝒛𝒛𝒓𝒓𝒓𝒓𝒓𝒓 ≤ 𝟎𝟎. 𝟖𝟖𝟖𝟖

A state is terminal if the drone’s mission is either fatal or complete.
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 = 𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 ∨ 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪

Time Expired: a cap of 5.000 maximum steps for each episode was implemented in order to avoid endless episodes.

1 2 3 4 5

3.3

26

Actions

ACTION SPACE: Continuous Discrete (a manual flight would
involve analog velocity input of the UAV)

𝑴𝑴𝑴𝑴𝑴𝑴−
𝑴𝑴𝑴𝑴𝑴𝑴
𝟐𝟐

−𝑴𝑴𝑴𝑴𝑴𝑴
𝑴𝑴𝑴𝑴𝑴𝑴
𝟐𝟐

0 Increase pitch
1 Decrease pitch
2 Increase Roll
3 Decrease Roll
4 Increase Throttle
5 Decrease Throttle
6 Increase Yaw
7 Decrease Yaw

PROBLEM: DQN and other algorithms do not
usually support continuous action spaces.

SOLUTION: Classify actions into eight (8)
discrete options to control velocity of each axis.

FOUR-STAGE VELOCITY SYSTEM

Each axis has a minimum and a maximum velocity.
Every action results in an increase/decrease in
velocity of a particular axis by a specific increment.

Four (4) total increment stages for each axis. This
allows the drone to delicately fine-tune its velocity
when it’s near the target for increased stability.

1 2 3 4 5

3.3

27

Reward System: Overview

REWARD SYSTEM REQUIREMENTS: An effective reward system is crucial for training.

We need to avoid sparse rewards.

Rewards need to be clipped to a range of −1,1 to avoid instabilities to the neural network.

REWARD SYSTEM: Two (2) reward functions, each focusing on a specific aspect of the UAV’s mission.

Wall Distance Reward (WDR) → Surroundings Information

Velocity Direction Reward (VDR) → Target Information

Total reward is produced by just summing up both reward functions: 𝑹𝑹𝒕𝒕 = 𝑾𝑾𝑾𝑾𝑾𝑾 + 𝑽𝑽𝑽𝑽𝑽𝑽

1 2 3 4 5

3.3

INFO: Usually, the trickiest part of a RL problem, since there are no rules, no absolute restrictions and
it is tied up with an environment’s state space. Although there are some general guidelines to follow.

28

Reward System: Wall Distance Reward

WALL DISTANCE REWARD: penalizes the agent for being
close to obstacles and walls.

𝑾𝑾𝑾𝑾𝑾𝑾 = �
0.1, 𝑥𝑥 > 2
1.01 − 1.16𝑥𝑥−0.35 , 0.4 ≤ 𝑥𝑥 ≤ 2
−1, 𝑥𝑥 < 0.4

𝒙𝒙 = min 𝐷𝐷 , 𝑫𝑫 = 𝐿𝐿1 𝐿𝐿2 𝐿𝐿3 𝐿𝐿4 𝐿𝐿5 𝐿𝐿6 𝑆𝑆1 𝑆𝑆2

1 2 3 4 5

3.3

29

Reward System: Velocity Direction Reward

VELOCITY DISTANCE REWARD: rewards the agent for
heading towards the target.

𝑽𝑽𝑫𝑫𝑫𝑫 = 50 (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) where

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅,𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = 𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
2 + 𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

2 + 𝑧𝑧𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
2

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅,𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
2 + 𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

2 + 𝑧𝑧𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
2

1 2 3 4 5

3.3

30

Deep Neural Network

NEURAL NETWORK REQUIREMENTS & OBSERVATIONS:

The original DQN paper used entire RGB image frames as input.

Our input data only consists of a small number of parameters (13 scalar values x 4 frames = 52 total parameters).

Our data is unrelated & tabular (lacks structure). Best Option: Fully Connected Layers (Dense)

input_1 InputLayer (-, 4, 13) (-, 4, 13) - - 0
flatten Flatten (-, 4, 13) (-, 52) - - 0
dense Dense (-, 52) (-, 256) relu he_uniform 13.568

dense_1 Dense (-, 256) (-, 512) relu he_uniform 131.584

dense_2 Dense (-, 512) (-, 128) relu he_uniform 64.664

dense_3 Dense (-, 128) (-, 8) linear he_uniform 1.032

1 2 3 4 5

3.3

34

Demo

Before Training After Training Endless Episode Example

1 2 3 4 5

3.3

4.1 – Experimental Setup

1 2 3 4 5

4.2 – Training Results

4.3 – Result Discussion

Several parameters are training-time-dependent and require adjustments in order to become more suitable.

Having discrete timing options can help standardize benchmarking results.

36

Timing Configurations

TIMING CONFIGURATIONS: Six (6) training configurations were created based on training length

The two largest configurations “Large” and “Marathon” are utilized. Shorter are preferred for internal use and debugging.

1 Demo 5K 5m 1 1.9K 1K 200 20 500
2 Instant 30K 25m 6 25.5K 15K 5K 100 5K
3 Quick 125K 1h, 30m 25 100K 50K 15K 250 25K
4 Standard 400K 5h 80 320K 150K 30K 500 80K

5 Large 1.5M 16h 300 1.2M 600K 80K 750 187.5K

6 Marathon 3M 32h 600 2.4M 1M 100K 1K 500K

1 2 3 4 5

4.1

37

World Profiles

WORLD PROFILES: Five (5) world profiles of increasing difficulty were created.

World difficulty is dependent on UAV / marker spawning locations and obstacle quantity.

One of the goals of this project is to evaluate the agent’s behavior over a number of scenarios with varying difficulty.

1 Ridiculous fixed fixed - 0 “Large”
2 Easy random fixed - 0 “Large”
3 Medium random random - 0 “Large”
4 Hard random random random 6 “Marathon”

5 Extreme random random random 12 “Marathon”

1 2 3 4 5

4.1

38

Metrics & Charts

TOTAL REWARD (TR): Total accumulated reward during
training. Most popular metric. Not always reliable.

LOSS (LO): loss occurred during training

AVERAGE SAMPLE REWARD

RELATIVE MARKER APPROACH (RMA): When collision
occurred, how close was it? 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

TOTAL MARKERS FOUND (TMF)

EPISODE OUTCOMES OF LAST 100 EPISODES:

• Collision Rate Last 100 (CR100): measures how
frequently collisions occur (mission fatal).
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 100

100

• Markers Found Rate Last 100 (MFR100): measures
how frequently markers are found (mission complete).
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 100

100

• Episode Expire Rate Last 100: measures how frequently
endless episodes occur. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 100

100

unreliable & non-practical
useful information but not always practical

useful & very practical information

1 2 3 4 5

4.1

39

Chart Highlights

5+e5.1-

5+e1-

4+e5-

0

4+e5

5+e1

0 500k 1M 1.5M 2M 2.5M 3M

Ridiculous Difficulty, Large Training
Easy Difficulty, Large Training

Medium Difficulty, Large Training
Hard Difficulty, Marathon Training

Extreme Difficulty, Marathon Training

Steps

3-e5

01.0

015.0

02.0

025.0

03.0

035.0

0 500k 1M 1.5M 2M 2.5M 3M

Steps

08.0-

06.0-

04.0-

02.0-

0

02.0

04.0

06.0

08.0

0 500k 1M 1.5M 2M 2.5M 3M

Steps

1 2 3 4 5

4.2

TOTAL REWARD (TR) LOSS (LO) AVERAGE SAMPLE REWARD

https://tensorboard.dev/experiment/rs3EAzpgQACXzZOtxNeh0Q/

40

Chart Highlights

0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0 2k 4k 6k 8k 10k 12k 14k 16k

Ridiculous Difficulty, Large Training
Easy Difficulty, Large Training

Medium Difficulty, Large Training
Hard Difficulty, Marathon Training

Extreme Difficulty, Marathon Training

Episodes

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1

0 2k 4k 6k 8k 10k 12k 14k 16k

Episodes

0

3-e5

01.0

015.0

02.0

025.0

03.0

035.0

0 2k 4k 6k 8k 10k 12k 14k 16k

Episodes

1 2 3 4 5

4.2

Marker Found Rate Last
100 Episodes (MFR100)

Collision Rate Last 100
Episodes (CR100)

Episode Expired Rate
Last 100 Episodes

https://tensorboard.dev/experiment/rs3EAzpgQACXzZOtxNeh0Q/

41

Chart Highlights

5.0

1

5.1

2

5.2

3

5.3

0 2k 4k 6k 8k 10k 12k 14k 16k

Ridiculous Difficulty, Large Training
Easy Difficulty, Large Training

Medium Difficulty, Large Training
Hard Difficulty, Marathon Training

Extreme Difficulty, Marathon Training

Episodes

0

200

400

600

800

3+e1

3+e2.1

3+e4.1

0 500k 1M 1.5M 2M 2.5M 3M

Episodes

1 2 3 4 5

4.2

Average Relative Marker
Approach (RMA) Total Markers Found

https://tensorboard.dev/experiment/rs3EAzpgQACXzZOtxNeh0Q/

42

Is our agent really learning?

RESULTS OVERALL: Results appear to be promising. In every difficulty, metrics show a poor initial agent behavior and a significantly
improved version by the end of each training session. Results can be improved with longer training sessions.

OBSERVATION 1: as training progresses, collision rate (CR100) always decreases, marker found rate (MFR100) always increases.
Increasing rate of MFR100 means exponential increase of total markers found (TMF).

OBSERVATION 2: Every training session concluded with an average RMA of <0.8 which indicates that the agent was consistently
approaching the target before colliding.

Ridiculous 1.5M 0.46 0.54 0.79 105.450
Easy 1.5M 0.71 0.29 0.76 44.446

Medium 1.5M 0.22 0.78 0.64 6.145
Hard 3M 0.4 0.6 0.65 -32.784

Extreme 3M 0.28 0.72 0.77 -167.170

OBSERVATION 3: ”Ridiculous” performed surprisingly poor. “Easy” managed an impressive MFR100 of 71% completing its mission
more than 1500 times. “Medium” was slow to catch up, required more training and was outperformed by “Hard” and “Extreme”.

1 2 3 4 5

4.3

5.1 – Summary

1 2 3 4 5

5.2 – Limitations & Future Work

44

What did we learn today?

SUMMARY: Proof-of-concept mapless approach to UAV autonomous navigation tasks in fully unknown 3D environments. DQN
incorporates deep learning techniques into a well-defined reinforcement learning problem (MDP) and integrates several key features
including a replay memory and a target network.

Proof that DQN can be applied in a large variety of custom environments (not just ATARI games).

Results suggest that the agent can successfully learn to navigate in the environment and avoid obstacles.

RESULTS: Five (5) experiments were conducted to evaluate agent’s performance.

1 2 3 4 5

5.1

45

How can we improve our results?

TRAINING QUALITY OPTIMIZATIONS:

Environment Representation: Current obstacle variation is limited to primitive shapes to save
computer resources. This is a trade-off between higher-quality complex objects and training speed.

Prioritized Experience Replay: In this DQN implementation, experience tuples are uniformly sampled from
the replay memory. Prioritizing samples with higher loss values will result in faster network convergence.

TRAINING SPEED OPTIMIZATIONS:

Drone Swarms: Multiple parallel drone training will increase training speed. Each UAV would separately
send input parameters to a shared neural network, allowing for faster exploration and sample extraction.

Better Pause-Resume Gazebo System: Current implementation relies on services
to pause and resume the simulation. Slows down training process by 30%.

COST-SAVING OPTIMIZATIONS:

Replace LIDAR: In current implementation, LIDAR is overkill. Replace LIDAR with six SONAR sensors around UAV’s frame.

1 2 3 4 5

5.2

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46

