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Abstract

Greece, like other countries, suffers every year from intense fires which inevitably
cause losses. In the best-case scenario, these losses are materialistic only, but there are
many cases where the consequences are not limited to those losses. This kind of
destruction has a crucial impact on firefighters and civilian lives, animal extinction, and
forest degradation. Considering scientists' predictions that fires will increase every year
due to climate change, many prevention systems have been set up to avoid this kind of
situation. This thesis focuses on developing a detection approach that can classify
images of forests in “Fire” and “non-Fire” cases with input from both RGB and Infrared
(IR) cameras. Along with this work, an architecture is proposed that increases the
possibility to prevent these previously mentioned consequences. The new deep learning
architecture is called ShRe-Xception (Short Recursive), inspired by already existing
Xception network architectures (i.e., small-arch Xception and original Xception
Network). In this study, an experimental process takes place around how to train a
neural network with two different datasets and the relevance of its architecture. First,
transfer learning is performed on the small-arch Xception network with input from
either RGB or IR images, and then, the same structure is trained with all the RGB
images from the very beginning. Also, the proposed ShRe-Xception network is trained
by using all RGB images from the very beginning and then retrained with infrared
frames. Datasets used for training and testing purposes contain “Fire” and “non-Fire”
images of forests that are captured from UAVs and uploaded to the IEEE portal. When
testing the above models, the evaluation accuracy was RGB: 90.10% and IR: 99.31%
after initial training and ShRe-Xception model, RGB: 77.13% and IR: 94.47% after
transfer learning on small-arch Xception, and RGB: 84.86% and IR: 29.19% when
initially training the small-arch Xception. The above results are described and analyzed
within the present thesis, as many other operations were performed in terms of
experimentation and results. In general, the latter model came to be the most accurate
one for images of both spectrums in our experiments. The ShRe-Xception can
potentially play a vital and efficient role in real-time fire detection during aerial
surveillance of wild forests.






LepiZnyn

Eivaiyeyovog 0t m xdpa pog, Ommg kot GAAES xdpeg, VToPEPEL KAOE xpOVO amd EvToveg
TUPKAYIEG TTOV OVOTOPEVKTA TPOKOAOVV LEYAAES AMMAELES. TNV KOADTEPT TEPIMTOO,
Ol OmAOAEIEG OVTEG €lval HOVO VAIKES, OAAG LILAPYOVY TOAAEG TEPITTAOCELS OOV Ol
ovvéneleg dgv mepropilovtar HOVO Ge aLTO TO QAGHO. X& TOAAEG MEPUTTMGELS, Ol
KOTAGTPOPES AVTEG EYOVV KPIGIUES EMATOGELS OTIG (G TV TVPOGPESTOV Kol TOV
TOAMT®V, 6TV EaPavion TV (H®V Kol GTNV KATAGTPOPN TV dac®dv. Aapufavovtog
VIOYT TIC TPOPAEYELC TOV EMOTNUOVOV OTL 01 TVPKAYIEG Ba avEdvovtal kébe ypdvo
AOY® TG KALATIKNAG 0AAXYNG, £xouV OnovpynBel ToAAd cuoTHHOTO TPOANYNS Yo
NV amoeLYT| T€T010V €id0vg KataoTdoewv. H mapovoa epyacio ETKEVIPOVETOL GTNV
avAmTLEN €VOC GLGTNUOTOC OVIXVEVONG OV UITOPEL VO SO MPICEL EIKOVEG dUCMV GE
mePUTOGELS "TupKaylac” ko "un mopkayds" pe eicodo 16c0 and kduepeg RGB, 660
Kol omd Kapepeg vrepvBpwv (IR), amotpémovioag SuVNTIKA EKTETAUEVES KOTAGTPOPES.
Méoo oV epyacia Hog TEPIEXETOL KO O OYEOACUOG EVOG VEOU LOVTELOV TOPAYULEVOD
amd TV OHAdN OGS, 0 0T0T0G TIGTEVOVE OTL ALEAVEL TIG TIOAVOTNTES Y10 TNV OITOPVYN
pag daokng Kataotpoens. O oyedacudg poag ovoudletar ShRe-Xception (Short
Recursive) kot glvatl éva cuvovBOAELLO TTOV XPNGUYLOTTOLETL YOPAKTNPLOTIKE, TOGO Ao
L0 VTTAPYOVGOL LUKPT - OPYLTEKTOVIKT) TOV dkthov Xception (small-arch Xception),
0G0 Kol omd TNV apyIKn £KO00T TOL JKTOOL Xception. Avti 1 pehétn meptlapPdavel
Hio TEWPOUOTIKN Oladikacio yopw omd Tov TPOMO EKTOIOEVONG EVOC VELPOVIKO
SIKTHOL pE VO JPOPETIKA GVHVOAL dEGOUEVOV KOt TOV POAO TTOV EpyeTon va, Toi&et 1)
OPYLTEKTOVIKN TOV OTNV HETENELTA amOd0oT. Apyikd, extelovue transfer learning oto
small-arch Xception pe gicodo, gite and ewkdveg RGB, eite amd ewodveg IR kot ot
OULVEYELD, TAIPVOLLLE TNV 13100 OPYLITEKTOVIKT] KOl TNV EKTOOEVOVUE HE OAES TIC EIKOVEC
RGB and v apyn, EKTEADOVTOG 0pYOTEP TNV ETAVEKTOIOELON UE BepUIKES EIKOVEG,.
Exnmodedovpe eniong 1o mpotevopevo diktvo ShRe-Xception, ypnotponoldviog Oheg
11 ekdvec RGB amd v apyn kot emavekmodevovtdg to pe Bepukés eikoveg ot
ovvéyetla. Ta cuvola SEdOUEVOV TOV YPNGILOTOIOVVTOL Y10 GKOTOVS EKTOAOEVOTG Kot
doKUNG mePLEYOLV ekdveg "mupkayldc" kot "un mopkayldac" and ddorn mov Exouvv
MoeBel and6 UAV ko €épovv avaptBel oty IEEE dataport. Katd 1 dokiun tov
Tapomave povtéAwv, N akpifela tov dokipmv frav RGB: 77,13% / IR: 94,47% upetd
10 transfer learning oto small-arch Xception, RGB: 84,86% / IR: 29,19% xatd tnv
apykn| eknaidevon tov small-arch Xception kot RGB: 90,10% / IR: 99,31% petd v
apykn ekmaidevon oto poviého ShRe-Xception. Ta mopamdve amoteléopoto eivon
EVOEIKTIKA, KOODC vAOTOMONKOV Kol TOAAEG AALES TEYVIKEG. L& YEVIKES YPOUUES, TO
TeELEVLTOIO LOVTELD amodelyONKe TO O aKPIPES Yo EIKOVES KOt TV dVO PACUATOV GTO
nepdpatd pog. To ShRe-Xception pumopel evogyouévag va dtadpopaticet {oTikd Kot
OTOTEAECUOTIKO POLO OTNV OVIYVELCT] TLPKOYIIC GE TPAYUOTIKO XPOVO KOTA TNV
EVAEPLOL ETLTIPOT| TOV OUCADV.



TABLE OF CONTENTS
CHAPTER 1 INTRODUCTION......ccccerruersuenssnnssnessacssansssnsssncssacsssessaees 10

1. 1 UNMANNED AERIAL VEHICLES (UAVS) ..c.uiiiiiiiiiiieieerieesee e sre e e eesseeseeesnseenseensees 16
1.2 RGB VS TR SPECTRUM......coiiiitiiiieitiieeeeiteeeeetteeeeetteeeeeareeeeeaseseeeaaseeeeessesaeeesresaeeenseeas 17
1.3 CONVOLUTIONAL NEURAL NETWORKS .....ccoiiutiiiiiitiiieeeiirieeeeeiteeeeeeteeeeeereeeeeeveeeeeenseeas 17
1.4 BACKGROUND WORK .....cuviiiiiiuiiieeeiirieeeeiitieeeesiteeeeestseseessseseesssesesesseseeesssesesssssesesensees 18
1. 5 NOVELTY OF THE PRESENT THESIS .....ccciiuitiiiitiieeeiitieeeeeiteeeeeeitreeeeetreeeeeareeeeeareseeennens 19
CHAPTER 2 THEORETICAL BACKGROUND ....ccccceeteeeennennnennenees 21
2.1 ARTIFICIAL INTELLIGENCE .......cciiiiitiiieiiitiieeeeitieeeeeeiteeeeeeiveeeeeetteeeeeeaseeeeesaseeeeeeasesaeennseeas 21
2.2 MACHINE LEARNING ....couttiiiieitiieeeeeitteeeeeieeeeeeitaeeeeettteeeeesseseeesseseeesseseeenssesseaasseseeansrens 21
2.3 DEEP LEARNING .....uuviiiiiiiiieeeitiee ettt e eettt e e e ettt e e eetteeeeesateaeeeateseeeeabeseeeenseeaeeaasaeeeennseens 21
2.4 CONVOLUTION NEURAL NETWORKS ......occeiiiiiiieerieeetieeereeeeteeeereeeeseeeeareeeseeessneesseeas 22
2.4, 11 POOING LAYCT.....eiiviiiiiiiieiieieeitecte sttt ettt ettt e e snsesnseensaensees 25
2. 4. 111 Fully Connected LaYeT.........cccveviiriiiiieiieiecie ettt sese e ennees 26
2.5 XCEPTION ARCHITECTURE .....uvoieiuiiiiuiieeieeeeteeeeteeeeteeeeeveeeeteeeeaseeesesensseeenseessesenaseseseean 34
2.6 SMALL-ARCH XCEPTION ARCHITECTURE .....cccuviiieiiiiieeeittieececiieeeeeeiteeeeeeveeeeeeveeeeeeavaeas 35
2.7 SHRE-XCEPTION ARCHITECTURE ......ccceiiiiieeeitiieeeetieeeeeteeeeeeireeeeetaeeeeeareseeesreseeennrens 36

CHAPTER 3 DATASETS . ..coouietinrinnennnensnensnsssnessansssesssnssssssssssssssssess 38

3.1 THE FLAME DATASET: AERIAL IMAGERY PILE BURN DETECTION USING DRONES

(UAVS) ettt ettt ettt et e b e e b e et e e be e e te e bbestbessbeesbeesbeassaesaesbsesssesasesnreans 38
3.2 FLAME 2: FIRE DETECTION AND MODELING: AERIAL MULTI-SPECTRAL IMAGE
DIATASET ettt sesasesssesesesssssssssssssssssssssssssssssessssssssssssssnnnnsnnnnnsnsnnnnes 39
3. 3 COMBINED D ATASET . ..euuutuuueueueieeeeeeeseeeeeeeeasesassssssassssessssssnssssnssnnsssnsnnnsnnnnnnns 40
CHAPTER 4 METRICS . oeeeeeereeeeereeeccreeecssseesssssessssssssssessssssesssssessssses 41
4. 1 CONFUSION MATRIX «.oeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e e e e eeeeeeeeeeeeeeeeeeseeseeseseseesseseseesseeeseeeeseesesenees 41
4.2 PRECISION .ot e e e e 42
A B3 RECALL. .o e e e e e e e e e e e e e e e e e e e e e e e e e 42
O S T 0) 23 OO PPTRTRR 42
CHAPTER 5 EXPERIMENTING PROCESS .uuotueeeereeecreeeeecseeecsssees 43
5.1 SMALL-ARCH XCEPTION. ...cctttttitttttitttieteteteeetetetsteeeteteestesstssstetssstsestetststetetststetas... 43
5.2 TRANSFER LEARNING .......cottttttitiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeseessessesseseseesereserereaeee 44
5.3 TRAINING FROM SCRATCH. .....uuuuueiiiieeeiiiiieeieieeeeeeeeeeieeeeeeeeessesasseeeeesssssssssssesessssssnnnnes 45
5.4 THE IDEA OF SHRE-XCEPTION ......ccututttttteiiiieeeeeeeeeeeeeeeeeereeeeeeeeeeeeeseessesseeeeseeeesees.. 46
CHAPTER 6 RESULTS ..o ctetueeeteeereeecreeecesseessssseesssssssssesssssssssssssssesses 48
6. 1 SMALL-ARCH XCEPTION TRAINED ON THE FLAME DATASET. «..evvueieiieeeieeee 48
6.2 SMALL-ARCH XCEPTION RETRAINED VIA TRANSFER LEARNING.......uuuuuueeeeeenennnnnennnnnnns 49
6.3 SMALL-ARCH XCEPTION TRAINED INITIALLY WITH ALL THE RGB IMAGES. ................ 52
6.4 SMALL-ARCH XCEPTION TRAINED INITIALLY WITH ALL THE RGB IMAGES AND
RETRAINED WITH INFRARED IMAGES. ...cieiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeee et 54
6. 5 SHRE-XCEPTION TRAINED WITH ALL THE RGB IMAGES. ....ovvveiiienees 55
6. 6 ALREADY TRAINED SHRE-XCEPTION, RETRAINED WITH INFRARED IMAGES. .............. 57

CHAPTER 7 COMPARISON......couuirrrinsunnsensnessnecsaessaesssesssasssassssessanes 39



7.1 THE TRANSFER LEARNING EFFECT ....uuuuuuuuuuuiiuininenenennnnnnsenensnnnennnnnsnsnsnsnsnnnnnnnnnnnnnnsnnnnnnes 59

7.2 STARTING FROM THE BASE. ....c.ccvuureunetnrisnisnssssssesssesssessssssesssesssessse s ssesssesenas 59
7.3 CHANGING THE ARCHITECTURE. .....coctuurermesneasnessnessssssessssssssessessssssesssessssssssessssesns 60
CHAPTER 8 CONCLUSION................................................................61
8. T OTHER WORKS ....cevuivneesrisnssssesessesssessessses s sse st ss s ss st ss s sseees 61
8. 2 LIMITATIONS ... ouoveeaitseesaeessessssesesssesss s esss s ss sttt 62
8.3 FUTURE WORK .....ooutiiiiiiiiiiiicieeie ettt ettt a e s s 62

CHAPTER 9 REFERENCES.......coinnrennennnnsnennnensnesssesssesssesssancsnes 04

10



Table of Figures

Figure 1 Flying UAYV on dULY [2]...ccceecieeiieiierieniecie ettt e see e sere e eseesieessaessnesnseensaenseas 16
Figure 2 Xception network original architeCture. ...........cccvevverieriieniieereerieseesee e 18
Figure 3 small-arch Xception architeCture. ..........c.occveveieeriienienienie e 19
Figure 4 ShRe-Xception arChiteCtUIE. ........ccuvevierierieeieeieeieesee e e ereeteeseeeseee e enseenseenseas 20
Figure 5 From MIT Introduction to Deep Learning | 6.S191 ......ccccoovieviiiviivieiieciecieereenen 21
Figure 6 Convolution Neural Network representation [18]..........cccceevveviievieiienienieeieeieenn, 22
Figure 7 Zero padding eXample. .........ceccviiiriieiiieeiie et ciee et e eteeeeeesiveeeteeesiveesreeeneseeseneeas 23
Figure 8 Symmetric padding eXample.........coooveiiiiiiiiieiieieeeee sttt eveeares 24
Figure 9 Replicate padding eXample. .........covevuieiiiiiiiiieiecreesee et eeveeete e eereeaveeares 24
Figure 10 Circular padding eXample. .........ccoveiieeiiiciieieeciecsieeeee e esreesteeseeesereeeveeveeveeseeas 25
Figure 11 Illustrations of different pooling processes and their drawbacks [20]. ................... 26
Figure 12 Fully Connected layer example [21]. ..cc.ccoviiiiiviiiiiiiieiie et 27
Figure 13 Binary Step FUNCLION ......c.eeiiiiiiiieciie ettt ettt ve e e s n 28
Figure 14 Linear Activation FUNCHON .........ccoecieriiiiieiieciecie et sene e s 28
Figure 15 ReLU Activation FUNCHON.........cccveviiriiiieciecieeieesee ettt 29
Figure 16 Leaky ReLU Activation FUNCHON........c.cccvieciieriiiriienieeie ettt 30
Figure 17 Parametric ReLU Activation FUNCHION.........c.ccccveviiriienieiieeieeeeeeeene e 30
Figure 18 Sigmoid Activation FUNCHON .........cccueviiriiiciieiieeeree ettt 31
Figure 19 Tanh Activation FUNCLION .........cccviviiriiiiicieeeeeecee ettt 32
Figure 20 small-arch XCePtion ........c.eccviecvieriieriieniierie et eieeseeseeesresreebeeseesseessnesssesnseenseas 36
Figure 21 ShRe-Xception archit@Cture ...........ccveeverieiieeiieereereeseeeeesre e eeeesseesenesenesnseenseas 37
Figure 22 Fire cases in Flame dataset...........ccccceviiiiiiciienieniccee e 38
Figure 23 non-Fire cases in Flame Dataset. ..........ccceeviieciiieiiiiiiiieie et 38
Figure 24 Fire cases using RGB/IR spectrum in Flame 2 Dataset. ..........ccccoovvevveeveenneeneennen. 39
Figure 25 non-Fire cases using RGB/IR spectrum in Flame 2 Dataset............cccccovveeveeneenen. 39
Figure 26 Confusion MatriX [26]......c.ccecuieriiieeiiieiiieeiieeieeereeeteeesveesreeesveessaeesaeessseessseeas 41
Figure 27 Accuracy during training small-arch Xception...........ccceeveeeiieciieveenieniecee e 44
Figure 28 Losses during training small-arch Xception ...........cccceevveeiieiiieciienieesiesieere e 44
Figure 29 Losses while transfer learning training. ...........cccceveevieeieeireenieeseesiesrecveeveeveenens 45
Figure 30 Accuracy while transfer learning training.............ccceceeeveevreeereenreeseeseesvesveeneennens 45
Figure 31 Accuracy during training small-arch Xception..........cccceeeveeevieciiiveeneeniecre e 46
Figure 32 Losses during training small-arch Xception ............cooceveeveninienenieeienieieeneenee, 46
Figure 33 Accuracy during training ShRe-Xception..........ccccvevveeriercreeneenieenieneenreereeeeeeens 47
Figure 34 Losses during training ShRe-Xception ..........cccceveeriiirciiniiienieriesieeeeeveeeeieeeen 47

11



12



Table of tables

Table 1 Number of images Per dataset.........cccccveevieciieriieriiereesee e ere et esee e seeesere e eseeeees 40
Table 2 Confusion matrix of the small-arch Xception trained on FLAME and tested on the
COMDINEA dALASEL. ....eueitiiieiert ettt ettt b ettt et st e b bt eneens 48
Table 3 Testing metrics of the small-arch Xception trained on FLAME and tested on the
COMDINEA dALASEL. ....eueitiiieiert ettt st et b ettt et sbe et et sbeeneeas 48
Table 4 Confusion matrix of the small-arch Xception trained on FLAME and tested on the
INFTATEA LESTINE SEL. .oevvviiviiiiieitiecieectteet ettt et e e e e etaeeveebeebeesbeeseseseseeeseesseeseesteesssesaseenreens 48
Table 5 Testing metrics of the small-arch Xception trained on FLAME and tested on the
INFTATEA LESTINE SEL. 1oeivviiuiiiiieitiecieeciteete et ettt et e e e e etbeeveebeebeesbeesebeseseeeseesseeseesseesssesaneenreens 49

Table 6 Confusion matrix of the small-arch Xception trained on FLAME and retrained with

RGB images of THE FLAME 2, tested on the combined dataset.............cccoevevvvenreeveeneennen. 49
Table 7 Testing metrics of the small-arch Xception trained on FLAME and retrained with
RGB images of THE FLAME 2, tested on the combined dataset.............cccceceevvveiveereeneennen. 49
Table 8 Confusion matrix of the small-arch Xception trained on FLAME and retrained with
RGB images of THE FLAME 2, tested on the infrared testing set. .......c..ccccevveeverineenenennen. 49
Table 9 Testing metrics of the small-arch Xception trained on FLAME and retrained with
RGB images of THE FLAME 2, tested on the infrared testing set. .......c..ccccevveeveerineenenennnn. 50
Table 10 Confusion matrix of the small-arch Xception trained on FLAME, retrained with
infrared images of THE FLAME 2 and tested on the combined dataset............cc.ccoceevenenncee 50

Table 11 Confusion matrix of the small-arch Xception trained on FLAME, retrained with
RGB images, retrained again with infrared images of THE FLAME 2 and tested on the
COMDINEA dAASEL. ...ttt ettt sttt et e e st e aesae e 50
Table 13 Testing metrics of the small-arch Xception trained on FLAME, retrained with RGB
images, retrained again with infrared images of THE FLAME 2 and tested on the combined
QALASEL. ...ttt ettt h ettt e b e bt bt sat e et e e bt e bt e ehteeat e et e e bt ebeebeas 51
Table 12 Testing metrics of the small-arch Xception trained on FLAME, retrained with
infrared images of THE FLAME 2 and tested on the combined dataset..............cccceveviennenns 51
Table 14 Confusion matrix of the small-arch Xception trained on FLAME, retrained with
infrared images of THE FLAME 2 and tested on the infrared testing set...........cccccovveeveennen. 51
Table 15 Confusion matrix of the small-arch Xception trained on FLAME, retrained with
RGB images, retrained again with infrared images of THE FLAME 2 and tested on the
INFTATEA TESTINE SEL. .oiivviieiiiiieitieite ettt ettt ettt e et e et e eveebeebeesbeeseseseseeeseesseesseesseesssesaseenreens 51
Table 16 Testing metrics of the small-arch Xception trained on FLAME, retrained with
infrared images of THE FLAME 2 and tested on the infrared testing set..........cc.cceceveneeneene 52

13



Table 17 Testing metrics of the small-arch Xception trained on FLAME, retrained with RGB
images, retrained again with infrared images of THE FLAME 2 and tested on the infrared
EESTITIE SCE. 1evvieureereesieesieesieete et eteete e teesteesstessteesseenseesseessaesseesssessseanseasseenseenseenseesssesssennsennsens 52
Table 18 Confusion matrix of the small-arch Xception trained on the combined dataset
(training set) with all the RGB images from the beginning, tested on the combined dataset
(EESEINE SCL). 1eevvieeirieeiie et eetee ettt e et e e et eesbeeetaeestbeeeseeeebaeessaeesssaaassaeesssaessseeanssaessseeassseesssennn 52
Table 19 Testing metrics of the small-arch Xception trained on the combined dataset (training

set) with all the RGB images from the beginning, tested on the combined dataset (testing set).

Table 20 Confusion matrix of the small-arch Xception trained on the combined dataset with
all the RGB images from the beginning, tested on the infrared testing set. ..........cccccveevveennn. 53
Table 21 Testing metrics of the small-arch Xception trained on the combined dataset with all
the RGB images from the beginning, tested on the infrared testing set. ........c.ccceeevvevveeneennen. 53
Table 22 Confusion matrix of the small-arch Xception trained on the combined dataset with
all the RGB images from the beginning and retrained with IR images from FLAME 2, tested
on the coMbINEd dAtASEL. ......evuiruiiriiiiiieieee ettt sttt s 54
Table 23 Testing metrics of the small-arch Xception trained on the combined dataset with all
the RGB images from the beginning and retrained with IR images from FLAME 2, tested on
the combINEd dAtASET. .......oiuiiiiiiiiiee ettt 54
Table 24 Confusion matrix of the small-arch Xception trained on the combined dataset with
all the RGB images from the beginning and retrained with IR images from FLAME 2, tested
0N the INFTared LESTINE SEL. ..vecvieriierierieiieeit ettt reeete e ere e et e sseesteessseesseeseesaesseessnesnsenns 54
Table 25 Testing metrics of the small-arch Xception trained on the combined dataset with all
the RGB images from the beginning and retrained with IR images from FLAME 2, tested on
the INFrared tESHINEG SEL. ..c.viiviiiiiiiiieiie ettt re et etbe e beeabeebe e beesebesaseeaveenres 55
Table 26 Confusion matrix of the ShRe-Xception trained on the combined dataset with all the
RGB images, tested on the combined dataset...........coccveeviiiiiiiiiiii i 55
Table 27 Testing metrics of the ShRe-Xception trained on the combined dataset with all the
RGB images, tested on the combined dataset...........coceveeviiiiiiiiieiiiiie e 56
Table 28 Confusion matrix of the ShRe-Xception trained on the combined dataset with all the
RGB images, tested on the infrared teStiNg SEt.........cecvuieviiiiiiiiieii et 56
Table 29 Testing metrics of the ShRe-Xception trained on the combined dataset with all the
RGB images, tested on the infrared teStiNg SEt.........coecveriirieriieriieeieere et 56
Table 30 Confusion matrix of the ShRe-Xception trained on the combined dataset with all the
RGB images and retrained with IR images from FLAME 2, tested on the combined dataset. 57
Table 31 Testing metrics of the ShRe-Xception trained on the combined dataset with all the
RGB images and retrained with IR images from FLAME 2, tested on the combined dataset. 57

14



Table 32 Confusion matrix of the ShRe-Xception trained on the combined dataset with all the

RGB images and retrained with IR images from FLAME 2, tested on the infrared testing set.

Table 33 Testing metrics of the ShRe-Xception trained on the combined dataset with all the

RGB images and retrained with IR images from FLAME 2, tested on the infrared testing set.

15



Chapter 1 Introduction

Wildforest fires are a frequent and major problem that occurs every year during summer, spring,
and autumn periods, causing severe damage to forests, animal wildlife, residential areas, and
even people’s lives [1]. This kind of destruction is currently difficult to be detected at an early
stage, as the numbers indicate, creating an inconvenient situation for the competent authorities
to manage. To accomplish the forest fire early detection task, many techniques have been
introduced up to this time, such as using human observatories, Unmanned Aerial Vehicles
(UAYV), or Unmanned Ground Vehicles (UGV) and installing ground sensors. This work is
focused on the fire detection problem and this is done by using convolutional neural networks
(CNNs) and images acquired from sensors of different types (RGB or IR) in order to produce
a model that classifies images to “Fire” and “non-Fire” cases. In this work, aerial images are
exclusively used, as UAVs offer a wider Field of View (FOV) and easier obstacle avoidance.
Focused on detecting forest fires from above, each dataset used for the development of the
model is gathered from a UAV with a panoramic viewing angle.

1.1 Unmanned Aerial Vehicles (UAVs)

An Unmanned Aerial Vehicle is an aircraft commonly known as a drone, without any kind of
crew on board. It can be remotely operated from a ground station or follow an entirely
automated route that is predefined by the pilot/operator [3]. The first produced models were
used mainly in military operations but in recent years there has been a wide use in aerial
photography, forest fire monitoring, agriculture, and surveillance. In our case, forest fire
monitoring, UAVs can be used in early detection, containment, and the extinguishing of any

Figure 1 Flying UAV on duty [2].

fire case. Their high manoeuvrability as well as the easy take-off and landing can be very useful
characteristics in terrains where it is considered dangerous or impossible for firefighters to
reach [4].

The use of UAVs in all the above situations became so popular due to the great evolution that
has been made in the camera industry. As for the RGB optical sensors, there has been a huge
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advancement in image resolution making it easier for both neural networks to perform object
detection or pattern recognition processes and for the human eye to catch any unexpected event.

As for thermal imaging, both the growth in camera quality and the reduction of its own cost
made it more convenient for drone companies to enhance them in their products. Recently, a
dual camera (named FLIR Hadron™ Integrated RGB/Thermal Module) has also reached the
production process offering images from two spectrums in one common module. However,
time is still needed to further develop such technologies and the choice of individual cameras
for each drone is the dominant one, leaving the question of which one is best for each company
to use.

1.2 RGB vs IR spectrum

The majority of previous studies focus on the RGB spectrum, as RGB cameras have some
useful advantages. Firstly, it is a matter of price. Color cameras appear to have significantly
lower prices than thermal ones making them more accessible to manufacturing companies.
Additionally, when in daylight, these sensors can produce high-resolution frames that can be
used in machine vision systems [5], [6]. Moreover, as the RGB images have more resolution,
many other attributes of the image can be obtained such as texture and luminosity, making it
casier for a neural network to perform pattern recognition. On the other hand, when a UAV is
patrolling in a dark environment, like a forest or a mountain that cannot be artificially
illuminated, the RGB sensor has nothing to offer to our system [7]. Hence, thermal cameras
should be used in order to prevent fires that break out at night. These sensors, except for night
vision, can provide high performance in many different weather conditions (such as rain, cloudy
weather, and smoke). More specifically, when monitoring a burning forest that fills with smoke
the entire image, the IR camera can see below this layer and detect the fire’s position, offering
the maximum help to firefighters [8]. However, it should be noted that these sensors do not
have high discriminating capabilities as described in “The Johnson Criterion” for thermal
images [9]. To summarize, as both the above sensors have many advantages to offer to our
system, there will be a need to use images of either spectrum. These images will be used to
train and test different neural networks to extract the best possible solution (model architecture)
for our system as we will see in the sections below.

1. 3 Convolutional Neural Networks

The image classification process would not be possible if it were not for neural networks.
Convolutional Neural Networks (CNNs) are one of many different deep learning algorithms
that are applied to fields such as object detection and pattern recognition. They provide features
such as speed processing and the capability to learn by analysing a set of inputs [10]. In this
study, the fire detection problem is mainly explored with the use of a specific neural network
architecture named Xception network [11], presented in Fig. 2. More precisely, a recent study
[1] introduced the use of a smaller architecture of Xception network (small-arch Xception) to
solve the same task. This architecture is presented in Fig. 3 and has been scaled down, in
comparison to the original version, to a more condensed design to fit in embedded systems with
limited capabilities such as Nvidia’s Jetson series. In our work, many experiments were
conducted using this previously designed small-arch Xception network by using the same
datasets, adding extra sets of RGB and IR images to examine its robustness, and finally
transforming it into a new network, produced by our team, that is later to be discussed.
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Figure 2 Xception network original architecture.

1. 4 Background work

As mentioned before, some studies have taken place before ours that deal with the same
problem. However, as we aim for forest patrolling with drones, the images used and the
architecture to choose will be based on this particular situation. This previous study [1] uses a
dataset to train and test the small-arch Xception that has mainly this characteristic of images
and goes by the name of FLAME dataset [12]. The authors worked only on a RGB set of images
and the reported classification testing results were of low performance (i.e., accuracy: 76.23%).
Additionally, some other recent studies are having noticeable results.

Still, the majority of images’ background includes urban regions and not forest areas. These
works are mainly concentrated on the use of RGB datasets. Apart from these, in works such as
[13] where authors test different fire detecting algorithms along with proposing their model or
[14] where authors experiment with different already existing neural networks, images are
captured from cameras placed on ground stations. Even in [15] the authors make use of aerial
images, the testing dataset is of limited size. Furthermore, there is not any reference to thermal
imaging. In contrast to ours, where two very big datasets are used and many experiments with
infrared classification are conducted, only the accuracy is a matter of comparison, and no other
metric was presented. Additionally, it should be mentioned that these works use high-end
hardware to produce these sky-scraping results, making it impossible to use these models in
small embedded systems that can be carried in a drone’s compartment. Thus, it was necessary
to introduce a system that combines UAV-captured images, RGB and IR spectrum, high
accuracy, and a fast robust operation on machines with lower technical specifications.
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Figure 3 small-arch Xception architecture.

1. 5 Novelty of the present thesis

In the proposed work, the small-arch Xception published in [1] is utilized to build an optimized
network with potentially higher performance. We aim to classify RGB or IR images of “Fire”
and “non-Fire” cases using forestry-based images acquired from a drone flying at higher
altitudes. Through an experimenting process where small-arch Xception’s architecture was
changed and differentiated, we end to propose a new structure of the Xception network, the
ShRe-Xception (Short Recursive) which is a condensed version inspired by the original
Xception network [11] and the small-arch Xception network proposed by Google Keras [16].
This version on the one hand has been compressed to work on systems with limited capabilities
and on the other side it is, extended, to increase its performance compared to the last model.
The design of the proposed architecture is presented below in Figure 4.
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Chapter 2 Theoretical Background

2. 1 Artificial Intelligence

Artificial intelligence (Al) has emerged as a pioneering field of research and technological
development that came to improve many aspects of human life. With the recent advancements
in computing power, machine learning algorithms, and data availability, Al has become a
driving force behind transformative innovations across industries. It consists of any technique
that enables a machine to process data to drive some future decision, mimicking human
behaviour.

ARTIFICIAL
INTELLIGENCE
Any technique that enables

“computers to mimic
human behayior

Figure 5 From MIT Introduction to Deep Learning | 6.5191

2.2 Machine learning

Machine Learning (ML) is a subset of Al and describes the ability of a machine to learn through
experiments. More specifically, by providing the questions and the answers to a problem, the
system can automatically create its own rules in decision-making, without being explicitly
programmed. This approach allows machines to automatically analyse vast amounts of data,
detect patterns, and make accurate predictions. A subset of ML is Deep Learning (DL)

2.3 Deep Learning

As mentioned before Deep learning is a field of machine learning, that offers noticeable
advancements in modeling and detecting complex patterns in data. Deep learning architectures,
analyze data with a logical structure inspired by the structure and function of the human brain
and are characterized by multiple layers of interconnected artificial neurons. The training
process can be done both through supervised and unsupervised learning. To achieve these Deep
Learning applications, a layered structure of neurons called Convolution Neural Networks
(CNNs) is used, leading to a process of learning that’s far more capable than that of standard
machine learning models. To make this possible there are two main things that someone needs
to train and test a DL model, data availability and computing power. There is a need for a great
amount of data to train a network since CNNs learn by example. The network must be passed
by many different examples to start recognizing objects and many more in order to become
robust enough to set the right rules for its decision-making. Secondly, DL needs substantial
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computing power. Yet, with the emergence of cloud computing infrastructure and high-
performance GPUs, the time for training a network is significantly reduced [17].

Input layer Hidden layers Output layer

i h h, h; o

e 7N
o l' ‘,g:z”«-m»\v =
- SO

Figure 6 Convolution Neural Network representation [18].

2. 4 Convolution Neural Networks

Convolution Neural Networks (CNNs) are one of the Deep Learning algorithms designed for
processing and analysing structured grid-like data, such as images. CNNs have gained
significant popularity and achieved state-of-the-art performance in various computer vision
tasks, including image classification, object detection, and image segmentation. One of the key
features of CNNs is their ability to automatically learn spatial hierarchies of features from raw
input data, enabling them to capture local patterns, global structures, and semantic
representations. CNNs are composed of several layers, such as convolutional layers, pooling
layers, and fully connected layers. In the convolutional layers, kernels are convolved with the
input data to extract the most significant features and create feature maps. The pooling layers
help reduce the spatial dimensions of the feature maps, enabling the network to be more robust
to translations and variations. Finally, the fully connected layers combine the extracted features
and perform the classification.

In our work, the input tensor for the network to classify is an image of 254px254p resolution.
This resolution is a little smaller than expected nowadays but it is due to the multitude of
datasets that we were able to find, to train and test our networks. As for the color channels of
the image, it can be one or three depending on the way that the images are captured.

2. 4. i Convolution Layer

Passing the input process, the convolution layer is usually the first layer of a CNN where an
image is convolved with a filter of specific dimensions called kernel. Kernels are small filters
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that are applied to image’s data through a sliding window that convolves across its width and
height computing the dot product between image’s pixel values and kernel’s values, producing
a feature map for this specific filter. Kernel’s dimensions are specified from the beginning of
the process and its depth depends on the image’s depth.

Having a 2d image and one filter that will be 2d, as mentioned before, their convolution will
generate a matrix that will be a 2d array. So, the summary is that the number of image’s channels
will determine the depth of the kernel. Now, the convolved image that will be produced after
applying the filter will may have different dimensions compared to the initial one. When a n x
n image convolves with a m x m filter without using padding, the convolved image dimensions
will be (n-m+1) x (n-m+1). Having a network that is quite deep, this process can lead to
shrinking the image as many convolutions are performed iteratively. Additionally, as the image
gets cropped step-by-step, its edges start to disappear and the neural network loses potentially
relevant information, preventing the edge pixels to contribute as much to the feature detection.
The padding process comes to solve this issue by extending the image sufficiently to maintain
the original image dimensions after the convolution. So, 3 types of padding can be used:

1) Zero-padding

2) Symmetric padding
3) Replicate

4) Circular

1) Zero-padding: is a process where you put zeros everywhere around the image to extend
it like Figure 7 below.
| iy sbnbaky mhabaiey bbby bbby At Sl bbby bty bty |
tojojoltololtoltololo}] o]}
1ol 1|29(13] 2|3 |2(|17]|2] 0 |
- -
1o|2a|33|32|7|9|w0]4a]2]|o0]
o -
toflaa|wo| 2211 ]18]22]21] 01
T ==
1ofas| 7| af1a]|19]|3]|0]13] 0i
k== ==
1o|16[14|8[16]| 417|387 0]
== =TT
toa|2s|6 | 2|3 ]31]|36f[2n] 0!
| B e |
1l o |¥2a8] 10| 3 | 9 |11 | 28 | 21 |gol o |
- -
1o 32197 |[20]22]|6 [25] 0}
B ——
] 1
I 1
] 1

o
-
.
.
"
s
-
.
-
B

Figure 7 Zero padding example.

2) Symmetric padding: is the process where you mirror the edge pixels symmetrically to
the extended part of the images as shown below in figure 8.
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Replicate padding is the process where you grab the value of the edge pixel and use it

3)

to extend the image iteratively as presented in Fig 9.
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Figure 9 Replicate padding example.

Circular padding: is the process where you grab the value of the edge pixel and use it

4)

to the symmetrically opposite position to extend the image iteratively as presented in Fig 10.
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Figure 10 Circular padding example.

Moreover, there is another parameter that tends to affect the convolution process. It is called
stride and it indicates the step (how many shifts) that the kernel should do after it is applied to
anx n window.

To conclude, a Convolution Layer has the 4 following main characteristics:

1) Kernel size

2) The number of image channels
3) Padding

4) Stride

It should be noted that in our work there are not only convolution layers used, but separable
convolutional layers too. This type of layer is introduced in [6 paper], where the authors prove
the similarity of those two previous layers but recommend the use of the second one since it is
less cost-intensive in terms of complexity and parameter multitude.

2.4.ii Pooling Layer

Pooling layers are one of the main components of Convolution Neural Networks. Their
importance is based on the fact that they are responsible for the down-sampling procedure.
Down-sampling is necessary as an image cropped or tilted that still contains important
structural elements, without the fine detail, may not be successfully classified. Pooling
layers consolidate the features learned by CNNs, making them invariant to translations. The
objective is to progressively reduce the spatial dimension of the representation to minimize the
network's parameters and computations.

Pooling involves selecting a pooling operation. The size of the pooling operation is almost
always 2x2 pixels applied with a stride of 2 pixels. As a result, the pooling layer will necessarily
divide the dimensions (Height, Width) by a factor of 2, thereby reducing the number of pixels
available for the subsequent convolution operation.

Two common pooling functions are used:
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1. Max or Maximum Pooling: is the function that calculates the maximum value for each
block where the pooling window is applied. As Max Pooling retains the most prominent
features of the feature map, the returned image is sharper than the original image.

2. Average Pooling: the function that calculates the average value of each block. In
contrast to the previous category, Average Pooling retains the average values of
features so, the returned image is smoother but with maintaining the main features of
the image [19].

after max pooling

I

IRput(eature map after average pooling digit express of the pooling process

after max pooling

input feature map after average pooling digit express of the pooling process
Figure 11 Illustrations of different pooling processes and their drawbacks [20)].

As we can see from the previous image when we have a bright background the max pooling
process loses the object to be detected (line) and transfers a blank image to the network. On the
other hand, in a dark background, average pooling, could not maintain the bright line and
additionally blurs it enough to start a disappearing process.

2. 4.iii Fully Connected layer

A Fully Connected layer (FC) is the last layer in the convolution neural network. This type of
layer consists of two individual layers, one of which is an Affine Function and the other is a
Non-Linear Function. The FC layer takes the output of the previous convolution or pooling
layers, “flattens” them, and returns a single vector as an input to a Non-Linear function. It is
important to note that the output after performing convolutions and after passing through
pooling layers is a 3-d matrix. To flatten it, the output is passed through a global average pooling
layer where each matrix value is stacked and the result is a single-dimension vector. The
flattened vector is then passed to a fully connected layer which is expressed by:
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y=gWwX+b)
where:

W is a vector containing the weights that are used.
X is the input vector.

b is the bias vector which is an additional set of weights in a neural network that corresponds
to the output of a convolutional neural network when it has zero input.

g represents the activation function.

Figure 12 Fully Connected layer example [21].

This combination of layers ends with an Activation Function, as mentioned before. An
Activation Function decides whether a neuron should be activated or not. This means that it
decides whether the neuron’s input is important or not in the process of prediction. There are
two categories of Activation Functions, and they are listed as:

1. Linear Activation Functions.
2. Non-Linear Activation Functions.

Below are presented some examples of Activation Functions, to show how they work and the
advantages and disadvantages behind their use in neural networks [22].

Binary Step Activation Function:

It is a linear function that relies on a threshold value. If the input value is greater than the
threshold, the neuron is activated, or else is not activated, and the input value will not be
transferred to the next layer.

It can be mathematically expressed as:

o -jo- (25!

And graphically expressed as:
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Binary Step Function

Figure 13 Binary Step Function

Linear Activation Function:

The Linear Activation Function is the function where the output is proportional to the input. It
is also known as “no activation” or “identity function” as the input is multiplied by 1 and the
function has nothing to do with the weighted sum of the input.

Mathematically it is expressed as:
fx) =x
And graphically is expressed as:

Linear Activation Function

Figure 14 Linear Activation Function

Above, some linear activation functions were presented. Those functions are of limited power
as they cannot create complex connections between the network’s inputs and outputs. Non-
Linear functions, on the other hand, have the power to revoke these limitations since by
allowing the stack of multiple layers of neurons, the output can now have a non-linear
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association with the input that is passed through multiple layers. Additionally, it allows
backpropagation, which can offer a deeper understanding of which weights in the input neurons
can provide a better prediction for our model. Driven by all the previously discussed
advantages, some non-linear functions, which are essential to convolutional neural networks,
are presented.

ReLU Activation Function:

ReLU (Rectified Linear Unit), while giving the impression of a linear function, has a derivative
function that allows for backpropagation. Its main advantages are that it is computationally efficient
and does not activate all the neurons at the same time. The neurons will be activated with linearity if
the input is greater than zero, but not activated at all if the input is less than zero. So mathematically
it is represented as:

f(x) = max(0, x)
And its graphical representation is:

RelLU

Figure 15 ReLU Activation Function

Unfortunately, the derivative when you browse the negative side of the graph is zero. This
means that during backpropagation, some weights and biases of not activated neurons will not
be updated and this can create neurons that are placed in the network but not ever activated
(dead neurons). This decreases the model’s ability to train from the data accurately. For this
reason, some other versions of this activation function were created and will be presented
below.

Leaky ReLU Activation Function:

The Leaky ReLU function is an optimized ReLU as it solves the neuron Dying problem as it
has a small incline in the negative grid as can be seen in Fig 16. Its mathematical representation
is very similar to the original version but with one difference in the negative inputs. More
specifically the output is:
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f(x) = max (0.1 x,x)

Leaky RelLU

max(0.1 * x,x)

max(0.1 * x,x)

Figure 16 Leaky ReLU Activation Function

Parametric ReLU Activation Function:

The Parametric ReLU function is another version of the ReLu function that tries to solve the
Dying problem. The difference between this version and the previous one (Leaky ReLU) is that
it does not use a fixed factor for the incline as “0.1” was used before, but goes with the use of

a variant incline (a*x), where “a” is a learned value that the network retrieves during
backpropagation process. Its mathematical representation is:

f(x) =max (a-x,x)

And its graph is:

Parametric ReLU

f(y)

fly) =y

f(y)= ay

Figure 17 Parametric ReLU Activation Function
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The Parametric ReLU function is used usually when Leaky ReLU fails to solve the Dying
problem. However, we should bear in mind that this activation function will perform differently
depending on the value of “a” which controls the incline of the line on the negative space.

Passing through different ReLU functions that should be used in the hidden layers, some other
activation functions, that are mostly used in the decision-making layers, should be now
provided. These functions are:

Siemoid Activation Function:

The Sigmoid Function is, as its name announces, an “S” shaped diagram where every input
value is mapped to an output between zero and one. The more positive the value in the input is,
the closer it will be to the output 1, or the more negative the value, the closer it will be to 0,
respectively. This is due to the mathematical model that describes the Sigmoid Function that is
shown below:

f(x)=m

Graphically, the Sigmoid function is an “S” shaped line that goes like this:

Sigmoid / Logistic

Figure 18 Sigmoid Activation Function

Sigmoid is commonly used for models where we have to predict the probability as an output.
It is the ideal option to use when classifying between two case scenarios since the probability
of any outcome exists only between the range of 0 and 1, and the Sigmoid can choose which
case is more likely to be represented.
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Softmax Activation Function:

Now, if you have to classify between more classes at the classifying layer, Sigmoid is not going
to be useful. Softmax, on the other hand, is a combination of multiple Sigmoid functions. It
calculates the relative probabilities and returns the probability of each class. So, the present
function is mainly used as an activation function for the final layer of the neural network, ideally
when dealing with multi-class classification.

Mathematically it is expressed as:

Tanh Activation Function:

Tanh function is very similar to the sigmoid activation function and has a similar “S” shaped
design but more vertically extended. Its range is between -1 and 1 and this makes it more
symmetrical in regard to zero than the sigmoid is, making it possible to map the output values
to strongly negative, neutral, and strongly positive. Its mathematical expression is:

X X

et — e

e*+ e

f&) =

And it is graphically expressed by:

Tanh

Figure 19 Tanh Activation Function
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2.4.iv Loss Functions

A loss function is a function that compares and quantifies the difference between the ground
truth labels and predicted output values. More specifically, it measures how well a neural
network captures meaningful patterns and makes accurate predictions [23]. When training a
neural network, we aim to minimize this loss, so as to increase the model’s accuracy and
robustness.

The choice of an appropriate loss function must be carefully considered to achieve optimal
training and improve the overall performance of our CNN model. So, we must choose from a
range of different ones, that are to be presented below, considering the task that we are trying
to manage (regression or classification). Thus, here are some loss functions that are commonly
used [24]:

Mean Squared Error (MSE):

One of the most popular loss functions, MSE, calculates the average of the squared differences
between the ground truth values and the predicted outputs and it is often used for regression
tasks, where the goal is to predict continuous values. As mentioned before, the difference is
squared, disregarding whether the predicted value is higher or lower than the target value.
However, values with a large error are penalized. The Mean Squared Error loss function is
described by:

N
1
MSE = Nzo(yi -9
i=

Where y; stands for predicted output and ¥; for the ground truth value.

Binary Cross-Entropy:

Binary cross-entropy is commonly used for binary classification problems, where the output is
a single value to classify between two pre-set categories. It measures the dissimilarity between
predicted and true labels, with the use of logarithmic terms to penalize larger errors. In binary
classification, the outcome can only be between two true values of 0 or 1. Thus, to accurately
determine the loss it needs to compare the actual value (0 or 1) with the probability that the
input aligns with that category (p(i) = probability that the category is 1; 1 - p(i) = probability
that the category is 0). This process can be represented as a single equation, which is shown
below:

N
1
BCE = — NZ(}’L‘ log(3) + (1 —y;) - log(1 — %))
i=0

Where N is the total number of samples in the dataset, y represents the true value and ¥
represents the predicted value.

Categorical Cross-Entropy:

Categorical cross-entropy is used for multi-class classification tasks. It calculates the average
cross-entropy loss over all classes, comparing the predicted class probabilities to the true labels.
It penalizes larger differences between predicted and true class probabilities. The penalty is
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logarithmic, assigning a low score for minor variances and a high score for significant
differences. It is similar to Binary Cross-Entropy, but their difference is based on the number
of classes that you need to classify between.

1 N M
CCE = —NEZyij-log(ﬁ;)

Where N is the total number of classes in the dataset and M is the total number of samples.

yij represents the true probability for class i and sample j.

¥, represents the predicted probability for class i and sample j.

2.5 Xception architecture

The Xception architecture is a version of the Inception family architecture, and its name stands
for “Extreme” Inception. The idea behind this creation is the replacement of the convolution
layer with a depthwise separable convolution layer, since, as proven in [6 paper], these
functions can be nearly identical. The reason behind this action is efficiency and the reduction
of computational cost as we will see below.

The separable convolution is an operation consisting of two individual operations: 1) a
depthwise spatial convolution and 2) a pointwise convolution. So, talking about the depthwise
separable convolution, imagine having a “k by k™ image in the RGB color field meaning that it
has a depth of 3 layers as the 3 channels of RGB. Imagine again, that we want to convolute this
k X k x 3 image with a filter that is of size 3 X 3 X 1. This means that we must convolute
every channel of the image with this filter having a total of 3 X 3 X 1 X 3 actions.

k
—) K 3 /
3
k \ k Filter
Image Kk

After this convolution, we end up having an [ X [ X 3 image ( [ may be equal to k depending
on padding and stride of the convolution). To perform a pointwise convolution, we have to
convolute the I X I X 3 image witha 1 X 1 X 3 filter.

Filter

Image

34



This makes a total of 1 X 1 X 3 multiplied by the number of filters that we are willing to use,
let’s say 16. So, this number is 1 X 1 X 3 X 16 , producing an image of [ X [ X 16. Thus, we
would have: (3 X3 X 1Xx3)+ (1 X1x3Xx16) =27+ 48 =75 calculations.

Now, if we had a normal convolution, we should use a filter that was (3 X 3) X 3 X 16 for
kernel size, channels, and the number of filters that we use. In this case, we would have
3 X 3 X 3 X 16 = 432 calculations.

As we can see from all above, the separable convolution is much more effective than the normal
convolution in terms of computational cost, and by increasing the number of filters, it becomes
more and more lighter than normal a convolution.

2. 6 small-arch Xception architecture

Based on the Xception architecture, the authors of [1], designed a model that is smaller than the
original one in terms of the number of parameters and the depth of the network. This was done
in order to fit and run this network to a portable machine with limited capabilities such as the
Jetson series. As we saw in Fig. 3, 20 and we can see again below, the small-arch Xception has
3 parts (input, hidden layers, and the output) as the original version, but only two flows (entry
flow and exit flow). The entry flow, which includes a rescaling of the image, to make the pixel
values vary between 0 and 1, a convolution using 8 filters, a batch normalization, and a ReLU
activation layer. Additionally, it contains a set of ReLU, Separable Convolution, Batch
Normalization, ReLU, Separable Convolution, Batch Normalization, and Max Pooling layers
with an external convolution skip connection of 8 filters. For the exit flow, we have a set of
Separable Convolution, Batch Normalization, ReLU, and a global Average Pooling layer
followed by an FC layer. So, the points that these two differ are:

1) The number of filters used at the entry flow convolutions.

2) The times that this set of entry-level layers are iterated (1 instead of 3)

3) The lack of middle flow where a set of ReLU, Separable Convolution, and Batch
Normalization is repeated many times with a large number of filters.

4) The lack of ReLU, Separable Convolution, Batch Normalization, and Max Pooling
layers in the exit flow.
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Figure 20 small-arch Xception

2.7 ShRe-Xception architecture

Now, the differences between our model and the small-arch Xception model are going to be
explored. In general, we aimed to take the latter model and expand it in such a way that it ends
up a step closer to the original version. Hence, our model is a combination of these two previous
models. Two of the flows are used like the authors of small-arch Xception did, as the middle
flow with a large number of filters iterative process will explode the network’s computing cost.
However, there are two changes that the network has gone through, and they are:

1) The addition of an extra set of ReLU, Separable Convolution, Batch Normalization,
Max Pooling, ReLU, Separable Convolution, Batch Normalization, and Max Pooling
layers but with the use of 16 filters instead of 8 used in small-arch Xception.

2) The breaking of this previous set into two different ones and the addition of a skip
connection containing a convolution with the same number of filters as the separable

convolutions existing in the block, for every set of ReLU, Separable Convolution,
Batch Normalization, Max Pooling layers.
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Figure 21 ShRe-Xception architecture

Still, these changes did not come randomly. To end up with this model, a lot of experiments
and changes in the model’s architecture were performed until one with significantly better
metrics was invented.

As discussed in the Introduction section, the testing, for all the different models and all the
different ways a model was trained, was performed on The FLAME and the FLAME 2
datasets.
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Chapter 3 Datasets

In this work, the only datasets used are uploaded on IEEE DataPort. Everything began with
finding [1] study which contained a training and a testing dataset the FLAME dataset and later,
as we wanted to make the model more robust, the FLAME 2 dataset [25] was discovered,
containing a summary of both RGB and IR images. The latter dataset was used to inject our
already trained model with more RGB images via transfer learning and then used IR images to
make the network classify images from a different spectrum too.

3.1 The FLAME dataset: Aerial Imagery Pile burn detection using drones (UAV’s)

This compilation of images was captured with the help of UAVs, during a planned operation
by a fire department and a team of scientists. In this dataset [12], there are videos and images
from whom the seventh and the eighth repository are used, which include images with
254px254p resolution, which are a little biased, as more “Fire” images are existing in it. The
7™ repository consists of 39375 images for the “Fire” vs “non-Fire” classification process. The
8 repository consists of 8617 frames that are used for testing purposes in our work. This dataset
has been provided “ready for use” as it is already split into training and testing in an 80/20 ratio.
Later, in the training procedure, the training subset was split into training and validation in an
80/20 ratio configuring a total of 64/16/20 ratio for training, validation, and testing respectively.
Below, you can see some of the images that were used:

38



3.2 FLAME 2: Fire detection and modeling: Aerial Multi-spectral image dataset

The Flame 2 dataset [25], likewise the previous one, contains images of “Fire” and “non-Fire”
cases that were captured on a planned operation. The difference between the 2 datasets is that
the latter one contains images of both RGB and IR frames. So, by using both of them, we can
have a larger number of RGB images of both “Fire”” and “non-Fire” cases and simultaneously,
gain the opportunity to train our network to classify images using a thermal camera. This dataset
contains many repositories to choose from, but only the 9" folder which accommodates 53,541
254px254p RGB/ IR frame pairs cropped and formatted to have similar field of view (FOV)
and perspective, is used. There is another folder that has similar images but with 3840px2160p
resolution for RGB and 1920px1080p resolution for IR images. The first one was chosen, rather
than the high-resolution one, because the first dataset that was employed had the same
resolution and we did not want to affect the training procedure when a transfer learning
technique would possibly be performed. Below, in Figs 22, 23 some of the used images are
presented.

Here, it should be noted that this dataset was not ready-to-use, due to the lack of separation into
training, validation, and testing folders. Separation was done manually and an implementation
of an initial 90/10 split for training and testing datasets was done followed by a split in the
training subset with an 80/20 ratio for training and validation. This provided a total of 72/18/10
ratio for training, validation, and testing respectively.

Figure 25 non-Fire cases using RGB/IR spectrum in Flame 2 Dataset.
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3.3 Combined Dataset

For comparison purposes, similar data for training, validation, and testing were required, but
with respect to the same image spectrum. This required producing a combined dataset with all
the RGB images from THE FLAME and THE FLAME 2 datasets concatenated, providing a
compilation of 87,486 training and validation images and 13,965 testing images. The Infrared
dataset which remains solid, will be used as a secondary base of comparison and that will be
discussed even more in the next sections. Below, it is shown a summary of the containment of

every dataset in this work.

Table 1 Number of images per dataset

Number of Types of Images
Images per RGB Training . IR Training and .
Dataset and Validation RGB Testing Validation IR Testing
Flame 39375 8617 - -
Flame 2 53541 5348 15637 1739
Combined 92916 13965 - -
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Chapter 4 Metrics

After training every network, the evaluation process started. This process is necessary so as to
realize how accurate and robust the network that is employed is. In our work, this is done by
evaluating all the models both on the combined and the IR testing sets. The testing procedure’s
output is a combination of the loss and the accuracy of the model during the testing phase. From
these two results, the performance of the model can be assessed, but in order to test in depth
the evaluation power of the produced models and compare them equally, the enhancement of
some other metrics is necessary for the comparison procedure. Thus, these are some of the
metrics that are used in our work:

4.1 Confusion Matrix

The Confusion Matrix is, as its name announces, a matrix that shows the performance of the
model in classification problems. When dealing with a classification problem the resulting
decision is usually a binary one and there are 4 possible results. True Positive (TP) indicates
the model predicted the input as true when the actual observation was true. False Positive (FP)
indicates the model predicted true, but the actual observation was false. False Negative (FN)
indicates the model predicted a false, while the actual observation was true. True Negative
(TN), which indicates the model predicted a false, while the actual outcome was also false, as
can also be seen in Fig. 24 below.

Predicted Positive | Predicted Negative

Actual o~ .
Positive True Positive (TP) | False Negative (FN)

Actual | e Positive (FP) | True Negative (TN)
Negative

Figure 26 Confusion matrix [26].

To obtain the values for the confusion matrices four counters were set during classification
testing which were changing one of the four values of the above confusion matrix after the
network had decided about the content of the image that passed through.

After calculating the confusion matrix values, we can calculate some other metrics that are
directly dependent on those values [27].
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4. 2 Precision

When working on a dataset that has an imbalanced class distribution, the accuracy is not enough
to determine if your model is robust enough. Precision is a metric that calculates the ratio of
how many positive outcomes the network recognized correctly in relation to how many positive
outcomes did the network recognized in total. In more detail, the equation that calculates the
Precision of the network is:

TP

p .. —
recision —TP T FP

4. 3 Recall

Recall or Sensitivity is the metric responsible to calculate the number of correctly positive
predicted outcomes in relation to the total of actual positive outcomes. The more this value
tends to 1, the more possible is for the network to correctly detect the majority of the real
positive frames. More formally:

TP

Recall = Sensitivity = ———
eca ensitivity = oy

4.4 F1 score

Depending on the experiment we go through, sometimes higher priority is given to one of the
two previous values. Still, there are many more applications that both of them are essential. F1
Score is the metric that combines Precision and Recall in a mathematical equation which is:

Precision X Recall

F1S =2
core Precision + Recall

A high F1 Score means a noticeably great value to both Precision and Recall and a good balance
between them. However, when it is not high enough, it is a little bit complex to understand the
reasons behind it, but you can certainly look for the two metrics on which it depends.
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Chapter 5 Experimenting Process

Before getting deeper into the experimenting process, a report should be made containing
information on what kind of hardware is used for these tryouts to be performed. More
specifically, this is a brief description of the computing power that is used as well as the libraries
that are included in the working environment.

Epigrammatically, for this work, a laptop computer with an i7 intel core was put into service
and performed all the training and testing procedures. The laptop has 16 GB of RAM space and
no other external resources like GPU or additional RAM were used in order to perform the
procedures that are to be mentioned later in this section. Thus, every machine with those
capabilities can repeat the steps and confirm the results of the experiments.

As for the software that is used, all the code is written in Python 3.6.9 and compiled into a
virtual environment so as to isolate only the necessary libraries to perform these tasks. In the
virtual environment it is installed:

Tensorflow 2.3.0 and Keras 2.4.0
Cv2 (known as opencv)

tqdm

scipy

pickle5

numpy

random

itertools

. scikit-image

10. matplotlib.pyplot

I N I S SR

5.1 small-arch Xception.

As seen before small-arch Xception is a smaller version of the original Xception network, used
in [1]. To practice on neural networks, the small-arch Xception architecture was recreated in
our system. The FLAME dataset was downloaded and as it was already split into training,
validation, and testing sub-folders, the training procedure started. The training lasted for 40
epochs and the one giving the best results was the 25" model, identical to this that the author
announces.

After training small-arch Xception, the testing folder contained in THE FLAME was employed
to test our model. Following the authors’ results, when tested, it accomplished an accuracy of
68.72% (see Table 3). This metric is slightly different from the one that the authors published
(76.23%), but, to our knowledge, this is something that occurs when using a stochastic model
and the training procedure is performed on machines with different hardware (CPU was used
for training instead of GPU). For testing the model with the best results mentioned before was
evaluated.

Below, the training procedure of the small-arch Xception on the FLAME dataset is presented.
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For comparison purposes, the combined dataset was produced. To compare the models that we
are going to experiment with equally, the accuracy presented above will not be used. The model
will be tested on the combined dataset, producing the base model from where the experimenting
journey will start. Further than the discussed accuracy, more metrics were employed to test the
models’ robustness, as we will discuss further in the results section.

5.2 Transfer Learning

When testing the small-arch Xception, a new dataset was discovered containing acrial images
of wildforests containing “Fire” and “non-Fire” frames. In order to enhance these images to our
training procedure the transfer learning technique was employed. As discussed before, THE
FLAME 2 dataset contains both RGB and IR images of this theme.

Firstly, the network was injected with RGB-only images via transfer learning. To apply this
technique, all input and hidden layers were frozen and only the classifier’s layers were trained.
After that, infrared-type images were inserted in the training procedure, again with the use of
transfer learning, in order for the designed model to classify both RGB and IR images of forest
fires, expanding our system’s vision. This retraining procedure with infrared images was
applied to both the base model (small-arch Xception trained with THE FLAME) and the latest
produced model (small-arch Xception retrained with RGB images of FLAME 2), producing
two comparable models. In the Result section, there will be a measurement of how transfer
learning affects the ability of the model to learn more information. For now, the evolution of
the training process is presented below.
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Figure 29 Losses while transfer learning training.

5.3 Training from scratch

After that, a network that can classify images of both datasets with a specific accuracy value is
produced. But in fact, that happened by using transfer learning. This technique is very helpful
in cases where an empowerment of a model is needed but this can maybe cause a little
drawback. In your try to teach your neural network to classify images of a new additional
dataset, there is a danger for your network to forget or to decrease its capability to recognize
images that had been learned at the beginning of the process.

Thus, an experimenting stage where an effort to train our network with all the images from the
very beginning, started. So, the combined dataset that contains all the RGB frames was
employed to train the small-arch Xception. The training procedure lasted for 40 epochs again
and the model with the best results was the 33", The produced model was evaluated on the
testing set of the combined dataset. Moreover, an additional test for this model on the infrared
testing set was performed to assess its capabilities on an infrared set that it is not trained on.

After these experiments, there was a need to train this new model on IR images too. So, as did
before, we took the model that has been initially trained with all the RGB images and retrained
it via transfer learning with thermal images of THE FLAME 2 dataset. Lastly, this recently
produced model was tested on both the combined RGB and the IR testing sets, so as to have a
fair comparison between these two and the other two models that were produced in the previous
subsection.

Below, training evaluations for small-arch Xception trained with all RGB images from the
beginning and its infrared transfer learning reinforcement are presented.
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5.4 The idea of ShRe-Xception

It is a fact that, as we can see in Figs 2, 3, and 4, that our ShRe-Xception is a hybrid model
produced to combine the best characteristics of the two previously created models. It remains
small, in order to can be installed in machines with limited computing power, but extended as
well, in both depth and complexity to be more robust in terms of classifying wildforest fire
images.

To train this new network, the same procedure done before, in training the small-arch Xception
with all the images from the very beginning, was followed. The network was trained with all
the RGB images from the combined dataset, for 40 epochs again, and the model with the best
results came to be the 24™. Except for testing on the optical spectrum, as we did before, the
model’s performance was tested on the infrared spectrum too. Last, transfer learning was
performed for the IR spectrum to the already trained with RGB images model and the latest
produced model was evaluated on both the combined and the infrared testing set.
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Below the training evaluation of all experiments performed on the ShRe-Xception architecture
is presented.
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With this novel model architecture and the way the models were trained, on the one hand, the

testing accuracy was increased on testing sets, in comparison with previous tested models, and
on the other, infrared classification was enhanced. In our belief, infrared classification plays a

vital role in early fire detection and can be very useful, especially in the night hours when every
prediction is even more difficult to be achieved.

To conclude, we have two small-arch Xception models trained on FLAME and FLAME &
FLAME 2 RGB datasets, respectively. Additionally, we have two others that were produced
when injecting IR images into the previous two. A small-arch Xception that was trained with
all the RGB images from the beginning with its complementary one that was retrained with IR
images and the last two ShRe-Xception architecture models that were trained with RGB-only
images and retrained with IR, respectively.
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Chapter 6 Results

In this section, there will be a full report of all the results that came out when performing the
experiments that we talked about above. All models were tested both on RGB and IR datasets
and confusion matrices and values of the metrics that we used to verify every network’s
robustness are provided below.

6. 1 Small-arch Xception trained on THE FLAME dataset.

Starting from the simple small-arch Xception model the results of the testing procedure will be
presented when inserted into the network all the images from the combined dataset. First, the
confusion matrix is presented:

Table 2 Confusion matrix of the small-arch Xception trained on FLAME and tested on the combined dataset.

Predicted
Ground truth — -
Positive Negative
Actual positive 5110 (tp) 4003 (fn)
Actual negative 364 (fp) 4486 (tn)

Then, all the metrics collected from the testing process:

Table 3 Testing metrics of the small-arch Xception trained on FLAME and tested on the combined dataset.

Metrics Model
small-arch Xception

Accuracy 68.72%

Precision 93.35%

Recall 56.07%

F1 Score 70.06%

Additionally, the same model that has only been trained on THE FLAME dataset was tested
on the IR testing set of THE FLAME 2 dataset and the results were:

Table 4 Confusion matrix of the small-arch Xception trained on FLAME and tested on the infrared testing set.

Predicted
Ground truth — -
Positive Negative
Actual positive 291 (tp) 76 (fn)
Actual negative 46 (fp) 1324 (tn)
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Table 5 Testing metrics of the small-arch Xception trained on FLAME and tested on the infrared testing set.

. Model
Metrics :
small-arch Xception
Accuracy 92.97%
Precision 86.35%
Recall 79.29%
F1 Score 82.67%

The reason behind testing a model that is trained on a particular dataset, on another dataset is
on the one hand to assess the effect that transfer learning has and on the other hand to check
model’s robustness on images that it has never dealt with previously, as this will be the task
for the model to solve.

6. 2 Small-arch Xception retrained via transfer learning.

As the results section will follow the chronological order of the experiments, now the results
of testing are presented, after performing RGB transfer learning to our previous model:

Confusion Matrix:

Table 6 Confusion matrix of the small-arch Xception trained on FLAME and retrained with RGB images of THE
FLAME 2, tested on the combined dataset.

Predicted
Ground truth — -
Positive negative
Actual positive 7580 (tp) 1533 (fn)
Actual negative 1939 (fp) 2911 (tn)

And the metrics:

Table 7 Testing metrics of the small-arch Xception trained on FLAME and retrained with RGB images of THE
FLAME 2, tested on the combined dataset.

Metrics Model -
small-arch Xception
Accuracy 75.13%
Precision 79.63%
Recall 83.17%
F1 Score 81.36%

Taking a further step, this model was tested on the infrared set, too, to have a base of
comparison with the model that will be produced after the infrared transfer learning.

Confusion Matrix:

Table 8 Confusion matrix of the small-arch Xception trained on FLAME and retrained with RGB images of THE
FLAME 2, tested on the infrared testing set.

Predicted
Ground truth — rediete -
Positive Negative
Actual positive 294 (tp) 73 (fn)
Actual negative 23 (fp) 1347 (tn)
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And the metrics:

Table 9 Testing metrics of the small-arch Xception trained on FLAME and retrained with RGB images of THE

FLAME 2, tested on the infrared testing set.

Metrics Model -
small-arch Xception
Accuracy 94.47%
Precision 92.74%
Recall 80.10%
F1 Score 85.96%

As we can see from the results, the transfer learning procedure helped the evolution of both
RGB and IR classification. Additionally, not only the accuracy of the testing process did
increase but all the metrics seemed to increase as well, making the model appear more robust
during evaluation.

The next step, as discussed before, was to train our two previous models with the infrared
training set of the FLAME 2 dataset. Below, two confusion matrices will be presented and then,
the metrics that came up when tested those models will be handed over, in order to have a
clearer understanding of what happened after performing transfer learning with infrared images.

First, when tested on the combined RGB dataset the confusion matrices that resulted were:

Table 10 Confusion matrix of the small-arch Xception trained on FLAME, retrained with infrared images of THE
FLAME 2 and tested on the combined dataset.

Predicted
Ground truth — -
Positive Negative
Actual positive 1407 (tp) 7706 (fn)
Actual negative 0 (fp) 4850 (tn)

Table 11 Confusion matrix of the small-arch Xception trained on FLAME, retrained with RGB images, retrained

again with infrared images of THE FLAME 2 and tested on the combined dataset.

Predicted
Ground truth — -
Positive Negative
Actual positive 7001 (tp) 2112 (fn)
Actual negative 998 (fp) 3852 (tn)
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Testing metrics:

Table 13 Testing metrics of the small-arch Xception trained on FLAME, retrained with infrared images of THE
FLAME 2 and tested on the combined dataset.

. Model
Metrics -
small-arch Xception
Accuracy 44.81%
Precision 100.00%
Recall 15.43%
F1 Score 26.75%

Table 12 Testing metrics of the small-arch Xception trained on FLAME, retrained with RGB images, retrained
again with infrared images of THE FLAME 2 and tested on the combined dataset.

. Model
Metrics -
small-arch Xception
Accuracy 77.72%
Precision 87.52%
Recall 76.82%
F1 Score 81.82%

Then these models were tested on the infrared dataset to assess what impact transfer learning
has had on them:

Confusion Matrices:

Table 14 Confusion matrix of the small-arch Xception trained on FLAME, retrained with infrared images of THE
FLAME 2 and tested on the infrared testing set.

Predicted
Ground truth " i ;
Positive Negative
Actual positive 295 (tp) 72 (fn)
Actual negative 55 (fp) 1315 (tn)

Table 15 Confusion matrix of the small-arch Xception trained on FLAME, retrained with RGB images, retrained
again with infrared images of THE FLAME 2 and tested on the infrared testing set.

Predicted
Ground truth " i .
Positive Negative
Actual positive 358 (tp) 9 (fn)
Actual negative 46 (fp) 1324 (tn)
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Testing metrics:

Table 16 Testing metrics of the small-arch Xception trained on FLAME, retrained with infrared images of THE
FLAME 2 and tested on the infrared testing set.

Metrics Model -
small-arch Xception
Accuracy 92.68%
Precision 84.28%
Recall 80.38%
F1 Score 82.29%

Table 17 Testing metrics of the small-arch Xception trained on FLAME, retrained with RGB images, retrained
again with infrared images of THE FLAME 2 and tested on the infrared testing set.

. Model
Metrics -
small-arch Xception
Accuracy 96.83%
Precision 88.61%
Recall 97.54%
F1 Score 92.86%

After the infrared reinforcement was performed, two things were observed:

1. The first model dropped its accuracy both on RGB and IR testing sets proving that it
was not ready to deal with infrared images as it was not powerful enough in the
optical spectrum.

2. The already retrained model showed a greater ability to adapt to other datasets when
it needs to be retrained to improve its classification performance.

6. 3 Small-arch Xception trained initially with all the RGB images.

As mentioned, many times, the same architecture was produced and trained, by setting as an
input all the RGB images from concatenating FLAME and FLAME 2. So first, the latest
produced model was tested on the combined dataset:

Confusion Matrix:

Table 18 Confusion matrix of the small-arch Xception trained on the combined dataset (training set) with all the
RGB images from the beginning, tested on the combined dataset (testing set).

Predicted
Ground truth " i ;
Positive Negative
Actual positive 8485 (tp) 628 (fn)
Actual negative 1486 (fp) 3364 (tn)
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And the metrics:

Table 19 Testing metrics of the small-arch Xception trained on the combined dataset (training set) with all the
RGB images from the beginning, tested on the combined dataset (testing set).

Metrics Model -
small-arch Xception
Accuracy 84.86%
Precision 85.09%
Recall 93.10%
F1 Score 88.92%

And then, testing on the infrared dataset will give us the base of comparison between before
and after the transfer learning procedure:

Confusion Matrix:

Table 20 Confusion matrix of the small-arch Xception trained on the combined dataset with all the RGB images
from the beginning, tested on the infrared testing set.

Predicted
Ground truth — -
Positive Negative
Actual positive 89 (tp) 278 (fn)
Actual negative 952 (fp) 418 (tn)

And the metrics:

Table 21 Testing metrics of the small-arch Xception trained on the combined dataset with all the RGB images
from the beginning, tested on the infrared testing set.

Metrics Model -
small-arch Xception
Accuracy 29.18%
Precision 8.54%
Recall 24.25%
F1 Score 12.64%
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6. 4 Small-arch Xception trained initially with all the RGB images and retrained
with infrared images.

In this step, transfer learning with infrared images was performed. The testing results after
this process when evaluating first on the combined dataset are:

Confusion Matrix:

Table 22 Confusion matrix of the small-arch Xception trained on the combined dataset with all the RGB images
from the beginning and retrained with IR images from FLAME 2, tested on the combined dataset.

Predicted
Ground truth " i ;
Positive Negative
Actual positive 7683 (tp) 1430 (fn)
Actual negative 2815 (fp) 2035 (tn)

And the metrics:

Table 23 Testing metrics of the small-arch Xception trained on the combined dataset with all the RGB images
from the beginning and retrained with IR images from FLAME 2, tested on the combined dataset.

. Model
Metrics :
small-arch Xception
Accuracy 69.60%
Precision 73.18%
Recall 84.30%
F1 Score 78.35%

Since tested the previously trained model on the combined testing set, now, it will be tested
on the infrared testing set, too:

Confusion Matrix:

Table 24 Confusion matrix of the small-arch Xception trained on the combined dataset with all the RGB images
from the beginning and retrained with IR images from FLAME 2, tested on the infrared testing set.

Predicted
Ground truth — -
Positive Negative
Actual positive 207 (tp) 160 (fn)
Actual negative 290 (fp) 1080 (tn)
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And the metrics:

Table 25 Testing metrics of the small-arch Xception trained on the combined dataset with all the RGB images
from the beginning and retrained with IR images from FLAME 2, tested on the infrared testing set.

Metrics Model -
small-arch Xception
Accuracy 74.09%
Precision 41.64%
Recall 56.40%
F1 Score 47.91%

From this experiment, it becomes understood that a model that is strongly trained to focus on
classifying RGB images shows higher performance on the RGB testing set. Unfortunately,
because this model is trained unilaterally, it cannot classify images from the infrared dataset
with a decent performance.

When retrained with infrared images, as was expected, the RGB accuracy dropped but the
accuracy for infrared testing appeared to rise. This means that if there is a need for the model
to do both of these two classifications, the right point of training where the best results of every
spectrum meet must be established, or else, maybe the best model for every spectrum should
be employed to obtain the best possible outcome.

6. 5 ShRe-Xception trained with all the RGB images.

ShRe-Xception is our currently produced architecture. As done before, taking all the RGB
images from the combined dataset and inserting them into ShRe-Xception’s training procedure,
created the first model. Similar to all previous experiments, this model was tested first on the
total RGB testing set and then on the infrared one.

Confusion Matrix:

Table 26 Confusion matrix of the ShRe-Xception trained on the combined dataset with all the RGB images, tested
on the combined dataset.

Predicted
Ground truth " -
Positive Negative
Actual positive 8239 (tp) 874 (fn)
Actual negative 507 (fp) 4343 (tn)
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And the metrics:

Table 27 Testing metrics of the ShRe-Xception trained on the combined dataset with all the RGB images, tested
on the combined dataset.

Metrics Model -
ShRe-Xception
Accuracy 90.10%
Precision 94.20%
Recall 90.40%
F1 Score 92.26%

While getting those encouraging results from the previous experiment, an experimenting
process for infrared testing began, to assess network’s power on the thermal spectrum.

Confusion Matrix:

Table 28 Confusion matrix of the ShRe-Xception trained on the combined dataset with all the RGB images, tested
on the infrared testing set.

Predict
Ground truth " redicted ;
Positive Negative
Actual positive 357 (tp) 10 (fn)
Actual negative 2 (fp) 1368 (tn)

And the metrics:

Table 29 Testing metrics of the ShRe-Xception trained on the combined dataset with all the RGB images, tested
on the infrared testing set.

Metrics Model -
ShRe-Xception
Accuracy 99.31%
Precision 99.44%
Recall 97.27%
F1 Score 98.34%

As we can see from the obtained results, this model can be used for classification in both
spectrums. It is highly accurate and without being trained in IR images, it has very strong
classification results and makes a great impression.
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6. 6 Already trained ShRe-Xception, retrained with infrared images.

As this study is coming to an end, the only thing missing is a model trained to do the infrared
classification better. Thus, the already efficient ShRe-Xception model was retrained with
infrared images of the FLAME 2 dataset. The model that has been produced was tested in both
the combined and the infrared testing sets and the results can be found below, respectively.

Confusion Matrix:

Table 30 Confusion matrix of the ShRe-Xception trained on the combined dataset with all the RGB images and
retrained with IR images from FLAME 2, tested on the combined dataset.

Predicted
Ground truth . .
Positive Negative
Actual positive 9016 (tp) 97 (fn)
Actual negative 4589 (fp) 261 (tn)

And the metrics:

Table 31 Testing metrics of the ShRe-Xception trained on the combined dataset with all the RGB images and
retrained with IR images from FLAME 2, tested on the combined dataset.

Metrics Model -
ShRe-Xception
Accuracy 66.44%
Precision 66.26%
Recall 98.93%
F1 Score 79.37%

For testing in the thermal spectrum, we have:

Confusion Matrix:

Table 32 Confusion matrix of the ShRe-Xception trained on the combined dataset with all the RGB images and
retrained with IR images from FLAME 2, tested on the infrared testing set.

Predicted
Ground truth — -
Positive Negative
Actual positive 356 (tp) 11 (fn)
Actual negative 3 (fp) 1367 (tn)
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And the metrics:

Table 33 Testing metrics of the ShRe-Xception trained on the combined dataset with all the RGB images and
retrained with IR images from FLAME 2, tested on the infrared testing set.

Metrics Model -
ShRe-Xception

Accuracy 99.19%

Precision 99.16%

Recall 97.00%

F1 Score 98.07%

Unfortunately, this is our latest produced experiment and even though the model was retrained
with IR images, the accuracy of the IR testing is staying still if not decreasing a little bit. As
expected, on the other hand, the accuracy of the RGB testing decreased a lot and this is not a
model that can be used for this kind of image spectrum.
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Chapter 7 Comparison

In this section, all the results are going to be put down to comparison to assess if our
experiments did or did not help the production of a real robust network. More specifically, a
summarized table will be provided where all the models will be presented side by side, along
with their accuracy scores on both the combined and the infrared testing set. Later, there will

be a discussion about how each change affected the evolution of our network.

Table 34 Accuracy metrics for all the models tested.

Models
Small- Transfer Transfer Small-arch
arch learning Small-arch | learning on Xception ShRe-
Accurac Xception on Small- Xception Small-arch | Small-arch initially ShRe- Xception,
Testing trained on arch retrained Xception, Xception | trained and | Xception retrained
the RGB Xception, with retrained initially retrained initially with
set of retrained Infrared with trained with trained Infrared
FLAME with RGB images Infrared Infrared images
images images images
Cg;g:elfd 68.72% 75.13% 44.81% 77.72% 84.86% 69.60% 90.10% 66.44%
Infrared 92.97% 94.47% 92.68% 96.83% 29.19% 74.09% 99.31% 99.19%
testing set

7.1 The transfer learning effect

The discussion will follow a chronological order, and at first, the effect of performing transfer
learning with RGB images from THE FLAME 2 dataset will be analysed. So, as can be seen,
there is an increase of 6.41% in the accuracy of the RGB testing set and a 1.5% increase in the
accuracy of the infrared testing set. Eventually, the retraining procedure had a positive outcome
for both RGB and the IR spectrum and that’s something optimistic.

The next step was to retrain both the base model and the RGB retrained one with the IR images.
Thus, starting from the base model and retraining it only with IR images, a decrease of 23.91%
in the RGB field was perceived. A significant drop but somehow logical, because retraining
with IR images, decreases the ability of the network to classify in RGB field, as it changes the
weights of the classifier layers. In contrast to this, the fourth model that had been retrained with
extra RGB images and is now retrained with IR images shows greater adaptability. Talking
with numbers, in the color field, the current model, not only did not drop its accuracy but
increased it with an additional factor of 2.59%. In the thermal spectrum, a rise of 2.36% was
achieved in the accuracy metric, as expected when injecting thermal images in the training
procedure.

7.2 Starting from the base.

Starting again from the beginning, the same architecture was built and trained with all the RGB
images. A comparison should be conducted between this model and the second model that has
been trained with all the RGB images in two stages, which is the closest version to the one we
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discuss about. So, the testing process gave us an 84.86% accuracy in the color field. In
comparison with the 75.13% that the second model had, it notes a 9.73% better accuracy
percentage for classifying optical images of forest fires. Unfortunately, in the thermal field, the
testing accuracy seems to be a lot lower than every other accuracy in the testing process. More
specifically, a percentage of 29.19% was noted, making the comparison with the 94.47% of the
second model meaningless. Just for mathematics, a drop of 65.28% was detected.

Now, transfer learning is performed using infrared images. The new model was down to
comparison to the exact previous model that was discussed before, and this is what occurred.
From 84.86% in the RGB field, the accuracy dropped to 69.60% noting a decrease of 15.26%.
In the IR field, the accuracy went from 29.19% to 74.09% noting an outstanding increase of
44.9%. Looking at it only as an accuracy percentage the 74.09% is not a very high value, but
the fact that these images contributed this much to the result makes the experiment successful.

7.3 Changing the architecture.

Last but not least, the attention is focused on our newly produced model, the ShRe-Xception
model. After training it on RGB images only and testing it on both the combined and the
infrared testing set we can compare it with the second and the fifth models to assess its dynamic
as an architecture. The ShRe-Xception noted an accuracy of 90.10% for the combined dataset,
leaving behind the other two models with 75.13% and 84.86% accuracy, respectively. Mainly
focusing on the fifth model, which has the same training procedure and only differs in the
architecture, the ShRe-Xception has an increase of 5.24% just by changing the structure of the
network a little bit. However, the most fascinating fact is that while it hits this accuracy in the
color field, it doesn’t fail in the IR field. In fact, not only it does not fail but hits an accuracy
score of 99.31% which is higher than ever before. In comparison with the previous two, it has
a 4.84% increment in relation to the second one and a 70.12% increment in relation to the fifth
one.

Additionally, the ShRe-Xception model was retrained with infrared images from THE FLAME
2 dataset. The latter model will be compared to the previous one that shares the same
architecture. In the optical spectrum, after the infrared transfer learning, the model hit an
accuracy of 66.44% noting a 23.66% decrease of power in the RGB classification.
Unexpectedly, even in the IR spectrum, the model lost some of its high accuracy rate. More
specifically, from 99.31% it decreased to 99.19%, which is not a great loss, but we focus on the
fact that a thermal training set did not help the model be more robust when tested on infrared
images.

60



Chapter 8 Conclusion

Looking at the previous sections, the results confirmed that the ShRe-Xception architecture
outperformed the small-arch Xception architecture and that the RGB-trained model scored
better classification results in both the combined and the infrared dataset. On the other hand, it
is a little larger as an architecture, meaning that it needs more time to be trained than the other
one, but this is a process that happens only one time and it is not such a drawback.

8.1 Other Works

There is a lot of research that has been published around the same task that this work is going
through and has achieved encouraging results regarding successful early fire detection. In the
previous study [28], a whole system of detecting home fires and contacting the fire brigade has
been designed, similar to the proposed architecture. The authors use CNNs and in particular,
GoogleNet to classify images in “Fire” and “non-Fire” cases. Additionally, they do not seem to
do any segmentation or localization in the image to figure out the fire’s position. This is not
something questionable in home-fire situations, since if a fire breaks out in a house the fire
department should be called anyway. Still, it could be useful information to support more
firefighters’ duties. In contrast to our work, the two datasets that the authors use, do not contain
much of forest fire cases. Datasets mainly contain fires in the streets and buildings rather than
forestry areas that our work is focusing on, but we must admit that their “non-Fire” images are
tough to be classified as they contain very vivid sunsets and lighting that may confuse a lot of
Al mechanisms. As last, it should be noted that this work did not include any images or
detection framework for the infrared spectrum, something that can play a vital role in fire
detection at early stages, from our perspective.

In another study [29], many novelties were proposed regarding the preprocessing of the input
images and the utilization of the hyperparameters. First of all, a great step was made in the way
that the image reaches the input layer of the network. The authors are running a segmentation
procedure first, isolating a part of the image where they believe the fire is most likely to be.
Then, they take this part and train/test the network, whatever the case, with this only part. This
technique helps remove the background noise and all the busy environment an image can have,
empowering the network’s ability to recognize “Fire” and “non-Fire” cases regardless of the
background environment. Then, authors follow the same path and pass the image to a CNN to
do the classification task, by using an AlexNet model. In the training procedure of this particular
model, a process of optimizing the model’s hyperparameters has been undertaken. These
parameters include the learning rate, the batch size, and the pooling. As for the learning rate,
authors are experimenting with different values through training the model and end up with the
one that trained best their model. Same for the batch size, after an experimenting procedure
when trying different values for this variable, they end up with the best one. As for pooling,
authors not only tried different ways of pooling such as average and max but made another
novelty by inventing an adaptive pooling method which is a way to combine max and mean
pooling. However, in that previous study, neither infrared images were used nor aerial ones
with panoramic viewing angle. Moreover, we did not manage to find the latest model that is
proposed in total. There are experiments presented separately for every parameter and there is
not a clear final one that is proposed with the selected characteristics. To conclude, this work
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sets an inspiring base for our work to evolve. Our work was focused on training experiments
and model architecture and did not include optimizing the model.

Lastly, there was another study [30] where many different architectures were down for
evaluation and comparison. This study presents many good results regarding some of the
models’ accuracy that outperform our architecture. However, it should be noted, that no other
metric was presented and the images that were used, were neither aerial nor with panoramic
viewing angle, mainly including frames with different background environments such as
houses, roads, and working fields rather than focusing on forestry areas. Additionally, there is
not any reference to IR image classification and how this system will be portable to be able to
work in real action.

In contrast to all the above, ShRe-Xception and all the general study around this proposed
architecture sets a base for a huge evolution. It combines aerial imaging, forestry area
surveilling, RGB & IR classification for day and night patrolling and its architecture can be
installed in microcontrollers that are portable to any machine that serves the purpose of saving
our environment.

8.2 Limitations

Deep Learning is a science that requires strong computational power to perform experiments
in real data, with models that have thousands of trainable parameters. Unfortunately, when
trying to train your models to a laptop pc that has not been made to do this job, the work gets
even more difficult. Furthermore, the structure of the models and the large size of the dataset is
demanding significant time to complete the training process. As a result of this, the margin for
error was really small, because a failed training phase could mean hours of waiting.

Additionally, it should be noted that for training and testing only THE FLAME and THE
FLAME 2 datasets were used. This means that models’ behaviour and robustness have not been
examined in other datasets or on live feed. This is very important as to have a powerful model
it must be able to run unaffected by where the input images are coming from.

Moreover, these experiments have been going through only on my computer. The models have
not been loaded to another computer or more ideally, either to an embedded computer or a
microcontroller. This step will be critical, as our best model has been designed to work in
machines with limited capabilities to be as portable as possible. Thus, if this works as expected,
it gives us a signal to optimize our model more and explore the limits of its capabilities.

8.3 Future Work

To be fair, the majority of the future work is based on the limitations that have been discussed
in the previous subsection. Still, some solutions to our problems that will be mentioned, have
already been in progress and our thoughts will be discussed in regard to the evolution of this
work.

First of all, a novel architecture was produced that seems to give better evaluation results than
the small-arch Xception architecture. However, can we optimize our architecture more? This is
a question that can be answered only after deep experimenting and fine-tuning the thousand
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training parameters of the model along with the loss functions and the optimizer. So, one of the
most significant works in this study is to maximize this architecture’s evaluation metrics as
much as possible. Additionally, since we assessed transfer learning techniques results, an
experiment where the ShRe-Xception architecture will be trained with RGB images in two
stages. This process may offer even better results regarding model’s testing evaluation.

Secondly, as previously discussed, the models have been trained and tested only on FLAME
and FLAME 2 datasets. What should follow is to find more datasets of the same topic to test
the models on or to retrain the models via transfer learning. The best-case scenario is to connect
a real camera as input to the network. This will be the real test for the network to prove its
power since the frames of the camera may have different angles or the camera may be at
different heights and the models might not be able to correctly classify the images. In this step,
other various images can be used to train our network more or to build our own dataset where
the surrounding environment will be as close as possible to the real cases that we want to
classify.

The last stage, that closely linked to all the previous, is to load the model on a Jetson Series
controller and take as input live feed from an external camera. The execution of this process
has already started because in order to promote a network that classifies aerial images, the
network must be loaded to a machine that can be carried on a UAV. In this scenario, our
system’s capabilities can be explored more and features such as time of flight, height of accurate
classifying, travel velocity and many others can be identified.
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