
Accelerating Binarized Convolutional
Neural Networks with Dynamic Partial

Reconfiguration on Disaggregated FPGAs

Panagiotis SKRIMPONIS a, Emmanouil PISSADAKIS b, Nikolaos ALACHIOTIS b,c

and Dionisios PNEVMATIKATOS b,c

a NYU Tandon School of Engineering, Brooklyn, NY, USA
b Technical University of Crete, Chania, Greece

c FORTH-ICS, Greece

Abstract.

Convolutional Neural Networks (CNNs) currently dominate the fields of artifi-
cial intelligence and machine learning due to their high accuracy. However, their
computational and memory needs intensify with the complexity of the problems
they are deployed to address, frequently requiring highly parallel and/or accelerated
solutions. Recent advances in machine learning showcased the potential of CNNs
with reduced precision, by relying on binarized weights and activations, thereby
leading to Binarized Neural Networks (BNNs). Due to the embarassingly parallel
and discrete arithmetic nature of the required operations, BNNs fit well to FPGA
technology, thus allowing to considerably scale up problem complexity. However,
the fixed amount of resources per chip introduces an upper bound on the dimensions
of the problems that FPGA-accelerated BNNs can solve. To this end, we explore
the potential of remote FPGAs operating in tandem within a disaggregated com-
puting environment to accelerate BNN computations, and exploit dynamic partial
reconfiguration (DPR) to boost aggregate system performance. We find that DPR
alone boosts throughput performance of a fixed set of BNN accelerators deployed
on a remote FPGA by up to 3x in comparison with a static design that deploys the
same accelerator cores on a software-programmable FPGA locally. In addition, per-
formance increases linearly with the number of remote devices when inter-FPGA
communication is reduced. To exploit DPR on remote FPGAs and reduce commu-
nication, we adopt a versatile remote-accelerator deployment framework for disag-
gregated datacenters, thereby boosting BNN performance with negligible develop-
ment effort.

Keywords. Binarized Neural Network, FPGA accelerator, Dynamic Partial Reconfiguration

1. Introduction

Considerable improvements in the development of high-performance systems for neu-
ral networks using multi-core technology have been proposed in recent years [1]. How-
ever, various challenges in power, cost, and performance scaling remain, due to the ever
increasing model sizes (e.g., 50MB for GoogLeNet [2], 200MB for ResNet-101 [3],
250MB for AlexNet [4], or 500MB for VGG-Net [5]) that inevitably introduce pro-

Parallel Computing: Technology Trends
I. Foster et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200099

691

hibitively high computational costs, steadily raising the need for accelerated solutions.
The need for models with low memory and compute requirements is imperative.

Several works have been introduced to address the aforementioned challenges, and
reduce the resource utilization requirements of CNNs, e.g., by exploiting the sparsity of
the network connections [6], or by narrowing the data width [7, 8]. Another promising
method is binarization, which relies on a considerably more compact data representation
for the network weights and the neuron values than the one employed by regular CNNs.
The underlying idea is to constrain each value to be either +1 or -1. Consequently, this re-
duces storage and memory bandwidth requirements and allows to replace floating-point
operations with binary operations, thereby paving the way for efficient deep learning
using FPGA technology.

Binarized Convolutional Neural Networks (BNNs) were first presented by Cour-
bariaux et al. [9], who introduced a method to train BNNs with the permutation invariant
MNIST, CIFAR-10, and SVHN [10] datasets, achieving state-of-art accuracy. Rastegari
et al. [11] successfully trained a BNN with ImageNet models, reportedly improving ac-
curacy, boosting performance, and reducing the model size, when compared with a full-
precision AlexNet [4] implementation. Existing implementations of CNNs on FPGAs
face several challenges due to their prohibitively high requirements for storage, memory
bandwidth, and compute capacity. This problem exacerbates with more complex state-
of-art models, such as the VGG model [7] that has 16 layers and 138×106 weights.

In this work, we investigate the potential of Dynamic Partial Reconfiguration (DPR)
on modern FPGA-based multiprocessor system-on-chip (MPSoC) devices when de-
ployed within a disaggregated-computing environment to boost BNN performance. Re-
source disaggregation addresses the problem of fixed resource proportionality in data-
centers by creating and managing pools of different resource types, e.g., compute, mem-
ory, and accelerators. The immense parallel nature of BNNs suggests the eminent need
for a disaggregated accelerator solution.

Devising a FPGA-based MPSoC disaggregated accelerator solution that exploits
DPR beneficially to the performance of BNNs introduces additional challenges: 1. DPR
brings flexibility in accelerator deployment, yet the high DPR overhead may diminish
the expected performance gains. Thus, a beneficial computation-to-PR ratio is needed
in order to justify the DPR overhead and improve performance, 2. The limited on-board
memory resources set an upper bound on the maximum size of images that can be pro-
cessed on a single node, and 3. The evident need for low-latency communication and
synchronization in accelerator-rich environments becomes significantly more imperative
in disaggregated computing platforms, where communication between remote nodes in-
terconnected over a network is required [12, 13]. To address these challenges, we make
the following contributions:

• We map BNN computations to ReFiRe [22], a remote-accelerator deployment
framework for disaggregated computing. This allows to transparently exploit inter-
FPGA parallelism and overcome the physical resource boundary per device for
BNN computations by relying on the framework to stir computation to multiple
disaggregated FPGA-based accelerator nodes. We find that throughput improves
linearly with the number of accelerator devices, without requiring additional effort
for communication or synchronization, neither on the host nor on the accelerator
sides.

P. Skrimponis et al. / Accelerating Binarized Convolutional Neural Networks692

• We boost overall BNN throughput performance of a fixed set of three accelera-
tor cores [14] per remote FPGA by transparently exploiting DPR and intra-layer
parallelism through dedicated features of the employed accelerator deployment
framework. We find that throughput improves up to 3x using DPR on a remote
device than deploying the same set of accelerators locally through a software-
programmable design flow [15]. Importantly, the proposed approach is highly
generic and versatile, thus allowing to boost performance of existing CNN and/or
BNN accelerators using DPR and parallelism, with negligible development effort.

2. Background

2.1. Convolutional Neural Networks

A typical CNN classifier consists of a parameterized pipelined multi-layer architecture.
Layers require configuration of their parameters, often called weights, which must be
determined by training the CNN offline on pre-classified data. Once the parameters are
determined, the CNN can be deployed for the classification of new data points. The
first layer takes as input a multi-channel input image and outputs a set of feature maps
(fmaps). Each of the following layers read the fmaps, performs some computation on
them, and produces a new set of fmaps to be fed into the next layer. Finally, a classifier
produces the probability of that image belonging to each output class. The layer types
are the following:

Convolutional layers realize a filter-like process, convolving the input fmaps with a
K ×K weight kernel. The results are summed, added with a bias, and passed through a
non-linearity function to produce a single output fmap. This process is given in Eq. 1:

yn = f (
M

∑
m=1

xm ∗wn,m +bn). (1)

Pooling layers map each input fmap to an output fmap where every pixel is the
max/mean of a K×K window of input pixels. They are inserted through a CNN to reduce
the size of the intermediate fmaps.

Fully-Connected layers apply a linear transformation on the input 1-D vectors with
a weight matrix. A bias is applied on the result, which is then passed through a non-
linearity function to produce a single 1×1 output. This process is given in Eq. 2:

yn = f (
M

∑
m=1

xm ∗wn,m +bn). (2)

2.2. Binarized Convolutional Neural Networks

A BNN is essentially an extremely quantized, reduced-precision CNN model where
weights and fmap pixels are binarized using the sign function. Positive weights are
mapped to +1 and negative weights to -1, using a compact single-bit representation.
Therefore, BNNs require significantly less storage than standard CNNs. The binarization
of the neural networks can either be partial or full. In order to be considered full, it has
to encompass the following aspects: binary input activations, binary synapse weights,

P. Skrimponis et al. / Accelerating Binarized Convolutional Neural Networks 693

and binary output activations. Due to the quantization effect, there is no need for biasing
since it does not compromise accuracy. However, in order to improve accuracy and scale
down the error, a new layer type has to be introduced:

The Batch normalization [16] layer reduces the quantization error of the binariza-
tion by linearly shifting and scaling the input distribution to have zero mean and unit
variance. The transformation is given in Eq. 3:

y =
x−μ√
σ2 + ε

γ +β . (3)

2.3. CIFAR-10 BNN Model

The CIFAR-10 dataset [17] contains sixty thousand 32×32 3-channel images consisting
of photos taken of real world vehicles and animals. For the experiments, out of the 60,000
images, 50,000 images were chosen for training and 10,000 images for testing. Training
of the CIFAR-10 BNN model was done using open-source Python code provided by
Courbariaux et al. [9], which uses the Theano and Lasagne deep learning frameworks.

3. Related work

Multiple studies have explored the potential of FPGAs for implementing Artificial Neu-
ral Networks (ANNs). Zhang et al. [18] proposed an analytical CNN design scheme
that is based on the roofline model [19] to explore various optimizations, such as loop
tiling and transformation, to reduce resource underutilization and match the computa-
tion throughput to the available memory bandwidth on FPGAs. The study reports 61.62
GFLOPS peak performance at 100 MHz on a VC707 FPGA board.

Qiu et al. [7] presented a dynamic-precision data quantization method, as well as a
convolver design for embedded FPGAs that performs well for all CNN layer types. The
authors observed accuracy loss due to data quantization of as low as 0.4%, while the
average performance of the convolutional layers and the full CNN is 187.8 GOP/s and
137.0 GOP/s at 150 MHz, respectively, when mapped to a Xilinx Zynq ZC706 board.

In 2015, Courbariaux et al. [9] introduced the idea of constraining weights to only
two possible values, e.g., -1 and 1, in order to improve hardware performance of CNNs,
since multiply-accumulate operations can be replaced by simple accumulations. Since
then, multiple studies have presented FPGA-based accelerator architectures for BNNs.
Umuroglu et al. [20] presented FINN, a framework to design efficient FPGA accelerators
for BNNs by tailoring per-layer compute resources to user-provided throughput require-
ments. Employing a ZC706 board, the authors report up to 21,906 image classifications
per second on the CIFAR-10 and SVHN datasets. Liang et al. [21] presented a BNN
FPGA architecture that relies on bit-level XNOR and shifting operations, as well as data
quantization and on-chip storage to achieve high performance. The authors report up to
9396.41 GOP/s for the CIFAR-10 dataset at 150MHz on a Stratix-V platform.

Zhao et al. [14] presented a novel design of a BNN accelerator for FPGAs, which is
synthesized from a high-level language (C++) to Verilog using the Xilinx SDSoC [15]
design flow. The overall accelerator, which operates at 143MHz and achieves 200 GOP/s
for the CIFAR-10 dataset, consists of three computational cores, namely FP-Conv (first
convolutional layer), Bin-Conv (binary convolutional layers), and Bin-FC (binary fully

P. Skrimponis et al. / Accelerating Binarized Convolutional Neural Networks694

PROCESSING
SYSTEM

ACI
MEMORY

PF

OFF CHIP MEMORY

AS 0 AS 1

PF

DMA DMA DMA DMA

O
N

 CHIP M
EM

O
RY

O
N CHIP M

EM
ORY

PF

AS 0 AS 1

PF

O
N

 CHIP M
EM

O
RY

O
N

 CHIP M
EM

O
RY

Program
m

able Logic

Figure 1. ReFiRe-based BNN accelerator architecture.

connected layers). Our work builds upon the work by Zhao et al. [14] and demon-
strates how the proposed BNN accelerator can be mapped to the ReFiRe [22] remote-
accelerator deployment framework, which allows to boost BNN performance without the
need to redesign the aforementioned computational cores. ReFiRe [22] reduces commu-
nication and synchronization requirements between remote accelerator nodes (FPGA-
based MPSoCs) in disaggregated datacenters by shifting control flow and partial recon-
figuration decisions to the remote side through arbitrarily long instructions that encap-
sulate complex sequences of operations and their respective synchronization require-
ments. The framework abstracts away all the complexity of performing DPR on re-
mote/disaggregated FPGAs, and allows to transparently exploit intra-FPGA parallelism
per BNN layer, as well as inter-FPGA parallelism at image granularity. Note that, al-
though DPR has been previously explored to boost CNN performance [23], this is the
first work, to the best of the author’s knowledge, that explores dynamic partial reconfig-
uration on disaggregated FPGAs to improve BNN performance.

4. Disaggregated Acceleration Framework

The ReFiRe [22] framework allows to efficiently deploy remote/disaggregated acceler-
ators by improving the computation-to-communication ratio between a host processor
and an arbitrary number of accelerator devices. This is achieved by relying on complex
instructions of variable length, henceforth referred to as Advanced Coprocessor Instruc-
tions (ACIs), which describe partial reconfiguration events and the required flow of data
among a set of remote partially reconfigurable accelerator cores.

4.1. Hardware architecture

The hardware architecture of the remote accelerator is illustrated in Figure 1. There are
four accelerator slots (AS), with each AS being a partially reconfigurable region (PRR).
Each AS has a private Parameter file (PF) to facilitate accelerator configuration. Further-
more, four Direct Memory Access (DMA) engines are responsible for transferring data
between external memory and each AS. Depending on the BNN layer processed at each
point in time, input data to each AS can arrive either from on-chip storage (output data

P. Skrimponis et al. / Accelerating Binarized Convolutional Neural Networks 695

PARSEC 0 PARSEC P-1

THREAD 0 THREAD Z-1

LOOP 0 LO
O

P P-1

TASK 0 TASK T-1

W
IN

DO
W

 W
-1

WINDOW 0

...

Figure 2. Hierarchy of ACI instruction classes (source: [22]).

L0 L1 L2 L3 L4 L5 L6 L7 L8

Floating-Point Convolution Binary Convolution Fully Connected

Figure 3. Binarized Neural Network architecture.

of a previous layer) or from external memory (input data of the very first layer). The ACI
memory holds the active ACI at each juncture, and directs computation and PR events
on each AS.

4.2. ACI architecture

The ACI memory consists of three main parts, namely SYNC, COMPUTE, and PARAM.
The SYNC area facilitates host-accelerator synchronization. The PARAM area facili-
tates the parameter-based configuration of each accelerator per AS. The COMPUTE area
holds a sequence of instructions that correspond to an application-specific execution sce-
nario. There are five ACI instruction types, organized into a hierarchy of classes: WIN-
DOW, PARSEC, THREAD, LOOP and TASK, as illustrated in Figure 2.

The TASK class contains information related to the input and output data per AS
for a given operation. The multiplexer and the PF per AS are configured and initialized,
respectively, based on data extracted from each TASK class. The LOOP class is a con-
tainer class for TASK objects, which allows to reduce host-accelerator synchronization
requirements by providing the required number of iterations per accelerator operation in
an AS, as well as the desired stride for both the input and the output data. The THREAD
class dictates an order of operations that are performed sequentially, whereas the PAR-
SEC class indicates a parallel section with a number of THREAD classes that execute in
parallel on different AS. Finally, the WINDOW class dictates PR requirements, as each
WINDOW starts with one or more requests for partial reconfiguration.

4.3. Mapping the BNN to an ACI

The architecture of the BNN consists of nine layers, with the first six being convolutional
layers while the next three are fully connected layers, as illustrated in Figure 3. The first
layer (L0 in Fig. 3) receives fixed-point input data and binary weights, whereas the rest of
the layers (L1 through L8 in Fig. 3) operate only on binary data. The convolutional layers
rely on 3× 3 filtering and edge padding, while the fully connected layers apply batch
normalization prior to pooling, and binarization before writing data out to the buffers.
The accelerator system presented by Zhao et al. [14] designed three accelerators, which

P. Skrimponis et al. / Accelerating Binarized Convolutional Neural Networks696

Figure 4. Illustration of the ACI format for the Static Architecture and the PR Architecture for FPGA-based
BNN acceleration.

we employ as-is in our disaggregated accelerator systems. The FP CONV core imple-
ments the L0 layer of the BNN. The BIN CONV core is employed for the following five
binary-only convolution layers (L1 through L5). Finally, the BIN FC core accelerates
the last three BNN layers (L6 through L8).

To map the required BNN computations to an ACI, we place each accelerator call
in a dedicated TASK class, which also contains the respective core’s configuration pa-
rameters and input/output address and sizes. The number of images that are processed
in-between PR events is defined as the number of iterations of a LOOP class, with the
stride being the image size. The THREAD and PARSEC classes allow to expose paral-
lelism per layer by partitioning processing over multiple AS that host the same accelera-
tor core. Finally, the WINDOW class performs one PR event per AS to deploy a different
accelerator core to serve the needs of the next BNN layer. Due to the fact that there are
three accelerator cores, the final ACI that implements the BNN consists of three WIN-
DOW classes, one per accelerator core. Figure 4 illustrates alternative execution sce-
narios based on different ACI structures for the BNN. The Static Architecture is identi-
cal to the reference execution scenario that is implemented on a software-programmable
FPGA by Zhao et al. [14]. Due to the fact that ReFiRe is a native partially reconfigurable
architecture, the Static Architecture involves the initial deployment of the three acceler-
ators in three AS. This is achieved by placing all nine TASK classes (one per BNN layer)
in the same WINDOW class. The PR Architecture exploits PR at run time and exposes
intra-layer parallelism through the PARSEC/THREAD classes. Therefore, three WIN-
DOW classes are required, one per accelerator core, and multiple ACI-based iterations
are performed.

5. Implementation and Evaluation

To evaluate performance on disaggregated FPGAs, we employ two ZCU102 boards, each
containing a Zynq UltraScale+ MPSoC, interconnected over a Small Form-factor Plug-
gable (SFP) 10-Gbps link. Each MPSoC hosts an ARM Cortex-A53 64-bit quad-core
processor running at 1.2 GHz. One board serves as the host processor, whereas the sec-
ond is the accelerator platform. The host board runs Ubuntu 16.04 on its Application
Processing Unit (APU), while all communication is established through the SFP link. All

P. Skrimponis et al. / Accelerating Binarized Convolutional Neural Networks 697

three accelerator cores deployed in ReFiRe are retrieved from https://github.com/cornell-
zhang/bnn-fpga. Table 1 provides resource utilization per accelerator on the ZCU102
evaluation platform, hosting a Zynq Ultrascale+ MPSoC. We evaluate two alternative
execution scenarios, the Static Architecture and PR Architecture (illustrated in Fig. 4)
using the CIFAR-10 dataset.

Table 1. Resource utilization for the three BNN accelerator cores on the Zynq Ultrascale+ MPSoC

ACCEL. LUTs FFs BRAMs DSPs Power (W)

FP CONV 11609 13802 16 0 0.112

BIN CONV 13208 5849 86 2 0.050

BIN FC 4432 6148 20 2 0.086

5.1. Static Architecture

We initially reproduce, using ReFiRe, the same static execution scenario that was eval-
uated by Zhao et al. [14] using SDSoC. Thus, we first deploy the accelerator cores
FP CONV , BIN CONV , and BIN FC through an initial configuration WINDOW. In this
scenario, all 10,000 images we used for evaluation are processed sequentially, directing
the layers output to the next, as dictated by the BNN architecture. This approach required
128 sec to complete. As a reference, we note that the SDSoC-based approach [14] using
the exact same accelerators and number of images required 103.1 sec. The observed de-
lay is due to data exchanges between remote FPGAs for ACI transfers and synchroniza-
tion.

5.2. PR Architecture

Next, we evaluate the DPR-based execution scenario by populating all AS with the same
accelerator core and rely on the PARSEC and THREAD classes to invoke them in par-
allel per layer. The DPR overhead per AS (using ICAP [26]) is 7 ms (2.5 MB bitstream
sizes). Note that, Zhao et al. [14] report 5.7 ms per image without using DPR. Thus, to
yield a beneficial computation-to-PR ratio to exploit DPR using ReFiRe, we organize
processing in batches. Figure 5 illustrates how performance improves with the batch size.
As can be observed in the figure, DPR allows to outperform the fully static architecture
when the batch size exceeds 25 images/batch. Evidently, processing a single image in-
between DPR events yields the worst-case performance, requiring 917 seconds in total
for the 10,000 images, when the static design with 1 instance per accelerator finishes in
128 seconds. When the batch size exceeds 300 images, DPR allows up to 3.1x faster ex-
ecution, due to the four accelerator instances per layer. Note that, aggregate system per-
formance increases almost linearly with the number of disaggregated FPGAs used, due
to the beneficial computation-to-synchronization ratio that the ACI offers. The overhead
to create and transfer an ACI to a remote FPGA is as low as 1.33 sec.

5.3. Comparison with other works

A comparison with previous FPGA accelerator designs for CNN and BNN models is
provided in Table 2. Suda et al.[24] and Qui et al.[7] reported 117 GOPS/s and 136
GOPS/s, respectively, significantly lower than the performance attained through ReFiRe.
Li et al.[25] achieved 594 GOPS/s, with 22.5 GOP/s/W efficiency, due to the increased
power consumption of the design. Our work outperforms the reference approach pro-

P. Skrimponis et al. / Accelerating Binarized Convolutional Neural Networks698

0

100

200

300

400

500

600

700

800

900

1000

1 10 50 100 200 300 500
Ex

ec
ut

io
n t

im
e (

se
c)

Batch size (number of images)

Static_Architecture

PR_Architecture

Figure 5. Execution time to process 10,000 images using the Static Architecture and the PR Archtitecture
when the batch size (number of images in-between PR events) grows up to 500.

posed by Zhao et al. [14], achieving about 3.1 times higher performance and efficiency
for the exact same set of accelerators. Umuroglou et al. [20] and Liang et al. [21] report
considerably higher performance than all other approaches. Therefore, we intend to em-
ploy ReFiRe to further improve the performance of these accelerators by transparently
introducing DPR and deploying disaggregated FPGAs.

Table 2. Performance comparison with other FPGA-based CNN/BNN accelerators. The presented accelerator
system employs the same set of accelerator cores as Zhao et al. [14].

Zhao et al.[14] This work Suda et al.[24] Qiu et al.[7] Li et al.[25] Umuroglu et al.[20] Liang et al.[21]

Platform Zynq ZynqMP Stratix-V Zynq Virtex-7 Zynq Stratix-V
XC7Z020 XCZU9EG 5SGSD8 XC7Z045 VX690T XC7Z045 5SGSD8

Clock(MHz) 143 150 120 150 156 200 150
Precision(bit) Input: 8 Input: 8 8-16 16 16 Input: 8 Input: 8

Weight: 1 Weight: 1 Weight: 1 Weight: 1
Model size (OPs) 1.24 G 1.24 G 30.9 G 30.76 G 1.45 G 112.5 M 1.23 G

Performance (GOP/s) 207.8 667 117 136 565.94 2465.5 9396.41
Power(W) 4.7 5.97 25.8 9.63 30.2 11.7 26.2

Efficiency (GOP/s/W) 44.2 111.73 4.57 14.22 22.15 210.72 358.64

6. Conclusions

Binarized Convolutional Neural Networks (BNNs) offer significant accuracy, perfor-
mance and model compression over standard full-precision Convolutional Neural Net-
works (CNNs). This paper proposed a hardware accelerator architecture for BNNs on
modern FPGA-based MPSoC devices deployed within a disaggregated-computing en-
vironment. We explored the trade-offs in exploiting Dynamic Partial Reconfiguration
(DPR) to meet the performance, communication, and latency requirements. We find that
throughput performance improves linearly with the number of accelerator devices, with-
out requiring additional effort for communication or synchronization, neither on the host
nor on the accelerator sides. We explored, a generic acceleration framework that im-
proves performance of remote, fine-grained accelerators by encapsulating complex se-
quences of operations in arbitrarily long instructions called ACIs. We compared these
accelerator instances against other FPGA-based BNN implementations in the literature.
Our evaluation results show that disaggregation offers an attractive solution, which al-
lows to expose near-peak accelerator performance at the application level, despite per-
forming computations on remote nodes. Future work will focus on architectural im-
provements, exploring a low-precision network for a much larger and more complicated
dataset like ImageNet and AlexNet.

P. Skrimponis et al. / Accelerating Binarized Convolutional Neural Networks 699

References

[1] E. Nurvitadhi, D. Sheffield, , A. Mishra, G. Venkatesh, and D. Marr, “Accelerating Binarized Neural
Networks: Comparison of FPGA, CPU, GPU, and ASIC,” in ICFPT, 2016, pp. 77–84.

[2] C. Szegedy et al., “Going Deeper with Convolutions,” CoRR, vol. abs/1409.4842, 2014.
[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016, 2016, pp. 770–778.

[4] A. Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks,” in Advances
in Neural Information Processing Systems (NIPS), 2012, pp. 1097–1105.

[5] K. Simonyan et al., “Very Deep Convolutional Networks for Large-Scale Image Recognition,” CoRR,
vol. abs/1409.1556, 2014.

[6] X. Xie et al., “Exploiting Sparsity to Accelerate Fully Connected Layers of CNN-Based Applications
on Mobile SoCs,” ACM Trans. Embedded Comput. Syst., vol. 17, no. 2, pp. 37:1–37:25, 2018.

[7] J. Qiu et al., “Going Deeper with Embedded FPGA Platform for Convolutional Neural Network,” FPGA,
2016.

[8] F. N. Iandola et al., “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model
size,” CoRR, vol. abs/1602.07360, 2016.

[9] M. Courbariaux, Y. Bengio, and J. David, “BinaryConnect: Training Deep Neural Networks with binary
weights during propagations,” CoRR, vol. abs/1511.00363, 2015.

[10] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading Digits in Natural Images
with Unsupervised Feature Learning,” in NIPS Workshop on Deep Learning and Unsupervised Feature
Learning, 2011.

[11] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: ImageNet Classification Using
Binary Convolutional Neural Networks,” CoRR, vol. abs/1603.05279, 2016.

[12] K. Katrinis et al., “Rack-scale disaggregated cloud data centers: The dReDBox project vision,” in DATE
2016. IEEE, 2016, pp. 690–695.

[13] A. M. Caulfield et al., “A cloud-scale acceleration architecture,” in MICRO 2016. IEEE, 2016, pp.
1–13.

[14] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava, R. Gupta, and Z. Zhang, “Accelerating
Binarized Convolutional Neural Networks with Software-Programmable FPGAs,” FPGA, 2017.

[15] V. Kathail et al., “SDSoC: A Higher-level Programming Environment for Zynq SoC and Ultrascale+
MPSoC,” FPGA, 2016.

[16] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal
covariate shift,” CoRR, vol. abs/1502.03167, 2015.

[17] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” 2009.
[18] C. Zhang et al., “Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Net-

works,” FPGA, 2015.
[19] S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful Visual Performance Model for

Multicore Architectures,” Commun. ACM, vol. 52, no. 4, pp. 65–76, 2009.
[20] Y. Umuroglu et al., “FINN: A Framework for Fast, Scalable Binarized Neural Network Inference,”

FPGA, 2017.
[21] S. Liang et al., “FP-BNN: Binarized neural network on FPGA,” Neurocomputing, 2017.
[22] E. Pissadakis, N. Alachiotis, P. Skrimponis, D. Theodoropoulos, T. Korakis, and D. Pnevmatikatos,

“ReFiRe: efficient deployment of Remote Fine-grained Reconfigurable accelerators,” ICFPT, 2018.
[23] F. Kstner et al., “Hardware/Software Codesign for Convolutional Neural Networks exploiting Dynamic

Partial Reconfiguration on PYNQ,” IEEE International Parallel and Distributed Processing Symposium
Workshops, 2018.

[24] N. Suda et al., “Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolu-
tional Neural Networks,” FPGA, pp. 16–25, 2016.

[25] H. Li et al., “A High Performance FPGA-based Accelerator for Large-Scale Convolutional Neural Net-
works,” International Conference on Field Programmable Logic and Applications (FPL), pp. 1–9, 2016.

[26] Xilinx, “UltraScale Architecture Configuration,” https://www.xilinx.com/support/

documentation/user_guides/ug570-ultrascale-configuration.pdf, [Online; accessed
05-Jul-2018].

P. Skrimponis et al. / Accelerating Binarized Convolutional Neural Networks700

https://www.xilinx.com/ support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/ support/documentation/user_guides/ug570-ultrascale-configuration.pdf

