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Abstract

The Mediterranean region has been identified as a “climate change hot-spot”. The specific
region is projected to undergo the most significant drying among 26 regions across the
world, by the end of the 21st century. Karstic springs are the exclusive source of water
during dry months for most Mediterranean regions. The impact of climate change on the
hydrology and water quality of karstic springs has not received proper attention in the
scientific literature. In addition, uncertainty assessment of the hydrologic projections for
karstic watersheds has not been studied and may reveal possible water deficits that
cannot otherwise be taken into account.

This study aims to (1) estimate the impact of climate change on the flow and water quality
predictions of Mediterranean karstic watersheds (2) quantify the uncertainty of these
predictions and (3) evaluate the response of different Mediterranean karstic springs to
the present-day and forecasted meteorological droughts. The methodology developed for
this threefold aim is organized in three sections.

The first section entitled “Estimation of the uncertainty of hydrologic predictions in a
karstic Mediterranean watershed”, addresses the issues of the estimation of the impact of
climate change on the hydrologic projections of a karstic Mediterranean watershed (i.e.
the Koiliaris River Basin) and the assessment of the uncertainty which accompanies these
projections. Specifically, the study focuses on the uncertainties stemming from model
parameter uncertainty, internal variability of rainfall input and climate change scenario.
To this end, the Soil Water Assessment Tool (SWAT) along with a karstic model (Karst-
SWAT) is used to assess the composite spring and surface flow. The parameter
uncertainty of both the surface and karstic flow models are estimated by combining the
SUFI2 interface and the @RISK by PALISADE software. Input to the hydrologic models is
provided by eleven combinations of five Regional Climate Models (RCMs) and three
Representative Concentration Pathways (RCPs) of the EURO-CORDEX ensemble.
Representative rainfall time series for certain of these scenarios are stochastically
modeled with the LARS weather generator. Monte Carlo simulations are used to
investigate the effect of input internal variability on the flow output. The uncertainty of
karstic flow due to the parameter uncertainty of the SWAT and Karst-SWAT models is
estimated at 10.0% (expressed as the Coefficient of Variation), which is comparable to
the estimated uncertainty due to climate change scenarios (10.1%) until 2059. The
combined uncertainty for the total flow at the basin exit due to both models’ parameter
uncertainty is 6.6%, comparable to the uncertainty due to the internal variability (5.6%).
The total uncertainty of karstic flow, combining model parameter uncertainty and the
internal variability of the climate scenarios is 11.0%. The total uncertainty estimate is
used in conjunction with the lowest karstic flow projection to assess the most adverse
scenario for the future mean karstic flow.
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The second section, with the title: “Evaluation of the uncertainty of the impact of climate
change on flow, sediment and nitrate predictions at the Koiliaris Critical Zone
Observatory”, uses a similar methodology as the previous section, this time focusing on
the climate change impact and the uncertainty assessment on the water quality
projections of the karstic Mediterranen watershed of Koiliaris. Specifically, the study
focuses on the nitrate nitrogen mass and suspended sediment mass transferred by the
karstic and surface flow. Results suggest that, after 2059, climate change scenario
uncertainty for projections of nitrate nitrogen mass is equivalent to the one of flow
projections (25.5%, expressed as the Coefficient of Variation) but it is higher for the case
of sediment mass (41.6%). The uncertainty due to internal variability of the sediment
mass is also higher (18.5%) than the one of the nitrate nitrogen mass (6.9%), due to the
complexity of the erosion process. The combined uncertainty due to hydrologic model
parameters and internal variability for the nitrate nitrogen mass is 40.1%, which is
greater than the uncertainty due to climate change model. Even when considering all
these uncertainties, it is forecasted that the Koiliaris River will not have nitrate nitrogen
concentrations higher than the limits suggested by the Water Framework Directive.

The third section, or “The response of three Mediterranean karstic springs to drought and
the impact of climate change”, translates the meteorological drought of the present-day
and future periods, into hydrological drought for three Mediterranean karstic springs
with different properties. Specifically, the springs under study are the Stilos spring
(Koiliaris River Basin), the Meskla spring and the Agia spring (Keritis River Basin). The
springs discharge the broad karstic system of the White Mountains Range, located at the
north of Chania, Crete. The Karst-SWAT model is used to quantify the hydrologic response
of the karstic springs, which are characterized by different systems and water detention
times. The above mentioned set of climate change scenarios is used to assess the climate
change impact on the springs and surface flow for the period 2019-2098. A non-
parametric drought index is modified to estimate the future frequency, duration and
intensity of meteorological and hydrological droughts in comparison to the reference
period. The progress of the lowest and the highest flows in the future is analyzed. Drought
frequency, duration and intensity of karstic flows are expected to increase for all
scenarios and karstic springs. As the water detention time of the spring increases, the
duration and intensity of the droughts are likely to increase significantly. Depending on
the spring, after 2059, the mean annual karstic flow decreases from 14.2% to 25.1%, the
mean number of drought events ranges from a decrease of 8.1% to an increase of 77.5%,
the duration of drought events increases from 36.8% to 533% and the mean monthly
water deficit (intensity of drought) increases from 27.3% to 83.6%. Both low and high
flows will increase, with the former occurring even during wet months.

The methodology proposed here combines the advantages of climate change impact
analysis with those of a fully integrated hydrologic model. The integration of surface and
subsurface flow in the same model provides more realistic simulations of water cycle and
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improved representation of the dominant hydrologic process of groundwater recharge
interaction, which is important for impact assessment on groundwater resources. This is
the first time, to our knowledge, that a combined assessment of surface and karstic flow
model parameter uncertainty and internal variability is applied to a Kkarstic
Mediterranean watershed. Analysis shows that the parameter uncertainty of the
hydrologic model and the internal variability of the climate change scenarios should be
considered in planning water resources adaptation and mitigation measures that aim to
alleviate climate change impacts in watersheds of semi-arid or arid climates, especially
for the 2019-2058 period. After 2059, the climate change scenario is the most important
uncertainty factor. Even under this large uncertainty, the drought status is anticipated to
deteriorate after 2059, regardless of the scenario realized for all springs. The results of
this study can be used as a guide for competent authorities to adapt their management
practices for the prevention of the negative repercussions of karstic spring droughts. A
40-year period is offered for adaptation measures to be prepared and planned for the
improved management of the springs’ water resources. The study provides a benchmark
for comparative studies in other similar regions of the globe, where water needs during
the summer are exclusively covered by the flow originating from karstic springs.
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Extetapévn [eplAnym

Elocaywyn

H meploxn g Mecoyelov eival pio amo TIG TLO EMIPPETEIG TTEPLOXES OTIG EMTMTWOELS TNG
KALATIKNG aAAayng, BACEL TWV ATOTEAEOUATWY TWV CEVAPIWV ylA TNV TAYKOOHLX
kAatikn aAdayn (IPCC, 2013). H EAAGSa elvat pla amo Tig xwpeg s Mecoyeiov yia tnv
omoia oL Enpég meplodol Ba eivat 6A0 Kat cuYVOTEPES KATA TN Stdpkela Tov 210V alwva.
AgkdSeg EAANVIKAE ol Tov Atyaiov £xouv Anyet amo v Enpaocia pe v Kpntn va eivat
1 IO EVAAWTN TEPLOXN, EXOVTAG ATTOOTAOT HOALS 500 XA oo TNV €pnuo Zoyxdapa Kol
1500 yAp. amd ™ I'm ¢ Emayyeiiag, n omoia €xel epnuomowmBel. To vnol g Kpntng
XOPAKTNPLJETAL A0 AVION XWPLKN KAl XPOVIKN KaTtovoun BpoxOmTwong, 1 omola o€
OLVSLAGO PE TNV EVTATIKN YEWPYLKN SpACTNPLOTTA KAL TOV AVETTUYUEVO TOUPLOUO TO
EXOUV KATAOTIOEL WG LK ATO TIG TILo EMIPPETElG o€ Enpaoia meploxég g EAAGSag. Ot
UOVIIEG TIAPOXEG VEPOU OTO VMol TPOEPYOVTAL KUPIWG ATO TIG KAPOTIKEG TNYES, TIOU
TAPEXOVV XUAUNAEG TTAPOXEG 0€ OAN TN SLdpkelx ToL XpOvov. Ta KALLATIK& GEVAPLA, TTOU
mpofAEmTovy aénom g Beppokpaciag Kol eMEPYOUEVN LElWON TNG TTAPOXTG, ElvaL tkavd
Vo SWO0VV OTUAVTIKEG TTANPOPOPIES, LOLAITEPA YIX AUTES TIG XAUNAEG TTAPOXES KL YL TN
ST pNoN TWV TIOCOTNTWV VEPOU OTNV TEPLOXN YA Ta emopeva €trn. Tavtdypova, N
evdexOuevn Helwon TNG MOCOTNTAG TWV EMUPAVEINKWY ATOPPOWY, OVUUEVETAL VA
TIPOKOAAESEL QUENOT TNG OUYKEVTPWOTNG TwV PUTWV oTa LEATwva ocwpata. Eival
ETITAKTIKN AOLTTOV M AVAYKN KOANG TPOCOUOIwOoNG TOU OVUVOETOU GUOTNUATOG TWV
KAPOTIKWOV TINYWV WOTE VA EVAL YVWOTEG aAVE TTAoX 0TLyUn oL LETABOAEG 0TV TTapoxM
KAl TNV TIOLOTNTA TWV LOATWV TOUG yla TNV Tepiodo Tov StavVovpe dAAd Kol Yl TO
HuEAAov, pe otoxo ™ ANYmM HETpwV cwotng Swaxeipong H afefadmta opws mov
VEOTATALTOCO OTIG XPOVOCELPESG TWV KALLATIKWY GEVAP WV 0G0 KL 0TI LETAPANTES TWV
VOPOAOYIKWV HOVTEAWV TOU  YPNOLUOTOOVVTAL YlA TPOOCOUOIWwOoT UTopolV  va
EMMNPEACOVV ONUAVTIKA TA ATOTEAECUATA 0€ Babuo Tov va unv elvat aflomota.

Zto)0G

ZToxX06 NG SLHTPL1§ AV TG elva M eKTIUN oM TWV TIPOLAEYEWY TWV KALLATIKWV CEVAPLWV
Kal ¢ afefatdTTag Toug otV vdpoAoyia kot T yewxnueia otnv Kprjtn. Zuykekpuéva,
oto TAaiolo au g ™G StatpPng (1) EKTILWVTAL OL ETMUMTWOELS TNG KAILATIKNG XAAXYTG
oTIS TPOPAEYPELS TNG THPOXNS KAl TNG TOOTNTAG TWV VSATWY OE XUPAKTNPLOTIKN
KapoTikn mnyn ¢ Meooyeiov, (2) moocotikomoleital 1 afefaldoTnTA ALTWV TWV
mpoPAEPewv kat (3) aflodoyesitar 1 amokplon SL@OPWV KAPOTIKWV TNYWV TNG
Meocoyelov otV petewpoAoyikn Enpacia mov mpofAEMoVY Ta KALPATIKG oevapla. H
puebodoroyila mov avamTUXONKE Yyl AQUTOV TOV TPLUTAO OTOXO OPYAVWVETAL O Tpla
TUNHOTA TIOV TEEPLYPAPOVTAL TIHPUAKATW.
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[Toootikomoinon ABeBatdtnTag Ydporoywkwv [IpoAéPewv
MeBodSoAoyia

To mpwTo TUNHX TNG UEAETNG €€eTAlel TO BEUA TNG EKTIUNONG TWV ETMUMTWOEWY TNG
KALLATIKN G QALY G 0TS USPOAOYIKEG TIPOPBAEPELS LLXG KAPOTIKNG LECOYELAKNG AEKAVTG
amoppong, autig Ttou moTapoL Kowdpn kat afodoyel Tig affefaltdotnTeg TMOL TIS
oLVOSEVOVV. ZUYKEKPLUEVQ, 1] LEAETN aLUTN €0TLALEL 0TIS ABeBALOTNTES TNG TTAPOYNS IOV
TPOKUTITOUV aTd TNV offefaldOTTA TWV TAPAUETPWY TOU VSPOAOYLKOU HOVTEAOL, TNV
EOWTEPLKN HeTABANTOTNTA TWV Oedopévwv €l008ov  (BpPoXOMTWOEWY) KAl TNV
afefatdTnta Adyw Tov oevapiov NG KALLATIKNG XAAAYTG.

['a tov okomd autd, xpnoomoteital to Epyaieio ASloAdoynong Eddeoug kat YSdtwv
(SWAT) padi pe éva kapotikd povtédo (Karst-SWAT, Nikolaidis et al., 2013) pe otdxo tnVv
EKTIUMON TNG GUVOETNG TTAPOXNG, AOYW ETILPAVELAKNG TTAPOXTG KAL TIALPOYG TNG TINYTS.

H afefatdomta twv mapapétpwy toco touv povtéAov SWAT 6co kat touv Karst-SWAT
vmoAoyiletal cuvduvdlovtag ta poypdpupata SUFI2 (Abbaspour, 2011) kot @RISK g
PALISADE (Palisade Corporation, 2010). To mpwTo XpNOWOTOLETAL YL TNV
TOCOTIKOTIOMOT NG afEBAOTNTAG TWV TMAPAUETPWY TOU 0pPIlOUV TNV ETLPAVELOKN
mapoy” (13 Baoikég mapapetpol, Bacel avaivong afefatdTnTag) Kol To SEVTEPO YLA TNV
TOCOTIKOTIOM O™ TGS ABELALOTNTAG TWV TAPAUETPWVY TIOV 0pL{oVV TNV KAPOTIKN TIapoxM
(4 mapdpetpor O6mMwsg opifovrtat oto Nikolaidis et al, 2013). KaBwg Baocel g
BBAoypapiag Sev éxel mpaypatomomOel peAétn ektipnong afefatdtag oe vEPOAOYIKO
ovoTNUa pe ovvBetn Tapoy” (KAPOTIKY Kl EMLPAVELXKN), OTO TAAIGLO TNG UEAETNG
QU TG TTAPOVCLALETAL YIX TIPWTN @opPA éva neBodoroykd TAaiclo Yyl Tov VTToAoYLoUd
avtng ™¢ afeBadotntag. H pebBodoroyia mapovoialetar oto Zynmua EI1. Agov
Tpaypatomom el o UTTOAOYLOUOG TNG ABELALOTNTAG TNG ETLPAVELAKNG KAL TNG KAPOTIKING
TapoxNGS EexwpLoTa, ot dvo afefatdotntag cvvdualovtal pe tn xpnon g E§lowong EI1
(ZxMuoa EIN1, 6e€14)

0x =+ (01)% + (02)? . (EI1)

Ta dedopéva el6080v ot VEPOAOYIKA HOVTEAQ TIAPEXOVTAL ATIO EVIEKN CUVSVAGHOVG
mévte «llepupepelakwv KApatikwv MovtéAdwv» (Regional Climate Models - RCMs) kot
TPLWOV  «AVTIIpoowTeVTIKWY ~ Movomatiwv  Zuykévipwons»  (Representative
Concentration Pathways - RCPs) touv supwmaikol kKAGSou TOU KALLATIKOU TEPAUATOS
CORDEX, EURO-CORDEX (http://euro-cordex.net/, https://euro-
cordex.net/060378/index.php.en, EUR-11). Ta amoteAéopata TOU USPOAOYLKOU

LOVTEAOVL YLlA T EVTEKA GEVAPLA aVOXAVOVTOAL KAL EKTILATAL 1) OYXETIKN XAAQYT) OTNV pHéoT
OALKY], KAPOTIKI KOl ETLPAVELAKT] TTAPOXT] O OXEom UE TNV Tepiodo avaopag (1974-
2018) kabwg KoL To €VPOG TWV ATOTEAEOUATWV (aBeBatOTNTA) AOYW TWV KAUATIKWV
HLOVTEAWV.
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Ixnpua EIN1. Awypappa pong tou pefodoroywkol TAaciov ylr TNV E€KTIUNOM NG
eMiSpaong ¢ afeBaldTNTag TWV TAPAPETPWY VEPOAOYIKOU HOVTEAOL OTNV CUVOETY
TOAPOXNG HLAG KAPOTIKNG AEKAVNG ATTOPPOTIG.

OL xpovooelpés  BPoxOTMTWONG TOU  AVIIMPOOWTEVTIKOU  oevapiov  «REMO»
(https://www.remo-rcm.de/059966/index.php.en), vmoé ta RCP2.6, 4.5 xat 8.5 (mov
KQAUTITOUV TO @Acpa NG afefatdTNTAG A0YW KALUATIKWY CEVAPILWV) TIPOCOUOLWVOVTAL

oTOXaOoTIKA He TN Yevwntpla kKoapov LARS (Racsko et al, 1991; Semenov and
Stratonovitch, 2010). Tpuavta mpooopowwoelg Monte Carlo ywa «&Be RCP
XPNOLULOTIOLOVVTAL VLA VX EPEVVI)COVV TNV ETEPAOT TNG ECWTEPLKNG LETABANTOTNTAG TWV
dedopévwv elod68ov otnv mapoxn €6660v TOL HOVTEAOL (ETMLPAVELAKT), KAPOTIKY Kal
oAkn). H peddovtikny mepiodog ywpiletar oe dvo 40eteic  vmo-TepLOSOVG ylX va
StevkoAuvBel ) cUykplom pe v tepiodo avaopds (1974-2018).

AmoteAéopata

Ta Bacwotepa amoteréopata cvvoyifovtat otov [ivaka EI11, mov mapovoidlel Ta e0pn
™m¢ afefadmrag Twv Tapoxwv Adyw Twv egetalopevwv mmywv afefatdotntag. H
afefatdTnTa TG OALKNG TTAPOXNS TNV £6080 TNG AEKAVNG AOY®W TWV TIAPAUETPWY TOV
ouvdvacopoy Twv VEPoAoYIKWV HoVTEAwYV SWAT kot Karst-SWAT extipdatat oe 6.6%
(Zuvtedeotg MetafAntotntag - CV). Zuykekpipéva, 1 affefatdtTnTa TG EMUPAVELNKNG
Tapoyns eivat 17.1% xat ¢ kapotikng mapoyns 10.0% (CV). H afefatdtnta twv
TAPAUETPWYV TOU LVSpoAoYylKoU povTéAou Oev pmopel va ayvonbBel. To €Opog Tng
afefatdTnTag TG KAPOTIKNG TAPOXNG AOYw TwV TApAPETpwV Tov povtéAov (10.0%)
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elval €loov oNUAVTIKO UE TO €VUPOG TNG KAPOTIKNG TAPOXNG AOYW TWV KAUATIKWV
oevapiwv (10.1%) ywa tmv tepiodo 2019-2058. Qoto00, TO TEAEVTALO LVTIEPSITANGLAETAL
ueta to 2059 (23,5%).

H péon emoia afefatdmmta A0yw e0wTEPIKNG HETABANTOTNTAS TNG BPOXOTITWONG Elval
Katd peco 0po 3.9% ywx 1 Bpoxdmtwon, 5.6% ya ™ cvvoAkn mapoxt, 4.9% yia v
KapoTikn mapoxn kat 7.1% ywx v emwpavelakny (CV). To evpog afefatdotntag g
BpoxOmTwong elval MAVTOTE XAUNAOTEPO OGE OxE€om HE TO €VPoG afeBaldoTnTag TNG
OUVOALKNG KOL TNG EMUPAVELNKNG TIAPOXNS, EVW TO €UPOG affeBALOTNTAG TNG KAPOTIKNG
TapoyNS elval TavTa XauUNAGTEPO ATO AUTO TNG EMUPAVELNKNG, AOYW TNG UEYAAVTEPNG
oTaBeEPOTNTAG TOU KaAPOTkoU ovotnuatos. H afefadmmta mov ogeidetatr otnv
E0WTEPLKN MeTABANTOTTA TNG oLVOAKNG Tapoxns (5.6%) elval mapdpolx pe tnv
afeBaldoTnTa TOL OPEIAETAL OTIS TAPAUETPOUG TOV LVSPOoAOYLKOU povTéAoL (6.6%). Ta
amoTeAEoPATA TNG HEAETNG Selyvouv OTL petafoArés uéxpt + 11.1% ™G péEong oAKNg
TaPoxNG Kat HeTaBoAEG pexpt + 15.4% NG HEONMG ETLPAVELAKTG TTAPOXNG EMLOKLALOVTOL
amd v afeBaldTnTa A0yw TNG €0WTEPLKNG UETARANTOTNTAS Kal Sev umopolv va
eCakplBwOolv.

H oUykplon twv peAdovtikwv 40eTwV HECWV YA OAX TA CGEVAPLA ATIOKOXAVTITEL OTL 1)
meplodog 2019-2058 elvat pia petafatikn mepiodog, KATA TNV OTOLX TA ATOTEAEGUAT
SLAPOPETIKWV KALLATIKWV GEVAPIWV 0AANAETIIKAAVTITOVTAL AOY®W TOU Kuplapxov poAov
™G eowTePLKNG petafAntomrag. EmmAéov, katd tn Siapkela autng g meptddov, ot
uetafoAég oty mapoxn Sev elval TOGO ONUAVTIKEG 0G0 EKEIVES IOV TIPORAETOVTAL HETA
70 2060, 6TV TO KALLATIKO oevApLo YiveTal 1 faoikn Ty affefatdotntag.

To ocVvoAo TwWV KAPATIKOV 0AAXy®V TIPOPAETEL ONUAVTIKY HElwon TG UEONG ETNOLAG
OUVOALKTNG KOl KAPOTIKNG Tapoxns netd to 2059. To yepdtepo oevaplo (REMO RCP8.5)
TPOoPAETEL OTL 1] pEOT KapoTikn Ttapoxn Oa eival ton pe 347.7 mm/yr (ueiwon 37.9%).
EmumAgov, Aapfdvovtag vmoym tig afefatdtteg A0Yyw T®WV TAPAUETPWY TOU LOVTEAOV
KAl TNG E0WTEPLKNG UETAPANTOTNTAG, 1| TTPOPAETOUEVT] UEOT] ETNOLX KAPOTIKI] TIPOXN
evdexetalva @taoet kat ta 271.5 mm/yr (peiwon 51.5%).
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[Mivakag EIT1. ZupfoArn g aefatdtntag Adyw TapapéTpmwy Tou UEPOAOYLKOU LOVTEAOV,
™G E0WTEPLKNG UETABANTOTNTAS (BPOXOTTWONG) KAl TOU KALLATIKOU GEVAPIOU GTNV
afefatdTnTa TG OALKNG TAPOXNG, KAPOTIKNG TAPOXNG KL EMLPAVELAKNG Tapoxns. H
afefatdotnta ek@paletal peocw tov LuvteAeotns MetafAntotntag (CV) (%). H oAwkn
afefatdtnta ek@palet to dbpolopa twv afefalotiTwV AOY®w TAPAUETPWV KOl
EOWTEPLKNG HETABANTOTNTAG, XprolpoTolwvtag TV Eélcwon EIN1.

ABeBadmta  ABefardmnTa

ABeBabmTa ABeBardmrTa Adyw , Adyw Adyw
Adyw E0WTEPIK ORue KAlpotikov KAlpotikov
pevaB ’ PIEIs  apepabmyra E Ho
TOPOUETPWV petafintoémrag %) oevapiov oevapiov
(%) (%) > 2019-2058 2059-2098
(%) (%)
Y
L 6.6 5.6 8.7 12,5 28.1
Tapox
Kapotti 10.0 4.6 11.0 10.1 235
Tapox
ETLPAVELA
) ) 17.1 7.1 18.5 17.3 36.7
K7 Tapoy

[Tocotikomoinon ABeBatdmrag Mapapetpwy oldtntag Nepob
MeBodSoAoyia

To SelTepo TUNUA TNG HEAETNG €€eTAlEL TO BEUX TNG EKTIUNONG TWV EMMTWOEWV TNG
KALATIKNG aAAayns oTiS TpofAEPels TG Halag (Kol GUYKEVTPWONG) TOU VITPLKOU
alWTOU KUL TWV QLWPOVUEVWV OTEPEWV TNG KAPOTIKNG LECOYELAKNG AEKAVNG ATTOPPONS
Tov motapoV Koltdpn kot v a§loAdynon e afefatdttag mov tig ouvodevel. Kat oe
QLTI TNV TEPITITWOT), 1] LEAETN E0TIALEL OTA €VPT TWV LAWYV IOV TTPOKVTITOUV ATO TNV
afefaldTNTat TWV TAPAUETPWV TOU HOVTEAOU, TNV EOWTEPLKI] HETARANTOTNTA TWV
dedopévwv eloodov (Bpoxomtwoewv) kat v afefadtnta Adyw Tov ocevapiov TNg
KALLATIKN G 0AAXYTG.

H evotnta aut) akoAovBel v (St peBodoroyia mouv avamtixONKe 6TV TTPOTYOULEVT.
Xpnowomolovvtal ta (Sl KAlpatTika oevapla - Sedopéva €l0680v KabBws Kat o
ouvvévaopuog povtédwv SWAT kat Karst-SWAT. Ta deSopéva €€660v Twv HOVTEAWY OE
QLTI TNV TEPITTTWOT €lvat 1 LAl TOU VITPLKOU a{®TOV KAl TWV XLWPOVUEVWY CTEPEWV
OV UETAPEPOVTAL TOCO UECW TNG KAPOTIKNG 000 KAl TNG EMPAVELAKNG Tapoxns. O
TPOTIOG UOVTEAOTIONONG TOU VITPIKOU al{®WTOV KAl TWV KLWPOVUEVWV OTEPEWV EXEL
mieptypa@el amo toug Nikolaidis et al. (2013) kat Nerantzaki et al. (2015) avtiotoyya. To
uebodoloylkd mAaiclo TOUL AVATTUXONKE OTNV TPONYOUUEVT] EVOTNTA YlX TNV
TOCOTIKOTIOMOT TOU €VUPOUG TwV UETAPANTWV €E060V TOU HOVTEAOL AOYW TNG
afealdOTNTAS TWV TAPAUETPWV EQPAPUOTETAL KAl o€ aUTH) TNV gvotnta. To teAeutaio
EQPAPUOCTNKE UOVO YLK TNV TEPITITWOTN TNG HETABANTNG TNG LAlaG TOV VITPLKOU alwTov,
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KaBw¢ Sev LTIAPXOLV ETAPKT] SESOUEVA ALWPOVUEVWV OTEPEWV YLK TNV TIPAYUATOTIOMON
LLOG LKAVOTIOW TLKN G tVAAVONG.

AmoteAéopata

OLapdapetpol Twv VEPoAoYIKWV LovTEAwY SWAT kat Karst-SWAT mpokaAovv éva e0pog
™G Héomng etnoLag Halag oAtkoL vitplkol alwtou oty £€5060 ™G Agkavng (oo pe 40.1%
(113.6 tn/yr).

‘Ocov a@opd TNV eMBPACT TNG ECWTEPIKNG LETAPBANTOTNTAG, TA TOCOOTA AfefadOTNTAG
Yyl TV Toapoxm Kot T pada Twv vitpltkwv elvat mapopola (5.6% kat 6.9% avtiotoya),
WOTOCO0 TO TTOGOCTO AUTO VAL ONUAVTIKA VPNAGTEPO YA TNV TEPITTWON TNG HALAS TWV
alwpovpevwy otepewV (18.5%), Adyw tng moAvmAokoTnTag ™G Stadikaoiag Stafpwang.
H Siafpwon tTwv WnUAT®wY Kal 11 LETAPOPA TOUG eMNpedlovTaLl amd evav PEYQAVTEPO
apLO o TaPAyOVTWY, OTIWGS 1 SLAPKELX TWV ENPwV TEPLOSWV oL 0Ttoleg kKabBloTovV To (A
SLABPWOLHO KL ETOUEVWS EVKOAX LETAPEPTLILO KATA TNV EMOUEVT) VY PN Tiepiodo.

Tuykpivovtag TIG HEAAOVTIKEG ETNOLEG LECEG TIUEG TV PETABANTWV BACEL TWV EVTEKN
oevapiwv, N CLUVOAIKN LAl VITPIKWV auiaveTal katd tnv mepiodo 2019-2058 (12.2%)
Kot petwvetal peta to 2059 (23.7%). H pala vitplk@v ToU UETAQEPETAL ATO TNV
emupavelakn mopoxn avéavetat (10.1%) katd v mepiodo 2059-2098. Avtiotpopw, N
UAlQ VITPLKWV TIOU HETAPEPETAL HECW TNG TINYNG HELWVETAL ONUAVTIKA peTd To 2059
(37.5%). Auto oupfaivel AGyw TOV YEYOVOTOG OTL OL TTANUUVPES AVUUEVETAL VAL aUENB0VY,
EUVOWVTAG ETOL TNV EKTTAVCT] TWV VITPLKWV.

H avdivon touv avwtatov 10% Tng KATAVOUNG TNG OUYKEVIPWONG VITPLKWV OTNV
ETLPAVELNKT KAl OALKT) TIAPOXT], ATOKAAVYE OTL 1] HEOT] ETNOLX CUYKEVTPWOT VITPLKOV
alwtov otV TePlodo avaPopds KoL TG HEAAOVTIKEG TEPLOSOUG elval TTOAD YaunAn oe
oUYKpLoM WE TO 0pLo Ttov xel Tebel amod tnv 06nyia [MTAaloo yia ta véata (91/676 / EOK
- ooyl yla ™ vitpoppumavon) kat tov [aykoouio Opyaviopd Yyeiag yia to oo vepo
KOl TNV KOAN XMUKNY KXTAoTHOT o€ emupavelakd kot vmoyeta V8ata (11.3 mg/L). Ocov
APOPA TIG NUEPTOLEG CUYKEVTPWOELS OALKOU VITPLKOU alwTOoV otV ££080 NG AEKAVNG,
auTtég vmepPaivouv To TpoavaepBev dplo pe ocuxvotnta 0.05% katd tnv 40t mepiodo
ava@opdg (1979-2018) kot katd péco 6po (pe BAom TA EVIEKN CEVAPLA KALLATIKWV
petaforwv) pe cvxvotnta 0.24% katd tnv mepiodo 2059-2098.

H oAk palo twv otepewv petwvetat pexpt to 2059 (28.3%) kat elvat otabepn HETA TO
2059. T v mep(MTWOon TWV OTEPEWY, 1 LA IOV TIAPEYETAL ATLO TNV TINYT AUEAVETAL
onpavtikd petd to 2059 (740.6%), evo 1 pala Twv WNUATWY TNG ETTLPAVELAKTG TTAPOXS
pewwvetat (38.2%), odnywvtag oe otaBept) oAWK LAl INUATWY 0TV £€§080 TNG AEKAVTG.

H mepiodog 2019-2058 avapevetal va ival pa petafatikn mepiodog, katd tnv omoia Ta
ATOTEAECUATA TWV SLAPOPETIKWV KALLATIKWV GEVAPLWV OAANAETIKOAAVTITOVTAL AGYW TNG
KupLapx oG TNG E0WTEPLKNG LETABANTOTNTAG KAl Ol AAAAYEG 0TI LALX TWV VITPIKWV SEV
elval 1600 oNUAVTIKEG 600 AUTEG oL TpofAémovTal peta to 2059, dtav 1 emAoyn Tov
oevapiov exmoumwyv Kabilotatal Mo onuavtiky. ' v mepimtwon Twv oTEPEWY, N
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aBealdTNTa A0Yw TNG ECWTEPIKNG LETAPRANTOTNTAG ElVAL VPNAATEPT KAL AKOUT) KAL LETA
70 2059 T amoTEAéoPATA TWV GEVAPIWY EMKAAVTITOVTOL.

H ouvévaopévn afefatdotnta TG oLVOALKNG e€aydpevng HAlag VITPLKOU alwTov A0Yw
TOCO TWV TOHPAUETPWY TOU UVSPOAOYIKOU HOVTEAOLU 000 KOl TNG E0WTEPLKNG
petafAntotntag vmoAoyifetar oe 115.3 tn/yr (CV 40.7%) (E&lowom EII1). Avti 1
afefatdTnTa CUVSLVAGUEVWY TTAPAPETPWYV Elval peyaAUTepn amd TV afefatdtnta Adyw
KALLATIKOU oevapiov, akoun kat petd to 2059 (23.7%). H peydAn avty afefatdotnta
o@eldeTal KATA KUPLO AOYO GTOV TIEPLOPLOUEVO APLOUO TTHPATNPNCEWY VITPLKOU alWTOU.
To €0pog afeBatdotntag otis uéoeg etnoteg MPoBAEPELS TG LAlAG VITPLKOU alWTov lval
oAU VYMAG, kKabBw¢ kKupaivetal amd onuavtikn peiwon (69.2%) oe peydn avéinon
(77.5%) og oVYKpLOT HE TNV TLUT TNG TIEPLOSOV avaopAas. AkOpa Kat 0tav Aapfdvovtot
VTIOYM O0AgG oL aBeBALOTNTEG, 1| CUYKEVIPWOT TWV VITPLKWV OTN AEKAVT] TOU TOTALOV
Ko\apn Sev mpokeLtaL va EEMEPACEL TO AVWTATO EMITPETTO OPLO.

Emntwoelg ™m¢ KApatiknig AAAayns oy Iapoym kot Enpacia twv Kapotikav
[Inyav.

MeBodSoAoyia

H tpitn evotnta ™G SLaTPIPnG EMKEVTPWVETAL OTY LOVTEAOTIOMOT KAl EKTIUNOT TWV
EMMTWOEWY TNG KAWUATIKNG OAAQYNG O€ TPELS KAPOTIKEG TmMyés ¢ Kpntneg pe
SlaopeTikeg  1810TNTEG, Slvovtag ER@acmn oTNV  AmOKPLoN TwV TNYWV CTNV
petewpoAoyikn Enpaocia. H kapotikn myn touv LTvAou (Aekavn amoppong Kowidpn)
ELPAVICEL OXETIKA YPNYOPN ATIOKPLOT), LE XPOVO TIAPAUOVNG VEPOU (00 pe 15 nuépeg kat
Bpadutepn amokplon pe xpoévo mapapovig 100 nuepwv. H péon etiola KapoTikn
ek@option elvatl mepimov 120hm3. Ot dAdeg §Vo VTG pPEAETN TMYEG ElVAL QUTEG TWV
MeokAwv kat TG Ayulds (Aekavn amoppong Kepitn). H tmyn twv MeokAwv €xel oxeTika
Yp1yopn amokplomn Le xpovo mapapovig 50 nuepwv kat apyn andkplon 833 nuepwv (2.28
€tn). H myn g Ayuidg €xeL ypriyopn amokpion 5 nuepwv kat apyn amokpion 2500
nuepwv (6.84 £€tn). H péon emola mapoyn g myns s Ayulag eivat 69hms3 kot n péon
ETNOLA TAPOXN TNG TNYNG Twv MeokAwv elvat 30hm3.

XpnowomoloUvtatl ta (Sl KAlpatikd ocevaplx - Sedopeva €1l0060v KaBwG Kot o
ouvvdvaopog povtédwv SWAT kot Karst-SWAT pe tig aAdeg §vo evotntes. To povtédo
Karst-SWAT mpoocappdletal otn oUvBeTn mapoxn Tou SImAoy UTOYELOU CUGTIHATOS
MeokAwv-Ayviag. H «Tumomomuévn Epyaieiofnkn yia v Avaivon g Enpaciog»
(SDAT, Farahmand kat AghaKouchak, 2015) ypnowomoleltat ywx v e€aywyn un
TIAPAUETPLKWY TUTIOTIOUEVWY SEIKTWV Enpaciag yl Bpoxomtwoelg Kat mapoxeg. O
Selkng epapuoletal ywx mepiodo cvoowpevonsg 6 unvwv. Opifovtal tpelg Babuideg
npaciag pe Baon toug McKee et al. (1993) "pétpa”, coBapn” kat "axkpaia” Enpaocia,
AVAAOYQ LE TIG TIUEG IOV TIA{PVEL 0 SEIKTNG YIX TOUG EKACTOTE GUVEXOUEVOUG 6 pnveg. Ot
ouvnBws ypnolpomolovpevol SelKTEG, OTIWG Kal o Tpoavaepbels, eetalovv Kabe
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ovupav &npaciag g VIO UEAETN XPOVOCELPAS HE BAOT) TOV KALLATOAOYIKO LECO TOU
oLVOAOUL NG xpovooelpas. KabBwg Bewpovpe mo onpavtikd va StepeuvnBel n oxeTikn
aAAaYNG NG HEAAOVTIKNG Enpaciag oe oxéon pe TNV mePiodo ava@opdas, oTo TAAicLo
auTNG TG SLXTPIPNG 0 Un TAPAUETPLKOS SelkTng Enpaciag TpoToToLlElTAL HE AUTOV TOV
otoxo. H xOpla Stapopa tou véou Seiktn elval Tt  KavovikoToinon yivetal Hovo oTig
TIES (BpoxOTTWONG 1) TAPOXTS) THG TTEPLOSOU avagopds (1979-2018) kot 6xL o€ OAN TNV
eCetalopuevn ypovooelpd (1979-2098). Ze kabe Tun tov SelkTn Yl TIG HEAAOVTIKES
TePLOSoug amodidetal evag mpPOTUTIOG BaBUOG Z amd TNV KAVOVIKI KOATOVOUN TNG
TEPLOSOV AVAPOPAS.

EmumAgov, mpaypatomoleital avdAivon Twv akpaiwv mapoxwv (xaunAés kat vmAEg
TAPOYEG TINYWV KAL ETILPAVELAK®DV VOATWV). [ TI§ XAUNAEG THPOXEG AVOXAVOUUE TO
Katwtato 10% NG KATAVOUNG TWV TAPOXWV TWV KAPOTIK®Y TNywv. I Tig vmAég
ETILPAVELNKEG KAL KAPOTIKES TIapoyES (Kat TG fpoxomTwoelg) Ste€dyoue avaAvoT 6To
avwtepo 10% TwWV KATAVOU®WY TWV UETAPBANTWVY, XPNOLLOTIOLWVTAG T1 «XUVAPTNON
Méong YmépBaong» (Mean Excess Function (Nerantzaki and Papalexiou, 2019).

AmoteAéopata

Bdoel NG MHEALTNG TWV EMMATWOEWV TNG KAMATIKAG oAAAYNG, TopaTnpouvvIal
EVTOVOTEPEG LETAPBOAEG OTNV KAPOTIKY Tarpox HETG To 2059, 6Ty pa i pelwon g
uéong emolag Bpoxomtwong (pe Baon Ta €vrteka UTO PEAETN oevapla) odnyel oe
ONUAVTIKN MELWOT TNG UEONG ETNOLAG KAPOTIKNG TIAPOXNG. ZUYKEKPLUEVQ, 1) TINYT) TOU
ZTOAOU avapévetal va pewwbel onpavtika peta to 2059 (25.1%) kat n peiwon eival
ONUAVTIKN QAAG ALYOTEPO £VTOVN YLK TNV KAPOTIKI Ttapoy] Twv MeokAwv (18.7%) kot
™6 Ayviag (14.2%). O vymAdG xpOVoG TIPAOVIG TOU VEPOU OE [l TNy €§ao@aAiel
ATIOTEAEGUATIKOTEPT ATTOONKEVON VEPOU KL KAAVTEPT ATIOKPLOT) OTNV KALLATIKT 0AAQYT).
H péon emola emipavelakn mopoxn mapovotalet pikpr avénon petd to 2059 (0.4% yw
™ Aekdvn amoppong touv Kotidpn kat 8.0% ywx touv Kepitn), Adyw ¢ adénong tng
ouxvoTnTag akpaiwv Bpoxomtwoewv. Ol BPoXOTTWOELS VYNANG EVTAONG EVVOOUV TN
SNUovpYLla ETLPAVELAKNG ATTOPPONG 0€ BAPOG TNG KAPOTIKNG TAPOXNG, kKaBwe 1 évtaon
™G BpoxomTwong vepfaivel TNV TaxLTNTA SLElCSVONG 0TO VTIESAPOG.

H mmyn ™¢ Ayuiag, n omola amoteAel Tnv kOpla Tyn VOPeVONG KAl ApSeEVONS YLA TNV
TOAN Twv Xaviwv, TpoBAETETAL VA EXEL XAUNAOTEPEG TAPOXES LETA TO 2059, aAAG 1) TINYN
Ba elvat o BEom va KAV YPEL TIG TPEXOVOES AVAYKEG USPEVONG TNG TIEPLOXTG AKOUT KAL Yl
TO XELPOTEPO GEVAPLO (aV KAl OPLaK(). AUTEG OL AVAYKEG VEPOU AVAUEVETAL VU aLENOOVV
0TO MEAAOV KOl OL TOTIKEG apyég €xouv N8N apxioel va culntovv kal va Tpoteivouv
OpAOELS Yl TIEPLOCOTEPO EVTATIKY EKUETAAAEVOT TNG TINYNS (ATIOKEVTPWHEVT Alolknon
Kpnmmg, 2017). Y6 1o mplopa autwv Twv VEwV SeSouévwv Kal TNG EKTIUMONG g
UEAAOVTIKNG VOPOAOYLIKNG KATAGTAONG OTNV TIAPOVsH LEAETT, OL SpAaelg Staxelplong Tov
VEPOUL Yla TNV TEPLOXT] B TIpETEL v X810 TOVV TIPOCEKTIKA.
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H emiSpaon tov xpovou TapapoviS VEPOU Twv TMYwV elval €mioNg gU@AVNG OTNV
avaAvorn ¢ &npaociag. H ocuxvotnta Twv HEAAOVTIKWV YeEYOVOTWV &npaciag eival
VYPNAOTEPT O KAPOTIKEG TINYEG HE XAUNAOTEPO XPOVO Kpdatnong vepov (EZT0A0G) Kol
XAUNAOTEPT O€ KAPOTIKEG TMYES Ue LVYMAOTEPO Xpovo Kpatnong (Ayuid). AvtiBeta, 1
SLAPKEL TWV PEHOVWUEVWV YEYOVOTWV Enpaciag eival vPmAdTEPN YlX TIG KAPOTIKEG
TMYES He VYMAG xpovo Tapapovns vepoL. Emiong, o ovoxetiopog petadd tov Seiktn
UETEWPOAOYLKNG Kol VEPOAOYIKNG Enpaciag PeELWVETAL KABWS 0 XpOVOG TTHPAUOVIG TG
YNNG auiaveTaL.

Metd to 2059, BGoel TV AMOTEAECUATWVY TNG TIPWTNG EVOTNTAG, N LETABANTOTNTA AOYW
TOU 0evapiov KAIMATIKNG aAAAYNS elvat TOAD HEYAAT KOL TO GEVAPLO TG KALULATIKNG
aAAayn g kaBiotatal o KUpLog mapayovtag affefatdotntag. AkOun Kot He auta Ta VPMAQ
mocoota afefatdotntag (23.5%), ol SUCUEVEOTEPEG EMMTWOELS OTIG USPOAOYLKEG-
KAPOTIKEG ENpacieg avapévetal va tpaypatomonolyv peta to 2059, avetaptnta amnd to
OEVAPLO KALUATIKNG aAAayN§ IOV Ba emikpatnosl. AVOAUTIKA, ol aAAayEG ot SlapKeLa,
EVTOON KL CUXVOTNTA TWV €MELC0SIWV ENpaciag oto pEAAOV o€ oxéon e TNV mepiodo
emava@opa @aivovtatl otov Iivaka EI12. 0 pécog 6pog Touv AGyov Tou EAAEIUUATOG TIPOG
TN HEOT UnVLaia TTapoxT) AVEAVETAL YL OAEG TIG TINYES, ELGIKA Yot TNV TNYN TG AYULAS, Yo
v omola SimAacidletat. EmmA£oy, yio OAEG TIG INYES, TPOoBAETOVTAL TTOAVETEIS ENpacieg
ueta to 2059, faoel kabe oevapiov TToOv PeAETONKE.

[Tivakag EI2. [Tocootda petafoAng tng ouxvotntag, e Slapkelag kat g évraong (LEom
unviaia évtaon) Twv emelcodiwv Enpaciag otig Vo peAAovTikég teplodoug (2019-2058
kat 2059-2098) oe ocVvykplon pe Vv mepiodo avaopag (1979-2018)

2019-2058 compared to 1979-2018

variable Frequency Duration Intensity
rainfall 16.7 % 0.2 % 149 %
Stilos flow 65.8 % 20.4 % 8.6 %
Meskla flow 15.2% 20.2 % 20.5%
Agia flow 4.0 % 83.0% 20.0%

2059-2098 compared to 1979-2018

variable Frequency Duration Intensity
rainfall 473 % 6.7 % 229 %
Stilos flow 775 % 45.0 % 27.3%
Meskla flow 359 % 36.8% 38.6 %
Agia flow -8.1 % 533 % 83.6 %

H avdivon twv akpaiwv (xapnAov Kot VPmA®VY) ETLRAVELNK®OV TTAPOXWV KL TIPOY WV
TNYWV UToSelkvUel OTL Ba avinbel 1 HETABANTOTNTA TWV TIUWV TAPOXNG, APOV
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av&dvovtal T0co ol VPMAEG 600 KaL Ol XXUNAEG TTapoxEG o€ ouxvoTnTa Kot évtact. Ot
HEAAOVTIKEG KATOVOUEG TwV (LPMAWVY) akpaiwv Bpoxomtwoewyv dev SleVKOAVVOLY TNV
ATOBNKEVOT VEPOU OTIG TINYESG KAL 1] QUEAVOUEVT] CUYVOTNTA UETEWPOAOYLIKNG ENpaciag
odnyel oe av&inon Twv YaunAwv mapoxwv Kab' 0An ™ Sldpkela Tov £TOUG Kal Wlaitepa
KATA& TOUG ENpovGg unveg, emdetvwvovtag pia 161 S0okoAn katdotaon (Zxnua EI12).
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Ixnua EI12. Zuxvotnta XapunAwv nUEPOL®VY KAPOTIK®V TIHPOXWV TwV TNYwV (o) ZTUA0G
(B) MeokAa kat (c) Ayuld oL aVTIOTOLXOVUV 0€ KABe unva Tou xpovou yla TNV TePiodo
ava@opag (1979-2018) kat tig 800 peAdovtikeg mepltodoug: (i) 2019-2058 ka (ii) 2059-
2098, vmo to oevaplo REMO kat ta RCP2.6, 4.5 kat 8.5.

AuTd T ATIOTEAEOHATA TTHPEYXOVV UL ATIELKOVIOT] TWV OUVONK®WV TOU AVOUEVETAL VA
ETKPATIIOOVV YLlX TIG UECOYELAKEG KAPOTIKEG TMMNYEG O0TO HEAAov. H katdaotaom g
Enpaciag avapévetat va emdevwbel, 18lwg peta to 2059, avefaptnta amod 1o cevapLlo
mov B mpaypatomomBel, yix 0Aeg Tig mnyeg, Ta amoteAéopata auTG TNG MEAETNG
Umopovv va xpnolgomowmBolv w¢ odényodg amd Toug appoSloug POPEIS Yyl TNV
TPOCAPHUOYT] TWV TIPAKTIKWV SLAYEIPLONG YA TNV TIPOANYT) TWV XPVNTIKWV EMTTWOEWYV
™m¢ npaciag Twv kapotTikwv Tnywv. [pofAémetar 6Tl  emopevn 40etng meplodog
umopel va ypnowwomomBel yla TV TPOETOHACIA KAl TOV TIPOYPAUUATIOHO UETPWV
TPOCAPUOYNG YL TN BeATiwon TG Stayelplong Twv VOATIVWVY TTOPWV TWV TNYWV.
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Chapter 1 Introduction

1.1 Motivation

Karstic regions describe landscapes containing caves and often extensive groundwater
systems developed on soluble rocks (i.e. limestone, marble and gypsum). Usual
hydrologic formations in these areas are sinking streams, caves, enclosed depressions
and large springs. Karstic landscapes occupy approximately 20% of the planet’s dry ice-
free land and offer the partial or entire drinking supply of about one fourth of the global
population (Ford and Williams, 2007; Maupin and Barber, 2005).

Karstic systems account for around 75% of the freshwater input into the Mediterranean
Sea (Wang and Polcher, 2019). These water bodies will play a major role in water
management for the Mediterranean region in the future, as they relate to water
availability for potable water and agriculture (i.e. food security issues). The
Mediterranean basin has been the cradle of karstic studies since ancient times (Ford and
Williams, 2007) and it is estimated that at least 15% of the Mediterranean surface is
covered by carbonate outcrops and that karstic aquifers supply at least 25% of domestic
water supply, without taking industry, agricultural and tourism withdrawals under
consideration (Bakalowicz, 2015). It should be noted that 75% of the total Mediterranean
agricultural land is irrigated and this accounts for more than 60% of the total water
abstractions (e.g. Spain 64%, Greece 88%, Portugal 80%) (Wriedt et al., 2009).

The IPCC model projections of anthropogenic impacts have identified the Mediterranean
region as a “climate change hot-spot” (Giorgi, 2006; Hoerling et al., 2012). The specific
region is projected to undergo the most significant drying (as a percentage of
climatological rainfall) among 26 regions across the world, by the end of the 21st century
(Giorgi, 2006). Water scarcity and depleting groundwater resources are threatening the
sustainability of the natural ecosystem and human activities (van Beek et al., 2011).

The island of Crete is a Mediterranean, semi-arid, karst-dominated region, characterized
by high rainfall variability, with long periods of drought and infrequent but high-intensity
rainfall (Agou et al, 2019). Water needs rise during dry months and are almost
exclusively covered by karstic springs distributed in the region along with some
operational dams (Nerantzaki et al., 2019). The concurrence of low karstic flows in
combination with the increased demands may result to substantial water stress. In water
management practice, the evaluation of low flows is essential for a range of goals, such as
water supply, irrigation, habitat protection, and water quality management (Risva et al,,
2018). Due to the projected changes in air temperature and rainfall, the mobility and
dilution of contaminants will be influenced due to the decrease in river flows, but the
relationships are not straightforward to capture. Relatively little is known about the
changes in water quality due to climate change in the Mediterranean region and even



fewer studies have dealt with the ways that climate change affects water quality of karstic
aquifers. Both the quality and availability of water resources in the Mediterranean region
are expected to change significantly according to the Intergovernmental Panel on Climate
Change (IPCC) Synthesis Report (Pachauri et al., 2014).

The socio-economic impacts of climate change have already been witnessed in Syria,
located at the southeast Mediterranean region, just 1300 km away from Crete. The Syrian
drought had a catalytic effect, leading Syria and the greater Fertile Crescent to experience
the worst 3-year drought ever recorded (Trigo et al., 2010). The already tense water
conditions were exacerbated, leading to agricultural production failure along with
livestock mortality. The most important effect was the migration of 1.5 million people
(Kelley et al., 2015) or more (Gleick, 2014; Selby et al.,, 2017) from rural farming to urban
regions, contributing to the social instability of the area. These events are a precursor of
the imminent conditions that may prevail for the rest of the Mediterranean region in the
near future.

Itis, therefore, imperative to properly simulate the complex system of the Mediterranean
karstic springs, so that changes in the water resources are known at all times (current
and future periods). Climate change impact assessment results must have high reliability,
especially for such regions. The first step for reliable predictions of both surface and
karstic flow (and water quality) is the robust hydrologic (and geochemical) modeling of
the watershed of interest, using operational models which can thoroughly describe the
complex hydrological conditions of karstic watersheds. Hydrological (and geochemical)
modeling still introduces a variety of uncertainties associated, for example, with internal
climate system variability and hydrological model parameters, which can significantly
affect model outputs and our confidence in the results. The uncertainties are more critical
when modeling the (low) flows of Mediterranean regions, since water depletion may hide
behind the uncertainty range of the flow outcomes. Few studies have addressed
hydrological projections uncertainty over the Mediterranean region, and, to our
knowledge, none have over Mediterranean regions with karstic formations.

Taking the above mentioned topics under consideration, the fundamental questions this
study addresses are:

o What is the climate change impact on the Mediterranean karstic flow and how does
climate change affect the drought frequency, intensity and duration of droughts?

o How can the uncertainty of the hydrologic predictions for a karstic Mediterranean
watershed be quantified and which is the most important source of uncertainty?

o Accordingly, how can the uncertainty of the geochemical predictions for a karstic
Mediterranean watershed be quantified?

Each of these questions will be examined and answered in the next chapters.



1.2 Study sites

The author has already performed a study concerning the climate change impact on the
hydrological budget of Crete using data from 22 streamflow gauging stations and 47
spring gauging stations (Nerantzaki et al, 2019). Having performed a thorough
examination of the hydrology of the island, the author selected two major karstic
watersheds for the implementation of the methodology presented here, based on the
availability of observed flow and nitrate concentration data, the apprehension of the
watershed’s hydrologic processes and the significance of the watersheds in terms of
water resources. The selected watersheds are the Koiliaris River Basin and the Keritis
River Basin, both located in Chania. These watersheds include karstic springs which
discharge the broad karstic system of the White Mountains Range, and they are the main
contributors of water for the region of Chania.

The Koiliaris River Basin is a Critical Zone Observatory. The watershed is about 130 km?,
and includes two episodic streams (Keramianos and Anavreti) and the karstic spring of
Stilos, which provides permanent flows throughout the year. The karstic spring of Stilos
is fed from the karstic regions inside the basin but also from an area located outside of the
watershed, i.e. the extended karstic are. The spring displays a relatively fast response with
a detention time equal to 15 days and a slower response with a detention time of 100
days. The average annual karstic discharge is about 120hm3. The Stilos spring has high
ecological value since it is the only spring in Crete which forms a permanent river flow.

The Keritis River Basin (210km?) encompasses the springs of Agia and Meskla, which,
together with the intermittent surface runoff, form the Keritis River. The springs are fed
by karstic regions within the watershed. The karstic system of the particular watershed
is more complex, as the underground reservoir of Meskla connects with the one of Agia,
transferring large volumes of water. The Meskla spring has a relatively fast response with
detention time of 50 days and a slow response of 833 days (2.28 years). The Agia spring
has a fast response of 5 days and a significant slow response of 2500 days (6.84 years).
The mean annual flow of the Agia spring is 69hm3 and the mean annual flow of the Meskla
spring is 30hm3. Agia spring has low variability and is dried up during summer months
due to intensive water pumping.

1.3 Brief Literature Review
1.3.1 Droughts

According to literature, droughts can be categorized as meteorological, hydrological and
agricultural (Wilhite and Glantz, 1985). Meteorological droughts refer to decrease in
precipitation, hydrological droughts to deficit in surface water and agricultural droughts
to drop in soil moisture. Orlowsky and Seneviratne (2012) found enhanced dryness
(meteorological drought) on the annual time scale in the Mediterranean using the CMIP3



models. Lu et al. (2019) recently found statistically significant annual drying over the
Mediterranean region (agricultural drought), with stronger drying as the strength of
forcing increases, using the CMIP5 models.

Large scale hydrological drought studies do not take under consideration the effects of
non-linearity in smaller scales, which is a result of many hydrologic processes. An
extensive bibliography of climate change assessment studies on several (regional scale)
Mediterranean regions exists, however, the climate change impact research for karstic
watersheds (Mediterranean or other), is limited. For example, Hartmann et al. (2012)
used a multi-model approach to assess future water availability at a large Eastern
Mediterranean karst spring, and suggested that in the remote future (2068-2098), when
variability of climate change decreases, a decrease of water availability of 15% to 30% is
forecasted. Another example is the study of Nerantzaki et al. (2019), who used a
combination of CMIP5 models to estimate the future hydrological budget of a karst-
dominated Mediterranean island (i.e. Crete) and found an average decrease of 16.5% for
spring flow. This gap in literature needs to be filled, considering that water needs in the
arid and semi-arid regions of the Mediterranean are exclusively covered by karstic
springs and groundwater resources during the summer months, when there is no surface
runoff. Several questions arise for Mediterranean karstic watersheds, such as whether
climate change scenarios predictions suggest satisfactory available water supplies and
what impact the multi-year droughts will have on the springs’ water provision. It is crucial
to acknowledge the importance of Kkarstic springs, estimate the present and future
response for these regions and plan water resources management accordingly.

1.3.2 Uncertainties

There are different classifications concerning the sources of uncertainty; historically, the
three most common sources considered in hydrologic modeling are input data, model
structure, and parameterization (Beven and Freer, 2001; Refsgaard et al., 2006; Xue et al.,
2014; Yen et al,, 2014). Parameterization uncertainty has received the highest attention
according to previous studies. In rainfall-runoff modeling, uncertainty in rainfall inputs
also compromises model predictions and subsequently water management decisions
(Fatichi et al., 2014). Uncertainties in temperature input data can also have a significant
impact in the flow output of Snowmelt-Rainfall-Driven Watershed models for the snow-
melting period (Zhang et al., 2016). Model structure uncertainty is caused by the lack of
the ability to perfectly model real-world processes, since hydrologic models are
simplifications resulting from incomplete representation of reality (Gupta and
Govindaraju, 2019). According to Mockler et al. (2016), the uncertainty sources for flow
simulations vary and depend on the catchment area, the model selected and the data
employed, along with implementation decisions.



The contribution of parameter uncertainty to the hydrologic model output is high, as
different parameter sets can result in annual streamflow changes in opposite directions
(Zhang et al.,, 2019). The issue of model parameter uncertainty has led the hydrological
community to develop several techniques for its quantification. These include the
Parameter Solution (ParaSol) (van Griensven and Meixner, 2006), the Sequential
Uncertainty Fitting algorithm (SUFI2) (Abbaspour, 2011), and the Generalized Likelihood
Uncertainty Estimation (GLUE) (Beven and Binley, 1992). These techniques have been
proven robust for parameter sensitivity and uncertainty analysis in the hydrological
simulation, with the SUFI2 technique exhibiting higher skill in predicting the parameter
uncertainty (Zhao et al,, 2018; Xue et al.,, 2014; Yang et al.,, 2008). The estimation of
hydrologic model parameter uncertainty has also been addressed for certain areas in the
Mediterranean region (Sellami et al.,, 2016; Sellami et al.,, 2013; Malago et al., 2016;
Garambois et al., 2013), but studies concerning parameter uncertainty in karstic regions
of the world are limited (Moussu et al,, 2011; Hartmann et al., 2015).

Uncertainty in future climate change scenarios stems from three main sources: forcing,
model response, and internal variability or stochastic uncertainty (Deser et al., 2012;
Hawkins and Sutton, 2011). Forcing uncertainty stems from external factors influencing
the climate system, such as future trajectories of anthropogenic emissions of green-
house gases, stratospheric ozone concentrations, land use change, etc. (Deser et al,,
2010). Model response uncertainty occurs because different models may yield different
responses with the same external forcing. The term “internal” or “stochastic” uncertainty
(or “climate noise”) describes the natural variability of the input data (i.e. rainfall,
temperature etc.) which is due to the natural processes in the atmosphere (non-linear
dynamic processes intrinsic to the atmosphere with long-time scale variability), the
ocean, and the coupled ocean-atmosphere system (low-frequency variability from the
thermodynamic coupling between the atmosphere and upper ocean mixed layer which
produces slow climate fluctuations). Internal variability occurs independently of
external forcing. It is critical to quantify internal variability, because it provides the
outcome range for a given forced response and is thus necessary for the robust detection
of climate change effects and for practical decision making purposes (Steinschneider et
al, 2015; Liu et al,, 2013). There are different studies concerning the quantification of
internal variability in rainfall including “signal-to-noise”, “time of emergence”, and
“multimodel or initial conditions” approaches (see Schindler et al., 2015 for references).

In this context, few studies have addressed the parameter uncertainty and internal
variability problem over the Mediterranean region, where observational data foreshadow
a substantial change towards higher temperatures and lower rainfall rates
(Intergovernmental Panel on Climate Change, 2014; Seager et al., 2014). The area has
been identified as a climate change hot-spot (Diffenbaugh and Giorgi, 2012; Giorgi, 2006).
These changes are expected to lead to lower river flows and the quantification of their
range would provide useful feedback on the possible water deficit, which is a big



impediment for these arid areas. Climate change affects both recharge and discharge rates
and changes in quantity and quality of water in aquifers due to groundwater variation
(Panwar and Chakrapani, 2013). Groundwater resources response to climate change is
slower in comparison to the surface water (Klgve et al, 2011; Ertiirk et al., 2014).
Previous approaches for climate change impact and uncertainty assessments for future
water availability in the Mediterranean region do not incorporate karst processes, with
few exceptions (i.e. Hartmann et al., 2012, who used a multi-model approach to estimate
water availability at a Mediterranean karstic spring).

1.3.3 Innovation points

The methodology presented here combines the advantages of climate change impact
analysis with those of a fully integrated hydrologic model. The integration of surface and
subsurface flow in the same model provides more realistic simulations of the water cycle
and improved representation of the dominant hydrologic process of groundwater
recharge interaction, which is important for impact assessment on groundwater
resources.

This is the first time, to our knowledge, that a combined assessment of surface and karstic
flow model parameter uncertainty and internal variability is applied to a Kkarstic
Mediterranean watershed.

Our analysis shows that the parameter uncertainty of the hydrologic model and the
internal variability of the climate change scenarios should be considered in planning
water resources adaptation and mitigation measures that aim to alleviate climate change
impacts in karstic watersheds of semi-arid or arid climates, especially for the 2019-2058
period. After 2059, the climate change scenario is the most important uncertainty factor.
The case of the Koiliaris River Basin provides a benchmark for comparative studies in
other similar regions of the globe, where water needs during the summer are exclusively
covered by the flow originating from karstic springs.

An extensive bibliography of climate change assessment studies on several (regional
scale) Mediterranean regions exists, however, the climate change impact research for
karstic watersheds (Mediterranean or other), is limited. To this day, there are no studies
examining the way the hydrologic droughts of karstic springs will respond to the
imminent meteorological droughts. Here, for the first time, three karstic springs with
different hydrologic properties are modeled and their response to climate change and to
future meteorological droughts is studied at the same time.

Finally, the commonly used drought indices have the limitation that they can give an
indication of a time series drought relative to the hydrological (or meteorological)
average of the time period for which they are examined. By simply modifying a non-
parametric indicator, it was possible to compare future droughts with respect to the



hydrological (or meteorological) average of the reference period, thus acquiring a more
useful index.

1.4 Outline

The thesis includes an Introductory Chapter (Chapter 1), followed by three Chapters, each
one of which constitutes a journal or a conference publication and reports on one of the
three main objectives of the study.

Chapter 2 is entitled “Estimation of the uncertainty of hydrologic predictions in a karstic
Mediterranean watershed” and describes the modeling framework developed for the
estimation of the hydrologic predictions and the quantification of the associated
uncertainties in a karstic Mediterranean basin (i.e. Koliaris River Basin). This study (1)
evaluates the Karst-SWAT model parameter uncertainty, differentiating between surface
runoff and karstic flow parameters, (2) evaluates the significance of rainfall input
uncertainty (internal variability) on the mean annual values of flow outcomes in a
Mediterranean karstic watershed, and (3) compares the above mentioned uncertainties
with the uncertainty stemming from climate change scenario.

Chapter 3 is entitled “Evaluation of the uncertainty of the impact of climate change on
flow, sediment and nitrate predictions at the Koiliaris Critical Zone Observatory” and
discusses the application of the framework detailed in Chapter 2, on the nitrate nitrogen
and suspended sediment masses transferred through surface and karstic water in a
karstic Mediterranean watershed.

Chapter 4 is entitled “The response of three Mediterranean karstic springs to drought and
the impact of climate change” and explores the climate change impact on the water
resources of three karstic springs with different hydrologic properties, emphasizing on
the frequency, duration and intensity of their hydrologic droughts.

Chapter 5 completes the thesis with a synthesis of the main results.



References

Abbaspour, K.C,, 2011. SWAT Calibration and Uncertainty Programs: A User Mannual.
Diibendorf, Switzerland.

Agou, V.D., Varouchakis, E.A., Hristopulos, D.T. 2019. Geostatistical analysis of
precipitation in the island of Crete (Greece) based on a sparse monitoring network.
Environ. Monit. Assess. 191, 353. d0i:10.1007/s10661-019-7462-8

Bakalowicz, M., 2015. Karst and karst groundwater resources in the Mediterranean.
Environ. Earth Sci. 74, 5-14. d0i:10.1007 /s12665-015-4239-4

Beven, K., Binley, A, 1992. The future of distributed models: Model calibration and
uncertainty prediction. Hydrol. Process. 6, 279-298. doi:10.1002 /hyp.3360060305

Beven, K., Freer, J., 2001. Equifinality, data assimilation, and uncertainty estimation in
mechanistic modelling of complex environmental systems using the GLUE methodology.
J. Hydrol. 249, 11-29. d0i:10.1016/S0022-1694(01)00421-8

Deser, C., Alexander, M.A.,, Xie, S.-P., Phillips, A.S.,, 2010. Sea Surface Temperature
Variability: Patterns and Mechanisms. Ann. Rev. Mar. Sci. 2, 115-143.
doi:10.1146/annurev-marine-120408-151453

Deser, C., Phillips, A, Bourdette, V., Teng, H., 2012. Uncertainty in climate change
projections: the role of internal variability. Clim. Dyn. 38, 527-546. d0i:10.1007 /s00382-
010-0977-x

Diffenbaugh, N.S., Giorgi, F., 2012. Climate change hotspots in the CMIP5 global climate
model ensemble. Clim. Change 114, 813-822. d0i:10.1007/s10584-012-0570-x

Ertiirk, A., Ekdal, A., Giirel, M., Karakaya, N., Guzel, C., Goneng, E., 2014. Evaluating the
impact of climate change on groundwater resources in a small Mediterranean watershed.
Sci. Total Environ. 499, 437-447. d0i:10.1016/].SCITOTENV.2014.07.001

Fatichi, S., Rimkus, S., Burlando, P., Bordoy, R., 2014. Does internal climate variability

overwhelm climate change signals in streamflow? The upper Po and Rhone basin case
studies. Sci. Total Environ. 493, 1171-1182. doi:10.1016/].SCITOTENV.2013.12.014

Ford, D. (Derek C., Williams, PW. (Paul W, 2007. Karst hydrogeology and
geomorphology. John Wiley & Sons.

Garambois, P.A., Roux, H., Larnier, K., Castaings, W., Dartus, D., 2013. Characterization of
process-oriented hydrologic model behavior with temporal sensitivity analysis for flash
floods in Mediterranean catchments. Hydrol. Earth Syst. Sci. 17, 2305-2322.
doi:10.5194 /hess-17-2305-2013

Giorgi, F., 2006. Climate change hot-spots. Geophys. Res. Lett. 33, L08707.
doi:10.1029/2006GL025734

Gupta, A., Govindaraju, R.S., 2019. Propagation of structural uncertainty in watershed
hydrologic models. J. Hydrol. 575, 66-81. d0i:10.1016/].JHYDROL.2019.05.026

Hartmann, A., Gleeson, T., Rosolem, R., Pianosi, F., Wada, Y., Wagener, T., 2015. A large-
scale simulation model to assess karstic groundwater recharge over Europe and the
Mediterranean. Geosci. Model Dev. 8, 1729-1746. d0i:10.5194 /gmd-8-1729-2015

Hartmann, A., Lange, J., Vivé Aguado, A, Mizyed, N., Smiatek, G., Kunstmann, H., 2012. A
multi-model approach for improved simulations of future water availability at a large

8



Eastern Mediterranean karst spring. J. Hydrol. 468, 130-138.
doi:10.1016/j.jhydrol.2012.08.024

Hawkins, E., Sutton, R, 2011. The potential to narrow uncertainty in projections of
regional precipitation change. Clim. Dyn. 37, 407-418. doi:10.1007/s00382-010-0810-6

Intergovernmental Panel on Climate Change (Ed.), 2014. Climate Change 2013 - The
Physical Science Basis. Cambridge University Press, Cambridge.
doi:10.1017/CB09781107415324

Klgve, B., Ala-aho, P., Bertrand, G., Boukalova, Z., Ertiirk, A., Goldscheider, N., Ilmonen, J.,
Karakaya, N., Kupfersberger, H., Kveerner, J., Lundberg, A., Mileusni¢, M., Moszczynska, A,
Muotka, T. Preda, E. Rossi, P., Siergieiev, D., Simek, ], Wachniew, P., Angheluta, V.,
Widerlund, A., 2011. Groundwater dependent ecosystems. Part I: Hydroecological status
and trends. Environ. Sci. Policy 14, 770-781. doi:10.1016/].ENVSCI.2011.04.002

Liu, Y, Zhang, ]., Wang, G., Liu, ], He, R,, Wang, H., Liu, C,, Jin, ]., 2013. Assessing the effect
of climate natural variability in water resources evaluation impacted by climate change.
Hydrol. Process. 27, 1061-1071. d0i:10.1002 /hyp.9251

Malago, A., Efstathiou, D., Bouraoui, F. Nikolaidis, N.P., Franchini, M., Bidoglio, G,
Kritsotakis, M., 2016. Regional scale hydrologic modeling of a karst-dominant
geomorphology: The case study of the Island of Crete. ]J. Hydrol. 540, 64-81.
doi:10.1016/].JHYDROL.2016.05.061

Maupin, M.A., Barber, N.L., 2005. Estimated withdrawals from principal aquifers in the
United States, 2000, Circular. doi:10.3133/CIR1279

Mockler, E.M., Chun, K.P., Sapriza-Azuri, G., Bruen, M., Wheater, H.S., 2016. Assessing the
relative importance of parameter and forcing uncertainty and their interactions in
conceptual hydrological model simulations. Adv. Water Resour. 97, 299-313.
doi:10.1016/]. ADVWATRES.2016.10.008

Moussu, F. Oudin, L., Plagnes, V., Mangin, A., Bendjoudi, H.,, 2011. A multi-objective
calibration framework for rainfall-discharge models applied to karst systems. J. Hydrol.
400, 364-376.d0i:10.1016/].JHYDROL.2011.01.047

Nerantzaki, S.D., Efstathiou, D., Giannakis, G. V., Kritsotakis, M., Grillakis, M.G., Koutroulis,
A.G., Tsanis, L.K,, Nikolaidis, N.P., 2019. Climate change impact on the hydrological budget
of a large Mediterranean island. Hydrol. Sci. J. 64, 1190-1203.
doi:10.1080/02626667.2019.1630741

Panwar, S., Chakrapani, G.J.,, 2013. Climate change and its influence on groundwater
resources. Curr. Sci. doi:10.2307/24092675

Refsgaard, ].C., van der Sluijs, J.P., Brown, ]., van der Keur, P., 2006. A framework for
dealing with uncertainty due to model structure error. Adv. Water Resour. 29, 1586-
1597.d0i:10.1016/].ADVWATRES.2005.11.013

Risva, K., Nikolopoulos, D., Efstratiadis, A., Nalbantis, 1., 2018. A Framework for Dry Period
Low Flow Forecasting in Mediterranean Streams. Water Resour. Manag. 32, 4911-4932.
doi:10.1007/s11269-018-2060-z

Schindler, A., Toreti, A., Zampieri, M., Scoccimarro, E., Gualdi, S., Fukutome, S., Xoplaki, E.,
Luterbacher, J., Schindler, A., Toreti, A., Zampieri, M., Scoccimarro, E., Gualdj, S., Fukutome,
S., Xoplaki, E., Luterbacher, ]J., 2015. On the Internal Variability of Simulated Daily
Precipitation. J. Clim. 28, 3624-3630. doi:10.1175/JCLI-D-14-00745.1

9



Seager, R, Liu, H., Henderson, N., Simpson, I., Kelley, C., Shaw, T., Kushnir, Y., Ting, M.,
Seager, R, Liu, H., Henderson, N., Simpson, [, Kelley, C., Shaw, T., Kushnir, Y., Ting, M.,
2014. Causes of Increasing Aridification of the Mediterranean Region in Response to
Rising Greenhouse Gases. ]. Clim. 27, 4655-4676. doi:10.1175/]JCLI-D-13-00446.1

Sellami, H., Benabdallah, S., La Jeunesse, L., Vanclooster, M., 2016. Quantifying hydrological
responses of small Mediterranean catchments under climate change projections. Sci.
Total Environ. 543, 924-936. doi:10.1016/].SCITOTENV.2015.07.006

Sellami, H., La Jeunesse, 1., Benabdallah, S., Vanclooster, M., 2013. Parameter and rating
curve uncertainty propagation analysis of the SWAT model for two small Mediterranean
catchments. Hydrol. Sci. ]. 58, 1635-1657. d0i:10.1080/02626667.2013.837222

Steinschneider, S., Wi, S., Brown, C., 2015. The integrated effects of climate and hydrologic
uncertainty on future flood risk assessments. Hydrol. Process. 29, 2823-2839.
doi:10.1002/hyp.10409

van Beek, L.P.H., Wada, Y., Bierkens, M.F.P., 2011. Global monthly water stress: 1. Water
balance and water availability. Water Resour. Res. 47. d0i:10.1029/2010WR009791

van Griensven, A., Meixner, T., 2006. Methods to quantify and identify the sources of
uncertainty for river basin water quality models. Water Sci. Technol. 53, 51-59.
doi:10.2166/wst.2006.007

Wang, F., Polcher, ], 2019. Assessing the freshwater flux from the continents to the
Mediterranean Sea. Sci. Rep. 9, 8024. d0i:10.1038/s41598-019-44293-1

Wilhite, D.A,, Glantz, M.H., 1985. Understanding: the Drought Phenomenon: The Role of
Definitions. Water Int. 10, 111-120. d0i:10.1080/02508068508686328

Wriedt, G., Van der Velde, M., Aloe, A., Bouraoui, F., 2009. Estimating irrigation water
requirements in Europe. ]. Hydrol. 373, 527-544. doi:10.1016/].JHYDROL.2009.05.018

Xue, C., Chen, B, Wu, H., 2014. Parameter Uncertainty Analysis of Surface Flow and
Sediment Yield in the Huolin Basin, China. ]. Hydrol. Eng. 19, 1224-1236.
doi:10.1061/(ASCE)HE.1943-5584.0000909

Yang, J., Reichert, P., Abbaspour, K.C, Xia, ], Yang, H., 2008. Comparing uncertainty
analysis techniques for a SWAT application to the Chaohe Basin in China. J. Hydrol. 358,
1-23.doi:10.1016/j.jhydrol.2008.05.012

Yen, H., Wang, X, Fontane, D.G., Harmel, R.D., Arabi, M., 2014. A framework for
propagation of uncertainty contributed by parameterization, input data, model structure,

and calibration/validation data in watershed modeling. Environ. Model. Softw. 54, 211-
221.doi:10.1016/].ENVSOFT.2014.01.004

Zhang, J.L,, Li, Y.P.,, Huang, G.H., Wang, C.X,, Cheng, G.H., Zhang, J.L., Li, Y.P., Huang, G.H.,
Wang, C.X.,, Cheng, G.H., 2016. Evaluation of Uncertainties in Input Data and Parameters
of a Hydrological Model Using a Bayesian Framework: A Case Study of a Snowmelt-
Precipitation-Driven Watershed. ]. Hydrometeorol. 17, 2333-2350. doi:10.1175/JHM-D-
15-0236.1

Zhang, R., Corte-Real, ]., Moreira, M., Kilsby, C., Birkinshaw, S., Burton, A., Fowler, HJ].,
Forsythe, N., Nunes, J.P., Sampaio, E., dos Santos, F.L., Mourato, S., 2019. Downscaling
climate change of water availability, sediment yield and extreme events: Application to a
Mediterranean climate basin. Int. J. Climatol. 39, 2947-2963. d0i:10.1002 /joc.5994

10



Zhao, F., Wu, Y., Qiu, L., Sun, Y., Sun, L., Li, Q., Niu, ]., Wang, G., Zhao, F., Wy, Y., Qiu, L., Sun,
Y., Sun, L., Li, Q., Niy, ]., Wang, G., 2018. Parameter Uncertainty Analysis of the SWAT Model
in a Mountain-Loess Transitional Watershed on the Chinese Loess Plateau. Water 10, 690.
doi:10.3390/w10060690

11



12



Chapter 2 Estimation of the uncertainty of hydrologic predictions in a
karstic Mediterranean watershed

Sofia D. Nerantzaki 2*, Nikolaos P. Nikolaidis 2 and Dionissios T. Hristopulos b

a School of Environmental Engineering, Technical University of Crete, University Campus,
73100 Chania, Greece

b School of Mineral Resources Engineering, Technical University of Crete, University
Campus, 73100 Chania, Greece

‘corresponding author, email: sofia ner@hotmail.com, +306973475458

Published as: “Nerantzaki, S.D., Hristopulos, D.T., Nikolaidis, N.P. 2020. Estimation of the
uncertainty of hydrologic predictions in a karstic Mediterranean watershed, Science of
the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.137131”

13



2.1 Abstract

The Koiliaris River basin is a semi-arid Mediterranean karstic watershed where water
needs during the summer are exclusively covered by the karstic springs flow. Uncertainty
assessment of the hydrologic projections for karstic watersheds may reveal possible
water deficits that cannot otherwise be taken into account. The Soil Water Assessment
Tool (SWAT) along with a karstic model (Karst-SWAT) are used to assess the composite
spring and surface flow. The parameter uncertainty of both the surface and karstic flow
models is estimated by combining the SUFI2 interface and the @RISK by PALISADE
software. Eleven combinations of five Regional Climate Models (RCMs) and three
Representative Concentration Pathways (RCPs) provide input to the hydrologic models.
Representative rainfall time series for certain scenarios are stochastically modeled with
the LARS weather generator. Monte Carlo simulations are used to investigate the effect of
input internal variability on the flow output. The uncertainty of karstic flow due to the
parameter uncertainty of the SWAT and Karst-SWAT models is 10.0% (Coefficient of
Variation), which is comparable to the estimated uncertainty due to climate change
scenarios (10.1%) until 2059. The combined uncertainty for the total flow at the basin
exit due to both models’ parameter uncertainty is 6.6%, comparable to the uncertainty
due to the internal variability (5.6%). The total uncertainty of karstic flow, combining
model parameter uncertainty and the internal variability of the climate scenarios is
11.0%. The total uncertainty estimate is used in conjunction with the lowest karstic flow
projection to assess the most adverse scenario for the future mean annual karstic flow.
This is the first study which estimates the combined uncertainty of surface and karstic
flow prediction due to model parameter uncertainty and internal variability. Our study
provides a rigorous methodology for uncertainty estimation and analysis which is
transferable to other karstic regions of the world.

Keywords: Mediterranean karstic watershed; parameter uncertainty; internal variability;
Karst-SWAT; climate change uncertainty; uncertainty partition
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2.2 Introduction

The karstic landscape is formed by the dissolution of soluble rocks (limestone, dolomite).
More than 25% of the world’s population either lives on or obtains its water from karstic
aquifers (Maupin and Barber, 2005). Karstic systems account for around 75% of the
freshwater input into the Mediterranean Sea (Wang and Polcher, 2019). These water
bodies will play a major role in water management as they relate to water availability for
potable water and agriculture (i.e. food security issues). The island of Crete is a
Mediterranean, semi-arid, karst-dominated region, characterized by high rainfall
variability, with long periods of drought and infrequent but high-intensity rainfall (Agou
etal, 2019). Water needs rise during summer months and are almost exclusively covered
by karstic springs distributed in the region along with some operational dams
(Nerantzaki et al., 2019). Hydrologic modeling and climate change analysis along with
climate change uncertainty assessment for such watersheds is of utmost importance in
view of the impacts of climate change in the Mediterranean region. Water scarcity and
depleting groundwater resources are threatening the sustainability of the natural
ecosystem and human activities (van Beek et al., 2011), and water depletion may hide
behind the uncertainty range of the flow outcomes. For this reason, climate change impact
assessment results must have high reliability, especially for such regions.

There are different classifications concerning the sources of uncertainty; historically, the
three most common sources considered in hydrologic modeling are input data, model
structure, and parameterization (Beven and Freer, 2001; Refsgaard et al., 2006; Xue et al.,
2014; Yen et al,, 2014). Parameterization uncertainty has received the highest attention
according to previous studies. In rainfall-runoff modeling, uncertainty in rainfall inputs
also compromises model predictions and subsequently water management decisions
(Fatichi et al., 2014). Uncertainties in temperature input data can also have a significant
impact in the flow output of Snowmelt-Rainfall-Driven Watershed models for the snow-
melting period (Zhang et al., 2016). Model structure uncertainty is caused by the lack of
the ability to perfectly model real-world processes, since hydrologic models are
simplifications resulting from incomplete representation of reality (Gupta and
Govindaraju, 2019). According to Mockler et al. (2016), the uncertainty sources for flow
simulations vary and depend on the catchment area, the model selected and the data
employed, along with implementation decisions.

The contribution of parameter uncertainty to the hydrologic model output is high, as
different parameter sets can result in annual streamflow changes in opposite directions
(see for example Zhang et al,, 2019). The issue of model parameter uncertainty has led
the hydrological community to develop several techniques for its quantification. These
include the Parameter Solution (ParaSol) (van Griensven and Meixner, 2006), the
Sequential Uncertainty Fitting algorithm (SUFI2) (Abbaspour, 2011), and the Generalized
Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992). These techniques
have been proven robust for parameter sensitivity and uncertainty analysis in the
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hydrological simulation, with the SUFI2 technique exhibiting higher skill in predicting the
parameter uncertainty (Zhao et al, 2018; Xue et al, 2014; Yang et al, 2008). The
estimation of hydrologic model parameter uncertainty has also been addressed for
certain areas in the Mediterranean region (Sellami et al., 2016; Sellami et al., 2013; Malago
et al., 2016; Garambois et al.,, 2013), but studies concerning parameter uncertainty in
karstic regions of the world are limited (Moussu et al., 2011; Hartmann et al., 2015).

Uncertainty in future climate change scenarios stems from three main sources: forcing,
model response, and internal variability or stochastic uncertainty (Deser et al., 2012;
Hawkins and Sutton, 2011). Forcing uncertainty stems from external factors influencing
the climate system, such as future trajectories of anthropogenic emissions of green-
house gases, stratospheric ozone concentrations, land use change, etc. (Deser et al,,
2010). Model response uncertainty occurs because different models may yield different
responses with the same external forcing. The term “internal” or “stochastic” uncertainty
(or “climate noise”) describes the natural variability of the input data (i.e. rainfall,
temperature etc.) which is due to the natural processes in the atmosphere (non-linear
dynamic processes intrinsic to the atmosphere with long-time scale variability), the
ocean, and the coupled ocean-atmosphere system (low-frequency variability from the
thermodynamic coupling between the atmosphere and upper ocean mixed layer which
produces slow climate fluctuations). Internal variability occurs independently of
external forcing. It is critical to quantify internal variability, because it provides the
outcome range for a given forced response and is thus necessary for the robust detection
of climate change effects and for practical decision making purposes (Steinschneider et
al, 2015; Liu et al,, 2013). There are different studies concerning the quantification of
internal variability in rainfall including “signal-to-noise”, “time of emergence”, and
“multimodel or initial conditions” approaches (see Schindler et al., 2015 for references).

In this context, few studies have addressed the parameter uncertainty and internal
variability problem over the Mediterranean region, where observational data foreshadow
a substantial change towards higher temperatures and lower rainfall rates
(Intergovernmental Panel on Climate Change, 2014; Seager et al., 2014). The area has
been identified as a climate change hot-spot (Diffenbaugh and Giorgi, 2012; Giorgi, 2006).
These changes are expected to lead to lower river flows and the quantification of their
range would provide useful feedback on the possible water deficit, which is a big
impediment for these arid areas. Climate change affects both recharge and discharge
rates and changes in quantity and quality of water in aquifers due to groundwater
variation (Panwar and Chakrapani, 2013). Groundwater resources response to climate
change is slower in comparison to the surface water (Klgve et al., 2011; Ertiirk et al,,
2014). Previous approaches for climate change impact and uncertainty assessments for
future water availability in the Mediterranean region do not incorporate karst processes,
with few exceptions (i.e. Hartmann et al., 2012, who used a multi-model approach to
estimate water availability at a Mediterranean karstic spring)
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The goal of this study is to (1) evaluate the Karst-SWAT model parameter uncertainty,
differentiating between surface flow and karstic flow parameters, (2) evaluate the
significance of rainfall input uncertainty (internal variability) on the mean annual values
of flow outcomes in a Mediterranean karstic watershed, and (3) compare the above
mentioned uncertainties with the uncertainty stemming from climate change scenario.
To this end, the Soil Water Assessment Tool (SWAT) in combination with a karstic model
(Karst-SWAT) is used to assess the total flow at the Koiliaris River basin. The SWAT model
is selected because it provides a Deep Aquifer Recharge output which is used as input to
the Karst-SWAT model, developed by Nikolaidis et al. The SUFI2 algorithm (Sequential
Uncertainty Fitting Version 2) in the SWAT-CUP software is used to assess uncertainty
due to the surface model (SWAT) parameters, while the risk analysis software @RISK by
PALISADE is used to conduct uncertainty analysis due to the karstic model parameters.
For the assessment of climate change variability, eleven combinations of five Regional
Climate Models (RCMs) and three Representative Concentration Pathways (RCPs) are
used. The Long Ashton Research Station Weather Generator (LARS-WG) (Racsko et al,,
1991; Semenov and Stratonovitch, 2010) with a daily time step under both current and
future climate conditions is used to generate realizations of rainfall time series with the
same statistical characteristics (monthly and daily mean, standard deviation, 95-th
percentile, minimum and maximum) as the original observed and forecasted (based on
the climate change scenarios) time series. The generated time series realizations are used
as input in the SWAT and karst-SWAT model, for the simulation of flow at Koiliaris River
Basin. This approach allows investigating the impact of the internal variability on the
surface and karstic flow predictions. The overall flow uncertainty due to both model
parameter uncertainty and internal variability is finally estimated. The study presents a
methodology for estimating and partitioning sources of uncertainty in a karstic
watershed with composite flow and we expect that the Koiliaris river basin will represent
a benchmark for comparative studies in other similar regions of the globe.

2.3 Materials and Methods
2.3.1 Study Area and Data

The Koiliaris River basin is a Critical Zone Observatory that represents severely degraded
soils due to heavy agricultural impacts, such as grazing, over many centuries. It is situated
in the island of Crete, Greece, 15 km east of the city of Chania. The catchment area is about
130 km?, and altitudes range between 0 and 2120 m (above mean sea level). Soils are thin
and poorly developed. The dominant geologic formations are Plattenkalk limestones and
dolomites, Tripolis and Trypali series, calcaric marls and marly limestones, quaternary
alluvial deposits and crystalline schists (Nikolaidis et al., 2013). The karstic formations in
the basin, which correspond to the Plattenkalk limestones of Figure 2.1, in combination
with a fault that extends from the northeast to the southwest, direct water from an
extended karstic watershed area towards Stylos springs (Figure 2.1) (Moraetis et al,,
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2010, Nikolaidis et al., 2013), thus supplying the permanent flow of the Koiliaris river.
The overall recharge area of the springs extends outside the watershed boundaries,
beyond the area of the 130 km? (Nikolaidis et al., 2013) to an area of about 80 km? in the
southeast of the watershed boundary (Figure 2.1).

Koiliaris River Basin
E extended karstic area
karstic gorge

— faults

B rainfall stations

E  rainfall & temperalure stations
* hydrometric stations

@ Stilos Springs

e reach

|Geologic Formations
I Tripolis Units
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"] Crystaliine Schists

Altitude (m)
High : 2441.19
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Figure 2.1. Map of Koiliaris Critical Zone Observatory (Crete, Greece) showing the location
of the five rainfall and temperature measurement stations (green squares), the locations
of three hydrometric stations (red hexagons), and the modelled extended karstic area
(shown with a hatched pattern).
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In addition to the permanent Stylos spring discharge, a temporary tributary called
Keramianos, a temporary spring called Anavreti, and two episodic tributaries (upstream
of Anavreti, Figure 2.1), contribute to the Koiliaris main river flow. The Keramianos
tributary merges with the Anavreti and Stylos flows after it enters and later exits a karstic
gorge, i.e. the Diktamos gorge (Figure 2.1). According to field measurements covering the
2004-2018 period, the total flow at the basin exit is estimated to be about 812 mm/yr,
ranging from 406 to 1747 mm/yr (annual standard deviation equal to 430 mm/yr). The
karstic flow originating from Stylos springs contributes the most to the total annual flow,
while the contribution of the surface runoff (mainly Keramianos and Anavreti tributaries)
to the total river flow is lower (20%-30%) (Nerantzaki et al., 2015). In the Koiliaris river
basin, rangeland covers 58% of the total area, while cultivated areas, forests, urban areas,
and aquatic areas account for 29.4%, 8.5%, 2.8%, and 0.6% respectively. Intensive
cultivation and livestock grazing has led to significant deterioration of the soil quality and
land fertility. Water is pumped from the springs for irrigation and drinking, while the
surface flow is also used for irrigation.

Rainfall data used to generate rainfall scenarios are provided by five meteorological
stations, two of which are located within the watershed boundaries. These stations (at
Samonas and Psichro Pigadi, see Figure 2.1) are managed by the “Laboratory of
Hydrochemical Engineering and Remediation of Soil” of the Technical University of Crete.
These stations record rainfall intensity (mm) as well as minimum and maximum
temperature data (°C) every 5 minutes since 2007. The remaining three rainfall stations
located outside the basin, i.e. Askifu, Kalives and Mouri, are managed by the Region of
Crete and record daily rainfall intensity data since 1973. The Koiliaris River Basin, as part
of the Island of Crete, is characterized by a dry semi-humid Mediterranean climate with
dry and warm summers and humid and relatively cold winters. Annual rainfall varies
spatially ranging between 700 mm in coastal areas (i.e. Kalives station, Figure 2.1) and
1330 mm in high altitudes (i.e. Psichro Pigadi station, Figure 2.1). In general, mean annual
rainfall increases with altitude (Malago et al., 2016). However, some of the higher values
(2200 mm) are recorded in Askifou plateau station which does not have the highest
altitude. The mean annual temperature ranges from 14°C (Psichro Pigadi station, 1000 m
altitude) to 18°C (Samonas station, 385 m altitude). Water level data from three
hydrometric stations (see Figure 2.1) with a 10-minute time step are used calibrate the
SWAT model. These include a hydrometric station located near the exit of the basin
towards the sea (covering the 2004-2018 period) and two hydrometric stations along the
Keramianos river bed (2013-2017). More specifically, three stage-discharge rating curves
have been set up using the level logger data and simultaneous flow measurements at the
three hydrometric stations. Using the stage-discharge curves and the level data we obtain
continuous flow time series with a 10-minute time step.
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2.3.2 Climate Change Scenarios

A sub-set of simulations is selected from the recent high resolution (12.5 km) EURO-
CORDEX (EUR-11) climate model ensemble (Jacob et al., 2014). The General Circulation
Models (GCMs) simulations of EURO-CORDEX have been conducted within the Coupled
Model Intercomparison Project Phase 5 (CMIP5) and represent various scenarios of
greenhouse gas emission pathways. The regional simulations (Regional Climate Models -
RCMs) downscale the global climate projections of CMIP5 (Taylor et al.,, 2012) and the
Representative Concentration Pathways (RCPs) (Moss et al., 2010; van Vuuren et al,,
2007). The sub-sampling technique used in Jacob et al. (2018) to assess the cross-sectoral
impacts of 1.5°C of global warming at a pan-European scale is also used in this study. Five
EUR-11 models were selected based on three criteria: (a) the range of driving global
climate models (GCMs), (b) the variety of institutions which develop the RCMs (different
model genealogy), and (c) the range of climate change signals in terms of wet/dry and
cold/warm responses. Based on these criteria and the methodology developed by
Mendlik and Gobiet (2016), we use the same set of models as in the study of Nerantzaki
et al. (2019), which assessed the climate change impact on the hydrological budget of
Crete. The RCMs used in this study are presented in Table A1 of Appendix A.

RCP scenarios assume pathways to different target radiative forcing by 2100. The RCP2.6
emission pathway storyline leads to very low greenhouse gas concentration levels. It is
described as a peak and decline scenario in which the radiative forcing level initially
reaches a value of 3.1 W/m? (by mid-century) and then declines to 2.6 W/m2 (by 2100)
(van Vuuren et al,, 2007). The RCP4.5 represents a stabilization scenario in which the
radiative forcing is stabilized just after 2100, without overshooting the long-run radiative
forcing target level (Wise et al, 2009). Finally, RCP8.5 represents an increasing
greenhouse gas emissions scenario over time (Riahi et al., 2007).

The RCM simulated temperature and rainfall data (for each emission pathway) are
adjusted for biases against a thirty-year period between 1980 and 2009 that served as
reference for the correction. The quantile mapping methodology known as multi-segment
statistical bias correction (MSBC) is used (Grillakis et al., 2013). The method considers
discrete segments of the cumulative probability function and applies quantile mapping
correction separately to each segment.

The downscaled time series of rainfall and temperature from the 11 scenarios are used as
input to the combined SWAT and Karst-SWAT model and the flow outputs are evaluated
(karstic, surface, and total flow). For further analysis, uncertainty originating from (a)
RCM and (b) RCP can be assessed separately by varying the modelling component in
focus, while holding the other constant. For example, in order to assess uncertainty
related to the RCM, the five RCMs are varied while the RCP4.5 is held constant, or the four
RCMs are varied while RCP8.5 is kept constant. Respectively, uncertainty related to the
RCP can be estimated by varying the three RCPs for the same RCM (we only perform this
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for GCM-RCMs of EC-EARTH-r12_SMHI-RCA4 and MPI-ESM-LR-r1_CSC-REMO, which
include three RCPs).

From the 11 RCMs of the ensemble we focus our analysis of internal variability on the
MPI-ESM-LR-r1_CSC-REMO (hereafter REMO). The selection of the REMO model is
motivated by the fact that REMO includes the highest (RCP2.6) and the lowest (RCP8.5)
rainfall projections among the selected 11 models; therefore, it is representative of the
entire range of rainfall for the ensemble. In addition, REMO shows the highest skill scores
for temperature in the European, Mediterranean and North American domain, and for
rainfall in the Mediterranean, African and West Asian regions (Jacob et al., 2012). REMO
is run for a range of Representative Concentration Pathways (RCPs), i.e. RCP2.6, RCP4.5,
and RCP8.5 (Moss etal,, 2010; O’Neill et al,, 2014).

Based on the analysis of the rainfall and temperature data for both reference (1974-2018)
and projected periods (2019-2098), the projected period is divided into two non-
overlapping segments which correspond to the intervals 2019-2058 and 2059-2098. This
segmentation is driven by two factors. Firstly, the intensity of the rainfall and the duration
of wet and dry periods change significantly around 2059 (as discussed in Section 2.4.2,
and evidenced later in Figure 2.7). The cumulative rainfall of the RCP8.5 scenario shows
that after 2060 there is a significant change in slope (Figure A1, Appendix A). Secondly,
at least 40 years of observed data are required to reliably calibrate the LARS-WG
generator; this is accomplished with the proposed segmentation. Following this
segmentation, we have one rainfall time series for the reference period and six rainfall
time series for the projected time period (2019-2098), i.e., two per each RCP studied. All
six rainfall time series are used as input for the LARS-WG. The mean annual values of the
downscaled time series of rainfall and temperature for the reference period are presented
in Table 2.1 in terms of water height (mm/yr) and degrees Celsius (°C) respectively.
Table 2.1 also shows the relative change of rainfall and the absolute change in
temperature for each of the two projection periods compared to the reference period
(1974-2018).
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Table 2.1. Average changes in temperatures (+oC) and average relative changes in rainfall
(%) compared to the average values during the reference period (1974-2018) for the
three downscaled RCPs per time window.

2019-2058 2059-2098

variables RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5
rainfall (%) +0.2% -9.6% +1.9% +4.6% -8.4% -23.7%
temperature +0.9 +1.4 +1.4 +0.85 +2.6 +3.6
(£°0)

Reference period (1974-2019)

rainfall 1460.3
(mm/yr)
temperature 17.3
QY)

2.3.3 The SWAT and Karst-SWAT model

The SWAT model (Soil and Water Assessment Tool) is a well-known and widely used
deterministic, watershed to river-basin scale, hydrological model, which operates on a
daily time step. SWAT can assess the quality and quantity of surface and ground water
and predict the environmental impacts of land use, land management practices, and
climate change (Arnold et al., 1998; Neitsch et al., 2009). In the model, the watershed is
divided into smaller sub-basins in order to separate the tributaries; these are further
divided into hydrologic response units (HRUs) which constitute unique combinations of
soil type, land use and slope value within the watershed. The land use classes for the
Koiliaris basin were obtained by Corine Land Use (2000), the soil types were defined
using the European Soil Database (v2 Raster Library 1kmx1km), and the slopes were
extracted from a Digital Elevation Model with 25 m pixel size (Bashfield and Keim, 2011),
obtained from a Pan-European elevation data at 1 arc-second (EU-DEM).

To simulate the karstic springs flow, we use the methodology developed in (Moraetis et
al,, 2010) to define the spatial extent of the karst area, based on fault analysis and other
available data and observations, and its volume by means of mass balance modeling. In
order to account for the variability of the spring discharge, SWAT is augmented by
connecting (in series) a modified version of the karst flow model described by Tzoraki
and Nikolaidis (2007) which considers a two-reservoir underground model. The SWAT
model uses the rainfall as input and simulates the surface hydrologic processes (snow
accumulation and melt, surface runoff, infiltration to shallow groundwater and
evapotranspiration) over the karstic HRUs (total of 46 HRUs with karstic soils). The
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surface water is then directed to the subsurface of the karstic area thus creating the deep
groundwater discharge which feeds the spring flow. The discharge is aggregated on a
daily step and provides the input to the two-part reservoir karst model (Nikolaidis et al.,
2013). The model equations describing the karst component include the upper reservoir
mass balance, i.e.

dv-
d_tl = Qin,l -0, (2-1)

and the lower reservoir mass balance, i.e.,

dv-
d—tz = Qin2 — 02, (2.2)
where
Qin,l =ag * Qin,deepGW: (2.3)
Qin,z =1 -ay)* Qin,deepGW +a; * Q4 (2.4)
Q1 =kyxVy (2.5)
Qz = kl * Vz ) (26)

and Qjpdeepcw 1S the deep groundwater discharge from SWAT (the corresponding
variable from SWAT is DA_RCHG, or deep aquifer recharge), a; is the fraction of flow
entering the upper reservoir, a, is the fraction of flow from the upper reservoir discharge
entering the lower reservoir and k,, and k; are recession constants (in units of 1/day) for

the upper and lower reservoir. For constant Qin1and @in2 the analytical solutions of (2.1)
and (2.2) are:

Q1 = Qroe ' + Qin 1 (1 — e7Fut), (2.7)

Q2 = Qu0e M + Qi (1 —e7Hab). (2.8)

The total karstic flow is then calculated as

Qkarstic = 1- az) * Q1+ Q (2.9)

The karst model parameters are calibrated, and the resulting karstic flow time series is
used as point source input at the spring location (Equation 2.9). The mass balance
equations for the two-part reservoir model are solved analytically (Tzoraki and
Nikolaidis, 2007; Nikolaidis et al., 2013).
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2.3.4 SWAT and Karst-SWAT Parameter Uncertainty Assessment

In this study the SUFI2 algorithm (Sequential Uncertainty Fitting Version 2) (Abbaspour
et al,, 2004) in the SWAT-CUP software (Abbaspour, 2011) is used for calibration and
uncertainty analysis of the SWAT parameters. SUFI2 has proved superior to other
uncertainty assessment techniques by the majority of comparison studies (Uniyal et al.,
2015; Yang et al,, 2008; Zhao et al., 2018). In SUFI2, the parameters are considered to
follow the uniform distribution, and their uncertainty is expressed using respective
intervals. The parameter uncertainties propagate through the SWAT model to
uncertainties in the output variables. The latter are expressed by means of the respective
95% probability intervals.

The Latin Hypercube sampling (LHS) approach is used to calculate the 2.5% and 97.5%
levels of the cumulative distribution of each output variable due to the propagation of the
input parameter uncertainties. The resulting interval is referred to as 95% prediction
uncertainty or 95PPU (95 percent prediction uncertainty). Two statistics, the P-factor
and the R-factor, are used to quantify the fit between the observed data and the simulated
probability distributions. The P-factor is the percentage of observed data contained
within the 95PPU. The R-factor is the width of the 95PPU interval divided by the standard
deviation of the observed data. For streamflow, a value of P-factor at least equal to 0.7 is
considered adequate (Abbaspour, 2015). This implies that most of the observed data are
within the 95PPU band and that the model has been well calibrated (Zhao et al,, 2018).
In addition, it is suggested that the R-factor be lower than 1.5 (Abbaspour et al., 2015).

We initialize LHS with large input parameter uncertainty, so that the measured data fall
within the 95PPU. The SUFI2 algorithm performs a number of iterations; normally, three
to five iterations of 300-1000 simulations (based on LHS) are sufficient for satisfactory
results (4 iterations of 1000 simulations were carried out in this study). The input
parameter range is reduced after each SUFI2 iteration, leading to a respective reduction
of the 95PPU interval of the output variables; consequently, the P-factor and R-factor also
decrease. An objective function is used to measure the distance between the observations
and the simulations. The objective function that we use in this study is the coefficient of
determination, i.e., r% between the observed and the simulated outputs at each
simulation. After all the LHS simulations are completed for the specific SUFI2 iteration,
SWAT-CUP calculates the objective function and the 95PPU for all the simulated output
variables. New input parameter ranges are selected by the program for the next iteration.
The iterations terminate when acceptable R-factor and P-factor values are obtained. The
input parameters are set to the values which optimize the objective function.

2.4.1 Flow Variability due to SWAT model parameters

The SUFI2 algorithm is initially applied to the SWAT model which estimates the surface
runoff.  Since the uncertainty analysis requires continuous (without gaps) flow

24



observations, we need to select the most appropriate hydrometric station. There are three
hydrometric stations at the Koiliaris River Basin (Figure 2.1). The hydrometric station at
the basin exit records total flow, i.e., the combination of surface and karstic flow.
Therefore, the data from this hydrometric station are not the most suitable for assessing
the uncertainty due to the SWAT surface flow parameters. The two remaining stations
along the Diktamos gorge record exclusively surface flow data. However, the hydrometric
station located at the gorge exit is the most representative for the surface flow of the basin
due to its location close to the basin exit. The selected station at the gorge exit provides
observed daily surface flow for five continuous years (2013-2017), which are used as the
observed data for the SUFI2 analysis.

The initial SWAT parameters are based on the trial and error method as reported in
Nikolaidis et al., 2013). An initial iteration of 1000 LHS simulations is carried out for 13
hydrologic input parameters. These parameters are selected based on the sensitivity
analysis of the SWAT model conducted prior to the calibration process (see Appendix A,
Table A2). During this first iteration, the intervals of the input parameters 6, are set to
[Hl.(o) — 0'991'(0)' Hl.(o) + 0.9 Hi(o)], where i=1,...,13, and Hl.(o) is the initial value of
parameter 8,. The surface flow at the gorge exit is computed, and the simulations are
characterized as behavioral if the coefficient of determination (r2) is greater than 0.5
(Moriasi et al., 2007). Three additional iterations of 1000 LHS simulations are carried
out, resulting to updated input parameters with a progressively narrower range.

The above procedure determines the uncertainty of surface flow at the gorge exit. To
further quantify the uncertainty of the other output variables (surface flow at the basin’s
exitand DA_RCHG from the 46 karstic HRUs), the input parameter range of the final SUFI2
iteration is used to run an additional ensemble of 100 LHS simulations. These allow
quantifying the uncertainty range of the surface flow at the gorge exit (where
observational data are available), but also the uncertainty range of the surface flow at the
basin exit (where only total flow observations are available). In addition, the procedure
above quantifies the uncertainty of the DA_RCHG from the 46 karstic HRUs, through
which the water enters the deep aquifer, thus providing the input to the Karst-SWAT
model.

Fewer (100 instead of 1000) model simulations are used in this stage, as each simulation
is time-consuming due to the high number of output variables (49 variables: 46 for the
DA_RCHG of the karstic HRUs, two for the surface flow at the gorge exit, and one for the
surface flow at the basin exit). The execution time is 1925 min on Intel Core i5-2450 @
2.50 GHz. Uncertainty assessment is based on those simulations (60 out of 100) that are
characterized as behavioral with respect to the surface flow at the gorge exit. The
respective simulations of surface flow at the basin exit and the DA_RCHG of the karstic
HRUs are also used for uncertainty assessment. The behavioral DA_RCHG time series
(more precisely, the time series which correspond to the behavioral simulations of
surface flow at the gorge exit), are used as input to the Karst-SWAT model, which then
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produces an ensemble of 60 simulated time series for the karstic flow. Then, each
behavioral simulation of the surface flow at the basin exit is added to the corresponding
simulation of the karstic flow, resulting to 60 simulations of total flow at the basin exit.
The range of the total flow for the period 2013-2017 is finally calculated.

2.4.2 Variability due to Karst-SWAT model parameters

In this section we focus on the impact of uncertainty in the Karst-SWAT input parameters
to the karstic flow uncertainty. Once the karst model parameters are calibrated (see
above), the @RISK program (Palisade Corporation, 2010) is run using four input (karst
model) variables which are assumed to follow the uniform distribution. Four iterations
of 1000 simulations of Latin Hypercube sampling are carried out to determine the
uncertainty of the four model parameters that control karstic flow. The range of the
karstic flow for the period 2013-2017 is then calculated.

2.4.3 Variability due to combined SWAT and Karst-SWAT model parameters

The total uncertainty of karstic flow due to the combined SWAT and Karst-SWAT model
parameter uncertainty can then be estimated. According to Taylor (1997), a good
measurement of the uncertainty 6x of variable x is the standard deviation o,. If variable
x is measured with independent and random uncertainties g, 05, then the uncertainty o,
is

0, =+/(01)% + (0,)?. (2.10)

Equation (2.10) can be used to estimate the total flow uncertainty o, that results from (1)
the uncertainty of surface and karstic flow due to SWAT parameters, and (2) karstic flow
uncertainty due to Karst-SWAT parameters. Uncertainty (1) can be calculated from the
ensemble of the 60 behavioral LHS simulations resulting from the sum of SWAT surface
flow and the corresponding karstic flow from the Karst-SWAT model. Uncertainty (2) can
be estimated as described in sub-section 2.4.2. Uncertainties (1) and (2) are independent
as they originate from different models and parameter analysis methods. The total
uncertainty, due to the parameters from (i) SWAT and (ii) Karst-SWAT for the variable of
the karstic flow alone (3), can be also calculated in a similar manner. A graphical
representation of the parameter uncertainty for the flow of Koiliaris watershed is given
in Figure 2.2.
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Figure 2.2. Graphical representation of the procedure followed for estimating the
uncertainty of the hydrologic model of the Koiliaris River watershed.

2.3.5 Assessment of Internal Variability

A big part of the methodology presented in this study aims to assess the impact of internal
variability or stochastic uncertainty of the meteorological input on the flow of a karstic
Mediterranean watershed. The input time series consist of the rainfall time series at
Mouri station for the reference period (1974-2018) as well as the projected time series
for the same station, based on the CSC-REMO (Jacob et al. 2012) Regional Climate Model
(RCM) for three Representative Concentration Pathways (RCPs), i.e. RCP2.6, RCP4.5, and
RCP8.5. The RCM is based on the MPI-ESM-LR-r1 driving Global Climate Model of the
EURO-CORDEX (Jacob et al., 2014) climate model ensemble (section 2.2).

Initially, the input time series of the temperature RCPs are considered as stochastic
processes characterized by variable daily means and standard deviations. The Box-
Jenkins methodology (Box and Jenkins, 1976) is used to simulate the time series of
minimum and maximum temperature at Samonas and Psichro Pigadi Station. Thirty
temperature realizations are simulated for each climate scenario, while the rainfall input
of the original time series is kept constant for each simulation. Results suggest that the
range of the temperature input does not significantly affect the flow output (section 3.3).

Input time series from the rainfall RCPs are imported in the Long Ashton Research
Station Weather Generator or LARS-WG, and an ensemble of thirty rainfall time series is
generated for every initial time series. The generated time series are then used as input
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in the SWAT and Karst-SWAT model. The model outcomes are surface flow (provided by
the classic SWAT model) and spring flow (provided by the Karst-SWAT) model. The total
flow of the basin is considered as the sum of the spring and karst flow. The methodology
is schematically illustrated in Figure 2.3 and the stochastic rainfall generator (LARS-WG)
and the Karst-SWAT model are described in the sub-sections 2.3.6 and 2.3.3.
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Figure 2.3. Schematic representation of the methodology used to assess the impact of
internal rainfall variability (during the reference period and based on climate model
projections) to the uncertainty of the Koiliaris river flow (comprising spring flow, surface
flow, and total flow).

2.3.6 Simulation of Model Input

The Long Ashton Research Station Weather Generator or LARS weather generator (LARS-
WG) is a single-site stochastic weather generator which can simulate rainfall (along with
maximum and minimum temperature and solar radiation) under future climate
conditions (Racsko et al, 1991; Semenov and Stratonovitch, 2010). The LARS-WG is
chosen in order to overcome the limitations of the Markov chain model of rainfall
occurrence (Bailey, 1964; Richardson, 1981). The latter considers two rainfall states, wet
(non-zero rainfall) and dry (zero rainfall), and transitions based only on the conditions
of the preceding day. This is not always sufficient to correctly simulate the maximum dry
spell length which is crucial for realistic assessment of water resources in semi-arid
regions. The LARS weather generator is selected for its ability to capture long dry spells,
which is appropriate for the study site. LARS-WG has been tested at several sites, proving
its ability to match the observed data more satisfactorily than the popular WGEN
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(Semenov et al,, 1998). In addition, LARS-WG has performed well compared to other
weather generators in terms of matching the statistical properties of observed rainfall
(Mehan et al,, 2017). LARS-WG requires tuning more parameters than other generators,
which means that a longer series of observed data is required for good parameterization.
In addition, it tends to underestimate the inter-annual variance of monthly means, a
shortcoming noted in Semenov et al. (1998).

LARS-WG utilizes semi-empirical distributions (defined as the cumulative probability
distribution function) for the lengths of wet and dry day time series and for the intensity
of daily rainfall. Rainfall occurrence in LARS-WG is modelled as a sequence of alternating
wet and dry series. The length of each series is chosen randomly from the wet/dry semi-
empirical distribution for the month in which the series begins. The rainfall intensity for
wet days is generated from the semi-empirical distribution of rainfall intensity on wet
days for the particular month. The intensity value generated for each wet day is
independent of the length of the wet series or the amount of rainfall on previous days.

More specifically, the semi-empirical model for the distributions of dry and wet series and
for rainfall intensity is defined in terms of a histogram that contains 23 bins, each
corresponding to a different event. Histograms are constructed for all seasons in the case
of the wet and dry distributions, and for all months in the case of the rainfall intensity
distribution. In order to choose random values from the semi-empirical distribution, the
generator initially selects one of the histogram bins with a probability that is proportional
to the number of events in each bin. Then, it samples a specific value in this bin based on
the uniform distribution over the bin values. This empirical distribution is sufficiently
flexible to approximate a variety of shapes, as the histogram bins can be adjusted.

Since LARS-WG lacks multivariate capability, it cannot produce correlated time series at
multiple locations. Therefore, LARS-WG is applied using the data from Mouri station
which has the shortest period (one year) of missing data. Mouri is representative for the
permanent springs flow ---although located just outside the karstic watershed--- and is
well correlated with the remaining 4 stations. The remaining stations are “simulated”
based on Mouri and utilizing their annual correlations. De Silva et al. (2007) suggest that
the normal ratio method should be used if any surrounding gauges have a mean annual
rainfall which exceeds by at least 10% the mean annular rainfall of the considered gauge
with gaps, which in our case is true, as the mean annual rainfall of the stations studied
indicates, due to the altitudinal differences of the stations. According to the method, the
estimate of the unknown rainfall value is given by:

N

Py =12P, (2.11)

where Prxand Pa are the daily rainfall values of the missing data station and the station
with the available rainfall data respectively, and Nxand Nz are the normal annual rainfall
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(mean of 30 years of annual rainfall data) of the missing data station and the station with
the available daily data.

Thus, there are five rainfall time series, four of which are generated using the original
time series of Mouri. This methodology was initially applied to the available record of
daily Mouri data. The SWAT model was run using the Mouri-based rainfall time series.
The downscaled and bias corrected time series of the future time series for the Mouri
station (period 2019-2098) was also used to generate the future time series of the rest of
the stations using the normal ratio methodology.

The number of Monte Carlo realizations (LARS-WG states) was selected by experimenting
with different numbers (10, 15, 30, 60, 90, 120, 170, and 220) of rainfall realizations and
checking if the range of values of the simulated monthly time series contains at least 95%
of the values of the original time series (Gilman, 1968). To reduce the overall
computational time, the smallest number of realizations meeting the 95% inclusion
criterion is used in the analysis.

The effect of temperature input uncertainty on flow is also tested in this study.
Temperature data are available from two stations: Psichro Pigadi and Samonas, which
provide daily minimum and maximum temperatures for the period 1974-2018. Daily
minimum and maximum temperatures are considered as stochastic processes
characterized by variable daily means and standard deviations. The Box-Jenkins
methodology (Box and Jenkins, 1970) was used to simulate the time series of minimum
and maximum temperature at both stations (Figures A2, A3, Appendix A). Thirty
temperature realizations were simulated for each climate scenario while the rainfall input
of the original time series was kept constant for each simulation.

In order to investigate the variability of the simulations, box-plots of the standard
deviations for each month and all scenarios are constructed. Results suggest that the
LARS-WG simulations in certain months do not satisfactorily reproduce the inherent
variability of the rainfall. In order to rectify the variability underestimation problem, a
linear transformation is applied to those time series that are not adequately simulated by
the LARS generator. The transformation generates corrected time series with the same
properties (mean and variance) as the original sample (see Appendix A, section A3 for
further Information).

2.4 Results
2.4.1 Flow Variability due to Model Parameter Uncertainty

The model output vs. the observed daily flow at the basin’s exit is shown in Figure 2.4.
Three important statistical indices suggested by Moriasi et al. (2007) are calculated.
These are the Nash-Sutcliffe Efficiency (NSE) which is the residual variance (“noise”

compared to the measured data variance (“information”), the Percent Bias (PBias) which

30



is the relative (with respect to the true values) model error, and the standard deviation
ratio (RSR), which is equal to the root mean square error (RMSE) divided by the standard
deviation of the observations. Ultimately, we get: NSE=0.59, PBias=-7.67% and
RSR=0.64 for the daily values, and NSE=0.81, PBias=-3.67% and RSR=0.44 for the
monthly values. A simulation is considered adequate if NSE > 0.5, |PBias|< 25% and RSR
< 0.7 (see Moriasi et al., 2007). The satisfactory model indices signify that the selection
of the Mouri station for generating the rainfall of the rest of the input stations is suited.
The mean annual simulated total flow for the 2004-2018 period is estimated at 833.4
mm/yr (the field data have a mean value of 825.4 mm/yr for the specific period). The flow
estimate is converted from cubic meters per second into equivalent runoff depth per year
with reference to the area of 211.8 km2, which includes the main basin and the extended
karstic area
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Figure 2.4. Comparison of observed daily flow at the basin’s exit with the calibrated daily
total flow (i.e., the simulation which gives optimal fit to the data) based on the SWAT
model.

2.4.1.1 Variability due to SWAT model parameters

The SUFI2 is used as an uncertainty assessment method for the 2013-2017 period at the
station located at the gorge exit. The parameter ranges for the 13 parameters, after the
four SUFI2 iterations of 1000 LHS simulations are presented in Table 2.2. The final
parameter range varies for each variable and is on average +38%. The P-factor is 94% at
the gorge exit, therefore SUFI2 was capable of capturing the majority of the observations,
and the algorithm reached a satisfactory R-factor of 0.72. From the final ensemble of the
100 LHS simulations, 60 meet the objective function (r? greater than 0.5). The surface
flow at the gorge exit is estimated for the 60 behavioral simulations and the standard
deviation of the mean annual surface flow at the gorge exit due to the SWAT model
parameters is 0.6 mm/yr (Coefficient of Variation (CV) equal to 6.8%) (Figure 2.5). The
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standard deviation of the mean annual surface runoff at the basin exit is 46.9 mm/yr (CV
equal to 17.1%) for the same simulations. The standard deviation of the weighted mean
annual DA_RCHG (sum of mm of water multiplied by the area of the corresponding HRU
and divided by the total area of HRUs) due to the SWAT model parameters is 16.1 mm/yr
(CV equal to 2.4%, also for the behavioral simulations). It is important to note that the
variable “Deep aquifer percolation fraction” (RCHRG_DP) was not included in the list of
the 13 variables tested for the uncertainty analysis, since we consider it to take the
maximum value (equal to 1) for the karstic HRUs, and zero for the non-karstic HRUs.
Therefore, the water quantities entering the deep aquifer are not expected to vary
significantly and this justifies the low relative uncertainty range of the DA_RCHG. Each
behavioral DA_RCHG time series is used as input into the Karst-SWAT model, providing
an equal range of the karstic flow output as the DA_RCHG range (CV equal to 2.4% and
standard deviation equal to 2.8 mm/yr). When the surface flow with its uncertainty is
added to the karstic flow to form the total flow (we sum the corresponding model runs),
the mean annual total flow has a standard deviation of 22.7 mm/yr (CV equal to 2.7%)
which is due to the SWAT model parameters alone (Figure 2.6, red dotted lines).

2.4.1.2 Variability due to Karst-SWAT model parameters

For the quantification of the karstic flow uncertainty due to the Karst-SWAT model
parameters, four iterations of 1000 simulations are run with the @RISK software. The
simulation of the DA_RCHG which corresponds to the best fit simulation of the surface
flow at the gorge exit, is used as input to the Karst-SWAT model. We assume that the
parameters have a uniform distribution and their values range +38% of their respective
calibrated value. The interval is chosen using the reasoning that the parameters of the
two models (SWAT and Karst-SWAT) should vary in the same range for comparison
purposes. According to the sensitivity analysis performed with @RISK, the most sensitive
parameter is the fraction of the upper reservoir flow to the lower reservoir (a,), followed
by the fraction of inflow to the upper reservoir (a,), then the recession constant of the
lower reservoir (k;) and finally the recession constant of the upper reservoir (k,). The
resulting standard deviation for the mean annual karstic flow, due to the Karst-SWAT
parameters is 49.9 mm/yr (CV is 9.7%) (Figure 2.6, blue dashed lines).

2.4.1.3 Variability due to combined SWAT and Karst-SWAT model parameters

The total uncertainty due to the combination of SWAT and Karst-SWAT model parameters
for the total flow can then be estimated. Equation (2.10) gives a total standard deviation
of 54.7 mm/yr (CV equal to 6.6%) for the total flow output (using the uncertainties (1)
and (2)), stemming from the parameter uncertainty of both models. The total uncertainty
due to the combination of SWAT and Karst-SWAT model parameters for the karstic flow
can also be estimated by Equation (2.10) using the uncertainty of the karstic flow due to
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SWAT parameters (as o;) nd the uncertainty due to Karst-SWAT parameters (as 03 ). The
total uncertainty for the karstic flow is estimated at 49.9 mm/yr (CV equal to 10.0%).

Table 2.2. Definition and estimated range of SWAT model input parameters after four
SUFI2 iterations.

Parameter Definition Min Max

r_CN2.mgt Initial SCS runoff curve number for moisture condition II -0.95  -0.33

Available water capacity of the soil layer (mm H20/mm

r_SOL_AWC().sol soil) 1.06 1.97
r_REVAPMN.gw  Groundwater "revap" coefficient -0.24 0.98
r_CH_N1.sub Manning’s “n” value for the tributary channels. -0.58 0.48
Effective hydraulic conductivity in main channel
r_CH_K2.rte alluvium (mm/h) -0.55 0.29
r__ALPHA_BF Baseflow alpha factor (days) -2.04  -0.97
r__ SURLAG.bsn Surface runoff lag coefficient. -0.72 0.11
r_OV_N.hru Manning's "n" value for overland flow. -0.67 -0.24
Effective hydraulic conductivity in tributary channel
r__CH_K1.sub alluvium (mm/hr) 0.74 1.59
r_ALPHA_BNK.rt
e Baseflow alpha factor for bank storage (days) -0.24 0.32
r__SOL_Z().sol Depth from soil surface to bottom of layer 0.56 1.21
r_CH_N2.rte Manning's "n" value for the main channel -0.67 0.03
r__SOL_K().sol Saturated hydraulic conductivity (mm/hr) -1.44  -0.86
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Figure 2.5. Lower 5% (red) and upper 95% (blue) percentiles of the simulated
probability distribution of Keramianos river surface flow at the gorge exit versus time and
comparison with the observed data (black). The variability of the simulated flow is due
to the parameter uncertainty of the SWAT model. Note that the flow at the gorge exit is

intermittent.
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Figure 2.6. Evolution of flow uncertainty over time showing the partition of uncertainty
between the SWAT and Karst-SWAT models: red dotted lines mark the total flow
uncertainty (based on the 5%-95% percentile range) due to the uncertainty of the SWAT
model parameters. Blue dashed lines signify the karstic flow uncertainty due to the Karst-
SWAT parameters. The black solid line is the total flow at the basin exit based on the field

data.
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2.4.2 Flow Variability due to Climate Change Scenario

The time series of rainfall and temperature of the 11 climate scenarios are used as input
in the combined SWAT and Karst-SWAT model (calibrated using the optimal parameter
set). The mean, range (maximum minus minimum value of mean flow), standard
deviation (stdev) and Coefficient of Variation (CV) of the mean annual rainfall, total,
karstic and surface flow for the 11 scenarios are presented in Table 2.3 for the two future
periods. The mean of the climate change scenarios indicates a slight increase of 3.3% in
the period 2019-2058 which leads to an increase of 10.5% in surface flow but a decrease
of 2.9% in karstic flow (total flow increases by 1.5%). This is noteworthy, since it means
that an increase in rainfall in a karstic region does not necessarily imply increased
groundwater resources. When rainfall intensity exceeds the infiltration rate (into the
groundwater), the formation of surface runoffin the form of intermittent rivers is favored.
This explains the increase in surface flow and decrease in karstic flow. After 2059, the
mean of the climate change scenarios indicates a decrease of 7.0% in rainfall, leading to a
decrease of 6.1% in surface flow and a decrease of 16.4% in karstic flow (total flow
decreases by 13.0%). For this period as well, the impact of climate change is more severe
for the groundwater resources.

Rainfall uncertainty propagates through the SWAT model and is amplified in the flow
outputs. Uncertainty is higher in surface flow compared to uncertainty in karstic flow. As
it is obvious, the climate change envelope increases with time, and the CV in the period
2059-2098 is typically two times higher than the CV during the period 2019-2058. The
minimum value of the 2059-2098 period for the karstic flow output over the 11 scenarios,
corresponds to the mean annual karstic flow of the RCP8.5 of the REMO model (331.5
mm/yr), while the maximum value corresponds to the mean annual karstic flow of the
RCP2.6 of the REMO model (683.1 mm/yr). Thus, the REMO model encompasses the
karstic flow ensemble range, which is a critical variable of interest for the specific
watershed. Therefore, we use REMO to model the uncertainty due to internal variability.
The separate assessment of uncertainty originating from (a) RCM and (b) RCP is
quantified using the range to mean ratio (we prefer the range over the standard deviation
since the samples are small, i.e. maximum 3 RCPs for each GCM). Results suggest that (i)
RCM uncertainties for both karstic and surface flow are always lower than RCP
uncertainty and (ii) the divergence between the results of different scenarios increases
after 2059, especially for karstic flow. More specifically, for the 2019-2058 period, the
RCM uncertainty is 20.4% for karstic and 33.5% for surface flow and the RCP uncertainty
is 28.7% for karstic and 46.0% for surface flow (range/mean). For the 2059-2098 period,
the RCM uncertainty is 36.6% for karstic and 63.4% for surface flow and the RCP
uncertainty is 63.3% for karstic and 91.7% for surface flow.
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Table 2.3. Mean, range (maximum minus minimum value of mean annual flow) standard
deviation (stdev), coefficient of variation (CV), and ratio to mean (r/m) for rainfall, total,
karstic and surface flow for the two future periods (2019-2058 and 2059-2098). The
statistics are based on the temperature and rainfall projections according to the 11
selected scenarios (GCM, RCM and RCP combinations) which are used as input in the
hydrological models (SWAT and Karst-SWAT with the SUFI2-based -calibrated
parameters).

variables 2019-2058 2059-2098
mm/yr mean range | stdev cv r/m mean range | stdev cv r/m
(%) (%)
infall 15089 | 399371 1306 | 930 | 0334 | 13580 | 277" | 2489 | 183% | 0.611
rainfa . 1813.6 . 3% . . 18973 . 3% .
693.4- 480.7-
total flow 845.9 105.7 | 12.5% | 0.401 724.8 203.4 | 28.1% | 0.918
1032.4 1146.1
karstic 462.1- 331.5-
543.4 55.1 | 10.1% | 0.269 467.9 109.9 | 23.5% | 0.751
flow 622.8 683.1
surface 3026 | M| 5245 | 173% | 0589 | 2569 | Y1 o4z | 3679% | 1229
flow ' 409.6 | 7 R e ' 463.0 ' A
. 1974-
variables 2018
rainfall 1460.3
total flow 833.4
karstic
559.8
flow
surface 273.7
flow

2.4.3 Flow Variability due to Internal Variability of Rainfall

The input time series of rainfall for the SWAT model are simulated as described in section
2.6 for each future sub-period (i.e. 2019-2058 and 2059-2098) and also for the reference
period (1974-2018). Results suggest that flow variability resulting from temperature
uncertainty is negligible (CV of mean annual flows is less than 0.5% for all scenarios and
time periods). Hence, the flow outputs of the Karst-SWAT model are not sensitive to
temperature variations. Therefore, for the purpose of assessing the effect of input
uncertainties on the hydrological outcome, rainfall is considered as the meteorological
key factor that influences the flow output and temperature is not further considered.

For the selection of the number of iterations of rainfall realizations (10, 15, 30, 60, 90,
120, 170, and 220), this range of values of the simulated monthly time series contains
85.6%, 88.8%, 95%, 97.7%, 97.9%, 98.1%, 99.1%, and 99.4% respectively of the values
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of the original time series. Therefore, the 30 realizations are selected as the least number
of realizations which contain at least 95% of the values of the original time series for all
scenarios and for both time windows (2019-2058 and 2059-2098). As far as the total flow
simulated by the Karst-SWAT model is concerned, the range of these monthly flow values
contains 91.9% to 93% for the 2019-2058 period and 87.7% to 89.4% for the 2059-2098
period, depending on the climate scenario. This indicates the importance of proper
rainfall simulation, as the flow output is more sensitive and there is greater uncertainty
therein. The results of the model output range stemming from the rainfall uncertainty are
depicted in Figure 2.7. The total flow generated from the SWAT model follows the
patterns of rainfall (Figure 2.8).
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Figure 2.7. Annual rainfall for each climate change scenario: RCP2.6 (top), RCP4.5
(middle) and RCP8.5 (bottom) for the time period 2019 to 2098. The original time series
(based on historical data and climate scenario rainfall forecasts) is shown by the blue
solid line. The 90% confidence interval of the rainfall values (based on the LARS-WQG) is
shown by the dashed grey (5% percentile) and dotted grey (95% percentile) lines.
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Figure 2.8. Historical data (reference period 1974-2018) and simulations (for the time
period 2019 to 2098) of total flow at the Koiliaris basin exit (left) and the respective
karstic flow (right). Three different climate change scenarios are used: (top row) RCP2.6,
(middle row) RCP4.5 and (bottom row) RCP8.5. The original time series (based on
historical data and climate scenario rainfall forecasts) is shown by the blue solid line. The
90% confidence intervals for flow based on the simulated realizations are shown by the
dashed (5% percentile) and dotted (95% percentile) lines.

The mean and standard deviation for both the annual total and karstic flow, for the two
projected 40-year periods of the three scenarios, RCP2.6, RCP4.5 and RCP8.5, and for the
reference period can be summarized in Table 2.4. The mean annual total flow of the
reference period based on LARS-WG simulations of the observed rainfall data which are
used as input to the SWAT model is 805.4 mm/yr. The RCP8.5 scenario predicts a
relatively stable state for the 2019-2058 period compared to the reference period.
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However, due to the estimated internal variability, predictions of the mean annual total
flow for the RCP8.5 scenario may vary from a decrease of -12.4% to an increase of +5.8%.
The RCP4.5, for the 2019-2058 period, respectively, predicts on average a -14.5%
decrease with a range of -25.4% to -3.7%. The RCP2.6 scenario predicts an increase
ranging from 22.5% to 47.0%. After 2059, the respective changes are as follows: decrease
from -46.9% to 32.2% (RCP8.5 scenario), decrease from 26.8% to 8.2% (RCP4.5
scenario), and increase ranging from 27.7% to 63.4% (RCP2.6 scenario). Itis noteworthy
that the impact of the adverse scenario (RCP8.5) is noticeable after 2059, whereas until
then, the intermediate scenario (RCP4.5) has a greater negative influence on flow.

The internal variability of the reference period (1974-2019) expressed as Coefficient of
Variation (CV) is 3.7% for the mean annual rainfall, 5.6% for the mean annual total flow,
4.6% for the mean annual karstic flow, and 7.7% for the mean annual surface flow. The
internal variability of the emission scenarios, for the future 40-year periods is on average
4.09% for the mean annual rainfall, 5.6% for the mean annual total flow, 5.0% for the mean
annual karstic flow and 7.0% for the mean annual surface flow. The internal variability of
the future periods is slightly higher than the reference period (with the exception of the
RCP8.5 scenario and the 2019-2058 period) and has a small variation between the RCP
scenarios. Therefore, the process of analyzing each future period using LARS-WG was
useful for the more detailed representation of their internal variability.

We apply the Anderson-Darling test on the annual means of the 30 rainfall samples
generated from LARS-WG (for the reference and the future sub-periods and for all three
RCPs) and verify that the null hypothesis (normal distribution) cannot be rejected. The
same stands for the corresponding SWAT flow outputs (karstic, surface and total flow).
The mean and standard deviation of the annual total flow for the reference period (1974-
2018) due to the internal variability of rainfall is 805.4 mm/yr and 45.1 mm/yr
respectively (CV equal to 5.6%). Considering that the samples follow the Normal
Distribution, the range of the distribution can be estimated (the standard deviation of the
Normal Distribution corresponds to the 34.1% of the distribution range) and is close to
the range of the sample (715.5-895.3 mm/yr). The results imply that, for example, for
total flow, climate change signals of up to == 11.1% can be neither identified nor rejected
due to internal variability (this percentage is + 15.4% for surface flow and + 9.2% for
karstic flow). More specifically, the total flow predictions for the RCP8.5 scenario for the
2019-2058 period, suggest a shift of total flow in the range of -12.4% to +5.8%, and the
largest part of this range lies within the == 11.1%. This indicates that changes in this

period for the RCP8.5 scenario are ambiguous.
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Table 2.4. Mean, standard deviation (stdev), and coefficient of variation (within
parentheses) for rainfall, total, karstic and surface flow for the two future periods (2019-
2058 and 2059-2098) and the reference period (1974-2018). The statistics are based on
the simulation of rainfall according to the internal variability for the reference period and
the three climate change scenarios. The hydrological models (SWAT and Karst-SWAT)

use the SUFI2-based calibrated parameters.

2019 - 2058 2059 -2098

variables RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5
mean/stdev | mean/stdev | mean/stdev | mean/stdev | mean/stdev | mean/stdev
(mm/yr) (mm/yr) (mm/yr) (mm/yr) (mm/yr) (mm/yr)
1838.0/69.6 | 1306.3/57.5 | 1424.6/45.8 | 1944.2/90.0 | 1288.8/50.5 | 1068.5/42.7

rainfall (3.8%) (4.4%) (3.2%) (4.6%) (3.9%) (4.0%)
1123.3/51.4 | 712.1/45.5 | 806.2/38.1 1212.9/74.8 | 687.7/39.0 | 503.8/30.8

total flow (4.6%) (6.4%) (4.7%) (6.2%) (5.7%) (6.1%)
675.5/28.5 | 473.5/25.5 |518.7/22.2 | 719.7/39.2 | 459.7/23.6 | 347.7/18.9

karsticflow | (4.2%) (5.4%) (4.3%) (5.4%) (5.1%) (5.5%)
4477/23.7 | 238.6/20.4 | 287.6/16.5 | 493.3/36.9 | 2279/164 | 156.1/12.6

surface flow | (5.3%) (8.5%) (5.8%) (7.3%) (7.2%) (8.1%)

Reference period (1974-2018)

rainfall 1446.1/53.3 (3.7%)

total flow 805.4/45.1 (5.6%)

karstic flow 543.8/25.3 (4.6%)

surface flow 261.6/20.2 (7.7%)

244 Combined Flow Variability due to Model Parameter Uncertainty and Internal
Variability of Rainfall

Considering that the model outputs (karstic, surface and total flow) contain uncertainty
due to both parameterization (SWAT and Karst-SWAT) and the internal variability of
rainfall, their uncertainties (in terms of standard deviation) can be combined, with the
use of Equation (2.10). The results for each output variable are summarized in Table 2.5
(they were computed using the standard deviations of each variable but they are
expressed here in terms of Coefficient of Variation). Considering the mean values of Table
2.4 for each variable and time period, and that the standard deviation of the Normal
Distribution corresponds to the 34.1% of the distribution range, the estimation of the
distribution range of each variable is possible (95% confidence interval). Table 2.6
summarizes the modeled value of each variable for the reference period along with its
range (due to both model parameter and internal variability uncertainty) and the
ensemble of projections based on all three RCPs used along with their total uncertainty
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(stemming from both model parameter uncertainty and rainfall variability). The ranges
are based on the lowest 2.5% and the highest 97.5% percentiles of the probability
distributions for the three RCPs. It is obvious that the ranges increase after 2059 due to
spread of the RCPs (the uncertainty due to parameters is constant, and internal variability
does not change significantly among scenarios).

Table 2.5. Contributions of hydrologic model parameter and internal variability (rainfall)
uncertainty to the output variable uncertainty (total flow, karstic flow and surface flow).
The uncertainty is expressed in terms of the Coefficient of Variation (%). The last column
gives the estimate of the total uncertainty.

Variable Parameter uncertainty (%) Internal variability (%)  Total uncertainty (%)
total flow 6.6 5.6 8.7
karstic flow 10.0 4.6 11.0
surface flow 171 7.1 18.5

Table 2.6. Estimated ranges for the total, karstic and surface flow over the reference
period (1974-2018) and the two future periods (2019-2058 and 2059-2098). The range
of flows over the reference period and over the future periods takes into account the
uncertainty in both the hydrologic model parameters and rainfall. The ranges over the
future periods are based on the lowest 5% and the highest 95% percentiles of the
probability distributions for the three RCPs.

Variable Reference period 2019-2058 Range (mm) 2059-2098 Range (mm)
total flow 665.8 - 944.9 588.7 -1317.9 416.5-1423.1
karstic flow 424.7 - 662.9 369.8 - 823.5 271.5-877.4
surface flow 165.2 - 358.0 150.7 - 612.7 98.6 - 675.0

2.5 Discussion

This study focuses on estimating the impact of uncertainties on the flow estimates in a
karstic Mediterranean watershed with semi-arid climate. We first concentrate on the
uncertainties due to model parameters for the reference period. We distinguish between
uncertainties that affect the surface flow and are used by the SWAT model and those that
define the karstic flow and are used by the Karst-SWAT model. We also estimate their
combined effect on karstic and total flow. We then investigate the internal variability of
rainfall input time series based on the reference period (during which data are available)
and future climate change projections, focusing on the effect of internal variability on
surface, karstic and total flow at the watershed’s exit. We derive estimates of the
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watershed flow as well as a range of probable values that encompass the impact of
uncertainty. We are not concerned with the selection of the optimal climate change model,
but rather with assessing the uncertainty of the hydrologic model outputs, given typical
climate change model time series. The rainfall generator used (LARS-WG) does not
account for the presence of potential trends in the rainfall time series. However, as we are
interested in simulating the average statistical features of the 40-year periods and not the
temporal evolution, it is not necessary to explicitly model the trend function. Finally, the
climate change scenarios do not provide estimates of water needs, due to changes in
either population or economic activities (tourism, agriculture/livestock sector) that
could affect the hydrologic balance. The analysis of the watershed, therefore, does not at
this stage incorporate dynamic socio-economic factors.

This study does not address the uncertainty stemming from hydrologic model selection.
However, two other studies have applied two additional models for the quantification of
surface and karstic flow at the same region. Kourgialas et al. (2010) used a combination
of three models (a karstic model, a GIS-based Energy Budget Snow Melt model, and the
Hydrological Simulation Program - FORTRAN model) to assess the surface and karstic
flow. Yu et al. (2019) recently developed and applied a coupled surface-subsurface
modelling framework (Penn State Integrated Hydrologic Model-PIHM) which is capable
of assessing the groundwater flow of a karstic watershed. Both models gave satisfactory
goodness of fit with the observed values. Although they were tested for a limited number
of years (3 years), the relative error of daily flow values (simulated vs. observed) (3.6%
and 2.3% for the calibration period respectively), is equivalent to the daily error of the
specific study (3.1%) and similar to that of Nikolaidis et al. (2013) (2.65%), hence the
karstic water volume does not differ significantly among the three model setups.

According to our results, the uncertainty of total flow at the basin exit due to hydrological
model parameters is estimated at 6.6% (CV), based on the combination of both SWAT and
Karst-SWAT model parameters. Specifically, the uncertainty of surface flow is 17.1% and
of karstic flow 10.0% (CV). The hydrologic model parameter uncertainty cannot be
ignored. Galavi et al. (2019) considered three main sources of uncertainty in an impact
study on a basin in Malaysia (Hydrological model parameters, GCMs, and emission
scenario uncertainties) and suggested that the hydrological model parameter uncertainty
should be included in uncertainty assessment for future periods, although it was the
lowest uncertainty contributor in their study. According to Galavi et al. (2019), GCM and
emission scenario uncertainties (of RCP4.5 and RCP8.5) increase as time progresses. This
observation is also borne out in our study. In our study, however, the relative contribution
of RCP uncertainty is higher than that of RCM (in contrast to Galavi et al, 2019, where GCM
was higher than RCP uncertainty). This difference is due the fact that we also included
the RCP2.6 emission scenario in the analysis.

In their review, Douglas-Mankin et al. (2010) deduce that streamflow parameter
uncertainty is higher in regions with high evaporation rates and localized storm patterns,
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as well as in arid climate regions compared to humid ones. There are a few studies that
investigate the impact of SWAT parameter uncertainty on the estimates of surface flow in
Mediterranean watersheds. For example, Sellami et al. (2013), studied the application of
SWAT to two watersheds in southern France. The authors conclude that the complexity
of the modelled system can affect the uncertainty estimates. Particularly, they found
larger prediction uncertainty in the karstic than in the non-karstic catchment. They
concluded that SWAT does not rigorously simulate groundwater flow, as most of the un-
bracketed observations are located in the recession parts of the hydrograph. Our study
can enhance parameter uncertainty estimation in karstic watersheds, by analytically
assessing the groundwater (karstic) flow and its parameter uncertainty. For the case of
karstic flow, the range due to model parameters uncertainty (10.0%) is equally important
as the range due to climate change scenario (10.1%); however, the latter more than
doubles after 2059 (23.5%)

Our study also quantifies how the internal variability (or stochastic uncertainty) inherent
in rainfall time series predicted by climate change time scenarios is propagated to
estimates of surface and karstic flows. The mean annual internal variability is on average
3.9% for rainfall, 5.6% for total flow, 4.9% for karstic flow and 7.1% for surface flow
(expressed in terms of the coefficient of variation). The rainfall uncertainty range is
always lower compared to the uncertainty range of the total and surface flow. The
uncertainty range of karstic flow is always lower than that of the surface flow, due to the
higher stability of the karstic system. In addition, our analysis includes estimation of the
internal variability during the reference and the future periods, although the results
would not vary significantly if we had assumed stable variability for the future periods,
as in Hawkins and Sutton (2011). This is because the present climate variability is very
similar (albeit slightly lower in most cases) to the projections’ internal climate
variability. The uncertainty due to internal variability for the total flow (5.6%) is similar
to the uncertainty due to model parameters in the basin of Koiliaris (6.6%).

A similar study of internal variability was conducted by Fatichi et al. (2014). They used a
combination of a stochastic downscaling methodology and the distributed hydrological
model Topkapi-ETH, to provide projections of future streamflow (up to year 2050) for
two basins, one of which is located in northern Italy (Mediterranean). They also used
data from one GCM, i.e., ECHAMS5, and two RCMs, i.e., REMO and RegCM3 for the A1B
emission scenario combined with two stochastic generators for rainfall and temperature
and generated 85 realizations for the future decades. Their results suggest that internal
(stochastic) climate variability is a fundamental source of uncertainty, typically
comparable or larger than the projected climate change signal. According to their
findings, changes up to £ 20% of the mean flow cannot be identified. The results of our
study suggest that changes up to = 11.1% of the mean total flow and changes up to =
15.4% of the mean surface flow cannot be identified. Liu etal. (2013) demonstrated that
in the near future (2021-2051), the effect of climate natural process could dominate over
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other uncertainties, whereas in the far future of 2061-2091, climate change owing to
greenhouse gas emissions may be the main contributor of total uncertainty. In our study,
the comparison of the future 40-year means for all scenarios also reveals that 2019-2058
is a transition period, during which the outcomes of different climate scenarios overlap
due to the dominant role of internal variability. In addition, during this period changes in
flow are not as significant as those forecasted after 2060, when the particular realization
of the emission scenario becomes more important. Northrop and Chandler (2014) also
came to a similar conclusion using Bayesian analysis on models obtained from phase 3 of
the Coupled Model Intercomparison Project (CMIP3). The projected impact of climate
change at the Koiliaris River, and the island of Crete in general, changes significantly as a
function of the scenario that will be realized after 2059 [a statement also supported by
Joseph et al. (2018)], and ranges from significant flow increases (37.5% for RCP2.6) to
significant decreases in flow (42.3% for RCP8.5). The climate change ensemble mean,
however, indicates a significant decrease in the mean annual total flow (13.0%) and
karstic flow (16.4%) after 2059. The worst case scenario (REMO RCP8.5) predicts a mean
karstic flow of 347.7 mm/yr (decrease of 37.9%). Furthermore, by taking the
uncertainties of model parameter and internal variability into consideration, the
predicted Kkarstic flow can be as low as 271.5 mm/yr (decrease of 51.5%).

2.6 Conclusions

The methodology presented here combines the advantages of climate change impact
analysis with those of a fully integrated hydrologic model. The integration of surface and
subsurface flow in the same model provides more realistic simulations of water cycle and
improved representation of the dominant hydrologic process of groundwater recharge
interaction, which is important for impact assessment on groundwater resources. This is
the first time, to our knowledge, that a combined assessment of surface and karstic flow
model parameter uncertainty and internal variability is applied to a Kkarstic
Mediterranean watershed. Our analysis shows that the parameter uncertainty of the
hydrologic model and the internal variability of the climate change scenarios should be
considered in planning water resources adaptation and mitigation measures that aim to
alleviate climate change impacts in watersheds of semi-arid or arid climates, especially
for the 2019-2058 period. After 2059, the climate change scenario is the most important
uncertainty factor. The methodology presented herein aims to illustrate the range of
potential outcomes for flow in karstic watersheds. The case of the Koiliaris River Basin
provides a benchmark for comparative studies in other similar regions of the globe, where
water needs during the summer are exclusively covered by the flow originating from
karstic springs. Accurate estimates of the overall uncertainty are necessary for planning
purposes and may reveal possible water deficits that cannot otherwise be identified.
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3.1 Abstract

This study aims to assess the variability in flow and water quality predictions at a
Mediterranean karstic watershed due to model parameter uncertainty, internal
variability of rainfall input and climate change scenario. To achieve this, we use a modified
version of the deterministic Soil Water Assessment Tool (SWAT) which incorporates a
model to account for the flow originating from the karstic springs (Karst-SWAT). The
SUFI2 algorithm and the @RISK software are used for the quantification of uncertainty
due to surface parameters and karstic parameters respectively. A combination of
representative climate change models is selected from the EURO-CORDEX climate model
ensemble and used for analysis. The rainfall input time series are stochastically modeled
using the Long Ashton Research Station Weather Generator (LARS-WG). Monte Carlo
simulations for the 2019-2098 time period are used as input to the Karst-SWAT model to
assess the uncertainty of the modeled nitrate nitrogen and sediment masses transported
through the flow due to internal variability. Results suggest that, after 2059, climate
change scenario uncertainty for projections of nitrate nitrogen mass is equivalent to the
one of flow projections (25.5%, expressed as the Coefficient of Variation) but it is higher
for the case of sediment mass (41.6%). The uncertainty due to internal variability of the
sediment mass is also higher (18.5%) than the one of the nitrate nitrogen mass (6.9%),
due to the complexity of the erosion process. The combined uncertainty due to hydrologic
model parameters and internal variability for the nitrate nitrogen mass is 40.1%, which
is greater than the uncertainty due to climate change model. The limited observational
data contribute the most to the high parameter uncertainty. Even when considering all
these uncertainties, it is forecasted that the Koiliaris River will not have concentrations of
nitrate nitrogen higher than the limits suggested by the Water Framework Directive (11.3

mg/L).

Key words: c/imate change; parameter uncertainty; internal variability; sediments;
nitrates; karstic Mediterranean watershed;
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3.2 Introduction

Climate change impacts on water flow have received a lot of attention but relatively little
is known about the respective changes in water quality, especially in the Mediterranean
region, regarding sediment transport and erosion (Zhang et al., 2019; Nerantzaki et al.,
2016; Nerantzaki et al., 2015; Bussi et al., 2014; Bangash et al,, 2013; Maas e t al,, 2002)
or nitrate concentrations (Mas-Pla and Mencid, 2019). Even fewer studies have dealt with
the ways that climate change affects water quality of karstic aquifers (Hartmann et al,,
2014). Both the quality and availability of water resources in the Mediterranean region
are expected to change significantly according to the Intergovernmental Panel on Climate
Change (IPCC) Synthesis Report (Pachauri et al., 2014). Due to the projected changes in
air temperature and rainfall, river flows are expected to be affected and the mobility and
dilution of contaminants will also be influenced, but the relationships are not
straightforward to capture.

Recent research has also revealed that the water management community has neglected
and in many cases underestimated the uncertainties in the projected water quantity and
quality, in particular, uncertainties associated with internal climate system variability and
hydrologic modelling. The inherent uncertainty that exists in the input time series can
significantly affect model outputs and our confidence in the results. In addition, very few
studies have addressed the parameter uncertainty quantification issue for the case of
sediment simulations (Singh et al., 2014; Sayama et al., 2010) and only recently a couple
of studies dealt with the parameter uncertainty assessment of nitrate simulations (Mehdi
et al., 2018; Shiirz et al,, 2019), or both nitrate and sediment simulations (Dakhlalla and
Parajuli, 2019). There are no uncertainty assessment studies on water quality
simulations, to our knowledge, for the Mediterranean region, where observational data
foreshadow a substantial change towards higher temperatures and lower precipitation
rates, and lower flows accordingly, and much less over regions with karstic formations.

The aim of this study is to assess the output range in nitrate nitrogen and suspended
sediment predictions at a Mediterranean karstic watershed (i.e. the Koiliaris Critical Zone
Observatory), due to climate change scenarios, hydrologic model parameters and internal
variability of rainfall input. We achieve this by using a modified version of the
deterministic Soil Water Assessment Tool (SWAT) which incorporates a karstic model
(Karst-SWAT), in combination with a representative set of climate change models. A
stochastic rainfall generator (Long Ashton Research Station Weather Generator or LARS-
WG), is run under both current and future climate conditions, to generate rainfall time
series with the same statistical characteristics as the original (observed and forecasted).
The generated time series are used as input in the karst-SWAT model, for the simulation
of nitrate nitrogen (hereafter nitrate) and sediment concentrations and masses at the
Koiliaris River Basin, in order to explore the uncertainty in present and future predictions.
A combination of the SUFI2 algorithm and the @RISK program is used for the parameter
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uncertainty assessment of surface and karstic variables respectively. The uncertainties
are coupled and the possible range of the variables is assessed.

3.3 Materials and methods
3.3.1 Case study and Data

The Koiliaris Critical Zone Observatory, which represents severely degraded soils due to
heavy agricultural impacts such as grazing, over many centuries, represents
Mediterranean soils under imminent threat of desertification due to climate change. It is
situated in Crete, Greece, 15 km east of the city of Chania. The catchment area is about
130 km?2. The karstic formations in the basin, which correspond to the Plattenkalk
limestones of Figure 3.1, in combination with a fault that extends from the northeast to
the southwest, direct water from an extended karstic watershed area towards Stilos
springs (Figure 3.1)(Moraetis et al., 2010; Nikolaidis et al., 2013), thus supplying the
permanent flow of the Koiliaris river. The overall recharge area of the springs, extends
outside the watershed boundaries (Nikolaidis et al., 2013) to the southeast of the
watershed boundary, over an area of about 80 km? (Figure 3.1).

In addition to the permanent Stilos spring discharge, there is also a temporary tributary
called Keramianos, a temporary spring called Anavreti, and two episodic tributaries
(upstream of Anavreti, Figure 3.1), which combine together to compose the Koiliaris river
flow system. The total flow at the basin exit is estimated at about 190 hms3/year
(Nerantzaki et al., 2015). The Keramianos tributary drains a small sub-catchment that
generates surface runoff due to the schist geologic formation of the area. Keramianos
stream flows along a karstic gorge (Diktamos gorge) and then over an alluvial plain before
joining the Koiliaris river (Figure 3.1). Schist formations are quite friable and in
combination with the steep slopes and the adaptation of intensive agricultural practices
that are common in the area of Keramianos sub-basin, the top soil becomes extremely
brittle and easily erodible. More specifically, due to the abandonment of traditional
agricultural practices over the years, tractors now enter and plow the terraces, leading
occasionally to their collapse, and exacerbating the erodibility of the soils. In addition,
overgrazing leaves the top soil unprotected and vulnerable to surface runoff. Thus,
Keramianos is the main tributary responsible for the bulk of the sediment transport in
Koiliaris River. On the other hand, waters derived from the karstic springs, have a
relatively constant - low - concentration (Nerantzaki et al., 2015).
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Figure 3.1. Map of Koiliaris River Basin (Crete, Greece) showing precipitation and
temperature measurement stations and the modelled extended karstic area

The agricultural land consists of olive groves, citrus groves, vines and vegetables (32.1%)
grown with conventional practices such as tilling, irrigation and use of fertilizers.
Intensively grazed scrubland/pasture by livestock covers large areas (67.3%) of the
watershed at high altitudes and forest (0.6%). The livestock grazing in the watershed and
its extended karst numbers 123,987 sheep and goats in 2001. With a grazing area of
16,875 ha, the grazing intensity is 6.8 animals/ha. According to the country’s statistics,
fertilizer consumption was 405,000 t/year in 2002. Generally, nitrates related pollution
is caused through the introduction of excessive amounts of nitrogen to surface and
ground waters, mainly as a result of agricultural practices. Intensive cultivation and
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livestock grazing have deteriorated significantly soil quality and land fertility. Soils are
thin, poorly developed, following the lithology of the area (Nikolaidis et al., 2013).

The data used as input to the SWAT model are provided by five meteorological stations,
two of which are located within the watershed boundaries. These stations (at Samonas
and Psichro Pigadi, see Figure 3.1) are managed by the “Laboratory of Hydrochemical
Engineering and Remediation of Soil” of the Technical University of Crete and record data
every 5 minutes. The remaining three precipitation stations at Askifou, Kalives and Mouri
are managed by the Region of Crete and are located outside the basin. Data from a
telemetric station located near the exit of the basin towards the sea and two hydrometric
stations along the Keramianos river bed, recording water level data every 10 minutes, are
used to calibrate the SWAT model. In addition to the telemetric data, monthly field
campaigns are conducted for both surface and ground water quality measurements at the
basin exit nitrate concentration (2004-2010 interrupted time-series) and at station H3,
at the gorge entrance (2007-2017). Further details on the monitoring network and data
analysis can be found in Moraetis et al., (2010).

Grab samples for the determination of suspended sediment concentration were collected
from the Koiliaris River at the hydrometric station H1 (Agios Georgios), on a monthly
basis from 2011 to 2014. In addition, samples were also collected after every intense
precipitation event in-between December 2013 and February 2014 at the station H3
which is located upstream of the gorge and corresponds to the Keramianos sub-basin.

Data from the meteorological stations are available for the 1979-2018 period (45 years).
However, there are periods of missing data for all 5 stations, which are infilled using the
normal ratio methodology (as suggested by the American Society of Engineers (1996))
and utilizing monthly correlations between these stations or stations outside the
watershed. According to the method, the estimate of the unknown rainfall value is given

by: Py = %PA, where Pxand Pa are the daily rainfall values of the missing data station
A

and the station with the available rainfall data respectively, and Nxand N are the normal
annual rainfall of the missing data station and the station with the available daily data.

3.3.2 The Karst-SWAT model

The SWAT model (Soil and Water Assessment Tool) is a well-known and widely used
deterministic, watershed to river basin-scale, hydrological model, which operates on a
daily time step. SWAT can assess the quality and quantity of surface and ground water
and predict the environmental impacts of land use, land management practices, and
climate change (Arnold et al,, 1998; Neitsch et al, 2011). In the model, the watershed is
divided into smaller sub-basins in order to separate the tributaries; these are further
divided into hydrologic response units (HRUs) which constitute unique combinations of
soil type, land use and slope value within the watershed.
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Details regarding the methodology followed for the simulation of karstic and surface flow
can be found in Nerantzaki et al. (2020). In brief, the SWAT model uses the precipitation
as input and simulates the surface hydrologic processes (snow accumulation and melt,
surface runoff, infiltration to shallow groundwater and evapotranspiration) over the
karst area. The surface water along with the nitrate nitrogen and a percentage of the
sediment yield over the karstic areas is then directed to the subsurface. Particularly, we
utilize (1) the deep groundwater flow (DA_RCHG in SWAT), (2) the nitrate nitrogen NO3-
N leached past the bottom of the soil profile during the time step (nitrate nitrogen - NO3L
in SWAT), and (3) a percentage of the sediment yield (SYLD in SWAT) from the HRUs
located in the karstic areas (see Nerantzaki et al., 2015). We aggregate these variables on
a daily step and provide the input to a two-part reservoir karst model (Nikolaidis et al.,
2013). The karst model parameters are calibrated, and the resulting flow time series is
used as point source input at the spring location. The mass balance equations for the two-
part reservoir model are solved analytically for a daily input time step (Nikolaidis et al.,
2013). Given that the volume of the two reservoirs reflects the daily volume
corresponding to the discharging water from the spring and does not account for the
permanent volume of the karst below the spring level, a deep karst factor parameter was
introduced in the model equation of the lower reservoir to account for the extra dilution
of the incoming chemical loads and in this way provide an estimate of the total volume of
the karst.

As far as the sediment transport is concerned, sediment yield from surface erosion is
estimated for each HRU with the Modified Universal Soil Loss Equation (MUSLE). Thus,
sediment yield is determined by the surface runoff volume, the peak runoff rate, the soil
erodibility, the type of land use management and the support practices that are being
followed, the slope and the coarse fragment of the soil (Williams, 1975). Sediment routing
in the channel consists of two processes operating simultaneously, deposition and
degradation. The aforementioned two processes are computed with a simplified version
of Bagnold stream power equation. The sediment mass balance of the karst is calculated
in a similar manner as the nitrate-N mass balance presented by Nikolaidis et al. (2013).
The sampling station H1 is located just downstream of the cross-section where the
Keramianos tributary merges with the main river, the latter being fed by the karstic
springs. Thus, the sediment and nitrate concentration at the sampling point is assumed to
be equal to

C __ Qrarst*Crarst *Qsurf*Csurf
model —

(3.1)

Qkarst"‘qurf

where Qkarstand Ckarstis the flow and concentration (nitrate or suspended sediment) from
the karstic springs, Qsurris the surface flow from tributaries and Csurris the concentration
of the surface flow. The determination of Qkarstis possible through the Karst-SWAT model.
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Equations (B10), (B11) (Appendix B) were used for the determination of Cxars;, while Qsurr
and Csurr are provided from the calibrated SWAT model. The sediment or nitrate
concentration from the modified SWAT model given by Equation (3.1) is expected to
match the corresponding observed values at station H1.

3.3.3 Model Calibration and Parameter Uncertainty Framework

Nerantzaki et al. (2020) recently established a modeling framework for the assessment
of surface and karstic flow variability due to parameter uncertainty. They used the SWAT
model with a karstic component (Karst-SWAT) for the surface and karstic flow modeling
respectively. For the quantification of the uncertainty stemming from the parameters
defining the surface flow and karstic flow, they used the SUFI-2 algorithm with the @RISK
software, accordingly. Here we use this framework, adjusted for the nitrate nitrogen mass
transferred with the river.

For the case of the nitrate nitrogen simulation, we initially calibrate the SWAT model
(manually) by employing the nitrate concentration data at the gorge entrance (station
H3). We then calibrate the Karst-SWAT model parameters, using the input (NO3L) by the
SWAT model; we use the mixed flow concentration of Equation (3.1) and the observed
nitrate concentration data at the basin exit to test the agreement between model and
observations.

The next step is to perform the SUFI2 algorithm, using the observed data of nitrate
concentration at station H3 for the period 2007-2017. During this period, observational
data of the nitrate mass in surface flow are available. These data are limited to 20
measurements of nitrate concentration. The observed concentrations are transformed
into nitrate masses by multiplying with the corresponding flows observed at the station
H3 during the time of sampling. The SUFI2 algorithm performs 4 iterations of 1000
simulations (based on Latin Hypercube Sampling). We set 10 parameters which affect
flow (using the same range as in Nerantzaki et al., 2020) and 6 parameters which affect
nitrate concentration, to be altered with every simulation. The parameters are selected
based on a sensitivity analysis conducted for numerous variables. It is important to note
that the range of the parameters affecting flow is kept constant after each iteration.
Nitrate concentration (or mass) is sensitive to both parameters defining flow and
parameters defining nitrate generation and transfer, but the flow parameters should not
vary beyond the ranges set during the calibration of flow. By keeping the same flow
parameters range (as in Nerantzaki et al, 2020), we respect the flow parameters
uncertainty and, at the same time, we can examine the nitrate output range based on the
parameters which affect the nitrate nitrogen alone. The P-factor and the R-factor are used
to quantify the fit between the observed data and the simulated probability distributions.
The P-factor is the percentage of observed data contained within the 95PPU. The R-factor
is the width of the 95PPU interval divided by the standard deviation of the observed data.
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For the simulation of nitrate nitrogen, a value of P-factor at least equal to 0.5 is considered
adequate (Abbaspour, 2015). It is also suggested that the R-factor is lower than 1.5
(Abbaspour et al., 2015). The parameters set which gives the best fitted simulation is
selected for the calibration of the nitrate mass at station H3.

The above procedure determines the uncertainty of nitrate mass at the gorge entrance
(H3). To further quantify the uncertainty of the other output variables (nitrate NO3-N
transported with water at the basin exit (NO3_OUT), and nitrate nitrogen leached past
the bottom of the soil profile (NO3L) from 46 karstic HRUs), the input parameter range
of the final SUFI2 iteration is used to run an additional ensemble of 100 LHS simulations.
These allow to quantify the uncertainty range of the surface flow at the basin exit (where
no observational data of nitrate concentrations of surface water are available). In
addition, this procedure quantifies the uncertainty of the NO3L from the 46 karstic HRUs,
through which the water enters the deep aquifer, thus providing the input range to the
Karst-SWAT model.

The next step is the quantification of the uncertainty due to the Karst-SWAT parameters.
Once the karst model parameters are calibrated, the @RISK program (Palisade
Corporation, 2010) is run using five (karst model) variables which are assumed to follow
the uniform distribution. Four of these variables determine the flow and one of these, the
nitrate mixing factor, exclusively determines the nitrate concentration of the spring, but
the nitrate mass transferred through the spring is sensitive to all of them. Four iterations
of 1000 simulations of Latin Hypercube sampling are carried out to determine the
uncertainty of the five model parameters that control karstic runoff. The parameters
range is set to £0.38% (see section 3.4.2). The range of the karstic flow for the period
2007-2017 is then calculated.

The final step is to quantify the parameter uncertainty of both SWAT and Karst-SWAT
models. According to Taylor (1997), a good measurement of the uncertainty dx of
variable x is the standard deviation o,. If variable x is measured with independent and
random uncertainties oy, g,, then the uncertainty o, is

ox =+/(01)? + (02)2 . (3.2)

Equation (3.2) can be used to estimate the “nitrate mass in total flow” uncertainty o, that
results from (1) the uncertainty of nitrate mass in surface and karstic flow due to SWAT
parameters, and (2) nitrate mass in karstic flow uncertainty due to Karst-SWAT
parameters. The total uncertainty, due to the parameters from (i) SWAT and (ii) Karst-
SWAT for the variable of the nitrate mass in the karstic flow alone (3), can be also
calculated in a similar manner.

This framework is used for the uncertainty assessment of nitrate mass in the river. The
framework could not be used for the case of suspended sediments in the Koiliaris River
Basin, as the sub-basin for which the sediment data are available (a) has limited observed
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data and (b) produces higher amounts of sediment (high erosion rate) compared to the
rest of the sub-basins of the watershed. Therefore, we cannot assume uniform properties
and, therefore, similar parameter ranges for the whole watershed, as we did for the case
of nitrate mass, for the estimation of the non-observed variables (i.e. the sediment
concentration at the basin exit, where no observed data are available).

3.3.4 Climate Change Scenarios

A sub-set of simulations is selected from the recent high resolution (12.5 km) climate
model ensemble, the EURO-CORDEX (EUR-11) (Jacob et al,, 2014). The Global Climate
Models (GCMs) simulations of the EURO-CORDEX have been conducted within the
Coupled Model Intercomparison Project Phase 5 (CMIP5) representing various scenarios
of greenhouse gas emission pathways. The regional simulations downscale the global
climate projections of CMIP5 (Taylor et al., 2012) and the RCPs (Moss et al.,, 2010; van
Vuuren et al., 2007). EURO-CORDEX scenario simulations use the RCPs defined for the
Fifth Assessment Report of the IPCC (Moss et al., 2010).

The RCM simulated temperature and precipitation data (for each emission pathway) are
adjusted for biases against a thirty-year period between 1980 and 2009 that served as
reference for the correction. The quantile mapping methodology known as multi-segment
statistical bias correction (MSBC) is used (Grillakis et al., 2013). The bias correction of the
RCM data is performed using point observations, hence the correction procedure also
serves for the parameter downscaling.

The rainfall data for both reference (1979-2018) and projected period (2019-2098) for
the selected models are analyzed. The future period is divided into two separate sub-
periods corresponding to the years 2019-2058 and 2059-2098. This division was applied
for two reasons: (1) the intensity of the precipitation and the duration of wet and dry
periods changes significantly after 2060 and (2) at least 40 years of observed data are
required to reliably calibrate the LARS-WG generator. Eventually, there is one time series
for the reference period, and six time series referring to the projected time period (2019-
2098), two per RCP, which are used as input for the LARS-WG.

3.3.5 Rainfall Simulation

The LARS weather generator (LARS-WQ) is a single-site stochastic weather generator
which simulates rainfall under present and future climate conditions (Semenov and
Stratonovitch, 2010; Semenov et al., 1998; Racsko et al.,, 1991). LARS-WG is chosen in
order to overcome the limitations of the Markov chain model of precipitation occurrence
(Bailey et al., 1964; Richardson, 1981; Richardson and Wright, 1984). The latter considers
two precipitation states, wet (non-zero rainfall) and dry (zero rainfall), and transitions
based only on the conditions of the preceding day. This is not always sufficient to correctly
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simulate the maximum dry spell length which is crucial for realistic assessment of water
resources in semi-arid regions. LARS-WG has performed well compared to other weather
generators by means of reproducing the statistical characteristics of observed rainfall
(Mehan et al., 2017). The rainfall simulation technique followed by the latest version of
the LARS-WG is described in detail in Semenov and Stratonovitch (2010). The LARS-WG
utilizes semi-empirical distributions for the lengths of wet and dry day time series
and for the intensity of daily precipitation. Precipitation occurrence WG is modelled as a
sequence of alternating wet and dry series. The length of each series is chosen randomly
from the wet/dry semi-empirical distribution for the month in which the series begins.
The precipitation intensity for wet days is generated from the semi-empirical distribution
of rainfall intensity on wet days for the particular month. The intensity value generated
for each wet day is independent of the length of the wet series or the amount of
precipitation on previous days.

LARS-WG is applied for the time-series of the Mouri station, which has the shortest period
(one year) of missing data. Although located just outside the karstic watershed, Mouri is
representative for the permanent springs flow and is the single station which is well
correlated with the remaining 4 stations (Psichro, Samonas, Kalives and Askifou). Since
LARS-WG cannot produce correlated time series at multiple locations, the remaining
stations are “simulated” based on Mouri using the normal ratio methodology described in
section 3.3.1. Thus, correlated time series are generated for the remaining four stations.
The calibrated SWAT model was run using the Mouri-based rainfall time series. The
results show that the fit between the predicted and observed flow values is satisfactory
(see Figure 3.3 and section 3.4.1), which supports the selection of Mouri station as model
input.

3.3.6 Assessment of Internal Variability

The input time series consist of the rainfall time series at Mouri station for the reference
period (1979-2018) as well as the projected time series for the same station, based on
three Representative Concentration Pathways (RCPs), i.e. RCP2.6, RCP4.5, and RCP8.5 of
the CSC-REMO (Jacob et al., 2012) Regional Climate Model (section 3.3.4). The input time
series from the RCPs are imported in the LARS-WG, and an ensemble of thirty time series
(x30in Figure 3.2) is generated for every initial time series. The generated time series are
then used as input in the Karst-SWAT model. The model outcomes are surface runoff
(provided by the classic SWAT model), spring flow (provided by the Karst-SWAT) model,
nitrate concentration and sediment concentration at the basin exit (combination of classic
SWAT and Karst-SWAT). The total flow of the basin is considered as the sum of the spring
and karst flows. The sediment and nitrate mass of the surface flow are outputs of the
SWAT model and the Karst-SWAT provides the nitrate and sediment mass through the
spring. The methodology is schematically illustrated in Figure 3.2 and the stochastic
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rainfall generator (LARS-WG) and the Karst-SWAT model are described in the sub-
sections 3.3.5 and 3.3.2.
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Figure 3.2 Schematic representation of the methodology followed to assess internal
variability effect on the total flow, sediment and nitrate export of the Koiliaris River for
the reference and future periods.

3.3.7 Monte Carlo Simulations

The six time series derived from the emission scenarios along with the reference period
time series, are stochastically modeled using the LARS-WG. In order to select the optimum
number of Monte Carlo simulations, we experiment with different numbers (10, 15, 30,
60, 90, 120, 170, and 220) of rainfall realizations and at the same time we check if the
range of values of the simulated monthly time series contains at least 95% of the values
of the original time series (Gilman, 1968). The respective percentage for each number of
realizations is given respectively by 85.6%, 88.8%, 95%, 97.7%, 97.9%, 98.1%, 99.1%,
and 99.4%. To reduce the overall computational time, the smallest number of realizations
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meeting the 95% inclusion criterion, i.e., 30 realizations, is used in the analysis (as in
Nerantzaki et al., 2020)

3.4 Results
3.4.1 Hydrologic Model Goodness of Fit

The agreement between the calibrated model (using SUFI2) for the reference period
2004-2013 (using the original rainfall time series at Mouri, and rainfall at the other four
stations based on Mouri, see section 2.3) and the observed daily flow at the basin’s exit is
shown in Figure 3.3. The final P-factor was estimated at 0.58 and the R-factor was 1.20.
The statistical indices suggested by Moriasi et al. (2007), namely the Nash-Sutcliffe
Efficiency (NSE) which is the residual variance (“noise”) compared to the measured data
variance (“information”), the Percent Bias (PBias) which is the deviation of data being
evaluated expressed as a percentage, and the standard deviation ratio (RSR), which is
equal to the root mean square error (RMSE) divided by the standard deviation of the
observations, were calculated leading to: NSE=0.59, PBias=-7.67% and RSR=0.64 for the
daily values, and NSE=0.81, PBias=-3.67% and RSR=0.44 for the monthly values. A
simulation is considered adequate if NSE > 0.5, |PBias|< 0.25 and RSR < 0.7 (Moriasi et
al.,, 2007).
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Figure 3.3. Comparison of observed daily flow at the basin’s exit with the calibrated daily
total flow (i.e., the simulation which gives optimal fit to the data) based on the SWAT
model.

The model output (calibrated with the SUFI2) for nitrate and sediment concentration at
the basin exit is presented in Figure 3.4 (again, the graphs are a result of the model which
uses the original rainfall time series at Mouri, and rainfall at the other four stations based
on Mouri). A simulation is considered adequate for water quality simulations if NSE > 0.5,
|PBias|< 70% and RSR < 0.7. The nitrate simulation yielded NSE equal to 0.6, PBias 45.8
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% and RSR 0.65. As far as the simulation of sediments is concerned, for the 2011-2014
period, the NSE is 0.97, the PBias is 53.0 % and RSR is 0.16 for the daily records.
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Figure 3.4 Validation of karst-SWAT model output, calibrated using the SUFI2 algorithm
((a) nitrate concentrations and (b) sediment concentrations), using rainfall input from
Mouri and four other stations, with observed data at the basin’s exit.

3.4.2 Variability due to Hydrologic Model Parameters

The parameters used in SUFI2 are presented in Table 3.1 along with their final ranges.
The classification of the parameters according to their sensitivity over nitrate mass (in
the surface flow) is also indicated. These parameters yield a range of mean annual nitrate
nitrogen mass at the basin exit equal to 77.0% (expressed as the standard deviation
divided by the mean, i.e. Coefficient of Variation or CV). The mean annual nitrate mass
leached in the groundwater has an uncertainty of 45.5%, which is equal to the uncertainty
of the karstic flow due to the SWAT model parameters. The variability of the flow at the
basin exit due to the uncertainty of parameters affecting the surface flow is equal to 17.1%
(see Nerantzaki et al., 2020). In other words, 22.2% of the nitrate mass uncertainty is due
to the parameters affecting the flow.

The Karst-SWAT model parameters range yielded an uncertainty in nitrate mass in
karstic flow equal to 10.8%, using the @RISK software. The corresponding uncertainty
for the karstic flow was estimated at 9.7% using the four karstic parameters defining
karstic flow, according to Nerantzaki et al. (2020). Uncertainty analysis performed using
the same program, revealed that the nitrate mixing factor is the most sensitive parameter,
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followed by the lower reservoir recession parameter, the fraction of water moving from
the upper to the lower reservoir, the fraction of the inflow to the upper reservoir and,
finally, the upper reservoir recession constant.

With the use of Equation 3.2, the total uncertainty of the nitrate mass in the karstic flow
is 93.2 t/year and the CV is equal to 46.8%. Using the same Equation, the total uncertainty
in nitrate mass exported at the exit of the basin due to both SWAT and Karst-SWAT
models is 113.6 t/year (CV equal to 40.1%).

Table 3.1. Definition and estimated range of SWAT model input parameters after four
SUFI2 iterations. The first 10 parameters influence both flow and nitrate outputs, the last
6 parameters affect only nitrate outputs. The numbers in brackets indicate the sensitivity
rankings for the nitrate flux at the entrance of the gorge, with “1” being the most sensitive
parameter.

Parameter Definition Min Max
(2) r_CN2.mgt Initial SCS runoff curve number for moisture conditionII -0.95  -0.33
(5) r_CH_N1.sub Manning’s “n” value for the tributary channels. -0.58 0.48
Effective hydraulic conductivity in main channel
(10) r_CH_K2.rte alluvium (mm/h) -0.55 0.29
(3) r_SURLAG.bsn Surface runoff lag coefficient. -0.72 0.11
(13) r_OV_N.hru Manning's "n" value for overland flow. -0.67 -0.24
(4) r_ALPHA BNK.rte Baseflow alpha factor for bank storage (days) -0.24 0.32
(15) r_SOL_Z().sol Depth from soil surface to bottom of layer 0.56 1.21
(7) r_CH_N2.rte Manning's "n" value for the main channel -0.67 0.03
(8) r_GWQMN.gw Threshold depth of water in the shallow aquifer -092  -0.67
(1) r_SOL_K().sol Saturated hydraulic conductivity (mm/hr) -1.44  -0.86
Initial concentration of nitrate in shallow aquifer. (mg
(6) r_SHALLST_N.gw N/L). -0.90 0.03
(14) r_RCN.bsn Concentration of nitrogen in rainfall -0.10 0.71
(9) r_N_UPDIS.bsn Nitrogen uptake distribution parameter -0.22 0.34
(11) r_CDN.bsn Denitrification exponential rate coefficient -0.89 0.04
(16) r_SDNCO.bsn Denitrification threshold water content -0.22 0.35
(12) r_SOL_NO3().chm Initial concentration in soil layer -0.04 0.89
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3.4.3 Variability due to Climate Change Scenarios

The time series of rainfall and temperature of the 11 climate scenarios are used as input
in the combined SWAT and Karst-SWAT model (calibrated using the optimal parameter
set). The mean, range (maximum minus minimum value of mean flow), standard
deviation (stdev) and Coefficient of Variation (CV) of the mean annual rainfall, total,
karstic and surface flow for the 11 scenarios are presented in Table 3.2 for the two future
periods. The values for rainfall and flows are given by Nerantzaki et al. (2020).

Following the patterns of flow, when comparing the future annual averages of the
variables under the 11 scenarios, we have that the total nitrate mass increases during the
period 2019-2058 (12.2%) and decreases after 2059 (23.7%). The nitrate mass
transferred by the surface flow increases by 24.7% during the period 2019-2058 and
continues to increase (10.1%) during the period 2059-2098. Conversely, the nitrate mass
transferred through the spring increases slightly in the period 2019-2058 (4.8%) and
decreases significantly after 2059 (37.5%). This occurs due to the fact that flash floods
are expected to increase (despite the slight decrease in surface flow) thus favoring the
flushing of nitrates. Analysis of the upper 10% quantile of the maximum nitrate
concentrations in surface flow, revealed that most scenarios predict that there will be
higher maximum concentrations in their time series compared to the reference period
(Figure 3.5a). The Water Framework Directive (91/676/EEC - Nitrates Directive) for
Nitrates has set a limit of maximum concentration equal to 50 mg/L for drinking waters,
indicating good chemical status, which refers to total nitrate; when converted to nitrate
nitrogen concentration, the maximum nitrate nitrogen concentration is equal to 11.3
mg/L. The World Health Organization guideline for drinking water is also less than 11.3
mg/L of NO3-N. The mean annual concentration of nitrate nitrogen in the reference and
future periods is very low compared to this limit (see Table 3.2). Regarding the daily
concentrations of total nitrate nitrogen at the basin exit, these exceed the above
mentioned limit 0.05% of the time during the 40 year reference period (1979-2018), and
on average (based on the 11 climate change scenarios) 0.24% of the time during the 40
year period of 2059-2098 (ranging from 0 to 0.78%).
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Figure 3.5. Probability of exceedance for the upper 10% quantile of the nitrate
concentrations distribution of (a) total flow and (b) surface flow of the reference period
1979-2018 (black line) and the period 2059-2098 period based on the 11 scenarios (grey
lines).

The total sediment mass decreases until 2059 (28.3%) and is stable after 2059 (low
increase of 1.1%). For the case of sediments, the sediment mass delivered by the spring
increases significantly after 2059 (740.6%) while the sediment mass of the surface flow
decreases (38.2%), leading to stable total sediment mass at the basin exit. This difference
between the progress of sediment and nitrate masses in the future is based on the spatial
distribution of their sources. The nitrate production is homogeneous all over the Koiliaris
River Basin, whereas the sub-basins of the watershed have different erodibilities. The
majority of the sub-basins located inside the watershed are non-erodible, with the
exception of the sub-basin of Keramianos. However, most of the sub-basins of the
extended karst area are highly erodible, mainly due to their steep slopes. Therefore their
sediment yield increases substantially due to the prevalence of torrent rain in the future,
thus amplifying the sediment transport through the spring.

After 2059, the uncertainty range of the variables due to climate change scenario
increases significantly, with the exception of the nitrate and sediment mass originating
from the springs. Most scenarios agree that the sediment mass from the spring tends to
increase and nitrate mass from the spring tends to decrease. Generally, nitrate follows the
patterns of flow, therefore nitrate from the spring decreases as karstic flow decreases.
Sediment, on the other hand, acts more independently. Due to the succession of longer
dry periods and intense rainfall, sediment yield increases, especially in the erodible
extended karstic area, due to the steep slopes. Therefore, the sediment input to the karstic
spring increases too. The surface sediment mass decreases as the intermittent runoff does
not last long enough to carry the produced sediment to the reach.
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Table 3.2. Mean, range (maximum minus minimum value of mean variable) standard
deviation (stdev), and coefficient of variation (CV) for rainfall, total, karstic, surface flow,
nitrate and sediment mass originating from the spring and from the surface flow, and
their concentrations, for the two future periods (2019-2058 and 2059-2098). The
statistics are based on the temperature and rainfall projections according to the 11
selected scenarios (GCM, RCM and RCP combinations) which are used as input in the
hydrological models (SWAT and Karst-SWAT with the SUFI2-based -calibrated
parameters).

variables 2019-2058 2059-2098
variables mean range | stdev cv mean range stdev cv
(%) (%)
i 1309.3- 1067.9-
rainfall 1508.9 139.6 | 9.3% | 1358.0 2489 | 18.3%
(mm/year) 1813.6 1897.3
693.4- 480.7-
total flow 845.9 1057 | 12.5% | 724.8 2034 | 281%
(mm/year) 1032.4 1146.1
i 462.1- 331.5-
karstic 543.4 551 | 10.1% | 467.9 109.9 | 23.5%
flow(mm/year) 622.8 683.1
231.4- 147.1-
surface flow 302.6 5245 | 173% | 256.9 942 | 36.7%
(mm/year) 409.6 463.0
nitrate mass 75 0- 48.6-
from surface 105.0 ' 24.8 23.5% 92.8 ) 38.8 41.9%
162.0 182.0
(t/year)
nitrate mass 164.2- 92.8-
: ' 0 ' 0
from spring 209.4 7 300 |143% | 1248 6 17.8 | 14.3%
(t/year)
i 239.0- 146.6-
total nitrate 316.6 514 | 163% | 2152 548 | 25.5%
mass (t/year) 436.6 327.2
total nitrate
i 1.46-
daily _ 1.6 0.08 | 5.0% 1.46 122-1.72 | 018 | 12.9%
concentration 1.72
(mg/L)
sediment mass 4063.4- 2878.3-
6527.4 ' 2082.6 | 31.99 6281.8 ' 29259 | 46.69
from surface 11700.9 %o 13063.6 o
(t/year)
sediment mass 480.9-
from spring 1145.0 392'5 4 960.7 83.9% 4530.8 9989.2 3023.7 | 66.7%
(t/year) '
i 4544.3- 4570.3-
total sediment | ¢, 4 29724 | 38.7% | 10812.6 4497.0 | 41.6%
mass (t/year) 15626.1 17165.5
total sediment
daily _ 109 |7.3-224 | 41 |37.9% 32.0 153-56.7 | 152 | 47.5%
concentration
(mg/L)
reference period
variables p
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rainfall 1460.3

(mm/year)

total flow 833.4
(mm/year)

karstic 559.8
flow(mm/year)

surface flow
(mm/year) 273.7

nitrate mass
from surface
(t/year) 84.2

nitrate mass
from spring

(t/year) 199.2
total nitrate

mass (t/year) 282.2
total nitrate

concentration 1.5
(mg/L)

sediment mass

from surface 10258.2
(t/year)

sediment mass

from spring 546.1
(t/year)

total sediment 10697 4

mass (t/year)

total sediment
concentration 12.2

(mg/L)

3.4.4 Uncertainty due to the Internal Variability of Rainfall

Thirty realizations of rainfall time-series were used as input in the SWAT model. The
quantification of the uncertainty of the average 40-year nitrate and sediment mass export
can be expressed as the CV over the 40-year period. The nitrate mass follows the patterns
of flow (as in Nerantzaki et al., 2020), as the nitrate transfer is relatively proportional to
runoff. The sediment amount, on the other hand, although follows the trends defined by
precipitation and flow, has a more random behavior.

The internal variability of the karstic, surface and total flow (by Nerantzaki et al., 2020)
along with the internal variability of spring, surface and total nitrate and sediment mass,
and nitrate and sediment concentration are presented in Table 3.3. We only consider the
present day variability in the Table, however, the variability over the future periods does
not vary significantly compared to the reference period. The ranges of uncertainty for
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flow and nitrate mass are similar (5.6-6.9%), however, this percentage is significantly
higher for the case of sediment mass (18.5%), due to the complexity of the erosion
process: sediment erosion and transport is affected by a greater number of factors, such
as the duration of dry periods which make sediment more erodible and thus easily
transferred during the subsequent wet period. The internal variability range for sediment
and nitrate mass from the surface flow is slightly higher than the uncertainty for the
corresponding masses transferred by the karstic flow.

The projected changes in total sediment and nitrate masses according to the
scenario REMO (Table A1, Appendix A) under the RCPs 2.6, 4.5 and 8.5 are assessed. To
the projected values, we have included the range of the possible outputs of sediment and
nitrate values based on the estimation of the internal variability, and Figures 3.6 and 3.7
show these projected ranges for sediment and nitrate respectively. The period 2019-
2058, is expected to be a transition period, during which the outcomes of different climate
scenarios overlap due to the domination of internal variability, and the changes in nitrates
(and flow, see Nerantzaki et al., 2020) are not as significant as the ones forecasted after
2060, when the choice of the emission scenario becomes more important. For the case of
sediments, the uncertainty due to internal variability is higher, and even after 2059, the
scenarios projections overlap.
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Table 3.3. Mean, and coefficient of variation (within parentheses) for rainfall, total, karstic
and surface flow (according to Nerantzaki et al., 2020) as well as for nitrate and sediment
mass transferred through surface flow, spring flow, and total flow and their total
concentrations for the two future periods (2019-2058 and 2059-2098) and the reference
period (1979-2018). The statistics are based on the simulation of rainfall according to the
internal variability for the reference period. The hydrological models (SWAT and Karst-
SWAT) use the SUFI2-based calibrated parameters.

variables Reference period (1979-2018)

rainfall (mm/year)

1446.1 (3.7%)

total flow (mm/year)

805.4 (5.6%)

karstic flow(mm/year)

543.8 (4.6%)

surface flow (mm/year)

261.6 (7.7%)

nitrate mass from surface (t/year)

75.4 (9.7%)

nitrate mass from spring (t/year)

188.0 (6.8%)

total nitrate mass (t/year)

263.4 (6.9%)

total nitrate concentration (mg/L)

1.56 (3.2%)

sediment mass from surface (t/year)

13966 (20.9%)

sediment mass from spring (t/year)

720.8 (18.8%)

total sediment mass (t/year)

17084 (18.5%)

total sediment concentration (mg/L)

23.7 (12.7%)
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Figure 3.6. Probability density functions of the total exported sediment mass (based on
the 30 realizations and the original time series for the respective climate change scenario)

for the (a) 2019-2058 and (b) 2059-2098 period, plotted for the RCP2.6, RCP4.5 and
RCP8.5 scenario
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Figure 3.7. Probability density functions of the total exported nitrate mass (based on the
30 realizations and the original time series for the respective climate change scenario) for
the (a) 2019-2058 and (b) 2059-2098 period, plotted for the RCP2.6, RCP4.5 and RCP8.5
scenario

3.4.5 Combining the Uncertainties of Nitrate Mass

The uncertainty of total exported nitrate mass due to both hydrologic model parameters
and internal variability is estimated at 115.3 t/yr (CV equal to 40.7%). We use the
Equation 3.2 and consider the standard deviation due to (1) hydrologic model parameters
(standard deviation equal to 113.6 t/yr) and (2) internal variability of input (19.6 t/year).
This combined parameter uncertainty is greater than the climate change uncertainty,
even after 2059 (23.7%). The projected mean nitrate mass for the 2059-2098 period is
215.2t/yr and ranges from 146.3 to 356.0 t/yr based on the 11 scenarios (from a decrease
of 48.2% to an increase of 26.2%). When encompassing the rest of the uncertainties, the
nitrate projections after 2059 vary from 27.2 to 935.6 t/yr. The uncertainty range in the
mean annual nitrate mass projections is very high, but even when encompassing these
uncertainties, the mean annual nitrogen nitrate concentration will never exceed the
accepted limits.
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3.5 Discussion and Conclusions

This study focuses on assessing the role of uncertainties on the flow and water quality
estimates in a karstic Mediterranean watershed with semi-arid climate. In particular, we
concentrate on the uncertainties stemming from the climate change scenario, the
hydrologic model parameters (SWAT in combination with Karst-SWAT), and the model
rainfall input time series (internal variability). The internal variability of temperature
was not examined, as the temperature time series of the various climate change scenario
present higher variability. Also, the internal variability of temperature has minimal effect
on the flow outputs range (Nerantzaki et al., 2020).

The parameter uncertainty assessment framework has been applied for the
quantification of the uncertainty in nitrate mass stemming from the SWAT and Karst-
SWAT parameters. The total nitrate mass uncertainty due to model parameters is quite
high (40.1%). This is partially due to limited observed nitrate data available. Also, the
parameters of flow carry a big percentage of this uncertainty (10.0% in karstic flow and
17.1% in surface flow). Therefore, the proper assessment of the flow parameters
uncertainty is necessary for the quantification of the uncertainty in water quality
variables. In their study, Dakhlalla and Parajuli (2019) determined that parameter
uncertainty was greatest for simulating the total nitrate load (r-factor = 1.25) compared
to flow and sediment. According to Mehdi et al. (2018) the uncertainty simulated using
non-unique behavioral parameter sets as determined by SUFI-2 depends on several
factors, such as the objective criteria threshold chosen, the number of objective criteria,
the number of variables being calibrated for at any one time and the number of gauges
used during the calibration process. Schiirz et al. (2019) identified climate change and
model parametrization as being the most influential model inputs for the simulation of
discharge and NO—3-N loads in both case studies they studied in Austria.

The study reveals that the internal variability (or stochastic uncertainty) inherent in
precipitation time series predicted by climate change time scenarios is propagated to the
estimates of flow, sediment and nitrates. Taking the results presented in Nerantzaki et al.
(2020) and the results of this study under consideration, the uncertainty due to the
internal variability of rainfall, is on average 3.7% for rainfall, 5.6% for total flow, 6.9% for
the exported nitrate mass, and 18.5% for the exported sediment mass. These values
correspond to the Coefficient of Variation. The results do not vary significantly between
the emission scenarios and the reference period. The rainfall uncertainty range is always
lower compared to the range of the rest of the variables. The uncertainty in nitrate mass
due to internal variability is slightly higher than the uncertainty of flow and the
uncertainty in sediment mass is the highest, due to the complexity of the erosion process.

The results regarding the comparison of the distributions of the 40-year means
(stemming from the 30 realizations) for the three REMO scenarios, point out that 2019-
2058 will be a transition period, during which the outcomes of different climate scenarios
overlap due to the domination of internal variability, and the changes in flow and nitrates
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are not as significant as the ones forecasted after 2060, when the choice of the emission
scenario becomes more important. Northrop and Chandler (2014) also came to a similar
conclusion using Bayesian analysis on models obtained from phase 3 of the Coupled
Model Intercomparison Project (CMIP3). The projected exported sediment mass,
however, is very uncertain and scenarios overlap with each other and the distribution of
sediment mass of the reference period even after 2059. After 2059, climate change
scenarios suggest a wide envelope of projected mean annual sediment and nitrate masses,
ranging from high decreases to high increases, according to the scenario realized. This
statement is reinforced by Mas-Pla and Mencié (2019) who studied the groundwater
quality of several aquifers in Catalonia, Spain and state that there is no certainty that the
overall groundwater nitrate content will likely be enriched, as high nitrogen inputs could
counterbalance the effect of diminishing recharge. The same is true for the sediment
projections (Bussi et al., 2014). The concentration of nitrate nitrogen in the river, though,
is not expected to exceed the limits set by the Water Framework Directive, even when
taking all the scenarios and uncertainties under consideration.

The methodology presented in this paper combines a fully integrated hydrologic model
and a framework for the assessment of uncertainties in the estimation and forecast of
water quality variables in karstic Mediterranean watersheds. The integration of surface
and subsurface flow in the same model provides more realistic simulations of water and
nitrate cycle and improved representation of groundwater recharge, which is important
for impact assessment on groundwater resources. This is the first time, to our knowledge,
that an assessment of water quality uncertainty in a composite karstic watershed is
implemented and we believe that the framework introduced here can be applied at
similar watersheds around the globe and incorporate different variables.
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4.1 Abstract

Karstic springs are the exclusive source of water during dry months for many
Mediterranean regions. The impact of climate change on the hydrology of Mediterranean
karstic springs has not received proper attention in the scientific literature. Specifically,
the effect of climate change on the drought characteristics of karstic springs has not been
studied. Here, the response to climate change of three Mediterranean karstic springs with
different properties is examined, focusing on the frequency, duration and intensity of
their drought events. The Karst-SWAT model is used to quantify the karstic springs flow.
A set of representative climate change scenarios is used to assess the climate change
impact on the springs and surface flow for the period 2019-2098. A non-parametric
drought index is modified to estimate the future meteorological and hydrological drought
characteristics in comparison to the reference period. Drought frequency, duration and
intensity of karstic flows are expected to increase for all scenarios and karstic springs.
The most adverse effects of climate change on the three karstic springs are expected to
prevail after 2059. Depending on the spring, the mean annual karstic flow decreases from
14.2% to 25.1%, the mean number of drought events ranges from a decrease of 8.1% to
an increase of 77.5%, the duration of drought events increases from 36.8% to 533% and
the mean monthly water deficit increases from 27.3% to 83.6%. As the water detention
time of the spring increases, the duration and intensity of the droughts are likely to
increase more significantly. After 2059, multi-year droughts are forecasted for all springs
under all scenarios. Both low and high flows will increase under all scenarios for most
springs, with the former occupying even wet months. The next 40 years will be a
transitional period during which adaptation measures should be planned to mitigate the
adverse effects of climate change on the Mediterranean water resources.

Keywords: drought index, karstic springs, Mediterranean region, Karst-SWAT, climate
change, semi-arid climate
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4.2 Introduction

Karstic regions describe landscapes containing caves and extensive groundwater systems
developed on soluble rocks (i.e. limestone, marble and gypsum). Karstic terrains have
distinctive hydrology which stems from a combination of high rock solubility and well
developed, fractured porosity. Usual hydrologic formations in these areas are sinking
streams, caves, enclosed depressions and large springs. Karstic landscapes occupy
approximately 20% of the planet’s dry ice-free land and offer the partial or entire drinking
supply of about one fourth of the global population (Ford and Williams, 2007). The
Mediterranean basin is the cradle of karstic studies since ancient times (Ford and
Williams, 2007) and it is estimated that at least 15% of the Mediterranean surface is
covered by carbonate outcrops and that karstic aquifers supply at least 25% of domestic
water supply, without taking industry, agricultural and tourism withdrawals under
consideration (Bakalowicz, 2015). Seventy five percent of the total Mediterranean
agricultural land is irrigated and it accounts for more than 60% of the total water
abstractions (e.g. Spain 64%, Greece 88%, Portugal 80%) (Wriedt et al., 2009).

The Mediterranean region is identified as a prominent regional climate change hotspot
that emerges in response to higher levels of forcing (Diffenbaugh and Giorgi, 2012).
Future droughts are expected to greatly influence the Mediterranean region. According
to literature, droughts can be categorized as meteorological, hydrological and agricultural
(Wilhite and Glantz, 1985). Meteorological droughts refer to decrease in precipitation,
hydrological droughts to deficit in surface water and agricultural droughts to drop in soil
moisture. Orlowsky and Seneviratne (2012) found enhanced dryness (meteorological
drought) on the annual time scale in the Mediterranean using the CMIP3 models. Lu et al.
(2019) recently found statistically significant annual drying over the Mediterranean
region (agricultural drought), with stronger drying as the strength of forcing increases,
using the CMIP5 models.

Large scale hydrological drought studies do not take under consideration the effects of
non-linearity in smaller scales, which is a result of specific hydrological processes, since
many catchments do not have a tight hydrological budget and a rainfall-runoff response.
An extensive bibliography of climate change assessment studies on several (regional
scale) Mediterranean regions exists, however, the climate change impact research for
karstic watersheds (Mediterranean or other), is limited. For example, Hartmann et al.
(2012) used a multi-model approach to assess future water availability at a large Eastern
Mediterranean Karstic spring, and suggested that in the remote future (2068-2098),
when variability of climate change decreases, a decrease of water availability of 15% to
30% is forecasted. Smiatek et al. (2013) used four dynamically downscaled and spatially
highly resolved climate change datasets and predicted a decrease in discharge intensity
in the range of —9% to —30% for the Figeh karstic spring in Syria in the middle and end
of the century. Another example is the study of Nerantzaki et al. (2019), who used a
combination of CMIP5 models to estimate the future hydrological budget of a karst-
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dominated Mediterranean island (i.e. Crete) and found an average decrease of 16.5% for
spring flow. This gap in literature needs to be filled, considering that water needs in the
arid and semi-arid regions of the Mediterranean are exclusively covered by karstic
springs and groundwater resources during the summer months, when there is no surface
runoff. Several questions arise for Mediterranean karstic watersheds, such as whether
climate change scenarios predictions suggest satisfactory available water supplies and
how these water amounts are going to be distributed over the future years under the
effect of hydrological droughts. It is crucial to acknowledge the importance of karstic
springs, estimate the present and future response for these regions and plan water
resources management accordingly.

The first step for reliable predictions of both surface and karstic flow is the robust
hydrological modeling of the watershed of interest. The Soil and Water Assessment Tool
(SWAT) has been extensively used for the simulation of surface runoff for a variety of
watersheds. The SWAT model has been modified to account for the karstic springs flow
by adding a karstic component, and the Karst-SWAT model (Nikolaidis et al., 2013) was
developed for watersheds dominated by karstic sinkholes and spring flow. It has been
implemented for the karstic watershed of Koiliaris, located in Chania, Crete, for the
hydrological modeling of the composite surface and karstic flow (Nikolaidis et al., 2013),
as well as for the simulation of sediment transport through the Kkarstic springs
(Nerantzaki et al.,, 2015). It was then scaled up for the hydrological modeling of the whole
island of Crete (Malago et al.,, 2016) and for the assessment of the effect of climate change
on the hydrological budget of the island (Nerantzaki et al., 2019). Nerantzaki et al. (2020)
also used it for the estimation of the projected average available water quantities and
their uncertainties in the Koiliaris River Basin.

Here, in an attempt to assess the future variability of the Mediterranean karstic springs
flow along with the effect of drought on their water reserve, we focus on three
Mediterranean Kkarstic springs located in Chania, Crete, with different hydrologic
responses. We aim to (1) estimate the impact of climate change on the future water
availability, (2) compare the frequency, duration and intensity of meteorological and
hydrological drought events in future periods with the ones of the reference period
(1979-2018), and (3) examine the frequency of extreme flows (high and low) in the
reference and future periods. The efficiency of a meteorological index to describe
hydrological droughts is also examined. The SWAT and Karst-SWAT models are used to
simulate both the surface and the karstic runoff, emphasizing on the latter. A combination
of eleven climate change scenarios is used to drive the hydrological model and the
Standardized Drought Analysis Toolbox (SDAT) (Farahmand and AghaKouchak, 2015) is
employed on both precipitation and karstic flow. The index proposed by Farahmand and
AghaKouchak (2015) is modified to facilitate the comparison between future and
reference drought characteristics. Future distributions of low flows are also compared to
the ones of the reference period and the Mean Excess Function (Nerantzaki and
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Papalexiou, 2019) is used for the analysis of the upper distribution tails of rainfall and
flow.

4.3 Materials and Methods
4.3.1 Study Area and Data

The catchments under study are the Koiliaris River Basin and the Keritis River Basin
(Figure 4.1), located in the prefecture of Chania, in Crete. These watersheds include
karstic springs which discharge the broad karstic system of the White Mountains Range,
located at the north (Figure 4.1) and they are the main contributors of water for the
region of Chania.

The Koiliaris River Basin (Koiliaris RB) is a Critical Zone Observatory (Guo and Lin, 2016).
The watershed is about 130 km?, and includes two episodic streams (Keramianos and
Anavreti) and the karstic springs of Stilos, which provide permanent flows throughout
the year. The karstic springs of Stilos constitute a set of springs which share the same
karstic system. As we consider a single common flow for the whole set of springs,
hereafter they will be called the “Stilos karstic spring” (singular). The Stilos spring
combined with the intermittent flow of Keramianos and Anavreti, form the Koiliaris River.
The main geologic formations in the area are Plattenkalk limestones (karstic), Tripali
units, crystalline Schists, Marls and marly Limestones and alluvial deposits (Figure 4.1).
Stilos is fed from the karstic regions inside the basin but also from an area located outside
of the watershed, i.e. the extended karstic area of Figure 4.1 (Moraetis et al., 2010;
Nikolaidis et al., 2013). This karstic spring displays a relatively fast response with a
detention time equal to 15 days and a slower response with a detention time of 100 days.
The average annual karstic discharge is about 120hm3. Based on the Drought Resistance
Indicator for Karstic Aquifers “DRIKA” (Orehova, 2004), which categorizes karstic
aquifers into four classes of drought resistance, from weak to high, the Stilos spring
belongs to the class of moderate drought resistance (DRIKA equal to 0.44). Altitudes in
the watershed range from +0 to +2120 m above mean sea level (a.m.s.l.). Rangeland
covers 58% of the total area, while cultivated areas, forests, urban areas, and aquatic
areas account for 29.4%, 8.5%, 2.8%, and 0.6% respectively.

The Keritis River Basin comprises of two river basins: the Therissos River Basin (60km?)
and the Keritis River Basin (210km?2). Since the Therissos River Basin is significantly
smaller and some karstic parts of it feed the karstic springs of Keritis River Basin, the two
basins are considered as one single basin, from now on called the “Keritis River Basin” or
“Keritis RB”. The main geologic formations in the basin are similar to the ones found in
the Koiliaris RB, but instead of the Crystalline Schists, this watershed has Phyllites. The
main river of the Therissos RB is the intermittent Kladissos River. The Keritis River Basin
includes the springs of Agia and Meskla, which, together with the intermittent surface
runoff, form the Keritis River. As for the case of Stilos, Agia consists of a set of springs
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which share the same karstic system. From now on, we will be referring to the Agia
springs as “Agia spring” (singular), considering that these springs have a single common
outflow. The springs of Agia and Meskla are fed by karstic regions within the watershed.
The underground system of the particular watershed is more complex, as the
underground reservoir of Meskla connects with the one of Agia, and transfers part of the
stored water. The Meskla spring has a relatively fast response with detention time of 50
days and a slow response of 833 days (2.28 years). The Agia spring has a fast response of
5 days and a significant slow response of 2500 days (6.84 years). The mean annual flow
of the Agia spring is 69hm3 and the mean annual flow of the Meskla spring is 30hm3. Based
on the Drought Resistance Indicator for Karstic Aquifers “DRIKA” (Orehova, 2004) the
Meskla spring belongs to the class of good drought resistance (DRIKA equal to 0.55) and
the Agia spring has high drought resistance (DRIKA equal to 0.85). Altitudes in the Basin
range from +0 to +2100 m above mean sea level (a.m.s.l.). Rangeland covers 45% of the
total area, while cultivated areas, olives, forests, and urban areas account for 23.6%,
17.7%, 11.3% and 2.1% respectively.

Precipitation data in the area are available from seven rainfall stations i.e., Psichro,
Samonas, Kalives, Askifou, Mouri, Alikianos and Agrokipio. Psichro and Samonas also
measure minimum and maximum temperature. Meteorological data are available for the
period 1973-2018 on a daily time step. Monthly spring flow data are available for the Agia
spring for the period 1978-1985 and for the Meskla spring for the period 1978-2005. The
mean annual water needs covered by the spring of Agia are about 26.7 hm3 and the mean
annual water needs covered by the spring of Meskla are about 5hm3 (Decentralized
Administration of Crete, 2018). There are also two hydrometric stations measuring daily
surface runoff along the Keramianos River (2013-2017) and one hydrometric station at
the Koiliaris River Basin exit, measuring the combination of surface and karstic flow (daily
flow for the period 2004-2018). Finally, the hydrometric station at the Keritis River Basin
exit, measures the total flow (both springs and surface runoff) of the Keritis River (daily
time step, 2014-2015).

86



gorge
Koiliaris River Basin

Legend

Geologic Formations

I%I c:e (m) |- I:::::SUL:EES exte..ljldefi karstic .area
Keritis River Basin
I o- 20 [ Piattenkalk Limestones
- 249 - 534 li Marls & Marly Limestones faults
I 534 - 018 [ Aluvial Deposits m rainfall stations
I:I 918- 1,454 u Phyllites and Quartzite | rainfall & temperature stations
D 1,454 - 2.440 | Crystalline Schists [} hydrometric stations

reach

Figure 4.1. Map of Koiliaris River Basin, the modelled extended karstic area (shown with
a hatched pattern), and the Keritis River Basin (Crete, Greece), showing the location of
the three springs (blue circles), the seven rainfall and temperature stations (green
squares), and the locations of the hydrometric stations (red hexagons).
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4.3.2 Climate Change Scenarios

A sub-set of representative simulations is selected from the high-resolution (12.5 km)
regional climate model (RCM) ensemble, the EURO-CORDEX (Jacob et al., 2014)(EUR-11)
for a range of potential future climate scenarios. The General Circulation Models (GCMs)
simulations of EURO-CORDEX have been conducted within the Coupled Model
Intercomparison Project Phase 5 (CMIP5) and represent three scenarios of greenhouse
gas emission pathways or Representative Concentration Pathways (RCPs): the
“favorable” RCP2.6 (peaking radiative forcing within the 21st century at 3.0 W/m? and
declining afterwards), the “intermediate” RCP4.5 (stabilization of radiative forcing after
the 21st century at 4.5 W/m?) and the “adverse” RCP8.5 (rising radiative forcing crossing
8.5 W/m? at the end of 21st century). The regional simulations (Regional Climate Models
- RCMs) downscale the global climate projections of CMIP5 (Taylor et al., 2012) and the
Representative Concentration Pathways (RCPs) (Moss et al,, 2010; van Vuuren et al,,
2007).

Five EUR-11 models were selected based on three criteria: (a) the range of driving Global
Climate Models (GCMs), (b) the variety in model genealogy (institutions which develop
the RCMs), and (c) the range of climate change signals (wet/dry and cold/warm
responses). Based on these criteria and the methodology developed by Mendlik and
Gobiet (2016), we use the same set of models as in the study of Nerantzaki et al. (2019),
who assessed the climate change impact on the hydrological budget of Crete. The RCMs
used in this study are presented in the Table B1 of Appendix B.

The RCM simulated temperature and rainfall data (for each emission pathway) have been
adjusted for biases against a thirty-year period between 1981 and 2010 that served as
reference for the correction. The quantile mapping methodology known as multi-segment
statistical bias correction (MSBC) is used (Grillakis et al., 2013).

From the eleven RCMs of the ensemble, we depict some of the results focusing on the MPI-
ESM-LR-r1_CSC-REMO (hereafter REMO). The selection of the REMO model is motivated
by the fact that REMO includes the highest (RCP2.6) and the lowest (RCP8.5) rainfall
projections among the selected 11 models; therefore, it is representative of the entire
range of rainfall for the ensemble. In addition, REMO shows the satisfactory skill scores
when tested against the observed droughts of the reference period (sub-section 3.1).

Based on the analysis of the rainfall and temperature data for both reference (1979-2018)
and projected period (2019-2098), the projected period is divided into two non-
overlapping segments which correspond to the intervals 2019-2058 and 2059-2098. This
segmentation is driven by two factors. Firstly, the intensity of the rainfall and the duration
of wet and dry periods change significantly around 2059. Secondly, by using this
segmentation, we acquire three periods of equal duration so that we can perform
comparative analysis: the reference period (1979-2018), the period 2019-2058 and the
period 2059-2098.
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4.3.3 The Karst-SWAT model

The SWAT model (Soil and Water Assessment Tool) is a well-known and widely used
deterministic, watershed to river-basin scale, hydrological model, which operates on a
daily time step. SWAT can assess the quality and quantity of surface and ground water
and predict the environmental impacts of land use, land management practices, and
climate change (Arnold et al., 1998; Neitsch et al., 2009). In the model, the watershed is
divided into smaller sub-basins in order to separate the tributaries; these are further
divided into hydrologic response units (HRUs) which constitute unique combinations of
soil type, land use and slope value within the watershed. The land use classes for the
Koiliaris and Keritis RBs are obtained by the Corine Land Use (2000), the soil types are
defined using the European Soil Database (v2 Raster Library 1kmx1km), and the slopes
are extracted from a Digital Elevation Model with 25 m pixel size (Bashfield and Keim,
2011), obtained from a Pan-European elevation data at 1 arc-second (EU-DEM).

The SWAT model uses the rainfall as input and simulates the surface hydrologic processes
(snow accumulation and melt, surface runoff, infiltration to shallow groundwater and
evapotranspiration) over the karstic HRUs. The surface water is then directed to the
subsurface of the karstic area thus creating the deep groundwater discharge which feeds
the spring flow. The deep aquifer recharge (DA_RCHG) is aggregated on a daily step and
provides the input to the two-part reservoir karst model (see Nikolaidis et al. (2013) for
the full description). The SWAT and Karst-SWAT combination has already been used in
the Koiliaris RB and in the current study it is also applied to the Keritis RB. The equations
used in the Karst-SWAT setup for the three springs are presented in the Appendix B
section (Equations B1 to B13).

4.3.4 Methods used for the Analysis of the Results
4.3.4.1 Hydrological models Calibration and Goodness of fit

The calibration of the karstic flow of the Stilos spring is accomplished indirectly, since
there are no measured data of the specific karstic spring. Instead, we calibrate the surface
flow at the Keritis River (at the gorge exit), we then alter the SWAT parameters for the
rest of the sub-basins in a similar manner in order to acquire an estimate of the surface
runoff, and we adjust the four parameters of the Karst-SWAT (the detention time has been
observed by experts in the area) so that we succeed the best possible calibration of the
total flow (karstic flow plus surface runoff) at the basin exit. The procedure of calibration
followed for the Keritis River Basin is different. The available monthly data of the Agia
and Meksla flow are utilized for the calibration of the karstic flow for each spring. The
SWAT parameters in the Keritis RB are then adjusted to attain a satisfactory calibration
for the total flow at the Keritis basin exit. Every calibration stage for both basins is tested
using the statistical indices proposed by Moriasi et al. (2007) for watershed simulations.
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Specifically we use the Nash-Sutcliffe efficiency (NSE), the Percent Bias (PBIAS) and the
RMSE-observations standard deviation ratio (RSR). The streamflow model simulation is
judged as satisfactory if NSE > 0.50, RSR < 0.70, and PBIAS +25%.

2.4.2 Drought indices

The Standardized Drought Analysis Toolbox (SDAT) (Farahmand and AghaKouchak,
2015) is used for deriving nonparametric standardized drought indices for rainfall. To
quantify the level of agreement between the climate change models and the rainfall
observations, the index is applied on the rainfall time series of both the observed and the
downscaled time series of the scenarios, over the reference period used for downscaling
(1981-2010). In this framework, instead of the gamma (or any other parametric)
distribution function, the marginal probability of precipitation and flow is derived using
the empirical Gringorten plotting position.

i—0.44
n+0.12"’

p(x;) = (4.1)
where n is the sample size, i denotes the increasing rank of non-zero precipitation data,
and p(x;) is the corresponding empirical probability. The outputs of Eq. (1) can be
transformed into a Standardized Drought Index (SDI) as in:

SI=¢7(p), (4.2)

where ¢ is the standard normal distribution function, and p is probability derived from
Equation (4.1).

We employ the index for an accumulation period of 6 months, which is commonly used
for reduced streamflow and reservoir storage. According to McKee et al. (1993), three
severity classes are defined: for index values lower than “~1"the drought is characterized
as “moderate”, for values lower than “-1.5” the drought is “severe” and for values lower
than “-2” the drought is “extreme”. A six-month period with an SDI value below these
thresholds is considered as a 6-month drought. When n consecutive values lower than
the above mentioned thresholds exist, the drought duration D is considered to be equal
to 6 + n — 1 months. Intensity is defined as the average monthly departure from the
climatological mean during the drought event (Ukkola et al., 2018) and is expressed as:

| = X(Xm—xm)

), (4.3)

where x is the monthly value, X,,, the corresponding monthly mean, i is the drought start
month, and j the end month. The duration and intensity can be calculated separately for
each drought event and severity class.
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Initially, we use the SDAT and the Relative Difference (RD) to quantify the level of
agreement between the rainfall of the climate change models and the observed rainfall in
terms of drought frequency, duration and intensity for the 1981-2010 period (according
to Ukkola et al., 2018). The Relative Difference is defined as:

RD = (Xmodel=Xobs) x 100 ) (44)

Xobs

where X,,,4¢; 1S the mean value (mean frequency, mean duration and mean monthly
intensity) for an individual climate change model, and x,, is the corresponding mean
value for the observations, during the period 1981-2010. The level of agreement is high
for |RD| < 10%, medium for 10% < |RD| < 20% and low for |[RD| > 20%.

The next step is to examine the droughts over the whole period of 1979-2098 and
compare the drought characteristics (i.e. frequency, intensity and duration) of the future
sub-periods (2019-2058 and 2059-2098) with the ones of the reference period (1979-
2018). In this study, we modify the drought index in a way which facilitates this
comparison. Previous assessments of drought indices examine each drought event of the
time series based on the climatological mean of the whole time series. However, it is more
substantial to investigate the relevant change of the future droughts in relation to the
reference period alone. To achieve this, in the version proposed here: (a) the 6-month
moving average of rainfall (or karstic flow) of the reference period (1979-2018) is
subtracted from the 6-month moving average of the mean monthly rainfall (or karstic
flow) of the reference period. (b) The time series of these differences is standardized
using Equation (4.2). (c) Every successive 6-month average value in the reference and the
future periods is associated with a standard score (or z-score) based on the Normal
Distribution we acquired in step (b). We then apply the modified index on the rainfall and
karstic flow for each climate change scenario over the 1979-2098 period. Essentially, the
difference between the index proposed here and other indices is that the z-scores are not
based on the entire time series under study, but they are estimated based on the reference
period time series.

2.4.3 Analysis of Low and High Flows

We consider the 10t percentile (lowest 10% of ranked values) of the daily karstic flows
distribution (of the three springs), during the reference period, as low flows. We examine
the low flows probability of occurrence in each month during the reference and future
periods according to selected climate change scenarios (REMO under RCPs 2.6, 4.5 and
8.5), the way the 10th percentile changes in the future periods, and whether the springs
dry up in the future..

For the high surface and karstic flows (as well as rainfall) we conduct an analysis on the
upper part of the distributions of these variables. The upper part of a distribution, or the
right tail, describes the magnitude and frequency of extreme events. Heavy-tailed
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distributions (sub-exponential) characterize distributions with tails heavier than the
exponential tail; this means that they present many outliers and frequent extreme events.
Light-tailed distributions are those with similar (exponential) or thinner tails (hyper-
exponential) than the Exponential distribution and they have less frequent extreme
events. For the analysis of high flows (and rainfall), we use the Mean Excess Function
(Nerantzaki and Papalexiou, 2019) on the upper 10% of the flows (and rainfall)
distributions. The Mean Excess Function is a method for tail identification which
discriminates between “sub-exponential” distributions and “light-tailed” or “exponential”
distributions. For a random variable X with distribution function Fy the Mean Excess
Function (MEF) is

e(xp) = E(X—xp|X >xp) =

Fx(xp) jxp (x — xp)fX(x)dx, Xp 20 (4.5)

where Xp = Fx‘l(p) is the lower threshold value for probability p, Fx_l(p) is the quantile
function, and F(x) = 1 — F(x) is the probability of exceedance. A property of e(x,) is that
it is constant for distributions with exponential tails (due to the memoryless property of
the Exponential distribution). Therefore, if the empirical value of e(x,) vs. x,, has a slope
equal to zero, the graph indicates an exponential tail. If the plot slope is greater than zero,
the graph suggests sub-exponential tails, as the MEF tends to infinity for such tails.
Nerantzaki and Papalexiou (2019) constructed the 90% confidence interval (CI) of MEF
slopes resulting from the Exponential tail (Figure B1, Appendix B). This graph facilitates
the classification of tails based on their MEF slope value. Specifically, slope values higher
than the CI limits signify sub-exponential tails, slope values inside the CI limits indicate
exponential tails and values lower than the CI limits suggest hyper-exponential tails. The
MEF function is applied on the time-series of interest (i.e. rainfall, karstic and surface
flow) of the periods 1979-2018, 2019-2058 and 2059-2098 separately, for the RCM
REMO to investigate the progress of the distribution tails in the future under different
RCPs.

4.4 Results
4.4.1 Evaluation of Hydrologic and Climate Change Models.

The goodness of fit between observed and modeled values is presented in Figure 4.2. The
calibration of the Agia spring (Figure 4.2a) based on the monthly observed values has
unsatisfactory NSE and RSR indices (0.32 and 0.82 respectively) but is characterized by a
satisfactory PBIAS index (0.5%) and manages to capture the mean monthly value of the
Agia spring (modeled monthly flow equal to 2.22 m3/s and observed monthly flow equal
to 2.21 m3/s). Generally the calibration succeeds in portraying the spring trend and
periodicity but the NSE and RSR are unsatisfactory due to the limited observational data.
The Meskla calibration (Figure 4.2b) has very good performance, with NSE equal to 0.84,
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PBIAS equal to -5.0% and RSR equal to 0.40, and in combination with the Agia flow and
the surface flow (adjusted in the SWAT model) gives a very good model performance for
the daily total flow at the Keritis RB exit - Figure 4.2c (NSE=0.80, PBIAS=4.9%,
RSR=0.44). The performance of the model for the total flow at the Koiliaris RB is also
good (Figure 4.2d), with very good PBIAS (0.2%) and good NSE (0.67) and RSR (0.57).

We analyze the drought events of the downscaled rainfall time series of Psichro against
the ones of the observed time series using the SDAT. All rainfall stations were examined
using the SDAT for the reference period and the results of the index did not vary
significantly (Appendix B, Table B2). Figure 4.3 shows the agreement (relative difference
RD) between the time series in terms of mean frequency, duration and monthly intensity
of droughts. The downscaled time series agree well with the observations for the mean
duration for all drought intensities and scenarios, for the mean frequency for most
scenarios, and for the mean monthly intensity for the extreme droughts. The REMO
scenario has the most satisfactory scores compared to the rest of the scenarios and agrees
with the drought characteristics of the reference period.

(a) (b)
3.5 6.0
3.0 5.0
2.5
— 4.0
== £
220 =
= 3.0
£ 1.5 2
g e simulated =20
= 10
s 0hserved
05 10
0.0 0.0
Jan-78 May-79 Oct-80 Feb-82 Jul-83 Nov-84 Mar-86 Dec-73 May-79 Nov-84 May-90 Oct-95 Apr-01
(C) date (d) date
120 70
100 60
50
__ 80 -
%
= = 40
= 60 =
3 2 30
T b =
20
20 I 10
0 0
11/07/14 12/27/14 02/15/15 04/06/15 05/26/15  09/01/02 02/22/08 08/14/13
date date

Figure 4.2. SWAT and Karst-SWAT performance for the (a) Agia spring, (b) Meskla spring,
(c) total flow of the Keritis River at the Keritis RB exit, and (d) total flow of the Koiliaris
River at the Koiliaris RB exit.

93

Oct-06

02/04/19



drought mean | mean duration | mean intensity
intensity scenario frequency (months) (hma)
observed 30 7.0 52.1
EC-EARTH-r12 SMHI-RCA4(2.6) -0.2 0.1 0.0
MPI-ESM-LR-r1 CSC-REMOQ (2.6) -0.1 0.0 0.2
EC-EARTH-r1 KNMI-RACMO22E (4.5) -0.1 0.0 0.0
EC-EARTH-r12 SMHI-RCA4 (4.5) -0.2 0.1 0.1
IPSL-CM5A-MR-r1 IPSL-INERIS-WRF331F (4.5) -0.2 0.1 0.2
-1 HadGEM2-ES-r1 SMHI-RCA4 (4.5) -0.1 0.0 0.3
MPI-ESM-LR-r1 CSC-REMO (4.5) -0.1 0.0 0.2
EC-EARTH-r1 KNMI-RACMO22E (8.5) 0.0 0.0 -0.1
EC-EARTH-r12 SMHI-RCA4 (8.5) 0.2 0.1 0.1 40
HadGEM2-ES-r1 SMHI-RCA4 (8.5) -0.1 0.0 0.2 ‘
MPI-ESM-LR-r1 CSC-REMO (8.5) -0.1 0.1 0.1 ‘
observed 16 6.5 63.4 i
EC-EARTH-r12 SMHI-RCA4 (2.6) 0.1 0.0 0.2 ‘
MPI-ESM-LR-r1 CSC-REMO (2.6) -0.1 0.0 0.2
EC-EARTH-r1 KNMI-RACMO22E (4.5) -0.3 0.1 0.1
EC-EARTH-r12 SMHI-RCA4 (4.5) -0.1 0.0 0.2
IPSL-CM5A-MR-r1 IPSL-INERIS-WRF331F (4.5) -0.4 0.2 0.3 [
-1.5 HadGEM2-ES-r1 SMHI-RCA4 (4.5) -0.1 0.0 0.3 ‘ 0.0
MPI-ESM-LR-r1 CSC-REMO (4.5) -0.1 0.0 0.3 \
EC-EARTH-r1 KNMI-RACMO22E (8.5) -0.1 0.0 0.2
EC-EARTH-r12 SMHI-RCA4(8.5) -0.1 0.0 0.3 ‘
HadGEM2-ES-r1 SMHI-RCA4(8.5) 0.0 0.0 0.2 i
MPI-ESM-LR-r1 CSC-REMO (8.5) 0.1 0.0 0.2 [
observed 7 6.7 78.1 ‘
EC-EARTH-r12 SMHI-RCA4 (2.6) 0.3 -0.1 0.1 ‘
MPI-ESM-LR-r1 CSC-REMO (2.6) 0.1 0.0 0.1 ;
EC-EARTH-r1 KNMI-RACMO22E (4.5) 0.1 0.0 0.0 lJ e
EC-EARTH-r12 SMHI-RCA4 (4.5) 0.0 0.0 -0.1
IPSL-CM5A-MR-r1 IPSL-INERIS-WRF331F (4.5) 0.0 0.0 0.1
-2 HadGEM2-ES-r1 SMHI-RCA4(4.5) 0.0 0.0 0.2
MPI-ESM-LR-r1 CSC-REMO (4.5) 0.1 0.0 0.1
EC-EARTH-r1 KNMI-RACMO22E (8.5) 0.0 0.0 0.0
EC-EARTH-r12 SMHI-RCA4 (8.5) 0.6 -0.1 0.1
HadGEM2-ES-r1 SMHI-RCA4 (8.5) 0.3 -0.1 0.1
MPI-ESM-LR-r1 CSC-REMO (8.5) 0.1 0.0 0.1

Figure 4.3. Biases (relative difference) in individual climate change models relative to the
observed mean for rainfall drought metrics: frequency, duration (months) and monthly
intensity (hm3). The observed mean is noted on top of each column. Metrics were
averaged across all drought events (denoted mean).

4.4.2 Impact of Climate Change on the Annual and Monthly Rainfall and Flow

The graphical depiction of the monthly rainfall, karstic and surface flow quartiles of the
two basins for the reference period (1979-2018) is presented in the box-plots of Figure
4.4. The mean annual rainfall values of each watershed are estimated as the area weighted
average of rainfall which falls over each sub-basin, since each sub-basin receives rainfall
input from the rainfall station which is closest to it. The Koiliaris RB has higher
precipitation records compared to Keritis RB, as a great percentage of its area lies over
higher altitudes and the extended karstic area is also taken into account. The Stilos spring
has higher flows during winter months compared to the Agia spring but presents high
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monthly variability. The monthly variability of the Agia spring, however, is low, as a result
of its high detention time. The Meskla spring demonstrates lower variability compared to
Stilos spring, but the spring’s flow is close to zero during dry months.

The mean annual values of rainfall, karstic and surface flow for both basins for the
reference period (1979-2018) and for the two future periods (2019-2058 and 2059-
2098), under the eleven scenarios, are presented in Table 4.1. The percentages of change,
relative to the reference period values, are also presented in Table 4.1. As far as the period
2019-2058 is concerned, the eleven scenarios suggest a mean increase in rainfall, equal
to 2.4% in Koiliaris and 3.6% in Keritis RB respectively. This increase induces a greater
mean increase in surface flow for the Koiliaris River Basin (16.9%) and an even greater
increase in the surface flow of the Keritis River Basin (28.1%). In addition, it is
noteworthy that the mean increase in rainfall does not signify increase in karstic flow. On
the contrary, the karstic flow decreases, especially for the case of Stilos spring (9.9%).
The Meskla spring and Agia spring flows are not expected to change significantly during
the 2019-2058 period (decrease of 0.7% and 0.8% respectively).
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Figure 4.4. Box plots of monthly values of (a) rainfall in Keritis RB (b) surface flow in
Keritis RB (c) karstic flow of Agia (d) karstic flow of Meskla (e) rainfall in Koiliaris RB (f)
surface flow in Koiliaris RB (g) karstic flow of Stilos, for the reference period (1979-
2018).

The greater increase in surface flow, compared to the increase in rainfall, can be explained
by the frequency and intensity of daily rainfall in the future periods. The distribution of
rainfall changes in the future, with higher probabilities of high daily rainfall and lower
probabilities of low daily rainfall (Figure 4.9 and Tables 4.3 and 4.4). The high intensity
rainfall favors the formation of surface flow at the expense of karstic flow, since the
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rainfall intensity exceeds the infiltration rate (into the groundwater). This also explains
the decrease in karstic flow.

After 2059, the mean annual rainfall decreases for both basins (9.0% and 6.5%) and
induces a significant decrease in the mean annual karstic flow of Stilos spring (25.1%)
and an important, but milder, decrease in the mean annual karstic flows of Meskla and
Agia springs (18.7% and 14.2% respectively). The decrease is more eminent for Stilos
spring compared to the Meskla and Agia springs, which respond better to adverse climate
change due to their higher detention times, hence their more efficient water storage.
Furthermore, the rainfall decrease in the Keritis RB is slightly milder compared to the one
in Koiliaris RB, which partially explains the difference between the relative change of
Stilos and Meskla springs. The mean annual surface flow is relatively stable for the
Koilaris RB (0.4%) and a relative increase is forecasted for the mean annual surface flow
of the Keritis RB (8.0%).

Table 4.1. Mean annual values of rainfall, karstic and surface flows for the two basins for
the reference period (1979-2018) and mean annual values of the same variables for two
future periods (2019-2058 and 2059-2098) based on all eleven climate change scenarios
under study. The percentage (%) change of the variables in the future periods in
comparison with the reference period is also noted in brackets. Negative values suggest
decrease of the variable of interest.

variable 1979-2018 2019-2058 2059-2098
(hm3/year) (hm3/year) (hm3/year)
rainfall 546.1 559.7 (2.4%) 496.8 (-9.0%)
rainfall 303.4 314.5 (3.6%) 283.7 (-6.5%)
Stilos spring 119.2 107.0 (-9.9%) 89.2 (-25.1%)
surface flow 52.0 60.8 (16.9%) 53.1 (0.4%)
Meskla 30.8 30.6 (-0.7%) 25.1 (-18.7%)
Agia spring 70.9 70.4 (-0.8%) 60.9 (-14.2%)
surface flow 30.2 38.7 (28.1%) 32.6 (8.0%)

The mean annual karstic flow values for the three springs along with their 90%
confidence interval are presented in Figure 4.5. The descending trend of the mean is
evident for the three springs. After 2059, the mean annual flow of the Agia spring (Figure
4.5a) is equal to the min of the reference period (about 34 hm3). However, the spring is
expected to be able to cover the current water needs, even for the worst case scenario
(min annual value equal to 30.1 hm3 and mean annual water needs equal to 26.7 hm3).
The same stands for the Meskla spring (Figure 4.5b), for which the mean annual water
needs are 5hms3. The Stilos spring (Figure 4.5c) is the most vulnerable spring, with the
most adverse relative decrease, as a result of the lower water detention time.
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As it is evident from the mean annual forecasts of the above mentioned variables, climate
change has an adverse impact on karstic water resources after 2059. In order to depict
the distribution of monthly karstic flow for the three karstic springs based on all eleven
scenarios, the box plots of the monthly quartiles, taking into account the monthly karstic
values of all the scenarios for the period 2059-2098, are depicted in Figure 4.6. The
monthly flow of the Agia spring never falls under 1.9 hm3, while the minimum monthly
flows of the Meskla spring and the Stilos spring are 94.7 dam3 (0.0947 hm3) and 20.1
dam3 (0.0201 hm3) respectively. It is notable that the Meskla and Stilos springs are
expected to approach monthly values close to zero for all months, including the wettest
months. During the reference period (Figure 4.4) this happens only for the dry months,
especially for the case of the Stilos spring. In the next sections we will examine the
temporal distribution of these low flows.
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Figure 4.5. Mean annual karstic flow of the three springs (a) Agia, (b) Meskla and (c) Stilos
for the reference (1979-2018) and the future period (2019-2098). Ninety percent
confidence interval is marked with light grey lines.
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Figure 4.6. Box plots depicting the monthly quartiles of the flow of the three karstic

springs (a) Agia, (b) Meskla and (c) Stilos for the 2059-2098 under the eleven scenarios

of the study.
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4.4.3 Impact of Climate Change on the Meteorological and Hydrological Drought Frequency,
Intensity and Duration

We apply the modified drought index on the rainfall and karstic flows of the three springs
under study. We choose the Psichro station for the analysis of the meteorological drought,
since it is the only station which is used as input for both basins. Figure 4.7 depicts the
mean number of drought events for (a) rainfall and (b) Stilos spring flow which occur
during the reference period (1979-2018), and the two future periods (2019-2058, 2059-
2098) under the (i) RCP2.6, (ii) RCP4.5 and (iii) RCP8.5 scenarios and Figure 4.8 is the
same figure for the case of (a) Meskla spring flow and (b) Agia spring flow.

The first deduction from Figure 4.7 is that even for the favorable scenario RCP2.6, the
meteorological drought index indicates more adverse conditions drought-wise,
specifically for the frequency of severe and extreme droughts. The increased number of
future meteorological droughts compared to the reference period droughts is obvious for
scenarios RCP4.5 and RCP8.5. The frequency of the hydrological droughts of Stilos spring
appear to mainly follow the trend of the frequency of the meteorological droughts. During
the reference period, the frequency of Stilos hydrological droughts is lower than the
meteorological droughts, however, during the future periods the number of occurring
hydrological droughts is as high as the meteorological droughts, or even higher.

Even though the spring of Meskla (Figure 4.8a) has the same number of drought events
with the Stilos spring during the reference period, the increase of the Meskla drought
events in the future is milder. The frequency of the hydrological drought events of the
Agia spring is low, compared to the other two springs. In addition, in many cases, the trend
of the hydrological drought index of Agia does not conform to the trend of the
meteorological drought. We should note that the cases where the “extreme” events
outnumber the “severe to extreme” events (or the “moderate to extreme” events) for the
same period, occur when a drought has a very long duration and “breaks” into multiple
droughts when the index takes lower values (see for example Figure B2, Appendix B).
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Figure 4.7. Bar charts depicting the mean number of drought events of (a) rainfall and (b)
Stilos spring flow which occur during the reference period (1979-2018), the period 2019-
2058 and the period 2059-2098 under the (i) RCP2.6, (ii) RCP4.5 and (iii) RCP8.5
scenarios.
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Figure 4.8. Bar charts depicting the mean number of drought events of (a) Meskla spring
flow and (b) Aguia spring flow which occur during the reference period (1979-2018), the
period 2019-2058 and the period 2059-2098 under the (i) RCP2.6, (ii) RCP4.5 and (iii)
RCP8.5 scenarios.

Table 4.2 presents the duration of the drought events characterized as “moderate to
extreme”, i.e. the duration of events for which the modified (meteorological or
hydrological) drought index is equal to or lower than -1. The values are in the form of
ranges, since more than one RCM has been studied for each RCP. The index suggests that
the meteorological droughts are expected to have a maximum duration of 15 months. The
maximum duration of a hydrological drought is 97 months for the Stilos spring, 54 months
for the Meskla spring and 480 months for the Agia spring flow (under RCP8.5 during the
period 2059-2098). The duration of the drought event is the highest for the spring with
the highest detention time and can last as long as 40 years (the whole period under study
for the case of Agia). It is important to note that, for all springs, multi-year droughts are
forecasted in the future, under most scenarios (even for the “favorable” RCP2.6), while
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the longest hydrological drought lasts 14, 12 and 21 months for Stilos, Meskla and Agia
respectively.

The combination of high frequency and duration of drought events in the future for the
Stilos spring suggests that it is the most vulnerable spring to the adverse climate change
impact. The Meskla spring, which has similar drought duration and frequency during the
reference period, responds slightly better to climate change. Essentially, we cannot
compare the response of the Stilos spring to drought with the response of the Meksla
spring based on the detention time, as the Meskla spring has a different, more complex
system and the water quantities of water are different. The Stilos mean annual discharge
is 4 times higher than the Meskla mean annual discharge.

The Agia spring demonstrates very long periods of drought in the future. The frequency
of the Agia drought events is lower after 2059 compared to the reference period (Figure
4.8b) because, essentially, the whole period of 2059-2098 tends to become a single
drought period for this spring (under the RCP8.5). This increase in drought duration can
be justified by the existence of many “short” meteorological droughts during the future
period; these individual meteorological droughts which occur successively, accumulate
over the long water detention time of Agia and are expressed as long drought periods by
the spring. Figure B2 (Appendix B) depicts the 6-month modified drought index, applied
on the time series of rainfall (Psichro) and the karstic flow of Agia under an adverse
scenario (REMO under the RCP8.5 for the period 1979-2098). The figure shows the effect
of the meteorological droughts on the hydrological droughts of Agia. After September
2073, there are many extreme meteorological droughts which cause a single extreme
hydrological drought lasting until 2098. The trend of the 6-month meteorological drought
index does not comply with the trend of the 6-month hydrological drought index for Agia.
The trend of the 82-month moving average of the monthly rainfall time-series, though,
follows the trend of the hydrological drought index and explains the long drought periods
of Agia. The reason behind the choice of the 82-month moving average is that 82 months
(or 6.84 years) equal the water detention time of Agia.

For the quantification of the water deficit (or intensity) during each drought event, we
compare the total water volume during the drought event to the mean of the total water
volume during the corresponding months of the reference period, as in Equation (4.3)
(Table 4.3). We calculate both the mean total water deficit during all drought events of
each sub-period, and the mean monthly water deficit based on all drought events of each
sub-period. When comparing the mean monthly deficit of each spring with the mean
monthly flow of each spring for the 2059-2098 period, the deficit constitutes the 47.9%
of the mean monthly flow of the Stilos spring, the 53.1% of the mean monthly flow of the
Meskla spring and the 18.1% of the mean monthly flow of the Agia spring. These
percentages, for the reference period, are 28.3% for Stilos, 30.8% for Meskla and 8.5% for
Agia. The spring with the highest detention time and the lowest variability has the lowest
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deficit (relative to the monthly mean flow), but in the future, the relative deficit increases
to a greater extend for Agia, then for Meskla and lastly for Stilos.

Finally, we compare the mean frequency, duration and intensity of the drought events for
each of the springs during the reference period with those of the two future periods
(2019-2058 and 2059-2098), based on all the climate change scenarios. The results are
shown in Table 4.4. It is evident that climate change will have an adverse impact on the
frequency, duration, and intensity of drought events. Overall, the meteorological drought
index is far more conservative than the hydrological drought index for all three springs.
Between the Stilos and Meskla spring, the former is expected to have more frequent and
longer drought events but the latter is forecasted to have higher drought intensities
(compared to its mean monthly flow). The frequency of drought events is relatively stable
for the Agia spring but the intensity and duration of the spring’s drought events present
a dramatic increase in the future.

Table 4.2. Mean duration (and range in parenthesis) of moderate to extreme drought
events in months (drought index lower than -1) of rainfall (Psichro station), Stilos spring
flow, Meksla spring flow and Agia spring flow for the reference period (1979-2018), and
the future periods 2019-2058 and 2059-2098, under the RCP2.6, RCP4.5 and RCP8.5
scenarios.

Variable 1979-2018 drought 2019-2058 drought 2059-2098 drought
duration mean and duration mean and duration mean and
range (months) range (months) range (months)
RCP2.6
rainfall 8.1 (6-12) 7.8 (6-14) 8.5 (6-13)
Stilos flow 9.4 (6-14) 11.2 (6-27) 10.9 (6-23)
Meskla flow 9.2 (6-12) 11.1 (6-15) 11.4 (6-17)
Agia flow 11.9 (6-21) 16.4 (7-48) 11.9 (6-19)
RCP4.5
rainfall 8.1 (6-12) 8.0 (6-13) 8.5 (6-15)
Stilos flow 9.4 (6-14) 11.3 (6-28) 12.4 (6-38)
Meskla flow 9.2 (6-12) 11.1 (6-24) 11.9 (6-26)
Agia flow 11.9 (6-21) 23.6 (6-128) 42.0 (6-64)
RCP8.5
rainfall 8.1 (6-12) 8.5 (6-15) 8.9 (6-15)
Stilos flow 9.4 (6-14) 11.5 (6-75) 16.6 (6-97)
Meskla flow 9.2 (6-12) 11.0 (6-15) 14.0 (6-54)
Agia flow 11.9 (6-21) 22.2 (6-89) 172.0 (6-480)
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Table 4.3. Mean intensity (i.e. mean total water deficit during drought) of moderate to
extreme drought events in million cubic meters (drought index lower than -1) of Stilos
spring flow, Meksla spring flow and Agia spring flow for the reference period (1979-
2018), and the future periods 2019-2058 and 2059-2098, under the RCP2.6, RCP4.5 and
RCP8.5 scenarios. The mean monthly deficit is shown in the parentheses.

Variable 1979-2018 mean total 2019-2058 mean total 2059-2098 mean total
water deficit during water deficit during water deficit during
drought and mean drought and mean drought and mean
monthly deficit (hm3) monthly deficit (hm3) monthly deficit (hm3)
RCP2.6
Stilos flow 28.9 (2.8) 42.9 (3.1) 40.4 (3.2)
Meskla flow 6.9 (0.8) 11.8 (1.0) 12.8 (1.1)
Agia flow 7.3 (0.5) 11.0 (0.6) 5.6 (0.5)
RCP4.5
Stilos flow 28.9 (2.8) 38.8 (2.9) 53.5 (3.5)
Meskla flow 6.9 (0.8) 10.3 (0.9) 14.2 (1.1)
Agia flow 7.3 (0.5) 21.1 (0.6) 54.7 (0.8)
RCP8.5
Stilos flow 28.9 (2.8) 47.5 (3.2) 74.7 (3.9)
Meskla flow 6.9 (0.8) 11.4 (1.0) 21.7 (1.2)
Agia flow 7.3 (0.5) 18.4 (0.6) 377.4 (1.4)

Table 4.4. Percentages of change of the drought events frequency, duration and intensity
(mean monthly intensity) in the two future periods (2019-2058 and 2059-2098)

compared to the reference period (1979-2018)

2019-2058 compared to 1979-2018
variable Frequency Duration Intensity
rainfall 16.7 % 0.2% 149 %
Stilos flow 65.8% 20.4 % 8.6 %
Meskla flow 15.2 % 20.2% 20.5 %
Agia flow 4.0 % 83.0% 20.0%
2059-2098 compared to 1979-2018
variable Frequency Duration Intensity
rainfall 47.3 % 6.7 % 22.9 %
Stilos flow 77.5% 45.0 % 27.3 %
Meskla flow 359% 36.8% 38.6 %
Agia flow -8.1% 533 % 83.6 %
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The correlation between the 6-month modified drought index applied (1) on the rainfall
of Psichro and (2) the karstic flows of (i) Stilos, (ii) Meskla and (iii) Agia is also examined,
in order to test the efficacy of the meteorological index to depict the hydrological
droughts. The coefficient of determination (r?) between the meteorological and
hydrological index is (on average, based on the 11 scenarios) 0.54 for the Stilos flow, 0.48
for the Meskla flow and 0.18 for the Agia flow. A coefficient of determination of at least
0.5 is considered satisfactory (Moriasi et al., 2007). As it is evident, the 6-month
meteorological index cannot provide a satisfactory representation for the hydrological
droughts of a karstic spring with high detention time, and its performance is mediocre
even for the springs with lower detention times. Fiorillo and Guadagno (2010) found that
the best correlation between the Standard Precipitation Index (SPI) and the discharges of
the karstic springs they studied (located in Italy) occurs for a time scale of 9 or 12 months.
Therefore we also apply the modified drought index for a time scale of 9 and 12 months
on the monthly rainfall and karstic flows time series. The average r? between the
meteorological and hydrological 9-month index (based on the 11 scenarios) is 0.64, 0.66
and 0.23 for the flows of Stilos, Meskla and Agia respectively. The corresponding r2 values
are 0.72, 0.74 and 0.35 when the index is applied with the 12-month time scale. The
correlation between the meteorological and hydrological index (for karstic flow) is
improved with the increase in the time scale, and the meteorological index can
satisfactorily describe the trend of the hydrological droughts of Stilos and Meskla for a
time scale of 9 and 12 months but cannot reproduce the drought conditions of the Agia
spring, even for large time scales. A meteorological drought index of 82 months would
provide a satisfactory correlation with the hydrological index of Agia (Figure B2).

4.4.4 Impact of Climate Change on the Flow Extremes

The flow value which corresponds to the 10th percentile of the daily karstic flow for Stilos
and Meskla is 0.278 m3/s and 0.132 m3/s respectively, for the 40-year reference period
(1979-2018). According to Table 4.5, based on all three RCPs of the RCM REMO, the
percentage of daily flow values which are lower than the reference period’s 10t
percentile threshold increases for all scenarios in the future for Stilos and Meskla, ranging
from 12.7% to 31.9% for Stilos and 10.5% to 37.9% for Meskla. For the case of the Agia
spring, the percentage of daily flow values lower than the reference period’s 10t
percentile threshold increases under the RCPs 4.5 and 8.5 (ranging from 25.7% to 71.7%)
but decreases under the RCP2.6 (ranging from 1.7% to 7.1%). On average, based on the
three RCPs, the low flows of Stilos increase by 61.3% during the period 2019-2058 and
126.5% during the period 2059-2098, the low flows of Meskla increase by 62.0% and
129.6% respectively, and the low flows of Agia increase by 61.8% and 73.4%. The highest
percentage corresponds to the period 2059-2098 of the RCP8.5 scenario, and the lowest
corresponds to the RCP2.6 scenario. Even for the favorable scenario RCP2.6, though, the
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number of low flows increases in the future for both future periods and for Stilos and
Meskla springs.

The distribution of the low flows frequency is presented in Figure 4.9. This figure reveals
that all three scenarios suggest a shift of the low flows towards wetter months, especially
after 2059. The Stilos spring low flows of the reference period take place from July to
November, with the majority of the low flows happening during October. During the
2019-2058 period, the majority of low flows still occurs during October (except for the
RCP4.5 with the peak during September), but there are also low flows during June and
December and more low flows during the July-November period. After 2059, under the
RCP8.5, September is the month with the most of the low flows and there are low flows
throughout the year. Under the RCP4.5 and RCP2.6, low flows take place from May to
December.

Most of the low flows of the Meskla spring occur during October and there are low flows
from July to January, during the reference period. During the period 2019-2058, low flows
exist from June to January (RCP8.5) and from May to January for the other RCPs. After
2059, during the two future periods, low flows are present throughout the year for all
scenarios. Also, it is noteworthy that for the RCP8.5 and the 2059-2098 period, the Meskla
flows are equal to zero, i.e. the spring is completely dry for 10.7% of the days in this 40-
year period, and the zero flows occur throughout the year.

The low flows of Agia occur from June to January during the reference period. The peak
of Agia low flows occurs during October for the reference and future periods. The
forecasted low flows for Agia present high variability; the favorable RCP2.6 scenario
predicts decreased frequency in low flows, whereas scenarios RCP4.5 and RCP8.5 predict
great increase in low flows which are expected to take place throughout the year.
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Table 4.5. Number of days with low flow for the Stilos and Meskla springs and their
percentage on the total 14610 days of each 40-year period: the reference period and the
two future periods (2019-2058 and 2059-2098), under the Regional Climate Scenario

REMO and the Representative Concentration Pathways RCP2.6, 4.5 and 8.5

scenario/period

number of low flow
days of Stilos
(percentage on total
days)

number of low flow
days of Meskla
(percentage on total
days)

number of low flow
days of Agia
(percentage on total
days)

reference period

REMO02.6/2019-2058
REMO02.6/2059-2098
REMO04.5/2019-2058
REMO04.5/2059-2098
REMO08.5/2019-2058
REMO08.5/2059-2098

1461 (10.0%)
1851 (12.7%)
1910 (13.1%)
2794 (19.1%)
3360 (23.0%)
2423 (16.6%)
4656 (31.9%)

1461 (10.0%)
1941 (13.3%)
1541 (10.5%)
2913 (19.9%)
2986 (20.4%)
2246 (15.4%)
5535 (37.9%)

1461 (10.0%)
1030 (7.1%)
248 (1.7%)

6691 (45.8%)

5757 (39.4%)

3758 (25.7%)

10384 (71.7%)

W (a) (0 (b) i) (c)
8.0% 8.0% 8.0%
70% | —®—REMO26
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Figure 4.9. Frequency of low daily karstic flows (10t percentile of reference period) of
(a) Stilos (b) Meskla and (c) Agia corresponding to every month (days with low flows
divided by the total 14610 days of each 40-year period), for the reference (1979-2018)
and the two future periods: (1)2019-2058 and (ii) 2059-2098) under the Regional
Climate Scenario REMO and the Representative Concentration Pathways RCP2.6, 4.5 and
8.5.

The Mean Excess Function is applied on the time series of rainfall, surface flow of Koiliaris
and Keritis RBs, and the karstic flows of Stilos, Meskla and Agia under the scenario REMO
and the RCPs 2.6, 4.5 and 8.5 (future periods) as well as the reference period. The
distributions of rainfall and both surface flows have generally heavy tails (Table 4.6)
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(according to Figure B1 of Appendix B, the tails are sub-exponential), whereas the
distributions of karstic flows have light tails (hyper-exponential). During the future
periods, the rainfall distribution tail becomes heavier under the RCP2.6 (both future
periods) and the RCP8.5 (period 2059-2098), while the rainfall tail is relatively the same
for the RCP4.5 scenario. The surface flows display even heavier tails compared to the
rainfall tails. The surface flow distribution tails in the future are always heavier than the
ones of the reference period and the Keritis RB surface flow distribution tail of is always
heavier than the one of Koiliaris RB. This explains the more intense increase in the surface
flow of Keritis compared to the surface flow of Koiliaris, due to climate change. The hyper-
exponential tails of the karstic flows of Stilos and Agia are still hyper-exponential during
the future. The distribution tail of the Stilos spring becomes heavier as time progresses,
but the distribution tail of the Agia spring is relatively stable with time. The tail of the
Meskla karstic flow distribution converts to exponential and even sub-exponential (for
the case RCP8.5 and the period 20598-2098), indicating more frequent high flows for the
Meskla spring.

Table 4.6. Mean Excess Function slopes for the time series of rainfall at Psichro, surface
flow at the Koiliaris and Keritis River Basins, and karstic flow of Stilos, Meskla and Agia
springs, under the Regional Climate Model REMO and the Representative Concentration
Pathways 2.6, 4.5 and 8.5, for the reference period (1979-2018) and two future periods
(2019-2058 and 2059-2098).

variable MEF slope 1979-2018 MEF slope 2019-2058  MEF slope 2059-2098
REMO RCP2.6
rainfall 0.78 1.05 0.93
Surface flow 1.27 2.28 2.26
Surface flow 1.61 4.17 3.23
Stilos flow -0.37 -0.29 -0.28
MesKla flow -0.16 -0.04 -0.08
Agia flow -0.37 -0.31 -0.36
REMO RCP4.5
rainfall 0.78 0.71 0.72
Surface flow 1.27 1.87 2.15
Surface flow 1.61 4.74 3.69
Stilos flow -0.37 -0.26 -0.28
MesKla flow -0.16 -0.03 -0.11
Agia flow -0.37 -0.31 -0.28
REMO RCP8.5
rainfall 0.78 0.67 0.91
Surface flow 1.27 1.92 2.73
Surface flow 1.61 3.06 6.83
Stilos flow -0.37 -.031 -0.13
MesKla flow -0.16 -0.12 0.15
Agia flow -0.37 -0.33 -0.38
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4.5 Discussion and Conclusions

The study focuses on three Mediterranean karstic springs with different hydrologic
responses and, specifically, different karstic systems and water detention times. The
results in this study mainly focus on the low flows of the three karstic springs, but they
also deal with the upper tails of the distributions of rainfall and flow, as they facilitate the
interpretation of the results. The climate change impact study suggests that more intense
changes in flow are observed after 2059, when a mild decrease in the mean annual rainfall
(based on the eleven scenarios under study), leads to a substantial decrease in the mean
annual karstic flow. Specifically, the Stilos spring is expected to decrease significantly
after 2059 (25.1% on average, based on the eleven scenarios), and the decrease is
considerable but less intense for the karstic flow of Meskla (18.7%) and Agia (14.2%)
springs. A high detention time of the spring secures more efficient water storage and
better response to climate change. The projected changes for the karstic springs flow in
this study are in accordance with the studies of Hartman et al. (2012) and Smiatek et al.
(2013) who conducted climate change impact analyses for Mediterranean karstic springs.
The mean annual surface flow demonstrates a slight increase after 2059 (0.4% for
Koiliaris and 8.0% for Keritis RB), due to the increase in the frequency of extreme rainfall.
High intensity rainfall favors the generation of surface runoff at the expense of karstic
flow, since rainfall intensity exceeds the infiltration rate. The Agia spring, which is the
main source of water supply and irrigation for the city of Chania, is forecasted to have
lower flows after 2059, but the spring will be able to cover the current water needs of the
area even for the worst case scenario (although marginally). These water needs will
definitely increase in the future since the local authorities have already started discussing
and proposing actions for more intensive exploitation of the spring (Decentralized
Administration of Crete, 2018). In light of these new data and the estimation of the future
water resources in this study, the water management actions for the area should be
cautiously designed.

The effect of the springs’ detention time is also evident in the analysis of present and
future droughts. The frequency of future drought events is higher in karstic springs with
lower water detention time (i.e. Stilos) and lower in karstic springs with higher detention
time (i.e. Agia). Conversely, the duration of individual drought events is higher for karstic
springs with high detention time. Also, the correlation between the meteorological and
hydrological drought index decreases as the spring’s detention time increases. All the
above mentioned results indicate that the droughts of a spring with flashy discharge are
more in accordance with the patterns of meteorological droughts compared to a spring
with higher storage capacity. In addition, a long hydrological drought of a Mediterranean
karstic spring with high detention time is a result of many individual meteorological
drought events situated close to each other in time for a long period, rather than one long
meteorological drought.
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Nerantzaki et al. (2020) have reported that after 2059, the variability of karstic flow due
to the climate change scenario is significant (23.5% expressed as Coefficient of Variation).
Even with this high uncertainty scores, the most adverse impacts on the hydrological-
karstic droughts are expected to take place after 2059, independently of the climate
change scenario realized. The Stilos spring is the most vulnerable spring under the impact
of climate change, with an increase of 77.5% in frequency, 45% in duration and 27.3% in
the mean monthly intensity of drought events. The Meskla spring is projected to have an
increase of 35.9% in frequency, 36.8% in duration and 38.6% in mean monthly intensity
of droughts. Finally, the drought frequency of the Agia spring decreases 8.1% after 2059,
as the duration of drought events increases remarkably (533%), and the mean monthly
drought intensity increases (83.6%). The mean deficit to mean monthly flow ratio
increases for all springs, especially for the Agia spring, for which it doubles. In addition,
for all springs, multi-year droughts are forecasted after 2059, under all scenarios.

The analysis of the extreme low and high flows of the springs and surface flow
demonstrates that there will be an increase in the variability of flow values, with
increasing high and low flows in frequency and intensity, a statement also supported by
Asadieh and Krakauer (2017) for the Mediterranean region. The increase in the extreme
high flows and torrential rain will be accompanied by the inflation of flood events, erosion
and crop disaster (Papalexiou and Montanari, 2019). The future distributions of (high)
rainfall extremes do not facilitate the water storage of the springs and the increasing
frequency of meteorological droughts lead to increasing low flows during the whole year,
and especially during the dry months, deteriorating an already challenging situation.
Specifically, for both Stilos, Meskla and Agia springs, the low flows will increase 126.5%
129.5%, and 73.4% after 2059, based on the three REMO scenarios.

These results provide an illustration of the conditions which are expected to prevail for
Mediterranean karstic springs in the future. The drought status is anticipated to
deteriorate, especially after 2059, regardless of the scenario realized for all springs and
the results of this study can be used as a guide for competent bodies to adapt their
management practices for the prevention of the negative repercussions of karstic spring
droughts. A 40-year period is offered for adaptation measures to be prepared and planned
for the improved management of the springs’ water resources without running the risk
of their drying up.
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Chapter 5 Summary and Conclusions

5.1 Summary of aims and methodology

The thesis addresses three main topics: (a) the quantification of the uncertainty of
hydrologic predictions in karstic Mediterranean watersheds, (b) the quantification of
nitrate mass (and suspended sediment) predictions in karstic Mediterranean watersheds,
and (c) the assessment of the climate change impact on karstic Mediterranean springs
with different properties. This research intended to “fill” some gaps in the scientific
literature, regarding the hydrologic and hydrochemical projections of Kkarstic
Mediterranean watersheds and the quantification of their uncertainties. In that regard, a
modeling framework is introduced, for the assessment of the uncertainty of composite
flow projections, i.e. flows which combine karstic and surface flow. This framework can
be also employed for the uncertainty assessment of water quality projections of complex
karstic watersheds. It, ultimately, aims to evaluate the impact of climate change on karstic
springs, which are valuable and vulnerable Mediterranean water resources, a topic which
has not received proper attention in scientific literature, emphasizing on the frequency,
duration and intensity of their hydrologic droughts.

Regarding the quantification of the hydrologic predictions uncertainty for karstic
Mediterranean watersheds, the research focuses on the uncertainties related to the
hydrologic model parameters, the internal variability of input, and the climate change
scenarios. The methodology is applied on the karstic Mediterranean watershed of
Koiliaris. The hydrologic model used in this study is the SWAT model, modified to account
for the karstic spring flow (Karst-SWAT). The SUFI-2 interface in combination with the
@RISK software are used to quantify the uncertainty of the surface and karstic flow
parameters respectively. Input to the hydrologic models is provided by eleven
combinations of five Regional Climate Models (RCMs) and three Representative
Concentration Pathways (RCPs). Representative rainfall time series for certain of these
scenarios are stochastically modeled with the LARS weather generator. Monte Carlo
simulations are used to investigate the effect of input internal variability on the flow
output. The uncertainties stemming from different sources are combined. The same
framework, with some adjustments, is used for the quantification of the nitrate fluxes
uncertainty in the Koiliaris River Basin.

The Karst-SWAT model is applied at a larger scale, i.e. the Koiliaris and Keritis River
Basins, in order to quantify the hydrologic response of three karstic springs with different
properties in the Mediterranean island of Crete. The same set of representative climate
change scenarios is used to assess the climate change impact on the springs and surface
flow for the period 2019-2098. A non-parametric drought index is modified within the
context of this study, with the intention of estimating the future frequency, duration and
intensity of meteorological and hydrological droughts in comparison to the reference
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period. The progress of the lowest and the highest flows in the future is analyzed, the
latter using an algorithm of the Mean Excess Function.

5.2 Conclusions

5.2.1 On the quantification of hydrologic predictions uncertainty of karstic Mediterranean
watersheds

5.2.1.1 Quantification of uncertainties from different sources

The uncertainty of total flow at the basin exit due to hydrological model parameters is
estimated at 6.6% (Coefficient of Variation, CV), based on the combination of both SWAT
and Karst-SWAT model parameters. Specifically, the uncertainty of surface flow is 17.1%
and of karstic flow 10.0% (CV). The uncertainty due to internal variability is on average
3.9% for rainfall, 5.6% for total flow, 4.9% for karstic flow and 7.1% for surface flow. The
range due to climate change uncertainty is 12.5%, 10.1% and 17.3% for total, karstic and
surface flow for the period 2019-2058 and 28.1%, 23.5% and 36.7% for the period 2059-
2098 respectively.

The rainfall range due to internal variability propagates to higher uncertainty ranges for
the total and surface flow, and the uncertainty range of karstic flow is always lower than
that of the surface flow, due to the higher stability of the karstic system. For the case of
karstic flow, the range due to model parameters uncertainty (10.0%) is equally important
as the range due to climate change scenario (10.1%) until 2058; however, the latter more
than doubles after 2059 (23.5%). The uncertainty due to internal variability for the total
flow (5.6%) is similar to the uncertainty due to model parameters in the basin of Koiliaris
(6.6%). Again, the value of the latter, more than doubles after 2059 (28.1%) due to
climate change scenario uncertainty.

5.2.1.2 Importance of methodology and results

In our study, the comparison of the future 40-year means for all scenarios reveals that
2019-2058 is a transition period, during which the outcomes of different climate
scenarios overlap due to the dominant role of internal variability. In addition, during this
period changes in flow are not as significant as those forecasted after 2060, when the
particular realization of the emission scenario becomes more important. The projected
impact of climate change at the Koiliaris River, and the island of Crete in general, changes
significantly as a function of the scenario that will be realized after 2059 and ranges from
significant flow increases (37.5% for RCP2.6) to significant decreases in flow (42.3% for
RCP8.5). The climate change ensemble mean, however, indicates a significant decrease in
the mean annual total flow (13.0%) and karstic flow (16.4%) after 2059. The worst case
scenario (REMO RCP8.5) predicts a mean karstic flow of 347.7 mm/yr (decrease of
37.9%). Furthermore, by taking the uncertainties of model parameter and internal
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variability into consideration, the predicted karstic flow can be as low as 271.5 mm/yr
(decrease of 51.5%).

The methodology combines the advantages of climate change impact analysis with those
of a fully integrated hydrologic model. The integration of surface and subsurface flow in
the same model provides more realistic simulations of water cycle and improved
representation of the dominant hydrologic process of groundwater recharge interaction,
which is important for impact assessment on groundwater resources. This is the first
time, to our knowledge, that a combined assessment of surface and karstic flow model
parameter uncertainty and internal variability is applied to a karstic Mediterranean
watershed. Our analysis shows that the parameter uncertainty of the hydrologic model
and the internal variability of the climate change scenarios should be considered in
planning water resources adaptation and mitigation measures that aim to alleviate
climate change impacts in watersheds of semi-arid or arid climates, especially for the
2019-2058 period. After 2059, the climate change scenario is the most important
uncertainty factor. The case of the Koiliaris River Basin provides a benchmark for
comparative studies in other similar regions of the globe, where water needs during the
summer are exclusively covered by the flow originating from karstic springs. Accurate
estimates of the overall uncertainty are necessary for planning purposes and may reveal
possible water deficits that cannot otherwise be identified.

5.2.2 On the quantification of nitrate (and sediment) fluxes predictions uncertainty in
karstic Mediterranean watersheds

5.2.2.1 Impact of climate change on nitrate and sediment fluxes

Following the patterns of flow, when comparing the future annual averages of the
variables under the 11 climate change scenarios, we predict that the total nitrate mass
decreases after 2059 (23.7%). The nitrate mass transferred by the surface flow increases
by 10.1% during the period 2059-2098. This occurs due to the fact that flash floods are
expected to increase (despite the slight decrease in surface flow) thus favoring the
flushing of nitrates. The total sediment mass is stable after 2059 (low increase of 1.1%).

5.2.2.2 Quantification of uncertainties from different sources

As in the case of flow, after 2059, the uncertainty range of nitrate and sediment fluxes,
due to climate change scenario, increases significantly, with the exception of the nitrate
and sediment mass originating from the springs. The uncertainty due to climate change
scenario, after 2059, is estimated at 23.7% (CV) for the mean annual total nitrate mass
exported to the sea and at 41.6% for the mean annual total sediment mass exported to
the sea. The uncertainty of the same variables due to internal variability is 6.9% (nitrate)
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and 18.5% (sediment), which is significant, but lower than the uncertainty due to climate
change scenario.

The parameter uncertainty estimation of nitrate fluxes revealed that the total parameter
uncertainty is 40.1% on the annual mean nitrate mass exported to the sea, taking both
SWAT and Karst-SWAT parameters under consideration. When the uncertainty due to
internal variability is added to the parameter uncertainty, the total uncertainty in the
exported nitrate mass is 40.7%. This uncertainty is significant and greater than climate
change scenario uncertainty. The high parameter uncertainty of nitrate fluxes is owed
mainly to the limited observational data and also to the uncertainty of flow parameters
which define the nitrate masses.

5.2.2.3. Importance of study

The watershed under study (Koiliaris River Basin) is not expected to undergo significant
changes in water quality according to the scenarios under study. The increase in nitrate
concentration does not constitute a problem for the water quality of the basin, as the
climate change analysis suggests that it is never going to exceed the limits established by
the Water Framework Directive, even when considering the estimated uncertainties.

The framework for the quantification of nitrate fluxes uncertainty introduced in this study
can be applied on other complex karstic watersheds with water quality issues, for the
quantification of nitrate and sediment fluxes, with the condition that observational data
are adequate. The methodology can be expanded to any water quality variable in karstic
watersheds.

5.2.3 On the estimation of the impact of climate change on three karstic springs with
different properties

5.2.3.1 Impact of climate change on annual means and drought frequency, intensity and
duration

The climate change impact study suggests that more intense changes in flow are observed
after 2059, when the mean annual karstic flow of the Stilos spring is expected to decrease
significantly (25.1% on average, based on the eleven scenarios). This decrease is less
intense for the karstic flow of Meskla (18.7%) and Agia (14.2%) springs. A mild decrease
in the mean annual rainfall (based on the eleven scenarios under study), induces a slight
increase in the mean annual surface flow (0.4% for Koiliaris and 8.0% for Keritis RB), due
to the increase in the frequency of extreme rainfall. High intensity rainfall favors the
generation of surface flow at the expense of karstic flow, since rainfall intensity exceeds
the infiltration rate.

Considering each spring under study separately, we get the following results regarding
the characteristics of drought for the 2059-2098 period: Stilos spring is the most
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vulnerable spring under the impact of climate change, with an increase of 77.5% in
frequency, 45% in duration and 27.3% in intensity of drought. Meskla spring has an
increase of 35.9% in frequency, 36.8% in duration and 38.6% in intensity (mean monthly
water deficit) of droughts. Finally, the drought frequency of the Agia spring decreases
8.1% after 2059, as the duration of drought events increases remarkably (533%), and the
drought intensity increases (83.6%). The mean deficit to mean monthly flow ratio
increases for all springs, especially for the Agia spring, for which it doubles. However,
even for the worst case scenario, the Agia spring manages to address the annual water
needs of the area, considering they do not change in the future.

5.2.3.2 Impact of climate change on extreme flows

The analysis of the extreme low and high flows of the springs and surface flow
demonstrates that there will be an increase in the variability of flow values, with
increasing high and low flows in frequency and intensity. The increase in the extreme high
flows and torrential rain may be accompanied by the inflation of flood events, erosion and
crop disaster. The future, heavier tailed, distributions of rainfall extremes do not facilitate
the water storage of the springs and the increasing frequency of meteorological droughts
lead to increasing low flows during the whole year, and especially during the dry months,
deteriorating an already challenging situation.

5.2.3.3 Response to climate change based on different spring characteristics

The mean annual karstic flow of the Stilos spring is expected to decrease significantly
after 2059 (25.1% on average, based on the eleven scenarios), and this decrease is less
intense for the karstic flow of Meskla (18.7%) and Agia (14.2%) springs. A high detention
time secures a more efficient water storage. The effect of the springs’ detention time is
also evident in the analysis of present and future droughts. The frequency of future
drought events is higher in karstic springs with lower water detention time (i.e. Stilos)
and lower in karstic springs with higher detention time (i.e. Agia). Conversely, the
duration of individual drought events is higher for karstic springs with high detention
time. Also, the correlation between the meteorological and hydrological drought index
decreases as the spring’s detention time increases. All the above mentioned results
indicate that the droughts of a spring with low storage capacity are more in accordance
with the patterns of rainfall droughts compared to a spring with higher storage capacity.
In addition, a long hydrological drought of a spring with high detention time is a result of
many individual meteorological drought events situated close to each other in time,
rather than one long meteorological drought.
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5.2.3.4 Other remarks

The analysis of the meteorological and hydrological drought indices indicates that the
meteorological drought index alone cannot be used for the assessment of hydrologic
droughts in karstic watersheds as it severely underestimates the drought status of the
springs, especially for the case of springs with high detention times.

In addition, within the context of this study, a non-parametric drought index was
modified, and a new index is introduced, which is able to assess the future frequency,
duration and intensity of meteorological and hydrological droughts in comparison to the
reference period. The new index can be applied on the time series of observed and
projected flow (or rainfall) at once and provide a comparison of the drought conditions
across the time series.

5.2.3.5 Importance of results

According to Chapter 2, after 2059, the variability due to climate change scenario is very
high for karstic flows (23.5%). Even with this high uncertainty scores, the most adverse
impacts on karstic water resources are expected to take place after 2059, independently
of the climate change scenario.

The Agia spring, which is the main source of water supply and irrigation for the city of
Chania, is forecasted to have lower flows after 2059, but the spring will be able to cover
the current water needs of the area even for the worst case scenario (although
marginally). These water needs, however, will definitely increase in the future since the
local authorities have already started discussing and proposing actions for more intensive
exploitation of the spring.

These results provide an illustration of the conditions which are expected to prevail for
Mediterranean karstic springs in the future. The drought status is anticipated to
deteriorate, especially after 2059, regardless of the scenario realized for all springs and
the results of this study can be used as a guide for competent authorities to adapt their
management practices for the prevention of the negative repercussions of karstic spring
droughts. A 40-year period is offered for adaptation measures to be prepared and planned
for the improved management of the springs’ water resources.

5.3 General Remarks

The modeling framework proposed here can be expanded and improved. The
methodology has been applied on karstic watersheds located in Chania but can be
extrapolated to the whole island of Crete. In their study, Malago et al. (2016) used the
hydrological similarity approach to validate flow gauging stations all over Crete and
proved that the sub-basins of Crete have similar to identical properties. Likewise, this
methodology can be used for the quantification of the uncertainty of hydrologic and
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geochemical predictions and the estimation of the characteristics of present and future
hydrological droughts for the whole island of Crete. The relative uncertainty is not
expected to vary significantly among different areas of the island, whereas the
hydrological drought characteristics are expected to vary according to the properties of
the springs studied.

A representative sub-set of climate change scenarios has been used here, but the
methodology could be improved with the addition of a wider range of climate change
scenarios which would account for the full spectrum of uncertainty. Several downscaling
methods could also be tested to investigate the most appropriate one and also account for
the uncertainty stemming from the downscaling methodology. In addition, the weather
generator used here underestimated the variance of the rainfall; this underestimation is
because of the underlying stationarity assumption of the weather generator. Other
approaches which preserve the variance and autocorrelation properties of precipitation
processes could be chosen to quantify the uncertainty due to internal variability more
efficiently. Finally, the uncertainty assessment could benefit from the acquisition of more
observed data which could more accurately describe the uncertainty ranges.

The study introduced, for the first time, a modeling framework for the quantification of
the hydrologic predictions uncertainty in karstic Mediterranean watersheds. This
framework provided uncertainty ranges for the forecasted flows, and revealed new
minimum flows which should be used as the design flows for water resources
management. The methodology can also be employed for the uncertainty assessment of
other variables (e.g. water quality) and can be applied to different regions around the
globe with similar hydrologic systems. In the context of this study, the hydrological
drought characteristics of different karstic springs were examined under present and
future conditions, providing a guide for competent authorities to adapt their management
practices for the prevention of the negative repercussions of karstic spring droughts. The
study provides a benchmark for comparative studies in other similar arid and semi-arid
regions with karstic formations.
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Appendix A

A1 Tables and Figures

Table Al. EURO-CORDEX (Jacob et al,, 2014) (EUR-11) regional climate models (RCM)
and their driving realization of global climate models (GCM). X denotes the scenario runs

considered in this study for each RCM. RCP: representative concentration pathway.

Scenario Reference
Driving GCM RCM
RCP2.6 RCP4.5 RCP8.5
EC-EARTH-r1 KNMI-RACMO22E X X Van
Meijgaard et
al. (2012)
EC-EARTH-r12 SMHI-RCA4 X X X Kjellstrom et
al. (2016)
IPSL-CM5A-MR-r1  IPSL-INERIS- X Skamarock
WRF331F and Klemp
(2008)
HadGEM2-ES-r1 SMHI-RCA4 X X Kjellstrom et
al. (2016)
MPI-ESM-LR-r1 CSC-REMO X X X Jacob et al.

(2012)
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Figure Al: Cumulative distribution of annual rainfall for the 1974-2098 period and
applied trend-line for each sub-period: 1974-2018, 2019-2058 and 2059-2098.
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Table A2: Sensitivity analysis of parameters used for uncertainty analysis. A low P-value

denotes high sensitivity

P-
Parameter Name explanation
Value
R_SOL_K(..).sol Saturated hydraulic conductivity (mm/hr) 0.00
R_SOL_Z(..).sol Depth from soil surface to bottom of layer 0.00
R_ALPHA_BNK.rte | Baseflow alpha factor for bank storage (days) | 0.00
R_CH N2.rte Manning's "n" value for the main channel 0.02
Effective hydraulic conductivity in main
R_CH_K2.rte _ 0.22
channel alluvium (mm/h)
Effective hydraulic conductivity in tributary
R_CH_K1.sub _ 0.26
channel alluvium (mm/hr)
R_OV_N.hru Manning's "n" value for overland flow. 0.31
R_SURLAG.bsn Surface runoff lag coefficient. 0.37
Threshold depth of water in the shallow
R_REVAPMN.gw aquifer for "revap" or percolation to the | 0.42
deep aquifer to occur (mmH20)
R_CH N1.sub Manning’s “n” value for the tributary channels. | 0.44
R_ALPHA_BF Baseflow alpha factor (days) 0.48
R_SOL_AWC(.).sol Available w§ter capacity of the soil layer (mm 0.50
H20/mm soil)
Initial SCS runoff curve number for moisture
R_CN2.mgt . 0.51
condition II

A2 Simulation of minimum and maximum temperature using the Box-Jenkins
methodology

Data for temperature were available from two stations: Psichro Pigadi and Samonas,
which also provide daily minimum and maximum temperatures for the period 1974-
2013. Daily minimum and maximum temperatures are considered as stochastic
processes characterized by variable daily means and standard deviations. The Box-
Jenkins methodology is used to simulate the time series. The seasonal cycles of means
and standard deviations are modelled by a sum of five sinusoidal terms and the
residuals are approximated by the Student’s t distribution (also known as t location-
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scale distribution.) The sinusoidal series for the mean is fitted to the observed daily
values. The residuals, obtained by removing the periodic term from the observed data,
are used to analyze a time autocorrelation for minimum and maximum temperatures.
Occasionally, the simulated minimum temperature is greater than the simulated
maximum temperature. In this case the minimum and maximum temperatures are
interchanged. The temperature model can be defined by: i) the mean temperature "m*, ii)
the sinusoidal model "model“, iii) regression parameters "beta“, iv) autocorrelation lags

"lags“, v) the residual probability distribution "PD” (t Location-Scale Distribution).

For the validation of the temperature model, the residuals of regression for serial
correlation were analyzed and were found to be serially uncorrelated for all scenarios
and time periods, as seen in Figure A2 for the 2019-2058 period for the maximum
temperature of Samonas station. The rest of the temperature variables (minimum
temperature of Samonas and maximum and minimum temperature of Psichro Pigadi)
have also uncorrelated residuals.
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Figure A2: Residuals of regression (top) and serial correlation function (bottom) for the
maximum temperature of Samonas for the 2019-2058 period.

Thirty alterations of the temperature input were run for each scenario while the
precipitation input of the original time series was kept constant for each simulation.
Results suggested that, for every realization, the outcome of flow was not differentiated
more than 5% compared to the original flow outcome. Therefore, for the purposes of
assessing the effect of input uncertainty in the hydrological outcome, only precipitation
was considered to cause variations on the flow outcome, and the variable of temperature
was not taken under consideration. The mean annual temperatures of the original time
series along with the 95% confidence interval (CI) of the realizations of every future year
are presented in Figure A3.
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Figure A3: Monte Carlo simulation of temperature for three climate change scenarios:
original time series (continuous blue line) and 90% range (dash and dot lines) based on
30 realizations for the following scenarios: (a) RCP2.6, (b) RCP4.5 and (c) RCP8.5. The
plots include the observed data from the reference period (up to 2018).
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A3 Adjustment of LARS-WG

In order to investigate the variability of the LARS-WG simulations, box-plots of the
standard deviations for each month and all scenarios are constructed. Results suggest that
the LARS-WG simulations in certain months do not satisfactorily reproduce the inherent
variability of the rainfall. In order to rectify the variability underestimation problem, a
linear transformation is applied to those time series that are not adequately simulated by
the LARS generator. The transformation generates corrected time series with the same
properties (mean and variance) as the original sample.

First, the empirical probability distributions are fitted to several probability distribution
models (we use the FBD - "Find the Best Distribution" tool of Matlab which includes a
wide range of probability distributions). All the original and simulated samples are
adequately described by the Generalized Extreme Value (GEV) distribution, based on the
Akaike information criterion (AIC) along with the AIC with small-sample correction
(AICc), and the Bayesian information criterion (BIC). The GEV distribution belongs to the
location-scale family of distributions. This family is parametrized by a location parameter
and a non-negative scale parameter. If Xis a random variable in this family, the random
variable ¥V =a + bX where a, and b are real numbers and 5>0 also belongs to the same
family. Therefore, the following transformation is applied to the simulated rainfall time
series (for the months showing low variability):

Y=m2+(X—m1)*z—i (A1)

where Xis the generated monthly value per year (for each scenario and time period), m:
and sz are respectively the simulation-based average and standard deviation, and mz, sz
are mean and standard deviation correcting factors. The variable m- is a random
realization from the normal distribution with a mean equal to the average rainfall of the
original sample and standard deviation equal to the standard deviation (over a set of
thirty values) of the monthly simulated means (calculated over the respective 40 year
period). The variable szis a random realization from the normal distribution with mean
equal to the standard deviation of the original sample and standard deviation equal to the
standard deviation of the monthly simulated standard deviations (again over the
respective 40-year period).

For each scenario and time window, the mean and standard deviation of the observed and
simulated monthly values (by LARS-WG) are shown in Figure A4. The model succeeds in
portraying the monthly means; however, in some cases the standard deviation of the
rainy months is underestimated by the simulations.
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Figure A4. Mean and standard deviation of observed (reference period) and predicted
(RCP projection periods) rainfall versus simulated monthly rainfall (produced by LARS-
WG) for the (a) reference period 1974-2018, (b) RCP2.6 scenario, (c¢) RCP4.5 scenario,
(d) RCP8.5 scenario. The first column, denoted by (i), corresponds to the 2019-2058

period, while the second column, denoted by (ii) refers to the 2059-2098 period.

The box-plots of the standard deviations for each month and all scenarios above are
shown in Figures A5-A10. These figures reveal that the LARS-WG simulations in certain
months do not satisfactorily reproduce the inherent variability of the rainfall. More
specifically, for the RCP2.6 scenario during the period 2019-2058 (Figure A5), the LARS-
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WG simulations underestimate the variability for the months of January, February, March
and December. For the same scenario, the variability of January, November and December
is underestimated for the next period (2059-2098). Similarly, for the RCP8.5 scenario the
variability is underestimated in January and November for the period 2019-2058 and in
November and December for the period 2059-2098. For the RCP4.5 scenario the
variability is adequately simulated for both periods (Figures A7, A8). This
underestimation effect has also been observed in other works (Semenov et al., 1998) and
the transformation proposed here is applied to overcome this problem.

To ensure that the probability distributions, after the transformation, do not significantly
differ from the initially generated (by LARS-WG) distributions for the respective months,
we compare the cumulative distribution functions before and after the transformation.
Similar results are obtained for all months. For example, the CDFs are compared for the
month of January in the period 2059-2098 in Figure A11. As this figure shows, the
transformation does not significantly affect the CDF (both the initial and the transformed
CDFs are equally well approximated by a GEV distribution). However, the samples
generated from the transformed CDF have the correct standard deviations (Figures A12-
A15).
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Figure A5: Box plots of the standard deviation of simulated monthly rainfall for the RCP2.6
scenario during the 2019-2058 period and the standard deviation of the monthly rainfall
of the original sample (measurements and projected rainfall). The box-plots are based on
30 values of standard deviations, each one calculated from the rainfall values over a
period of forty years. The markers (circles) represent the sample standard deviation for
the respective time period.
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Figure A6: Same as Figure A5 for the RCP2.6 scenario but for the 2059-2098 period.
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Figure A7: Same as Figure A5 but for the RCP4.5 scenario (2019-2058 period).
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Figure A8: Same as Figure A5 but for the RCP4.5 scenario and the 2059-2098 period.
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Figure A11: Cumulative Distribution Functions of the month of January generated by
LARS-WG and as they are transformed for the correction of variation (30 realizations of
40 years for the 2019-2058 period, 1200 values)

137



200 ; El,

standard dewatto_rl (mm)

g
I

-]+

JF}-
~ -
HIH

|

100~ i T E_
S e T s T
H & ‘
_i_ + $ | ® standard deviation of original sample
o, I 1 1 1 1 1 1 1 1 I L
1 2 3 4 5 6 7 8 2] 10 1" 12

# month

Figure A12: Box plots of the standard deviation of simulated monthly rainfall for the
RCP2.6 scenario during the 2019-2058 period and the standard deviation of the monthly
rainfall of the original sample (measurements and projected rainfall) after the
transformation. The box-plots are based on 30 values of standard deviations, each one
calculated from the rainfall values over a period of forty years. The markers (circles)
represent the sample standard deviation for the respective time period.
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Figure A13: Same as Figure A10 for the RCP2.6 but the 2059-2098 period
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Figure A14: Same as Figure A10 but for the RCP8.5 (2019-2058 period)
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Figure A15: Same as Figure A12 for the RCP8.5 but for 2059-2098 period
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Appendix B
B.1 Karst-SWAT equations

Stilos spring

The model equations describing the karst component include the upper reservoir mass
balance, i.e.

dv.
d_tl = Qin,1 —Q3, (B1)

and the lower reservoir mass balance, i.e.,

dv;
d_tz = Qin,Z - QZ ) (Bz)
where
Qin,l =das- Qin,deepGW: (B3)
Qin,z =(1- al) ’ Qin,deepGW +a, 0 (B4)
Qi =ky V3 (B5)
Q=k V3, (B6)

and Qipgeepcw is the deep groundwater discharge from SWAT (the corresponding

variable from SWAT is DA_RCHG, or deep aquifer recharge), a, is the fraction of flow
entering the upper reservoir, a, is the fraction of flow from the upper reservoir discharge
entering the lower reservoir and k,, and k; are recession constants (in units of 1/day) for
the upper and lower reservoir. For constant @in1and Qin2 the analytical solutions of (B1)
and (B2) are:

Q1= Ql,oe_kut + Qing - (1 — ety (B7)

Q2 = Qe Mt + Qinz - (1 — e faty. (B8)

The total karstic flow is then calculated as

Qkarstic = (1- az) Q1+ Q; (B9)

The karst model parameters are calibrated, and the resulting karstic flow time series is
used as point source input at the spring location (Equation B9).

The sediment mass balance of the karst is calculated in a similar manner as the nitrate —
N mass balance presented by Nikolaidis et al. (2013)
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d(V1 ' C1)
& = a1 " Qin1 " Cin1 — Q17 G (B10)

d(V, - C,) B11
%:(1_al)'Qin,l'Cin,1+a2'Q1'Cl_Q2'CZ ( )

for the upper and lower reservoir respectively, where Cj, ; is the concentration of water
entering the karst and C;, C, are the suspended sediment concentrations of the upper and
lower reservoirs respectively.

Meskla and Agia springs

The equations for Meskla are constructed in a similar manner:

le = Ql,Ome_kumt + Qin,deep,GW,m Ay (1 - e_kumt) (BlZ)

QZm = QZ,Ome_klmt + ((1 - alm) ' Qin,deep,GW,m + Aom * le) ' (1 - e_klt) (B13)

where Qingeepcw,m 1S the deep groundwater discharge from SWAT which enters the
Meskla system (the corresponding variable from SWAT is DA_RCHG, or deep aquifer
recharge), a, , is the fraction of flow entering the upper reservoir of Meskla, a,,, is the
fraction of flow from the upper reservoir discharge entering the lower reservoir and k,,
and k; are recession constants (in units of 1/day) for the upper and lower reservoir. For
the case of Agia, we get:

Qla = Ql,an_kuat + (Qin,deep,GW,a "Qig T Az QZm) ' (1 - e_kuat) (B14)

Q2a = QZ,an_klat + ((1 - ala) ) Qin,deep,GW,a + A2q " Qla) ) (1 - e_klat) (B]-S)

where as,, is the fraction of flow from Meskla, which enters the upper reservoir of Agia.
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B.2 Tables and Figures

90%CI of Exponential MEF slopes

Sample size

Figure B1. 90% confidence interval (CI) of MEF slopes resulting from the Exponential tail.
Slope values higher than the CI are characterized as sub-exponential, slope values inside
the CI are exponential and values lower than the CI are hyper-exponential.

Table B2. The relative difference (RD) between the drought index of Psichro and the rest
of the six rainfall stations. The drought is index applied on the rainfall time series of
Psichro (x,ps according to Equation (4.4)) and the six stations (x,,,4¢; according to
Equation (4.4)) listed in this Table for the 1979-2098 period and the REM04.5 scenario.
The duration and frequency of Psichro drought events (drought index lower than -1) are
compared to the duration and frequency of the drought events of the rest of the stations
for each sub-period.

reference period 2019-2058 2059-2098
Rainfall station duration | frequency | duration | frequency | duration frequency
Samonas 1.4% 0.0% -4.1% 2.9% 0.0% 0.0%
Kalives -9.5% 5.9% 4.1% 2.9% -2.6% 0.0%
Askifou 0.0% -5.9% 0.0% 8.6% -2.6% -4.9%
Mouri 4.1% 0.0% 0.0% 5.7% -3.9% 0.0%
Agrokipio -8.1% 11.8% -2.7% -5.7% 3.9% 0.0%
Alikianos -6.8% 5.9% -2.7% -5.7% 1.3% 2.4%
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Figure B2. Modified drought index (6-month) applied on the rainfall (blue line) and the

Agia flow (black line) and moving average of rainfall (82 month moving average - orange
line).
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