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Abstract

Power line inspection is a crucial task for the uninterrupted operation of an electric-

ity distribution network. Till date, it is mainly carried out using manned helicopters or

foot patrol. However, autonomous, intelligent inspection using unmanned aerial vehicles

(UAVs) equipped with camera sensors has come to the fore lately as it can o�er an ad-

vantageous automated way to deliver the task of inspection. For the accurate detection of

the power lines in the imagery acquired, di�erent state-of-the-art semantic segmentation

techniques have been used. In this work, attention is mainly paid to the structure of the

power lines, in order to �nd a proper deep learning architecture that can segment them

e�ciently, preserving their thin shape and reducing background noise. It is found out that

DNNs that employ dilated convolutions can reach this goal and achieve high performance.

The architectures in this work were evaluated in both literature datasets and videos col-

lected by HEDNO S.A. (Hellenic Electricity Distribution Network Operator S.A.) using

UAVs. Results show that, out of the four deep learning-based segmentation architectures

used in the experiments, the D-LinkNet architecture, �rst introduced for road segmen-

tation purposes in high-resolution satellite imagery, outperformed the others in terms of

F'l-Score in various background scenarios.
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Περίληψη

Ο έλεγχος των ηλεκτρικών γραμμών αποτελεί ζωτικής σημασίας εργασία για την αδιάκο-

πη λειτουργία ενός δικτύου διανομής ηλεκτρικής ενέργειας. Μέχρι σήμερα, πραγματοποιείται

κυρίως με επανδρωμένα ελικόπτερα ή πεζοπερίπατο. Ωστόσο, η αυτόνομη, έξυπνη έλεγχος

χρησιμοποιώντας μη επανδρωμένα αεροσκάφη (UAVs) εξοπλισμένα με αισθητήρες κάμερας

έχει προσεγγίσει πρόσφατα το προσκήνιο, καθώς μπορεί να προσφέρει ένα πλεονέκτημα ως

προς το αυτοματοποιημένο τρόπο εκτέλεσης της εργασίας έλεγχου. Για την ακριβή ανίχνευ-

ση των ηλεκτρικών γραμμών στις λήψεις εικόνας, έχουν χρησιμοποιηθεί διάφορες τεχνικές

σημασιολογικής ενγκάλισης που βρίσκονται στην αιχμή της τεχνολογίας. Σε αυτήν την εργα-

σία, επιδίδεται μεγάλη προσοχή στη δομή των ηλεκτρικών γραμμών, προκειμένου να βρεθεί

μια κατάλληλη αρχιτεκτονική εκμάθησης βαθιάς μάθησης που να μπορεί να τις ενγκαλίσει

αποτελεσματικά, διατηρώντας το λεπτό τους σχήμα και μειώνοντας τον θόρυβο του φόντου.

΄Εχει διαπιστωθεί ότι οι ΔΝΝ (Δίκτυα Νευρωνικών Δικτύων) που χρησιμοποιούν διευρυ-

μένες συνελίξεις μπορούν να επιτύχουν αυτόν τον στόχο και να πετύχουν υψηλή απόδοση. Οι

αρχιτεκτονικές που χρησιμοποιήθηκαν σε αυτήν την εργασία αξιολογήθηκαν τόσο σε σύνολα

δεδομένων από τη βιβλιογραφία όσο και σε βίντεο που συλλέχθηκαν από την HEDNO S.A.

(Διαχειριστής Ελληνικού Δικτύου Διανομής Ηλεκτρικής Ενέργειας Α.Ε.) με τη χρήση

UAVs. Τα αποτελέσματα δείχνουν ότι, από τις τέσσερις αρχιτεκτονικές εκμάθησης βαθιάς

μάθησης που χρησιμοποιήθηκαν στις πειραματικές δοκιμές, η αρχιτεκτονική D-LinkNet,

που εισήχθη αρχικά για σκοπούς ενγκαλίσεως δρόμων σε εικόνες υψηλής ανάλυσης από δο-

ρυφορικές λήψεις, ξεπέρασε τις άλλες όσον αφορά το F'l-Score σε διάφορα σενάρια φόντου.

5



Contents

1 Introduction 3

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Power Line Inspections Today . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Bene�ts of using drones for power line inspection . . . . . . . . . . 4

1.1.3 Sensor Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Purpose, Objectives &Innovation . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Innovation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 13

2.1 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Types of Image Segmentation tasks . . . . . . . . . . . . . . . . . . 13

2.1.2 Traditional Approaches to Image Segmentation . . . . . . . . . . . 16

2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Introduction to Deep Learning . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Deep Neural Networks for Image Segmentation . . . . . . . . . . . 20

3 Approach 23

3.1 Power Line Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Literature Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.2 HEDNO Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.3 Data Augmentation Techniques . . . . . . . . . . . . . . . . . . . . 26

3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Dilated Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 DeepLab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



CONTENTS

3.2.3 D-LinkNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.4 Modi�ed FCN with Dilated Convolution Module . . . . . . . . . . . 32

3.3 Segmentation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Proposed grid approach . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Otsu's Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Binary Cross Entropy (BCE) loss function . . . . . . . . . . . . . . 37

3.4.2 Adam optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Results 39

5 Conclusion 49

Acknowledgements 51

A Additional segmentation results 53

Bibliography 67

List of Figures 73

List of Tables 77



Chapter 1

Introduction

1.1 Problem Statement

1.1.1 Power Line Inspections Today

Regular inspections and timely maintenance play a pivotal role in minimizing resource

input, controlling costs, and ensuring a swift restoration of electricity within the complex

landscape of power grid operations. However, the current methodologies employed are

far from optimal, as many power grid operators still depend on a combination of ground

personnel and low-�ying helicopters for the thorough inspection of the power lines. This

reliance on traditional methods introduces several signi�cant drawbacks that disrupt op-

erational e�ciency and compromise overall e�ectiveness.

One critical challenge lies in the ine�ciency of outage management due to the sub-

optimal use of helicopters for power line inspections. Helicopters are not well-suited for

this complex task due to their size and weight, especially when dealing with bad weather

or navigating through narrow spaces. In cases where helicopters lack integrated cameras,

inspectors are forced to physically ascend masts to identify faults. Even when equipped

with cameras, helicopters require signi�cant manual e�ort to analyze the captured pho-

tographs, leading to delays in identifying and �xing potential issues.

Furthermore, the reliance on helicopters introduces a signi�cant risk to workforce

safety, particularly when operating in challenging terrains and adverse weather conditions.

As reported by T&D World, the utility line work sector ranks among the top ten most

dangerous jobs in America, with an alarming 30 to 50 workers out of every 100,000 facing

fatal accidents annually. This highlights the immediate need for a safer, more e�cient,

and technologically advanced approach to power line inspections.
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1. Introduction

Another signi�cant concern arises from the existence of disparate systems throughout

the inspection process. Utilities commonly employ di�erent systems from the planning

phase to the detailed ground crew work orders, resulting in isolated data �ow. This lack

of synchronization in the system portfolio makes the analysis process more di�cult and

time-consuming than needed. A complete solution includes bringing all stages of the in-

spection process together into a well-coordinated system. This helps streamline operations,

improve e�ciency, and allows for a quicker response to potential issues in the power grid

infrastructure.

1.1.2 Bene�ts of using drones for power line inspection

Using drones for power line inspection goes beyond just improving safety and e�-

ciency; it also delves into the realm of technological advancement and data analytics.

Drones equipped with cutting-edge sensors and cameras can capture not only visual data

but also thermal and multispectral imagery. This expanded data set allows for a more

thorough analysis of power line components, identifying potential issues such as overheat-

ing, corrosion, or other anomalies that may not be immediately visible.

Furthermore, the real-time capabilities of drone technology provide instant insights

into the condition of power lines. Live video feeds enable operators and inspectors to make

informed decisions on the spot, facilitating quicker response times to emerging issues. This

real-time monitoring capability is a substantial improvement over the intermittent and

delayed feedback inherent in traditional inspection methods.

Drones also contribute to predictive maintenance strategies by collecting historical

data over time. This data can be analyzed to identify patterns and trends, allowing util-

ity companies to proactively address potential problems before they escalate. Predictive

maintenance not only reduces the risk of unexpected failures but also extends the lifespan

of power line infrastructure, resulting in long-term cost savings.

Additionally, the integration of arti�cial intelligence (AI) and machine learning al-

gorithms enhances the analytical capabilities of drone-collected data. These technologies

can automatically detect and classify defects or abnormalities, further streamlining the

inspection process and ensuring a higher level of accuracy in identifying potential risks.

The environmental impact of power line inspections is also mitigated through drone

usage. Traditional methods often involve transportation of more personnel and heavier

equipment to remote or di�cult-to-reach locations, leading to increased carbon emissions.
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1. Introduction

Drones, on the other hand, signi�cantly reduce the need for such travel, since lighter

equipment is being transported and potentially a smaller team is needed. Therefore, the

overall ecological footprint of power line inspection operations is minimized.

In summary, the adoption of drones in power line inspection not only improves safety

and operational e�ciency but also opens up avenues for advanced data analytics, real-

time monitoring, predictive maintenance, and environmentally conscious practices. The

combination of drone technology with sophisticated sensors and AI capabilities positions

power line inspections at the forefront of innovation within the utility industry.

1.1.3 Sensor Technologies

Power line inspection drones utilize a variety of sensors and technologies to acquire

comprehensive data for assessing the condition of infrastructure. Among the key data

types acquired are RGB imagery, providing standard color images for visual inspection

and identi�cation of issues such as damaged equipment, vegetation encroachment, or

structural anomalies.

Thermal imagery, captured by infrared cameras, detects abnormal temperature pat-

terns along power lines and equipment. Elevated temperatures may signal potential elec-

trical issues or equipment failures. A visual representation of this thermal analysis is

illustrated in Fig. 1.1, providing a sample image that highlights temperature variations

along power lines.

LiDAR sensors contribute by generating highly accurate 3D point clouds, facilitat-

ing the creation of detailed maps of power lines, terrain, and structures. This technology

proves particularly valuable in analyzing spatial relationships between objects and assess-

ing topography. An illustrative example of the power of LiDAR technology is showcased

in Fig. 1.2.

Combining LiDAR and RGB imagery enables the creation of vegetation maps, aiding in

the identi�cation of areas where plants may pose a hazard to power lines. This information

guides maintenance planning for vegetation clearance, ensuring the safety and reliability

of the power infrastructure.

Digital Elevation Models (DEMs) derived from LiDAR data o�er accurate represen-

tations of terrain and ground elevation. These models enhance landscape analysis and

provide insights into potential challenges related to accessing certain areas.
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1. Introduction

Source: [1]

Figure 1.1: Thermal Image of High Voltage Power Lines

Source: [2]

Figure 1.2: Lidar Image of High Voltage Power Lines
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Orthomosaic maps, created by stitching together high-resolution images, o�er georef-

erenced, detailed maps of the surveyed area. These maps provide a broader perspective

for overall analysis and documentation, contributing to a more holistic understanding of

the power line infrastructure.

Drones equipped with specialized sensors for corrosion inspection contribute to identi-

fying potential issues with the coating on power line structures. This aspect is crucial for

maintaining the structural integrity of the infrastructure, ensuring its long-term reliability.

Combining data from these sources allows for a thorough evaluation of power line

infrastructure. This, in turn, helps utility providers in recognizing potential issues, strate-

gizing maintenance activities, and maintaining the reliability and safety of their systems.

1.2 Related Work

Power line inspection in a regular basis and timely maintenance are considered as nec-

essary tasks for running an e�cient electricity distribution network. A thorough power line

inspection for fault detection is a proactive step that can enhance the reliability of electric-

ity distribution network operators. Existing methods for this task include on-theground

sta�, low-�ying helicopters, and/or crawling robots [3], [4], [5], [6]. These solutions are

time-expensive, dependent on human visual observation skills and sometimes dangerous

for the crew because they have to perform intensive inspection at distances close to the

power lines. As an alternate solution, airborne light detection and ranging (LiDAR) tech-

nology can be used [7], [8], [9], but it usually comes with high cost. On the other hand,

the use of unmanned aerial vehicles (UAVs) can provide robust solutions for an e�cient

power line inspection. More speci�cally, o�ine inspection can be performed using UAVs

equipped with camera sensors collecting image or video data of the power lines network.

The cost of this kind of solution can be quite low, the safety of the crew high and the visual

information that is collected can be detailed because the UAVs can �y relatively close to

the power lines [10], [11]. However, it is still challenging to design intelligent, autonomous

power line inspection systems using UAVs capable to process online the imagery data

and provide output about faults existence. Since the power line detection task is formu-

lated as a binary classi�cation problem, i.e. each pixel is labeled as line or non-line, the

presence of background noise in UAV videos, caused by leaves, grass and poor lighting

conditions, makes the detection a quite complex task. Many studies propose computer

vision techniques for lines detection in the same or similar application �eld [12], [13], [14],
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[15], [16]. In [17], a line segment detection (LSD) method based on an adaptive Gaussian

pyramid technique was proposed to initially identify candidate regions for power lines.

Following this, a combination of Gaussian mixture model (GMM) and weighted region

adjacency graph (WRAG) was employed to construct an object-based Markov random

�eld (OMRF). The �nal step involved utilizing the least-squares method for �tting power

lines. Despite these e�orts, traditional methods like these exhibit poor portability and

robustness across di�erent scenarios, and their real-time performance and accuracy often

do not meet the requirements of speci�c tasks.

It is a fact that the accuracy of lines detection along with the complexity of the pro-

posed methodologies are signi�cantly related to the reliability of the proposed intelligent

inspection systems. Under this consideration, the use of Convolutional Neural Networks

(CNNs) seem to contribute to both accuracy and time e�ciency. There have already been

several attempts to detect power lines using deep learning models. According to the lit-

erature, it is common to train a deep learning model using power line images and their

corresponding binary masks. As a next step, the pre-trained network is able to predict

a binary mask for all new images [18]. Work in [19] utilizes the GoogleNet pre-trained

model, and retrain only the last layers exploiting the power line images dataset. Another

approach, combines the �nal layer's output along with the feature maps in each stage to

produce highlevel predictions [20]. A feed-forward fully CNN-based architecture, LS-Net,

is also presented, achieving a performance of 21.5 frames per second on a state-of-the-art

GPU [21]. In their work [22], Yang et al. introduced a power line segmentation network

using an encoder-decoder architecture, enabling end-to-end extraction of power lines from

aerial images. Abdelfattah et al. proposed PLGAN for power-line segmentation in aerial

images, employing adversarial training for accurate predictions. Despite its e�ectiveness,

PLGAN is task-speci�c and not a versatile segmentation model [23].

For the speci�c application of the power lines inspection for the Greek Electricity

Distribution Network, it is important to point out that it is performed in a yearly basis as

a preventive maintenance procedure, while corrective maintenance is performed in cases

of storms or �res. The pilot site of Chania area is characterized by cases of heavy load

or places with high vegetation, both requiring more frequent inspection in order to check

the condition of the network. So, regular inspections in an automated, intelligent way is

important in order to ensure a secure and uninterrupted network operation.

In the present study, the dilated convolutional layers technique is exploited, as a more

accurate way, among other solutions, to gather context without reducing feature map
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1. Introduction

size. To that end, two semantic segmentation networks that make use of dilated con-

volutional layers were implemented: D-LinkNet [24] and DeepLabv3 [25]. Also, a Fully

Convolutional Network (FCN) structure similar to the original one presented in [26], has

been constructed, with the di�erence that some of its convolutional layers were replaced

by a dilation block similar to D-LinkNet's. Finally, for comparison purposes, UNet [27],

which is among the most popular architectures for semantic segmentation, is also trained

and tested using the same datasets. Parts of this work have appeared in [28], [29].

1.3 Purpose, Objectives & Innovation

1.3.1 Purpose

The primary purpose of this research is to address the essential need for e�cient

power line inspection within electricity distribution networks. Traditionally carried out

via manned helicopters or ground patrols, this study seeks to examine the capabilities of

unmanned aerial vehicles (UAVs) equipped with camera sensors, aiming to revolutionize

the landscape of autonomous and intelligent inspection. By leveraging state-of-the-art

deep learning architectures, speci�cally focusing on semantic segmentation techniques,

the goal is to enhance the accuracy of power line detection in acquired imagery. This

research is dedicated to actively contributing to the development of automated methods

that streamline the inspection process, ensuring the uninterrupted operation of electricity

distribution networks.

1.3.2 Objectives

The research includes several key objectives aimed at advancing the �eld of power line

inspection. Firstly, it seeks to evaluate the e�ectiveness of dilated convolutional layers,

focusing on their ability to provide contextual information without compromising fea-

ture map size. The implementation of two semantic segmentation networks, D-LinkNet

and DeepLabv3, along with a modi�ed Fully Convolutional Network (FCN) and the

widely used UNet, forms another objective. Through thorough evaluation using litera-

ture datasets and real-world videos collected by HEDNO S.A., the study aims to compare

and assess the performance of these architectures in diverse scenarios. Furthermore, the

research aims to identify the architecture that best preserves the thin structure of power
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1. Introduction

lines while minimizing background noise, thus contributing to the optimization of inspec-

tion processes.

1.3.3 Innovation

This research signi�cantly advances power line segmentation from UAV images

through the application of deep learning methodologies. Well-established frameworks

like UNet, DeepLab, and DLinkNet were skillfully tailored for this particular assign-

ment, demonstrating their �exibility and precision in addressing the distinctive chal-

lenges presented. Signi�cantly, the built-in dilated convolution layers in both DeepLab

and DLinkNet architectures were purposefully utilized, their suitability for line segmenta-

tion tasks being acknowledged, with consideration given to the slender structure of power

lines. To further explore the e�ectiveness of dilated convolutions, a deliberate modi�ca-

tion was introduced into a common Fully Convolutional Network (FCN), incorporating

these layers. This enhancement aimed to optimize network architectures for superior per-

formance in power line segmentation, particularly in capturing the thin and elongated

structure of power lines. The thorough evaluation of these adapted architectures signi�-

cantly contributes to the exploration of e�cient models tailored to this specialized task.

Emphasis was placed on evaluating and comparing the e�ciency of dilated convolution

layers, providing valuable insights into their suitability for linear structures and enriching

the broader �eld of image segmentation. Additionally, an innovative image splitting and

concatenation approach was introduced, showcasing its potential to enhance e�ciency

and accuracy in power line segmentation tasks. Innovation is introduced by emphasiz-

ing the use of dilated convolutional layers in deep learning architectures for power line

segmentation, showcasing their application in autonomous UAV-based inspections. The

introduction of D-LinkNet, originally designed for road segmentation in high-resolution

satellite imagery, for power line segmentation represents a novel adaptation of existing ar-

chitectures, contributing to the �eld by demonstrating superior performance, especially in

various background scenarios. Overall, the research underscores the application of cutting-

edge techniques to enhance the e�ciency and accuracy of power line inspection processes.

1.4 Thesis Outline

The thesis is organized as follows:

10



1. Introduction

1. In Chapter 2, foundational concepts in image segmentation and deep learning are

introduced. It covers various types of image segmentation tasks and traditional

approaches. The basics of deep learning and its role in image segmentation are

explained.

2. Chapter 3 outlines the research approach, beginning with an overview of the datasets

used for evaluation. It proceeds to explore key components of the chosen archi-

tectures, such as dilated convolution, DeepLab, and D-LinkNet, along with their

practical implementation.

3. Chapter 4 focuses on the experimental results. It provides a comprehensive overview,

revealing the outcomes of using deep learning networks for segmentation. Each ar-

chitecture is thoroughly examined in di�erent settings, applying evaluation metrics

to assess model performance.

4. Chapter 5 conclusively wraps up the thesis by presenting a concise summary of

the pivotal �ndings, capturing the core contributions and insights derived from the

research.
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Chapter 2

Background

2.1 Image Segmentation

Image segmentation involves dividing a digital image into segments, reducing its com-

plexity for subsequent processing. It entails assigning labels to pixels to identify objects,

people, or other signi�cant elements within the image.

Image segmentation is frequently employed in object detection, where the approach

involves using a segmentation algorithm to identify objects of interest within the image.

This enables subsequent operation of an object detector on a pre-de�ned bounding box

established by the segmentation algorithm. This strategy enhances accuracy and reduces

inference time by avoiding the need to process the entire image.

Furthermore, image segmentation is a fundamental component in various computer

vision technologies and algorithms. It �nds practical use in medical image analysis, com-

puter vision for autonomous vehicles, face recognition and detection, video surveillance,

as well as satellite image analysis.

2.1.1 Types of Image Segmentation tasks

Semantic segmentation

Semantic segmentation is the process of classifying individual pixels in an image into

distinct semantic categories. Each pixel is exclusively assigned to a speci�c class without

considering additional context.

However, this task becomes challenging when there are closely grouped instances of

the same class in an image, leading to a less detailed prediction. For example, in an image

13



2. Background

Source: [30]

Figure 2.1: Semantic Segmentation

of a crowded street, a semantic segmentation model may predict the entire crowd region

as belonging to the "pedestrian" class, providing limited in-depth information about the

image.

In Fig. 2.1, we observe an exemplary instance of semantic segmentation, where the

pixels have been categorized into distinct semantic classes. Notably, the model has suc-

cessfully identi�ed and labeled �ve speci�c classes: road, cars, the sky, buildings, and

trees. This segmentation allows for a granular understanding of the scene, enabling the

recognition and di�erentiation of speci�c objects and elements within the image.

Instance segmentation

Instance segmentation models categorize pixels based on instances rather than prede-

�ned classes.

Unlike classi�cation models, instance segmentation algorithms do not identify the class

of a segmented region. Instead, they excel at distinguishing between overlapping or similar

14



2. Background

Source: [31]

Figure 2.2: Instance Segmentation

object regions by focusing on their boundaries.

In the captivating road scene captured in Fig. 2.2, the instance segmentation model

was able to segregate various objects, including cars, trucks, motorcycles, and even a

bench.

Panoptic segmentation

Panoptic segmentation, the latest advancement in segmentation tasks, can be ex-

pressed as the combination of semantic segmentation and instance segmentation. In this

approach, the goal is to not only categorize the pixels in an image semantically but also

to delineate each instance of an object and predict its identity.

Panoptic segmentation algorithms have broad applications, particularly in tasks such

as self-driving cars, where it is crucial to capture extensive information about the sur-

rounding environment through a continuous stream of images. An example of panoptic

segmentation is illustrated in Fig. 2.3, where the distinct regions for object instances and

stu� classes are seamlessly segmented within the scene.
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2. Background

Source: [32]

Figure 2.3: Panoptic Segmentation

2.1.2 Traditional Approaches to Image Segmentation

Edge-Based Segmentation

Edge-based segmentation is a widely used method in image processing that aims to

detect and highlight the boundaries of di�erent objects within an image. This method is

essential for identifying important aspects of objects by using details obtained from their

edges. By identifying edges, redundant information in images can be eliminated, leading

to a reduction in size and facilitating more e�cient analysis.

Edge-based segmentation algorithms identify edges based on contrast, texture, color,

and saturation variations. They can accurately represent the borders of objects in an

image using edge chains comprising the individual edges. Fig. 2.4 shows an example of

edge-based segmentation with thresholding.

Threshold-Based Segmentation

Thresholding stands out as the most straightforward image segmentation approach,

categorizing pixels depending on their intensity relative to a speci�ed threshold value.

This method is e�ective for separating objects with higher intensity from backgrounds or

other objects. The threshold value, denoted as T, can remain constant in scenarios with

low noise. Alternatively, dynamic thresholds may be employed in certain cases. In essence,
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2. Background

Source: [33]

Figure 2.4: Edge-Based Segmentation

thresholding transforms a grayscale image into two segments by classifying pixels based

on their relationship to the threshold, resulting in a binary image. An example of image

segmentation by the thresholding method is shown in Fig. 2.5.

Region-Based Segmentation

Region-based segmentation algorithms operate on the principle that pixels within the

vicinity of a particular region exhibit similar intensity values. In general, region-based

segmentation is a pixel-wise operative algorithm in which each pixel is compared to its

neighborhood pixels. If a prede�ned homogeneity condition is met, the pixel and its neigh-

bors are categorized as part of a speci�c object. Region-based techniques can be divided

into two categories: region growing and region splitting-merging algorithms.

The region growing segmentation starts with a set of seed points as the initial region

hypothesis and then proceeds to grow the regions by adding adjacent pixels to the regions

based on a prede�ned criteria. This process continues until no more adjacent pixels meet

the criteria. An example of region growing segmentation is depicted in Fig. 2.6. The

e�ectiveness of region growing algorithms is in�uenced by the initialization of seed points

and the similarity criteria.

On the other hand, the region splitting-merging algorithm is an iterative approach

to region-based segmentation, following a top-to-bottom strategy. The splitting-merging

algorithm compares adjacent regions and merges them if they are homogeneous. It starts
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Source: [34]

Figure 2.5: Edge-Based Segmentation

with the whole image as a single region and then splits it into subsequent four disjoint

quadrants. This process iteratively continues for each subsequent region until pixels within

the regions no longer satisfy a certain similarity constraint, such as gray-level homogeneity.

The splitting-merging algorithm generates adjacent regions with very similar properties.

Cluster-Based Segmentation

Clustering algorithms serve as unsupervised classi�cation techniques designed to unveil

latent patterns within images, enhancing human perception by discerning clusters, shades,

and structures. These algorithms operate by partitioning images into clusters of pixels

sharing analogous features, e�ectively segregating data elements and assembling akin

elements into coherent clusters. This process, known as clustering segmentation, facilitates

the extraction of meaningful information by isolating regions of similarity, thereby aiding

in the comprehensive analysis and interpretation of complex visual data.

Watershed Segmentation

Watersheds are transformations applied to grayscale images. In watershed segmenta-

tion algorithms, images are conceptualized as topographic maps, where the brightness

of each pixel dictates its elevation or height. This approach identi�es ridges and basins

in the image, delineating the regions between watershed lines. The algorithm e�ectively

partitions the image into multiple segments based on pixel intensity, grouping together

pixels that share similar gray values.
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Source: [35]

Figure 2.6: Region-Based Segmentation

The watershed technique �nds signi�cant applications, particularly in medical image

processing. For instance, in the analysis of MRI scans, it proves valuable in distinguishing

variations between lighter and darker regions, potentially aiding in the diagnostic process

by highlighting important features within the medical imagery.

2.2 Deep Learning

2.2.1 Introduction to Deep Learning

In recent years, the �eld of arti�cial intelligence has undergone a revolutionary trans-

formation, driven largely by the advent of deep learning. Deep learning is a branch of

machine learning which is based on arti�cial neural networks. It has demonstrated remark-

able success in solving complex problems across various domains, ranging from natural

language processing to image recognition and beyond. As shown in Fig. 2.7, the diagram

illustrates the relationships and interdependencies among key concepts in the �elds of

Arti�cial Intelligence (AI), Machine Learning (ML), Data Science, and Deep Learning.

Deep learning is based on the concept of neural networks, which are computational

models inspired by the structure and functioning of the human brain. Nodes, or arti�cial

neurons, are organized into layers, forming a network that learns and extracts features

from data. Training involves adjusting the weights and biases of these connections to

minimize the di�erence between predicted and actual outcomes.
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Source: [36]

Figure 2.7: Interconnected Concepts: AI, ML, Data Science, and Deep Learning

Various neural network architectures exist, each tailored to speci�c tasks.

Convolutional neural networks (CNNs) excel in image processing, recurrent neural net-

works (RNNs) are e�ective for sequence data, and transformer architectures have shown

great promise in natural language processing tasks. Understanding the architecture that

suits the problem at hand is crucial for achieving optimal results.

The training of deep neural networks involves feeding them with labeled data, adjusting

weights through backpropagation, and iteratively optimizing the model. Deep learning

frameworks, such as TensorFlow and PyTorch, have simpli�ed the implementation and

training of complex neural network architectures.

Deep learning's adaptability has resulted in its extensive use across various applica-

tions, such as speech recognition, natural language processing, autonomous vehicles, and

healthcare.

2.2.2 Deep Neural Networks for Image Segmentation

Image processing involves the manipulation and analysis of visual data, and deep

learning has proven to be a transformative force in this �eld. Traditional image processing
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techniques often rely on handcrafted features, whereas deep learning enables the automatic

extraction of relevant features directly from the data.

Convolutional Neural Networks (CNNs) have become the fundamental building blocks

of deep learning in image processing. Their ability to automatically learn hierarchical rep-

resentations of visual features makes them well-suited for tasks such as image classi�cation,

object detection, and image segmentation. Understanding the architecture of CNNs and

their application in image processing is essential for harnessing their power e�ectively.

Image Classi�cation

One of the primary applications of deep learning in image processing is image clas-

si�cation. Deep neural networks can learn to classify images into prede�ned categories,

achieving human-level or even superhuman performance in tasks like recognizing objects,

animals, and scenes. The chapter explores the principles behind image classi�cation using

deep learning and delves into real-world examples.

Object Detection

Object detection involves identifying and locating objects within an image. CNNs

equipped with techniques like region proposal networks and anchor boxes have demon-

strated exceptional accuracy in object detection tasks. This section discusses the chal-

lenges and advancements in deep learning-based object detection, including applications

in �elds like autonomous vehicles and surveillance.

Image Segmentation

Image segmentation divides an image into meaningful segments, assigning each pixel

to a speci�c category. Deep learning techniques, especially convolutional neural networks

with skip connections, have signi�cantly improved the accuracy and e�ciency of image

segmentation. The chapter explores the principles of image segmentation and its applica-

tions in medical imaging, satellite imagery analysis, and more.
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Chapter 3

Approach

This research has made signi�cant contributions to the domain of power line seg-

mentation from UAV images through the application of deep learning methodologies.

Established networks such as UNet, DeepLab, and DLinkNet were systematically adapted

for the speci�c task of power line segmentation, highlighting their adaptability and �ne-

tuning for a novel use case. Notably, a deliberate choice was made to leverage the inherent

inclusion of dilated convolution layers in both DeepLab and DLinkNet architectures, as

they are deemed ideal for line segmentation tasks. Furthermore, to explore the e�ectiveness

of dilated convolutions, a modi�cation was introduced into a common Fully Convolutional

Network (FCN), incorporating these layers. This strategic enhancement aimed to opti-

mize network architectures for enhanced performance in power line segmentation. The

thorough evaluation of these adapted architectures contributes substantially to the ex-

ploration of e�cient models tailored to this specialized task. The focus on the evaluation

and comparison of the e�ciency of dilated convolution layers in power line segmentation

provides valuable insights into their suitability for linear structures, enriching the broader

�eld of image segmentation. Additionally, an innovative image splitting and concatenation

approach was introduced, demonstrating its potential to improve e�ciency and accuracy

in power line segmentation tasks. In summary, this work represents a novel and tailored

solution to the real-world challenge of power line segmentation from UAV images, empha-

sizing the strategic choice of leveraging dilated convolution layers inherent in DeepLab

and DLinkNet architectures, along with the deliberate inclusion in the modi�ed FCN, for

their e�ciency in capturing linear structures.
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3.1 Power Line Datasets

3.1.1 Literature Datasets

Two publicly available datasets were used jointly to train the suggested network archi-

tectures, namely the PLDU and PLDM. The former consists of urban scenes, while the

latter one consists of mountain scenes [20]. Sample images of both datasets along with

their annotations are shown in Fig. 3.1 & Fig. 3.2. The annotation of the training dataset

was performed by the online tool LabelMe [37]. All annotated images were converted into

binary masks.

(a) (b)

(c) (d)

Figure 3.1: PLDU dataset samples, (a), (b) Power line images & (c), (d) corresponding
binary masks
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(a) (b)

(c) (d)

Figure 3.2: PLDM dataset samples, (a), (b) Power line images & (c), (d) corresponding
binary masks
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3.1.2 HEDNO Dataset

Apart from the test images of the PLDM and PLDU datasets, the trained networks

were also tested on videos provided to us by the HEDNO S.A. (Hellenic Electricity

Distribution Network Operator S.A.) department that administers the network in Chania

area, Crete island, Greece. The videos were acquired using UAVs and the selected site for

this study is characterized by thick vegetation. Sample frame of the videos acquired by

HEDNO S.A. is shown in Fig. 3.3.

The frames within the dataset were annotated using the same annotation tool em-

ployed for annotating the literature datasets. Fig. 3.4 provides a screenshot showcasing

the annotation environment.

3.1.3 Data Augmentation Techniques

Due to the limited size of the training dataset, we employed data augmentation tech-

niques to arti�cially increase the diversity of the training samples. Data augmentation is

performed on-the-�y during each training epoch, generating slightly modi�ed versions of

existing images to enrich the training set. The following augmentation techniques were

applied:

� Random Rotation: Images are rotated by a random angle to introduce variations in

orientation.

� Flipping: Random horizontal and vertical �ips are applied to simulate di�erent view-

points.

� Zoom: Random zooming is employed to replicate instances where power lines appear

at varying distances.

� Contrast Adjustment: Contrast levels are randomly adjusted to account for di�erent

lighting conditions.

� Brightness Adjustment: Random adjustments to image brightness help the model

generalize across di�erent illumination scenarios.

Dataset Information

Table 3.1 provides detailed information about the composition of our datasets, includ-

ing the number of samples for both the training and testing sets. Our datasets consist of
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(a)

(b)

Source: [28]

Figure 3.3: Dataset sample, (a) video frame & (b) corresponding binary mask
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Source: [37]

Figure 3.4: LabelMe Annotation Tool

three main components: PLDU, PLDM, and Video Frames. The PLDU dataset comprises

453 samples for training and 120 samples for testing, while the PLDM dataset includes

237 training samples and 50 testing samples. The Video Frames dataset consists of 81

samples for training and 15 samples for testing.

To create a comprehensive dataset for our experiments, we combined these individual

datasets into a Final Dataset, which includes 771 samples for training and 185 samples

for testing. The training set is further enriched through on-the-�y data augmentation in

each training epoch, resulting in a dynamically augmented training set equivalent to the

product of the epoch number and the original dataset size (Epoch Number * 771), while

the testing set remains unchanged at 185 samples.

This diverse dataset, along with the augmentation strategies, ensures a robust training

process and thorough evaluation of our models' performance across di�erent scenarios.

Table 3.1: Dataset Information [28]

Dataset Train Samples Test Samples
PLDU 453 120
PLDM 237 50

Video Frames 81 15
Final Dataset 771 185

Augmented Dataset Epoch Number * 771 185
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3.2 Architecture

3.2.1 Dilated Convolution

Pooling layers are a common practice in convolutional architectures to reduce dimen-

sionality, preserving relevant features and removing irrelevant details. However, in power

line detection and segmentation, this approach is unsuitable due to the narrow width of

power lines, risking the loss of crucial segments. Traditional pooling, being irreversible,

may compromise spatial information, particularly for small objects. As an alternative to

pooling layers, dilated convolutional layers [38] emerge as a powerful tool for preventing

the loss of resolution. By expanding the convolutional kernel through strategically placed

holes, dilated convolution covers a larger area of the input at each step, preserving �ne

details. Figure 3.5 illustrates the comparison between dilated convolution and normal

convolution.

An additional parameter l (dilation factor) tells how much the input is expanded. In

other words, based on the value of this parameter, (l−1) pixels are skipped in the kernel.

In essence, normal convolution is just a 1-dilated convolution.

Convolution equation:

(f ∗ g)[n] =
∞∑

k=−∞

f [k] · g[n− k] (3.1)

Dilated convolution equation with dilation factor l:

(f ∗dilated g)[n] =
∞∑

k=−∞

f [kl] · g[n− kl] (3.2)

The importance of dilated convolution in power line segmentation is evident. Power

lines, characterized by their slim structures, present a unique challenge in computer vision,

requiring precise spatial information. Unlike traditional pooling layers that may compro-

mise such details, dilated convolution proves crucial in capturing expansive contextual

information without sacri�cing resolution. This is especially signi�cant in scenarios where

power lines demand meticulous attention to detail, and adaptability to varying scales of

structures within an image is paramount. Dilated convolution, by preventing the loss of

spatial precision, stands as an indispensable tool for enhancing the e�cacy and accuracy

of power line segmentation models, establishing itself as a pivotal component in advancing

the state-of-the-art in this critical application.
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Source: [39]

Figure 3.5: Normal Convolution Vs Dilated Convolution

3.2.2 DeepLab

The DeepLab model addresses the challenge of information loss using atrous/di-

lated convolutions and Atrous Spatial Pyramid Pooling (ASPP) modules. Its architec-

ture has evolved over several versions; namely, DeepLabV1, DeepLabV2 and DeepLabV3.

DeepLabV1 [40] and DeeplabV2 [41] use dilated convolutions and Fully Connected

Conditional Random Field (CRF) to extend the receptive �eld of the network and get

more contextual information. DeepLabV2 is superior to DeepLabV1 as it makes also use

of ASPP modules. DeepLabV3 [25] is the most improved version of DeepLab series. It

gets rid of CRF used in V1 and in V2 and it uses an improved ASPP module. DeepLabV3

was tested in this work for the task of power line segmentation and it is illustrated in

Fig. 3.6.

3.2.3 D-LinkNet

D-LinkNet architecture, was �rst introduced in [43] for the purpose of road segmen-

tation, whose structure is identical to power lines. In this work, D-LinkNet is used as a

starting point to investigate the e�ectiveness of dilated convolutional layers in power line

segmentation task. The network is based on LinkNet architecture [44], which is considered

as an e�cient method for semantic segmentation, and has dilated convolution layers in

its center part.
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Source: [42]

Figure 3.6: DeepLabV3 Architecture

Source: [43]

Figure 3.7: D-LinkNet architecture
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Source: [43]

Figure 3.8: D-LinkNet's center dilation block

D-LinkNet employs ResNet34 [45] pretrained on the ImageNet [46] dataset as its en-

coder, which consists of �ve downsampling layers. In the central part, D-LinkNet utilizes

dilated convolution layers with dilation rates of 1, 2, 4, and 8. Consequently, the feature

points on the last center layer observe a receptive �eld of 31 × 31 on the �rst center feature

map, covering the primary portion of the �rst center feature map. D-LinkNet capitalizes

on multi-resolution features, and the central part can be viewed as a parallel mode, as

illustrated in Fig. 3.8.

The decoder of D-LinkNet remains consistent with the original LinkNet. It is compu-

tationally e�cient and uses transposed convolution layers for upsampling, restoring the

resolution of the feature map from 32× 32 to 1024× 1024.

3.2.4 Modi�ed FCN with Dilated Convolution Module

In our experiments, we introduced modi�cations to the Fully Convolutional Network

(FCN) model, speci�cally targeting the center part of the architecture. The primary in-

novation involves the incorporation of a dilation block, as illustrated in Figure 3.9. This

modi�cation aims to address the challenges associated with power line detection and seg-
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Source: [28]

Figure 3.9: Original FCN Architecture vs. Proposed FCN Architecture

mentation by preserving spatial information and preventing the loss of resolution. This

alteration proves crucial in scenarios where power lines are only a few pixels wide, ensuring

that �ne details are retained during the convolution process.

The dilation block in the modi�ed FCN architecture closely aligns with the one in D-

LinkNet's architecture, featuring a sequence of dilated convolutional layers with rates of

1, 2, 4, and 8. Each dilated convolutional layer captures a progressively wider contextual

�eld, allowing the model to recognize intricate structures and long-range dependencies in

power line images.

In the architecture of the modi�ed Fully Convolutional Network (FCN) dilated con-

volutional layers play a pivotal role in capturing both local and global contextual infor-

mation. The network structure consists of encoder blocks, the Dilation Block, decoder

blocks, and a �nal upsampling layer.

The encoder blocks, implemented as conv3x3_block_x2, initiate the network by ex-

tracting hierarchical features from the input image. These blocks progressively increase

the receptive �eld and channel complexity, capturing low-level and mid-level features.

The Dilation block is a critical addition, featuring dilated convolutions with di�erent

rates (1, 2, 4, and 8). This allows the model to incorporate a broader range of contextual

information, aiding in the recognition of power line structures across varying scales.
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Skip connections are established between corresponding encoder and decoder blocks

to facilitate the �ow of high-resolution features. These connections alleviate the vanishing

gradient problem and aid in the precise localization of power lines. The decoder consists

of upsampling layers to restore the spatial resolution of the feature maps.

The �nal upsampling layer increases the resolution to match the original input image

size, re�ning the segmentation output and producing a pixel-wise prediction for power

line presence.

The incorporation of dilated convolutional layers in the dilation block serves to capture

a larger contextual �eld without signi�cantly increasing computational complexity. This

strategy enables the model to recognize long-range dependencies and intricate structures

in power line images, enhancing segmentation performance. Skip connections between

encoder and decoder blocks contribute to the model's ability to capture both �ne details

and global context.

3.3 Segmentation process

3.3.1 Proposed grid approach

The UAV-captured video content is encompassed by a range of perspectives, from

close-up shots to long-distance views of power lines. To e�ectively handle this diversity, a

grid segmentation approach is employed. Each frame is broken down into a grid of smaller

cells, for instance, a 4x5 grid, e�ectively dividing the image into multiple sections. Within

each of these grid cells, predictions are made using a deep learning network. The network

assesses its respective grid cell and predicts a binary mask individually, where each pixel

in the mask is assigned a value of "1" to indicate the presence of a power line or "0"

to signify background. These individual predictions are crucial for accuracy. The binary

masks for all the grid cells of the frame are then combined back together to create a

�nal output binary mask that accurately identi�es power lines in the entire image. The

versatility of this method lies in the ability to adjust the size of the grid cells based on the

distance between the UAV camera and the power lines to be detected. Using a smaller

grid cell size results in thicker lines in the output mask, while a larger grid cell size yields

thinner and more precise lines. This adaptability allows for accurate power line detection

in a wide range of scenarios and distances from the camera. An illustration of the proposed

4x5 grid grid is depicted in Fig. 3.10.
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Figure 3.10: Illustration of the proposed 4x5 grid approach for the segmentation process.
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3.3.2 Otsu's Threshold

In the �nal stage of the segmentation process, the deep learning network produces a

feature map as the output, encapsulating learned patterns and relevant details. To convert

this continuous-valued feature map into a binary image suitable for segmentation, Otsu's

thresholding method was integrated. Otsu's method optimally determines a threshold by

maximizing the variance between two classes in the image histogram. Mathematically, the

method seeks the threshold tthat maximizes the intra-class variance

σ2
w(t) = w0(t) · w1(t) · [µ0(t)− µ1(t)]

2

where w0(t) and w1(t) are the probabilities of occurrence of the two classes split by

the threshold t, and µ0(t) and µ1(t) are the means of pixel intensities in the respective

classes. Applying Otsu's threshold to the feature map allows for an automatic and adaptive

binarization, e�ectively distinguishing between foreground and background regions.

3.4 Implementation

The pre-mentioned architectures were tested along with the U-net which was also

implemented for comparison reasons. U-Net was �rst developed and used for biomedical

image segmentation. It is a fully convolutional neural network that is designed to learn

from fewer training samples. In particular, U-Net is an improvement over the existing

FCN. Its architecture consists of two basic components, encoder and decoder, that are

connected via a bridge. The encoder network halves the spatial dimensions and doubles the

number of �lters at each encoder block. Likewise, the decoder network doubles the spatial

dimensions and halves the number of feature channels. Fig. 3.11 provides an illustration

of the U-Net model architecture.

The networks were implemented in Python using Pytorch [48], on an NVIDIA GeForce

GTX 1650 Ti GPU. All four networks were trained and tested using the same training

sets for comparison purposes. The learning rate for all networks is equivalent to 0.001.

Also, Adam optimiser was used in all cases. Binary Cross-Entropy (BCE) loss function

was used to gauge the error between the prediction output and the provided target value.

U-Net needed 10 epochs to achieve results comparable with the other 3 networks, which

were trained for 6 epochs. D-LinkNet uses ResNet18 as encoder, while DeepLabV3 uses

MobileNet. FCN and U-Net were implemented without backbone.
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Source: [47]

Figure 3.11: U-Net Architecture

3.4.1 Binary Cross Entropy (BCE) loss function

The Binary Cross-Entropy Loss, also known as logistic loss or log loss, is a commonly

used loss function for binary classi�cation problems. It measures the di�erence between

the predicted probability distribution and the actual binary output.

The Binary Cross-Entropy Loss for a single example is de�ned as:

Binary Cross-Entropy Loss = − (y · log(p) + (1− y) · log(1− p))

where: y is the true class label (either 0 or 1), p is the predicted probability of the

instance belonging to class 1.

For a dataset with N examples, the overall Binary Cross-Entropy Loss is the average

over all examples:

Overall Binary Cross-Entropy Loss = − 1

N

N∑
i=1

(yi · log(pi) + (1− yi) · log(1− pi))

This loss function penalizes models more when their predicted probabilities diverge
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from the true labels, encouraging accurate probability estimates for binary classi�cation

tasks.

3.4.2 Adam optimizer

The Adam optimizer is a widely used optimization algorithm in machine learning,

particularly for training deep neural networks. It combines ideas from RMSprop and

Momentum to achieve e�cient and adaptive learning rates.

The update rule for the parameter θ at time step t is given by:

mt = β1 ·mt−1 + (1− β1) · ∇θJ(θ)

vt = β2 · vt−1 + (1− β2) · (∇θJ(θ))
2

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

θt+1 = θt −
α√
v̂t + ϵ

· m̂t

where:

α is the learning rate.

β1 and β2 are exponential decay rates for the �rst and second moments, respectively.

mt and vt are the �rst and second moments of the gradients.

m̂t and v̂t are bias-corrected estimates of the moments.

ϵ is a small constant to avoid division by zero.

The Adam optimizer adapts the learning rates for each parameter individually, facili-

tating the training of deep neural networks.
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Results

At �rst, the trained deep neural networks were evaluated on the PLDU and PLDM

datasets' test images. Metrics in Table 4.1 and 4.2 indicate the performance of all networks,

in both datasets, in terms of Precision, Recall and F1-Score which are given in Eqs. 4.1,

4.2 and 4.3 respectively.

Precision is the ratio of true positive predictions to the total number of positive predic-

tions made by the model. In the context of power line segmentation, precision quanti�es

the accuracy of the model in identifying pixels as power lines, representing the proportion

of correctly predicted power line pixels among all pixels predicted as power lines by the

model.

Precission = 2 ∗ TP

TP + FP
(4.1)

� TP (True Positives): Number of pixels correctly identi�ed as power lines.

� FP (False Positives): Number of pixels wrongly identi�ed as power lines.

High precision indicates that when the model predicts power lines, it is likely to be

correct.

Recall, also known as sensitivity or true positive rate, is the ratio of true positive

predictions to the total number of actual positive instances in the ground truth. In the

context of power line segmentation, recall quanti�es the model's e�ectiveness in detecting

actual power lines, representing the proportion of successfully detected power lines among

all the actual power lines present in the ground truth.

Recall = 2 ∗ TP

TP + FN
(4.2)

39



4. Results

� FN (False Negatives): Number of pixels that are part of actual power lines but were

not detected by the model.

High recall indicates that the model is e�ective at capturing most of the actual power

lines.

F1-Score is the harmonic mean of precision and recall. It provides a balanced measure

that considers both false positives and false negatives. F1-Score is especially useful when

there is an imbalance between the classes.

F1− Score = 2 ∗ Recall ∗ Precission

Recall + Precission
(4.3)

F1-Score ranges between 0 and 1, where a higher value indicates a better balance

between precision and recall.

Results in Tables 4.1 and 4.2 show that all three implemented networks using the

dilated convolution technique, outperform the standard U-Net in terms of F1-Score, pre-

cision and accuracy. Moreover, D-LinkNet's results are close to identical. U-Net needed

more epochs, speci�cally 10, to achieve results comparable to the other networks. However,

it still achieved inferior performance. The visual representation of these results, depicted

in Figs. 4.1 & 4.2, provides an insightful complement to the numerical �ndings.

Table 4.1: Results - PLDU Dataset [28]

Architecture F1-Score Precision Recall
D-LinkNet 0.9648 0.9387 0.9965
DeepLabV3 0.8864 0.8264 0.9750
FCN-8s 0.8669 0.8441 0.9126
UNet 0.7712 0.7405 0.8340

Table 4.2: Results - PLDM Dataset [28]

Architecture F1-Score Precision Recall
D-LinkNet 0.9862 0.9774 0.9965
DeepLabV3 0.9451 0.9329 0.9763
FCN-8s 0.9418 0.9537 0.9411
UNet 0.8682 0.8529 0.9156

In order to investigate further the dilated convolutions' superiority, networks were

tested in video frames, acquired by HEDNO S.A. To make the system responsive to both
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Figure 4.1: Visualizing PLDU: Segmentation Insights with 4 Deep Learning Networks.
From Top to Bottom: Original Images, UNet Segmentation, Modi�ed FCN

Segmentation, DeepLab Segmentation, DLinkNet Segmentation.
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Figure 4.2: Visualizing PLDM: Segmentation Insights with 4 Deep Learning Networks.
From Top to Bottom: Original Images, UNet Segmentation, Modi�ed FCN

Segmentation, DeepLab Segmentation, DLinkNet Segmentation.
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close and long-distance shots of the power lines, the frames used for testing, were split

in 20 smaller tiles and segmented separately. Table 4.3 shows the results in terms of the

evaluation metrics used above.

Table 4.3: Results - HEDNO Dataset [28]

Architecture F1-Score Precision Recall
D-LinkNet 0.9978 0.9983 0.9974
DeepLabV3 0.9540 0.9254 0.9849
FCN-8s 0.9627 0.9493 0.9769
UNet 0.7560 0.6303 0.9734

To get a better idea for the performance of the implemented networks, sample results

are visualized in Figs. 4.3, 4.4, 4.5 and 4.6. Within the output frame of D-LinkNet, the lines

are not only detected e�ciently but also exhibit a remarkable absence of signi�cant gaps

or instances of falsely detected lines. The outputs from FCN and DeepLab also showcase

e�ective line detection, demonstrating a commendable performance with minimal noise

and only occasional small gaps. However, in the context of U-Net, the detected lines are

enveloped in a perceptible level of noise, and the gaps in the line segments that went

undetected are notably more evident, contributing to a less precise delineation of the

desired features.

It is obvious that in networks where the dilated convolution technique is utilized, re-

sults are far better than U-Net, where regular convolution is being used. The networks

were trained using a dataset consisting of various background scenarios, making the net-

work responsive and accurate in many test images with di�erent content and background

(urban and mountain, high and low vegetation). Furthermore, the existence of the images

acquired in both near and far distances to the power lines enhances the performance of

the network.

The Precision and Recall Curves, depicted in Figs. 4.7, 4.8 and 4.9, are presented for

each dataset utilized in our study, namely the PLDU dataset, the PLDM dataset, and

the HEDNO S.A. dataset. The tradeo� between the true positive rate and the positive

predictive value for our model using di�erent probability thresholds is important to be

examined in order to evaluate it. The higher the area under each curve the higher recall

and precision, where high precision relates to a low false positive rate, and high recall

relates to a low false negative rate. For all three datasets, the area under the D-LinkNet

model is higher than the area under the rest architectures, which is promising for the
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4. Results

Source: [28]

Figure 4.3: Segmentation Result of D-LinkNet. Detected lines are highlighted in red,
while gaps and noise are highlighted in yellow.

Source: [28]

Figure 4.4: Segmentation Result of DeepLabV3. Detected lines are highlighted in red,
while gaps and noise are highlighted in yellow.
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4. Results

Source: [28]

Figure 4.5: Segmentation Result of Dilated FCN. Detected lines are highlighted in red,
while gaps and noise are highlighted in yellow.

Source: [28]

Figure 4.6: Segmentation Result of UNet. Detected lines are highlighted in red, while
gaps and noise are highlighted in yellow.
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4. Results

future, i.e. for testing our model to more pilot cases, with complex background terrain or

noisy video acquisition.

0.7 0.75 0.8 0.85 0.9 0.95 1

Recall

0.7

0.75

0.8

0.85

0.9

0.95

1

P
re

c
is

io
n

DLinkNet

DeepLab

Dilated FCN

UNet

(a)

Figure 4.7: Precision & Recall Curve for PLDU Dataset
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Figure 4.8: Precision & Recall Curve for PLDM Dataset
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Figure 4.9: Precision & Recall Curve for Unseen Video Frames
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Chapter 5

Conclusion

The dilated convolution technique seems to be a good solution when it comes to power

lines or other similar structures. It is important to keep in mind the structure of the object

when looking for the appropriate segmentation model. In the case of aerial power line

detection, it is important to remember that their shape is only a few pixels wide. Thus,

an appropriate approach is required in order to lose as less information as possible. At

a �rst glance, some lost segments may not seem to be crucial in the performance of the

system. However, segmentation is only a �rst step; especially, when it comes to cases such

as fault detection in power lines, a lost segment may prove to cause false fault detection.

Our proposed model is designed towards robustness; it was compared to other popular

models used in similar applications and the datasets we used contain images with complex

background terrain acquired in both urban and mountain areas. Finally, it is suitable for

real-time operation providing us the opportunity to further expand our system in order

to produce alerts upon faults detection during UAV's �ight.
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Appendix A

Additional segmentation results

Source: [28]

Figure A.1: Example of detected power lines using D-LinkNet (a)
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A. Additional segmentation results

Source: [28]

Figure A.2: Example of detected power lines using D-LinkNet (b)

Source: [28]

Figure A.3: Example of detected power lines using D-LinkNet (c)
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A. Additional segmentation results

Source: [28]

Figure A.4: Example of detected power lines using D-LinkNet (d)

Figure A.5: Example of detected power lines using D-LinkNet (e)
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A. Additional segmentation results

Figure A.6: Example of detected power lines using D-LinkNet (f)

Figure A.7: Example of detected power lines using D-LinkNet (g)
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A. Additional segmentation results

Figure A.8: Example of detected power lines using D-LinkNet (h)

Figure A.9: Example of detected power lines using D-LinkNet (i)
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A. Additional segmentation results

Figure A.10: Example (a) - HEDNO Dataset: Segmentation Insights with 4 Deep
Learning Networks. From Top to Bottom: Original Images, UNet Segmentation,
Modi�ed FCN Segmentation, DeepLab Segmentation, DLinkNet Segmentation.
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A. Additional segmentation results

Figure A.11: Example (b) - HEDNO Dataset: Segmentation Insights with 4 Deep
Learning Networks. From Top to Bottom: Original Images, UNet Segmentation,
Modi�ed FCN Segmentation, DeepLab Segmentation, DLinkNet Segmentation.
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A. Additional segmentation results

Figure A.12: Example (c) - HEDNO Dataset: Segmentation Insights with 4 Deep
Learning Networks. From Top to Bottom: Original Images, UNet Segmentation,
Modi�ed FCN Segmentation, DeepLab Segmentation, DLinkNet Segmentation.
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A. Additional segmentation results

Figure A.13: Example (d) - HEDNO Dataset: Segmentation Insights with 4 Deep
Learning Networks. From Top to Bottom: Original Images, UNet Segmentation,
Modi�ed FCN Segmentation, DeepLab Segmentation, DLinkNet Segmentation.
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A. Additional segmentation results

Figure A.14: Example (e) - HEDNO Dataset: Segmentation Insights with 4 Deep
Learning Networks. From Top to Bottom: Original Images, UNet Segmentation,
Modi�ed FCN Segmentation, DeepLab Segmentation, DLinkNet Segmentation.
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A. Additional segmentation results

Figure A.15: Example (f) - HEDNO Dataset: Segmentation Insights with 4 Deep
Learning Networks. From Top to Bottom: Original Images, UNet Segmentation,
Modi�ed FCN Segmentation, DeepLab Segmentation, DLinkNet Segmentation.
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A. Additional segmentation results

Figure A.16: Example (g) - HEDNO Dataset: Segmentation Insights with 4 Deep
Learning Networks. From Top to Bottom: Original Images, UNet Segmentation,
Modi�ed FCN Segmentation, DeepLab Segmentation, DLinkNet Segmentation.
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A. Additional segmentation results

Figure A.17: Example (h) - HEDNO Dataset: Segmentation Insights with 4 Deep
Learning Networks. From Top to Bottom: Original Images, UNet Segmentation,
Modi�ed FCN Segmentation, DeepLab Segmentation, DLinkNet Segmentation.
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