2009

LIATAKIS
KONSTANTINOS

TECHNICAL UNIVERSITY

OF CRETE

ELECTRONIC AND COMPUTER ENGINEERING
DEPARTMENT

| IMPLEMENTATION OF BASIC
BIOINFORMATICS STRUCTURES IN

FPGA AND VLSI|

——
-
| —

Contents

ACKNOWLEDGEMENTS ...ttt ettt ee e e ettt e e e e s et eeet e e e e e saaaabbraeeeeeeesanenrraeeneeeenns 3
INTRODUCTION. . ..eiiiiiiitttee et eiitttetee e ettt e e e e s ettt e e e e e saaabbeeeeeeeeesasnsbbaaeeeeeessannnrraaens 4
CHAPTER 1: BIOINFORMATICS ALGORITHMS AND RELATIVE RESEARCHccoccuvvviivireeeennnnne 6
BIOINFORMATICS ALGORITHIMS ...ttt ettt ettt e e e e sttt e e e e seaebreeeeeeeeean 6

B LA ST <ttt ettt ettt e e e et e e e e e ettt e e e e e bt aatee e e e e e bbtaaaeeeeesannnne 6

B A ST A ettt e ettt e e e e ettt e e e e ettt e e e e e bbb taee e e e e e e e bbteeeeeeeesannane 8
GLIMIMIER ...ttt ettt e e e sttt e e e e st eee e e e e e s essnbbeaeeeeeeesannnrreaanas 10
SIMITH-WATERMAN ...ttt ettt ettt e e e e e et teeeeeeeessassbreeeeeeeeesansnrreeenes 11
COMBINATORIAL EXTENSION ...cceiiiiiiiiieiiee e ettt e e e eriiiteette e e e esiireeeeeeeeesaaeasreeeeas 12
RAXIMIL. .ttt ettt e e e e r bttt e e e e e ettt e e e e s aaasbbbaeeeeeeesannssbbaaeeeeeesannnne 12
PrEdator.......cooiiieieie ettt e e e et e e e e s e eee e e e e e s ennnee 13
RELATIVE RESEARCH......eeeiiiiiiiiie ettt ettt ettt e e e e eiteeer e e e e s saabreeeneeeeenn 13
CHAPTER 2: BIOINFORMATICS ALGORITHMS & BASIC CORES ...cccceovvmiiiiiiieeeeeiiiieceeeeennn 15
CHAPTER 3: IMPLEMENTATION ..ttt e ettt ettt e e e e ettt e e e e e seaasrneeeneeeeean 16
IMPLEMENTATION IN FPGA...coiiiiiiiieitiee ettt ettt e e e e ettt e e e e s sabreeeeeeeeenn 16
IMPLEMENTATION IN VLSL...eciiiieeiiiiieetiee ettt e e eriitteete e oo e siiteeereeeessaambneeeneeeeens 21
CHAPTER 4: RESULTS ..ttt ettt e ettt e e e e ettt e e e e s saaabbeeeeeeeessaaasrrreaeneeeeenn 40
IMIAEN COTES ...ttt ettt e ettt e e e e e ettt e e e e e saabbbeeeeeeeessannbraeaneeeeenn 40
6014 g1 o L] - 1 1o] £ PPN 42
St REEISTEIS .vviiiiiieieiiceeiee e e e e e e e e e ea e e e e e eeaeasbesaaeaeeesssssnesnnaaaaanens 44
CHAPTER 5: CONCLUSION AND FUTURE WORKcctttieiiiiiiiieiieeeeiniiieceeeeeeeeiireeeeee e 47
CONCIUSTON. ...eeiiieeiiiieie ettt e e e e ettt e e e e e s aaabbbeeeeeeeeesansnbreeeeeeeeesannnnes 47
FUBUIE WOTK ..ttt e ettt e e e e e sttt e e e e s saaabreeeeeeeeenn 47
List Of Tables AN FIGUIES ...uuueuiiiiiiiiiiiee ettt e e e e e ettt eee e e e e e eeevabenaeeaeessaneees 48
2T o] [T T=4 =T o] o V20U UUUUUUN 50

ACKNOWLEDGEMENTS

| would like to acknowledge the advice and guidance of Dr. Apostolos Dollas
committee chairman who had the idea for this thesis. Furthermore, | would not have
finished this thesis without the assistance of Mr. Grigorios Chrysos, Mr.Euripides
Sotiriades and Mr. Kyprianos Papadimitriou to whom | am grateful. | also thank Dr.
Christos Sotiriou who provided me the necessary technical knowledge. Special
thanks go to Mr. Makris who spent many hours helping me with the installation of
the CAD tools. My long lasting friends provided material and spiritual help at critical
times; Many thanks to them too. Last but not least, | would like to thank my parents
and my brother who have supported me all along.

This thesis is dedicated to my family.

Cumulative size (Mbp)

INTRODUCTION

Ever since 1953 the year when Watson and Crick unraveled the structure of DNA
molecular biology has witnessed tremendous advances. With the increase in our
ability to manipulate biomolecular sequences, a huge amount of data has been and
is being generated (as we can see in the following figures).

Figure Al Figure A 2

e

16000 £
5 16000 }

12000 ::
= 12000

8000 } E
£ 8000}

4000 } 3
E 4000}
O

0, _ -
1991 1993 1995 1997 1999

0
1991 1993 1995 1997 1999
Year

Year

Figure A: (1) Growth of GenBank, the US National Center for Biotechnology
Information genetic sequence archival databank. (2) Growth of Protein Data Bank,
archive of three-dimensional biological macromolecular structures.

Despite the fact that scientists from the biological sciences are the creators and
users of this data, the sheer complexity and size requires the help of other sciences
such as mathematics and computer science. Computing contributed not only the raw
capacity for processing and storage of data, but also the mathematically-
sophisticated methods required to achieve the results. As a result an entirely new
field was created, which goes by the general name of computational molecular
biology or bioinformatics. One of the most common problems in biology is the
following: huge databases are needed in order to store all the data that is being
generated. These databases should be able to record changes, as current models
may not be suitable. This requires new efficient algorithms for pattern recognition.
An algorithm is a type of effective method in which a list of well-defined instructions
for completing a task will, when given an initial state, proceed through a well-
defined series of successive states, eventually terminating in an end-state. The
transition from one state to the next is not necessarily deterministic.

In our try to speed up various bioinformatics algorithms many implementations of

these algorithms in hardware {mostly FPGA’s) have been proposed. A common
characteristic of all these implementation is the use of some basic elements such as:

——
N
| —

comparators, shift registers and some mathematic elements such as floating point
adders, multipliers and dividers.

The primary objective of this project is the implementation of all those elements in
FPGA and VLSI. We will acquire important results about the frequency the power
consumption and the cost of each implementation. With these results we will try to
come to a final assumption about which hardware implementation of these
algorithms is the best.

The organization of this project is as follows:

» First of all we will give an overview of the most common bioinformatics
algorithms. For each one of them we will present its basic steps and any
existing hardware implementation.

» Afterwards we will refer to the basic elements stated above that each
algorithm uses.

» Then we will give the exact flow of the implementation of these elements in
FPGA as well as in VLSI.

» We will extract important results from this analysis, we will process them and
compare them.

» Finally according to these results we will come to a final assumption and we
will talk about further research available concerning this subject.

CHAPTER 1: BIOINFORMATICS ALGORITHMS
AND RELATIVE RESEARCH

BIOINFORMATICS ALGORITHMS

In this chapter we will present you the function of the 7 most famous bioinformatics
algorithms which are the following:

e BLAST

e FASTA

e Smith-Waterman

e GLIMMER

e Combinatorial Extension(CE)
e RAxML

e Predator

Furthermore for each one of the algorithms stated above we will refer to any
existing hardware implementation.

BLAST

The term BLAST is an acronym for Basic Local Alighment Tool. The BLAST program
was designed by Stephen Altschul, Eugene Myers, Warren Gish, David J. Lipman and
Webb Miller at the NIH and was published in 1990. The BLAST programs are amongst
the most frequently used for sequence database searching worldwide (the term
database here simply refers to a large set of sequences). BLAST, is an algorithm for
comparing primary biological sequence information, such as the amino-
acid sequences of different proteins or the nucleotides of DNA sequences. A BLAST
search enables a researcher to compare a query sequence with a library or database
of sequences, and identify library sequences that resemble the query sequence
above a certain threshold. Before we explain in detail how BLAST works we must
give the meaning of some terms which will help us later on:

= With the term segment we refer to the substring of a sequence.

= Given two sequences a segment pair between them is a pair of segments of
the same lengths one from each sequence. The substrings in a segment pair

have the exact same length. As a result we can form an alighment between
them with no gaps. Then we can score this alighment using a matrix of
substitution scores. As there are no gaps, no gap penalty function is needed.
In the following figure we present an example of a segment pair scored using
PAM120 substitution matrix.

—4 =3 =1 = Total; =9

Figure 1 - 1: Scoring example of the BLAST algorithm

» With the term Maximum Segment Pair (MSP) we refer to the segment pair
that has achieved the highest score. This score is a measure of similarity and
can be computed precisely using dynamic programming. However the blast
algorithm can make a very good estimation of this number much faster than
any dynamic programming method.

Taking into consideration all the definitions stated above BLAST's function can be
summarized in the following:

Given a query sentence and a threshold S BLAST returns all the segment pairs
between the query and a database sequence with scores above S. The threshold S is
a parameter and its value may differ in respect to the user’s requirements. As we
have already mentioned the alighments reported have no gaps. This is in fact one of
the main reasons why BLAST is so fast, because looking for good alighments with
gaps is more time consuming.

The way BLAST computes high scoring segments is:

First of all BLAST finds certain seeds which are very short segment pairs between the
guery and a database sequence. Then BLAST extends these seeds in both directions
without including gaps until the maximum score possible for these extensions of this
specific seed is reached. BLAST has a certain criterion to stop the extension if the
score falls below a limit.

It is reasonable to say that BLAST proceeds through the three following stages:

1. Compile the list with all the high scoring words
2. We search for hits. Each hit gives a new seed
3. We extend the seeds in both directions.

However the steps stated above differ depending on the type of the sequences
compared: DNA or Protein.

For protein sequences the list of high scoring words, consists of all words with a
length of w (called w-mers), that scored at least T with some w-mer of the query
using some PAM matrix to compute the score. W and T are parameters of the
program. It is not necessary that this list contains all w-mers of the query. However
there is an option to force the inclusion of all w-mers. The most common value for w
the seed size is 4 for protein searches.We can scan the database in search for hit
based on the list we compiled earlier using two different methods. The first is to
arrange the list of words in a hash table. Then for each database word of size w, it is
very easy to get their index in the hash table and compare it to the words there. The
second approach is to use a deterministic finite automaton to search for hits. It
begins from a primary state and then for each character of the database it passes to
a next stage. Depending on the state and transition a word from the list is being
recoghized. The final step of the algorithm for protein sequences is simple: the
seeds found earlier are being extended in both directions. To save time the
algorithm stops the extension when the score falls below a certain threshold. The
segment pair which achieved the highest score and originated from this seed is kept.
There is a small chance to miss some important extensions with this approach but is
negligible.

For DNA sequences the primary list is compiled only with the w-mers of the query.
The way the database is scanned is a lot different from the one described earlier for
proteins. Due to the fact that the alphabet has a size of 4, the database is
compressed so that each nucleotide can be represented using 2 bits. As a result 4
nucleotides fit in a byte. So except the fact that we save space, the search can be
done really fast because every time we compare a byte. Then there is one extra step
where we remove from the initial list very similar words which would result in many
useless hits. The extension is done in the same way as described earlier for protein
sequences.

FASTA

FAST is another family of programs used for sequence database search. The first of
these programs was FASTP and was described in 1985 by David J. Lipman kat William
R. Pearson. The original FASTP program was designed for protein sequence similarity
searching. FASTA was described in 1988 and extended the initial FASTP adding the
ability to do DNA-DNA and translated protein-DNA searches. FASTA stands for "FAST-
All", because it works with any alphabet, an extension of "FAST-P" (protein) and
"FAST-N" (nucleotide) alighment.

The FASTA program follows a heuristic approach which contributes to the high speed
of its execution. It initially observes the pattern of word hits, word-to-word matches
of a given length, and marks potential matches before performing a more time-
consuming optimized search using a Smith-Waterman type of algorithm. The size
taken for a word, given by the parameter ktup (k-tuple), controls the sensitivity and
speed of the program. Increasing the ktup value decreases number of background
hits that are found. From the word hits that are returned the program looks for
segments that contain a cluster of nearby hits. It then investigates these segments
for a possible match.

Three scores must be calculated that describe the sequence similarity results. This is
done in the following four steps:

» I|dentify regions of highest density in each sequence comparison.

In this step all or a group of the identities between two sequences are found
using a look up table. The ktup value determines how many consecutive
identities are required for a match to be declared. Thus the lesser the ktup
value: the more sensitive the search (k-tup=2 and k-tup=4 are frequently
used values for protein and nucleotide sequences respectively). The program
then finds all similar local regions, represented as diagonals of a certain
length in a dot plot, between the two sequences by counting ktup matches
and penalizing for intervening mismatches. This way, local regions of highest
density matches in a diagonal are isolated from background hits. To ensure
that groups of identities with high similarity scores contribute more to the
local diagonal score, BLOSUM5O0 values are used for scoring ktup matches for
protein sequences while an identity matrix is used for nucleotide sequences.
The best 10 local regions selected from all the diagonals put together are
then saved.

» Rescan the regions taken using the scoring matrices, trimming the ends of the

region to include only those contributing to the highest score.
Rescan the 10 regions taken. This time use the relevant scoring matrix while
rescoring to allow runs of identities shorter than the ktup value. Also while
rescoring conservative replacements that contribute to the similarity score
are takenFor each of the diagonal regions rescanned this way, a subregion
with the maximum score is identified. The initial scores found in stepl are
used to rank the library sequences. The highest score is referred to
as initl score.

» In an alignment if several initial regions with scores greater than a CUTOFF
value are found, check whether the trimmed initial regions can be joined to
form an approximate alighnment with gaps. Calculate a similarity score that is
the sum of the joined regions penalising for each gap 20 points. This initial
similarity score (initn) is used to rank the library sequences. The score of the
single best initial region found in step 2 is reported (init1).

» This step uses a banded Smith-Waterman algorithm to create an optimised
score (opt) for each alighment of query sequence to a database(library)

sequence.

A figure is presented below with a graphical overview of the four steps.

FASTA Algorithm

(a) (b}
Sequancse B —= Baquence B —
Ny IR
FEON N o NN
2 N E N
s N \ . S| N\ \ N
E N L) \ E— oy W™ \
t . \\ " \\
NN 2 AN
N N
Find runs of identitical words Re-score using PAM matrix

Keep top scoring segments

ie} (d)
—— Sequence B —i- Sequence B —
=< \ =<
@ @
AN
=2 =
o o
& N \ g
N\
Join segments using gaps, Use dyhamic programming 1o
eliminate other segments create an optimal alignment

Figure 1 - 2: Description of the FASTA algorithm (Source: http://www.med.nyu.edu).

GLIMMER

GLIMMER stands for Gene Locator and Interpolated Markov ModelER. GLIMMER
was the first bioinformatics system for finding genesthat used
the interpolated Markov model formalism. It is very effective at finding genes
in bacteria, archaea and viruses, typically finding 98-99% of all protein-coding genes.

The most reliable way to identify a gene in a new genome is to find a close homolog
from another organism. This can be done efficiently with the use of programs such

10

——
| —

as BLAST and FASTA which have already been described above. However, many of
the genes in new genomes still have no significant homology to known genes. For
these genes we have to rely on computational methods of scoring the coding regions
to identify the genes. GLIMMER uses a technique called interpolated Markov models
(IMMs). IMMs are more powerful than Markov chains and experiments have shown
that they produce more accurate results when used to find genes in bacterial DNA.

A fixed order Markov model predicts each base of a DNA sequence using a fixed
number of preceding bases in the sequence. For example a 5-order Markov model
uses the 5 preceding bases to predict the next one. However, learning such models
accurately can be difficult when there is insufficient training data to accurately
estimate the probability of each base occurring after every possible combination of
five preceding bases. In general, a kth-order Markov model for DNA sequences
requires 47k + 1 probabilities to be estimated from the training data.

An IMM overcomes this problem by combining the probabilities from contexts

(oligomers) of varying lengths to make predictions and using only those oligomers
for which we have sufficient training data. It is preferable to use longer oligomers.
An IMM uses a linear combination of the probabilities produced by contexts of
varying length, to make predictions and gives high weights to oligomers that occur
frequently and low weights to those that do not. Using IMMs GLIMMER was
developed to identify the coding regions in microbial DNA. It uses a novel approach,
based on frequency of occurrence and predictive value to determine the relative
weights of oligomers that vary from 1-8. After IMMs have been created for every
one of the possible reading frames GLIMMER uses them to score orfs (segments of
the genome that may encode a protein). When 2 orfs overlap the overlap area is
scored separately to determine which orf | likely to be a gene. As we have already
mentioned GLIMMER’s ability to identify genes is close to 100%.

SMITH-WATERMAN

This algorithm was first presented by Temple Smith and Michael Waterman in 1981.
It is a dynamic programming algorithm for local sequence alighment. In other words
the algorithm determines similar regions between two nucleotide or protein
sequences. As a dynamic programming algorithm it has the ability to find the optimal
local alignment with respect to the scoring system being used. The main difference
to the Needleman-Wunsch algorithm is that negative scoring matrix cells are set to
zero, which renders the (thus positively scoring) local alighments visible. Back tracing
starts at the highest scoring matrix cell and proceeds until a cell with score zero is
encountered, yielding the highest scoring local alighment. The Smith-Waterman
algorithm is very demanding in time and memory resources. More specifically in
order to find the alignment of two sequences with lengths m and n respectively O

11

——
| —

(m*n) time is needed. This is the main reason why this algorithm is not being used in
practice and has been replaced by other algorithms such as BLAST which may not
have the ability to find the optimal alighment but is very efficient. Recent work
developed by Cray Inc. shows that with the use of reconfigurable logic a speed up of
28x compared to common microprocessors can be achieved. An implementation of
the algorithm in a Virtex-4 FPGA showed a speed up, up to 100x over a 2.2GHz
Opteron processor.

COMBINATORIAL EXTENSION

There is no exact solution to the protein structural alighment problem. So many
heuristic solutions have been proposed. The combinatorial extension method of
structural alignment generates a pair wise structural alighment by using local
geometry to align short fragments of the two proteins being analyzed and then
assembles these fragments into a larger alignment. Based on measures such as rigid-
body root mean square distance, residue distances, local secondary structure, and
surrounding environmental features such as residue neighbor hydrophobicity, local
alignments called "alighed fragment pairs" are generated and used to build a
similarity matrix representing all possible structural alighments within predefined
cutoff criteria. A path from one protein structure state to the other is then traced
through the matrix by extending the growing alignment one fragment at a time. The
optimal such path defines the combinatorial-extension alighment.

RAXML

The computation of large phylogenetictrees with statistical models such as
maximum likelihood orbayesian inference is computationally extremely intensive.
It has repeatedly been demonstrated that these models are ableto recover the true
tree or a tree which is topologically closerto the true tree more frequently than less
elaborate methodssuch as parsimony or neighbor joining. RAXML is a fast
implementation of maximum-likelihood (ML) phylogeny estimation that operates on
both nucleotide and protein sequence alignments. Whereas RAXML-IIl performs
worse than PHYML and MrBayes on syntheticdata it clearly outperforms both
programs on all real data alighmentsused in terms of speed and final likelihood
values. This algorithm was implemented in hardware by Mr. Alachiotis Nikolaos in
the Technical University of Crete, achieving a frequency of 267MHz and a speed-up
ranging from 45x to 88x (depending on the experiment) when compared to the
RAXML software running on a Pentium 4 at 2.66GHz.

12

——
| —

Predator

The predator algorithm was first presented by Dmitrij Frishman and Patrick
Argos in 1996. Its goal is to predict the secondary structure of a protein and its
accuracy reaches 75%. The algorithm takes as inputs the following:

= A sequence of aminoacids of the protein whose secondary structure
we want to predict.

= 550 protein chains with a known structure (after X-ray analysis).
= 4 20x20 propensity tables that contain floating point values.
= A 13x20x20 table that contains data for the Nearest Neighbor.

®* An array with a size of 5 which contains the values of the threshold,
which are necessary to perform the steps for the prediction of the
proteins secondary structure.

The output of the predator algorithm is the secondary structure of the protein (Helix,
Sheet or Coil).

RELATIVE RESEARCH

Since FPGA were first developed their area, power and speed disadvantage relative
to less programmable designs has been recognized. All of the few attempts to
measure this gap are mentioned here.

One of the earliest statements to quantify this gap was by Brown et al. Their work
reported the logic-density gap between FPGAs and mask programmable gate arrays
(MPGAs) to be between eight to 12 times, and the circuit-performance gap to be
approximately a factor of three.

More recently, a detailed comparison of FPGA and ASIC implementations was
performed by Zuchowski et al. They found that the delay of an FPGA lookup table
(LUT) was approximately 12 to 14 times the delay of an ASIC gate. Their work found
that this ratio has remained relatively constant across CMQOS process generations
from 0.25 um to 90 nm.

13

——
| —

Compton and Hauck have also measured the area differences between FPGA and
standard-cell designs. They implemented multiple circuits from eight different
application domains, including areas such as radar and image processing, on the
Xilinx Virtex-Il FPGA, in standard cells on a 0.18-um CMOS process from TSMC, and
oh a custom configurable platform. Since the Xilinx Virtex-Il is designed in 0.15-um
CMOS technology, the area results are scaled up to allow direct comparison with
0.18-um CMOS. Using this approach, they found that the FPGA implementation is
only 7.2 times larger on average than a standard-cell implementation.

Wilton et al also examined the area and delay penalty of using programmable logic.
The approach taken for the analysis was to replace part of a non-programmable
design with programmable logic. They examined the area and delay of the
programmable implementation relative to the nonprogrammable circuitry it
replaced. This was only performed for a single module in the design consisting of the
next state logic for a chip-testing interface. They estimated that when the same logic
is implemented on an FPGA fabric and directly in standard cells, the FPGA
implementation is 88 times larger. They measured the delay ratio of FPGAs to ASICs
to be two times.

While this thesis aims to measure the gap between standard cells and FPGA
implementation, it is noteworthy that the speed, power and area cost of FPGA is
even larger when compared to full-custom circuits. Full custom designs tend to be
three to eight times faster than semi-custom (standard cell) desighs and consume
three to ten times less power. Finally a full custom design achieves 14.5 times
greater density than standard cell ASIC methodology.

14

——
| —

CHAPTER 2: BIOINFORMATICS ALGORITHMS
& BASIC CORES

In the following two tables we show the seven bioinformatics algorithms and the
mathematical and basic cores that each one of them uses. As the query size can vary
according to the user’s preferences some of these algorithms may require different
sizes for comparators and shift registers. That is why we decided to study four shift
registers and three comparators of different lengths.

Floating Point Floating Point Floating Point
Adder Multiplier Divider

SP DP SP DP DP
BLAST
FASTA

GLIMMER v

Smith-
Waterman

Combinatorial v v
Extension(CE)

RAXML v v

Predator

Table 2 - 1: Bioinformatics algorithms and the mathematical cores they use.

Shift Registers Comparators
32-bit 64-bit 1024-bit 4096-bit 32-bit 64-bit 128-bit

BLAST v v v v v v v

FASTA v v v v v v v

GLIMMER v v v v v v v

Smith-Waterman v v v v v v v

Combinatorial v v v v v v v
Extension(CE)

RAxML v v v v v v v

Predator v v v v v v v

Table 2 - 2: Bioinformatics algorithms and the basic cores they use.

15

——
| —

CHAPTER 3.
IMPLEMENTATION

In this chapter we will demonstrate the exact design flow for the structures
mentioned above in FPGA as well as in VLSI.

IMPLEMENTATION IN FPGA

Due to the fact that the technology we will use for implementing these structures in
VLS| is Faraday’s 90nm, we chose to find a 90nm FPGA from Xilinx so that the
comparison between the results is more accurate. Xilinx has two 90nm FPGA
families: the Spartan-3 family and the Virtex-4 family. We decided to use the second
(as it is a more advanced generation of FPGA’s) and more specifically the XC4VSX55
device. We chose this device and not a larger one because this is big enough to
implement all the bioinformatics algorithms we mentioned but not too big so that
we get lower values in frequency and higher values in power consumption.

Configurable Logic Blocks (CLBs)(" Block RAM
Max Max PowerPC Rocketl0 | Total | Max
Amay® | Legic Distributed|XtrameDSP| 18Kb | Block Processor | Ethernet | Transceiver | U0 |User
Device | RowxCol | Cells | Slices | RAM(Kb) | Slices! |Blocks|RAM (Kb){DCMs|PMCDS| Blocks | MACs Blocks | Banks | /0
XC4VSXEh | 128x 48 | 55,206 | 24576 | 384 512 320 | 5760 | & 4 N/A N/A N/A 13 | 640

Table 3 - 1: Specifications of Virtex-4 XC4VSX55 (Source: www.xilinx.com).

The XtremeDSP Slices contain a dedicated 18x18 2’s complement signed multiplier,
adder logic, and a 48 bit accumulator. Each multiplier or accumulator can be used
independently. These blocks are designed to implement extremely efficient and high
speed DSP applications.

The Virtex-4 FPGA slice includes:

e Two 4-input LUTs (Look-Up Tables) that can implement any 4-input boolean
function, used as combinational function generators (one LUT is marked “F”,
the other one is marked “G”).

e Two dedicated user-controlled multiplexers for combinational logic (MUXF5
and MUXFX). MUXF5 can be used to combine outputs of the slice's LUTs and

so to implement 5-input combinational circuit. MUXFX is used to combine
outputs of the other MUXF5 and MUXFX (from the other slices).

16

——
| —

e Dedicated arithmetic logic (two 1-bit adders, carry chain and two dedicated
AND gates for fast and efficient multiplication).
e Two 1-bit registers that can be configured either as flip-flops or as latches.

The input to these registers is selected by YMUX and XMUX multiplexers.
Note that these multiplexers aren't user-controlled: the path is selected
during FPGA programming.

A simplified diagram of a Xilinx Virtex-4 FPGA slice is presented below:

|
MUXFX |
I |
_______ L
1 |
1 |
| I
r : [
| | |
1 l I I
| 4input : _______ :_ D Q
| wrt ; . e
I
—1 © | Arithmetic | YMUX 1 Lok
MUXF5 I I
; andcarry | SR
I logic | I
1 |
| :
|
P | [
— ' : D ao—
| 4-input L |
| wr | I 1
G | i XMUX | T ok
: : SR
[I !
_ |

Figure 3 - 1: Block diagram of a slice in Virtex-4 FPGA {Source: http://www.1-
core.com/library/digital/fpga-logic-cells).

Using Xilinx Core Generator we generated the following cores:

X/
L X4

Single Precision Floating Point Multiplier

+* Double Precision Floating Point Multiplier

+» Single Precision Floating Point Adder/Subtractor
+* Double Precision Floating Point Adder

+* Double Precision Floating Point Divider

«* 32-bit Comparator

«* 64-bit Comparator

+* 128-bit Comparator

17

——
| —

The cores that are produced with core generator are optimized for Xilinx FPGA’s. For
each one of the two multipliers and adders mentioned above we had the option to
use some of the XtremeDSP slices that Virtex-4 offers. So in order to have a broader
picture we created 8 cores: One single precision floating point adder/subtractor and
one single precision floating point multiplier with no DSP usage. We also created one
single precision floating point adder/subtractor and one single precision floating
point multiplier with maximum DSP usage. The same is done for the double precision
adders and multipliers.

The cores produced from Xilinx Core Generator are not suitable for synthesis in
other tools (for example Synopsis and RTL Compiler). As a result we downloaded,
and simulated 4 codes from www.opencores.org : a single precision floating point

adder/subtractor, a single precision floating point multiplier, a double precision
floating point adder, a double precision floating point multiplier and a double
precision floating point divider. Then we created 4 shift registers of various lengths.
A 32-bit, a 64-bit, a 1024-bit and a 4096-bit shift register. We also created 3
comparators of various lengths: A 32-bit, a 64-bit and a 128-bit comparator.

In the following table we present you all the cores we used and how we obtained
them for the two design flows:

Core Core Gen Core_Gen MaxDSP Opencores My VHDL

SP_FP_Add/Sub v v v

SP_FP_Multi v v v

DP_FP_Add v v v

DP_FP_Multi v v v

DP_FP_Div v v

Shift_Reg_32

Shift_Reg_64

Shift_Reg_1024
Shift_Reg_4096
Comparator_32

Comparator_64

NN NN N NN

Comparator_128

18

All of the mathematical cores that are mentioned above meet IEEE 754 standard for
single or double precision floating point arithmetic. The |IEE Standard for Floating
Point Arithmetic is the most widely-used standard for floating point computation
and is followed by many hardware and software implementations. The current
version is |[EEE 754-2008, which was published in August 2008; the original IEEE 754-
1985 was published in 1985. 32 bits are used to represent a single precision floating
point humber.

= Sign Bit:1
= Exponent Width:8
= Significant Precision:23 (24 implicit)

Sign | Exponent Mantissa

32 [31.......... 23 | 220

A double precision floating point number is represented using 64 bits:

= Sign Bit:1
= Exponent Width:11
= Significant Precision:52 (53 implicit)

Sign | Exponent Mantissa

63 37 e

The block diagrams of these cores are presented below:

Operand A
— »

Operand B

Clk
— ¥

Multiply

Result
—

Figure 3-2: Multiplier Block Diagram.

——

Operand A
R

Operand B

Clk

— P

Divide

Result
—

Figure 3 - 3: Divider Block Diagram.

19

A

Operand A ﬂ Operand A A_Equal_B
™ - —
Operand B
> Add Opﬂ’ Compare
Operation
——»
Clk
Figure 3 - 4: Adder Block Diagram. Figure 3 - 5: Comparator Block Diagram.
Input | Output |
e
Reset Shift
Clk
—>

Figure 3 - 6: Shift Register Block Diagram.

We first synthesized each one of the above codes. For all the cores we mentioned
above we find out the exact area (this means the number of slices) the design
occupies, the timing specifications of the design and its power consumption. In order
to find the power consumption of our cores we followed these steps:

= Created a very simple circuit and measured the power consumption of the
FPGA with it (a design with a 1-bit input that goes directly to the 1-bit
output). The power consumption of this simple circuit was the same even if
we changed the size of the input and output (64 bits input and output). This
means that every time all the input and output pins (pads) are taken into
consideration to measure the power consumption of the FPGA.

* \We measured the power consumption of the FPGA with the cores we want to
study.

®* \We subtracted the total power of the simple design from the total power
consumption of each one of our cores.

The tool we used for this procedure was Xilinx ISE 9.1 running on Windows XP
environment. In order to measure the power consumption of each design we used
Xilinx’s XPower Analyzer 10.1. The computer we used has a CPU with a frequency of
3GHz and 1.5GB of RAM.

20

——
| —

IMPLEMENTATION IN VLSI

For the VLS| implementation we used two tools provided by Cadence Design Systems
Inc.: Encounter RTL Compiler and SOC Encounter RTL-to-GDSII System.

Cadence Design Systems, Inc, founded in 1988, is the global leader in software,
hardware, methodologies, and services that play essential roles in accelerating
innovation in today’s highly complex integrated circuits, printed circuit boards, and
electronics systems. Companies use Cadence electronic design automation (EDA)
technologies and engineering services to design, verify, and prepare advanced
semiconductors and systems for manufacturing. These products, in turn, form the
foundation of consumer electronics, networking and telecommunications
equipment, and computer systems. With locations throughout the world—including
China, India, Europe, Russia, Israel, Japan, Korea, Taiwan, and North America—
Cadence serves a global customer base.

APPROXIMATE SALES
By Geography in 2008

North
America

Europe

Japan/
Asia

Figure 3 - 7: Cadence Sales Worldwide (Source: www.cadence.com).

Cadence Encounter RTL Compiler offers a unique set of patented global-focus
algorithms that perform true top-down global RTL design synthesis. With concurrent
multi-objective optimization (timing, area, and power) and support for advances
low-power design techniques, Encounter RTL compiler reduces chip power
consumption while meeting frequency goals.

The Cadence SoC Encounter RTL-to-GDSIl System supports large-scale complex flat
and hierarchical designs. It combines advanced RTL and physical synthesis, silicon
virtual prototyping, automated floorplan synthesis, clock tree and clock mesh
synthesis, advanced low-power implementation, and a complete suite of design for
manufacturability, variation, and yield optimization technologies required for
advanced node designs. The overview of SoC Encounter’s functionality is shown
below.

21

——
| —

Both these tools require a Linux, Solaris or IBM platform in order to run properly. We
installed them in a computer running CentOS 5.2. CentQOS is an operating system
based on Red Hat Enterprise Linux, which is the Linux distribution Cadence proposes

RTL/Metlist

Unified
implementation

Global
synthesis,

BC extracrion
and delay
calculation

partitiening,
tirme

Encounter budgeting
platform

Manomiter '
routing planning and

physical
synthesis
including

detailed
placemant

Dpenfcieds database

Figure 3 - 8: SoC Encounter Design Flow (Source: http://www.charteredsemi.com).

for the installation of its tools.

The technology we used for the implementation in VLS| is Faraday’s 90nm. The
FSDOA_A library is a 90 nm standard cell library tailored for UMC’s 90 nm logic SP-
RVT (Low-K) process. It is optimized for the applications requiring high performance,
low operating power consumption, and ultra high density. The characterizations
conditions for this technology are shown in table 1 while the general characteristics

of Faraday’s 90nm are described in table 2:

Operating condition

Min Typ Max

VCC Core cells 09 1.0 1.1
25V 10 calls 2.25 2.5 2.75
T Junction operating temperature -40 25 125

Table 3 - 2: FSDOA_A operating conditions (Source: Faraday FSDOA_A 90 nm Logic SP_RVT

(Low-K) Process).

22

——
| —

Characteristic

Description

Technology

UMC's 90 nm logic SP-RVT (Low-K) process.

The length of the minimum drawn
channel

0.08 ym

Supply voltage For the core cells: 0.9V ~1.1V
For32.5V /O cells: 225V ~ 275V

Performance Tq = 18.2 ps/stage (measured from the 101-stage NAND ring in the typical process
and operating under 1.0V, 25 °C)

Gate density 400k gates/mm?®

Power consumption

5.0 nW/MHz/gate (measured from the 2-input NAND, output load = 2 standard loads,
in the typical process and operated under 1.0V, 25 °C)

Table 3 - 3: FSDOA_A General Characteristics (Source: Faraday FSDOA_A 90 nm Logic

SP_RVT (Low-K) Process).

In this technology there are 9 different metal layers. One metal layer, metal 9, is
made 4 times thicker than the normal, non thick, metal layer. The second and third

top metal layers (metal 8 and metal 7) are made two times thicker than the normal,

non thick, metal layer. The rest six metal layers (metal 1, metal 2, metal 3, metal 4,
metal 5 and metal 6) are made in the normal metal process. The FSDOA_A provides
also 8 different fillers cells. These cells have different size so that they can fill every
gap in the core. During our design flow the names VCC and GND must be assigned to

the power and ground respectively.

——

23

A

The complete design flow from HDL to GDSII is shown below:

Design specification

Behavioral Description

d RTL Description(HDL)

Functional Verification and

testing

Logic S5ynthesis/ Timing
Yerification

izate Level Wetlist

Locic Verification And Testing

Floorplanning, Automatic
Place & Route

Physical Lavout

Lavout Verification

Implementation

Figure 3 - 9: Complete design flow from HDL to GDSII.

24

——
| —

RTL COMPILER STEPS

1. Using RTL Compiler the first step is to read our design. This is done by using
the read_hdl command. It reads our vhdl(or verilog) files and creates HDL
independent objects in HDL-intermediate format and stores it in design
library. The elaborate command elaborates the top-level design to bind all
packages and the designs.

2. Then we set the constraints for our design. These typically include defining
the clock period, input and output delays etc. After this step, the design is
now constrained and ready for mapping and optimization.

3. Afterwards we synthesize our design by typing the following two commands
in the rc command prompt :

set MAP_EFF high
synthesize -to_mapped -eff SMAP_EFF

These two commands will map and optimize our design with high mapping
effort in order to meet the constraints we defined in the previous step. In the
end of this step our design is fully-mapped to gate level.

4. In this step we generate the mapped design (.v file) and the design
constraints file (.sdc file).These files will be used for placement and routing.

SOC ENCOUNTER STEPS

1. The first step after launching Cadence SoC Encounter RTL-to-GDSI| System is
to import our design. This procedure requires the following files:

e A Layout Entity File (lef) that defines the physical rules, such as the
minimum width of the metal layers, the minimum space between
various metal layers etc.

o A ef file that contains all the physical characteristics of the standard
cells.

o A libfile that defines the timing specification of the standard cells and
is necessary for the timing analysis of our design.

e The netlist we extracted from RTL Compiler (.v file).

e The Synopsis Design Constraints file (.sdc file) that contains all the
required timing constraints for our design.

As we only focus on creating cores and not entire chips it is not necessary to
add pads to our design.

25

——
| —

2. We choose the operating conditions for our design. These are the BCCOM
(minimum conditions) and WCCOM (maximum conditions) which we
described earlier.

3. In this step we perform floor planning of the device. We specify the aspect
ratio of the die {usually set to 1.0) and the utilization of the core. Depending
on the type of the desigh we must specify this number appropriately. High
utilization ratios {(>0.75) may result in very high congestion during routing
which will make the design practically unroutable. For the cores we created
ourselves(the comparators and the shift registers) the core utilization is over
0.7, while in the 3 cores(Single precision multiplier, single precision adder and
double precision multiplier) we started our implementation using high
utilization ratios(0.5-0.7) but all our tries failed during DRC check. So we
implemented these three cores using utilization ratios varying from 0.35-0.5.
Then we specify the core-to-IO boundary distances that are applied to the
four sides of the core (Left, Bottom, Right, Top) in order to allow the later
introduction of power and ground rings. The size depends entirely on the
design. In our small designs we use spacing of 11 nm and in the larger designs
spacing of 26 or 30 nm.

4. The next step in the flow is power planning. More specifically we create the
power rings and power stripes which will distribute power in the cells of our
design. We choose the metal layer to use for the power rings (which will be
used as VCC and GND) and the desired width and spacing. Furthermore we
specify the width and the set-to-set distance of the power stripes. The
number of the power stripes must be chosen carefully as too few power
stripes may result in poor power distribution while too many may result in
high congestion and more power consumption. We prefer in most of our
designs not to use metall and metal2 layers for the power planning, in order
to be able to place cells under the metal layers.

5. After we finish the power planning there is a typical step, in which we define
that all cells will connect to the VCC and GND signals.

6. The fifth step consists of the standard cell placement. SoC encounter tries to
place all standard cells in legal position. We choose whether we want the
placement to be timing driven (derives necessary timing information from
the .sdc file of our design) or not and also whether we want congestion
optimization (if turned on the placer tries to minimize congestion).

7. Then comes the phase of special route (sroute) which does the routing for
special nets such as the power nets VCC and GND.

8. The next step in the flow is trial routing. This not actual physical routing but
gives us a first impression of the congestion and the timing of our design.

9. In this step we perform an in place optimization before designing the clock
tree. During in place optimization (IPO) the size and the structure of the gates
changes in order to increase their driving capability and reduce delay.

26

10. After we finish the PreCts IPO we must design the clock tree for our design.
For this procedure we must first specify in a file, all the desired constraints.
This file contains information about the clock root {(or roots if we have more
than one clocks), the required clock period, the maximum required delay,
maximum available clock skew etc. Furthermore in this file, in the parameter
named Buffer we list all the standard cells which will be used as amplifiers
during clock tree synthesis. After the clock tree specifications file has been
created we import it and run clock tree synthesis which takes some time in
order to complete.

11. In this step we perform another Trial Route, now taking the synthesized clock
tree into consideration and we let the Encounter run in place optimization
again with the option —postCTS.

12. Then we try to fix the remaining violations by executing the commands
fixDRCViolations and fixSetupViolations. The first focuses in geometrical
violations and the second in timing violations.

13. The next step consists of the routing. We first determine all the parameters
as for example: if the procedure will be timing driven, if the router will
attempt optimization in time, if it will alter the size of the gates etc. After we
specify these attributes we start the global and detail routing using
NanoRoute. It takes some time for the routing to complete. The tool
performs violation checks, DRC (Desigh Rule Checking) and it also reports
errors and warnings after the process is complete.

14. In order to finish our design we must fill the empty space of the core with
fillers. Filler cells are added in order to make metal-1,n-well and p-well
continuous. As we already mentioned Faraday’s 90nm technology provides 8
fillers cells of various sizes in order to fill every gap of the core.

15. Finally we must make sure that our design has no violations. So we run DRC
and connectivity check. The first checks for and DRC errors while the second
checks if there is any unconnected/floating net. None of the cores we
designed had any violations of any kind.

After we have done all the above steps we analyze timing and synthesize the
power plan in order to find out the timing specifications and power consumption
of our design. All the results we extracted will be shown in the next chapter.

We will now present you all the masks we produced by following the above steps.
Note that in the case of the Single Precision Floating Point Adder/Subtractor and in
the case of the Double Precision Floating Point Multiplier the density of the core is
low (approximately 40%) but that was the only way to avoid DRC violations).The
double precision floating point adder and divider failed DRC check but the results we
extract concerning frequency and power consumption are close to be accurate.

27

Bits

Shift Register 32

2.

Height(nm)
224

Width (nm)
28.685

Dimensions

Mask 3 - 1: Shift Register 32-Bits

]
28 |

(
\

Bits

Shift Register 64

)

Height(nm
33.8

)

Width (nm
40.205

Dimensions

Mask 3 - 2: Shift Register 64-Bits

]
29 |

(
\

Shift Register 1024-Bits

Width (nm) Height(nm)
144 565 137.2

Dimensions

Mask 3 - 3: Shift Register 1024-Bits

30

——
| —

Shift Register 4096-Bits

Width (nm) Height(nm)
286.21 277.2

Dimensions

Mask 3 - 4: Shift Register 4096-Bits

31

——
| —

Comparator 32-Bits

Width (nm) Height(nm)
26.385 16.8

Dimensions

Mask 3 - 5: Comparator 32-Bits

32

——
| —

Comparator 64-Bits

F I S T Y B R W |

S I T T R I '] R T S

)

2

Height(nm
25

)

nm

Width
32.55

(

Dimensions

Bits

6: Comparator 64-

Mask 3

]
33 |

(
\

Comparator 128-Bits

—_——— e — - ¥r _ 2

LEES Bl B R IR N Il e)

-
| g

(hm)
2

Height
39

Width (nm)
45.95

Dimensions

Bits

7: Comparator 128

Mask 3

|
4 |

(
\

Height(nm)

Width (nm)

Mask 3 - 8: Single Precision Floating Point Multiplier

S
2
S
s
whd
=
o
a
=
whd
©
o
L
c
2
2
(8]
]
p =
a
g
=
A

Dimensions

Single Precision Floating Point Adder-Subtractor

Width (nm) Height(nm)
157.995 151.2

Dimensions

Mask 3 - 9: Single Precision Floating Point Adder-Subtractor.

36

——
| —

Double Precision Floating Point Multiplier

SNRR L ARENNORRE A1 NN QRN VAARRINNNY | § R
NENNYTRASNENNIR TN ARA RANNRARRN IR0}

|_
ARUENNRARNNNNRT R

Height (nm)

565.6

Width (nm)

567.215

Dimensions

10: Double Precision Floating Point Multiplier

Mask 3 —

]
37|

(
\

Double Precision Floating Point Adder

; e — =t
== :
- g e e i T sk ; 5
S e e e T E| SRR § i T e T T e T = ||u“ﬁnl_rnd.qul.ﬂ.l =k i 2 S [e
N = . —-a " at - 7
: SR I ShE
- g il ==
o = =
] SR e =
2= 1] =k L
e
o 1L
i - LL]
S e e A [=
et = o | = S o —%, 4.“ i BN ||| e N K| T ok e
d vl
R L bl d
_ : EAHE
it ;
(| SR B LL i
iy e i e
= x 1 E| = pdr T STt -
Pl |l = D e AT e i 5 - 5 .z "il " 1 ot KL = J - e} AL
. e — . T = z = i= = E i o 2 b 3 § 2 g
(0|
{. -4
o
ST = —— = = = = = s B el iy
1
0 ii-= e dll
- 1 L e
_ fa=es
i) = A -
e g i R gl B | =i
i e -
i TIT MG |-« - ik
1I|% _._-- o e u L[] = L
il a1 2 Tas] : EISh
I ENG 2 fx
d Bilpy - X

Height(nm)
347.2

Width (nm)
354.525

Dimensions

Mask 3 - 11: Double Precision Floating Point Adder

]
38 |

(
\

Double Precision Floating Point Divider

5
IIIi F"|| I bl

I. i hh'r'u 1] ol

- v., ?. h;h
‘. i

Width (nm) Height(nm)
211.355 201.6

Dimensions

Mask 3 - 12: Double Precision Floating Point Divider.

39

——
| —

CHAPTER 4: RESULTS

In this chapter we will present you and compare all the results we gathered from the

previous design flows.

Math Cores

Single Precision FP
Multiplier Coregen

Single Precision FP
Multiplier
Coregen_MAX_DSP

Single Precision FP
Multiplier
Opencores

Single Precision FP
Adder/Subtractor
Coregen

Single Precision FP
Adder/Subtractor
Coregen_MAX_DSP

Single Precision FP
Adder/Subtractor
Opencores

Double Precision
FP Multiplier
Coregen

Double Precision
FP Multiplier
Coregen_MAX_DSP
Double Precision
FP Multiplier
Opencores
Double Precision
FP Adder Coregen
Double Precision
FP Adder
Coregen_MAX_DSP
Double Precision
FP Adder
Opencores
Double Precision
FP Divider Coregen
Double Precision
FP Divider
Opencores

FPGA
Frequency(MHz) Power(mWw)
332 41
445 51
117 48
451 44
418 47
132 39
221 66
353 103
37 83
355 57
355 63
180 144
266.089 131
32 75

Frequency(MHz)

193

238

156

278*

166*

VLSI
Power(mw)

1.72

1.543

10.47

14.86*

3.4*

Table 4 - 1: Frequency and power consumption of all the arithmetic cores.

40

——
| —

(The Double Precision FP adder and Divider from opencores.org are marked with an asterisk

as they had DRC violations after the VLS| implementation).

Mathematical Cores - Frequency(MHz)

500
450

400
350

300

250

200

150

100
50

m Core Generator

m Core Generator MAX DSP

= Opencores Virtex4

H Opencores VLSI

SP FP SP FP ADDER DPFP DP FP ADDER DP FP DIVIDER
MULTIPLIER SUBTRACTOR MULTIPLIER

Diagram 4 - 1 : Frequency in MHz of the five mathematical cores depending on their
implementation.

160

Mathematical Cores - Power Consumption(MHz)

140

120

100

80

m Core Generator

60

m Core Generator MAX DSP

40 -

= Opencores Virtex4

H Opencores VLSI

SP FP SP FP ADDER DPFP DP FP ADDER DP FP DIVIDER
MULTIPLIER SUBTRACTOR MULTIPLIER

Diagram 4 - 2 : Total Average Power Consumption of the five mathematical cores depending on
their implementation.

41

——
| —

In all the above diagrams we can see that, by using EDA tools all the mathematical
cores we produce are 1,5x to 2x faster compared to the respective FPGA
implementation, while in the case of the double precision floating multiplier and
divider we get 4x faster designs. However, these values are still a lot lower than
these of the Virtex4 especially when we use the maximum available number of DSPs.
When it comes to power consumption however, we can see that all the designs we
produce using EDA tools, are more power efficient. The gap between the power
consumption of the VLS| and the respective FPGA implementation varies between
10-25x depending on the design. This is because FPGAs contain LUTs and routing
channels which are connected via bit streams, as they are made for general purpose
and because of re-usability. Research has shown that the dynamic power
consumption of a LUT is 500 times greater than the power of an ASIC gate. As a
result, in every FPGA design we have extra circuitry which is not necessary and
results in wastage of power.

Comparators

FPGA VLSI
Delay (ns) Power(mw) Delay (ns) Power(mw)
C
omparator_32 6 3 i i
Coregen
Comparator_64 6.711 482 i i
Coregen
Comparator_128 7412 3.72 i i
Coregen
Comparator_32 6.303 3.04 0.267 0.0131
Comparator_64 6.439 4.97 0.33 0.0246
Comparator_128 6.711 9.39 0.365 0.0518

Table 4 - 2: Frequencies and power consumption of all comparators.

42

——
| —

Comparators - Delay(ns)

B My_Comparators
H Coregen_Comparators

m VLSI_Comparators

32 Bits 64 Bits 128 Bits

Diagram 4 - 3: Delay (in ns) of the three different comparator implementations according
to the number of bits.

10

Comparators - Power Consumption

m My Comparators

H Coregen Comparators

m VLSI_Comparators

32 Bits 64 Bits 128 Bits

Diagram 4 - 4: Power consumption (in mW) of the three different comparator
implementations according to the number of bits.

43

——
| —

As we can see in diagram the 3 comparators we designed almost have the same
delay compared to those we produced from Xilinx Core Generator. With the use of
EDA tools we can achieve very low delay values, almost 20 times lower than these of
the Core Generator Comparators. FPGAs use look-up tables, which are relatively
slower than ASIC gates. Recent research by Zuchowski showed that the delay of an
FPGA LUT was approximately 12 to 14 times the delay of an ASIC gate. This ratio has
remained relatively constant across CMOS process generations from 0.25um to
90nm. In all three implementation we can see that the power consumption grows
linearly with the increase of the number of bits. The power consumption is again
lower in the desighs we made using EDA tools.This gap in power consumption varies
between 180-300x.

Shift Registers

FPGA VLSI
Frequency(MHz) Power(mw) Frequency(MHz) Power(mw)

Shift Register 32

_ 353.107 10 910 0.5107
Bits
Shift Re_glster 64 353 107 11 833 0.923
Bits
Shift Register 353.107 47 680 8.366
1024 Bits ’ '
Shift Register
4096 Bits 393.107 19 000 -

Table 4 - 3: Frequencies and power consumption of all shift registers.

44

——
| —

1000

900

800

700

600

500

400

300

200

100

Shift Registers Frequency(MHz)

B My_Shift_Registers_Virtex4
B My_Shift_Registers_VLSI

32 Bits

64 Bits 1024 Bits 4096 Bits

Diagram 4 - 5: Frequency (in MHz) of the two different shift register implementations

according to the number of bits.

180

160

140

120

100

80

60

40

20

Shift Registers - Power Consumption

m Shift Registers Virtex 4

m Shift Registers VLSI

32 Bits

64 Bits 1024 Bits 4096 Bits

Diagram 4 - 6: Power consumption (in mW) of the two different shift register

implementations according to the number of bits.

45

——
| —

From the first diagram we can see that the frequency of the 4 shift registers
implemented in Virtex4 stays the same. This is because the lookup tables in the
FPGA are ordered in rows. Each row of LUT’s follows the previous. As a result the
critical path is the same even if the number of bits changes. In general the VLSI
implementations have 1.8-2.5x higher frequency than the respective

implementation in Virtex 4.

We can see from diagram that there is a linear growth in power consumption of both
VLS| and FPGA designs when the number of bits becomes larger. Once again the
shift registers we desighed consume more power in Virtex-4 than in VLSI. The gap
between them ranges between 5-20 times.

46

——
| —

CHAPTER 5: CONCLUSION AND FUTURE
WORK

Conclusion

Finally, the conclusions about the implementation of basic structures, that are
common in bioinformatics algorithms, along with some ideas about future research
concerning this subject, are presented.

As we saw before, ASIC implementations of sequential circuits are 1-4 times faster
than the FPGA implementations and also consume a lot less power. However the
designs we can produce using the core generator are a lot faster. The cores that are
available in public are not optimized for standard cell implementation. As a result
the designs we produce using these VHDL or VERILOG codes have low density, which
results in slower and more power consuming circuits. Also, the cost of a standard cell
implementation is very high compared to the cost of a Virtex4 FPGA. Only in the case
of the 3 combinational circuits, their ASIC implementation was faster and more
power efficient than those generated from Xilinx. Without writing optimized HDL
structural codes the best alternative is to use the Xilinx’s cores.

Future Work

There are many research proposals relative to this subject. Some of them are the
following:

o Implementation of structural HDL code for these cores, standard cell design,
and later comparison with cores produced from the core generator.

e Using the cores produced from the core generator and reverse engineering
techniques we can get their VHDL codes and then using the EDA tools we can
produce better standard cell designs.

e Design of these basic cores in full custom and later comparison with cores
produced from the core generator.

e Design of the bioinformatics algorithms we mentioned above, using standard
cell ASIC methodology.

e Design of the bioinformatics algorithms we mentioned above, in full-custom.

47

——
| —

List of Tables And Figures

Figure 1 - 1: Scoring example of the BLAST algorithmccooiiiiiiiiiiiiiiin e, 7
Figure 1 - 2: Description of the FASTA algorithm (Source: http://www.med.nyu.edu)......... 10

Figure 3 - 1: Block diagram of a slice in Virtex-4 FPGA (Source: http://www.1-

core.com/library/digital/fpga-logic-cells).......cooooumreiiiiiiiie e 17
Figure 3 - 2: Multiplier Block Diagram. Figure 3 - 3: Divider Block Diagram.
... 19
Figure 3 - 4: Adder Block Diagram. Figure 3 - 5: Comparator Block Diagram.................... 20
Figure 3 - 6: Shift Register Block Diagram.coieiiiiiiiiiiiiiie e e e e e e e e e e e eeaaeee 20
Figure 3 - 7: Cadence Sales Worldwide (Source: www.cadence.com).ccccoeeeeeiiiieiieeeiennn. 21
Figure 3 - 8: SoC Encounter Design Flow {Source: http://www.charteredsemi.com }............ 22
Figure 3 - 9: Complete design flow from HDLto GDSII.cooeeiiiiiiiiiiiiineieieeeecceee e, 24
Table 2 - 1: Bioinformatics algorithms and the mathematical cores they use. 15
Table 2 - 2: Bioinformatics algorithms and the basic cores they use...........ccccvveeieeiiinnnnnnnn. 15
Table 3 - 1: Specifications of Virtex-4 XC4VSX55 (Source: www.xilinx.com)......ccccceeeeeeiannnn. 16
Table 3 - 2: FSDOA_A operating conditions (Source: Faraday FSDOA_A 90 nm Logic SP_RVT
(LOW=-K) PrOCESS)...ccciieeieieeieeeeeeee e 22
Table 3 - 3: FSDOA_A General Characteristics (Source: Faraday FSDOA_A 90 nm Logic SP_RVT
(LOW=-K) PrOCESS)...ccciieeieieeieeeeeeee e 23
Table 4 - 1: Frequency and power consumption of all the arithmetic cores.......................... 40
Table 4 - 2: Frequencies and power consumption of all comparators...........ccccceeeeeeeiiinnnnnee. 42
Table 4 - 3: Frequencies and power consumption of all shift registers.cccooeeeeiinnn. 44

Diagram 4 - 1 : Frequency in MHz of the five mathematical cores depending on their
IMPIEMENTATION. ..o e e ettt e e e e e e eer it e e eeeesesasseaanaeeesessssnees 41
Diagram 4 - 2 : Total Average Power Consumption of the five mathematical cores depending
on their iMplementation.oiii e e e e e s 41
Diagram 4 - 3: Delay (in ns) of the three different comparator implementations according to
The NUMDBDET Of DItS. ... s 43
Diagram 4 - 4: Power consumption (in mW) of the three different comparator
implementations according to the number of bits.cccooviiiiiiiiiiiii e, 43
Diagram 4 - 5: Frequency (in MHz) of the two different shift register implementations
according to the number of bits. ..o 45

48

——
| —

Diagram 4 - 6: Power consumption {in mW) of the two different shift register

implementations according to the number of bits.cccooviiiiiiiiiiiii e, 45
Mask 3 - 1: Shift RegiSter 32-Bitsouuuuiiiiiiiiiiiiieiee e e e e e e e e e e e eeaaeees 28
Mask 3 - 2: Shift ReGISTEr 64-Bilsovvuuiiiiiiiiiiiiiiiiee e e e e e e e eer e e e e e e eeaaeees 29
Mask 3 - 3: Shift Register 1024-Bitscoeiiiiiiiiiiiiiiie i e eeeeteee e e e e e eeev e e e e e e eeeaaeees 30
Mask 3 - 4: Shift Register 4096-Bitsccceeiiiiiiiiiiiiieeiieeiiiciiee e e e eeetceee e e e e eeeeaareeeeeeeeeaaeees 31
Mask 3 - 5: Comparator 32-Bitsuuuiieiiiiiiiiiiiiiee e e et e e e e e e e e e e e eraaeees 32
Mask 3 - 6: CompParator 64-Bitsceieiiiiiiiiiiiiiie et e e et e e e e e e eer e e e e e eeeaaeees 33
Mask 3 - 7: Comparator 128-Bitsuuiiiiiiiiiiiiiiiiee e e e e e e eeaaeees 34
Mask 3 - 8: Single Precision Floating Point Multiplier.........cccooeoiiiiiiiiiiiniiicceee e, 35
Mask 3 — 9: Single Precision Floating Point Adder-Subtractor.ccccooooiiiiiiiiiiinni, 36
Mask 3 — 10: Double Precision Floating Point Multiplier............ccccvvveiiiiiiiiiiiiciien e, 37
Mask 3 - 11: Double Precision Floating Point Adder...........ccooeeiiiiiiiiiiiiiine e, 38
Mask 3 - 12: Double Precision Floating Point Divider.cccoeeiiiiiiiiiiiiiniiiiercccee e, 39

49

——
| —

Bibliography

Cadence Design Systems. (2007). Encounter® Command Reference.
Cadence Design Systems. (2007). Encounter® Menu Reference.
Cadence Design Systems. (2007). RTL Compiler® Command Reference.

Dollas, A., & Sotiriades, E. (2007). A General Reconfigurable Architecture for the BLAST
Algorithm. Department of Electronic and Computer Engineering, Technical University of
Crete, Chania.

Faraday, Technology Corporation. (2006, September). 90 nm Technology Standard Cell
Library.

Faraday, Technology Corporation. (2006). FSDOA_A 90 nm Logic SP-RVT (Low-K) Process.

Gyvez,). P. (2008). Cadence Encounter Manual. Faculty of Electrical Engineering Eindhoven
University of Technology.

Gyvez,). P. (2008). Cadence RTL Compiler Manual. Faculty of Electrical Engineering
Eindhoven University of Technology.

Kuon, I., & Rose, J. (2007). Measuring the Gap Between FPGAs and ASICs.
Lesk, A. M. (2002). Introduction to Bioinformatics.

Salzberg, S. L., Delcher, A. L., Kasif, S., & White, O. (1998). Microbial gene identification using
interpolated Markov.

Setubal, J., & Lesk, A. (1997). Introduction to Computational Molecular Biology.

Shindyalov, I. N., & Bourne, P. E. (2001). A Database And Tools For 3-D Protein Structure
Comparison And Alignment Using The Combinatorial Extension(CE) Algorithm.

Shindyalov, I. N., & Bourne, P. E. (1998). Protein Structure Alignment By Incremental
Combinatorial Extension{CE) Of The Optimal Path.

Smith, T., & Waterman, M. (1981). /dentification of Common Molecular Subsequences.

Smith-Waterman algorithm. (n.d.). Retrieved from Wikipedia:
http://en.wikipedia.org/wiki/Smith-Waterman_algorithm

Sotiriades, E., Chrysos, G., Dollas, A., Pnevmatikatos, D., Papaefstathiou, I., Mplemenos, G.-
G., et al. (2008). Special purpose processors for performance boosting of Bioinformatics
Algorithms. Department of Electronic and Computer Engineering, Technical University of
Crete, Chania.

Sotiriou, C. P. (2008). SoC Encounter How To. Retrieved from Department Of Computer
Science University Of Crete: http://www.csd.uoc.gr/~hy523/socencounterhowto_2008.html

50

——
| —

Stamatakis, A., & Ott, M. (2008). Efficient computation of the phylogenetic likelihood
function on multi-gene alignments and multi-core architectures.

Xilinx. (2007). Virtex-4 Family Overview.

51

——
| —

