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Chapter 1

Introduction

This thesis is based on Isoteia Map Server Portal [3], which is a Web GIS

system designed for environmental protection of regions. A geographic informa-

tion system (GIS) captures, stores, analyzes, manages, and presents data that

refers to or is linked to location. In the strictest sense, the term describes any

information system that integrates, stores, edits, analyzes, shares, and displays

geographic information. In a more generic sense, GIS applications are tools that

allow users to create interactive queries (user created searches), analyze spatial

information, edit data, maps, and present the results of all these operations.

1.1 Area of interest

This thesis is focused on designing a service-oriented architecture for managing

computational and storage resources of IMS. Our intention is to implement a low
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scale computational grid capable to serve the demanding requests of a multi-user

environment. The implementation of our distributed services is based on CORBA

architecture. This decision was made because CORBA standard supports object

oriented model data, interoperability between applications written in different

programming languages and executing in different computer platforms.

Our intention is to convert the various visualization, analysis and storage

services of IMS to CORBA services. This service oriented approach introduces

to our system interoperable services, which will enable the extension of IMS

system logic and the integration of new functionalities. These services would be

adapted or upgraded independently, according to application needs.

1.2 Problem Issue

The main problem of IMS is that it was developed as a monolithic web ap-

plication with GIS models, MapServer, Map Algebra and Http server executing

all together on a single computer. As a matter of fact, a system like this cannot

provide stable access to the various IMS portal functionalities and in the same

time to execute computationally expensive GIS models, composing and project-

ing maps. The implementation of a service oriented architecture as described

above and the transition from a single server to a low scale grid definitely accom-

plishes the computational needs of IMS. However, there are yet many questions

unsolved. There is a need of a mechanism to control the storage resources of

the system. This is very significant in order to avoid data redundancy and need-
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less file transfer among the workstations of the grid. Moreover, this mechanism

should include a version control system for the files, since they will be spread in

different workstations, as well as, a unified file naming system to distinguish files

throughout the storage devices of the system. Another issue is the adoption of a

load balancing policy to distribute the workload.

1.3 Thesis Contribution

The goal of this thesis is the transition from a monolithic to a service oriented

architecture with ultimate end to support the execution of various kinds of GIS

models, which are computation intensive and resource demanding due to mass

process of geo-data. The fulfillment of these aims will enable our system to assure:

• support of multiple concurrent users

• simultaneous execution of multiple, high CPU consuming programs

• load balancing of the visualization and analysis tasks

• maximum utilization of hardware resources

• reliable file handling mechanism

• integration of new functionalities

This will render a service to the scientific community, which is specialized in the

process and the study of geo-data and will contribute to the further improvement

of technologies which are focused on GIS issues.
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Chapter 2

Related Work

2.1 Isoteia Map Server Portal

WebGIS is becoming prominent in spatial decision support applications, as it

allows researchers and stakeholders to benefit from sharing, analyzing and visu-

alizing large, up-to-date geospatial datasets with minimal effort and cost. Initial

applications appeared roughly a decade ago and involved centralized dissemi-

nation of maps, first static and later dynamic (allowing pan/zoom as well as

primitive layer composition). As the foundations of web technology matured,

WebGIS applications could provide more sophisticated cartography and spatial

visualization features [8], [9], [10], [11]. IMS [3] addresses the integration of open-

source, open-standards software and state-of-the-art interactive web technology

to develop an interactive web mapping portal for spatial analysis.

It demonstrates that, open-source software offers a level of flexibility, avail-
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ability and lowered cost that is typically unavailable with commercial software,

while an architecture and design based on open standards ensures system inter-

operability and data reusability.

The prototype system, IMS, aims at enhancing collaboration and decision

making among researchers and stakeholders in environmental decision-making,

being highly accessible, and requiring minimal computing expertise. IMS’s capa-

bility of integrating and merging data layers of different natural variables by

a stepwise application of complicated functions enables multi-criteria, multi-

temporal, and multi-scale data analysis. Furthermore, IMS enables the coop-

eration of different task groups sharing a common geospatial data base. Results

from one group are made instantly available to parallel working groups in an

interactive way.

ISOTEIA Map Server (IMS) is a web-based spatial decision support system.

IMS was developed to support spatial data analysis within the ISOTEIA project,

which includes the generation of a number of GIS-supported alternative scenarios

for specific case studies on strategic environmental assessments in different do-

mains, such as surface water management, ecosystem protection, forest manage-

ment, industrial siting, irrigation management, water supply optimization, and

sustainable agriculture [12]. IMS provides data sharing, visualization of geospa-

tial data, spatial decision support services, and Map Algebra (MA) as a tool for

spatial analysis. MA refers to the use of images as variables in normal arithmetic

operations [5].
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2.1.1 Mapping Portal Architecture

A WebGIS architecture for spatial analysis must enable the agglomeration

of disparate computation and storage resources into a unified operational frame-

work. The deployed architecture must provide rich access to spatial data, support

multiple concurrent users and allow data to be transformed, composed into maps,

and annotated by the user. To support spatial analysis, the system must initiate

and manage several concurrent, long-running, computationally demanding analy-

sis processes. Scalability is of paramount importance, but without compromising

ease of use.

Figure 2.1: IMS architecture showing the main services grouped by layer.
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Portal services are distributed into three tiers, namely the user interface

tier, the processing tier, and the resource tier. Starting from the bottom, the

storage resource tier comprises of two types of storage resources, file-oriented and

database-oriented. File-oriented storage can be used both to store spatial data in

files, and transform files among different file formats. Database-oriented storage

is used for vector spatial data and spatial metadata. The processing tier encapsu-

lates a number of visualization and spatial analysis services. Visualization services

are used to render maps to be presented to the user, while analysis services can

be initiated by the user to perform simple or demanding computations. Simple

computations execute synchronously, i.e., the system returns the result to the

user immediately, while demanding computations are performed asynchronously.

The user interface tier is responsible for user management, authentication and

user interaction. It layers a user interface on top of spatial data rendered by the

visualization service using a mashup approach. The actual services are depicted

in more detail in Figure 2.1.

2.1.2 User Interface

To compete with desktop applications, web applications must overcome two

challenges related to interaction with the user: (a) they must provide a set of

graphical controls embedded in the document-oriented web framework, and (b)

they must minimize response time, by dividing processing between the browser

and the server in order to reduce CPU and network transfer delays.
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In IMS, user interaction is provided by a number of simple, intuitive web

pages. There are two main web pages, the map interactive analysis page, used

for spatial visualization, annotation and simple analysis, and the non-interactive

analysis page, used for the configuration, monitoring and control of demand-

ing analysis computations. These interfaces are implemented as AJAX (Asyn-

chronous Javascript And XML) pages [6]. AJAX pages are web pages enhanced

by substantial Javascript code executing at the web browser. This code is able

to perform Remote Procedure Calls to the server, and modify only parts of the

page displayed to the user, without significant delays (such as the delay of fully

reloading a web page). The use of AJAX technology offers a level of interactivity

and flexibility that approaches desktop applications. For example, using AJAX

we have implemented graphical annotation and inspection tools on the spatial

data displayed (distance measurement, cropping, feature selection, etc.)

2.1.3 Visualization Services

Visualization of spatial data can be challenging to implement. The portal

must be able to synthesize spatial content from different sources into a coher-

ent HTML-based document, on top of which a number of additional inspection

and annotation tools can be overlaid. In order to minimize network traffic be-

tween browser and server, only the minimum necessary data is transferred. The

transferred data is mostly in the form of raster images, with a small amount of

additional metadata needed to configure the inspection and annotation controls.
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This data is called the spatial component of a web page.

The role of visualization services is to prepare the spatial component for pages

displayed to the user. Spatial component can be prepared either by rendering

locally stored data (e.g., using UMN MapServer) or possibly by incorporating

remotely accessible information (e.g., interfacing to Google Maps). The spatial

component is then integrated with user interface components into a rich, AJAX-

based HTML page using mashup techniques. The service-oriented architecture of

IMS allows easy extension with additional visualization services, as long as these

are wrapped by an appropriate service interface, allowing mashup integration

with the rest of the system.

2.1.4 Analysis Services

Visualizing prepared spatial data may not be sufficient for sophisticated deci-

sion support; instead, it is often required to be able to analyze raw data in ad-hoc

ways. IMS supports this functionality via two types of analysis tools: interactive

and non-interactive (offline).

For interactive analysis, IMS supports a rich library of Map Algebra (Raster

Algebra) operations. Included are thresholding, algebraic fitting, linearization,

and histogramming operations. These tools operate synchronously, i.e. each

tool is applied on the visible spatial data and the result is displayed to the user

immediately. Note that some tools may take a long time (in the order of several

seconds to tens of seconds) to operate, and then re-render the output via the
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visualization service.

Non-interactive analysis involves long-running computations, possibly oper-

ating on massive amounts of data and consisting of several steps. The actual

analysis software is external to IMS, running on remote platforms (e.g., high-

performance parallel computers, computational grids) and requiring extensive

configuration. Such analysis is supported in IMS by an extensible modular archi-

tecture, each module corresponding to a different analysis. Modules communicate

with IMS via an interface, accessible via scripting extensions that can be used to

prepare input data and customize analysis parameters, initiate and monitor the

state of processing, and finally, collect the output data and make it available for

visualization. Execution of analysis processes is asynchronous: non-interactive

analysis jobs are not related to user sessions.

2.1.5 Storage resource Services

Spatial data exchange and management must be able to handle massive datasets,

described by incompatible metadata and stored in a multitude of formats. IMS

storage services offer effortless data exchange and management. Storage resources

are either file systems or spatial databases. The bulk of IMS data is stored in

files. However, a spatial database can be used to store (a) metadata related

to spatial files, (b) annotations on spatial data entered interactively, and (c)

metadata related to particular analysis services (in application-specific database

schemas). File-based spatial data is managed through three types of services.
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File management services are related to uploading/downloading/copying files,

controlling access and organizing into directory hierarchies. Data translation ser-

vices support transformation between over 40 spatial data formats (essentially

those supported by the GDAL and OGR Simple Features Libraries). Finally,

data composition services are used to construct assemblies of data, and augment

them with the necessary metadata files, for particular visualization and/or anal-

ysis services. For example, a number of spatial raster and/or vector files can be

composed into a new map (e.g., each file defining a map layer) to be rendered by

the visualization service using UMN MapServer.

2.1.6 Implementation Issues

The architecture of IMS was implemented as a monolithic web and application

server process, written in Tcl/Tk. This implementation had minimal overhead,

but its scalability was limited, as computationally demanding services would not

be effectively dispatched to additional computational resources. Performance has

been a major consideration in designing the new architecture, since geospatial

datasets of landscape units, such as watersheds of tens of km2, are big enough to

require extensive computation times. By moving to a Service-Oriented Architec-

ture, it is possible to scale to the required amount of resources that can support

system load.

A major concern addressed by the architecture of IMS is extensibility, in

order to take advantage of the wealth of open-source geospatial software available
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today, as well as publicly available spatial services. To this end, IMS core is

implemented on a portable TCL/Tk-based environment and can be deployed

in most popular operating systems and hardware platforms. In addition, all

major IMS components are implemented by open-source software, including the

Google AJAX engine, the Postgres relational database with PostGIS extensions,

the MapServer system from the University of Minnesota, the GDAL library for

manipulation and translation of spatial data, the NAP system [7] for matrix

algebra operations, and others. These are superior-quality components, free of

cost and licensing restrictions, continuously supported and upgraded. Thus, IMS

deployments can be done cheaply and easily on available hardware, but with the

possibility to scale as application needs increase and to evolve as the technology

standards change.

2.2 Grid Computing

Grid computing is the act of sharing tasks over multiple computers. Tasks can

range from data storage to complex calculations and can be spread over large ge-

ographical distances. Unlike conventional networks that focus on communication

among devices, grid computing takes advantage of the unused processing cycles

of all computers in a network, for solving problems too intensive for any stand-

alone machine. Grid computing can provide effective solutions for commercial,

academic and personal problems.

These computers join together to create a virtual supercomputer. Computers
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networked together can work on the same problems, that traditionally were re-

served for supercomputers, and yet this network of computers are more powerful

than the super computers built in the seventies and eighties. Modern supercom-

puters are built on the principles of grid computing, incorporating many smaller

computers into a larger whole.

The ideas of the grid (including those from distributed computing, object-

oriented programming, and Web services) were brought together by Ian Foster,

Carl Kesselman, and Steve Tuecke, widely regarded as the fathers of the grid

[13]. They led the effort to create the Globus Toolkit [14] incorporating not

just computation management but also storage management, security provision-

ing, data movement, monitoring, and a toolkit for developing additional services

based on the same infrastructure, including agreement negotiation, notification

mechanisms, trigger services, and information aggregation. While the Globus

Toolkit remains the de facto standard for building grid solutions, a number of

other tools have been built that answer some subset of services needed to create

an enterprise or global grid.

In fact, grid can be seen as the latest and most complete evolution of more

familiar developments such as clusters, the Web, peer-to-peer computing and

virtualization technologies.

• Like the Web, grid computing keeps complexity hidden: multiple users

enjoy a single, unified experience.

• Unlike the Web, which mainly enables communication, grid computing en-
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ables full collaboration toward common goals.

• Like peer-to-peer, grid computing allows users to share files.

• Unlike peer-to-peer, grid computing allows many-to-many sharing not only

files but other resources as well.

• Like clusters, grids bring computing resources together.

• Unlike clusters, which need physical proximity and operating homogeneity,

grids can be geographically distributed and heterogeneous.

• Like virtualization technologies, grid computing enables the virtualization

of IT resources.

• Unlike virtualization technologies, which virtualize a single system, grid

computing enables the virtualization of vast and disparate IT resources.

2.3 Load Balancing

CORBA is increasingly popular as distributed object computing middleware for

systems with stringent quality of service (QoS) requirements, including scalability

and dependability. One way to improve the scalability and dependability of

CORBA-based applications is to balance system processing load among multiple

server hosts. Load balancing can help improve system scalability by ensuring

that client application requests are distributed and processed equitably across a

group of servers. Likewise, it can help improve system dependability by adapting
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dynamically to system configuration changes that arise from hardware or software

failures. Load balancing can be distinguished into three types, Network-based,

OS-based and Middleware-based.

Network-based load balancing is provided by IP routers and domain name

servers (DNS) that service a pool of host machines. For example, when a client

resolves a hostname, the DNS can assign a different IP address to each request

dynamically based on current load conditions. The client then contacts the des-

ignated backend server, unaware that a different server could be selected for its

next DNS resolution. Routers can also be used to bind a TCP flow to any back-

end server based on the current load conditions and then use that binding for

the duration of the flow. High volume Web sites often use network-based load

balancing at the network layer (layer 3) and transport layer (layer4). Layer 3

and 4 load balancing use the IP address/hostname and port, respectively, to de-

termine where to forward packets. Load balancing at these layers is somewhat

limited, however, by the fact that they do not take into account the content

of client requests. Instead, higher-layer mechanisms,such as the so-called layer 5

switching described below,perform load balancing in accordance with the content

of requests, such as pathname information within a URL.

OS-based load balancing is provided by distributed operating systems via

clustering, load sharing, and process migration [15] mechanisms. Clustering is

a cost effective way to achieve high-availability and high-performance by com-

bining many commodity computers to improve overall system processing power.
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Processes can then be distributed transparently among computers in the cluster.

Clusters generally employ load sharing and process migration [16]. Balancing

load across processors, or more generally across network nodes, can be achieved

via process migration mechanisms, where the state of a process is transferred

between nodes. Transferring process state requires significant platform infras-

tructure support to handle platform differences between nodes. It may also limit

applicability to programming languages based on virtual machines, such as Java.

Middleware-based load balancing is performed in middleware, often on a per-

session or per-request basis. For example, layer 5 switching [17] has become

a popular technique to determine which Web server should receive a client re-

quest. ORB middleware allows clients to invoke operations on distributed objects

without concern for object location, programming language, OS platform, com-

munication protocols and interconnects, and hardware. Moreover, ORBs can de-

termine which client requests to route to which object replicas on which servers.

Middleware-based load balancing can be used in conjunction with the special-

ized network-based and OS-based load balancing mechanisms outlined above.

It can also be applied on top of commodity-off-the-shelf (COTS) networks and

operating systems, which helps reduce cost. In addition, middleware-based load

balancing can provide semantically rich customization hooks to perform load bal-

ancing based on a wide range of application-specific load balancing conditions,

such as run-time I/O vs. CPU overhead conditions.
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2.3.1 Load Balancing Strategies

There are various strategies for designing CORBA load balancing services.

These strategies can be classified along the following characteristics.

Client binding granularity

A load balancer binds a client request to a replica each time a load balancing

decision is made. Specifically, a clients requests are bound to the replica selected

by the load balancer. Client binding can be classified according to its granularity,

as follows:

• Per-session Client requests will continue to be forwarded to the same replica

for the duration of a session, which is usually defined by the lifetime of the

client [18].

• Per-request Each client request will be forwarded to a potentially different

replica, for example bound to a replica each time a request is invoked.

• On-demand Client requests can be re-bound to another replica whenever

deemed necessary by the load balancer. This design forces a client to send

its requests to a different replica than the one it is sending requests to

currently.
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Balancing policy

When designing a load balancing service it is important to select an appro-

priate algorithm that decides which replica will process each incoming request.

For example, applications where all requests generate nearly identical amounts

of load can use a simple round-robin algorithm, while applications where load

generated by each request cannot be predicted in advance may require more ad-

vanced algorithms. In general, load balancing policies can be classified into the

following categories:

• Non-adaptive A load balancer can use non-adaptive policies, such as a

simple round-robin algorithm or a randomization algorithm, to select which

replica will handle a particular request.

• Adaptive A load balancer can use adaptive policies that utilize run-time

information, such as the amount of idle CPU available on each back-end

server, to select the replica that will handle a particular request.

2.3.2 Load Balancing Architectures

By combining the strategies described above in various ways, it is possible to

create the alternative load balancing architectures described below.
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Non-adaptive per-session architectures

One way to design a CORBA load balancer is make to the load balancer select

the target replica when a client/server session is first established, i.e. , when

a client obtains an object reference to a CORBA objectnamely the replicaand

connects to that object. Note that the balancing policy in this architecture

is nonadaptive since the client interacts with the same server to which it was

directed originally, regardless of that servers load conditions. This architecture

is suitable for load balancing policies that implement round-robin or randomized

balancing algorithms. Different clients can be directed to different object replicas

by either using:

1. A middleware activation daemon, such as a CORBA Implementation Repos-

itory [19].

2. A lookup service, such as the CORBA Naming or Trading service.

Load balancing services based on a per-session client binding architecture

can satisfy requirements for application transparency, increased system depend-

ability, minimal overhead, and CORBA interoperability. The primary benefit of

per session client binding is that it incurs less run-time overhead than the al-

ternative architectures described below. Non-adaptive per-session architectures

do not, however, satisfy the requirement to handle dynamic client operation re-

quest patterns adaptively. In particular, forwarding is performed only when the

client binds to the object, i.e. , when it invokes its first request. Overall system
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performance may suffer, therefore, if multiple clients that impose high loads are

bound to the same server, even if other servers are less loaded. Unfortunately,

non-adaptive per-session architectures have no provisions to reassign their clients

to available servers.

Non-adaptive per-request architectures

A non-adaptive per-request architecture shares many characteristics with the

non-adaptive per-session architecture. The primary difference is that a client

is bound to a replica each time a request is invoked in the non-adaptive per-

request architecture, rather than just once during the initial request binding.

This architecture has the disadvantage of degrading performance due to increased

communication overhead.

Non-adaptive on-demand architectures

Non-adaptive on-demand architectures have the same characteristics as their

per-session counterparts described above. However, non-adaptive on-demand ar-

chitectures allow re-shuffling of client bindings at an arbitrary point in time.

Note that run-time information, such as CPU load, is not used to decide when

to rebind clients. Instead, clients could be re-bound at regular time intervals, for

example.
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Adaptive per-session architectures

This architecture is similar to the non-adaptive per-session approach. The pri-

mary difference is that an adaptive per-session can use runtime load information

to select the replica, thereby alleviating the need to bind new clients to heavily

loaded replicas. This strategy only represents a slight improvement, however,

since the load generated by clients can change after binding decisions are made.

In this situation, the adaptive on-demand architecture offers a clear advantage

since it can respond to dynamic changes in client load.

Adaptive per-request architectures

This design introduces a front-end server, which is a proxy [20] that receives

all client requests. In this case, the front-end server is the load balancer. The

load balancer selects an appropriate back-end server replica in accordance with

its load balancing policy and forwards the request to that replica. The front-end

server proxy waits for the replicas reply to arrive and then returns it to the client.

Informational messages,called load advisories, are sent from the load balancer to

replicas when attempting to balance loads. These advisories cause the replicas to

either accept requests or redirect them back to the load balancer. The primary

benefit of an adaptive request forwarding architecture is its potential for greater

scalability and fairness. For example, the front-end server proxy can examine the

current load on each replica before selecting the target of each request, which may

allow it to distribute load more equitably. Hence, this forwarding architecture
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is suitable for use with adaptive load balancing policies. Unfortunately, this

architecture can also introduce excessive latency and network overhead because

each request is processed by a front-end server. Moreover, two new network

messages are introduced:

1. The request from the front-end server to the replica.

2. The corresponding reply from the back-end server (replica) to the front-end

server.

Adaptive on-demand architectures

In this architecture clients receive an object reference to the load balancer ini-

tially. Using CORBAs mechanisms the load balancer can redirect the initial client

request to the appropriate target server replica. CORBA clients will continue to

use the new object reference obtained as part of the LOCATION FORWARD

message to communicate with this replica directly until they are redirected again

or finish their conversation. Unlike the non-adaptive architectures described ear-

lier, adaptive load balancers that forward requests on-demand can monitor replica

load continuously. Using this load information and the policies specified by an

application, a load balancer can determine how equitably the load is distributed.

When load becomes unbalanced, the load balancer can communicate with one or

more replicas and request them to use the standard CORBA LOCATION FOR-

WARD mechanism to redirect subsequent clients back to the load balancer. The

load balancer will then redirect the client to a less loaded replica. Upon receipt of
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a LOCATION FORWARD message, a standard CORBA client ORB re-contacts

the load balancer, which then redirects the client transparently to a less heavily

loaded replica. Using this architecture, the overall distributed object computing

system can

1. recover from unequitable client/replica bindings while

2. amortizing the additional network and processing overhead over multiple

requests

This strategy requires minimal changes to the application initialization code

and no changes to the object implementations (servants) themselves. The primary

drawback with adaptive on-demand architectures is that server replicas must

be prepared to receive messages from a load balancer and redirect clients to

that load balancer. Although the required changes do not affect application

logic, application developers must modify a servers initialization and activation

components to respond to the load advisory messages mentioned above.
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Chapter 3

Architecture

A GIS system is using data ,which size differs between one another but is

commonly huge. This is a problem that will consume time, if we have to transfer

data over a local area network or internet, as well as space if we maintain files in

more than one storage devices. It is important therefore in the beginning of our

design, to have a clear view of the way that the different services in our system

could have access on local or remote disks.

The figure 3.1 represents our approach that a service running on a specific

machine could have data access in more than one local and remote hard disks

and also the system would be capable to add or remove disk links, while a service

is executed.
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Figure 3.1: Distributed Filesystem
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3.1 File Namespace

The services of the proposing architecture would be able to mount and unmount

storage resources and each service could maintain several physical disks or even

network disks. Moreover, files would be copied from a service’s filesystem to

another. These characteristics are raising filepath confusions of the system while

retrieving files among various storage devices. In order to avoid them we are

introducing an unified namespace of files (File Namespace). The designation of

files is done by a specific URI scheme. The URI scheme is distinguished between

physical and symbolic addresses. To be more specific a physical address has

the form : ims://LFMName:diskId/filePath . LFMName identifies a Local

File Manager (LFM), it is a name of a service which manages storage resources

and its functionality will be analyzed later. Moreover, diskId is a numerical

identifier, which is unique for every local or remote storage device. Lastly, filePath

indicates the name and optionally the location of a referenced file by specifying

the directory containing the file, and other directories that may precede it in

the system hierarchy. On the other hand symbolic addresses have the form:

ims:///filePath . A symbolic address can refer to another symbolic or to a

physical one. Every symbolicDir is an arbitrary directory name or directory

path, which is registered by a LFM service and it is unique throughout the

system. Furthermore, some examples will be mentioned, based on figure 3.1, to

demonstrate the use of file namespace :

Physical addresses locating the same file
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• ims://service1LFM:1/a/d/d/x.jpg = ims://service2LFM:1/a/b/d/x.jpg

• ims://service2LFM:1/a/e/g/w.map = ims://service2LFM:2/a/c/d/w.map

• ims://service2LFM:2/a/b/e/f/z.hdf = ims://service3LFM:1/a/c/e/z.hdf

Mapping between global directories

• ims:///symbolic/data = ims://service2LFM:1/a/b/d

Symbolic mapping to physical address

• ims:///symbolic/data/y.tif = ims://service1LFM:1/a/d/d/y.tif

3.2 Service Oriented Architecture

First of all, we illustrate the general outline of our service oriented architecture.

The basic components are the LookUpServer, the NapBalance, the LFMServers

and the NapServers. All these components were implemented as CORBA services

and are written with Python programming language, whereas TclHttpd session

is the web server of our system. In figure 3.2 except from the basic services of

our architecture, it is also introduced the communication relations among them.

The Object Request Broker we used for our implementation is omniORB

which is a robust high performance CORBA ORB for C++ and Python. It is

freely available under the terms of the GNU Lesser General Public License (for

the libraries), and GNU General Public License (for the tools). omniORB is

largely CORBA 2.6 compliant. The services communicate among them and with
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Figure 3.2: Service Oriented Architecture Overview
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the clients, using the OMNI Naming Service (omniNames), which is an omniORB

implementation of the OMG’s COS Naming Service Specification. It offers a way

for a client to turn a human-readable name into an object reference, on which the

client can subsequently invoke operations in the normal way. The Naming Service

stores a set of bindings of names to objects. These bindings can be arranged as

an arbitrary directed graph, although they are often arranged in a tree hierarchy.

From the python library we used bsddb module, which provides an interface

to the Berkeley DB library. Bsddb objects behave generally like dictionaries.

Keys and values must be strings, however, so to use other objects as keys or

to store other kinds of objects the user must serialize them somehow, typically

using marshal.dumps() or pickle.dumps(). For storing list objects, pickle module

was used for serializing. The lookupServer and the LFMServer are using the

Btree file format of Berkeley DB, to keep records of information about system’s

storage resources. According to python’s documentation, starting in Python 2.5

Berkeley DB interface should be safe for multithreaded access. Moreover, we

make use of python’s BaseHTTPServer module for file transfer among LFMs.

This module defines two classes for implementing HTTP servers (Web servers).

Usually, this module is not used directly, but is used as a basis for building

functioning Web servers. For file transfer the HTTPServer was implemented us-

ing SimpleHTTPServer module, which defines a request-handler class interface-

compatible with BaseHTTPServer.BaseHTTPRequestHandler, that serves files

only from a base directory. In our attempt to add extra MapServers to our
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system to distribute their C.P.U. and time consumption, we had to take into ac-

count that the MapServer program itself consists of only one file, the ”mapserv”

binary executable. This is a CGI executable, meant to be called and run by

HTTP server. Python’s CGIHTTPServer module was preferred for this task.

This module defines a request-handler class, interface compatible with Base-

HTTPServer.BaseHTTPRequestHandler and inherits behavior from SimpleHTT-

PServer.SimpleHTTPRequestHandler but can also run CGI scripts. It can also

run CGI scripts on Unix and Windows systems, and on Mac OS it will only

be able to run Python scripts within the same process as itself. BaseHTTP-

Server.HTTPServer class process requests synchronously, each request must be

completed before the next request can be started. This characteristic does not

take advantage the bandwidth of a Local Area Network (LAN) or any other net-

work. For instance, if a large number of requests occur simultaneously, many of

them will be queued and as a result their transfer time will be increased.. The

solution is to create a separate process or thread to handle each request. The

ForkingMixIn and ThreadingMixIn mix-in classes can be used to support asyn-

chronous behavior. In our case a threading version of HTTPServer was created.

3.2.1 LookupServer

LookupServer keeps all the information of the system. It keeps record of all

the other running services, of the symbolic links and global paths which are used

by the LFMs, of the newest version of files that have been transferred and altered
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in other storage devices and for every user a list of his personal files which are

spread in several machines. The CORBA Interface Definition Language which

defines the interface to LookupServer is illustrated below. The type listString is

defined by us for input and output arguments.

typedef sequence <string> l i s t S t r i n g ;

interface lookupServer{

// search f o r a g l o b a l add r e s s or sympo l i c l i n k

//and r e tu rn p h y s i c a l add r e s s ( es )

l i s t S t r i n g s e a r chF i l e ( in string logicalName ) ;

// add l i n k s between g l o b a l−>ph y s i c a l , symbo l i c−>g l o b a l ,

// symbo l i c−>p h y s i c a l a d d r e s s e s in mapping d i c t i o n a r y

string addDiskMapEntry ( in string l o g i c a l , in string phys i c a l ) ;

// d e l e t e an en t r y from mapping d i c t i o n a r y

string delDiskMapEntry ( in string l o g i c a l ) ;

// r e t u rn i p addre s s and f i l e pa th f o r t r a s f e r i n g a f i l e

l i s t S t r i n g getHTTPArgs ( in string machineName , in string diskID , in string f i l ePa th ) ;

// o b t a i n f o r t h e a s k i n g s e s s i o n th e cu r r en t v e r s i o n o f t h e f i l e in u r i

string g e tF i l e ( in string uri , in string s e s s i on , in string userName ) ;

// r e g i s t e r in l o o kupSe r v e r da t a ba s e a new f i l e , a cop i ed f i l e or a new v e r s i o n

// o f an a l r e a d y e x i s t i n g f i l e

void r e g i s t e r F i l e ( in string uri , in string s e s s i on , in string act ion , in string userName , in string imgName ) ;

// d e l e t e f i l e from da taba s e and promt a l l t h e l fmSe r v e r s

// to d e l e t e i t from t h e i r scope

string d e lF i l e ( in string uri , in string name ) ;

// keep in l o c a l d i c t i o n a r y a l l t h e running s e r v i c e s

void r e g i s t e r S e r v i c e ( in string name , in string i o r ) ;

// r e t u rn a p o i n t e r to e x t r a c t from ur i f i l e name and f i l e d i r

short s p l i tU r i ( in string ur i ) ;

// add a d i r e c t o r y en t r y to ho l d i t s f i l e l i s t

void addDir ( in string dirName ) ;
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// add f i l e name in d i r e c t o r y ’ s l i s t

void addF i l eL i s t ( in string dir , in string f i leName ) ;

// d e l f i l e name from d i r e c t o r y ’ s l i s t

void d e l F i l e L i s t ( in string dir , in string f i leName ) ;

// c a l l t h e a p p r o p r i a t e l fm Se r v i c e

l i s t S t r i n g img l i s t ( in string userName , in string type ) ;

// c a l l LFM to check i f a f o l d e r e x i s t s , i f not c r e a t e i t and update l o c a l , g l o b a l mapping

void dirCheck ( in string s e s s i on , in string path ) ;

} ;

Registration of Services

The lookupServer initializes, when it is activated, an object of type dictionary,

which records a mapping between a service’s name and it’s object reference. Every

service ,except http server, is calling lookup server’s function registerService(..)

to record itself. This dictionary object helps the synchronization of LFMs when

a file has to be transferred from one LFM to another via HTTP or when a file has

to be deleted from every individual LFM scope. Although we use omniNames

to invoke operations among the various servers on our system, we preferred to

implement a naming service of our own, for LookupServer’s internal use to achieve

simplicity and reduction of omniNames calls for resolving object references.

Recording of LFMs mappings

In its initialization stage a LFMServer reads from a file information such as its

global name, an IP address where its HTTP server listens and other atomic infor-
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mation that separates it from other LFMs. Furthermore, in that initial file is kept

the information about storing devices, which are accessible from it, as well as all

the address bindings that is using. These address bindings are of type physical to

physical, symbolic to symbolic and symbolic to physical. Every LFMServer after

reading this contents it sends them to lookupServer to store them at mapping.db

.This information aids lookupServer to synchronize the LFMs to reduce file trans-

fer. The functions that manage this information are addDiskMapEntry(..) and

delDiskMapEntry(..).

LookupServer Functionality

A file in IMS in order to be able to get accessed, transferred from one LFM to

another or deleted has to be registered. Lookup server keeps a database record,

in which stores information for every file.

Lookup server utilizes two database files. The information in these database

files is handled like Python’s dictionaries. The first one is fileRec.db, which has

for key the file’s URI and for value a list object, with items the LFMName, which

belongs to the LFM service that handles the file, and a version identifier. This

information aids lookup server to locate, in which LFM scope is stored the newest

version of a file. The other one is dirList.db, which has for key a user’s name

and for value a list object, which items are the URIs of all the files this user is

handling. This information prevents lookup server from sending a request to all

LFMs asking for a user’s files.
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The functions registerFile(..), getFile(..), delFile(..) make use of fileRec.db

and because they are modifying it, are implemented as monitors. To be more

detailed about their functionality and interaction with fileRec.db we illustrate an

example of their use. Firstly about registerFile(..), when a new file enters IMS,

whether it is uploaded or produced by a system function, a new entry is added

to fileRec.db with key the URI of the file and value a list object with elements

the LFMName the file belongs and version identifier equal to 1.The functions

registerFile(..), getFile(..), delFile(..) make use of fileRec.db and because they

are modifying it, are implemented as monitors. To be more detailed about their

functionality and interaction with fileRec.db we illustrate an example of their use.

Firstly about registerFile(..), when a new file enters IMS, whether it is uploaded

or produced by a system function, a new entry is added to fileRec.db with key

the URI of the file and value a list object with elements the LFMName the file

belongs and version identifier equal to 1. For example, suppose that a file is

uploaded in tclLFM’s scope and another is created by NapServer1 and stored in

its LFM scope. The following information will be stored in fileRec.db.

Table 3.1: fileRec.db Example 1:Insertion of a file

Keys Values

ims://tclLFM:1/data/upload.jpg [tclLFM ,1]

ims://nap1LFM:1/user/output.jpg [nap1LFM ,1]

If later on this file is requested by a NAPServer or any other service of our
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architecture and is transferred to its LFM, registerFile(..) is called to record the

copy of this file to the requesting LFM scope. If the specified file had no entry

at the requesting LFM, a new entry will be added. Otherwise, if the requesting

LFM had an outdated version of the file, the version identifier of the entry will

be updated. As shown in the following example the newest version of a file is

transferred to the requesting LFM.

Table 3.2: fileRec.db Example 2:Copying of file

Keys Values

ims://tclLFM:1/data/upload.jpg [tclLFM ,1] [nap1LFM ,1]

ims://nap1LFM:1/user/output.jpg [nap1LFM ,1] [nap2LFM ,1]

ims://tclLFM1:/data/file.jpg [tclLFM ,1] [nap1LFM ,2] [nap2LFM ,2]

If finally a NAPServer modifies a file through one of its functions, register-

File(..) is called to increase the version identifier of the file to the corresponding

LFM.

Table 3.3: fileRec.db Example 3:Modification of a file

Keys Values

ims://tclLFM:1/data/upload.jpg [tclLFM ,1] [nap1LFM ,2]

ims://nap1LFM:1/user/output.jpg [nap1LFM ,1] [nap2LFM ,2]

In case a NAPServer is calling the getFile(..) function requesting a file the

following actions will take place. First of all, the function will retrieve from

the database the LFMName in which lies the newest version of the asked file.
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Secondly, it will examine if the LFMName that was retrieved serves the calling

NAPServer. If the correspondence exists, it will respond NAPServer that has

access to the file. In a different case, it will prompt NAPServer’s LFM to get

the file supplying it with the file’s URI and information about the LFM where

the file is stored. Finally, the LFM will follow a procedure, which is analyzed

later, and will answer to the lookupServer’s getFile(..) with a boolean value, if

access to the file was accomplished. This answer is then forwarded to the calling

NAPServer.

A user has the option of deleting a file that he owns. When this action is

taking place the delFile(..) is called. Its purpose is to make a list of all the LFMs

that possess this file and send them a request for deleting it.

A user of a web portal like IMS is keeping and processing many files and is

very useful for him to choose the file he wants from a drop down list instead of

typing a filename. In our service oriented architecture the files of a user is possible

to be spread in many storage devices, which are handled by different LFMs. The

functions addUserList(..), delUserList(..), userList(..) make use of dirList.db and

because they are modifying it they are also implemented as monitors. Their

purpose is to manage a list with the URIs of the files of every user. This structure

will prevent LookupServer from sending a request to all LFMServers asking them

for a user’s files and then joining and returning a list of URIs. The result will be

better time performance, less network traffic and less CPU cost for the services

of our architecture. To be more comprehensive, addUserList(..) is called only
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when a file is uploaded or created by a NAP function and adds a file name to

the user’s list. The list isn’t updated when a file is copied or modified. Function

delUserList(..) removes a file name from a user’s list in case he has deleted the

corresponding file. Finally function userList(..) returns a list with the URIs of

the files of a specific user. Below we illustrate an example of dirList.db’s contents,

where for simplicity’s sake, we use simple filenames instead of displaying lists of

URIs.

Table 3.4: dirList.db Example

Username Filenames

user1 file1.hdf file2.hdf out1.hdf out2.jpg results.jpg file.shp

user2 map.hdf map1.hdf out1.hdf out2.jpg upload.hdf modified.hdf

user3 data.hdf data1.hdf out1.hdf out2.jpg modified.hdf file.hdf

3.2.2 LFMServer

The abbreviation LFM stands for Local File Manager. In the design of our

system every service that handles files needs an associated LFM. The purpose

of LFM is to maintain a list with all the global and symbolic address map-

pings, which it handles. Moreover, when a file’s URI, of another LFM scope, is

given from lookupServer, it has to check whether can obtain access through its

global address mappings. Finally, when access to a file from another LFM scope

cannot be achieved through address mappings, it has to send a request to the
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HTTPServer of the other LFM in order to transfer the file to its own scope. The

Interface Definition Language of LFMServer is illustrated below.

interface LFMServer{

// c a l l s l o o kupSe r v e r . s e a r c hF i l e and hand l e s r e sponse

l i s t S t r i n g s e a r chF i l e ( in l i s t S t r i n g f i l e L i s t ) ;

// t r a n s f e r s a f i l e w i th h t t p

string t r a n s f e r F i l e ( in string machineName , in string f i leName , in string username ) ;

// f i r s t i s c a l l i n g s e a r c hF i l e and then i f i s nece sary t r a n s f e r F i l e

string g e tF i l e ( in l i s t S t r i n g l i s t a , in string username ) ;

// add an en t r y f o r a l i n k between t o p i c a l and remote d i s k s and f o r new t o p i c a l d i s k s

// to mapping d i c t i o n a r y

string addDiskMapping ( in string loca lPath , in string remotePath ) ;

// d e l e t e an en t r y from mapping d i c t i o n a r y

string delDiskMapping ( in string l oca lPath ) ;

// check i f a f o l d e r e x i s t s and i f not c r e a t e i t and update l o c a l and g l o b a l mapping

void dirCheck ( in string path ) ;

// r e t u rn a p o i n t e r to e x t r a c t from ur i f i l e name and f i l e d i r

short s p l i tU r i ( in string ur i ) ;

} ;

LFM Initialization

The first function that is called when LFMServer is started, is reading from

a file all the necessary information that LFM needs in order to be a part of

the system. The contents of initFile are a unique name which distinguishes the

LFMServer in the system and is stored in class attribute machineName. The

name of LFMServer is commonly associated with the service that is accommo-

dating. Other values of initFile are the IP address and the port number, which
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HTTPServer is listening and are also stored in class attributes. The rest con-

tents of initFile are the global and symbolic address mappings that the service

is using, which are stored at mapping.db database file. After reading each of

the previous values LFMServer calls LookupServer’s function addDiskMapEn-

try(..) in order to store them at LookupServer’s mappping.db. Secondly, we

start a daemon thread with target function httpServer() and args LFMServer’s

IP and portNumber. The function httpServer() implements a HTTPServer for

file transfer. From the Python library we used the necessary classes and mod-

ules, which were mentioned at the technologies that were used, to assemble a

threaded HTTPServer. Finally, LFMServer is calling LookupServer’s function

registerService() to record its object reference.

LFM Functionality

As shown in figure 3.2 a LFMServer communicates only with LookupService

with CORBA calls and with the other LFMServers via HTTP. It has not com-

munication with the various services, whose file handling serves. In the analysis

of lookupServer’s function getFile(..) we had mentioned that if a NAPServer

requests a file and lookupServer verifies that the latest version of that file is

not stored in NAPServer’s LFM scope, then lookupServer will call LFMService’s

function getFile(..) which serves the NAPServer. The function getFile(..) has

two phases, firstly it calls LFMService’s function searchFile(..) to check through

address mappings if access to the file can be achieved. If this approach fails,
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then function transferFile(..) is called to transfer the file through HTTP. At

the end of function’s getFile(..) execution, it responds to lookupServer whether

file access was successed or not. The function searchFile(..) make use of LFM’s

address mappings in order to gain access to a file, which is stored in another’s

LFM scope. First of all, it parses the URI of the requested file, to obtain in-

formations about the LFM that handles it, its diskID and its file path. In the

second place it checks a list with all the LFM’s address mappings, to figure out

if there is a binding with desired LFM and diskID. Finally, it compares the file

paths and if there is a correlation a final check is made using Python’s built-in

function os.access(..), which can test the existence and our permissions to the

file. If function searchFile(..) fails to acquire access to the file, the control is ob-

tained by function transferFile(..). This function establish a connection with the

HTTPServer of the other LFMServer, then makes a request for the specific file

and since the file is transferred the function stores it with the same name in the

local scope. When the transportation is finished the fileRec.db of LookupServer

is updated by calling its function registerFile(..).

It is already mentioned that LFMServer keeps its personal information in

file mapping.db, which is created at the initialization stage. The contents of

this database file are handled by methods addDiskMapping(..) and delDiskMap-

ping(..). These methods provide the functionality to LFMServer to append or

remove information about its address mappings. Whenever one of this methods

are called to commit a change, LookupServer is subsequently updated in order
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to have a balance in the system.

3.2.3 NapBalance

On our designing approach of the distributed system load balancing is very

significant, because it can help improve system scalability by ensuring that client

application requests are distributed and processed equitably across a group of

servers. Likewise, it can help improve system dependability by adapting dy-

namically to system configuration changes that arise from hardware or software

failures.

Load balancing architecture

In our implementation we adopted the logic of an adaptive per-request archi-

tecture for load balancing. This design introduces a front-end server, NapBal-

ance, which is a proxy that receives all client requests. In this case the front-end

server is the load balancer. Our system consists also of multiple back-end servers,

NapService replicas, which are identical to each other and are processing requests

that clients send over the network. The load balancer selects an appropriate back-

end server in accordance with its load balancing policy and forwards the request

to that server. The front-end server proxy waits for the servers reply to arrive

and then returns it to the client. The primary benefit of an adaptive request

forwarding architecture is its potential for greater scalability and fairness. For

example, the front-end server proxy can examine the current load on each server
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before selecting the target of each request, which may allow it to distribute load

more equitably. Hence, this forwarding architecture is suitable for use with adap-

tive load balancing policies. Unfortunately, this architecture can also introduce

excessive latency and network overhead because each request is processed by a

front-end server. Moreover, two new network messages are introduced:

• The request from the front-end server to the back-end server

• The corresponding reply from the back-end server to the front-end server.

The load balancing policy that NapBalance adopts is based on the CPU load

percentage of the NapServers. More simply, for every new client request the Nap-

Balance obtains from a list the NapServer object with the less CPU consumption

and forwards the request to it.

Moreover, NapBalance has additional duty to distribute the computational

load of the MapServer. All the operations which are related to maps are deputed

to MapServer. It can run as a CGI program or via Mapscript which supports sev-

eral programming languages. In the initial design of IMS Portal the executable

CGI file was located in the cgi-bin directory of TclHttpd server, which was han-

dling MapServer as an ordinary CGI script in order to illustrate the requested

map result. Because of the fact that accordingly to the data size that are given

as input and the procedure that will be asked to be executed by the MapServer,

it will maybe consume considerable CPU time and will delay in returning the

requesting results. As an effect this delay will be displaced to the rest operations
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of the web portal and eventually to the user-client. In this case was followed a

non-adaptive per-session architecture design. Note that the balancing policy is

non-adaptive, specifically we use round-robin scheduling, since the client inter-

acts with the same server to which it was directed originally, regardless of that

server’s load conditions. By the term per-session we mean that since a MapServer

composes a map after a client request, it will serve all the other requests on this

specific map such as zoom in or out, surface measurement, layer addition or sub-

traction and the rest operations that are offered through map tool box. The

Interface Definition Language of NapBalance is illustrated below.

interface napBalance{

// r e g i s t e r a cg i−b in /mapserv l i n k

void r eg i s t e rMapserv ( in string mapserv ) ;

// r e t u rn a cg i−b in /mapserv l i n k

string getMapServer ( ) ;

// g e t t h e consumed t ime o f NAP s e r v i c e s

void napRusage ( ) ;

// announce th e new cpu l oad

void setNAPBalance ( in string NAP Id , in f loat cpuLoad ) ;

// keep in l o c a l d i c t i o n a r y a l l t h e running NAPServers by r e g i s t e r i n g t h e i r names−o b j e c t s

void r e g i s t e r S e r v i c e ( in string name , in string i o r ) ;

// d e l e t e from l o c a l d i c t i o n a r y t h e s p e c i f i e d NapServer

void d e l e t e S e r v i c e ( in string name ) ;

//NAP f un c t i o n s are c a l l e d th rough napBa lanceServer a f t e r choos ing t h e l e s s busy s e r v e r

void r a l u n a r y r e l ( in string user , in string source , in string imgname , in string img func , in string value ) ;

void r a l una r y f un c t i o n s ( in string user , in string imgsource , in string imgname , in string img func ) ;

string r a l b i n a r y ( in string user , in string source1 , in string source2 , in string imgname , in string img func ) ;
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void r a l f u z z y l o g i c ( in string user , in string imgsource , in string imgname , in string img func ) ;

l i s t S t r i n g gen img ( in string user , in string imgsource , in string c l a s s ) ;

string img in fo ( in string user , in string imgsource ) ;

} ;

NapBalance Initialization

At the initialization stage of NapBalance we set some service variables of great

importance to the functionality of it. First of all, we initialize variable services

which type is dictionary. This variable keeps NapServer’s id as a key and its object

reference as a value for every NapServer that is up and running. Furthermore, we

set variable napBalance of dictionary type. The purpose of this variable is to store

a pair of values for every active NapService. These values are the NapServer’s

id and the CPU percentage that its consuming. Another variable that we set is

mapservers, which is of type list. The contents of this list are the URLs of the

active MapServers, which are of type http://ip:port/path-to/mapserv-executable.

The first locator that is added to the list mapservers, at the initialization stage,

is the default Mapserver, which is called through TclHttpd server. Lastly, we set

the variable mapPtr which is of type integer and is used as pointer to perform the

round-robin scheduling of the registered MapServers. The first two are assisting

NapBalance in the load balancing of the NapServer requests, while the last two

aid NapBalance to distribute the load of the requests for MapServer.
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NapBalance Functionality

The functions of NapBalance service are distinguished into three different

groups according to their aim. The functions registerService(..), setNapBal-

ance(..) are focused on implementing the balancing policy for the NapServer’s

calls. While registerMapserv(..) and getMapServer(..) are responsible for the

MapServer’s load distribution. Finally, there is a group of functions where each

one of them correlate to a NapServer’s function and their purpose is to be the

intervener between all clients requests and the NapServer.

The function registerService(..) has two input arguments of string type. The

first one is named NapId, which is a name that identifies uniquely a NapServer

in the system. The other one is named ior, where IOR stands for Interoperable

Object Reference, and from it the object reference of the NapServer can be con-

structed. This function is called by every NapServer after its initialization. In

other words, we implement a local naming service in order to achieve simplicity

and speediness by reducing the number of calls to omniORB’s Naming Service.

All the given input data to this function are stored on the dictionary variable

services. In the second place, function setNapBalance(..) has also two input

arguments. The first one is named NapId and contains the same information as

described in the previous function. The second one is named cpuLoad and its

type is float. This variable is carrying the percentage of the CPU consumption of

the correlated NapServer. The information that is given to this function is stored

on the dictionary variable napBalance.
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The functions which perform the MapServer’s load balancing are described

below. To begin with, the function registerMapServ(..) takes one argument of

string type and adds it in the list mapservers. To be more precise, the input argu-

ment is a locator to a web server, which has been started and handles MapServer’s

CGI. The web server that was chosen is Python’s CGIHTTPServer. The other

function is getMapServer(). This function takes no input arguments and is called

to select one of the running MapServers following a round-robin policy as we have

described.

Finally, there is six functions that are mediators between client requests and

NapServes’s functions. Their purpose is to select from the dictionary napBalance

the NapServer’s object with the lowest CPU consumption and forward to it the

client’s request. In case that the NapServer’s function is returning values, the

NapBalance’s function has to wait for them and respond them to the client.

3.2.4 NapServer

NapServer contains all the raster functionality of IMS. These functions were

originally placed at directory custom of TclHttpd server, where according to

server organization there you put your own custom code and functions are au-

tomatically loaded by the server on startup. In these functions the basic role is

hold by the Tcl package NAP. The abbreviation NAP stands for N-dimensional

Array Processor, so it is obvious that this package is specialized for processing

data in the form of n-dimensional arrays. NAP was developed using C and Tcl
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programming languages. The first problem that it was faced, was the fact that

NapServer was intended to be written in Python and NAP did not have any

bindings with Python. However, the coupling with NAP package was achieved

through Python’s Tkinter module, which is a Python interface to Tcl/Tk. The

second problem arise when we realized that NAP was not designed to be executed

in multi-threaded environments. While omniORB is designed from the ground

up to be fully multi-threaded. The solution was given by enclosing the blocks

of NAP commands with a lock, which was not released until all the commands

were finished. This modification resulted to a serialized execution of commands

within a server and did not let us to take fully advantage of the characteristics of

omniORB. The Interface Definition Language of NapServer is illustrated below.

interface NAP{

// r e t u rn s NAP consumed t ime

void getRusage ( ) ;

// g e t g l o b a l d i r e c t o r y URI from inpu t

short getDir ( in string f i leName ) ;

//NAP f un c t i o n s

void r a l u n a r y r e l ( in string user , in string source , in string imgname , in string img func , in string value ) ;

void r a l una r y f un c t i o n s ( in string user , in string imgsource , in string imgname , in string img func ) ;

string r a l b i n a r y ( in string user , in string source1 , in string source2 , in string imgname , in string img func ) ;

void r a l f u z z y l o g i c ( in string user , in string imgsource , in string imgname , in string img func ) ;

l i s t S t r i n g gen img ( in string user , in string imgsource , in string c l a s s ) ;

string img in fo ( in string user , in string imgsource ) ;

} ;
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NapServer Initialization

At the initialization stage NapServer in order to make itself functional in the

system, is registering firstly at the lookupServer and then to the NapBalance. The

only matter that is left, before it begins receiving requests, is to start informing

NapBalance about the CPU percentage that its consuming. This task is deputed

to a daemon thread that runs a function which makes the appropriate checks and

accordingly informs NapBalance. The function that control CPU consumption

make use of Linux command ps, which gives informations of the current processes.

Python gives the capability, through module commands, to execute a terminal

command. First and foremost, the cpuLoad function informs the NapBalance of

NapServer’s CPU consumption. Then it enters to an infinite loop and whenever

the CPU percentage is altered, it informs NapBalance.

NapServer Functionality

In this section is not going to be explained the raster functionality that preex-

isted and is not part of this work. However, additional control, that was encap-

sulated to take advantage of architecture functionalities, will be described. All of

the six functions have to examine at the beginning of their execution whether they

have access to the files that are given for process. This is achieved with a call to

LookupServer and then will follow the control and transfer, if needed, procedure

that is analyzed in sections of LookupServer and LFMServer. Since LookupServer

responds positive, the NapServer’s function can continue its command flow. At
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the end of the function’s execution the lookupServer will be informed if an al-

ready existed file was altered or if a new file was created to register it and keep

the cohesion of the system. NapServer whether is acquiring a file via HTTP

transfer or modifying it with one of its functions, informs lookupServer using its

method registerFile(..). The distinction of the acts of copying and modifying is

accomplished by an argument that is passed to registerFile(..) and refers to the

type of registration.

Another point that is significant to mention is the functionality that is added

to function gen img(). The load balancing of the MapServer is actually taking

place here. During the execution of gen img() two files are created. The first one

is isoteia.map and contains information about the dimensions of the map the lay-

ers that would be illustrated etc. The other one is init.js and contains descriptive

information as isoteia.map and also defines the locator to MapServer CGI exe-

cutable that will handle the map. Besides this information init.js is passing the

right arguments and calling the Javascript functions that are composing the map.

At this execution stage, where init.js is created, NapBalance is requested for an

appropriate locator to serve the visualization part. At the end of the execution

these files are returned to the TclHttpd server.

Another aspect of NapServer’s functionality that is significant to mention is

the exception handling in case a NapServer is out of the system. In this case

it is very important that NapBalance will stop forwarding requests to it. To be

more specific, if a hardware of software error occurs an exception is raised and
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NapBalance’s deleteService(..) method is called, which removes NapServer from

the list of available servers.

In order to make our architecture more comprehensible a few examples will

be illustrated to observe the sequence of function calls.

Figure 3.3: Call Flow Example 1

In Figure 3.3 man can observe the function call sequence that is followed af-

ter a client request. To be more descriptive, the client requests function ral binary(file1,file2)

which receives two filenames as input to process them. The TclHttpd server for-
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wards the request to NapBalance which redirects it to Nap1 server. Then Nap1

make a call to lookupServer to assure file1 access. In the next step lookupServer

realizes that Nap1LFM does not have the latest version of the requested file in

its scope and informs it to acquire it. The file is transferred via HTTP and a

positive response is sent from Nap1LFM to lookupServer and finally to Nap1.

Exactly the same procedure is followed and for file2. When Nap1 server will

finish its process the returning values, if any, will be passed to NapBalance, then

to TclHttpd server and finally to the client. Afterwards there is a second client

request for gen img(file1). This time file1 is already acquired and there is no need

of transferring it.

The example of Figure 3.4 is representing two almost simultaneous requests.

NapBalance is distributing the load by forwarding each request to a different

NapServer. The file transfer between Nap1LFM and Nap2LFM makes clear that

a file can be positioned everywhere in the system.
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Figure 3.4: Call Flow Example 2
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Chapter 4

Performance

Since the implementation of the services of our service-oriented architecture

was finished and the correctness of the results was confirmed, there was a need of

a benchmark scenario to test if the overall goals of our architecture were accom-

plished. This section describes the design and results of several experiments that

were performed to measure the benefits of our architecture. Benchmarks per-

formed for this measurement were run using ten 1799.977 MHz AMD Hammer

Family processor workstations with 450584 kB RAM, all running Ubuntu 8.04

LTS Hardy Heron with Linux kernel version 2.6.24-16-generic. The processing

and the plots of the received data was done with the assistance of program Oc-

tave. All workstations are connected through a 100 Mbps ethernet switch. The

aim of the benchmark is to simulate a scenario where multiple users are using

concurrently the raster functionalities of the IMS portal.
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4.1 Benchmark Description

Firstly, we create thirteen treads to execute in parallelism their tasks. Each

one of these threads is representing a different user and is invoking thirty nine

NapServer’s methods. In total 507 invocations to NapServer’s methods are per-

formed during the execution of a benchmark. The sequence of methods that each

thread is invoking is selected in a random way, in order to avoid that the same

methods with the same input file arguments will be called in a serialized way by

every thread. The selection is made from a list which includes a pair of entries

for every NapServer’s function.

In order to have a clear view of the performance of our architecture, one

to eight NapServers are used to run benchmark’s scenario to extract conclu-

sions. While a benchmark is executed, different data are recorded using system

functions. These data consist of benchmark’s total execution time, NapServer’s

execution time and the size of the transmitted files. The benchmark is executed

ten times for every different number of NapServers to achieve accuracy of our

results.

4.2 Benchmark Results

In the following graphic representations are illustrated the recorded data which

were obtained through several Benchmark’s executions. In figure 4.1 is displayed

Benchmark’s mean execution time graphic and in figure 4.2 Benchmark’s speedup,
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where speedup refers to how much a parallel algorithm is faster than a corre-

sponding sequential algorithm and is defined by the following formula Sp = T1

Tp
.

It is obvious that using more than four NapServers is not improving significantly

the performance of our system. The reason that the performance of the system

is limited up to this point, can be accounted to the rise of network calls be-

tween the various servers and to the increase of process time of the synchronizing

servers of the system. First of all, adding NapServers to the system increases the

LookupServer’s workload. It is receiving requests in a higher frequency rate and it

has to assure that NapServers have access to their desired files, whether evolving

their LFMServers or not. Moreover, the workload of NapBalance is increasing,

due to the rise of the selection time between the running NapServers before send-

ing them the request and the increase of the notifications of the NapServers about

their CPU load. Furthermore, the file transfer through the network is raising,

since more NapServers are utilizing data.

In figure 4.3 is displayed NapServer’s speedup. This graphic representation is

showing clearly that NapBalance is distributing equally the workload among the

running NapServers. Figure 4.4 is illustrating NapServer’s mean execution time

and its standard deviation.

The figures 4.5 and 4.6 are illustrating the mean amount of transferred data

in MB and the mean number of transferred files respectively.
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Figure 4.1: Benchmark’s mean execution time +/- 3*σ
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Figure 4.2: Benchmark’s speedup
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Figure 4.3: NapServer’s speedup
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Figure 4.4: NapServer’s mean execution time +/- 3*σ
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Chapter 5

Conclusions

In conclusion, the implemented service oriented architecture fulfilled its goals.

It managed to transform IMS from a monolithic system to a low scale grid,

by adjusting its functionalities to CORBA services. The control mechanism of

system’s storage resources adds scalability and enables integration of new GIS

functionalities to the system. The load balancing policy offers better utilization of

hardware resources and system dependability by adapting dynamically to system,

configuration changes that arise from hardware or software failures.

There are a few matters which can be proposed for future work. First of all,

it would be better to adopt an adaptive on demand load balancing policy. Using

CORBAs mechanisms the load balancer can redirect the initial client request,

which is queued waiting for execution to the firstly selected server, to the ap-

propriate target server replica according to the CPU consumption policy. Unlike

the adaptive per request architecture that we implement, adaptive load balancers
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that forward requests on-demand can monitor replica load continuously. Using

this load information and the policies specified by an application, a load balancer

can determine more equitably the load distribution. Moreover, even in our service

oriented architecture a user request may last considerable time. This situation

for a portal’s user, waiting in front of a frozen screen, is not the preferred. There

is a need for a mechanism to permit the user to continue with other activities in

the portal or even log out from it and not to wait until his tasks are completed.

At the point where a user’s request execution is completed, a notification mech-

anism will inform him, with a screen message if he is still logged in or via e-mail.

Finally, another important issue is the maintenance of the outdated files. Since

LookupServer manipulates the version control of the files, it would be useful to

remove all the future unused files. This would lead to more available system’s

storage resources and reduced computational process for LookupServer.
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