
Technical University of Crete

Department of Electronic and Computer Engineering

Computer Aided Music Composition

using Inductive Logic Programming

By:

Emmanuel-Theofanis Chourdakis

Submitted in July 2011 in partial fulfilment of the requirements for
the Diploma degree in Electronic and Computer Engineering.

Thesis Committee:
Assistant Professor Michail G. Lagoudakis (Supervisor)
Associate Professor Alexandros Potamianos
Professor Minos Garofalakis

Πολυτεχνείο Κρήτης

Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών

Σύνθεση Μουσικής Υποβοηθούμενη απο Υπολογιστή

μέσω Επαγωγικού Λογικού Προγραμματισμού

Εμμανουήλ-Θεοφάνης Χουρδάκης

Υποβλήθηκε τον Ιούλιο του 2011 προς μερική εκπλήρωση των

υποχρεώσεων για το Δίπλωμα Ηλεκτρονικού Μηχανικού και

Μηχανικού Υπολογιστών

Εξεταστική Επιτροπή

Επίκουρος Καθηγητής Μιχαήλ Γ. Λαγουδάκης (Επιβλέπων)
Αναπληρωτής Καθηγητής Αλέξανδρος Ποταμιάνος
Καθηγητής Μίνως Γαροφαλάκης

Abstract

Music is organized sound and comes as the result of combining timbre and
rhythm through a process known as composition. Computer-Aided (Music)
Composition refers to using computers to compose music similarly to the way
engineers use Computer-Aided Design (CAD) systems to design buildings or
integrated chips. There is a plethora of Computer-Aided Algorithmic Com-
position (CAAC) systems with various characteristics that allow composers to
work on their music at various levels of detail through formal (algorithmic)
specifications of the desired outcome. In this thesis we describe a method for
computer-aided music composition based on the CAAC system Strasheela
and Inductive Logic Programming (ILP). We use an ILP learning algorithm to
learn musical rules from examples (existing music pieces) in the form of first-
order logic Horn clauses. We then transform these rules to constraints and form
a Constraint Satisfaction Problem (CSP) which is solved by Strasheela to
produce a new music composition that adheres to the input rules. The pro-
posed method can be used in a variety of ways, allowing composers to form
different combinations of automatically-learned and hand-written rules to yield
a wide range of different music compositions.

4

Περίληψη

Η μουσική είναι οργανωμένος ήχος και προκύπτει ως αποτέλεσμα του συνδυ-

ασμού ηχοχρώματος και ρυθμού μέσα από μια διαδικασία γνωστή ως σύνθεση. Ο

όρος Σύνθεση (Μουσικής) Υποβοηθούμενη από Υπολογιστή (Computer-Aided –
Music - Composition) αναφέρεται στη χρήση υπολογιστών για σύνθεση μουσικής
παρόμοια με τον τρόπο που οι μηχανικοί χρησιμοποιούν υπολογιστές για να σχεδιά-

σουν κτίρια ή ολοκληρωμένα κυκλώματα με τη βοήθεια συστημάτων CAD. Υπ-
άρχουν πολλά συστήματα για Αλγοριθμική Σύνθεση Υποβοηθούμενη από Υπολ-

ογιστή (Computer-Aided Algorithmic Composition - CAAC) με διάφορα χαρακ-
τηριστικά που επιτρέπουν στους συνθέτες να επεξεργασθούν τη μουσική τους

σε διάφορα επίπεδα λεπτομέρειας μέσω τυπικών (αλγοριθμικών) προδιαγραφών

για το επιθυμητό αποτέλεσμα. Στην εργασία αυτή περιγράφουμε μια μέθοδο για

μουσική σύνθεση με τη βοήθεια υπολογιστή που βασίζεται στο CAAC σύστημα
Strasheela και σε Επαγωγικό Λογικό Προγραμματισμό (Inductive Logic Pro-
gramming - ILP). Χρησιμοποιούμε έναν αλγόριθμο μάθησης ILP για να μάθουμε
μουσικούς κανόνες από παραδείγματα (υπάρχοντα μουσικά κομμάτια) στη μορφή

κανόνων Horn λογικής πρώτης τάξης. Στη συνέχεια, μετατρέπουμε αυτούς τους
κανόνες σε περιορισμούς και διατυπώνουμε ένα πρόβλημα ικανοποίησης περιορισ-

μών (Constraint Satisfaction Problem - CSP) που επιλύεται από το Strasheela
για να παράγει μια νέα σύνθεση που τηρεί τους κανόνες εισόδου. Η προτεινόμενη

μέθοδος μπορεί να χρησιμοποιηθεί με διάφορους τρόπους, επιτρέποντας στους

συνθέτες να διατυπώσουν διάφορους συνδυασμούς από αυτόματα παραγόμενους

και ιδιόχειρα γραμμένους κανόνες για να παράγουν ένα ευρύ φάσμα διαφορετικών

μουσικών συνθέσεων.

Contents

1 Introduction 1
1.1 Music, Mathematics, and Composition 2
1.2 Thesis Contribution . 3
1.3 Thesis Overview . 3

2 Background 5
2.1 Music Representation . 6

2.1.1 Human Music Representation 6
2.1.2 Computer Music Representation 6
2.1.3 Micro and Macro Scale 7

2.2 Computer-Aided Algorithmic Composition 7
2.3 First-Order Logic . 8

2.3.1 Expressive Power of First-Order Logic 9
2.3.2 Terms, Variables, Sentences, Quantifiers 9
2.3.3 Literals, Clauses, Horn Clauses 10
2.3.4 Models and Interpretations 11
2.3.5 FOL Syntax and Prolog Representation 11
2.3.6 Prolog Queries and Production Systems 12

2.4 Inductive Logic Programming . 14
2.5 Working with Constraints . 18

2.5.1 Constraint Satisfaction Problems 18
2.5.2 Constraint Satisfaction in First-Order Logic 19

2.6 Strasheela . 20

3 Problem Statement 21
3.1 Human Intuition in Composition 22
3.2 Machine “Intuition” in Composition 22
3.3 Related Work . 23

4 Our Approach 25
4.1 Representations and Transformations 26

4.1.1 The **kern Representation 26
4.1.2 FOL Predicate Representation 28
4.1.3 Representation of Examples 29
4.1.4 Representation of Background Knowledge 29
4.1.5 Representation of Induced Rules 30
4.1.6 The Oz Representation 31

4.2 Rule Induction . 32

7

8 CONTENTS

4.2.1 Example Sets . 33
4.2.2 The PAL Algorithm . 34
4.2.3 PAL Induction Examples 37
4.2.4 PAL Limitations . 40

4.3 Rule Application and Music Generation 40
4.3.1 CSP Formulation . 40
4.3.2 Constraint Relaxation . 42
4.3.3 Constraints Application Example 42
4.3.4 Rule Modification and Handwritten Rules 43

4.4 Summary . 44

5 Application to Music Composition 49
5.1 A Method for Music Composition 50
5.2 Using Hand-Written rules . 51
5.3 Using Extracted Rules . 56
5.4 Using Induced Rules . 59

6 Conclusion 65
6.1 Limitations . 66
6.2 Future Work . 66

A Software Usage Instructions 69
A.1 Software Repository . 70
A.2 Generic System Information . 70
A.3 Scripts . 70
A.4 Workflow Example . 72

List of Figures

2.1 The syntax of First-Order Logic with equality in BNF. 14
2.2 The lgg operator, defining the LGGs between the two operands. 17
2.3 Examples of the lgg operator. 18

4.1 The graphical diagram of the proposed process. 26
4.2 First species Fuxian counterpoint rule examples. 33
4.3 The complete PAL algorithm. 45
4.4 The modified version of PAL. 46
4.5 A 2× 3 (2 Voices, 3 Positions) score in the form of a CSP. 47

5.1 A sample background knowledge. 52
5.2 A sample background knowledge (cont.). 53
5.3 A composition that adheres to the First species Fuxian counter-

point rules. 56
5.4 The simple 2 voice piece we will use as input. 57

9

10 LIST OF FIGURES

Chapter 1

Introduction

1

2 CHAPTER 1. INTRODUCTION

1.1 Music, Mathematics, and Composition

Every human on earth is familiar to some extent with music. One may not be
able to give a correct definition of music, but most people can understand that
it is something subjective and relates directly to our mood. Most people can
relate emotions to music. A song can be joyful, a song can be sad. Music can be
entertaining by itself, can be used to ephasize other forms of art (i.e. cinema),
can even be used for emotion manipulation and propaganda. It clearly relates
to our state of mind and some would argue that it even affects our physical
health.

A definition for music has been the subject of a long debate. The word itself
comes from the greek work “mousike” which reffered to the arts and sciences
governed by Muses, the ancient Greek Goddesses of Art and Sciences. Clearly,
the word meant much more than the sound-related form of art we refer to today
as music. In ancient Rome, it meant both poetry as well as instrumental music
and in the middle ages, it had the same importance as arithmetics, geometry
and astronomy. Only in the fifth century, the concept of music as we know it
started appearing, when Boethius split the concept of music into three major
kinds: Musica Universalis, Musica Humana, and Musica Instrumentalis. The
first two did not relate to sound itself but rather to the order of the universe and
the mathematical proportions of universal bodies like planets and stars (Musica
Universalis), and the porportions of the human body (Musica Humana). Only
the last one (Musica Instrumentalis), which was considered the lesser of three,
refered to music as something sung or generated by instruments. A modern
and popular definition is given by Edgard Varèse: “Music is Organized Sound”,
meaning that “certain timbres and rhythm can be grouped together” [1].

The relationship between music mathematics, goes even further. In the
teachings of Pythagoras, music was inseperable from numbers, which were
thought to be the key to the whole spiritual and physical universe. “So, the
system of musical sounds and rhythms, being ordered by numbers exemplified
the harmony of the cosmos and corresponded to it” [2]. The first musicians
used numbers and nature-derived mathematical properties to construct their
first systems. Ptolemy, the leading astronomer of the time, believed that math-
ematical laws “underlie the systems of both music intervals and heavenly bodies”
and that certain notes “correspond with particular planets, their distances from
each other and their movements”.

Algorithmic techniques for composing music come as a natural consequence.
Later, in the fourteenth and fifteenth century, we see formal methods in music
composition, like the isorhythmic technique. We also have the birth of the
Baroque fugue and the Classical sonata. There is also an interest on ratios in
compositions (i.e. the golden ratio) and even Mozart has been thought of having
used algorithmic-like techniques in his compositions at least once.

With the end of World War II, composers like Arnold Schoenberg, Iannis Xe-
nakis, and Györgi Ligeti introduced their own composition techniques governed
by complex, even algorithmic, procedures. Also, the development of software
algorithms in other fields have led to compositions “seeded” by fields outside
music (i.e. Chaos Theory).

Computer-Based Algorithmic Composition made its debut in 1956, when
Lejaren Hiller and Leonard Isaacson programmed an Illiac computer to do coun-
terpoint, resulting in the famous Illiac Suite for a String Quartet [3].

1.2. THESIS CONTRIBUTION 3

Up to now, there has been a large amount on work on computer-based com-
position. We can find compositions based on statistical, mathematical systems,
logic programming, neural networks, genetic algorithms, etc.

1.2 Thesis Contribution

Inductive Logic Programming (ILP) is a much-studied subfield of Machine
Learning that utilizes Logic Programming. ILP algorithms have as their ob-
jective the derivation of valid hypotheses, given some background knowledge
and a set of examples.

Constraint Satisfaction Problems (CSPs) are problems that consist of a set of
variables, domains of values for these variables, and a set of costraints that limit
the possible value assignments over subsets of variables. A solution to a CSP
problem is an assignment of values to all variables that satisfies all constraints.

In this thesis, we use an Inductive Logic Programming algorithm in order to
learn musical rules, from given examples (existing music compositions), in the
form of first-order logic Horn clauses, transform these rules to constraints, and
feed them to the CSP solver of Strasheela, a Computer-Aided Composition
System, with the goal of generating new compositions that adhere to these
rules. We then show how this method can be used for computer-aided music
composition by modifying these rules, or combining them with hand-written
rules.

1.3 Thesis Overview

In Chapter 2, the necessary background knowledge for understanding this
work is given. This chapter includes an introduction to Music Representation
and to Computer-Aided Algorithmic Composition systems, an introduction to
First Order Logic, Logic Programming, and Inductive Logic Programming, and
finally, some preliminaries on Constraint Satisfaction Problems and Constraint
Programming, as well as their relation to the First-Order Logic.

Chapter 3 describes the problem we study in this thesis, and also gives an
overview of existing related work.

Chapter 4 includes a detailed account of our approach, as well as illustrative
examples for all steps of the method.

Chapter 5 demonstrates the application of our method to music composi-
tion under various settings and provides detailed examples.

Chapter 6 discusses the problem further, gives some food for thought, and
also provides some ideas for future work.

Finally, Appendix A provides usage instructions for our software imple-
mentation.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

5

6 CHAPTER 2. BACKGROUND

2.1 Music Representation

By the term “Music Representation” we mean the form of a musical piece or
of a subset of it, which is written on a physical medium or stored into a digital
storage medium. It is essential for any music representation form to be concise
and contain all information required for a complete and correct reproduction of
the music stored.

2.1.1 Human Music Representation

The most common way of representing music by and for humans is the music
sheet. “It is a handwritten or printed form of music notation that uses modern
musical symbols”[4]. This notation can be displayed on a physical medium,
such as a book, or on a computer screen. It serves the purpose of concisely
and correcly recording a musical piece in order to enable a trained user, to
reproduce what is written in it. It comes in various forms, depending on various
parameters, like the kind of music recorded (for example, Byzantine Music has
different notation style from Western Classical Music), the musical instrument it
refers to (for example, percussions and piano sheet differ), as well as its purpose
(for example, in Jazz Music the sheet serves mostly as general instructions,
while a classical piece performance requires exact reproduction). A general
feature of sheet music is that it relies on the training of the user for the correct
interpretation and reproduction of the information stored. This generally comes
after years of training, and strongly depends on the natural capabilities of the
user.

2.1.2 Computer Music Representation

On the other hand, the representation of music on computers serves a totally
different purpose. Human sheet music targets the user and needs to provide a
correct and efficient way for him to reproduce what is written. This often comes
with a lack of implied information. For example, there is no need for the human
sheet music to contain the precise velocity that the piano performer strikes the
piano keys with in a crescendo. In fact, such information would make it harder
for the performer to read the sheet and would require extreme controlling skills
of his fingers. In its place, the “crescendo” symbol would let the performer’s
mind to “fill-in the gaps” on how much force should apply to each finger.

Such implication of information is generally avoided in computer music,
where we usually provide the entirety of the information. The exact note, the
exact time, the exact duration and the exact velocity is information known to
the computer at every moment. Such information is provided in an explicit
way. The most popular music representation protocol is MIDI1 which stores
the exact information needed for a complete reproduction of a wide set of music
pieces.

However, there is an exception to the above statement, where information
must not be explicitly provided. This is when we deal with music stored into the
computer, but for the sole purpose of reproducing human sheet music. There
are various formats for storing music sheets and various software packages that
allow the reproduction of the represented music by the computer. In this kind of

1Musical Instrument Digital Interface

2.2. COMPUTER-AIDED ALGORITHMIC COMPOSITION 7

software, usually the computer tries to emulate the way the human mind “fills-
in the gaps”. For example, given the crescendo symbol, the computer would
gradually increase the velocity that the notes are played with.

2.1.3 Micro and Macro Scale

Up to now, we have talked about representing music at a microscopic scale. That
means we need to provide detailed information for every note being played (for
example, at least the pitch, duration, and position of a note within a music
piece). This is a very convenient representation, if we want to have complete
control over music composition and we have exactly on our mind how every
instrument will sound at every moment of play. However, sometimes this mi-
croscopic scale of representation can be sometimes very tiring for the composer.

Another approach is to see the composition at a macroscopic scale. The exact
positions and durations of the exact notes may not be of primary concern. We
see the composition as a greater “plan”, taking a rather top-down approach, by
constructing an abstract skeleton and completing the details later. For example,
if we wanted to compose a “fugue” (a strictly structured form) we would start
by defining its tonic key, the number of voices and its subject, establishing first
its general structure, and then completing the details, rather than starting to
compose it note-by-note.

2.2 Computer-Aided Algorithmic Composition

Algorithmic composition in music is “the process of using some formal process to
make music with minimal human intervention”[5]. Algorithmic processes have
been used widely for a very long time, especially in western music. The term
“Algorithm” may sound alien to music, but even basic western music studies,
like harmony or counterpoint, take a somewhat algorithmic approach. For ex-
ample, the 4-voice harmonization of a given bassline has strict rules which must
be followed, together with some degrees of freedom. More complicated compo-
sition examples, include for example the baroque “fugue” mentioned above, the
classical sonata, or the more recent form of twelve-note serialism compositions.

Usually, when we speak of algorithmic composition though, we mean more
complex methods of composition based on, for example, fractals, L-systems,
generative grammars, neural networks, statistical models, etc. An example of
this is Ioannis Xenakis’ use of Maxwell and Boltzmann’s “Kinetic theory of
Gases” for Pithoprakta [3].

Computer-Aided Algorithmic Composition (CAAC) is music composition
based on algorithms, where all steps of creation are supported by software. It
may help the reader understand the term better, if we relate it to Computer-
Aided Design, that is widely used e.g. for architectural or electronics design.
Similarily, the composer becomes a “designer”. He designs several aspects of
the composition, without really getting into the trivial details, if he does not
want to, and freeing his mind to work on the music at a greater, more abstract,
level (or, in some situations, deeper level). The computer aids the composer in
his effort.

Lejaren Hiller and Leonard Issacson were generally aknowledged as the first
to use a computer for algorithmic composition on their famous Illiac Suite, a

8 CHAPTER 2. BACKGROUND

string quartet split into four movements, composed after Hiller’s idea to change
some chemistry-targeted code to do counterpoint [6].

The idea of algorithmic composition using computers became more popular
over the decades and, together with the increasing processing power and storage
size, we have seen various nice works, both inside and outside academia. The
reader can get a taste of what computer-generated composition is about, by
directing his web browser at WolframTones [7].

Categories of CAAC systems Ariza in his text “Navigating the landscape
of Computer-Aided Algorithmic Composition Systems: A definition, seven de-
scriptors and a lexicon of systems and research.”[8] categorizes the various
CAAC systems according to 7 distinct descriptors: Scale, Process Model, Idiom-
Affinity, Extensibility, Event Production, Event Production, Sound Source and
User Environment. There are systems that focus on micro (e.g. Supercol-
lider, AC Toolbox) or macro-scale (e.g. CGMusic), realtime (e.g. Algorithmic
Composer, Lexicon-Sonate), or non-realtime (e.g. AthenaCL), that restrict
to a single musical style, or to more than one, that are extendable or non ex-
tendable, that process predetermined music, or music generation facilities (e.g.
algorithms, lists, stochastic processes, etc.), that produce the sound themselves,
or configure an external program for sound synthesis and also use various ways
of interacting with the user.

CAAC vs Automated Composition Both automated composition and
computer-aided composition rely on the same technical means. The main dif-
ference between automated composition and its computer-aided counterpart is
mainly the goals of each. While in automated composition we would want to
have as minimum human intervention as possible, leaving the composition, if
possible in its entirety, to the computer, in CAAC the composer remains active
and the computer just helps him along the process, but does not complete the
composition by itself.

Usually, automated composition is a research subject on the modeling of
conventional music and the validation of the process is usually being done by
some kind of Turing Test, where a human is being asked to discriminate between
a man-made and a computer-made piece [9].

2.3 First-Order Logic

First-Order Logic (FOL), is a declarative, context-free representation language
that allows representation of knowledge and reasoning in an unambiguous and
concise way. It is declarative, as opposed to the procedural languages (like
C++, Java, or Lisp), meaning that one can do inference without having to
provide specialized procedures. It is context-free, as it can be generated by a
context-free grammar. And it is unambiguous, as every element of the language
has a unique meaning. It also has the expressive power to allow for reasoning.
Its statements can be composed of simpler statements, and unlike Propositional
Logic, which requires every primitive statement to have its own symbol, we
can fully and concisely represent those simpler statements by a combination of
objects and relations between them. Any (simple or complex) FOL statements
can be either true or false.

2.3. FIRST-ORDER LOGIC 9

2.3.1 Expressive Power of First-Order Logic

The elements First-Order Logic deals with are objects, relations, and functions.
Examples of these elements are shown below:

• Objects: notes, voices, pauses, cleffs, tempo, “c5”, “C Minor Pentatonic”,
“sharp”, barline, 65, etc.

• Relations: “a third up from”, “relative minor of”, “has the same tonality
as”, etc. Relations can be unary relations (or properties) like “quarter
note”, or n−ary relations, like “has a tonality of”.

• Functions2: “belongs to voice”, “has composer”, etc.

For example, the sentence:

The C Major scale, has the C note as it is tonic note.

includes the following elements:

• Objects: “The C Major scale”, “the C note”.

• Function: “has as its tonic note”

Note that “has as its tonic note” is a function, since every scale has exactly one
tonic note. Also note that we can only use “The C Major scale” as a single
object, and not as a relation to the C scale, for example with the property: “the
scale is major” (at least not directly). In order to do that we would need to use
Higher-Order Logic; something that is out of the scope of this text.

FOL does not limit its expressive power to single objects. Continuing on the
subject of tonality, we can express things like:

Every scale has a tonic note.

That is, FOL can express things about some or all of the objects as well.

2.3.2 Terms, Variables, Sentences, Quantifiers

Terms are logical expressions that refer to objects [10]. A constant symbol can
be a term, and an application3 of constant symbols to another constant symbol
can be a term as well. Examples of terms:

• C5

• Cmajor

• FifthOctave(C)

An Atomic Sentence is the application of terms to a predicate. Examples of
Atomic Sentences:

• Major(C)

2A Function is a Relation that has “output arguments” so that every set of “input ar-
guments” correspond to exactly one output argument. For example, each musical piece has
exactly one composer, every distinct note belongs to exactly one voice, etc.

3An application of Y and Z to X would be Y and Z in parentheses ’(’ and ’)’ separated
with the comma symbol ’,’ and next to X, that is X(Y, Z).

10 CHAPTER 2. BACKGROUND

• HasDuration(Note1, HalfNote)

Sentences can be combined, using Connectives (⇒,∧,∨, and ⇔), into complex
sentences. For example, below is a valid complex sentence:

HasDuration(Note1, HalfNote) ∧HasPitch(Note1, F ifthOctave(C))

Quantifiers are the ways of expressing in FOL that we want a sentence to
hold for some or for all the objects. The universal quantifier (∀) will make the
sentence following it hold for every possible substitution of the variable that it
quantifies, true. The existential quantifier (∃) on the other hand will make the
sentence true, for some (at least one) of the possible substitutions. For example,
if we want to express the fact that there exists a pitch, such that every other
pitch is higher or equal, we would write in FOL:

∃p∀v P itch(p) ∧ Pitch(v)⇒ IsHigherOrEqual(v, p)

And, if the only objects we have, are the pitches C5, D5 and E5 the above
statement would hold true, if we substituted p with C5 and v with any of C5,
D5, or E5.

The symbols p and v are called variables. They are also terms, so they can
be used as arguments to a relation or function. A term that has no variables is
called a ground term.

2.3.3 Literals, Clauses, Horn Clauses

Literals can be simple sentences (for example, HasPitch(Note1, F ifthOctave(C)))
or their negation. A Clause is a disjunction of literals. A clause can be rep-
resented as the set of literals that participate in the disjunction. A clause can
be seen as the implication of the head (one of the literals) from the body (the
negation of the rest of the literals)4. For example:

∃p∀v ¬Pitch(p) ∨ ¬Pitch(v) ∨ IsHigherOrEqual(v, p)︸ ︷︷ ︸
a clause

is equivalent to:

∃p∀v ¬ (Pitch(p) ∧ Pitch(v)) ∨ IsHigherOrEqual(v, p)

which is equivalent to:

∃p∀v P itch(p) ∧ Pitch(v)︸ ︷︷ ︸
Body

⇒ IsHigherOrEqual(v, p)︸ ︷︷ ︸
Head

We can also write this clause as follows:

∃p∀v IsHigherOrEqual(v, p)︸ ︷︷ ︸
Head

← Pitch(p) ∧ Pitch(v)︸ ︷︷ ︸
Body

A Horn clause is a clause that has exactly one non-negative literal (the head)
and all the remaining literals (the body – if any) are negative. The clause above
is a Horn clause.

4Recall that, given p, q, ¬p ∨ q ≡ p⇒ q.

2.3. FIRST-ORDER LOGIC 11

2.3.4 Models and Interpretations

A sentence in FOL without a meaning is useless to us, unless we give it some
meaning. The meaning of IsHigherOrEqual(v, p) it that it represents two
pitches and that its second argument is higher than or equal to the first. That
is, IsHigherOrEqual(v, p) holds true, if pitch p is higher or equal to pitch v.

Before we define interpretation, we need to define domain:

Definition 1. A domain D is a set of objects that can be applied to relation
and functions symbols.

An interpretation is defined as follows:

Definition 2. An interpretation I in First-Order Logic consists of a non-
empty domain D and a mapping for function and predicate symbols. Every
n−ary function symbol is mapped to a function from Dn to D, and every n−ary
predicate symbol is mapped to a function from Dn to Boolean values true or
false [11].

Finally, give the definition of a model for FOL.

Definition 3. A model M of a first-order logic formula F is an interpretation
I for which the formula holds true.

2.3.5 FOL Syntax and Prolog Representation

The syntax of FOL can be described using BNF grammar notation, as shown
in Figure 2.1. In this grammar, the constant symbols begin with an upper-case
letter and the variables with a lower-case letter. This is somewhat different from
the Prolog-like notation we use in this text, where we begin constant symbols
with a lower-case letter and variables with an upper-case letter.

The sentence above:

Every scale has a tonic note.

would be given in FOL syntax as:

∀x Scale(x)⇒ HasATonicNote(x)

While in Prolog, we would write the same sentence as:

hasATonicNote(X)← scale(X).

The reader may have noted some characteristics of Prolog notation and some
differences with typical FOL notation:

• Constant symbols in Prolog begin with a lower-case letter, while vari-
ables begin with an upper-case letter.

• There is no quantifier. In a Prolog statement, the universal quantifier,
is implied.

• There is an ending dot “.”. Every Prolog statement ends with a dot.

There are more differences not shown in the above example:

12 CHAPTER 2. BACKGROUND

• Every Prolog statement is a Horn clause.

• The logical connectives ∧ and ∨ are replaced by the comma (“,”) and the
semicolon (“;”) respectively.

• Numbers are valid terms, as are lists. Lists are Lisp-like, they consist of a
Head and a Tail. The Tail can be bound to another list or nil (the empty
list symbol []).

• The equality symbol in Prolog is the unification symbol. The “=”(A,B)
relation is true if A can be unified with B (i.e. there is a possible substi-
tution of the variables in A and B that makes A and B equal).

• Some relation predicates in Prolog can be used as “infix” operators,
for example, the number addition “+”, subtraction “-”, or the inequality
relation “<”.

For a more complete view in Prolog syntax, see [12]. From now on in this text,
when we refer to First-Order Logic, we will mean its Prolog representation.

Now that we have explained the required terminology, we can define the logic
program.

Definition 4. A Logic Program is a conjunction of logical clauses.

2.3.6 Prolog Queries and Production Systems

The useful thing about Prolog is that we can make queries about the state of
our world. But first, we need to describle our world.

Facts and Rules

A fact is a unit clause, that describes facts about our world. For example:

pitch(c).

describes the fact that “c” is a pitch. Facts, are not necessarily ground. For
example, the fact below is valid:

something(X).

although not very useful.
A rule is a Horn clause that describes some rule in our world. For example:

melodicInterval(X,Y)← pitch(X), pitch(Y), next(X,Y).

means that a melodic interval exists between X and Y , when they are both
pitches and they appear next to each other.

Queries

Now that we have a way to describe our world, we can make questions about its
state. In Prolog, we can make questions like “Is ‘c’ a pitch?” or “What are
the pitches?”. In the first question, Prolog would answer with a “yes” and in

2.3. FIRST-ORDER LOGIC 13

the second with “c,c#,d,...”. The first question can be written as the Prolog
query:

pitch(c).

and the second as:
pitch(X).

which would return every possible substitution of X for which pitch(X) holds
(for example c, since pitch(c) holds).

Rule Production and Production Systems

Production systems are usually software that apply a set of rules to a set of
facts that reside in their knowledge base in order to produce new facts. For
example, if we have the following rule in our knowledge base:

“All men are mortal”

and we provide the system with the following statement:

“Socrates is a man”

The production system, will produce the following fact:

“Socrates is mortal”

Similarily, if we have the following two rules into our system:

An interval of 7 semitones is a “Perfect Fifth”.

and

“Unisons”, “Octaves” and “Perfect Fifths” are “Perfect Consonances”.

and we provide that we have a “c5” and a “g5” note, the system would imme-
diately know that we have a perfect consonance.

Production systems typically utilize a reasoning technique called “Forward
Chaining”. For the above example, suppose we have rules in the form:

LHS ⇒ RHS.

where LHS are the conditions we check. When these are met, we say that the
rule is “fired” and the facts in RHS are inserted into the knowledge base.

In the above example, we have the following rules:

note(X), note(Y) ⇒ distance(X − Y)

distance(0) ⇒ unison

distance(7) ⇒ perfectF ifth

distance(12) ⇒ octave

perfectF ifth ⇒ perfectConsonance

octave ⇒ perfectConsonance

When we first insert the facts note(60) (C5) and note(67) (G5) into our
knowledge base, the first rule is fired, and we have the facts distance(0) and
distance(7) inserted into our database. Because of the insertion of distance(7),

14 CHAPTER 2. BACKGROUND

Sentence → AtomicSentence

| (Sentence Connective Sentence)

| Quantifier V ariable, . . . Sentence

| ¬Sentence

AtomicSentence → Predicate(Term, . . .)

| Term = Term

Term → Function(Term, . . .)

| Constant

| V ariable

Connective → ⇒ | ∧ | ∨ | ⇔

Quantifier → ∀|∃

Constant → C5|PerfectConsonance|Sixteenth

V ariable → voice|position|v . . .

P redicate → Note|MelodicInterval|Pitch| . . .

Function → Composer|NumberOfV oices| . . .

Figure 2.1: The syntax of First-Order Logic with equality in BNF.

the fact perfectF ifth is also appended in our knowledge base by the hird rule.
Because of the insertion of perfectF ifth, the fifth rule also fires and we have a
perfectConsonance to our knowledge base.

If we want to show that, given a set of facts KB, after the insertion of fact
F , we produce the facts Ai, we can also write it as:

KB ∧ F ` Ai

and we say that KB and F entail Ai.

2.4 Inductive Logic Programming

Logic programming is the use of logic as a declarative representation language
and a theorem prover or model-generator for the purpose of solving a problem.
Inductive logic programming (ILP) is the “marriage” between logic program-
ming and machine learning. Given a set of logical facts as the already known

2.4. INDUCTIVE LOGIC PROGRAMMING 15

background knowledge base, a set of rules that apply, and a set of positive and
negative examples, an Inductive Logic Programming system will find a hypothe-
sis that is valid throughout all the positive examples and in none of the negative
examples.

In order to present the problem of induction we need to define entailment.

Definition 5. A clause F1 syntactically entails F2 (F1 ` F2) if and only if F2

can be deduced from F1.

For short, the problem of induction can be stated as follows:

Definition 6. Given a set O of observations and a consistent background knowl-
edge B, we need to find a hypothesis (a set of clauses) H such that:

B ∧H ` O

For the example with Socrates in the section above, if we have the two
relations man and mortal, and the positive examples below:

man(socrates)

man(plato)

man(aristeides)

mortal(socrates)

mortal(plato)

mortal(aristeides)

mortal(alcmene)

mortal(casiopeia)

and the negative examples:

¬man(alcmene)

¬man(cassiopeia)

and we want to find a hypothesis about the mortal relation, an Inductive Logic
Programming system would probably yield the following answer:

mortal(X)← man(X).

That means, every man is a mortal, but every mortal must not necessarily be a
man (in our examples Alcmene and Cassiopeia are women).

Known ILP systems include Golem [13], Progol [14], Aleph [15], etc.
Learning in these systems is accomplished in various ways. For example, Pro-
gol uses inverse entailment, while Golem uses Recursive Least General Gen-
eralizations (RLGG). In our work, we use the ILP algorithm PAL [16], which
uses least general generalizations (LGG), therefore we will give a brief overview
of what generality and LGG are.

Generality

We provide some necessary definitions for the better understanding of the con-
cept of Generality.

16 CHAPTER 2. BACKGROUND

Definition 7. Given formulas A and B, we say that A � B (or A semantically
entails B) if and only if every model of A is also a model of B.

Definition 8. We say that a formula A is more general than formula B if
and only if A � B and B 2 A.

For example, the clause note(1, P, P itch1, D1), note(2, P, P itch2, D1) is more
general than note(1, 1, 62, D′1), note(2, 1, 64, D′1) since we can entail the second
clause from the first, by doing the subtitutions P/1,Pitch1/62,Pitch2/64 and
D1/D

′
1, but there is no subtitution we can do to the second clause in order to

entail the first. If the second was possible, we would say that the two clauses
were equivalent.

Definition 9. We say that a formula A is equivalent to formula B if and only
if A � B and B � A.

For example, the clauses:

note(1, P, P itch1, D1), note(2, P, P itch2, D1)

and

note(1, P ′, P itch′1, D
′
1), note(2, P ′, P itch′2, D

′
1)

are equivalent. Now that we have defined equivalence we can define redundancy :

Definition 10. A clause C is redundant to program P ∧C if and only if P ∧C
is equivalent to P .

For example, if we have

P ≡ note(V oice, Position, P itch)

and

C ≡ note(V oice′, Position′, P itch′)

then C is rendundant to P ∧ C. Redundancy can be applied to literals as well:

Definition 11. A literal l ls logically redundant within the clause C ∨ l in
the program P ∧ (C ∨ l), if and only if P ∧ (C ∨ l) is equivalent to P ∧ C.

For example, l ≡ note(2, P ′, P itch′) in C∨l ≡ note(1, P, P itch)∨note(2, P ′, P itch′)
is redundant in P ∧ (C ∨ l), if P ≡ note(V, P, P itch).

We will now see the notion of θ-subsumption:

Definition 12. We say that a clause C1 θ-subsumes clause C2, if there exists
a substitution θ such that C1θ ⊆ C2.

With the help of θ-subsumption we can define the more general relation:

Definition 13. A clause C1 is more general than C2 if and only if C1θ-
subsumes C2.

2.4. INDUCTIVE LOGIC PROGRAMMING 17

LGG of terms:

1. lgg(t, t) = t.

2. lgg(f(s1, . . . , sn), f(t1, . . . , tn)) = f(lgg(s1, t1), . . . , lgg(sn, tn)).

3. lgg(f(s1, . . . , sm), g(t1, . . . , tn)) = V , where f 6= g and V is a new variable
which represents lgg(f(s1, . . . , sm), g(t1, . . . , tn)).

4. lgg(s, t) = V , where s 6= t and at least one of s and t is a variable; in
which case, V is a new variable which represents lgg(s, t).

LGG of atoms:

1. lgg(p(s1, . . . , sn), p(t1, . . . , tn)) = p(lgg(s1, t1), . . . , lgg(sn, tn)), if atoms
have the same predicate symbol p.

2. lgg(p(s1, . . . , sn), q(t1, . . . , tn)), is undefined if p 6= q

LGG of literals:

1. If L1 and L2 are atoms, then the LGG is defined as above.

2. If L1 and L2 are both negative literals, and L1 = ¬A1 and L2 = ¬A2 then
lgg(L1, L2) = lgg(¬A1,¬A2) = ¬lgg(A1, A2).

3. If L1 is a positive literal, and L2 is a negative literal, or vice-versa, then
lgg(L1, L2) is undefined.

LGG of clauses:

1. Let there be two clauses C1 and C2 such that C1 = {L1, . . . Ln} and
C2 = {K1, . . . ,Km}, then:

lgg(C1, C2) = {Lij = lgg(Li,Kj)|Li ∈ C1,Kj ∈ C2, and lgg(Li,Kj) is defined}

Figure 2.2: The lgg operator, defining the LGGs between the two operands.

Least General Generalizations

The definition of a Least General Generalization (abbreviated LGG, also called
anti-unification) is the following:

Definition 14. Given clauses C1 and C2, a clause C is the Least General (or
Most Specific) Generalization of C1 and C2, denoted as C = lgg(C1, C2), if and
only if C θ-subsumes both C1 and C2 and there is no more specific clause C ′

that θ−subsumes them.

In order to represent least-general generalizations, we will use the lgg opera-
tor, defined as shown in Fig. 2.2 (also in [17]); some examples are given in Fig.
2.3.

18 CHAPTER 2. BACKGROUND

Examples on LGG of terms:

1. lgg([a, b, c], [a, c, d]) = [a,X, Y]

2. lgg(f(a, a), f(b, b)) = f(lgg(a, b), lgg(a, b)) = f(V, V) where V stands for
lgg(a, b).

Examples on LGG of literals:

1. lgg(parent(ann,mary), parent(ann, tom)) = parent(ann,X).

2. lgg(parent(ann,mary),¬parent(ann, tom)) is undefined.

3. lgg(parent(ann,X), daughter(mary, ann)) is undefined.

Example on LGG of clauses:

• if C1 = daughter(mary, ann) ← female(mary), parent(ann,mary) and
C2 = daughter(eve, tom)← female(eve), parent(tom, eve) then:

lgg(C1, C2) = daughter(X,Y)← female(X), parent(Y,X)

where X stands for lgg(mary, eve) and Y stands for lgg(ann, tom)

Figure 2.3: Examples of the lgg operator.

2.5 Working with Constraints

Constraints stand for limitations over the form of a solution to a problem. These
problems generally require a combinatorial approach and also good heuristics
and a good search strategy to be solved in reasonable time. The mathematical
problem that applies constraints over a set of objects and requires in case of a
solution, the state of these objects to meet the constraints, is called a Constraint
Satisfaction Problem.

2.5.1 Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) can be formally presented as a triplet
〈X,D,C〉 where X is a set of variables, D is a set of domains of values for the
variables, and C is as set of constraints. Every variable Xi in the set of X has
a non-empty domain Di in D. A state of the problem, is a substitution of some
variables in X with values from the corresponding domains in D (also called an
“assignment”). Every constraint refers to a subset of X and defines their allowed
combinations of values. An assignment is consistent, if it does not violate any of
the constraints in C. It is also called a legal assignment. A complete assignment
is an assignment where every variable Xi in X takes a value and a solution is a
complete assignment that is also legal. Some CSP problems ask for a solution (a
legal complete assignment) that additionaly optimizes (maximizes or minimizes)
an objective function defined over the variables of the problem.

2.5. WORKING WITH CONSTRAINTS 19

An example: Tone row

For an example, we will try to keep as close to the main subject of this thesis:
music. A tone-row (or series) is a sequence of twelve tone names (pitch classes) of
the chromatic scale in which each pitch class occurs exactly once. This problem
could be modeled as a CSP using a triplet:

〈X,D,C〉

where:

X = {X1, . . . X12}
D = {{c, c#, d, d#, e, . . . b}, . . . {c, c#, d, d#, e, . . . b}}
C = {∀i, j, i 6= j : Xi 6= Xj}

X being the set of variables (Xi is the pitch class in of the note in position i),
D the set of domains (pitches), and C the set of constraints. An assignment in
this problem would be:

{X1 = c,X2 = c,X3 = c}

Which is not full since not all variables participate. Also it is not legal since the
constraints X1 6= X2, X1 6= X3 and X2 6= X3 are violated. A legal assignment
would be:

{X1 = c,X2 = c#, X3 = d}

since the above constraints are all met. A legal and full assignment would be:

{X1 = c,X2 = c#, X3 = d,X4 = d#, . . . , X12 = b}

which, in case we do not have an objective function to optimize, would be our
solution.

Musical CSPs Musical CSPs are a special class of CSPs that specialize their
variables, domains, and constraint libraries in order to produce a musical com-
position. An example of a musical CSP is the above tone-row problem, part of
the dodecaphonic tecnique introduced by Schoenberg et al. We have notes for
variables and pitches in our domains. A software package that deals specifically
with this class of problems, is Strasheela, where our work is based on.

Constraint Programming Constraint programming is a form of declarative
programming where the programmer writes programs as a set of CSP problems,
and then the reasoner of the programming language tries to find solutions to
these problems.

2.5.2 Constraint Satisfaction in First-Order Logic

The First-Order Logic satisfiability problem can be translated to a constraint
satisfaction problem. This is useful if we want to use Logic Programs in Con-
straint Programming. We define a constant object domain D in our CSP. Each
FOL constant is assigned a member in D. Each function symbol is assigned
a function D × D × . . . D → D. Each relation symbol is assigned a function

20 CHAPTER 2. BACKGROUND

D×D× . . . D → {true, false}. The logic connectives behave as expected (∧,∨),
and the quantifiers (∀,∃) range over the domain D. For example, if we have the
predicates note/1 and interval/1, the constants c5, g5, perfectF ifth, and the
function symbol harmonicInterval, we would transform our theory to a CSP
as follows:

1. Our domain D has size 3 since we have 3 constants:

D = {0, 1, 2}

2. We assign a member of the domain D to each of the constants. We can
represent this as a cell array with all the constants, where cells can take
values from the domain {0, 1, 2}:

c5
{0, 1, 2}

g5
{0, 1, 2}

perfectF ifth
{0, 1, 2}

3. To each of the unary relations note/1 and interval/1 we assign a relation
in D. We can represent it as an array of three cells, where each cell
corresponds to the respective member of D and it can take true or false
as its values:

0 1 2
{true, false} {true, false} {true, false}

4. To the function harmonicInterval we assign a function from D to D. We
can represent it as an array of four cells where each cell can take one of
the values in {0, 1, 2}:

0 1 2
{0, 1, 2} {0, 1, 2} {0, 1, 2}

5. Each cell shown above represents a variable in our CSP. The domains of
the variables are {0, 1, 2} and {true, false}. The constraints are our FOL
formulas that constrain the values of the cells above. This way, a solution
of the translated CSP corresponds directly to an original FOL model.

2.6 Strasheela

Strasheela is a CAAC system created by Anders Torsten. It is written in the
Oz Programming Language and features a special case of CSP solver that deals
specifically with musical CSPs. Its representation is very powerful and does not
limit the user to a predetermined music theory. Its music representation follows
an object-oriented approach, with musical elements being objects with methods
for accessing and constraining their properties. Constraints are given using the
Oz syntax. Domains are integers and variables can be any kind of object in
its music representation. It also features ordering methods and heuristics for
efficient search while solving musical CSPs. It can produce PDF5, MIDI, and
CSOUND files of the solutions it finds.

In our work, we use the Strasheela CAAC system to solve our CSPs and
produce printouts and midi files for the generated pieces.

5Portable Document Format.

Chapter 3

Problem Statement

21

22 CHAPTER 3. PROBLEM STATEMENT

3.1 Human Intuition in Composition

Modern CAAC software typically relies on the assumption that the composer
will have knowledge of both the tools being used, and of the theory behind
composition. For example, if a student wants to do harmonization on a given
melody line, he needs to learn the rules that define the harmonization procedure.
He is taught of this procedure over the years of study. And that is only for the
German Baroque style of chorale that he is being taught. If he wants to study,
for example, Jazz Harmony, he would probably start anew, by learning again
the rules that define jazz music.

This is very typical of students. But, let us now suppose that we have a
very adept student with exceptional observation capability. If you give him a
set of intervals, he would be able to tell immediately if they are consonant or
dissonant, the type of dissonance, the scales they may appear into, the chords,
etc.

If you now show him, completed counterpoint exercises, he would be able to
recognise the intervals, observe the motions between them, and would be able
to generalize what he sees into a set of rules. This means, we would not have to
give him formally the rules, but just show him correctly completed counterpoint
exercises, and he would be able to do counterpoint on his own from now on.

3.2 Machine “Intuition” in Composition

Research in Machine Learning and Logic Programming has given computers
the two above key-abilities to some extend. Given a set of values, we can form
detailed hypotheses about relations between them and we can use these relations
to generalize and extract patterns that we could later use in order to generate
similar sets of values. This would be extremely useful in music composition.

If we wanted to write a chorale, we would not want to concern ourselves about
how to provide the exact harmonization rules (given that we know them), we
would just give already harmonized examples, and the system would be aware
of how we would want to do harmonization from now on.

T. Anders in his work “Composing Music by Composing Rules: Design and
Usage of a Generic Music Constraint System”[18] describes Strasheela, a
very powerful and expressive CAAC system which features opensource prototype
implementation that makes it ideal for research as well as for production use.

Strasheela is programmed with a very textual programming language,
acts on both micro and macro scale, and is able to produce MIDI files as well as
sound files with the use of csound [19]. It is available for both realtime (using
extensions [20]) and offline use and its programming language (Oz) allows for
distributive usage.

Maybe the most useful property of Strasheela, aside from its easy pro-
grammability, is that it shows no limitations on the musical theory that the user
can utilize. One can act on almost every music theory known, tonal, atonal, or
microtonal or even define new theories himself.

Such expressive power though stems from a very expressive representation,
which proves to be somewhat difficult for the novice user to utilize. It also
requires a somewhat functional way of thinking (In a way it is like writing in a
functional programming language). For example, if we have a single voice and

3.3. RELATED WORK 23

we want to constraint all the intervals to a fixed value, we would write ([18], p.
115):

let myPitches
def
= map(getNotes(myV oice), getP itch)

in
∧
map2Neighbours(myPitches, limitIntervalpitches)

which is somewhat confusing for the user unfamiliar with the functional paradigm.
We would like to be able to provide the rules in a more human-friendly way. In
fact, from the above, as well from Ander’s proposed Future Work ([18], p. 206):

“It would be interesting to integrate learning techniques into Strasheela
in such a way that the user would mix manually-defined compo-
sitional knowledge with explicitly represented knowledge deduced
from existing pieces. If the knowledge learnt is represented in the
form of rules, then this knowledge can be freely mixed with hand-
written rules.”

Later, in the same section, he informs us of the work conducted on an in-
ductive logic programming algorithm, named PAL [16], which is able to induce
patterns, given sets of examples of ground facts, as well as a prior knowledge
base. In their work, they also describe a way to induce patterns in order to do
counterpoint.

The above hints have motivated the work described in this thesis, which
turns out to be a computer-aided composition method that relies on the power
of Inductive Logic Programming. It allows us, to utilize the expressive power
of a CAAC system, like Strasheela, with the convenience of a by-example
pattern design methodology that results in musical compositions. Our goal
is to make use of the ILP work done by Morales et al. (since they already
describe how their algorithm can be used in music) to extract FOL patterns
from existing music scores, transform the original FOL patterns to constraints,
formulate the problem so that it is compatible with the functional representation
used in Strasheela, and finally to use Strasheela itself for composing music
by solving the resulting CSP problem.

For example the rule given above, instead of having to think in a functional
way, we could just provide an example of a series of notes (3 consecutive notes
would be sufficient) that have the desired constant melodic interval.

3.3 Related Work

Various research efforts have been devoted to learning musical rules of some
kind. Most of the works train some kind of statistical model and most attempts
have been done mainly for Harmony and mostly by using real sound data. Little
has been done for musical textures (melody, harmony and rhythm) in general.

Works based on a symbolic approach have been utilizing mostly conventional
algorithms, expert systems, and generative grammars. One of the notable cases
is “CHORAL: An Expert System for Harmonizing Chorales in the style of J.S.
Bach” [21] by Kemal Ebcioglu. The system does harmonization based on about
350 rules using first-order logic. Another notable case by Hilde et al. is “HAR-
MONET: A Neural Net for Harmonizing Chorales in the Style of J.S Bach”

24 CHAPTER 3. PROBLEM STATEMENT

[22], where they propose a system that combines conventional agorithms with
neural networks in order to learn harmonization in the style of J.S. Bach that
both respects the harmony rules and also is aesthetically pleasing. However,
both these systems have a pre-defined structural approach and do not learn
new harmonization rules but restrict themselves to the style of J.S. Bach.

A really interesting work is that of David Cope’s “Experiments in Music
Intelligence” that has led to astonishing results. EMI literally cuts the works
of famous composers into pieces while respecting each composer’s unique “sig-
nature” and reassembles them in such a way that is interesting, aesthetically
pleasing, and conforms to the composer’s original style. However, EMI itself is
not truly creative, in that it is not able to produce new music from scratch.

Morales et al. in their paper “Learning Musical Rules” [23] where they
describe the learning of musical rules with the use of PAL (where we have based
our work on), envision coupling PAL with ESCAMOL, an algorithmic tool for
composition which incorporates generative grammars used in their interactive
music composition system SICIB [24].

Chapter 4

Our Approach

25

26 CHAPTER 4. OUR APPROACH

kern FOL exampleskern to FOL select & label

Background
Knowledge

Generated
Patterns

PAL

pdf

midi

csound

Strasheela

Example extraction

Induction

CSP solving

OzFOL to OZ

Hand-written
Patterns

Figure 4.1: The graphical diagram of the proposed process.

In this part we will give a detailed view of our approach to computer-aided
composition. We will show how one can deduce compositional rules from simple
examples or complete musical pieces. We will then use these rules, mixed with
our own if desired, in order to compose new musical pieces. A graphical diagram
of the proposed process is given in Fig. 4.1.

4.1 Representations and Transformations

We first present the three types of representation that we use. The first is the
**kern representation, a purely textual form used to provide examples to our
system. The second is the FOL representation used to provide these examples
as well as background knowledge to our ILP algorithm. Finally, the third is the
Oz representation used to provide compositional constraints to Strasheela.
We will also show how we translate from one form to another throughout the
process.

4.1.1 The **kern Representation

We use the **kern representation mainly because it is a direct, human-readable
form, easy for the computer to parse (by using perl or awk for example), and
it is also able to represent performance details for both the human and the
computer. It is also the representation language of the Humdrum toolkit, a

4.1. REPRESENTATIONS AND TRANSFORMATIONS 27

software package for music research, which provides a great amount of software
for music cognition, from harmonic analysis to generating pitch histograms [25].
Furthermore, **kern is used by the online database KernScores [26], which
is a huge database of songs in **kern format with results from various analyses.

The **kern representation uses a purely ASCII data format. A **kern file
contains several spines (columns, separated by a tab character) and rows. The
data found at a specific spine and row is called a record. Each spine has a label
(beginning with **) which describes the kind of data stored in its rows and a
sublabel (beginning with *) which specifies the data further. Comments are also
allowed, globally (ignored throughout the whole file when parsing) or locally in
a spine (ignored only for that spine).

Usually, the row number represents position in the score (i.e. time in beats
in sheet music) and the spine number represents the voice (i.e. staff in sheet
music). Records typically represent notes or pauses, although they are not
limited to representing only those. A record (depending on the label of its
spine) can represent anything from chord analyses to lyrics, to arbitary data.

For example, the one-measure score below:

translates directly to:

**kern **kern

1c 4c

. 4e

. 4g

. 4cc

== ==

where the dot is called a null token, and implies that the record on the
above row still holds. The notes in **kern format begin with a number, which
represents the inverse of their duration, and a letter from a to g representing the
respective note. The letter c represents the middle c. If we want to represent
the c an octave above, we write two c’s. Three octaves above, three c’s, etc.
If we want to represent c an octave below, we enter a capital C. Two octaves
below, two capital C’s, etc. Accidentals are denoted with ‘#‘ (sharp) and ‘−’
(flat) and alter the pitch by +1 and −1 repsectively. We can also have double
(or more) sharps ‘##’ or flats ‘−−’ which alter the pitch by 2 (or more). A
pause is represented by the letter ‘r’. The number at the beginning of the record
represents the denominator of its duration (for example, for a duration of 1

4 - a
quarter note - the number at the beginning would be 4). A single = represents
a single bar whereas a double == a double bar. When no additional info is
given on the meter or staff, a meter of 4

4 and a clef of G are implied.
Our examples are extracted from music pieces stored in the **kern represen-

tation. This allows for a relatively easy translation of the records to first-order

28 CHAPTER 4. OUR APPROACH

predicates. The Humdrum toolkit makes this parsing easy. The procedure of
translation, begins by numbering the various records relative to their position
in the score. For the above example, a new spine would be added indicating the
positions:

**kern **kern **pos

1c 4c 1

. 4e 2

. 4g 3

. 4cc 4

== == 4

Note that the **pos value does not increase at the row of the double barline
‘==’. This is because the double barline is not an active object, as it does not
participate in the presence (or absence) of sound, but rather serves as a way of
separating measures.

After numbering the rows, it is easy to produce the necessary predicates to
transform the representation to FOL.

4.1.2 FOL Predicate Representation

Since our ILP algorithm is implemented in Prolog, the most natural way is to
provide its input as first-order predicates in the style of Prolog.

The most useful predicate we use is that of note/41. This usually has the
form note(V oice, Position, P itch,Duration) where V oice is a variable that rep-
resents the voice the note belongs to, Position represents the position in that
voice, relative to the beginning of the score, Pitch represents its pitch, and
Duration is the denominator of the duration, as in the **kern representation.
All of the V oice, Position, P itch,Duration are integer-valued.

Our examples currently consist solely of note predicates. For this reason,
the note/4 predicate is called an input predicate.

Translation from **kern

The translation from **kern to first-order predicates, is straightforward and has
a one-to-one correspondence. In note(V oice, Position, P itch,Duration), V oice
becomes the number of spine (out of the spines that have a **kern label).
Position becomes the value of the corresponding record in the **pos spine.
Pitch is translated as follows: c, d, e, f, g, a, b are translated to 0, 2, 4, 5, 7, 9, 11
respectively and C, D, E, F , G, A, B to −12,−10,−8,−7,−5,−3,−1 respec-
tively. For any additional lower-case letter, we add 12 to this number. For any
additional capital letter, we subtract 12 from this number. Finally, we add 60
(which is the MIDI number for middle c) to this number and use it as our Pitch.
Duration is translated as follows: When we parse the **kern file, we identify
a minimum duration 1

M (for example eighth-notes) over all notes, which serves
as our basic time unit. Duration becomes the amount of base units that are
required to complete the original note duration (i.e. if M = 8 and the record is
written as 4c, then Duration becomes 2 since 2× 1

8 = 1
4 .

1note is the name of the predicate and 4 is its arity.

4.1. REPRESENTATIONS AND TRANSFORMATIONS 29

The example in the previous subsection (4.1.1) using Prolog unit clauses
(supposed we have parsed it with a minimum duration of 1

4) becomes:

note(2, 1, 60, 4).

note(1, 1, 60, 1).

note(1, 2, 64, 1).

note(1, 3, 67, 1).

note(1, 4, 72, 1).

4.1.3 Representation of Examples

After we have extracted the note/4 predicates, we must choose those subsets
that will be contained in our examples. For example, if we are doing chord
analysis, it may be best to extract examples from slices at every position and
we may want to omit duration since it is irrelevant. From our little music
sample, we would generate 4 examples represented as sets:

E1 = {note(2, 1, 60), note(1, 1, 60)}
E2 = {note(2, 1, 60), note(1, 1, 64)}
E3 = {note(2, 1, 60), note(1, 1, 67)}
E4 = {note(2, 1, 60), note(1, 1, 72)}

Here, the predicate note/3, represents just the pitch of the note, without
duration.

After the example generation, we need to characterize them. That means,
we need to provide each of the examples with a label. The examples will then be
grouped by labels (examples having the same label will be in the same group)
so that a rule is generated for each unique label.

4.1.4 Representation of Background Knowledge

In order to do something useful with the input predicates, we need a way to
describe the relations between the components used in the rules. These rela-
tions are represented either as first-order predicates (like the next/3 and over/3
predicates given below) or as Horn clauses of the form:

H1 ← B1, B2, . . . , BN .

where Bi can be either instances of predicates or unbound literals (literals with
an unbound variable in their arguments) describing relations. And they’re can
be either bound or unbound.

For example, in some of our test cases, we use the oblique motion/4 pred-
icate, that describes an oblique motion2 occuring between two voices V 1, V 2

2We have an oblique motion, when the note in one of the voices stays at the same pitch,
and the pitches of the notes in the other voices change.

30 CHAPTER 4. OUR APPROACH

and two positions P1, P2 and is defined as such:

oblique motion(V1, V2, P1, P2) ←
note(V1, P1, P itch1,1),

note(V1, P2, P itch1,2),

note(V2, P1, P itch2,1),

note(V2, P2, P itch2,2),

next(V1, P1, P2),

next(V2, P1, P2),

over(V1, V2, P1),

over(V1, V2, P2),

(Pitch1,1 = Pitch1,2,

P itch2,1 6= Pitch2,2;

Pitch1,1 6= Pitch1,2,

P itch2,1 = Pitch2,2).

next(V1, P1, P2) yields true, when on voice V1, position P2 is the next position
after P1 or, in other words, the note at position P1 is followed by a note to P2

(produced by our example generator, see below subsection) and over(V1, V2, P1)
yields true, if the note on voice V2 is over the one on V1 at position P1.

The above is an example pattern. There is a large number of patterns
we have defined in the background database and the user is free to use them
or discard them completely and provide the database with a complete music
theory of his own.

4.1.5 Representation of Induced Rules

The rules induced, are descibed as Horn Clauses of the form:

H ← D1, D2, . . . , DN ,

BK1, BK2, . . . , BKM ,

PN1, PN2, . . . , PNK .

where,

• H is the head of the rule.

• Di, i = 1, . . . , N are input predicates. These are predicates extracted from
the score (but not derived from the background knowledge) and are the
main components in the induction of rules. The main input predicates are
note(V oice, Position, P itch,Duration) and note(V oice, Position, P itch).

• BKi, i = 1, . . . ,M are ground predicates derived from the input predicates
and the background knowledge. They usually describe properties of our
input predicates. An example would be cmajor(V oice, Position) which
states that the note in voice V oice and position Position belongs to the
cmajor scale.

4.1. REPRESENTATIONS AND TRANSFORMATIONS 31

• PNi, i = 1, . . . ,K are ground predicates of the other rules induced by our
ILP algorithm. They usually describe actions. An example would be a
predicate oblique motion(V oice1, V oice2, Position1, Position2) which holds
true whenever there is an oblique botion between V oice1, V oice2, Position1
and Position2.

4.1.6 The Oz Representation

PAL outputs Prolog horn clauses. In order to add these as constraints un-
derstandable by our CSP solver, we must convert them to Oz syntax. Prolog
predicates and horn clauses can be translated to Oz procedures of the form:

proc {Name Argument1 Argument2 ... ArgumentN}

Statement1 Statement2 ... StatementN

end

where Name is the label of the predicate, but with an uppercase first letter (for
example, note becomes Note) and Argument1 ... ArgumentN are the argu-
ments of the predicate, separated by a space character. When applied to logic
(or constrain) programming, the language tries to execute every Statement; if
one of them fails, then the search fails this branch.

We can notice that this Oz representation has an almost one-to-one cor-
respondence to a Prolog horn clause, apart from the different syntax. One
difference is that, everything that is not a variable, must be put inside the body
(within proc {...} and end). This means that all the possible substitutions of
the arguments must be calculated inside the body.

For now, we will focus on the translation of Horn clauses where all the argu-
ments are variables (which is the case of our induced patterns). For the predi-
cate note(V oice, Position, P itch,Duration), the head of the corresponding Oz
procedure becomes {Note Voice Position Pitch Duration}.

The note/4 predicate implies that at voice V oice and position Position
there is a note with a pitch of Pitch and a duration of Duration. When we
transform our problem to a CSP, note(V oice, Position, P itch,Duration) means
that we want to constraint the pitch to Pitch and the duration to Duration of
the variable at position (V oice, Position) in the score. So, the Note procedure
becomes3:

proc {Note Voice Position Pitch Duration}

{{Nth {Nth Score Position} Voice} getPitch($)} =: Pitch

{{Nth {Nth Score Position} Voice} getDuration($)} =: Duration

end

In the case of clauses, the translation process is much more straightforward.
The head is translated like above, while the body becomes the translated heads
of the literals, separated by a space character in case of a conjunction or by a
dis construct in case of a disjunction. For example, the clause:

3We refer the reader to the “Strasheela Reference Documentation” [27] for getPitch and
getDuration and to the “Mozart Documentation” website [28] for an introduction to Oz
syntax.

32 CHAPTER 4. OUR APPROACH

oblique motion(V1, V2, P1, P2) ←
note(V1, P1, P itch1,1),

note(V1, P2, P itch1,2),

note(V2, P1, P itch2,1),

note(V2, P2, P itch2,2),

next(V1, P1, P2),

next(V2, P1, P2),

over(V1, V2, P1),

over(V1, V2, P2),

(Pitch1,1 = Pitch1,2,

P itch2,1 6= Pitch2,2;

Pitch1,1 6= Pitch1,2,

P itch2,1 = Pitch2,2).

becomes in Oz:

proc {Oblique_Motion V1 V2 P1 P2}

{Note V1 P1 Pitch11}

{Note V1 P2 Pitch12}

{Note V2 P1 Pitch21}

{Note V1 P2 Pitch22}

{Next V1 P1 P2}

{Next V2 P1 P2}

{Over V1 V2 P1}

{Over V1 V2 P2}

dis

Pitch11 =: Pitch12

Pitch21 \=: Pitch22

[]

Pitch11 \=: Pitch12

Pitch21 =: Pitch22

end

end

where the Next and Over procedures refer to the translated next/3 and over/3
predicates. Since the predicates have different meaning in logic programming
than in their respective procedures in Oz, in our implementation they have
to be declared manually in both Oz and Prolog. On the other hand, since
generated clauses have just conjunctions of literals in their body, the translation
of learned rules is carried out automatically.

4.2 Rule Induction

After we have represented a musical score in FOL form, we need to select the
appropriate sets of symbols in order to induce the patterns we will later use for

4.2. RULE INDUCTION 33

the generation of musical pieces. To make this clear, assume that we would like
to generalize the first species Fuxian counterpoint rule

“from one perfect consonance to another perfect consonance one
must proceed in contrary or oblique motion”

we should feed our algorithm with real examples of the correct usage of this rule
in a musical score.

Figure 4.2: First species Fuxian counterpoint rule examples.

4.2.1 Example Sets

Example sets are sets that contain all the ground unit clauses that take part
in an example. They are instantiations of the concept we want to learn. For
example, in the third example of the counterpoint rule shown above (Fig. 4.2), if
we have the harmonic transition from c-g to c-cc, where we have note(1, 1, 60,)
for c, note(2, 1, 67,) for the g above, note(1, 2, 60,) for the c in the second
position, and note(2, 2, 72,) for the c an octave above, the set describing the
example would be4 :

E1 = {note(1, 1, 60,), note(2, 1, 67,), note(1, 2, 60,), note(2, 2, 72,)}

A second example for this rule could, e.g. be c-cc to f-cc (Fig. 4.2, staff 4):

E2 = {note(1, 2, 60,), note(2, 2, 72,), note(1, 3, 65,), note(2, 3, 72,)}

As we can see, we only use the note/4 predicates (referred to as input predicates).

4We usually characterize the example sets with a label, in order to be able to generate
patterns, specific to same-label examples. We have ommited labels here for simplicity.

34 CHAPTER 4. OUR APPROACH

4.2.2 The PAL Algorithm

PAL [16] is an ILP algorithm that induces patterns from examples (given as
sets of ground atoms) and a given knowledge base (facts and other patterns).
Contrary to other ILP systems (such as Golem), it does not need any sort
of prior knowledge about the learned pattern (for example, Golem requires
declaration of the type of arguments and the arity of the head of a learned rule
in advance) and can induce new patterns from scratch.

Patterns generated by PAL are Horn Clauses. In general, PAL can utilize
both positive and negative examples, but because of the nature of our applica-
tion5, we utilize only positive examples.

It must be noted that in order to supress the number of literals generated in
the body of a rule (and avoid a useless literal explosion) we apply the following
two constraints:

1. Only Variables that appear in the head of the resulting pattern, can appear
in the body of the pattern.

2. Every literal in a pattern is labeled and generalization takes place only
between literals with the same labels.

The first constraint is quite straightforward. In our case, only variables that
represent voice, position or pitch can be part of the arguments of our learned
patterns. The second is also found in the original PAL article [16]. Suppose we
have the following ground clauses:

chord(2) ← note(1, 2, 60), note(2, 2, 64), note(2, 3, 67).

chord(3) ← note(1, 3, 67), note(2, 3, 71), note(2, 3, 80).

Least general generalizations, as defined in Chapter 2 (Background) section
would produce every possible lgg from the combinations of the literals of the two
clauses. There are 10 possible lggs (1 from the head and 9 from the combinations
of the note predicates) for these two clauses. If we had 4 note predicates to each
body, we would produce 1 + 16 more literals. For larger number of literals, the
number of possible lggs increases dramatically (quadratic growth).

In order to restrict the number of literals, we use the labelling technique used
in the original PAL. For every predicate in an example, we label its literals, the
same way we labeled examples. Labeling the literals in the above clauses, they
become:

chord(2) ← note(11, 22, 603), note(24, 25, 646), note(27, 38, 679).

chord(3) ← note(11, 32, 673), note(24, 35, 716), note(27, 38, 809).

Now we introduce CLGG, which is nothing more than an LGG for the literals
that have the same labels in their arguments. The possible LGGs would now
be just 6, instead of 9:

lgg(note(11, 22, 603), note(11, 32, 673))

lgg(note(24, 25, 646), note(24, 35, 716))

lgg(note(27, 38, 679), note(27, 38, 809))

5A composer, typically thinks of what is correct, not of what is wrong.

4.2. RULE INDUCTION 35

thus dramatically reducing the number of literals generated.

In order to understand how the original PAL algorithm works, we will split
the algorithm in four steps:

1. Construct the head of the pattern to be learned. This is being done for
every positive example by constructing an arbitary predicate which takes
as arguments all the arguments of all the ground clauses in the examples.
For the example set:

E1 = {note(1, 1, 48), note(1, 2, 60)}

we will construct a new temporary predicate name pn and with all the
arguments of the note predicates as its own arguments, thus constructing
the head of our rule:

pn(1, 1, 48︸ ︷︷ ︸
Arguments of note(1, 1, 48)

, 1, 2, 60︸ ︷︷ ︸
Arguments of note(1, 2, 60)

).

2. Construct the body. This is being done for every positive example.
Using rule production, find the literals produced from our knowledge base
and our examples, append them to a conjunction of the ground clauses in
the example, and use them as a body for the head generated in the first
step, to construct a new clause.

If we have the following knowledge base:

distance(X,Y,Out) ← X > Y,Out = X − Y.
distance(X,Y,Out) ← X < Y,Out = Y −X.
distance(X,X, 0).

melodic interval(V1, P1, P2, Out) ← note(V1, P1, P itch1),

note(V2, P2, P itch2),

distance(Pitch1, P itch2, Out).

using rule production from the facts in the example set E1 above we also
produce the literal melodic interval(1, 1, 2, 12). We append it to a con-
junction of the (labelled but we omit the labels here in favor of readability)
note predicates found in the example, and use the resulting conjunction
as the body of the head given above.

The clause constructed is:

pn(1, 1, 48, 1, 2, 60) ← note(1, 1, 48),

note(1, 2, 60),

melodic interval(1, 1, 2, 12).

3. Generalize. Suppose, we also had the positive example:

E2 = {note(1, 2, 60), note(1, 3, 72)}

36 CHAPTER 4. OUR APPROACH

The constructed clauses would be:

pn(1, 1, 48, 1, 2, 60) ← note(1, 1, 48),

note(1, 2, 60),

melodic interval(1, 1, 2, 12).

pn(1, 2, 60, 1, 3, 72) ← note(1, 2, 60),

note(1, 3, 72),

melodic interval(1, 1, 2, 12).

and their CLGG would be:

pn(1, X, Y, 1, Z,W) ← note(1, X, Y),

note(1, Z,W),

melodic interval(1, X, Z, 12).

which is a learned pattern that describes both E1 and E2 and X,Y ,Z,W
are variables representing the Least General Generalizations:

X = lgg(1, 2)

Y = lgg(48, 60)

Z = lgg(2, 3)

W = lgg(60, 72)

If this pattern covers any examples in the set of negative examples, reject
the generalization, save the example that led to the construction of pn to
a list DL and continue with the other positive examples.

4. Refine. In case we end up with examples stored in the list DL mentioned
above, run the algorithm again, with the examples in DL as the positive
examples. This will give a refined version of the pattern we rejected, that
covers these positive examples only, and none of the negative ones. This
way, the pattern will have many bodies for the same head.

The generic PAL alorithm is given in Fig. 4.3 and the version we use in Fig.
4.4. In our version, we don’t use negative examples, so the step of refinement,
is redundant. Note that we also remove unnecessary arguments from the head
of NC. PAL generated patterns, have some interesting properties:

• Only Variables of the same type as the arguments in our input (for example
the note/4 predicates happen to appear in the head). This way we can
control what type of variables we need to constraint. This will become
clear in Subsection 4.3.

• Only the Variables that appear as arguments in the head can appear in
literals in the body. This keeps the patterns compact, as well as removes
redundant constraints. If we believe that some type of constraints between
other types of variables must exist, we can provide them relative to the
input arguments 6.

6For example, if we want to constraint the interval I between two notes note(1, X, P itch1, 1)
and note(1, Y, P itch2, 1), instead of constraining it as interval(1, X, Y,H), H < 5 we can use
constraint interval lessthan(1, X, Y, 5) which only contains variables X and Y both of which
appear in the input predicates.

4.2. RULE INDUCTION 37

4.2.3 PAL Induction Examples

Below, we will give two examples. The first example which shows the strength of
PAL in the learning of new concepts and the second shows a detailed execution
of the algorithm.

Example of new concept learning

PAL’s most useful property is that it can produce new patterns almost from
scratch, without any prior information on the produced pattern. This is useful,
if we want to learn new concepts, previously unkown to us.

For example, suppose we only have the knowledge base:

distance(X,Y,Out) ← X > Y,Out = X − Y.
distance(X,Y,Out) ← X < Y,Out = Y −X.
distance(X,X, 0).

melodic interval(V1, P1, P2, Out) ← note(V1, P1, P itch1),

note(V2, P2, P itch2),

distance(Pitch1, P itch2, Out).

And we want to learn a concept based on the intervals of these three notes:

note(1, 1, 48).

note(1, 2, 60).

note(1, 3, 72).

So we split these notes into two examples:

E1 = {note(1, 1, 48), note(1, 2, 60)}
E2 = {note(1, 2, 60), note(1, 3, 72)}

If we provide these to PAL, it will induce a new pattern pn:

pn(V, P1, P2)← note(V, P1, P itch1), note(V, P2, P itch2),melodic interval(V, P1, P2, 12).

where we can freely rename pn to octave and realize that the algorithm learned
the concept of the octave.

Example of execution

Suppose we have extracted the examples E1 and E2 shown above, that together
consist our set of positive examples E+. We also have in our knowledge base

38 CHAPTER 4. OUR APPROACH

KB the pattern oblique motion/4 given as7:

oblique motion(V1, V2, P1, P2) ← note(V1, P1, P itch1,1,),

note(V1, P2, P itch1,2,),

note(V2, P1, P itch2,1,),

note(V2, P2, P itch2,2,),

next(V1, P1, P2),

next(V2, P1, P2),

(Pitch1,1 = Pitch1,2, P itch2,1 6= Pitch2,2;

Pitch2,1 = Pitch2,2, P itch1,1 6= Pitch1,2)

That means, oblique motion/4 is true, whenever the four predicates note/4 and
the two predicates next/3 are true, two of the Pitches of the consecutive notes
are the same and the other two are different.

Below we give all the steps of running PAL with input:

E+ = {E3, E4}

where:

E3 = {note(1, 1, 60, 1), note(2, 1, 67, 1), note(1, 2, 60, 1), note(2, 2, 72, 1)}

E4 = {note(1, 2, 60, 1), note(2, 2, 72, 1), note(1, 3, 65, 1), note(2, 3, 72, 1)}

1. Select E3 and label its literals:

{note(11, 12, 603, 14), note(25, 16, 677, 18), note(19, 210, 6011, 112), note(213, 214, 7215, 116)}

2. Construct NC.

• C1 is constructed by all the arguments in the note/4 predicates and
a predicate name pn.

C1 ≡ pn(11, 12, 603, 14, 25, 16, 677, 18, 19, 210, 6011, 112, 213, 214, 7215, 116)

• Using the only pattern oblique motion and the atoms in the example,
we get the pattern instance:

A1,1 ≡ oblique motion(11, 25, 12, 16)

• Finally:

NC ≡ pn(11, 12, 603, 14, 25, 16, 677, 18, 19,

210, 6011, 112, 213, 214, 7215, 116) ← note(11, 12, 603, 14)

note(25, 16, 677, 18)

note(19, 210, 6011, 112)

note(213, 214, 7215, 116).

7A clause with a disjunction ‘;’ is used like two Horn clauses with the same head and one
operand of the disjunction each time.

4.2. RULE INDUCTION 39

3. Enter Inner loop. There’s still one other example.

4. Select E4

5. Construct C ′j

(a) Similar to NC, C ′j is constructed as below, with the same predicate
name PN :

C ′j ≡ pn(11, 22, 603, 14, 25, 26, 727, 18, 19,

310, 6511, 112, 213, 314, 7215, 116) ← note(11, 22, 603, 14)

note(25, 26, 727, 18)

note(19, 310, 6511, 112)

note(213, 314, 7215, 116).

(b) Generalize NC and C ′j and replace NC with the generalization.

• The head H of the generalized clause is the generalization of the
heads of NC and C ′j .

• Generalizations of literals in the body are being done only be-
tween the literals with the same labels8. For example note(11, 12, 603, 14)
with note(11, 22, 603, 14), note(25, 16, 677, 18) with note(25, 26, 727, 18)
etc.

(c) The execution of loop will yield the clause:

pn(11, A, 603, 14, 25, A,B, 18, 19,

C,D, 112, 213, C, 7215, 116) ←
note(11, A, 603, 14),

note(25, A,B, 18),

note(19, C,D, 112),

note(213, C, 7215, 116),

oblique motion(11, 25, B,C).

(d) Remove constants and duplicates of the generalization variables
from the head and output the resulting pattern.

pn(A,C,D) ← note(11, A, 603, 14),

note(25, A,B, 18),

note(19, C,D, 112),

note(213, C, 7215, 116),

oblique motion(11, 25, A,C).

In the pattern generated above, there is no useful direct meaning,
however it states the following:

8Note that a generalization Variable represents two unlabeled literals. So for example C
will represent lgg(210, 310) and lgg(214, 314) alike.

40 CHAPTER 4. OUR APPROACH

“There is an oblique movement at the first two voices, be-
tween positions A and C where the first note of the first
voice must be a middle c (midi number 60) and the second
note of the second voice must be a c5 (midi number 72)”

This is a bit too restrictive in order to generate a piece. In order
to produce more general and useful patterns PAL needs more and
diverse examples.

4.2.4 PAL Limitations

PAL’s most useful property is that it can produce new patterns almost from
scratch, without requiring any prior information on the produced pattern. This
is useful if we want to learn new, previously unknown concepts, which is essential
for our work. However, PAL comes with some limitations. The expressivity of
the patterns allowed is somewhat limited. For example, it is impossible to learn
recursive patterns. Another issue is the number of examples. Too few examples
can lead to overspecification (as in our agorithm execution example). On the
other hand, given many examples a single noise-altered (for example, piano
performance mistakes) or irrelevant example may lead to overgeneralization (the
pattern would be generalized further in order to cover the mistake). Finally,
PAL produced patterns as Horn clauses, where the body members are atomic
sentences; disjunction cannot be used in any of the conjuncts. This limits the
compactness of generated patterns.

4.3 Rule Application and Music Generation

After the induction of rules, we need a way to use them for music generation.
In our approach, we compose a music piece by composing its score. Our score
is a grid of variables corresponding to notes with domain < Pitch,Duration >,
where Pitch is an integer giving the MIDI number of the note symbol and
Duration is an integer giving the duration of a note, relative to the duration
of a beat. The score can be initially fully unconstrained (create the score from
scratch) or partially constrained (for example, if we want to complete the melody
given a cantus firmus).

4.3.1 CSP Formulation

A CSP is as a triplet 〈X,D,C〉 where X is the set of variables, D a domain
of values, and C the set of constraints. In our problem, we define the set of
variables X = {Xij : i = 1, . . . , V, j = 1, . . . , P} where Xij stands for the note
at voice i and position j in the score for V voices and P positions with domain
D = Pitch×Duration, where Pitch is the domain of pitches (MIDI numbers)
and Duration is the domain of durations (integers as well). Our (initial) CSP
is defined as:

〈{X11, X21, . . . , XN1, X12, . . . XNM}, P itch×Duration,C〉

where C is initially empty, but constraints are added by applying the learned
patterns to variables in X. An example of a score where consecutive notes, as

4.3. RULE APPLICATION AND MUSIC GENERATION 41

well as simultaneous notes depend on one another, is given in Fig 4.5. Nodes
represent variables, whereas edges represent (binary) constraints.

Recall that the only variables appearing in our induced rules are Voice,
Position, Pitch, and Duration. Given our CSP formulation, only Pitch and
Duration are subject to constraints. The other two V oice and Position are
used to index the variables Xij and just describe the location of each note in
the score. If we want to apply an induced rule as a constraint to the entire score
we have to introduce constraints for all possible Xij . Arguments in the Head
with domains V oice and Position serve this purpose well. Suppose we have the
pattern:

pn(V1, P1, P itch1, Duration1,

P2, P itch2, Duration2) ← note(V1, P1, P itch1, Duration2),

note(V1, P2, P itch2, Duration2),

next(V1, P1, P2),

constraint pitch(Pitch1, equals, P itch2).

which implies that every note in the same voice is constrained to the same pitch.
We want this pattern to hold true in every combination of voices and positions
possible, or if we momentarily exceed Prolog’s notation and complete it using
quantifiers9:

∀V1
∀P1

∀P2

∃Pitch1
∃Duration1
∃Pitch2

∃Duration2
pn(V1, P1, P itch1, Duration1,

P2, P itch2, Duration2) ← note(V1, P1, P itch1, Duration2),

note(V1, P2, P itch2, Duration2),

next(V1, P1, P2),

constrain pitch(Pitch1, equals, P itch2).

This way, the predicates note/4 and constrain pitch/3 will pass as con-
straints to every triplet 〈V, P1, P2〉 of voices and consecutive positions. After
the constraints are added to the constraint set of our CSP, the solver will find
a solution that holds for all these constraints, possibly with some exceptions as
discussed below.

9Note that we may use Prolog notation, but we do not write a Prolog program. In
reality, the language we use for the application of rules, allows for logic quantifiers.

42 CHAPTER 4. OUR APPROACH

4.3.2 Constraint Relaxation

There are situations, when learning rules from a musical piece, where these
rules cannot hold simultaneously when applied as constraints over the entirety
of a new composition. Such a situation will render the CSP solver unable to
find a solution, therefore we need to relax the problem and apply the resulting
constraints selectively over the new composition. To solve such a relaxed version
of the problem, we introduce “choice points” when applying the constraints. A
“choice point” gives us the liberty to decide whether to place a constraint over
some variables or not. If we place a constraint and the solver is unable to find a
solution under this decision, then we roll-back to this choice point, we lift this
constraint, and we continue by placing the other constraints (that may possibly
apply to the same variables). The additional freedom introduced by the choice
points gives rise to various strategies on placing constraints, such as periodic,
fixed, context-sensitive, or even random.

4.3.3 Constraints Application Example

Below is a (simplified10) example of the application of constraints and execution
of the CSP solver for two patterns on a score of one voice and three positions.
We’ll represent our score as:

〈Pitch1, P itch2, P itch3〉

where Pitchi is the domain of the pitch for the i-th note, and is initialized as
{60, . . . , 72} (all the pitches between middle c and an octave above). Duration
is irrelevant in this example.

We’ll use the following two patterns:

pn1(V, P1, P itch1, Duration1,

P2, P itch2, Duration2) ← note(V, P1, P itch1, Duration1),

note(V, P2, P itch2, Duration2),

next(V, P1, P2),

P itch1 < Pitch2.

pn2(V, P1, P itch1, Duration1,

P2, P itch2, Duration2) ← note(V, P1, P itch1, Duration1),

note(V, P2, P itch2, Duration2),

next(V, P1, P2),

P itch1 > Pitch2.

which conflict with each other. It is obvious that, if they are added to our
constraint set both at the same time, our CSP solver will be unable to find a
solution. The following actions take place:

1. For every two consecutive notes, a constraint (pn1) to their pitches is
added. For every pair of notes, the second note will have a higher pitch.

10Simplified, for clarity reasons. In reality, a choice point will be created for the assignment
of the first group of constraints (the “<“ constraints) as well.)

4.3. RULE APPLICATION AND MUSIC GENERATION 43

A choice point is created in order to remove the constraint in case the
Solver fails to find a solution. Our score becomes:

〈{60, . . . , 72}, {61, . . . , 72}, {62, . . . , 72}〉

2. For every two consecutive notes, a constraint (pn2) to their pitches is
added. For every pair of notes, the second note will have a lower pitch. A
choice point is created in order to remove the constraint in case of failure.
Since the first group (the “pn1” constraints) were applied as well, our score
becomes.

〈∅, ∅, ∅〉

3. Since the domains are empty, no solution can be found, so our CSP solver
terminates the search in this branch and backs up. We then go back
to a choice point and choose to omit one of the rules. Since the “pn2”
constraints were added last, we go back to that choice point and continue
by omitting them. The score becomes once again:

〈{60, . . . , 72}, {61, . . . , 72}, {62, . . . , 72}〉

and our solver returns the (random) solution:

〈60, 65, 70〉

Note that the example above relies on a specific strategy for distributing
choice points. This strategy needs not be immutable. It can be changed as
we see fit. In this example, we inserted a choice point, wherever we decided
to apply a pattern to every voice and every position simultaneously. We
could utilize a better (and more complex) strategy where we put the choice
points, so that they reflect the application of patterns to any voice and
any position, individually and independently.

4.3.4 Rule Modification and Handwritten Rules

After the induction of rules from examples, it is up to the user to decide how
to use them in order to generate new scores. One can modify the extracted
rules by relaxing several constraints or by changing others before feeding them
to the CSP solver. For example, if we apply our ILP algorithm to a Bach
chorale and figure out that it is written in a harmonic minor scale, we could
easily remove the scale constraint to get the same piece in a new scale (defined
a-priori or chosen randomly). Furthermore, one could even add a fifth voice to
the four-voice chorale along with some additional and appropriate rules.

Rules need not be induced by examples only. The clarity of Horn clauses,
allows us to easily build our own rules. For example, if we want to constraint
every melodic interval in some voice, to, for example, 2 semitone (a whole tone),
we would write:

∀V ∀P
∃P ′

myrule(V, P, P ′)

44 CHAPTER 4. OUR APPROACH

where:

myrule(V, P, P ′) ← note(V, P, P itch),

note(V, P ′, P itch′),

next(V, P, P ′),

distance(Pitch, P itch′, 2).

4.4 Summary

The approach taken can be summarized in distinct phases, which include the
extraction of examples, the induction of rules in the form of first-order predi-
cates, and their application to a musical CSP solved by Strasheela. The ILP
algorithm implemented and used is Morales’ PAL algorithm [16]. The input to
the ILP algorithm are examples automatically extracted from musical scores.

The steps taken in order to obtain the rules from the musical scores we
provide as input are:

1. Obtain a piece’s musical score in **kern representation.

2. Transform the **kern representation to first order predicates.

3. Generate and characterize the example sets for the target concepts.

4. Run the ILP PAL algorithm to induce generalized patterns.

5. Add, delete, modify, and combine generated and hand-written patterns.

6. Transform these patterns to constraints in a musical CSP.

7. Solve the musical CSP using Strasheela to obtain a new score.

4.4. SUMMARY 45

given:

• a logic program K

• a set of pattern definitions P, such as P ⊆ K.

• a set of positive (E+) and negative (E−) examples each one described as
a set of ground unit clauses

select an example E1 ∈ E+
construct a new clause(NC) defined as: NC ≡ C1 ← E1 ∪ A1,1 ∪ A1,2, . . .
where:

• K ∧ E1 ` A1,i and A1,i is a ground instance of a pattern definition in P

• C1 is a head clause constructed from the arguments used in E1 and a new
predicate name PN .

set E+ = E+ − {E1}
while E+ 6= ∅

• select a new example Ej ∈ E+

• construct a new clause (C ′j) defined as: C ′j ≡ Cj ← Ej ∪Aj,1 ∪Aj, 2, . . .
where:

– K∧EJ ` Aj,i and Aj,i is a ground instance of a pattern definition in
P

– Cj is a head clause constructed from the arguments used in Ej and
predicate name PN

• set NC = clgg(C ′j , NC) where clgg is an lgg between literals with the
same labels.

• if NC covers an example in E−, then reject NC ′, save Ej in a disjunct
list DL, and continue

• set E+ = E − {Ej}

output NC
if there are examples in DL not covered by an NC, then set E+ = DL and
start the whole process again.

Figure 4.3: The complete PAL algorithm.

46 CHAPTER 4. OUR APPROACH

given:

• a logic program K

• a set of pattern definitions P, such as P ⊆ K.

• a set of positive (E+) examples each one described as a set of ground unit
clauses

select and example E1 ∈ E+
construct a new clause (NC) defined as: NC ≡ C1 ← E1 ∪ A1,1 ∪ A1,2, . . .
where:

• K ∧ E1 ` A1,i and A1,i is a ground instance of a pattern definition in P

• C1 is a head clause constructed from the arguments used in E1 and a new
predicate name PN .

set E+ = E+ − {E1}
while E+ 6= ∅

• select a new example Ej ∈ E+

• construct a new clause (C ′j) defined as: C ′j ≡ Cj ← Ej ∪ Aj,1 ∪ Aj,2, . . .
where:

– K∧EJ ` Aj,i and Aj,i is a ground instance of a pattern definition in
P

– Cj is a head clause constructed from the arguments used in Ej and
predicate name PN

• set NC = clgg(C ′j , NC) where clgg is an lgg between literals with the
same labels.

• set E+ = E − {Ej}

remove constants and duplicates of variables from the head of NC
output NC

Figure 4.4: The modified version of PAL.

4.4. SUMMARY 47

Note
<Pitch , Duration>

Note
<Pitch , Duration>

Note
<Pitch , Duration>

Note
<Pitch , Duration>

Note
<Pitch , Duration>

Note
<Pitch , Duration>

Note
<Pitch , Duration>

Note
<Pitch , Duration>

11 Note
<Pitch , Duration>

12

Note
<Pitch , Duration>

21 Note
<Pitch , Duration>

22 Note
<Pitch , Duration>

23

Note
<Pitch , Duration>

13

Figure 4.5: A 2× 3 (2 Voices, 3 Positions) score in the form of a CSP.

48 CHAPTER 4. OUR APPROACH

Chapter 5

Application to Music
Composition

49

50 CHAPTER 5. APPLICATION TO MUSIC COMPOSITION

5.1 A Method for Music Composition

Up to know we have defined all the methods and techniques we’ll be using. Some
of them may require some extra work, like providing the background knowledge
we’ll be using for rule production. We will describe them in this section.

The general idea is that:

1. Extract examples from existing music compositions.

2. Provide the background knowledge.

3. Run the ILP algorithm.

4. Transform the induced rules, into a CSP.

5. Modify, mix, or remove the existing rules and/or add new ones.

6. Run the CSP solver to yield a new composition.

Manual writing of rules

We can manually provide rules in FOL syntax, as described in previous chap-
ters. In this case, no extra background knowledge must be given, aside from
the definition of the patterns we will be using. In our implementation, only ba-
sic predicates, like note/3 and melodic interval/4 or the predicates describing
motions, are provided. In this case, we just have to provide the system with the
rules that define our music theory in FOL syntax. We do not need to provide
any examples.

Single example set and rule extraction

We may use a single piece and rule induction to extract the rules that char-
acterize this piece. We can then modify them by hand, perhaps relaxing some
of the rules (rules act as constraints), and generate new pieces based on these
modified rules or a subset of them. In this case, we have to provide the system
with the required background knowledge, as well as the piece we want to extract
rules from, in the form of examples. Usually, a single rule is extracted from this
one example set.

Multiple example sets and rule induction

We may use a single or multiple piece(s) and rule induction to extract a variety
of rules that characterize these pieces. If we want to do, for example, harmonic
analysis, we may want to extract rules from all the 2×2 windows of simultaneous
and consecutive notes over the score(s) (that include both harmonic intervals
and their melodic transitions). We may extract one or more rules (one rule per
example set). In this case, we need to provide the background knowledge as
well as the example sets.

In the next section, we will provide examples of our methods. We will
show one example for each case, the steps we follow, as well as the resulting
composition.

5.2. USING HAND-WRITTEN RULES 51

5.2 Using Hand-Written rules

We will start by showing how easily one can compose new songs by providing
hand-written rules in FOL syntax. Suppose we want to utilize four of the First
species Fuxian counterpoint rules [16]:

1. From one perfect consonance1 to another perfect consonance, one
may progress with a contrary or oblique motion.

2. From a perfect consonance to an imperfect consonance, one may
progress with any motion.

3. From an imperfect consonance to a perfect consonance, one may
progress with a contrary or oblique motion.

4. From one imperfect consonance to another imperfect consonance,
one may progress with any motion.

Note the terms in bold typeface. These correspond to predicates that we need
to have defined in our knowledge base. Every numbered sentence above is a
rule and corresponds to a specific pattern. Suppose we have the background
knowledge given in Fig. 5.1 and Fig. 5.2. In order to express the first rule in
FOL syntax we think as follows:

• Recognize the different positions we refer to. A harmonic consonance
characterizes the harmonic interval between two notes at the same position
from consecutive voices (one over the other). A motion implies melodic
progression between two succesive notes in the same voice, (one next to
the other). So, we are looking at 2×2 windows. over voices and positions.
If a note is at (V, P) then this window also includes the notes at (V +1, P),
(V, P + 1) and (V + 1, P + 1). Our “input” predicates are then:

note(V1, P1, P11)

note(V1, P2, P12)

note(V2, P1, P21)

note(V2, P2, P22)

where Pij are the corresponding pitches and the following apply:

next(P1, P2)

over(V1, V2)

where over(V, P, P ′) and next(V, V ′, P) are already defined in the back-
ground knowledge.

So, until now, our pattern for the four rules we seek to write has be-
come (remember that our score is a two dimensional grid of undetermined
notes, so the input arguments are just V oice, Position of the note to be
constrained):

1We refer to harmonic consonances.

52 CHAPTER 5. APPLICATION TO MUSIC COMPOSITION

over(V1, V2, P) ← note(V1, P, P itch1),

note(V2, P, P itch2),

V2 = V1 + 1,

P itch2 > Pitch1.

next(V, P1, P2) ← note(V, P1, P itch1),

note(V, P2, P itch2),

P2 = P1 + 1.

harmonicInterval(V1, V2, P, I) ← note(V1, P, P itch1),

note(V2, P, P itch2),

over(V1, V2, P)

I = Pitch2 − Pitch1.
harmonicPerfectConsonance(V1, V2, P) ← harmonicInterval(V1, V2, P, 0);

harmonicInterval(V1, V2, P, 7);

harmonicInterval(V1, V2, P, 12).

harmonicImperfectConsonance(V1, V2, P) ← harmonicInterval(V1, V2, P, 3);

harmonicInterval(V1, V2, P, 4);

harmonicInterval(V1, V2, P, 8);

harmonicInterval(V1, V2, P, 9).

obliqueMotion(V1, V2, P1, P2) ← note(V1, P1, P itch11),

note(V1, P2, P itch12),

note(V2, P1, P itch21),

note(V2, P2, P itch22),

next(V1, P1, P2),

next(V2, P1, P2),

over(V1, V2, P1),

over(V1, V2, P2),

(Pitch11 6= Pitch12,

P itch21 = Pitch22;

Pitch11 = Pitch12,

P itch21 6= Pitch22).

Figure 5.1: A sample background knowledge.

5.2. USING HAND-WRITTEN RULES 53

contraryMotion(V1, V2, P1, P2) ← note(V1, P1, P itch11),

note(V1, P2, P itch12),

note(V2, P1, P itch21),

note(V2, P2, P itch22),

next(V1, P1, P2),

next(V2, P1, P2),

over(V1, V2, P1),

over(V1, V2, P2),

(Pitch11 > Pitch12,

P itch21 < Pitch22;

Pitch11 < Pitch12,

P itch21 > Pitch22).

directMotion(V1, V2, P1, P2) ← note(V1, P1, P itch11),

note(V1, P2, P itch12),

note(V2, P1, P itch21),

note(V2, P2, P itch22),

next(V1, P1, P2),

next(V2, P1, P2),

over(V1, V2, P1),

over(V1, V2, P2),

(Pitch11 > Pitch12,

P itch21 > Pitch22;

Pitch11 < Pitch12,

P itch21 < Pitch22).

restrictToContraryOrObliqueMotion(V1, V2, P1, P2) ← contraryMotion(V1, V2, P1, P2);

obliqueMotion(V1, V2, P1, P2).

restrictToAnyMotion(V1, V2, P1, P2) ← contraryMotion(V1, V2, P1, P2);

obliqueMotion(V1, V2, P1, P2);

directMotion(V1, V2, P1, P2).

Figure 5.2: A sample background knowledge (cont.).

54 CHAPTER 5. APPLICATION TO MUSIC COMPOSITION

pn(V1, P1) ← note(V1, P1, P11),

note(V1, P2, P12),

note(V2, P, P21),

note(V2, P2, P22),

next(P1, P2)

over(V1, V2)

• Give the relations that hold for the input predicates and the restriction
that need to be taken for these relations. In our example, for the first rule
we want our notes at (V1, P1) and (V2, P1) to form a perfect consonance,
and the same to apply to the notes at (V1, P2), (V2, P1).

harmonicPerfectConsonance(V1, V2, P1)

harmonicPerfectConsonance(V1, V2, P2)

and also we have a restriction that apply in this case. We must progress
by moving with contrary or oblique motion, this can be described as:

restrictToContraryOrObliqueMotion(V1, V2, P1, P2)

which restricts the movement to either an oblique or contrary motion.

5.2. USING HAND-WRITTEN RULES 55

Given the above, the 4 rules can be written as follows:

pn1(V, P) ← note(V, P, P itch11),

note(V, P2, P itch12),

note(V2, P, P itch21),

note(V2, P2, P itch22),

next(P, P2)

over(V, V2)

harmonicPerfectConsonance(V1, V2, P1)

harmonicPerfectConsonance(V1, V2, P2)

restrictToContraryOrObliqueMotion(V1, V2, P1, P2).

pn2(V, P) ← note(V, P, P itch11),

note(V, P2, P itch12),

note(V2, P, P itch21),

note(V2, P2, P itch22),

next(P, P2)

over(V, V2)

harmonicPerfectConsonance(V1, V2, P1)

harmonicImperfectConsonance(V1, V2, P2)

restrictToAnyMotion(V1, V2, P1, P2).

pn3(V, P) ← note(V, P, P itch11),

note(V, P2, P itch12),

note(V2, P, P itch21),

note(V2, P2, P itch22),

next(P, P2)

over(V, V2)

harmonicImperfectConsonance(V1, V2, P1)

harmonicPerfectConsonance(V1, V2, P2)

restrictToContraryOrObliqueMotion(V1, V2, P1, P2).

pn4(V, P) ← note(V, P, P itch11),

note(V, P2, P itch12),

note(V2, P, P itch21),

note(V2, P2, P itch22),

next(P, P2)

over(V, V2)

harmonicImperfectConsonance(V1, V2, P1)

harmonicImperfectConsonance(V1, V2, P2)

restrictToAllMotions(V1, V2, P1, P2).

• Translate these rules to constraints, apply them to every note in every
voice in our undetermined score, and run the solver. A sample result

56 CHAPTER 5. APPLICATION TO MUSIC COMPOSITION

with unconstrained durations and an additional constraint that restricts
every note to a note of the G-major scale is given in Fig. 5.3. Note that
there are 8 notes in every voice and that the rules apply for each of the
note, distinctively. For example the drawn 2 × 2 square consists of the
first four first top-left notes (B-B-B-D); note that in this case, the second
rule has been applied. Also note that the output is somewhat, upside-
down. Usually we write the bass on the bottom and the treble on the
top; the inverse ordering is due to our solution encoding in Strasheela.
The end result does not conform to the general counterpoint rules of 1st
species, since we do not provide them in their entirety but nevertheless it
demonstrates how one can generate compositions that adhere to specific
rules.

Figure 5.3: A composition that adheres to the First species Fuxian counterpoint
rules.

5.3 Using Extracted Rules

In this scenario, we will show how we are able to produce new compositions
from existing ones through the use of Rule Production. Suppose we have the
simple melody in Fig 5.4. This melody has been taken from “PAL: A Pattern-
Based First Order Inductive System” (Morales et al.) [16] as an example for
counterpoint analysis. We will use this piece to extract rules and then relax
them one by one to get new melodies based on this input.

5.3. USING EXTRACTED RULES 57

Figure 5.4: The simple 2 voice piece we will use as input.

We view this score as a solution to a CSP. Suppose we have had composed
this song by applying a number of rules. The pitches and durations of the notes
are nothing more than a solution to the corresponding CSP. If we somehow
“discover” the rules that apply throughout the song, we should be able to pro-
duce the same song, just by finding a solution to that CSP. We can find these
rules by running a rule production algorithm (for example, the PAL algorithm),
with just one example set, so that induction does not take place2. We, then,
can modify, add new, or even remove the existing rules from the description of
our song. We could remove every constraint that is too specific for our tastes
(for example, the harmonicInterval patterns that constraint an interval to a
specific value) and keep only the rules about consonance or dissonance, certain
melodic rules (for example, if we have a melodic step or skip) and the rules
that describe motions (oblique, contrary, or direct). We then can run our solver
again, and get interesting results. Below, we give an example of how one can
get a new piece by removing existing constraints, providing new ones and even
modifying the existing patterns.

Our input melody (Fig. 5.4), after the execution of PAL, becomes a single
long pattern, of the form:

pn ← note(1, 1, 62), . . . , note(1, 12, 62),

note(2, 1, 69), . . . , note(2, 12, 62),

...

cMajor(1, 1), . . . , cMajor(2, 12)

...

gMajor(1, 1), . . . , gMajor(2, 12)

...

contraryMotion(1, 2, 3, 4),

...

restrictToContraryOrObliqueMotion(1, 2, 11, 12),

melodicStep(1, 1, 2),

...

melodicUpwards(2, 10, 11).

Where the note(V oice, Position, P itch) predicates describe notes at voice V oice

2Of course, we would still need to provide the system with a sufficient pattern library
(background knowledge), in order to produce the rules.

58 CHAPTER 5. APPLICATION TO MUSIC COMPOSITION

and position Position with a pitch Pitch, cMajor(V oice, Position) and gMajor(V oice, Position)
indicate that the note at (V oice, Position) can be part of a mode of the cmajor
or gmajor scale respectively, contraryMotion and restrictToContraryOrObliqueMotion
are defined as in the previous example, melodicStep(V oice, Position1, Position2)
holds when there is a melodic step3 at V oice between Position1 and Position2
and melodicUpwards(V oice, Position1, Position2) is true when there is an as-
cending interval between Position1 and Position2 at voice V oice.

Running the solver with the entire pattern induced as a constraint, we simply
regenerate the same piece. By removing the note predicates, we get the same
piece transposed (but still on the same scale).

By removing the scale-referring predicates (ex. the gmajor and cmajor predi-
cates), we get the same piece, transposed and at a different mode.

By removing the interval-related predicates (for example, the harmonicInterval),
we get a new piece, that respects the consonances and dissonances of our theory
as well as the melodic movements of our original piece.

By removing every melodic movement related predicate (for example, the
melodicUpwards or melodicSteady predicates), we get a different piece.

We can also get some nice results, if we input our own melody and let our
system do the counterpoint. Here, we have used a chromatic scale as our cantus
firmus.

3A melodic interval of at most a major third.

5.4. USING INDUCED RULES 59

Here is an example where we just added the “perfect fourth” to the list of perfect
consonant intervals.

5.4 Using Induced Rules

In the previous example, we did not utilize induction at all. The pieces we could
compose were limited to 11 whole-note measures and 2 voices, because of the
original melody. Also, the rules extracted were applied to the same places for
every piece we could compose.

We should not limit ourselves this way. We would like to compose as long
pieces as we like and also apply the rules wherever we like. Below we show how
this can be achieved by using induction to learn patterns that can be applied
freely to our pieces.

Arpeggios

One of the simplest melodic patterns are the arppegios, that is, the notes of a
chord played in a sequence. A sequence of arppegios on a rhythm of 6

8 for the
chord sequence Dm−Dm−Am−Am4 would be:

Suppose we wanted to learn the general pattern for such appregios. We need
to provide our ILP algorithm with the examples that describe best our pattern.
We can see that every measure contains one appregio, so we will use one measure
for each example. The input to PAL is the above sequence of arpegios, split
into examples:

4We got the output out of Strasheela, without checking for meter. That is why we have
a meter of 4

4
on our scores.

60 CHAPTER 5. APPLICATION TO MUSIC COMPOSITION

example #1 example #2 example #3 example #4

i.e. for example #1 we have:

E1 = {note(1, 1, 62), note(1, 2, 65), note(1, 3, 69), note(1, 4, 74), note(1, 5, 69), note(1, 6, 65)}

Our algorithm will give a single pattern as a FOL clause of the form:

pn(Position1, P itch1) ← note(1, Position1, P itch1),

note(1, Position2, P itch2),

note(1, Position3, P itch3),

note(1, Position4, P itch4),

note(1, Position5, P itch5),

note(1, Position6, P itch6),

next(1, Position1, Position2),

next(1, Position2, Position3),

next(1, Position3, Position4),

next(1, Position4, Position5),

next(1, Position5, Position6),

melodic interval(1, Position1, Position2, 3),

melodic interval(1, Position2, Position3, 4),

melodic interval(1, Position3, Position4, 5),

melodic interval(1, Position4, Position5, 5),

melodic interval(1, Position5, Position6, 4),

melodic upwards(1, Position1, Position2),

melodic upwards(1, Position2, Position3),

melodic upwards(1, Position3, Position4),

melodic downwards(1, Position4, Position5),

melodic downwards(1, Position5, Position6),

...

Which is a pattern that, when applied as a constraint, will give an arpeggio that
begins at Position1 and has its base pitch at Pitch1. Our pattern’s head has
some “input” variables (variables that refer to voice or position) and we need
to specify how we are going to apply it to our score.

It does not make sense to apply this pattern to every single position in
our score, because clearly the constraint cannot be satisfied for all sets of 6
continuous notes simultaneously. If we do so, the CSP solver will relax these
constraints through the choice points and will deliver something like the score
that follows:

5.4. USING INDUCED RULES 61

A better idea would be to focus on measures. If we apply the rule to the
first note of every measure in our score, we imply that every six succesive notes
in a measure we will contain an apreggio.

Now, we get single-measure arpreggios that begin at various pitches. If we
would like to get only Am and Dm arpeggios, we would need to characterize
our examples as Am or Dm before giving them as input to our ILP algorithm.
We split again our melody into examples, and we characterize each one as Am
or Dm:

Dm Dm Am Am

example #1 example #2 example #3 example #4

Characterized as:

62 CHAPTER 5. APPLICATION TO MUSIC COMPOSITION

If we characterize the examples as such, we will get two different patterns, one
for Dm and one for Am:

pnDm(Position1) ← note(1, Position1, 62),

note(1, Position2, 65),

note(1, Position3, 69),

note(1, Position4, 72),

note(1, Position5, 69),

next(1, Position1, Position2),

next(1, Position2, Position3),

next(1, Position3, Position4),

next(1, Position4, Position5),

next(1, Position5, Position6),

...

melodic interval(1, Position1, Position2, 3),

melodic interval(1, Position2, Position3, 4),

melodic interval(1, Position3, Position4, 5),

melodic interval(1, Position4, Position5, 5),

melodic interval(1, Position5, Position6, 4),

melodic upwards(1, Position1, Position2),

melodic upwards(1, Position2, Position3),

melodic upwards(1, Position3, Position4),

melodic downwards(1, Position4, Position5),

melodic downwards(1, Position5, Position6),

...

pnAm(Position1) ← note(1, Position1, 57),

note(1, Position2, 60),

note(1, Position3, 64),

note(1, Position4, 69),

note(1, Position5, 64),

next(1, Position1, Position2),

next(1, Position2, Position3),

next(1, Position3, Position4),

next(1, Position4, Position5),

next(1, Position5, Position6),

...

melodic interval(1, Position1, Position2, 3),

melodic interval(1, Position2, Position3, 4),

melodic interval(1, Position3, Position4, 5),

melodic interval(1, Position4, Position5, 5),

melodic interval(1, Position5, Position6, 4),

melodic upwards(1, Position1, Position2),

melodic upwards(1, Position2, Position3),

melodic upwards(1, Position3, Position4),

melodic downwards(1, Position4, Position5),

melodic downwards(1, Position5, Position6),

...

5.4. USING INDUCED RULES 63

If we randomly choose at each measure which of these patterns to apply, we will
get something like this:

Of course, we can use the pattern in a more targetted way. We can specify that
we want to apply a Dm−Am−Dm−Am arpreggio sequence which results to
the score below:

64 CHAPTER 5. APPLICATION TO MUSIC COMPOSITION

Chapter 6

Conclusion

65

66 CHAPTER 6. CONCLUSION

6.1 Limitations

Music can be seen as a formal language and can be described well in first-order
logic. This enables us to learn patterns and use them in order to constrain a
music piece, like music theory rules do. However, this learning process has some
theoretical and practical problems. Methods like “forward-chaining” for rule
production (used in the ILP methods we use) have exponential time complexity
in the worst case. The search methods for solving CSPs also have exponential
time complexity in the worst case. Clearly, the problem of learning music rules
and applying them to composition is in general NP-hard (as most interesting
problems). Therefore, as also evidenced by our experience, we do not expect
that we will be able to apply these ideas to lengthy compositions.

Regarding induction, we use PAL which in turn uses the concept of Least
General Generalizations. LGG has various disadvantages: with misformed ex-
amples it can easily lead to overgeneralized rules, while with insufficient exam-
ples it can lead to overspecification. It also provides no way of knowing if a
sufficient number of examples have been provided. Additionally, it is not re-
silient to noise; noisy data can easily lead to undesirable results due to fitting of
the noise. There is also the issue of background knowledge. By increasing the
information provided in the background knowledge base, we most likely increase
the size of the literals. PAL has a way of constraining the amount of literals
produced and we have constrained it even further, but still, it can lead to pat-
terns that are huge in literal size. And, unfortunately the larger the pattern
size, the larger number of examples it requires to avoid overspecification.

In this work, we wanted to learn the structure of rules that characterize a
musical example, apply these rules as constraints over a new score and run the
CSP solver to get the final composition. What we have not discussed in detail in
this text is how the application of patterns in the CSP is being done. Assigning
values to our CSP variables at random and/or applying constraints at random
positions does not work well. While the results may be correct, they’re not
always pleasing to the ear. This may be difficult to be dealt with the use of
FOL rules alone. While one can enhance sheet music with many performance
details, an issue arises when trying to model human behavior in performance or,
even worse, in composition. For example, it can be very difficult to formulate the
thought process of a Jazz musician improvising. Perhaps the usage of FOL rules
should be coupled with some sort of adaptive model such as a neural network
as in HARMONET [22] or some kind of a statistical model.

6.2 Future Work

Strasheela Extension As it currently stands now, our work is implemented
by a software prototype based on a mixture of programming languages (Prolog,
Oz, Bash, Python together with Awk for the music representation/cognition
library HumDrum [25]). This implementation makes debugging very inefficient
and provides a rather awkward workflow in order to proceed from existing mu-
sical pieces to compositions. It would be ideal if our work’s prototype could be
rewritten in Oz, which is the language of the original Strasheela prototype,
as a Strasheela extension.

6.2. FUTURE WORK 67

Distributed Environments Memory and processing power in modern com-
puters have exponentially grown and their almost constant connectivity nowa-
days have made them easily accessible and inexpensive resources. Grid comput-
ing, cloud services, and distributed systems in general have become very easy
to establish. It would be nice if we could modify our implementation so that
it utilizes the processing power of computers distributed across the internet. A
good start would be implementing our prototype as a Strasheela extension
(see above) since the Oz programming language offers various built-in methods
for distributed computing.

ILP Algorithms PAL works well for our simple examples, but since it uses
lgg, it has its limitations and greatly depends on the examples given (i.e. noisy
or incorrect data in the examples can lead to overgeneralization, whereas lack
of enough examples can lead to overspecification). We would like to see how
other ILP algorithms perform within our problem. For example, there is Mug-
gleton’s CIGOL which uses reverse resolution or PROGOL which uses inverse
entailment. A list of various ILP systems can be seen at [29]. It is possible one
could adapt several of these systems in order to do rule-production in the style
of PAL.

Behavioral Learning Hild et al. [22] use a neural network in conjuction
with deterministic symbolic rules to control the application of these rules, so
that the resulting piece is not only correct, but also aesthetically pleasing. In
our work, we do structural learning of rules using ILP, but we do not do any
attempt to control their application. It would be nice if we could do behavioral
learning, using some kind of metric. For example, we could use some work based
on the emotions induced by music (i.e. works described in [30]), to guide the
composition process.

User Interface One may design a graphical user interface that allows the
user to input the examples for the ILP algorithm in a graphical way (perhaps
using a score as input like any notation software). Such a graphical user inter-
face could allow the user to work on the rules as if they were distinct graphical
elements and even design new rules and modify them in such a graphical way.

Music Editing Aside from a method for computer-aided music composition,
our work could be used to support a nice score completion property of con-
ventional score-writing software in the same way that word-completion is being
done on word processors, thus speeding up the writing of a score. The soft-
ware would gradually learn the way the score-writer writes and suggest possible
completions in the same way modern word processing software does.

68 CHAPTER 6. CONCLUSION

Appendix A

Software Usage Instructions

69

70 APPENDIX A. SOFTWARE USAGE INSTRUCTIONS

A.1 Software Repository

The user may check out a current snapshot of our code from Github:

https://github.com/mmxgn/induction

A.2 System Information

Working versions for our prototype implementation:

• Operating system: Debian GNU/Linux 6.0.1 (squeeze).

• Shell: Bash

• Prolog: SWI-ProLog 5.10.4.

• Python: 2.6.6.

• Awk: gawk 1.3.7.

• Humdrum: Git snapshot (May 27, 2011).

• Mozart/Oz: 1.4.0

• Strasheela: 0.9.10

Used software package websites:

• SWI-ProLog: http://www.swi-prolog.org/index.txt

• Python: http://www.python.org/

• Humdrum: http://github.com/genos/humdrum/

• Mozart/Oz: http://www.mozart-oz.org/

• Strasheela: http://strasheela.sourceforge.net/

A.3 Scripts

Below is a list of the scripts we developed and their usage.

• kerntofol.sh – Bash script

– usage: sh kerntofol.sh input.krn timebase, where input.krn

is a **kern file and timebase is the minimum time base unit we use.

– outputs: input.in.pl, where input.in.pl is the translated input.krn

**kern file to FOL predicates.

• generate 2x2 examples.pl – Prolog script

– usage: swipl -s generate 2x2 examples.pl > examples.pl

– expects: a file input.pl containing the song in FOL predicates for-
mat.

https://github.com/mmxgn/induction
http://www.swi-prolog.org/index.txt
http://www.python.org/
http://github.com/genos/humdrum/
http://www.mozart-oz.org/
http://strasheela.sourceforge.net/

A.3. SCRIPTS 71

– outputs: examples.pl, where examples.pl is a file containing ex-
ample sets of the 2× 2 window form we saw in Chapter 5, using the
note/3 input predicates.

• generate measure examples.pl – Prolog script

– usage: swipl -s generate measure examples.pl > examples.pl

– expects: a file input.pl containing the song in FOL predicates for-
mat.

– outputs: examples.pl, where examples.pl is a file containing exam-
ple sets from the predicates in each measure, using the note/3 input
predicates.

• generate measure examples duration.pl – Prolog script

– usage: swipl -s generate measure examples duration.pl > examples.pl

– expects: a file input.pl containing the song in FOL predicates for-
mat.

– outputs: examples.pl, where examples.pl is a file containing exam-
ple sets from the predicates in each measure, using the note/4 input
predicates.

• generate wholepiece examples.pl – Prolog script

– usage: swipl -s generate wholepiece examples.pl > examples.pl

– expects: a file input.pl containing the song in FOL predicates for-
mat.

– outputs: examples.pl, where examples.pl is a file containing the
whole piece as a single example set, using note/3 input predicates.

• generate wholepiece examples duration.pl – Prolog script

– usage: swipl -s generate wholepiece examples duration.pl >

examples.pl

– expects: a file input.pl containing the song in FOL predicates for-
mat.

– outputs: examples.pl, where examples.pl is a file containing the
whole piece as a single example set, using note/4 input predicates.

• characterize.py – Python script

– usage: python characterize.py

– expects: a file example.pl containing example sets.

– outputs: examples new.pl, where examples new.pl is a file contain-
ing the labeled examples.

• pal.pl – Prolog script

– usage: swipl -s pal.pl

72 APPENDIX A. SOFTWARE USAGE INSTRUCTIONS

– expects: a file examples.pl containing our positive example sets
and a file patterns.pl containing the patterns already known in our
knowledge base.

– outputs: pal out.pl, where pal out.pl is a file containing the in-
duced rules in Prolog Horn clauses format.

• genpats.py – Python script

– usage: python genpats.py pal out.pl

– outputs: oz pal.oz, oz loops.oz, where oz pal.oz is a file con-
taining the induced rules, in Oz format, and oz loops.oz is a file
describing how these will be applied to our score.

• solver.oz – Oz script

– usage: oz solver.oz – runs CSP solver.

– expects: oz patterns.oz, oz pal.oz, oz loops.oz.

A.4 Workflow Example

Suppose we have the following melody in **kern format, in arp.krn:

and we want to generate a new piece by learning a concept for each measure (6
notes here). The steps we follow are:

1. Convert to FOL:

$ sh kerntofol3.sh arp.krn 8

$ cp arp.in.pl input.pl

2. Generate examples from each measure.

$ swipl -s generate_measure_examples.pl > examples.pl

3. Characterize examples:

$ python characterize.py

$ cp examples_new.pl examples.pl

4. Run PAL:

$ swipl -s pal.pl

5. Convert to Oz representation:

A.4. WORKFLOW EXAMPLE 73

$ python genpats.py pal_out.pl

6. Run CSP solver.

$ oz solver.oz

7. Feed to Oz. Press Ctrl+‘.’+‘b’. At the explorer window, double click
the green box (solution).

.

74 APPENDIX A. SOFTWARE USAGE INSTRUCTIONS

Bibliography

[1] “Edgard Varèse.” http://en.wikipedia.org/wiki/Edgard_Var%C3%

A8se, 2011. [Online; accessed 21-July-2011].

[2] john a. maurer iv, “History of algorithmic composition,” tech. rep.,
Stanford University, 1999. https://ccrma.stanford.edu/~blackrse/

algorithm.html.

[3] M. Edwards, “Algorithmic Composition: Computational Thinking in Mu-
sic,” Communications of the ACM, vol. 54, no. 7, pp. 58–67, 2011.

[4] “Sheet music — Wikipedia, the free encyclopedia.” http://en.

wikipedia.org/wiki/Sheet_music, 2011. [Online; accessed 22-July-
2011].

[5] A. Alpern, “Techniques for algorithmic composition of music,” tech. rep.,
Hampshire College, 1995.

[6] C. Wamser and C. Wamser, “Lejaren A. Hiller, Jr.: A Memorial Tribute
to a Chemist-Composer,” Journal of Chemical Education, vol. 73, no. 7,
p. 601, 1996.

[7] “Wolframtones: An experiment in a new kind of music.” http://tones.

wolfram.com/.

[8] C. Ariza, “Navigating the landscape of computer-aided algorithmic com-
position systems: a definition, seven descriptors, and a lexicon of systems
and research,” in International Computer Music Conference, pp. 765–772,
2005.

[9] T. Anders, “Composing music by composing rules: Computer aided com-
position employing constraint logic programming,” tech. rep., School of
Music & Sonic Arts, Queen’s University Belfast, 2003.

[10] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 2nd ed., 2002.

[11] A. Sakharov, “Interpretation — mathworld – a wolfram web re-
source, created by Eric W. Weisstein.” http://mathworld.wolfram.com/

Interpretation.html.

[12] W. F. Clocksin and C. S. Mellish, Programming in Prolog: Using the ISO
standard. Springer, 2003.

75

http://en.wikipedia.org/wiki/Edgard_Var%C3%A8se
http://en.wikipedia.org/wiki/Edgard_Var%C3%A8se
https://ccrma.stanford.edu/~blackrse/algorithm.html
https://ccrma.stanford.edu/~blackrse/algorithm.html
http://en.wikipedia.org/wiki/Sheet_music
http://en.wikipedia.org/wiki/Sheet_music
http://tones.wolfram.com/
http://tones.wolfram.com/
http://mathworld.wolfram.com/Interpretation.html
http://mathworld.wolfram.com/Interpretation.html

76 BIBLIOGRAPHY

[13] S. Muggleton and C. Feng, “Efficient induction of logic programs,” Induc-
tive logic programming, vol. 38, pp. 281–298, 1992.

[14] S. H. Muggleton, “Inverse Entailment and Progol,” New Generation Com-
puting, vol. 13, no. 3, pp. 245–286, 1995.

[15] “The aleph manual.” http://www.cs.ox.ac.uk/activities/machlearn/

Aleph/aleph.html.

[16] E. F. Morales, “PAL: A pattern-based first-order inductive system,” Ma-
chine Learning, vol. 26, pp. 227–252, Feb – March 1997.

[17] S. Dzeroski and N. Lavrac, eds., Relational Data mining. Springer, 2001.

[18] T. Anders, Composing music by composing rules: Design and usage of a
generic music constraint system. PhD thesis, School of Music & Sonic Arts,
Queen’s University Belfast, 2007.

[19] “Csounds.com.” http://www.csounds.com/.

[20] T. Anders and E. R. Miranda, “Constraint-Based Composition in Real-
time,” in International Computer Music Conference, 2008.

[21] K. Ebcioğlu, “An expert system for harmonizing chorales in the style of J.
S. Bach,” The Journal of Logic Programming, vol. 8, pp. 145–185, 1990.

[22] H. Hild, J. Feulner, and W. Menzel, “HARMONET: A neural net for har-
monizing chorales in the style of J. S. Bach,” in Neural Information Pro-
cessing Systems, pp. 267–267, Morgan Kaufmann, 1993.

[23] E. Morales and R. Morales, “Learning musical rules,” in IJCAI-95 Inter-
national Workshop on Artificial Intelligence and Music, 14th International
Joint Conference on Artificial Intelligence (IJCAI-95), Montreal, Canada,
1995.

[24] R. Morales-Manzanares, E. F. Morales, R. Dannenberg, and J. Berger,
“SICIB: An Interactive Music Composition System Using Body Move-
ments,” Computer Music Journal, vol. 25, pp. 62–79, July 2001.

[25] “The humdrum toolkit: Software for music research.” http://musicog.

ohio-state.edu/Humdrum/.

[26] “Kernscores.” http://kern.ccarh.org/.

[27] “Strasheela reference documentation.” http://strasheela.

sourceforge.net/strasheela/doc/StrasheelaReference.html.

[28] “Mozart documentation.” http://www.mozart-oz.org/documentation/.

[29] “Inductive logic programming — Wikipedia, the free encyclopedia.” http:

//en.wikipedia.org/wiki/Inductive_logic_programming, 2011. [On-
line; accessed 22-July-2011].

[30] “2010: Audio music mood classification.” http://www.music-ir.org/

mirex/wiki/2010:Audio_Music_Mood_Classification.

http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html
http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html
http://www.csounds.com/
http://musicog.ohio-state.edu/Humdrum/
http://musicog.ohio-state.edu/Humdrum/
http://kern.ccarh.org/
http://strasheela.sourceforge.net/strasheela/doc/StrasheelaReference.html
http://strasheela.sourceforge.net/strasheela/doc/StrasheelaReference.html
http://www.mozart-oz.org/documentation/
http://en.wikipedia.org/wiki/Inductive_logic_programming
http://en.wikipedia.org/wiki/Inductive_logic_programming
http://www.music-ir.org/mirex/wiki/2010:Audio_Music_Mood_Classification
http://www.music-ir.org/mirex/wiki/2010:Audio_Music_Mood_Classification

	Introduction
	Music, Mathematics, and Composition
	Thesis Contribution
	Thesis Overview

	Background
	Music Representation
	Human Music Representation
	Computer Music Representation
	Micro and Macro Scale

	Computer-Aided Algorithmic Composition
	First-Order Logic
	Expressive Power of First-Order Logic
	Terms, Variables, Sentences, Quantifiers
	Literals, Clauses, Horn Clauses
	Models and Interpretations
	FOL Syntax and Prolog Representation
	Prolog Queries and Production Systems

	Inductive Logic Programming
	Working with Constraints
	Constraint Satisfaction Problems
	Constraint Satisfaction in First-Order Logic

	Strasheela

	Problem Statement
	Human Intuition in Composition
	Machine ``Intuition'' in Composition
	Related Work

	Our Approach
	Representations and Transformations
	The **kern Representation
	FOL Predicate Representation
	Representation of Examples
	Representation of Background Knowledge
	Representation of Induced Rules
	The Oz Representation

	Rule Induction
	Example Sets
	The PAL Algorithm
	PAL Induction Examples
	PAL Limitations

	Rule Application and Music Generation
	CSP Formulation
	Constraint Relaxation
	Constraints Application Example
	Rule Modification and Handwritten Rules

	Summary

	Application to Music Composition
	A Method for Music Composition
	Using Hand-Written rules
	Using Extracted Rules
	Using Induced Rules

	Conclusion
	Limitations
	Future Work

	Software Usage Instructions
	Software Repository
	Generic System Information
	Scripts
	Workflow Example

