

« µ µ »

:

μ 2009

μ μ μ μ

ii

	αιο 1 : Εισαγωγή	1
1.1	Η Πραγματικότητα Σήμερα	
1.2	Μόλυνση Υπογείων Υδάτων	2
1	.2.1 Χώροι Υγειονομικής Ταφής Αποβλήτων (Χ.Υ.Τ.Α.)	2
1	.2.2 Σύστημα Παρακολούθησης και Εντοπισμού Υπόγειας Ρύπανσης	5
1.3	Θέμα και Στόχοι της Εργασίας	6
1.4	Πλάνο Ανάπτυξης Εργασίας	
Κεφάλ	αιο 2 : Ετερογένεια και Στοχαστικά Μοντέλα Ροής και Ρύπανσης	10
2.1	Φυσική Μεταβλητότητα ή Ετερογένεια Γεωλογικών Πεδίων	
2.2	Περιγραφή Γεωλογικών Πεδίων	
2	.2.1 Ντετερμινιστική Προσέγγιση	11
2	.2.2 Στοχαστική Προσέγγιση	11
2.3	Στοχαστικές Διαφορικές Εξισώσεις (Stochastic Differential Equations, SDEs)	
2	.3.1 Αναλυτική Προσέγγιση	
2	.3.2 Αριθμητική Προσέγγιση, Μέθοδοι Monte Carlo	
Κεφάλ	αιο 3 : Μοντέλο Προσομοίωσης Υπόγειας Ροής και Μεταφοράς Ρύπων	16
Κεφάλ 3.1	αιο 3 : Μοντέλο Προσομοίωσης Υπόγειας Ροής και Μεταφοράς Ρύπων Παράγοντες Αβεβαιότητας του Μοντέλου	16
Κεφάλ 3.1 3.2	αιο 3 : Μοντέλο Προσομοίωσης Υπόγειας Ροής και Μεταφοράς Ρύπων Παράγοντες Αβεβαιότητας του Μοντέλου Προσομοίωση Αβεβαιότητας Γεωλογικού Πεδίου	16
Κεφάλ 3.1 3.2 3	αιο 3 : Μοντέλο Προσομοίωσης Υπόγειας Ροής και Μεταφοράς Ρύπων Παράγοντες Αβεβαιότητας του Μοντέλου Προσομοίωση Αβεβαιότητας Γεωλογικού Πεδίου .2.1 Δημιουργία Τυχαίων Πεδίων Υδραυλικής Αγωγιμότητας	16
Κεφάλ 3.1 3.2 3 3.3	αιο 3 : Μοντέλο Προσομοίωσης Υπόγειας Ροής και Μεταφοράς Ρύπων Παράγοντες Αβεβαιότητας του Μοντέλου Προσομοίωση Αβεβαιότητας Γεωλογικού Πεδίου .2.1 Δημιουργία Τυχαίων Πεδίων Υδραυλικής Αγωγιμότητας Προσομοίωση Αβεβαιότητας Αφετηρίας Ρύπανσης	
Κεφάλ 3.1 3.2 3.3 3.3 3.4	αιο 3 : Μοντέλο Προσομοίωσης Υπόγειας Ροής και Μεταφοράς Ρύπων Παράγοντες Αβεβαιότητας του Μοντέλου Προσομοίωση Αβεβαιότητας Γεωλογικού Πεδίου .2.1 Δημιουργία Τυχαίων Πεδίων Υδραυλικής Αγωγιμότητας Προσομοίωση Αβεβαιότητας Αφετηρίας Ρύπανσης Διαστάσεις Περιοχής Μοντέλου και Διακριτοποίησή Της	
Κεφάλ 3.1 3.2 3.3 3.3 3.4 3.4	αιο 3 : Μοντέλο Προσομοίωσης Υπόγειας Ροής και Μεταφοράς Ρύπων Παράγοντες Αβεβαιότητας του Μοντέλου Προσομοίωση Αβεβαιότητας Γεωλογικού Πεδίου .2.1 Δημιουργία Τυχαίων Πεδίων Υδραυλικής Αγωγιμότητας Προσομοίωση Αβεβαιότητας Αφετηρίας Ρύπανσης Διαστάσεις Περιοχής Μοντέλου και Διακριτοποίησή Της	
Κεφάλ 3.1 3.2 3.3 3.3 3.4 3.5	αιο 3 : Μοντέλο Προσομοίωσης Υπόγειας Ροής και Μεταφοράς Ρύπων Παράγοντες Αβεβαιότητας του Μοντέλου Προσομοίωση Αβεβαιότητας Γεωλογικού Πεδίου 2.1 Δημιουργία Τυχαίων Πεδίων Υδραυλικής Αγωγιμότητας Προσομοίωση Αβεβαιότητας Αφετηρίας Ρύπανσης Διαστάσεις Περιοχής Μοντέλου και Διακριτοποίησή Της 4.1 Διακριτική Περιοχή Μοντέλου	
Κεφάλ 3.1 3.2 3.3 3.3 3.4 3.5 3.5	αιο 3 : Μοντέλο Προσομοίωσης Υπόγειας Ροής και Μεταφοράς Ρύπων Παράγοντες Αβεβαιότητας του Μοντέλου Προσομοίωση Αβεβαιότητας Γεωλογικού Πεδίου 2.1 Δημιουργία Τυχαίων Πεδίων Υδραυλικής Αγωγιμότητας Προσομοίωση Αβεβαιότητας Αφετηρίας Ρύπανσης Διαστάσεις Περιοχής Μοντέλου και Διακριτοποίησή Της 4.1 Διακριτική Περιοχή Μοντέλου Μοντέλο Υπόγειας Ροής	
Κεφάλ 3.1 3.2 3.3 3.3 3.4 3.5 3.5 3 3	αιο 3 : Μοντέλο Προσομοίωσης Υπόγειας Ροής και Μεταφοράς Ρύπων Παράγοντες Αβεβαιότητας του Μοντέλου Προσομοίωση Αβεβαιότητας Γεωλογικού Πεδίου 2.1 Δημιουργία Τυχαίων Πεδίων Υδραυλικής Αγωγιμότητας Προσομοίωση Αβεβαιότητας Αφετηρίας Ρύπανσης Γροσομοίωση Αβεβαιότητας Αφετηρίας Ρύπανσης Αιαστάσεις Περιοχής Μοντέλου και Διακριτοποίησή Της 4.1 Διακριτική Περιοχή Μοντέλου Μοντέλο Υπόγειας Ροής 5.1 Εξίσωση Ροής	
Κεφάλ 3.1 3.2 3.3 3.3 3.4 3.5 3 3.5 3 3 3 3	αιο 3 : Μοντέλο Προσομοίωσης Υπόγειας Ροής και Μεταφοράς Ρύπων Παράγοντες Αβεβαιότητας του Μοντέλου Προσομοίωση Αβεβαιότητας Γεωλογικού Πεδίου 2.1 Δημιουργία Τυχαίων Πεδίων Υδραυλικής Αγωγιμότητας Προσομοίωση Αβεβαιότητας Αφετηρίας Ρύπανσης Προσομοίωση Αβεβαιότητας Αφετηρίας Ρύπανσης Αιαστάσεις Περιοχής Μοντέλου και Διακριτοποίησή Της 4.1 Διακριτική Περιοχή Μοντέλου Μοντέλο Υπόγειας Ροής 5.1 Εξίσωση Ροής 5.2 Αριθμητική Επίλυση Εξίσωσης Ροής	
Κεφάλ 3.1 3.2 3.3 3.3 3.4 3.5 3 3.5 3 3 3 3.5	αιο 3 : Μοντέλο Προσομοίωσης Υπόγειας Ροής και Μεταφοράς Ρύπων Παράγοντες Αβεβαιότητας του Μοντέλου Προσομοίωση Αβεβαιότητας Γεωλογικού Πεδίου 2.1 Δημιουργία Τυχαίων Πεδίων Υδραυλικής Αγωγιμότητας Προσομοίωση Αβεβαιότητας Αφετηρίας Ρύπανσης Διαστάσεις Περιοχής Μοντέλου και Διακριτοποίησή Της 4.1 Διακριτική Περιοχή Μοντέλου 5.1 Εξίσωση Ροής 5.2 Αριθμητική Επίλυση Εξίσωσης Ροής Μοντέλο Μεταφοράς Ρύπων	16 16 17 19 20 22 23 24 25 26 29 30
 Κεφάλ 3.1 3.2 3 3.3 3.4 3.5 3 3.5 3 3.6 3 	αιο 3 : Μοντέλο Προσομοίωσης Υπόγειας Ροής και Μεταφοράς Ρύπων Παράγοντες Αβεβαιότητας του Μοντέλου Προσομοίωση Αβεβαιότητας Γεωλογικού Πεδίου 2.1 Δημιουργία Τυχαίων Πεδίων Υδραυλικής Αγωγιμότητας Προσομοίωση Αβεβαιότητας Αφετηρίας Ρύπανσης Διαστάσεις Περιοχής Μοντέλου και Διακριτοποίησή Της 4.1 Διακριτική Περιοχή Μοντέλου .5.1 Εξίσωση Ροής .5.2 Αριθμητική Επίλυση Εξίσωσης Ροής .5.3 Πεδίο Ταχυτήτων <i>Μοντέλο Μεταφοράς Ρύπων</i>	16 16 17 19 20 21 22 23 24 25 26 29 30 30
 Κεφάλ 3.1 3.2 3 3.3 3.4 3 3.5 3 3.6 3 3 3 	αιο 3 : Μοντέλο Προσομοίωσης Υπόγειας Ροής και Μεταφοράς Ρύπων Παράγοντες Αβεβαιότητας του Μοντέλου Προσομοίωση Αβεβαιότητας Γεωλογικού Πεδίου 2.1 Δημιουργία Τυχαίων Πεδίων Υδραυλικής Αγωγιμότητας Προσομοίωση Αβεβαιότητας Αφετηρίας Ρύπανσης Διαστάσεις Περιοχής Μοντέλου και Διακριτοποίησή Της 4.1 Διακριτική Περιοχή Μοντέλου Μοντέλο Υπόγειας Ροής 5.1 Εξίσωση Ροής 5.2 Αριθμητική Επίλυση Εξίσωσης Ροής 5.3 Πεδίο Ταχυτήτων Μοντέλο Μεταφοράς Ρύπων 6.1 Υπόθεση Χημικής Αδράνειας και Εξίσωση Διάχυσης-Διασποράς 6.2 Θεωρία Τυχαίου Βηματισμού (Random Walk, RW)	16 16 17 19 20 21 22 23 24 25 26 29 30 30 31

3	3.6.4	Διαμήκης και Εγκάρσια Διασπορά	. 35
3	3.6.5	Συγκέντρωση Ρύπανσης	. 36
Κεφάλ	ιαιο 4 :	Ανάπτυξη Πηγαίου Κώδικα Μοντέλου	38
4.1	Βασι	κοί Άξονες Μοντέλου	. 38
4.2	Ανάπ	τυξη Μοντέλου Προσομοίωσης	. 39
4.3	Πηγα	ίος Κώδικας	. 40
2	4.3.1	Τμήμα Εισόδου Δεδομένων	. 41
2	4.3.2	Τμήμα Εκτέλεσης Υπολογισμών Μεθόδου Monte Carlo	. 41
	4.3.2	1 Ρουτίνα Δημιουργίας Τυχαίων Πεδίων Υδραυλικής Αγωγιμότητας STBM	. 41
	4.3.2	2 Ρουτίνα Επίλυσης Πεδίου Ροής	. 41
	4.3.2	3 Ρουτίνα Υπολογισμού Πεδίου Ταχυτήτων	. 42
	4.3.2	4 Ρουτίνα Προσομοίωσης Μεταφοράς Πλουμίου Ρύπανσης	. 42
	4.3.2	5 Τμήμα Εξαγωγής Αποτελεσμάτων και Αναφορών	. 44
4.4	Παρά	μετροι Μοντέλου	. 44
2	4.4.1	Περιοχή Προσομοίωσης	. 44
2	1.4.2	Σύστημα Παρακολούθησης Υπόγειας Ρύπανσης	. 45
2	1.4.3	Τιμές Παραμέτρων Μοντέλου Ροής	. 45
2	1.4.4	Τιμές Παραμέτρων Μοντέλου Τυχαίου Βηματισμού	. 45
2	4.4.5	Διάταξη Πηγαδιών Παρακολούθησης	. 47
4.5	Συνο	ττική Παρουσίαση Δεδομένων Εισόδου Μοντέλου	. 48
Κεφάλ	αιο 5 :	Έλεγχος Στοχαστικού Μοντέλου με Αναλυτικές Λύσεις	50
5.1	Αναλ	υτικές Λύσεις Ομογενούς Πεδίου	. 50
52	Έλενν	νος Συνέπειας Μοντέλου με Αναλυτικές Λύσεις	52
5.2	521	ος 20 τοι τον αστικού μου τέλου με 1-D Αναλυτική Λύση	52
	5.2.2	Σύγκοιση Στοχαστικού Μοντέλου με 2-D Αναλυτική Λύση	. 54
5.3	Ευαιά	σθησία Μοντέλου στον Αριθμό Προσομοιώσεων Monte Carlo	. 59
	-		
κεφαλ	ιαιο 6 :	Αποτελεσματά Προσομοιωσεων	63
6.1	Διαμ	ρρφώσεις Προσομοιώσεων	. 63
6.2	Ανάλ	υση Αποτελεσμάτων	. 64
6	5.2.1	Επίδραση Αριθμού Πηγαδιών Διάταξης στην Ανίχνευση Ρύπανσης	. 64
e	5.2.2	Επίδραση Απόστασης Διάταξης Ανίχνευσης Ρύπανσης από Χ.Υ.Τ.Α	. 66
e	5.2.3	Επίδραση Διασποράς Υδρογεωλογικού Περιβάλλοντος	. 68
6	5.2.4	Επίδραση Ετερογένειας Υδρογεωλογικού Περιβάλλοντος	. 71

6.3 Σύγκριση Αποτελεσμάτων με Yenigul et al. (2005)	
6.4 Εμπειρική Επισκόπηση Αποτελεσμάτων Προσομοιώσεων	
6.5 Σύγκριση Αποτελεσμάτων Πεδίου Μεγαλύτερης Διακριτοποίησης	
6.5.1 Αποτελέσματα Προσομοιώσεων	
6.5.2 Ανάλυση Προσομοιώσεων Γεωλογικών Πεδίων Πλέγματος 500x300	
Κεφάλαιο 7 : Συμπεράσματα και Επιπλέον Προτάσεις	92
7.1 Υλοποίηση Στόχων Εργασίας	
7.2 Συμπεράσματα Προσομοιώσεων	
7.3 Προτάσεις Επιπλέον Έρευνας	
Παράρτημα Α. Μαθηματικές Έννοιες	97
Α.1 Στοχαστική Διεργασία	
A.2 Μονοδιάστατη και Πολυδιάστατη Στοχαστική Διεργασία	
Α.3 Περιγραφή των Στοχαστικών Διεργασιών με τη Θεωρία Πιθανοτήτων	
Α.1.3 Συνάρτηση Πιθανότητας	
Α.2.3 Πυκνότητα Πιθανότητας	
Α.3.3 Συνάρτηση Κατανομής Συνδυασμένης Πιθανότητας	
Α.4.3 Συνάρτηση Πυκνότητας Συνδυασμένης Πιθανότητας	
Α.5.3 Συνάρτηση Κατανομής Πιθανότητας υπό Συνθήκη	
Α.6.3 Συνάρτηση Πυκνότητας Πιθανότητας υπό Συνθήκη	
Α.4 Στατιστικές Ιδιότητες των Στοχαστικών Διεργασιών	
Α.1.4 Χωρικές ή Χρονικές Στατιστικές Ιδιότητες	
Α.2.4 Συνολικές Στατιστικές Ιδιότητες (Ensemble Statistics)	
Α.3.4 Στασιμότητα και Μη-στασιμότητα	
Α.4.4 Εγγενής Υπόθεση	
Α.5.4 Εργοδικότητα	
Α.6.4 Στατιστική Ισοτροπία και Ανισοτροπία	
Παράρτημα Β. Δημιουργία Τυχαίων Αριθμών	
B.1 Τυχαίοι Αριθμοί με Ισοπίθανη Κατανομή	
B.2 Τυχαίοι Αριθμοί με Κανονική Κατανομή	
Παράρτημα C. Turning Bands Method	
C.1 Θεωρητικό Υπόβαθρο TBM	
C.2 Spectral Turning Bands Method (STBM)	
C.1.2 Δημιουργία της Μονοδιάστατης Γραμμικής Διεργασίας	
C.2.2 Αριθμός και Κατανομή των Περιστρεφόμενων Γραμμών	
C.3.2 Φασματική Διακριτοποίηση	
C.4.2 Φυσική Διακριτοποίηση	

	C.5.2	Μήκος των Περιστρεφόμενων Γραμμών	113
	C.6.2	Δημιουργία του Τυχαίου Πεδίου	113
Βιβλιο	γραφία		115
Περιεχ	όμενα Ε	ικόνων1	118
Περιεχ	όμενα Π	ινάκων1	119
Περιεχ	όμενα Δ	ιαγραμμάτων	120

μ μ μ μ .μ, μ μ μ μ , μ μ μ μ , μ μ • μ μ , μ μ , • μ , μ μ μ μ μ , , μ μ μ , , μ • μ, μ • μ, μ. μ μ μ μ μ . , μ μ μ , μ μ , μ • μ μ μ μ ,μ

•

μ	μ	μ			μ		•									
						μ		μ					μ			
				μ	μ											
			μ									μ				
μ									μ	l,		μ				
		μ			μ					μ			μ			
		•	μ						l	μ		μ				
							μ			μ						
		μ						μ		μ		μ	,			
		μ		μ				μ								
	μ	ι.	,			μ		μ		μ						
			μ													
μ	μ					μ			μ				μ			
			μ			μ		μ	μ	μ						
								μ						μ		
				μ					μ	μ				μ.		
		μ C									μ				Ļ	ı
	((Turning	g Bands	Method)			μ					μ			μ	
			μ	μ										μ		

,

•

1.1 **μ** μ

•

μ • μ , , , μ μ μ ,μ , μ μ μ μ , , μ , , ,

μ μ , μ μ μ , , μ μ μ μ μ μ, μ • , μ μ , μ .

μ.,

μ μ , μ μ μ μ (United Nations World Water Development Report, μ 2009). 1.2 (. . . .) 1.2.1 μ μ , μ μ • μ ,μ , μ μ μ , . μ μ , , . μ μ μ μ μμ μ μ μ μ μ μ μ . , μ μ μ μ μμ , μ μ , (. . . .). μ μ μμ μ 1999/31/EC (Amending Act Regulation (EC) No 1882/2003), μ . . ., • . (Paleologos, 2008) (1.2). μ μ . . . • μ μ μ μμ μ μ μμ • , , , μ • ,

.

. . . .

μ

2

1

•

••

,

- μμ, μ
- μ μ . μμ μ
- μ μ, μ μ
 - ,μ μμμ , μ μ μμ . μ μ
 - , μ μ .
 - ,μ μ ,μ μ μ μ μ, μ
 - μ μ μ.
- μ..., μ, μ, μ
- μ , μ μ
- μ μ μμ.
- , μ , μ 23 – 40% (Paleologos, 2007). μ
- μ μ μ μ , μ μ , . , μ μ μ μ
 - μ.

μ μ 1999/31/EC, μ , μ μ μ μ μ μ μμ . μ, .

μ μ μ μ μ μ , μμ μ μ μ μ μ μ μ . . .

μ. μμ . , μ , μ . , μ , μ μ μ.

μ . μ μ μ μ μ • μ μ , μ , μ μ ,μ μ μ

μ, , μ μ .

,

μ

1.3 :

μ,μ μ μ . μ

1.3 **µ**

μμ μ (3) ,

μ μ . μ μ

μ μ μ

μ .

μ

μ

μ

μ

. μ . μ

μ,

μ μ μ μ μ μ μ μ • μ • μ μ μ μ , , (kriging) μ μ μ μ μ, μ μ μ • , μ μ μ , , • μ

μ μ , μ • μ μ μ , μ ,μ ,μ μ μ , Monte Carlo. μ μ (/) μ •

μ , μ μ μ μ μ ,μ μ , μ , μ μ • μ μ • , μ μ μ ,

μ μ . , μ μ μ μ, μ μ μ μ μ

μ μ.

- μμ, , μμ, , ..., μ, , μμ, μ, ..., , :
- μ . μ , ,
- μ μ μ .
 μ μ μ
 μ μ μ
 μ μ μ
 μ μ μ
 μ μ μ
 μ μ μ
 μ μ μ
- μ μ μ μ , μ μ , μ' μ μ μ μ μ μ μ • , μ μ μ
- μ μ μ μ
 Yenigul et al. [2005], μ
 μ.

.

μ • μ μ μ μ , , μ μ μ μ . μ μ μ . μ μ , μ μ μ μ μ • μ μ μ μ μ • μ μ μ μ μ μ , μ μ μ μ μ •

					μ		h	l,		
			,			,				
	μ			•	μ				μ	μ
		Yenigul et al	[2005],	μ		μ		,		μ
			μ μ		μ,			μ		
μ		μ					μ	•	,	
	μ	μ								
		μ								
μ	μ			μ			μ			
μ			μ		μ	μμ	μ			
					,		μ			
	μ				μ			μ	μ	
	μ.	ł	u C						μ	
	μ	(Tur	ning Bands	s Metho	d)	μ			μ	
	μ		μ		μ					
	μ.									

μ

2.

	μ							μ	μ	μ					
μ				μ							μ				
,			μ	,											
•					,	μ	μ					,		μ	
	μ	,		,	μ						,			μ	
							•			, μ	μ		μ		
															,

μ.

2.2.1 µ

μ	μ					μ				μ			
			μ	μ	μ				μ		•		μ
μ						μ			μ	(hard	data)	μ	
μ						μ			,			2.1.	
μ		,			μ				μ	μ			
	μ	,	μ'				μ	μ		μ			,
					μ								

2.2.2

						μ	μ		
			μ		μ		(H	Elfeki, 1996).	,
μ	,	μ				,	μ	Mon	te Carlo,
				,			μ		
	μ							μ	
		μ						μ	
					μ	,	μ	μ	μ
			, μ			μ			μ
		μ	,	μ		μ	μ	μ	,
			μ						

(Stochastic Differential

Equations, SDEs)

$\mu \mu \beta.$ 2.3.2 μ , Monte Carlo μ Monte Carlo μ Monte Carlo μ Monte Carlo μ Monte Carlo μ Monte Carlo μ μ μ μ μ μ μ μ μ μ			μ μ			μ			
2.3.2 μ , Monte Carlo μ			μ.					β.	
$\mu Mone Carlo \qquad \mu \qquad \qquad \qquad \mu \qquad \qquad \qquad \mu \qquad \qquad$	2.3.2	μ	,		Monte Ca	ırlo			
μ $μ$ $μ$ $μ$ $μ$ $μ$ $μμ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μμ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μμ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μμ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μμ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μμ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μμ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μμ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μμ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μ$					μ		Monte (Carlo	μ
, , , , , , , , , , , , , , , , , , ,	μ		μ		-		μ		μ,
μ , $μ$,		,		X7 NT		, 111 ()A	1, 1, 1007)
μ Monte Carlo $μ μ μμ μ μ$ $μ$ $μ μ$ $μ$, μ μ μ μ , μ μ $μ$, μ μ μ μ, μ μ $μ$, μ μ μ μ, μ μ μ μ μ μ μ, μ μ μ μ μ μ μ μ μ μ μ, μ μ μ μ μ μ μ μ μ μ μ μ			μ			von Ne	umann	Ulam (M	etropolis, 1987)
μ Monte Carlo μ		μ		~ 1			•		
μ		μ	Mont	e Carlo	1		μ	μ	μ
μ μ μ μ μ μ μ , μ μ μ μ μ , μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ (Freeze, 1975, Sudicky, 1986, Gelhar, 1993) μ , μ μ μ μ μ (2.2). μ	μ	μ	μ				•		
μ μ μ μ μ , μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ 2.2). μ μ μ Monte Carlo, μ		μ	μ		μ (Fre	eze, 1975)	μ		μ,
$\mu \qquad \mu \qquad$		μ	μ	μ	μ	,		μ	
μ $μ$ $μ$ (Freeze, 1975, Sudicky, 1986, Gelhar, 1993) μ, $μ$ $μ$ $μ$ $μ$ $μ$ (2.2). μ $μ$ $μ$ Monte Carlo, $μ$ $μ$ $μ$ $μ$ $μ$ $μμ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μμ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μμ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μ$ $μ$	μ			μ	μ	, μ		μ	μ
μ μ (Freeze, 1975, Sudicky, 1986, Gelhar, 1993) μ, $μ$ μ μ μ μ (2.2). μ μ μ μ Δ μ "", μμ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ	μ		μ						μ
μ, $μ$,			μ		μ (Ι	Freeze, 197	5, Sudick	y, 1986, Go	elhar, 1993)
2.2). $\mu \mu \mu$ Monte Carlo, μ μ μ μ μ μ $\mu \mu$ μ μ μ μ μ $\mu \mu$ μ		μ,			μ	l	μ		μ (
μ μ μ Monte Carlo, μ μ "", μ μ μ , μ μ μ μ μ. μ μ μ μ μ μ. μ μ μ μ μ μ. μ μ μ μ μ μ μμ μ μ μ , η μ μ μ μμ μ μ μ μ , μ μ μ μ ,	2.2).								
	μ	μμ	Monte Car	lo, µ				μ'	' ", μ
μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ	μ	μ	,		μ			μ	μ
μ.μ.μ.μ.μ.μ.μ.μ.μ.μ.μ.μ.μ.μ.μ.μ.μ.μ.μ.			μ	Ļ	ι μ				μ
, μ μ,μ μ μ μμ μμ μ , μ μμ μ μ μ μ μμ μ μ, μ μ . μμ μ, μ, μ		μ	ι. μ			μ		μ	μ
μμ μμ . μ μμ μ μ μ μ μ μ μ μ μ μ μ μ μ μ		,	μ		μ	, μ	μ	μ	μ
μ μ μ μ . μμ μ μ, μ . μμ μ, μ, μ μ μ, μ	μ	μ	μμ	ı					,
μμ μ μ . μμ μ, μ μ μμ μ, μ	μ					μ		μ	
μμ μ, μ μ μ μ μ ,		μμ	μ			μ		μ	
μ μ μ ,		μμ			μ,				μ
		μ			μ	μ		,	
μ, μ		μ 	l 	,	"	"	μ		
μμμμμ		μ	μ	μ		μ			
. μ μ μ μ υ		·			м 11				μ μ

μμ	μ		μ	μ
μ		μ		

2.3 :

Monte Carlo (Paleologos, 2005)

3. μ

μ

3.1

μ μ μ μ μ. μ μ μ μ μ (, . .), μ μ , , μ, μ μ , μ μ μ , μ μμ . μ μ . μ, μ , μ μμ , μ , • , μμ μ ,μ μ μ μ μ, μ μ, μ μ μ μ μ μ , , μ • μ, μμ μ , : μ , μ , , μ μ μ μ • , μ • μ , μ μ μ ,

μ.

3.2 *µ*

	μ	,		μ					μ	
μ			,							
μ	(Yenigul, 20	006).	μ					μ	μ	
μ				μ	μ				(Gelh	ar, 1986,
McLaugh	lin, 1993, Fre	eeze et a	l., 1987).		μμ	μ			μ	
	μ μ				μ				,	
μμ	μ		μ				,	μ		,
	μ	•								
	μ	μ	l	u					, μ	
	μ	μ		μ	μ	μ				(Yenigul,
2006).	,		μ		μ	μ			μ	μ
μμ	μ		,	μ,		μ	μ		μ	
	,		μ		μ					μ
(statistical	lly correlated).								

3.1 :	μ	Log-Normal µ	μ	(Y=logK, K	cm/sec)
		(Freeze, 1975)			

Source	Rock or Soil Type	N	$\hat{\mu}_{y}$	$\hat{\sigma}_{y}$
Bennion and Griffiths	Conglomerate	3,018	-4.59	0.94
[1966]	Sandstone	56,991	-5.38	0.61
	Marly limestone	7,060	-5.38	0.46
	Vuggy limestone	17,162	-5.60	0.53
Law [1944]	Sandstone		-3.36	0.20
	Sandstone		-3.82	0.40
	Sandstone		-4.60	0.40
McMillan [1966]	Sandstone		-5.46	1.00
	Sandstone		-5.52	0.65
	Sandstone		-4.60	0.32
	Sand and gravel		-	0.44
	Sand and gravel	42	-	0.72
	Sand and gravel	16	_	0.54
Willardson and Hurst	Clay loam	33	-5.41	0.45
[1965]	-	330	-4.00	0.85
		287	4.60	0.93
	Silty clay	339	-4.96	0.78
		36	-4.46	1.56
		352	-3.00	0.93
	Loamy sand	121	-2.68	0.86

(Freeze, 1975, Sudicky, 1986),

μ

μ

,

μ

μ

μ μ (log-normal) (3.1). μ, , μ $Y = \ln X$ (3.1) μ μ μ K X = K. μ μ μ

(Yenigul, 2006, Freeze, 1975, Sudicky, 1986),

,

•

$$f_{X}(x) = \frac{1}{x\sigma_{Y}\sqrt{2\pi}} \exp\left[-\frac{\left(\ln x - \mu_{Y}\right)^{2}}{2\sigma_{Y}^{2}}\right]$$
(3.2)

$$\mu_Y \quad \sigma_Y \quad \mu \quad \mu \quad Y \quad . \quad \mu \quad \mu$$

X

$$X_{A} = \mu_{X} = E(x) = \exp(\mu_{Y} + 0.5\sigma_{Y}^{2})$$
(3.3)

$$\sigma_X^2 = \left[\exp(\sigma_Y^2) - 1 \right] \left[\exp(2\mu_Y + \sigma_Y^2) \right]$$
(3.4)

$$, μ μ μ$$

 $μ , μ μ μ μ^{2}$

,

- λ. μ' μ, μ Yenigul [2006], μ μ μ Gelhar [1993]. μ μ 3.2.1 μ μ μ (Turning Bands Method, TBD), μ μ μ Matheron [1971] Mantoglou Wilson (1982). μ : μ μ μ μ μ 3.1) (μ μ 3.2), (μ μμ μ μ Yenigul et al. [2005], μ μ μ μ
 - GSLIB,μTUBA,μSpectral TBMMantoglou.

3.1 : 3-D

 μ TBM ($\mu_{Y} = 2.3, \sigma_{Y}^{2} = 2.0, \lambda = 20m$)

 μ ($\mu_{Y} = 2.3, \sigma_{Y}^{2} = 2.0, \lambda = 20m$) 3.2 : 2-D

3.3 μ

	μ	μ μ	μ (Yenigul, 2006).	
	μμ			μ μ
μ	,	μμ		μ
•	μ μ	μ	μ	μ
	μ (μ μ ,). μ ,		, μμ	μμμ
μ •	μ	, μ	μ (3.3).
	μ,		μ,	μ

μ •

3.4: μ

		μ			μ		μ.
μ	μ	μ		,			μ
			μ	μμ ,		μ	
	μ,	μ			μ		
	, μ				,		
	μ,	μμ		μ	,		
		μ		•	μ	,	μ
	, μ				μ		
	μ			•			

	μ				μ
 μ	(2)		μ	μ	μ
			μ	,	μ
	μ		μ,	μ	
μ			μ.	,	
		μ			,

,

,

(2) μ μ μ (Dagan,1986, Yenigul, 2005). (3) μ () μ μ. K μμ μ μ μ μ μ μ μ μ μ, ,μ μ . μ μ μ • μ , μ μ , μ . 3.4.1

μ μ μ μ . , μ μ μ μ μ μ μ

 L_x L_{y} μ μ μ Δx μ Δy, μ μ • ,

 Δx Δ γ μ μ μ μ μ , μ μμ μ μ μ μ.

(Ababou et al.,1989) μ μ μ μ μ (4) μ μ μ μ μ • , •

μ

•

Medium	σ_f	Correlation Scale, m	Overall Scale, m
sandstone aquifer	1.5-2.2	0.3–1.0 V	100
outwash sand	0.8	0.4 V	30
limestone aquifer	2.3	6300 H	30,000
basin fill aquifer	1.0	800 H	20,000
Hamra Red Medi- terranean soil	0.4-1.1	14–39 H	100
weathered shale subsoil	0.8	<2 H	14
silty clay loam soil (alluvial)	0.6	0.1 H	6
Yolo soil (alluvial fan)	0.9	15 H	100
alluvial aquifer (flood gravels)	0.8	820 H	5,000
fluvial sand	0.9	0.1 V	5
		>3 H	14
sandstone aquifer	0.6	45,000 H	5×10^5
sand and gravel	1.9	0.5 V	20
outwash sand	0.6	0.1 V	20
	Medium sandstone aquifer outwash sand limestone aquifer basin fill aquifer Hamra Red Medi- terranean soil weathered shale subsoil silty clay loam soil (alluvial) Yolo soil (alluvial fan) alluvial aquifer (flood gravels) fluvial sand sandstone aquifer sand and gravel outwash sand	Medium σ_f sandstone aquifer1.5–2.2outwash sand0.8limestone aquifer2.3basin fill aquifer1.0Hamra Red Medi-0.4–1.1terranean soil0.8weathered shale0.8subsoil0.6soil (alluvial)0.9Yolo soil0.9(alluvial fan)0.9alluvial aquifer0.8(flood gravels)0.9sandstone aquifer0.6sand and gravel1.9outwash sand0.6	Medium σ_f Correlation Scale, msandstone aquifer $1.5-2.2$ $0.3-1.0$ V $0utwash sand0.80.4 Vlimestone aquifer2.36300 Hbasin fill aquifer1.0800 HHamra Red Medi-0.4-1.114-39 Hterranean soilweathered shale0.8<2 Hsubsoilsilty clay loam0.60.1 Hsoil (alluvial)V0.915 HYolo soil0.915 H(flood gravels)fluvial sand0.90.1 Vsand stone aquifer0.645,000 Hsand and gravel1.90.5 Voutwash sand0.60.1 V$

Correlation scales based on e^{-1} correlation distance; H, horizontal sampling, V, vertical sampling.

			$\frac{\lambda}{\Delta x} \ge 1 + \sigma_Y^2$		(3.5)	
	μ		μμ	μ	μ	
			$\lambda / \Delta x$		μ 10,	
	(3.5).	μ	λμ	μ 20 m		
μ	. μ	,		3.2,		μ
μμ		μ	μ			
	(3.	5)	,	$\Delta x \qquad \Delta y$	μ 2 m. '	
,					μ μ,	
μ μ	μ	σ_{Y}^{2}	μ	μ	(2).	
3.5						

μ μ μ , μ

μ, μ μμ , μμμ, μμ μ μ , μ μ,

(Gelhar, 1986)

3.2 :

μ

μ

,

,

μ μ , μ μ , μ , μ μ , . μ μ μ μ μ , μ μ μ μ, μμ , μ , μ •

μ , . μ Z. μ μ μ μ , z = 1, μ μ μ μ , μ

3.5.1

μ Darcy

 $q\left(\mathbf{x}\right) = -K\left(\mathbf{x}\right)\nabla h \tag{3.7}$

 $\mu \mathbf{x} \in \mathbb{R}^{3}, \quad h \begin{bmatrix} L \end{bmatrix} \qquad \mu \quad , K (\mathbf{x}) \begin{bmatrix} L/T \end{bmatrix} \qquad \mu \quad B$ $\begin{bmatrix} L \end{bmatrix} \qquad .$

μ

 $\nabla \cdot \left(K\left(\mathbf{x}\right) \nabla h \right) = 0 \tag{3.8}$

 \mathbb{R}^{3}

μ
$$K\frac{\partial h}{\partial x} \approx K\left(i+\frac{1}{2}, j, k\right) \left[\frac{h(i+1, j, k) - h(i, j, k)}{\Delta x}\right]$$
(3.10)

$$K\left(i+\frac{1}{2}, j, k\right) = \frac{2K(i+1, j, k)K(i, j, k)}{K(i, j, k) + K(i+1, j, k)}$$
(3.11)

μ, μ

Y Z

$$K\frac{\partial h}{\partial y} \approx K\left(i, j + \frac{1}{2}, k\right) \left[\frac{h\left(i, j + 1, k\right) - h\left(i, j, k\right)}{\Delta y}\right]$$
(3.12)

$$K\frac{\partial h}{\partial z} \approx K\left(i, j, k + \frac{1}{2}\right) \left[\frac{h(i, j, k+1) - h(i, j, k)}{\Delta z}\right]$$
(3.13)

$$K\left(i, j+\frac{1}{2}, k\right) = \frac{2K\left(i, j+1, k\right)K(i, j, k)}{K\left(i, j, k\right) + K\left(i, j+1, k\right)} \qquad K\left(i, j, k+\frac{1}{2}\right) = \frac{2K\left(i, j, k+1\right)K(i, j, k)}{K\left(i, j, k\right) + K\left(i, j, k+1\right)}$$

$$\frac{K\left(i+\frac{1}{2},j,k\right)\left[\frac{h(i+1,j,k)-h(i,j,k)}{\Delta x}\right]-K\left(i-\frac{1}{2},j,k\right)\left[\frac{h(i,j,k)-h(i-1,j,k)}{\Delta x}\right]}{\Delta x} + \frac{K\left(i,j+\frac{1}{2},k\right)\left[\frac{h(i,j+1,k)-h(i,j,k)}{\Delta y}\right]-K\left(i,j-\frac{1}{2},k\right)\left[\frac{h(i,j,k)-h(i,j-1,k)}{\Delta y}\right]}{\Delta y} + \frac{\Delta y}{\Delta z} = 0$$
(3.14)

3.5 :

μ μ, μ μ

μ,

,

,

$$A(i, j, k) = K\left(i + \frac{1}{2}, j, k\right) / \Delta x^2$$
(3.15)

$$B(i, j, k) = K\left(i, j + \frac{1}{2}, k\right) / \Delta y^2$$
(3.16)

$$C(i, j, k) = K\left(i, j, k + \frac{1}{2}\right) / \Delta z^{2}$$
(3.17)

$$D(i, j, k) = K\left(i - \frac{1}{2}, j, k\right) / \Delta x^2$$
(3.18)

$$E(i, j, k) = K\left(i, j - \frac{1}{2}, k\right) / \Delta y^2$$
(3.19)

$$F(i, j, k) = K\left(i, j, k - \frac{1}{2}\right) / \Delta z^2$$
(3.20)

G(i, j, k) = A(i, j, k) + B(i, j, k) + C(i, j, k) + D(i, j, k) + E(i, j, k) + F(i, j, k) (3.21)

μ

$$G(i, j, k)h(i, j, k) = A(i, j, k)h\left(i + \frac{1}{2}, j, k\right) + B(i, j, k)h\left(i, j + \frac{1}{2}, k\right) + C(i, j, k)h\left(i, j, k + \frac{1}{2}\right) + D(i, j, k)h\left(i - \frac{1}{2}, j, k\right) + E(i, j, k)h\left(i, j - \frac{1}{2}, k\right) + (3.22) + F(i, j, k)h\left(i, j, k - \frac{1}{2}\right)$$

Dirichlet μ μ $\mu \qquad \qquad X=0 \qquad X=L_x,$,μ μ Neumann, µ μ μ $Y=0, Y=L_y, Z=0$ $Z=L_z$ μ . μ . μμ μμ μ μ (Line Successive μ μ μ Over Relaxation Method; Young, 1950), μμ Saris [1999]. µ Desbarats [1992] μ' μ μ, μ μ μ μ μ μ μ μ 10^{-5} . μ μ , h(i, j, 1)μ μ μ μ

3.5.3

•

$$, \mu \qquad \mu \quad \text{Darcy}, \qquad \mu \qquad \mu \qquad \mu$$

$$. \qquad \mu$$

$$K = \partial h(x, y, z) = K = \partial h(x, y, z) = K = \partial h(x, y, z) = k$$

$$\mathbf{u} = \frac{K_{xx}}{\varepsilon} \frac{\partial h(x, y, z)}{\partial x} \hat{u} + \frac{K_{yy}}{\varepsilon} \frac{\partial h(x, y, z)}{\partial y} \hat{v} + \frac{K_{zz}}{\varepsilon} \frac{\partial h(x, y, z)}{\partial z} \hat{k}$$
(3.23)

$$K = K_{xx} = K_{yy} = K_{zz} \qquad \mu$$

$$u_{x} = \frac{K}{\varepsilon} \frac{\partial h(x, y, z)}{\partial x}, \ u_{y} = \frac{K}{\varepsilon} \frac{\partial h(x, y, z)}{\partial y} \qquad u_{z} = \frac{K}{\varepsilon} \frac{\partial h(x, y, z)}{\partial z}$$
(3.24)

μ

μ

,

$$\frac{\partial h(x, y, z)}{\partial x} = \frac{h(x_{+1}, y, z) - h(x_{-1}, y, z)}{2\Delta x}$$

$$\frac{\partial h(x, y, z)}{\partial y} = \frac{h(x, y_{+1}, z) - h(x, y_{-1}, z)}{2\Delta y}$$

$$\frac{\partial h(x, y, z)}{\partial z} = \frac{h(x, y, z_{+1}) - h(x, y, z_{-1})}{2\Delta z}$$
(3.25)

$$-1 + 1 \mu \mu \mu \mu$$

 μ $(x = 0, x = L_x)$

$$\begin{pmatrix} y = 0, y = L_y \end{pmatrix} \qquad \mu \qquad ,$$

$$\frac{\partial h(x, y, z)}{\partial x} = \frac{h(x, y, z) - h(x_{-1}, y, z)}{\Delta x} \qquad (3.26)$$

$$\frac{\partial h(x, y, z)}{\partial y} = \frac{h(x, y, z) - h(x, y_{-1}, z)}{\Delta y}$$

•

μ

(Bear, 1972)

$$\frac{\partial C}{\partial t} + v_x \frac{\partial C}{\partial x} + v_y \frac{\partial C}{\partial y} + v_z \frac{\partial C}{\partial z} - \frac{\partial}{\partial x} \left[D_{xx} \frac{\partial C}{\partial x} + D_{xy} \frac{\partial C}{\partial y} + D_{xz} \frac{\partial C}{\partial z} \right] - \frac{\partial}{\partial y} \left[D_{yx} \frac{\partial C}{\partial x} + D_{yy} \frac{\partial C}{\partial y} + D_{yz} \frac{\partial C}{\partial z} \right] - \frac{\partial}{\partial z} \left[D_{zx} \frac{\partial C}{\partial x} + D_{zy} \frac{\partial C}{\partial y} + D_{zz} \frac{\partial C}{\partial z} \right] = 0$$
(3.27)

 $\mu \quad t \qquad (x, y, z), \ \mu \quad v_x, v_y$

V_z μ			Х	,y,z . μ
D _{ij} , μ i,j=1,2,3,			μ	
(Bear, 1972)				
	$D_{i,j} = \left(a_T \left v \right \right)$	$+D_m \Big) \delta_{ij} + (a_L - a_L) \Big) \delta_{ij}$	$ v_T\rangle \frac{v_i v_j}{ v }$	(3.28)
S	Varaalaa a [1	1	a [1]	D
0 _{ij}	Kronecker, $a_L \mid L$	μ	, $a_T \lfloor L \rfloor$, D_m
μ	ι	$v = \sqrt{v_x^2 + v_y^2 + v_z^2}$	μ	
		С	μ	μ 2-D
$\partial C / \partial y(x,0,t) = 0, \delta$	$\partial C / \partial y(x, L_y, t) = 0$	$t \ge 0$	C(x, y, 0) = 0	$0 \le x \le L_x, 0 \le y \le L_y.$
3.6.2	μ μ (Random Walk, I	RW)	
μ		μ	μμ	μμ.
μμ		μ	()	μ
	,			μ
	, (Uffink, 1990).	u	μ	μ
1980	(Prickett et al., 198	- 1)μμ		Γ.
	μμ		μ	?
	, μ			μ
μ	μ μ			μ
	-	μ μ	μ,	μ
μ		μ μ		,
μ			μ μ	μ
	٩	l		μ
	(Uffink, 1990).			
	μ μ	RW	μ	μ.μ μ
, μ	μ	μ	μ	μ μ
	μ,	μ	μ	μμ

С µ

	μ		,			μ		μ			(μ),
μ		μ		μ				μ	,				
				μ,							μ	l	μ
		μ	•										
	μ					ļ	u		μ				μ
	u		u		u	•				u			•
	P.	1		п	P.			ш					
		٢	~ 11	٣				٣					,
μ	μ		μ							μ		μ	
				μ							,		
	μ	μ						μ,					
	Ļ	l	μ			μ	,			,	μ		
	μ	μ	l			(Uffin	ık, 199	0).					
		μ		RW,		μ			μ				
		μ							μ			μ	μ
	μ	ł	ı,	μ			μ			μ			
		μ					μ	μ				,	
		μ	,				μ						
		-	,			μμ	l				μ	ι	
	μ	μ						μ	μ			,	
	u.					μ							
	u	u	u										
	L.		1					-					
	μ	,	μ,				μ	R	W				
μ								μ		l	μ		
				μ	μ						μ	•	
	μ		μ	μ					μ	μ	(Fokl	ker-F	lanck
Equ	uation)			-		•							
		μ,									Fokk	er-P	lanck.
	,			μ		μ					,		

(Uffink, 1990).

(3.29)

3.6.3 μ μ μ

μ μ μ μ,μμ μ μ σ.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$

$$- \qquad \mu \qquad \mu \qquad \mu$$
$$\mu \qquad M_0(g) \qquad \mu \qquad x_0, \mu \qquad \mu \qquad \alpha_L \qquad \mu$$

 V_x x,

$$C(x,t) = \frac{C_0}{\sqrt{4\pi\alpha_L v_x t}} \exp\left[-\frac{\left(x - x_0 - v_x t\right)^2}{4\alpha_L v_x t}\right]$$
(3.30)

 $C_{0} = M_{0} / \varepsilon B, \varepsilon \qquad B \qquad .$ $(3.29) \quad (3.30), \qquad \mu \quad \mu \quad \mu \qquad \mu$ $\mu = x_{0} + v_{x}t \qquad (3.31)$ $\sigma = \sqrt{2\alpha_{L}v_{x}t} \qquad (3.32)$

(3.31), (3.32) μ μ μ μ μ μ' μ μ μ μ . μ μ μ μ .

, μ μ, μ μ (3.30) Fokker-Planck (Uffink, 1990), μ μ, μ μ μ μ , μ (Yenigul, 2005)

$$X_{p}(t + \Delta t) = X_{p}(t) + v_{x}\Delta t + \left(\frac{\partial D_{xx}}{\partial x} + \frac{\partial D_{xy}}{\partial y} + \frac{\partial D_{xz}}{\partial z}\right)\Delta t + \frac{v_{x}}{|v|}R_{1}\sqrt{2\alpha_{L}|v|\Delta t} - \frac{v_{y}}{|v|}R_{2}\sqrt{2\alpha_{T}|v|\Delta t} - \frac{v_{z}}{|v|}R_{3}\sqrt{2\alpha_{T}|v|\Delta t}$$

$$(3.33)$$

$$\begin{split} & Y_{\mu}(t+\Delta t) = Y_{\mu}(t) + \nu_{\mu}\Delta t + \left(\frac{\partial D_{\mu\nu}}{\partial t} + \frac{\partial D_{\mu\nu}}{\partial t} + \frac{\partial D_{\mu\nu}}{\partial t}\right)\Delta t + \frac{\nu_{\mu}}{|\nu|}R_{\nu}\sqrt{2\alpha_{\mu}|\nu|\Delta t} + \\ & + \frac{\nu_{\mu}}{|\nu|}R_{\nu}\sqrt{2\alpha_{\mu}|\nu|\Delta t} + \frac{\nu_{\mu}}{|\nu|}R_{\nu}\sqrt{2\alpha_{\mu}|\nu|\Delta t} \end{split} (3.34) \\ & \mu + \frac{\nu_{\mu}}{|\nu|}R_{\nu}\sqrt{2\alpha_{\mu}|\nu|\Delta t} + \frac{\nu_{\mu}}{|\nu|}R_{\nu}\sqrt{2\alpha_{\mu}|\nu|\Delta t} \\ & \mu + \mu + \mu + \mu + \mu = 0 \\ \mu + \mu + \mu + \mu + \mu = 0 \\ \mu + \mu + \mu + \mu + \mu + \mu + \mu \\ (3.33) \quad (3.34) \\ \mu + \mu + \mu + \mu + \mu + \mu \\ (3.33) \quad (3.34) \\ \mu + \mu + \mu + \mu + \mu + \mu \\ - \mu + \mu + \mu + \mu + \mu \\ - \mu + \mu + \mu + \mu \\ - \mu + \mu + \mu + \mu \\ - \mu + \mu + \mu + \mu \\ - \mu + \mu \\ - \mu + \mu + \mu \\ - \mu \\ - \mu + \mu \\ - \mu + \mu \\ - \mu + \mu \\ - \mu \\$$

$$D_{xx} = \frac{\alpha_L v_x^2 + \alpha_T v_y^2}{v}$$
(3.35)

$$D_{yy} = \frac{\alpha_T v_x^2 + \alpha_L v_y^2}{v}$$
(3.36)

$$D_{xy} = D_{yx} = \frac{\left(\alpha_L - \alpha_T\right) v_x v_y}{v}$$
(3.37)

μμ

$$\frac{\partial D_{xx}}{\partial x} = \frac{2\alpha_L v_x v^2 - \alpha_L v_x^3 - \alpha_T v_y^2 v_x}{v^3} \frac{\partial v_x}{\partial x} + \frac{2\alpha_T v_y v^2 - \alpha_L v_x^2 v_y - \alpha_T v_y^3}{v^3} \frac{\partial v_y}{\partial x}$$
(3.38)

$$\frac{\partial D_{yy}}{\partial y} = \frac{2\alpha_T v_x v^2 - \alpha_T v_x^3 - \alpha_L v_y^2 v_x}{v^3} \frac{\partial v_x}{\partial y} + \frac{2\alpha_L v_y v^2 - \alpha_T v_x^2 v_y - \alpha_L v_y^3}{v^3} \frac{\partial v_y}{\partial y}$$
(3.39)

$$\frac{\partial D_{xy}}{\partial x} = \frac{\alpha_L - \alpha_T}{v^3} \left[\left(v_y v^2 - v_x^2 v_y \right) \frac{\partial v_x}{\partial x} + \left(v_x v^2 - v_x v_y^2 \right) \frac{\partial v_y}{\partial x} \right]$$
(3.40)

$$\frac{\partial D_{xy}}{\partial y} = \frac{\alpha_L - \alpha_T}{v^3} \left[\left(v_y v^2 - v_x^2 v_y \right) \frac{\partial v_x}{\partial y} + \left(v_x v^2 - v_x v_y^2 \right) \frac{\partial v_y}{\partial y} \right]$$
(3.41)

$$v_x, v_y \quad \mu \qquad \qquad \mu \qquad \qquad x, y$$

ν μ

•

3.6.4 µ

μ . μ μ . μ μ μ μ μ μ μ . μ , ,

$$\mu \qquad \mu \qquad \alpha_L, \alpha_T \qquad \qquad \mu$$

,

μ. μμ μ

		α_{l}	j≈ <i>average</i> gr	rain diam	eter		(3.4)	2)
			$\alpha_T = \frac{1}{10}$	$\frac{1}{0}a_L$			(3.4	3)
							μ	,
		μ	(Sp	oitz and M	Ioreno, 199	6)		
			$\alpha_L = 0.1 \text{ tra}$	vel time			(3.4	4)
				μ	Yenigul [20	005],		
α_{T} μ		μ 0.	001 m		μ			μ 0.200 m
μ								
3.6.5								
		u	u		u	u		u u
	μ	E.	μ	μ	L.			μ
		μ	μ		μμ			
	μ,		μ				-	,
	μ		μμ , 					μμ
μ μ		, μ	μ	μ	u t		(<i>i</i> , <i>i</i>) μ	· Δx
Δ v		·	·		·			
-			$C_{ij}(t) = \frac{M}{N\epsilon}$	$\frac{\mathcal{I}_0 n_{ij}(t)}{\mathcal{E} b_{ij} \Delta x \Delta y}$			(3.4	5)
$C_{ij}(t)$		μ			(i, j)		μ t,	$n_{ij}(t)$
μ	μ	μ			, N	T		μ
μ		μ,	ε		b_{ij}		,	
μ μ					μ	μ		
						(3.	45),	μ
μ			μ		μ			μ
μ	μ							μ,μ

μ	μ	μ	μ.	,	μ	μ
μ						
,		Ļ	ı		μ	
μ	μ		,			
μ.				μ	Δt	
μ		μ	Δx		μ	
	μ		$v_{\rm max}$ (Te	ompson and Gel	har, 1990).	

$$\Delta t \ll \frac{\Delta x}{v_{\max}} \tag{3.46}$$

4.

/	μ	μ	μ
1		, Monte Carlo	2-D μ μ STBM
2		μ	μ, μ μ
3		, μ	μ μ
4		μ	μ, μ μ
5	μ	μ	μ μ , μ μ μ μ
6		μ	μ μ μ, μ μμ μ
7		, μμ	μ μ μμ μ, μ μ μ μ
8		μ	μ μ , μ μ

4.2

					ſ	•							
μ												μ	Monte
Carlo,	μ	μ			μ								
μ		μ					(4.1)):				
	1.:	μ		2-D					μ				
	2.:	μ				μ	μ				μ		
μ			μ		μ	,						•	
	3.:		μ							μ			
	4.:				μ								
	5.:		μ			μ	μ			μ	l		
	μ					μ							
		μ											
	6.:			μ									
μ				μ				•				μ	
	,	,				l	μ			•			
								P_d	μ				
μ	μ								μ			μ	
		,											
$P_{f} = 1 - F$	d.	μ					1	n	μ				μ
		μ				μ			μ,				
	μ			C_n					μ		μ	μ	C_{TH} .
	,	μ									μ		
			P_d		μ								
μ				μ							μ	μ	
N_{MC} .	,		μ			I_d ,				μ	1		
		μΟ)		,		(Ye	enigul	, 2005)				

$$P_d = \frac{1}{N_{MC}} \sum_{i=1}^{N_{MC}} I_d^{(i)}$$
(4.1)

μ,

•

μ

(2-D).

•

μμ

μμ

40

4.3.1 μμ μ

		μ		μ		(FLOW.INP),
	μ		μμ	μ	μ	
	, μ		,	μ	μ	μ
μ	,	μ	μ		μ.	μμ
	μ	μ				μ
		μμ ,	μ		••••,	μ
			μ			
4.3.2	μμ		μ	Monte Carlo		

μμ μμ. μ μ

4.3.2.1 STBM μ μ μ Κμ 2-D μ μ TUBA (version 2.11), μ μ μ μ μ μ μ . μμ μ μ μ , μ μ μ • , Wilson Zimmerman μ [1990].

4.3.2.2

:

		2-D			μ		μ	
	Sarris [1999] µ	μ		3-D		,	
		Desbarate	s [1992].			μ	μ	
μ	h				μ			
	•	,μ,	μ			μ 2-D		μ
	μ,	μ		Ζ	μ	(1) µ	μ.	
	μ	μ				$\mu \qquad (x, y)$	y,1).	
	,	μ	μ			Ζ	μμ ,	μ
		μ		μ		μ		μ

	μ		2-D),	μ			μ			
	μ		μ	μ			,		μ	μ μ	l
				μ	,		,				
4.3.2.3		μ									
	μ		μ		μ			μ	2-D	μ	
μ					μ						
	<i>x</i> , <i>y</i>	μ	μ		Ļ	l					
	μ	<i>x</i> .						•			
4.3.2.4		и			и						
u	μ	μ			1-						
·	μ.	·		3							:
	1.		,								
			1	α μ	μ ,		u pr			μ	u
			μμ	ı (0).	μ,	μ				P.
		μ		· ·	,	. μ	,				
	V ₀ .										
	2.										
	2.:				ł	μ			,μ,		
μ		μ	μ						μ	,	
	ш	ш		μ	•			п			μ, νν
	μ	μ						μ			<i>x</i> , <i>y</i>
			μ	,			μ		μ	μ	
<u></u>	2)				μ					μ	
7./				μ			u ı	u			
				,			r 1				,

$$\begin{cases} v_x(1,1) = (1-a)(1-b)v_x(i,j) \\ v_x(2,1) = (1+a)(1-b)v_x(i+1,j) \\ v_x(1,2) = (1-a)(1+b)v_x(i,j+1) \\ v_x(2,2) = (1+a)(1+b)v_x(i+1,j+1) \end{cases}$$
(4.2)

42

.

$$a = 2(x - [x] - 0.5) \tag{4.3}$$

$$b = 2(y - [y] - 0.5) \tag{4.4}$$

$$\begin{bmatrix} x \end{bmatrix}, \begin{bmatrix} y \end{bmatrix} \qquad \mu \qquad x, y . \qquad \mu \qquad \nu_x \\ \nu_y \qquad \mu \qquad \mu \qquad \mu \qquad (4.2),$$

$$v_{x(par)} = \frac{v_x(1,1) + v_x(2,1) + v_x(1,2) + v_x(2,2)}{4}$$
(4.5)

μ

$$v_{y(par)} = \frac{v_{y}(1,1) + v_{y}(2,1) + v_{y}(1,2) + v_{y}(2,2)}{4}$$
(4.6)

3.:
$$\mu \mu \mu \mu \mu$$

 $\mu, \mu \Delta t \mu \mu$
(3.33) (3.34)

(3.33) (3.34).

•

4.:

5.: () μ μ μ .

μ • 7

8.: μ μ, (). μ

4.3.2.5 μ μ μ

,

μμ

μ

•

μ

.

,

4.4 μ

4.4.1

μ μ

μ

,

μ						μ
		μ	μ			
			μ,			
	μ				3, 4, 6	12
μ	μμ				Z	Δsrμ
		d				μ
	1	ζ. μ		μ	μ	
$\Delta s / L$ (norma	alized well sp	acing, nws)		μ	Ļ	ιμ
	(d/L (normalize	d distance from s	source, ndfs) (Y	enigul, 20)5).
		`		, , , , , ,	U /	,
4.4.3 µ	μ					
		μ	μ	μ		y = 0m
<i>y</i> = 300 <i>m</i>		μ	x = 0	m, x = 500m.		μ
μ	ι		μ		μ	μ
	μ	μ 0.001 <i>n</i>	n.	μ		μ
μ		μ		μ	μ	μ 2.3 ,
	μμ	K = 10m / day	, μ		μ	μ
u	$\sigma_{\rm v}^2 = 0$	$\sigma_{\rm v}^2 = 2.0$.		Y		μ.
	- Y -	20m u				
μμ	μ	<i>20m</i> . µ				μ.
4.4.4 µ	μ		μμ			
μ		μ		μ		y = 0m
v = 300m	μ	μ		, μ		
u u	·	u .		u l	u	
, r	U.	F.		г. Ц	(x	> 500m).
,	μ			μ	(<i>R</i> par	_ 000m),
		,				
	μ		μ			μ
	μ	μμ	μ			μ
Monte Carlo.	μ,	μ	μ			μ
μ	, μ					μ
	μ μ	μ				

4.4.2

μ

45

$$C_0 = \frac{M/\varepsilon}{m^3} = \frac{1000 \, gr/0.25}{m^3} = 4000 \, mgr \, / \, lt$$

4.3 :

μ *C_{TH}* 7. μ

Απόσταση από ΧΥΤΑ	Ndfc	Χρόνος Προσομοίως	νης	Χρονικό Βήμα (Δt <i>,</i>
	NUIS	Έτη	Ημέρες	Ημέρες)
15	0.125	10	3650	1
30	0.250	15	5475	1
60	0.500	20	7300	1
120	1.000	20	7300	1
150	1.250	30	10950	1
240	2.000	30	10950	1
300	2.500	30	10950	1

4.4.5

μ μ . . .

		μ	μ		μ		(Y	enigul et al	., 2005).
Δ <i>s</i> / 2				μ,	(4.3).			
		μ		μ				μ	
									μ
				П	Ш		,	μ	П
	, μ		μ 2 m	μ	μ	$4 m^2$.		·	μ
u				u	•	•••,			
	μ			μ 1 m ² ,	1⁄4	μ	μ	μ.	$\Delta x = \Delta y = 1 m$
					,	μ		μ	,
C_{TH} ,			μ.	μ		μ			
	μ								
4.5					μ				
							μ	μ	
	μ			μ.	μ			μ	μ
μ		μ			μ	μ	μ		μ
		•	,	μ					•

μ .1 .2 .3 .4 .5 .6 .	500 m	300 m	2 m 1 m	2 m 1 m	50 m	120 m	2.3	0.00 0.50 0.75 1.00 1.50 2.00	20 m	0.001 m	0.01 m 0.20 m 0.50 m 1.00 m 2.00 m	0.001 m 0.020 m 0.050 m 0.100 m 0.200 m	0.25	10 - 30 (ndfs)	1 μ	12 6 4 3	0.08 0.17 0.25 0.33	0.125 0.250 0.500 1.000 1.250 2.000 2.50	0.35% x G
п	1 μ µ , I ₇	2 µ , L _y	(x = y)	4 μ μ μ $(x = y)$	5 ,L	6 , W	7 μ =lnK, μ	8 µ , ²	9 μ (x = $_y$)	n n n 01	1 μ , L	12 , _T	13	μ μ	l5 μ, t	l6 µ	1 н н	μ 8	19 μ μ , G _H

4

,

5.

μ

5.1

μ μ μ μ μ μ . μμ μ μ , , μ μ ,μ μ . , μ μ .

μ μμ μ μ

μ,

$$C_0(x, y, z, t) = \frac{M}{\varepsilon} \delta(x) \delta(y) \delta(z) \qquad t=0$$
(5.1)

$$C(\pm\infty,\pm\infty,\pm\infty) = 0 \qquad t \ge 0 \tag{5.2}$$

M μ , ε $\delta(x)$, $\delta(y)$, $\delta(z)$

Dirac.

$$\mu$$
 (1-D), (2-D) (3-D)

(Spits and Moreno, 1996, Yenigul, 2006, Bear 1972):

$$1 - D: \mathbf{C}(x,t) = \frac{C_0}{\sqrt{4\pi\alpha_L vt}} \exp\left[-\frac{(x - vt)^2}{4\alpha_L vt}\right]$$
(5.3)

$$2-D: C(x, y, t) = \frac{C_0}{4\pi v_x t \sqrt{\alpha_L \alpha_T}} \exp\left[-\frac{(x - x_0 - v_x t)^2}{4\alpha_L v_x t} - \frac{(y - y_0)^2}{4\alpha_T v_x t}\right]$$
(5.4)

$$3-D: C(x, y, z, t) = \frac{M}{8(\pi v_x t)^{3/2} \sqrt{\alpha_x \alpha_y \alpha_z}} \exp\left[\frac{(x-v_x t)^2}{4\alpha_x v_x t} - \frac{y^2}{4\alpha_y v_x t} - \frac{z^2}{4\alpha_z v_x t}\right] (5.5)$$

μ μ

$$\sigma_L = \sqrt{2\alpha_L v_x t} \tag{5.6}$$

$$\sigma_T = \sqrt{2\alpha_T v_x t} \tag{5.7}$$

$$\mu \qquad x = v_x t$$

μ μ μ

 $C_{\max} = \frac{\Delta M}{4\pi\varepsilon b v_x t \sqrt{\alpha_L \alpha_T}}$ (5.8)

5.1 : μ 2-D μ (Spitz and Moreno,1996)

5		2
J	•	7

,

$$\mu$$
 μ μ $\left[0,\infty\right]$

$$\begin{cases} C = 0, & t \le 0, x \ge 0\\ C = C_0, & t > 0, x = 0\\ C = 0, & t > 0, x \to \infty \end{cases}$$
(5.9)

Ogata and Banks [1961] (Spits and Moreno, 1996)

$$C(x,t) = \frac{C_0}{2} \left[erfc\left(\frac{x-vt}{2\sqrt{\alpha_L vt}}\right) + \exp\left(\frac{x}{\alpha_L}\right) erfc\left(\frac{x+vt}{2\sqrt{\alpha_L vt}}\right) \right]$$
(5.10)

$$erfc \qquad \mu \qquad \mu \qquad \qquad . \qquad x/\alpha_L \qquad \mu$$
$$x/\alpha_L > 300, \qquad (5.10)\,\mu$$

$$C(x,t) = \frac{C_0}{2} \operatorname{erfc}\left(\frac{x - vt}{2\sqrt{\alpha_L vt}}\right)$$
(5.11)

5.2.1

μ 1-D

(5.11) µ μ μ μ μ μ μ μ μ μ 1 , X_{s} (Uffink, μ μ 1990, Kreft and Zuber, 1978). ,μ μ μ μ μ μ μ μ . μ μ μ μ μ μ (5.11). μ μ μ μ μ ,

 $\mu \qquad \mu \qquad \mu \qquad \mu \qquad C_0(50,0) = 500 \qquad \mu \quad ,$ $x_0 = 50m, \quad \mu \qquad x_s = 70m, \qquad \mu \qquad \nu = 0.04 \quad m / day , \quad \mu$ $\alpha_L = 0.05 \text{ m} \qquad \mu \qquad \mu \qquad t_{tot} = 2000 \text{ days} . \qquad \mu$

μμ 5.1.

5.2.2 μ 2-D , μ , μ μ , М (5.4) μ μ μ μ , . μ - $C_{x,y}$ μ (x, y).μ μ μ μ , μ μ μ . μ μ μ μ μ μ μ μ μ μ μ μ μ μ • μ μ , μμ μ μ μ μ (5.4), Simpson μ μ . μ μ μ μ , μ μ . 2-D µ Simpson, μ

$$C_{i,j} = \int_{i}^{i+1} \int_{j}^{j=1} C(x,y) dx dy \approx$$

$$\approx \frac{\Delta x \Delta y}{9} \left\{ \left[C(x_{0}, y_{0}) + 2 \sum_{i=1}^{(n/2)^{-1}} C(x_{2i}, y_{0}) + 4 \sum_{i=1}^{n/2} C(x_{2i-1}, y_{0}) + C(x_{n}, y_{0}) \right] + \left[2 \sum_{j=1}^{(m/2)^{-1}} C(x_{0}, y_{2j}) + 2 \sum_{j=1}^{(m/2)^{-1}} \sum_{i=1}^{(n/2)^{-1}} C(x_{2i}, y_{2j}) + 4 \sum_{j=1}^{(m/2)^{-1}} \sum_{i=1}^{(n/2)^{-1}} C(x_{2i-1}, y_{2j}) + \sum_{j=1}^{(m/2)^{-1}} C(x_{n}, y_{2j}) \right] + \left[2 \sum_{j=1}^{m/2} C(x_{0}, y_{2j-1}) + 2 \sum_{j=1}^{m/2} \sum_{i=1}^{(n/2)^{-1}} C(x_{2i}, y_{2j-1}) + \sum_{j=1}^{m/2} \sum_{i=1}^{n/2} C(x_{2i-1}, y_{2j-1}) + \sum_{j=1}^{m/2} C(x_{n}, y_{2j-1}) \right] \right] + \left[C(x_{0}, y_{m}) + 2 \sum_{i=1}^{(n/2)^{-1}} C(x_{2i}, y_{m}) + 4 \sum_{i=1}^{n/2} C(x_{2i-1}, y_{m}) + C(x_{n}, y_{m}) \right] \right] \right\}$$

$$(5.12)$$

μ

μ

μ

μ

μ

4.4

5.1.

5.1: µ

	Δεδομένα Εισόδου											
x ₀	100 m	α_L	0.1									
y ₀	150 m	α_{T}	0.01									
Μ	1000 gr	t _{total}	1500 days									
8	0.25	Δt	1 day									

		5.	2						μ					
			μ	μ	l		μ	,				μ		1000
μ			μ			•			μ		μμ		μμ	5.2 -
	μμ	5.5.												

5.2: μ μ μ

Πλήθος Σωματιδίων	Σχετικός Υπολογιστικός Χρόνος
500	0.50
1000	1.00
2000	1.75
4000	3.25
8000	6.25
16000	12.25
32000	16.75

μμ 5.2 : μ

μμ 5.4 :

	μ,						μμ				μ	,			
	μ		μ		2000)	μ		,					μ	,
		μ			32000										
			(μμ	5.3,		5.3).			,				μ	
			μ						μ		μ			80	00
μ	•		μ,	μ,	μ			2000	μ				μ		
				,	μ					4000	μ				
			μ	. μ									μ		
μ	μ		4	000	μ	,		μ	μ				μ	μ	
									μ			2000	μ		•
	μ						Y	enigul	et al	[2005]		μ			,
		μ	μ		•										

5.3				μ	μ	Monte C	Carlo
			μ	Monte C	arlo	μ	
μ			μ		. μ		
μ	μ	μ	,	μ			
,	μ,		. ,				μ
			μ	μ		μ	μ

,		μ	,				μ
μ.							
			μ	μ			
μ	μ	μ	, μ	μ			
	μ						
			μ	μ	(5.3)	μ
			μ			μ	,
			μ				
μ		μ	μ				

5.3: μ μ

A/A	Νο Σωματιδίων	α_L	σ _γ	Νο Πηγαδιών	NDFS	Νο Προσομοιώσεων	P _d
1	2000	0.2	0.5	6	1.000	10000	
2	2000	0.2	1.0	12	0.500	10000	
3	2000	0.5	1.0	4	0.250	10000	
4	2000	2.0	0.0	3	0.125	10000	

		μ		μ								
	μ						5.3	3	μ	,		μ
		μ	10000	,						μ		,
		Ļ	ı	0.2		μ	(0.2	2%) (μμ έ	5.7).	μ	,
μ	μ		μμ		μμ		μμ	μ	ιµ 5.6,	0		2000
		,				μμ	5.8,	μ	μ			
					μ		500	,				
	μ.	,			μ			μ	μ		μ	
			,		,							
		μ	. ,				μ					
		μ	μ	,				4	500 10	0000,		μ
	500		μ							μ.		,
	μ	μ	μ		μμ	Ļ	ιμ 5.7	μμ	5.9,			μ
				μ	μ	μ		μ		μ		
	μ						μ					
			μ,	,	μ	μμ						,
	μ	500					μ	Monte	Carlo, µ		μ	,

μ	,		μ			μ
		2%.	μ,	,	μ	μ

Yenigul et al (2005).

9300-9700

μμ 5.9: μ

350-800

6. µ µ

6.1 *µ µ*

μ , μ . , :

• µ 3, 4, 6 12

μ

- μ μ μ μ
 μ μ μ μ
 μ μ 0.00, 0.50, 0.75, 1.00, 1.50 2.00
- μ 0.001m, 0.02, 0.05m, 0.10m 0.2m.

μ μ μ μ .

μ μ μ μ μ Yenigul et al (2005). μ 6.5.

μμ μ μμ , Δx Δy μ 1*m* μ . $1m^2$ $4m^2$ μ μ μ μ μ μ μ • ,

 $1m^{2}$. μ μ, μ μ μ μ μ μ $\mu \quad C_{TH} = 14 mgr / lt , \qquad \mu$ μ μ (3.45), , μ μ μ μ μ . μ ,

8000 2000, μ . μ , 500×300 ,

μ			μ	μ			
		μ					
67							
0.2		μ					
μ			μ				μ
			,	μ	3, 4	4, 6 12	,
	μ	. μ		0.221 0.251	0 171	μ	
	. L,			0.33L, 0.251	L, 0.17L	0.08L.	
,						μ	μ
,			••••		μ II		0.125L
2 001				,	φ.	, u 0.00 0	50 0 75
1.00, 1.50	2.00		μ	μ	\mathcal{O}_Y	μ 0.00, 0	.50, 0.75,
1.00, 1.50	2.00.	μ		μμ		ч.Э.	
	6.1.		μ	μ		μ	μ
		, μ	μ				
	•						
6.2.1		μ					
	μ		6.1,			(3)	
		μ		. μ			
	μ			μμ		,	
			μ	23.0%	6.	μ	ı,
μ μ		μ	μ			μ	
		μ	—			μ	
		(3)	, μ			μ	(2)
	μ	μ					(3)
μ			Ш			ш	
		·	٣	, 80%.		٣	
		. μ	μ	· - · · · 7	,	μ	μ
		,	-	μ	μ		μ
,		μ	μ	ιμ		—	μ

. . .

(1.	Dd
0.1:	PU

0	γ	0.	00	0.	50	0.	75	1.0	00	1.	50	2.	00
a⊤(m)	nws	nfds(max)	Pd (%) (max) (Model)										
	0.33	2.50	13.8	1.25	12.4	1.00	7.0	0.50	7.6	0.50	8.2	0.25	7.6
0.001	0.25	2.50	16.8	1.25	14.6	1.00	13.2	0.50	14.4	0.50	12.0	0.25	12.4
0.001	0.17	2.50	27.6	1.25	20.6	1.00	21.8	0.50	18.4	0.50	19.6	0.25	15.6
	0.08	2.50	48.4	1.25	38.6	1.00	37.4	0.50	36.6	0.50	35.4	0.25	37.0
	0.33	2.00	23.0	1.00	18.6	0.50	17.6	0.50	18.2	0.50	16.2	0.25	13.4
0.02	0.25	2.00	26.8	1.00	24.0	0.50	23.6	0.50	23.6	0.50	20.6	0.25	18.6
0.01	0.17	2.00	38.0	1.00	38.4	0.50	36.0	0.50	32.4	0.50	36.2	0.25	29.2
	0.08	2.00	78.6	1.00	64.4	0.50	64.0	0.50	58.8	0.50	54.0	0.25	53.8
	0.33	0.50	19.6	0.50	20.2	0.50	18.8	0.25	18.2	0.25	18.6	0.25	14.0
0.05	0.25	0.50	27.8	0.50	25.8	0.50	22.0	0.25	27.2	0.25	24.2	0.25	21.2
	0.17	0.50	42.4	0.50	31.6	0.50	33.8	0.25	40.0	0.25	34.4	0.25	32.4
	0.08	0.50	81.6	0.50	72.6	0.50	65.2	0.25	65.8	0.25	60.2	0.25	59.8
	0.33	0.25	20.8	0.125	22.2	0.125	17.6	0.125	18.2	0.125	17.8	0.125	16.6
0.10	0.25	0.25	23.4	0.125	23.6	0.125	27.8	0.125	25.0	0.125	23.0	0.125	21.6
	0.17	0.25	40.2	0.125	37.6	0.125	37.8	0.125	39.0	0.125	34.8	0.125	35.4
	0.08	0.25	81.0	0.125	73.0	0.125	70.0	0.125	70.0	0.125	63.4	0.125	59.2
	0.33	0.125	16.4	0.125	14.2	0.125	14.6	0.125	10.2	0.125	12.8	0.125	10.6
0.20	0.25	0.125	22.0	0.125	18.8	0.125	16.2	0.125	17.8	0.125	16.6	0.125	13.6
	0.17	0.125	32.6	0.125	30.8	0.125	25.0	0.125	27.4	0.125	22.2	0.125	22.0
	0.08	0.125	61.2	0.125	52.4	0.125	48.8	0.125	51.8	0.125	45.2	0.125	41.0

$$\mu \qquad , \qquad \mu \qquad , \qquad \sigma_{\rm Y} = 0.00 \,,$$
$$\left(\alpha_t = 0.001\right) \qquad \qquad \mu$$

$$\mu \quad (P_d = 13.80\%)$$
. $\mu \quad \mu$
. $\mu \quad \mu$
(

6.2).

μ

,

μ

. . . .

μ

μ

μ

μ

6.2: Pd

μ

μ

(=0.00 =1.00)

.

	σ			0.00			1.00						
αt	nws/ndfs	0.125	0.25	0.50	1.00	2.00	0.125	0.25	0.50	1.00	2.00		
	0.33	8.6	8.6	10.2	12.2	12.8	6.4	9.8	7.6	11.6	10.4		
0.001	0.25	11.2	9.4	11.0	12.8	14.2	9.8	12.8	14.4	11.8	14.2		
0.001	0.17	16.6	18.6	18.0	21.6	22.8	15.0	17.1	18.4	16.8	22.0		
	0.08	36.0	37.0	38.4	43.4	45.4	27.2	30.8	36.6	37.4	38.8		
	0.33	17.0	19.0	19.6	21.2	3.0	15.2	18.2	16.0	6.7	0.0		
0.05	0.25	25.6	25.2	27.8	17.0	3.2	23.4	27.2	21.2	9.0	0.0		
0.05	0.17	34.4	42.4	42.4	32.8	6.5	35.0	40.0	31.0	9.6	0.0		
	0.08	76.6	78.0	81.6	73.0	8.1	61.2	65.8	60.0	23.4	0.0		
	0.33	16.4	12.2	2.0	0.0	0.0	10.2	6.6	0.0	0.0	0.0		
0.20	0.25	22.0	14.6	2.2	0.0	0.0	17.8	7.4	0.0	0.0	0.0		
0.20	0.17	32.6	24.8	2.0	0.0	0.0	27.4	13.0	1.2	0.0	0.0		
	0.08	61.2	43.6	7.0	0.0	0.0	51.8	29.2	1.8	0.0	0.0		

=1.00), t=0.05

μ

μ

(=0.00 =1.00), t=0.20

,

6.2.3

 μC_{TH} μμ μ μ μ,μ,μ μ . μ μ μ ,μ μ μ μ μ μ μ μ μ μ ,μ, μ . . μ μ μ μ 6.3. μ μ μ ,μ μ μ μ μ μ μ μ , μ ,μ μ μμ μ μ μμ 7.4 7.5, , ($\sigma_{\rm Y}$ = 0.00 $\sigma_{\rm Y}$ =1.00), (ndfs=0.125 ndfs=0.50), (μμ 6.4) μ , μ. μ μ 0.125 μ μ ,μ 0.50, μ 0.10 m. μ μ 0.05 m. μ ,μ μ (μμ 6.5) μ , (2 μ μ μ μ , 4) μμ μ μ μ (6 12) μ . μ , μ

•

		6.3	:				μ				
	ndfs			0.125					0.5		
σγ	nws/αt	0.001	0.02	0.05	0.10	0.20	0.001	0.02	0.05	0.10	0.20
	0.33	8.6	14.2	17.0	22.2	16.4	10.2	17.8	19.6	16.0	2.0
0.00	0.25	11.2	19.4	25.6	28.8	22.0	11.0	23.8	27.8	20.0	2.2
0.00	0.17	16.6	31.8	34.4	40.8	32.6	18.0	35.8	42.4	33.4	2.0
	0.08	36.0	59.6	76.6	78.2	61.2	38.4	74.0	81.6	65.4	7.0
	ndfs			0.125					0.5		
σ	nws/αt	0.001	0.02	0.05	0.10	0.20	0.001	0.02	0.05	0.10	0.20
	0.33	6.4	16.0	15.2	16.0	10.2	7.6	18.2	16.0	6.4	0.2
1 00	0.25	9.8	17.4	23.4	22.4	17.8	14.4	23.6	21.2	9.6	0.8
1.00	0.17	15.0	25.6	35.0	36.6	27.4	18.4	32.4	31.0	16.2	1.0
	0.08	27.2	54.8	61.2	67.4	51.8	36.6	58.8	60.0	26.6	1.6

μ

(ndfs=0.125 ndfs=0.50)

μμ 6.5: Pd μ

(ndfs=0.125 ndfs=0.50)

6.2.4

6.4: Pd (%) μ

	α ⊤=0.10 m, ndfs=0.125							
nws/σ	0.00	0.50	0.75	1.00	1.50	2.00		
0.33	22.2	22.2	17.6	16.0	17.8	16.6		
0.25	28.8	23.6	27.8	22.4	23.0	21.6		
0.17	40.8	37.6	37.8	36.6	34.8	35.4		
0.08	78.2	73.0	70.0	67.4	63.4	59.2		

%.

6.2: $\mu \qquad \mu \qquad \mu \qquad \mu \qquad (=0.00, t=0.10m, tsim=3650 days)$

6.3 : μ (=0.50, t=0.10m, tsim=3650 days)

(=0.00, t=0.10m, tsim=3650 days)

μ

6.3 μ μ Yenigul et al. (2005)

		μ		μ		μ		μ	Γ)	BRWM)
	μ	μ		Yer	igul et al	[2005].					
μ										μ	
	μ			μ			μ		μμ		
	Yenigul	l et al [2005],	μ	μ	μ		μ			
		μ				,			,		
	μ							μ.		ł	L
		μ		6.5							
				μ						μ	
	μ	μ		0.0 %	11.9 %	<i>б</i> (6.5).				
	μ	l,		120			μ	(120x50	00=60000),
μ		μ		8 %			μμ		μμ	μμ	6.7
			μ		μ			μ	μ		
		μ	,		μ.		μ			μ	
	μ	l		3%,	μ μ			2.5 %.			

65		
0.5	•	

μ

σ	Y	O Y 0.00			0.50			0.75			1.00				1.5	50		2.00							
aT(m)	nws	nfds(max)	Pd (%) (max) (Yenigul et al, 2005)	Pd (%) (max) (Model)	Difference Pd(Yenigul et al.)-TBRWM	nfds(max)	Pd (%) (max) (Yenigul et al, 2005)	Pd (%) (max) (Model)	Difference Pd(Yenigul et al.)-TBRWM	nfds(max)	Pd (%) (max) (Yenigul et al, 2005)	Pd (%) (max) (Model)	Difference Pd(Yenigul et al.)-TBRWM	nfds(max)	Pd (%) (max) (Yenigul et al, 2005)	Pd (%) (max) (Model)	Difference Pd(Yenigul et al.)-TBRWM	nfds(max)	Pd (%) (max) (Yenigul et al, 2005)	Pd (%) (max) (Model)	Difference Pd(Yenigul et al.)-TBRWM	nfds(max)	Pd (%) (max) (Yenigul et al, 2005)	Pd (%) (max) (Model)	Difference Pd(Yenigul et al.)-TBRWM
	0.33	2.50	11.0	13.8	-2.8	1.25	12.0	12.4	-0.4	1.00	12.0	7.0	5.0	0.50	9.0	7.6	1.4	0.50	8.0	8.2	-0.2	0.25	8.0	7.6	0.4
0.001	0.25	2.50	17.0	16.8	0.2	1.25	16.0	14.6	1.4	1.00	16.0	13.2	2.8	0.50	12.0	14.4	-2.4	0.50	12.0	12.0	0.0	0.25	12.0	12.4	-0.4
	0.17	2.50	27.0	27.6	-0.6	1.25	22.0	20.6	1.4	1.00	19.0	21.8	-2.8	0.50	22.0	18.4	3.6	0.50	16.0	19.6	-3.6 1.c	0.25	15.0	15.6	-0.6
	0.08	2.30	19.0	23.0	-4.0	1.25	43.0	18.6	-1.6	0.50	16.0	17.6	-1.6	0.50	15.0	18.2	-3.2	0.50	15.0	16.2	-1.2	0.25	15.0	13.4	-2.0
	0.25	2.00	27.0	26.8	0.2	1.00	26.0	24.0	2.0	0.50	21.0	23.6	-2.6	0.50	21.0	23.6	-2.6	0.50	21.0	20.6	0.4	0.25	21.0	18.6	2.4
0.02	0.17	2.00	43.0	38.0	5.0	1.00	38.0	38.4	-0.4	0.50	38.0	36.0	2.0	0.50	34.0	32.4	1.6	0.50	33.0	36.2	-3.2	0.25	28.0	29.2	-1.2
	0.08	2.00	78.0	78.6	-0.6	1.00	70.0	64.4	5.6	0.50	66.0	64.0	2.0	0.50	65.0	58.8	6.2	0.50	60.0	54.0	6.0	0.25	55.0	53.8	1.2
	0.33	0.50	15.0	19.6	-4.6	0.50	20.0	20.2	-0.2	0.50	17.0	18.8	-1.8	0.25	17.0	18.2	-1.2	0.25	17.0	18.6	-1.6	0.25	18.0	14.0	4.0
0.05	0.25	0.50	25.0	27.8	-2.8	0.50	25.0	25.8	-0.8	0.50	34.0	22.1	11.9	0.25	26.0	27.2	-1.2	0.25	24.0	24.2	-0.2	0.25	25.0	21.2	3.8
0.00	0.17	0.50	43.0	42.4	0.6	0.50	33.0	31.6	1.4	0.50	37.0	33.8	3.2	0.25	37.0	40.0	-3.0	0.25	35.0	34.4	0.6	0.25	36.0	32.4	3.6
	0.08	0.50	76.0	81.6	-5.6	0.50	73.0	72.6	0.4	0.50	74.0	65.2	8.8	0.25	72.0	65.8	6.2	0.25	68.0	60.2	7.8	0.25	64.0	59.8	4.2
	0.33	0.25	20.0	20.8	-0.8	0.125	18.0	22.2	-4.2	0.125	18.0	17.6	0.4	0.125	18.0	18.2	-0.2	0.125	18.0	17.8	0.2	0.125	16.0	16.6	-0.6
0.10	0.25	0.25	27.0	23.4	3.b	0.125	26.0	23.0	2.4	0.125	25.0	27.8	-2.8	0.125	24.0	25.0	-1.0	0.125	21.0	23.0	-2.0	0.125	21.0	21.0	-0.6
	0.17	0.25	40.0 79.0	40.2 81.0	-0.2	0.125	56.0 76.0	57.0 73.0	3.0	0.125	55.0 71.0	57.6 70.0	-2.0	0.125	55.0 68.0	39.0 70.0	-0.0	0.125	55.0 61.0	54.0 63.4	-1.0	0.125	23.0 53.0	59.4	-10.4
	0.33	0.125	15.0	16.4	-1.4	0.125	11.0	14.2	-3.2	0.125	11.0	14.6	-3.6	0.125	11.0	10.2	0.8	0.125	11.0	12.8	-1.8	0.125	10.0	10.6	-0.6
	0.25	0.125	18.0	22.0	-4.0	0.125	17.0	18.8	-1.8	0.125	18.0	16.2	1.8	0.125	18.0	17.8	0.2	0.125	15.0	16.6	-1.6	0.125	13.0	13.6	-0.6
0.20	0.17	0.125	31.0	32.6	-1.6	0.125	29.0	30.8	-1.8	0.125	26.0	25.0	1.0	0.125	25.0	27.4	-2.4	0.125	23.0	22.2	0.8	0.125	19.0	22.0	-3.0
	0.08	0.125	64.0	61.2	2.8	0.125	54.0	52.4	1.6	0.125	50.0	48.8	1.2	0.125	48.0	51.8	-3.8	0.125	40.0	45.2	-5.2	0.125	37.0	41.0	-4.0

74

µµ 6.14 :

μ

μ

, Yenigul et al - TBRWM (ndfs=0.125 0.50)

.

(2)

(3)

(11)

(13)

									μ			
	μ					, μ	μ		μ			
		,	h	ı					μ	μ		(soft data)
						,μ	l		μ			
		,		μ			μ	μ		,	μ	
						,	μ		μ	μ	μ	
μ			I	u	μ	,	,		μ	ł	l	
		μ	μ		μ							
					μ			μ	:			
•							μ				μ	μ
				μ			μ	μ	μμ		,μ	
•												
	μ	μ				•						
•	•	·										
•						,	μ			μμ		•
•						μ			μ			
	,											
•	μ	μ								,		μ
						,						μ
		μ 15.59	%.									
μ,				μ								μ
					μ		6.6	,				
		μ								μμ		
μ		(1) – (1	5)		μμ		μμ 6.1	5.				μ
	,		μ		ŀ	J	:					
	$P_{d(e)}$	$_{mp)} = \frac{120n}{3L}$	$\frac{1}{2}\left(4\frac{1}{0}\right)$	$\frac{d\alpha_t}{5\cdot 0.05}$	$-5e^{-100(e)}$	$(\alpha_t - 0.001)$ _	$-5e^{-100(0.2)}$	$(2-\alpha_t)$	$2\sigma_{y}+15$.5)	(6.1)	

$$P_{d(emp)} = \frac{40n}{L} \Big(160d\alpha_t - 5e^{-100(\alpha_t - 0.001)} - 5e^{-100(0.2 - \alpha_t)} - 2\sigma_Y + 15.5 \Big)$$
(6.2)

,

,

	n				, <i>L</i>	
		μ	μ	L		
	μμ				μ	$\sigma_{_{ m Y}}$
	μ		μ			•
	μ			μ	μ	
μ		μ	TBRW.			μι
	μ	μ		(6.2)		
	μ		μ	μ		
μ	μ	,				
			μ			

		μ	, d
			, α_{t}
$\sigma_{_{ m Y}}$	μμ	μ	
		μ	
μμ			μ.
	. μ		u
		μ	r.

at σ ndfs[α][0.00102.5040.00110.5030.00120.2530.02002.0060.02010.5040.02020.2540.05000.5070.05010.2550.05020.5050.10000.254	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	β]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
0.020 0 2.00 6 0.020 1 0.50 4 0.020 2 0.25 4 0.050 0 0.50 7 0.050 1 0.25 5 0.050 2 0.50 5 0.050 2 0.25 4	-2
0.020 1 0.50 4 0.020 2 0.25 4 0.050 0 0.50 7 0.050 1 0.25 5 0.050 2 0.50 5 0.050 0 0.25 4	2
0.02020.2540.05000.5070.05010.2550.05020.5050.10000.254	5
0.05000.5070.05010.2550.05020.5050.10000.254	1
0.05010.2550.05020.5050.10000.254	0
0.05020.5050.10000.254-	6
0.100 0 0.25 4 -	1
	-1
0.100 1 0.13 6	2
0.100 2 0.13 3	1
0.200 0 0.13 5	2
0.200 1 0.13 5	4
0.200 2 0.13 6	2

		0.200	—	0.20	•	•		
		0.200	2	0.13	6	2		
						-		
	6.	7 μ	μ				μ	
μ	TBRWM	1		μ	μ		(6.2).	
	μ	μ	μ		μ		μ	0.0 %
10.0 %	(μ)		μ μμ		μ		
	μ	μ		,			, μ	μ
			μ		μ	,	μ μ	3.2

%.

	6.7 :			μ		Т	BR	W	М -	h	I										
	Pd (%) (Model)- Pd(%)(Empirical)	1.0	3.7	2.8	9.8	1.7	3.2	6.5	5.7	0.4	3.2	6.0	3.7	3.0	3.6	8.9	3.0	0.0	-0.4	1.4	-2.7
0	leɔiriqm∃ (xem) (%) bq	6.6	8.7	12.8	27.2	11.7	15.4	22.7	48.1	13.6	18.0	26.4	56.1	13.6	18.0	26.5	56.2	10.6	14.0	20.6	43.7
2.((ləboM) (xɛm) (%) b٩	7.6	12.4	15.6	37.0	13.4	18.6	29.2	53.8	14.0	21.2	32.4	59.8	16.6	21.6	35.4	59.2	10.6	13.6	22.0	41.0
	(xem)sbłn	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.13	0.13	0.13	0.13	0.125	0.125	0.125	0.125
	Pd (%) (Model)- Pd(%)(Empirical)	0.5	1.9	4.7	3.8	2.7	2.8	10.0	-1.6	4.0	4.9	6.0	-0.1	3.1	3.7	6.4	3.0	1.2	1.3	-0.3	-2.7
0	Pd (%) (max) Empirical	7.7	10.1	14.9	31.6	13.5	17.8	26.2	55.6	14.6	19.3	28.4	60.3	14.6	19.3	28.4	60.4	11.6	15.3	22.5	47.9
1.5	(ləboM) (xɛm) (%) bq	8.2	12.0	19.6	35.4	16.2	20.6	36.2	54.0	18.6	24.2	34.4	60.2	17.8	23.0	34.8	63.4	12.8	16.6	22.2	45.2
	(xɛm)sbìn	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.25	0.25	0.25	0.25	0.13	0.13	0.13	0.13	0.125	0.125	0.125	0.125
	Pd (%)(Empirical)	-1.1	3.0	1.6	0.8	3.7	4.5	4.3	-1.0	2.6	6.6	9.7	1.4	2.5	4.3	8.6	5.4	-2.4	1.1	2.9	-0.3
0	Pd (%) (max) Empirical	8.7	1.4	.6.8	35.7	4.5	.9.1	8.1	9.8	.5.6	0.6	30.3	54.4	.5.7	0.7	30.4	64.6	.2.6	.6.7	4.5	52.1
1.0	(ləboM) (xɛm) (%) b٩	7.6	14.4	18.4	36.6	18.2	23.6	32.4 2	58.8	18.2 1	27.2	40.0	65.8 6	18.2	25.0 2	39.0	70.0	10.2 1	17.8 1	27.4 2	51.8 5
	(xem)sbłn	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.25	0.25	0.25	0.25	0.13	0.13	0.13	0.13	0.125	0.125	0.125	0.125
	Pd (%)(Empirical)	-2.3	1.0	3.8	-0.8	2.6	3.8	6.9	2.1	0.6	-2.0	-1.4	-9.7	1.4	6.5	6.4	3.3	1.5	-1.1	-0.5	-5.4
5	Pd (%) (max) Empirical	9.3	12.2	L8.0	38.2	15.0	19.8	9.1	51.9	18.1	24.0	35.2	74.8	L6.2	21.3	31.4	56.7	13.1	17.3	25.5	54.2
0.7	(ləboM) (xɛm) (%) b٩	7.0	13.2	21.8	37.4	17.6	23.6	36.0 2	64.0	18.8	22.0	33.8	65.2	17.6	27.8	37.8	70.0	14.6	16.2	25.0 2	48.8
	(xem)sbìn	1.00	1.00	1.00	1.00	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.13	0.13	0.13	0.13	0.125	0.125	0.125	0.125
	Pd (%)(Empirical) Pd(%)(Empirical)	2.6	1.7	1.6	-1.8	1.5	1.4	5.2	-6.2	1.6	1.2	-4.6	-4.3	5.5	1.6	5.2	4.3	0.6	0.8	4.3	-3.8
0	Pd (%) (max) Empirical	9.8	12.9	19.0	40.4	17.1	22.6	33.2	70.6	18.6	24.6	36.2	76.9	16.7	22.0	32.4	68.7	13.6	18.0	26.5	56.2
0.5	(ləboM) (xɛm) (%) bq	12.4	14.6	20.6	38.6	18.6	24.0	38.4	64.4	20.2	25.8	31.6	72.6	22.2	23.6	37.6	73.0	14.2	18.8	30.8	52.4
	(xem)sbłn	1.25	1.25	1.25	1.25	1.00	1.00	1.00	1.00	0.50	0.50	0.50	0.50	0.13	0.13	0.13	0.13	0.125	0.125	0.125	0.125
	Pd (%)(Empirical) Pd(%)(Empirical)	2.8	2.3	6.2	3.0	1.6	-1.4	-3.5	-9.5	-0.1	1.8	4.2	0.5	1.1	-2.6	2.0	-0.2	1.7	2.7	4.2	0.8
0	Pd (%) (max) Empirical	11.0	14.5	21.4	45.4	21.4	28.2	41.5	88.1	19.7	26.0	38.2	81.1	19.7	26.0	38.2	81.2	14.6	19.3	28.4	60.4
0.0	(ləboM) (xɛm) (%) bq	13.8	16.8	27.6	48.4	23.0	26.8	38.0	78.6	19.6	27.8	42.4	81.6	20.8	23.4	40.2	81.0	16.4	22.0	32.6	61.2
	(xem)sbîn	2.50	2.50	2.50	2.50	2.00	2.00	2.00	2.00	0.50	0.50	0.50	0.50	0.25	0.25	0.25	0.25	0.125	0.125	0.125	0.125
	smu	0.33	0.25	0.17	0.08	0.33	0.25	0.17	0.08	0.33	0.25	0.17	0.08	0.33	0.25	0.17	0.08	0.33	0.25	0.17	0.08
0	(m) _" 6	0.001	0.001	0.001	0.001	0.02	0.02	0.02	0.02	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.20	0.20	0.20	0.20

μ

	μμ	μ	μ		μ
	μ		μ,	μ	μ
	· .		•	μ.	μ
	,	(6.2	2) µ		
		$P_{d(emp)} = \frac{n}{L} (6400d)$	$l\alpha_t - 80\sigma_y + 620$		(6.3)
	,			μ	μ,
μ					μ 100%,
μ		μ, μ	μ, μ		μ
μ	(6.3)		μ	n ,	$P_{d(emp)} = 100\%$
μ		,	μ		
		$n = \frac{1}{6400d\alpha_i}$	$\frac{00L}{-80\sigma_{Y}+620}$		(6.4)
	μ	μ		6.8.	
μ	μ			μ	
	μ μ	μ		μ	,
		μ			,
μ	μ	,	μ	,	, μ.
μ		(6) μ	(7)		
			μ	,	μ
	(19)	(22) ,	0.12	5	

(19) (22) μ μ 0.02 m.

6.8: μ μ μ

	σ			0.00					1.00		
αt	ndfs	0.125	0.25	0.50	1.00	2.00	0.125	0.25	0.50	1.00	2.00
0	.02	19	18	18	16	14	22	21	20	18	15
0	.05	18	17	15	13	10	21	19	17	14	10
0	.10	17	15	13	10	6	19	17	14	10	7

6.5 *μ*

	μ			μ	,					
	μ	μ	μ		$\Delta x = \Delta y$	w = 2 m	, μ			μ
250x150		,	μ			μ	μ	μ		
		,	μ	μ		μ		3.4	4.1,	
μ		μ	μ	μ	μ					μ.
			μ	l		_		,		
,		μ					μ	μ	2×2	$2=4 m^2.$
l	μ	,	μ,	μ						
	μ	μ			$4 m^{2}$.	,	μ			μ
							μ	μ	μ	. ,
		,	μ	μ	TBRWM				μ	
					μ	μ	$\Delta x = \Delta y$	$=1 m$, μ		μ
μ		μ	ι μ	500x300				μ		
	2									

 μ 1 m^2 .

			μ					μ		•
	,	μ μ		2	000 μ			,	μ,μ	
	μ		μ		,					μ
					μ			C _{TH} =14 m	ıg/lt,	μ
	, ļ	ı	28	μ						
		μ		28	8/14 = 2	μ		/mg/ .		μ
	,μ,			μ					μ	,
	μ	μ	μ	μ	2000	,	μ	μ	(3.45),	
	μ		C _{TH} =1	4 mg/lt		μ	7	μ		•
μ	μ	Ļ	ı		μ 7/14	=0.5	μ	/mg/	,	
	μ			μ μ		μ		μ		
	μ			μ	(4	4),		μ		
μ			•							
	μ		μ			ł	ı		Ļ	ı
μ			μ		•					μ
	,			μ				μ	28/	14 = 2

μ		/mg/			,		μ	μ		μ				μ
	μ			μ		μ	μ		μ,	, ,				μ
	μ	:	,		800)0	•			μ				
						,	,					μ	,	
					μ	μ		μ μ	ι	μ				
l	μ	•	,			,								μ
		,	μ				μ			μ		μ	Ļ	l
								μ				μ		
					•									
6.5.1			μ		μ									
							μ	,		μ	μ	μ		
	μ	($\alpha_t = 0$	0.001	m)			μ		μ		μ		
μ	ı	σ	νμ			1.00.								
·		u	и и			u			u					
		•	•			•	250x15	0,	•			μ		
	μ	l									,	·		
		μ			μ			500x3	300,			250x	150,	μ
							Yenig	gul et a	al [20	05]				6.9.
										μ				
		μ		μ	μ	,		,			μ			
								•						
6.5.2				и					и	500	x300			
				•					•					
					μ		μ					u 11	500x′	300
							u			м 25	μ 50x150	μ).	500A.	u
				:			•							F.,
1									(~	< 0.05)				
1.						μ	μ		$(\boldsymbol{\alpha}_t)$	$\simeq 0.05$	μ	5 0/	μ	
					,			μ			μ	5 %	μ	

	6.9: µ j	μ		4	500 :	x30	0				μ						250	x150
	твRWM(250×300)- ТВRWM(250×300)	0.6	2.6	0.2	1.8	-6.4	3.7	4.0	-1.4	0.8	3.4	2.4	4.4	0.3	-0.1	-3.4	-3.2	
	Pd (%) (max) (500x300 Pd (%) (model)	17.6	21.0	32.2	57.0	24.6	23.5	36.0	67.2	17.4	21.6	36.6	65.6	9.9	17.9	30.8	55.0	
1.00	Pd (%) (max) (250x150 TBRW Model)	18.2	23.6	32.4	58.8	18.2	27.2	40.0	65.8	18.2	25.0	39.0	70.0	10.2	17.8	27.4	51.8	
	Pd (%) (max) (Yenigul et al, 2005)	15.0	21.0	34.0	65.0	17.0	26.0	37.0	72.0	18.0	24.0	33.0	68.0	11.0	18.0	25.0	48.0	
	(xem)sbìn	0.50	0.50	0.50	0.50	0.25	0.25	0.25	0.25	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	
	твкWM(550×300)- твкWM(250×300)	0.0	-0.9	-2.2	-3.4	-1.6	-1.2	-9.4	3.3	3.7	-6.2	-3.4	-4.5	-1.0	-4.0	-3.0	-11.0	
	Pd (%) (max) (500x300 TBRW Model)	18.6	24.9	40.6	67.8	21.8	27.0	41.0	69.3	18.5	29.8	41.0	77.5	15.2	22.8	33.8	63.4	
0.50	Pd (%) (max) (250x150 TBRW Model)	18.6	24.0	38.4	64.4	20.2	25.8	31.6	72.6	22.2	23.6	37.6	73.0	14.2	18.8	30.8	52.4	
	Pd (%) (max) (Yenigul et al, 2005)	17.0	26.0	38.0	70.0	20.0	25.0	33.0	73.0	18.0	26.0	38.0	76.0	11.0	17.0	29.0	54.0	
	(xem)sbìn	1.00	1.00	1.00	1.00	0.50	0.50	0.50	0.50	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	
	твкWM(500×300) ТвкWM(250×350)-	3.2	0.8	-0.8	-4.0	-0.6	-2.8	-0.6	-5.6	-0.6	-2.6	-3.5	-5.3	-1.8	-4.2	-4.4	-16.6	
	Pd (%) (max) (500x300 Pd (%) (max) (500x300	19.8	26.0	38.8	82.6	20.2	30.6	43.0	87.2	21.4	26.0	43.7	86.3	18.2	26.2	37.0	77.8	
0.00	Pd (%) (max) (250x150 Pd (%) (max) (250x150	23.0	26.8	38.0	78.6	19.6	27.8	42.4	81.6	20.8	23.4	40.2	81.0	16.4	22.0	32.6	61.2	
	Pd (%) (max) (Yenigul et al, 2005)	19.0	27.0	43.0	78.0	15.0	25.0	43.0	76.0	20.0	27.0	40.0	79.0	15.0	18.0	31.0	64.0	
	(xem)sbìn	2.00	2.00	2.00	2.00	0.50	0.50	0.50	0.50	0.25	0.25	0.25	0.25	0.125	0.125	0.125	0.125	
	smu	0.33	0.25	0.17	0.08	0.33	0.25	0.17	0.08	0.33	0.25	0.17	0.08	0.33	0.25	0.17	0.08	
0	(ɯ) •ɐ		000	70.0				60.0			010	DT-D				0.20		

250x150 500x300

μ	μ,	,		μ		μ	,μ
	μ		,		μ		

μ	. ,				μ				
μ,	μ		μ	μ			μ	μ,	μ
		μ		μ					μ.
μ		μ				μ	,		
μ	μ 32000	μ	•	μ			μ		
μ	Monte Carlo)		,		μ			
ł	ı								
μ.	,	μ				500	,		
250x150	. μ	,	μ	μ	μ			μ	
	μ	Monte Ca	rlo.	μ		μ			μ
	,		μ					2000	
,		μ					μ		
				μ	•		μ	,	
μ	μ 32000	μ			500	x300	2000		
	μ				μ	,			
8x4x4=128						•			
	μ	μ				μ	Ļ	l	μ
				μ				μ,	
	μ				,	μ	l		
μ,			250x	150	μ 2000)	ŀ	ı,	μ
μ μ	l				μ				
	,			500x30	0	μ			,
	μ			μ				μ	μ
μ	μ		,			μ			μ
μ	,						(6.5).	,
μ	μ			I	J			,	
			μ		6.9,			μ	μ
μ		μ					(6	5)	(12)
	, ,	μ	х	у	,	μ			μ
	μ	•		μμ,		2			μ

μ , μ μ . , , (3.5) (Ababou et al., 1985) μ μ

7. μ μ

7.1

μ μ μ μμ , μ μ • , μ μ μ μ μ , μ μμ μ μ μ μ • , μ μ ,μ μ μ μ μ μ , μ μ μ , . μ μ μ μ Yenigul et al [2005] μ μ ,μ μ μ μ μ **,**. ,μ μ μ μ , μ μ μ μμ μ μ μ μ μ μ , μ μ μ μ • , μ

$$P_{d(emp)} = \frac{n}{L} (6400 d\alpha_t - 80\sigma_Y + 620)$$
(7.1)

μμ,μ,μ,μ,, μμμμ .,μ,μ ,

	μ	μ			μ	,	,		
	μ	•							
	,	μ	μ						
				μ	,			μ	
	μ	,				μ	μ		μ
μ									

7.2 μ μ μ

μ μ μ : 1. μ μμ μ μ μ μ μ μ μμ μ μ , μ μ μ μ μ μ 2. TBRW μ μ μ Yenigul et al [2005]. μ μ μ , μ , μ, 5% , μ μ μ μ μ TBRW ,μ μ μ μμ μ μ . 3. μ μ μμ μ . μ . , (3) μ μ μ • , 1999/31/EC, μ (12) μ . μ μ ,

80%. μ μ, μ , μ μ 100%.

μ , μ μ μ . 10. μ , μ 500x300 μ μ 250x150, μ μ μ μ μ μ . , μ μ μ . , μ μ , $\left(a_t > 0.05m\right).$ μ μ μ 250x150, μ μ μ μ μ ,μ μ μ . μ μ $(n \ge 6)$.

7.3

μ μ , , μ, • ,μ μ μ , μ μ μ μ : 1. μ μ μ μ μ μ μ . 2. μ μ μ ,

μ μ μ , μ .

95

•

3.		μ					,					μ
			μ		μ							
4.						,		μ			μ	
5.		μ			μ		,					
6.					μ μ							
7.			μ		TBRW					,		
	μ						,					
								Ļ	l			
8.		μ		μ					μ			

, μ μ μ μ μ μ, μ .

μ Α. μ

A.1

A.2

					μ	μ		μ
	μ		μ		μ	μ		
	μ	μ	μ				μ	
	,	μ	μ					μ
	,			μ			μ	
μ						μμ		
μ		μ					μ.	μ
	,	μ						
μ						μ		

A.3

μ

A.1.3

μ Ζμ

$$P(z) = \Pr{ob}\{Z \le z\}$$
(H.1)

97

Pr
$$ob\{A\}$$
 μ A , $P(A)$ μ
 A, z μ μ μ μ . μ
, μ μ $P(A) \in [0,1]$, $z \in (-\infty, +\infty)$.

A.2.3

$$p(z) \mu \qquad \mu \qquad Z$$

$$p(z) = \lim_{\Delta z \to 0} \frac{\Pr ob \{z < Z \le z + \Delta z\}}{\Delta z} = \frac{dP(z)}{dz} \qquad (H.2)$$

$$\mu \qquad \mu \qquad \mu \qquad \mu$$

$$P(z) = \int_{-\infty}^{z} p(z) dz \qquad (H.3)$$

$$p(z) \qquad , \qquad , \qquad [z^{-1}]. \qquad ,$$

$$\mu \mu \qquad \mu \qquad \Delta z, \qquad (.3), \qquad \mu$$

A.3.3
$$\mu \mu \mu$$

 $\mu \mu \mu ()$
 $\mu \mu \mu \mu \mu \mu \mu ()$
 $\mu \mu \mu \mu \mu (Z_1, Z_2, ..., Z_n)^T, Z_1, Z_2, ..., Z_n \mu)$
 $\mu \mu \mu \mu (Z_1, Z_2, ..., Z_n)^T, Z_1, Z_2, ..., Z_n \mu)$
 $P(z_1, z_2, ..., z_n) = \Pr ob \{Z_1 \le z_1, Z_2 \le z_2, ..., Z_n \le z_n\}$ (H.4)
 $\mu \mu \mu \mu \mu (-\infty, -\infty, ..., -\infty) = 0$

 $P(+\infty, +\infty, \dots, +\infty) = 1$.

•

A.4.3

μ

μ Ζ μ

,
$$p(z) = \lim_{\substack{\Delta z_{1} \to 0 \\ \Delta z_{n} \to 0}} \frac{\Pr ob\{z_{1} < Z_{1} \le z_{1} + \Delta z_{1}, ..., z_{n} < Z_{n} \le z_{n} + \Delta z_{n}\}}{\Delta z_{1} \Delta z_{2} ... \Delta z_{n}} = \frac{\partial^{n} P(z)}{\partial z_{1} \partial z_{2} ... \partial z_{n}}$$
(H.5)
,
$$\mu \qquad \mu \qquad \mu \qquad \mu$$

$$P(z) = \int_{-\infty}^{z} p(z) dz = \int_{-\infty}^{z_1} \dots \int_{-\infty}^{z_n} p(z) dz_1 \dots dz_n$$
(H.6)

A.5.3
$$μ$$

μ μ $Z, μ μ$ μ Z_n μ
μ μ $μ -1, n-2, ..., 1$ μ μ,

$$P(z_{n}|z_{n-1}, z_{n-2}, ..., z_{1}) = \Pr ob\{Z_{n} \le z_{n}|z_{n-1} < Z_{n-1} \le z_{n-1} + \Delta z_{n-1}, ..., z_{1} < Z_{1} \le z_{1} + \Delta z_{1}\}$$
(H.7)
$$P\{A|B\} \qquad \qquad \mu \qquad , \mu \qquad \mu$$

$$\Pr{ob}\left\{A\middle|B\right\} = \frac{\Pr{ob}\left\{A \cap B\right\}}{\Pr{ob}\left\{B\right\}}$$
(H.8)

A.6.3

,

$$p(z_{n}|z_{n-1},...,z_{1}) = \frac{\partial P(z_{n}|z_{n-1},...,z_{1})}{\partial z_{n}}$$
(H.9)

$$p(z_{n}|z_{n-1},...,z_{1}) \mu , \mu ,$$

$$p(z_{n}|z_{n-1},z_{n-2},...,z_{1}) = \frac{p(z)}{p(z_{1},z_{2},...,z_{n-1})}$$

(H.10)

μ

$$p(z) \qquad \mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu \qquad p(z) = p(z_1, z_2, ..., z_n) \qquad ,$$

$$\mu \qquad \qquad p(z_n | z_{n-1}, z_{n-2}, ..., z_1) = \frac{p(z_1, z_2, z_3, ..., z_n)}{p(z_1, z_2, ..., z_{n-1})} \qquad (H.11)$$

$$\mu \qquad , \qquad Z_1, Z_2, ..., Z_n \qquad \mu \qquad ,$$

$$\mu \qquad \mu \qquad \mu \qquad ,$$

μμ μ

,

,

$$p(z_1, z_2, z_3, \dots, z_n) = p(z_1) \cdot p(z_2) \cdot \dots \cdot p(z_n)$$
(H.12)

$$p(z_n|z_{n-1},...,z_1) = p(z_n)$$
 (H.13)

A.4

A.1.4

μ_____

μ

$$\overline{Z}_{i} = \frac{1}{|\nu|} \int_{\nu(x)} Z_{i}(x) dx$$
(H.14)

100

μ

,

,

μ, μ

$$\overline{Z}_i = \frac{1}{n} \sum_{j=1}^n Z_i\left(x_j\right) \tag{H.15}$$

n μ μ j j-th μ

μ

,

.

$$Var[Z_{i}] = \sigma_{z_{i}}^{2} = \overline{\left[Z_{i}(x) - \overline{Z}_{2}\right]}^{2} = \frac{1}{|v|} \int_{v(x)} \left[Z_{i}(x) - \overline{Z}_{i}\right]^{2} dx$$
(H.16)

•

$$\sigma_{z_i}^2 = \frac{1}{n-1} \sum_{j=1}^n \left[Z_i(x) - \overline{Z}_i \right]^2$$
(H.17)

,μ

•

$$\sigma_{z_i}^2 \approx \overline{Z}_i^2 - \left(\overline{Z}_i\right)^2 \tag{H.18}$$

$$\begin{array}{c} \searrow \qquad \mu \\ \mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu \\ \mu \qquad & \ddots \qquad , \\ Cov(Z_i(x+s), Z_i(x)) = \frac{1}{|\nu|} \int_{\nu(x)} \left[Z_i(x+s) - \overline{Z_i(x+s)} \right] \left[Z_i(x) - \overline{Z_i} \right] dx \quad (H.19) \\ s \quad \mu \qquad & \cdot \qquad , \qquad \mu \end{array}$$

$$Cov\left(Z_{i}\left(x+s\right), Z_{i}\left(x\right)\right) = \frac{1}{n(s)} \sum_{j=1}^{n(s)} \left[Z_{i}\left(x+s\right) - \overline{Z_{i}\left(x+s\right)}\right] \left[Z_{i}\left(x\right) - \overline{Z_{i}}\right]$$
(H.20)

n(s) μ μ μ s.

A.2.4

(Ensemble Statistics)

μμμ μ μ μ μ ., μ:

μ_____

 $E\left\{Z\left(x_{0}\right)\right\} = \int_{-\infty}^{+\infty} z\left(x_{0}\right)p(z)dz \qquad (H.21)$

 μ μ m,

$$E\left\{Z\left(x_{0}\right)\right\}\approx\frac{1}{m}\sum_{i=1}^{m}Z_{i}\left(x_{0}\right)$$
(H.22)

μ

, ,

$$\sigma_{z(x_{0})}^{2} = E\left\{\left[Z(x_{0}) - E\left\{Z(x_{0})\right\}\right]^{2}\right\} = \int_{-\infty}^{+\infty} \left(Z(x_{0}) - E\left\{Z(x_{0})\right\}\right)^{2} p(z) dz \qquad (H.23)$$

$$\mu \qquad \mu \qquad m ,$$

$$\sigma_{z(x_{0})}^{2} \approx \frac{1}{m-1} \sum_{i=1}^{m} \left[Z_{i}(x_{0}) - E\left\{Z(x_{0})\right\}\right]^{2} \qquad (H.24)$$

103

,

μ

															1				
	μ							μ			ł	μ	μ						
	μ		μ		μ		μ	μ					μ		μ		,		μ,
				μ	μ	μ							μ			μ	(Palec	ologos,
2005).				,	μ	μ			μ								μ		
		μ		μ					μ		μ						μ	μ	
		(μ)								μ	μ					
							μ		,	μ		μ				μ			

104

μ		μ				μ	μ	,
μ				μ	μ		μ	μ
			μ		μ		μ,	
μ				I	μ μ			μ
	μ	().			
A.6.4								
					μ			
μ					μ	•		,

•

μ , μ μμ

μΒ. μ μ

μ	Monte	Carlo					μ		μ.
	,	μ	μ		,	μ	μ,		μ
				ŀ	L		μ		
	μ		•					μ	
μ	,	μ							
	μ							μ	
μ	l	μ	μ		"	" (see	ed) µ		
		μ,			μ	μ	μ		
	μ								
	μ	μ	μ						μ
μ			μ	μ		μμ		μ	,
	μ	, μI	Poisson,			μ		µ gamma.	
		μ						μ	μ
		μ			μ	[0,1].			
	μ	μμ				μ,		μ	
			μ	μ		h	l		
l	μ		,	,					μ
	μ.								
		μ							
		μ	μ:						
B .1		μμ				μ			
		μ	μ				μ		μ [0,1].
l	μ						μ.		μ
"Multi	plicative Co	ngruence Meth	od"			μ	•	μ	

 $N_{i} = MODULO(AN_{i-1}, M)$

(I.1)

(I.2)

B.2 μ μ μ

			μ		μ	J. Leva
[1992]			μ	Kinder	nan Monahar	n [1977].
			μ			μ
μ	, μ		μμ	μ	μ	
	μ	μ.	μ	μ	(Leva, 1992):	
	1. µ		$\mu \qquad P = (u, v),$		$\mu \mu \qquad \mathbb{R}^2.$	
μ		μ			μ и	v
	μμ		μ [0,1].	,	v = 1.7156($(v-0.5), \mu$
	μ	v µ	μμ	μ $(-r, r)$	r), $r = \sqrt{2/e}$	=0.8578.

2.	μ	μ	$Q = x^2 + y$	(ay-bx),	x	= u - s,	y = v - t
μ	(s,t) = (0.449871, -	-0.386595				μ	
μ	a = 0.19	600 b	=0.25472.				
3.	μ Ι	P Q < ().27597 ()		μ 6.
4.	P Q	> 0.27846	()		μ	1.
5.	Р						$v^2 > -4u^2 \ln u ,$
	μ 1.						
6.	μ	μ	μ		Ļ	ι.	μ
	Ļ	1 v/	<i>и</i>	P.			

μ

μ C. Turning Bands Method

		μ			ł	l							μ	l		μ,
	μ	ι,									μ			μμ	μ	μ
μ	(0)		μ					μ			μ					
		Ma	atheron [19	73]	,	,		,				μ			J	ournel
[19	74],										2-D			Ma	ntoglo	ou and
Wi	lson [19	82].														
u			u	u						u				u		u
u			u u	1						1	u			1	u	
г. Ц	ı	2-D	3-D								P*		7		u -	,
r			u -		,			и	и		и				1.	
	ц	и	г. Ц					1.	P-		u n					
	P.	P	-		u		u				P ²				u	
	μ		u		•						μ			,	•	
	u		r.									,				
	•															
		μ	,		μ					μ				, μ		μ
			(μ)	μ		μ	μμ	μ		μ		
	μ		μ	μ	μ		(0).			,			μ	μ		μ
						μμ	l				μ			μμ		,
			μ				μ	μι	l					•	μ	
μ		μ	μμ			,	μ,				, µ	l		μ		
			μ					•			μ					
									•			l	μ		μ	,
				μ									,		μ	μ
μ	μ			•		,										•
Ļ	J										I	u				
			μ		μμ											

(Space Domain) μ μ μ μ μ μ . μ (Spectral Domain) μ μ μ 2-D . *C.1*

$$\mu Z_{i}(u) = 1, 2, ..., N$$

$$N$$

$$\mu \mu$$

$$\mu \mu$$

$$\mu \mu u, \mu$$

$$\rho_{i}(u_{0}), u_{0}$$

$$\mu \mu ..., \mu$$

μ

$$Z_{s}(x, y, z) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} Z_{i}(u)$$
 (J.1)

,,
$$\mu$$
,s (simulated). μ μ μ μ (0). μ $\rho_l(u_0)$ μ $\rho(u_0)$ (Mantoglou and Wilson, 1982,

Mantoglou, 1987)

S

,

μ

$$\rho_{l}\left(u_{0}\right) = \frac{d}{du_{0}}\left[u_{0}\rho\left(u_{0}\right)\right]$$
(J.2)

$$\int_{0}^{s} \frac{\rho_l du_0}{\sqrt{\left(s^2 - u_0^2\right)}} = \frac{\pi}{2} \rho(s)$$
(J.3)

.

(J.3)
$$\mu \rho_t(u_0) \mu \rho(s).$$

 μ Mantoglou and Wilson [1982] $\mu \mu \mu$
 $\mu \mu \mu$

C.2 Spectral Turning Bands Method (STBM)

	μ	2-D		(J.3),
	μ	μ	$ \rho_l = f(\rho(s)). $	
μ		μ	μ	

,

μ		μ			μ					
	μ				Fo	ourier				
		$S_l(a)$	$\left(-\frac{\sigma_z^2}{2} \right) = \frac{\sigma_z^2}{2}$	S()					(J.4)	
	$S_{l}(\omega)$ µ	μ	<i>S</i> ()	μ		Ļ	ι		
	μ				μ	S	TBM			
<i>C.1.2</i>	μ				μμ					
			μ					μμ		
μ	μ Fourier	(Fast Fourier	Transfo	ormation),	μ			μ	
μ μ	ı	X(u)	=Z(u)	+iY(u)	,				Tomp	son et al.
[1989]										
	X	$(u) = \int_{all\omega} e^{i\omega u} du$	$W(\omega)$?	$\approx \sum_{all\omega} e^{i\omega_j u}$	$dW(\omega)$,)			(J.5)	
X		μμ		μ					μ	μ
μ,				μ		μ	μ	μ	μ	μμ
(0).		μ					Fo	urier	(Standard	l Fourier
Integration).	μ μ	μ	,	μ	μ		μ			X(u)
	Re	X(u) = Z(u) =	$=\int_{all\omega} dV$	$V(\omega) \cos (\omega) \sin (\omega) \sin (\omega) \sin (\omega) \sin (\omega) \cos (\omega) \sin (\omega)$	s(au+	$\phi_{\omega})$			(J.6)	
μ μ		μ	I	μ					μ	
		$Z_i(u) = \sum_{j=1}^{M} \left d \right $	$W(\omega_j)$	$\cos(\omega_j u$	$+\phi_j$				(J.7)	
$\phi_{_j}$			μμ	ιμ		μ	μ	0	2π , M	1
μ	μ		μ				μ	,	$\omega_j = (j - $	$(0.5)\Delta\omega$,
j = 1, 2,, M,	$\Delta \omega$	ł	l						$\omega_{\rm max}/M$,	$\omega_{ m max}$

μ		μ		μ	. μ	$dW(\omega_j)$
	μ	μ				
		$\left dW\left(\omega_{j} \right) \right = \left[4 dW \left(\omega_{j} \right) \right]$	$4S_l(\omega_j)\Delta\omega\Big]^{1/2}$	2	(.	J.8)
$S_l(\omega_j)$		μ		μ		Z(u)
μμ .						
$S_l(\omega_j)$	μ		$\left[-\omega_{\mathrm{max}}\right]$	$[,+\omega_{\max}].$		(J.8)
(J.7) μ (Shinozuka and .	Jan, 1972)		μ			μμ <i>i</i>
	$Z_i(u)$	$=2\sum_{j=1}^{M} \left[S_{l}\left(\omega_{j}\right)\right]$	$\Delta\omega$ $\left[\Delta\omega \right]^{1/2} \cos(\omega)$	$\left(u+\phi_j\right)$	(.	J.9)
$\omega_j' = \omega_j$ -	$+ \delta \omega$.	δω		μ		, μ μ
μμ	u $-\Delta a$	$\delta'/2 \Delta \omega'$	/2 μ Δ <i>α</i> /=	$=\Delta\omega/20,$		
		μ.				
μ	μ	0	μ ΜΑ φ			$\Delta \omega$
μ μ		$\omega_{ m max}$	$x_{x} = M \Delta \omega$.	μ		μ
μ Μ,	$\Delta \omega, \Delta u, \omega_{\max}$	u _{max} [Tom	pson et al.,198	89].		μ
<i>C.2.2</i>	μ	μ		μ	μμ	
			μ	μ	μ	μμ .
μ	μμ			μ,		μ
μμ 2 Γ 2 Γ	μμ	l	μ μ (Mantor	nou and Will	(1082)	
2-D 3-D	u	•	u	u and u	u	μ,
μ μ	r- 1	,	F	r-		
μ	μ	μ			μ	. ,
μ	μμ μ	(8)	(16)) μ		μ

			μ			μ		μ	μ μμ .		μ
<i>C.3.2</i>		μ									
				$Z_i(u_n)$		Ļ	ιμ <i>i</i>	μ	n	μ	
	μ			μ							
μ		•					$\Delta \omega$			μ	
				μ		,	μ	μ	M		
	μ							μ		()
$\omega_{\rm max}$	$_{\rm ax} = M\Delta$	ω.		(Manto	oglou and	Wilson,	1982)	μ	Μμ		
	μ	50	100,	$\omega_{\rm max}$	ıx			40	μ		
μ		•									
<i>C.4.2</i>											
μ				Δu		μ			μμ		
	μ			μ	$\Delta x, \Delta y$,	μμ	l			
					μ			μ			
		μ	(Mantog	glou and W	Vilson, 19	82).					
C.5.2					μ	μμ					
	μ		μμ					μ		μ	
		μ		μ	μ.						
<i>C.6.2</i>		μ									

μ					$Z_{s}(x)$	(y, z)	,	,			
	μ		μ	μ	μ L		μ		μ	,	
			μ			$Z_i(u)$		μ	μ		
	μ	n			μμ ,						μ
		μ		μ	x	,	,			μ	
			μ	μ		$L^{1/2}$			μ (El	feki, 19	996).

Turning Bands (Mantoglou and Wilson,1982)

Ababou R., D.McLaughlin, L.W.Gelhar, A.F.B. Tompson, "Numerical Simulation of Three-Dimensional Saturated Flow in Randomly Heterogeneous Porous Media", *Transport in Porous Media*, Vol. 4, 549-565, 1989.

Abbaspour, K. C., R. Schulin, M. Th. van Genuchten, E. Schläppi, "Procedures for Uncertainty Analyses Applied to a Landfill Leachate Plume", *Ground Water*, 1998.

Bear J., J-M Buchlin, "Modeling and applications of transport phenomena in porous media", Kluwer Academic Publishers, Netherlands, 1987.

Bear, J., "Dynamics of fluid in porous media", American Elsevier, New York, 1972.

Elfeki, A.M.M., "Stochastic characterization of geological heterogeneity and its impact on groundwater contaminant transport", Balkema Publisher, Rotterdam, 1996.

European Union, Council Directive 1999/31/EC of April 1999 on the Landfill of Waste (Amending Act Regulation (EC) No 1882/2003).

Freeze R.A., "A stochastic conceptual analysis of one-dimensional groundwater flow in non uniform homogeneous media", *Water Resources Research*, Vol. 11, 725-742, 1975.

Gelhar L.W., "Stochastic subsurface hydrology from theory to applications", *Water Resources Research*, Vol. 22, 135-145, 1986.

Kinderman, A. A., J. F. Monahan, "Computer generation of random variables using the ratio of uniform deviates", ACM Trans. Math. Software 3, 257–260, 1977.

Kreft A., A. Zuber, "On the Physical Meaning of the Dispersion Equation and its Solutions for Different Initial and Boundary Conditions", Chemical Engineering Science, Vol.33, 1471-1480, 1978.

LeGrand, H. E. and L. Rosen, "Common Sense in Ground-Water Protection and Management in the United States", *Ground Water*, 1992.

Leva J.L., "A Fast Normal Random Number Generator", ACM Transactions on Mathematical Software, Vol. 18, No. 4, 449-453, 1992.

Loaiciga, H.A., R.J.Charbeneau, L.G.Everett, E.F.Graham, B.J.Hobbs, S.Rouhani, "Review of ground-water quality monitoring network design", *Journal of Hydraulic Engineering*, 118 (1), 11–37, 1992.

Mantoglou A., J.L.Wilson, "The Turning Bands Method for Simulation of Random Fields Using Line Generation by a Spectral Method", *Water Resources Research*, Vol. 181379-1394, 1982.

Mauropoulos A., B, Stoilopoulos, K. Kolokotroni, E. Fagogeni, "Sanitary Landfills in Greece: Current State and Experience", *Landfill Working Group of the Hellenic Solid Waste Association*, 2008

Metropoilis N., "The Beginning of the Monte Carlo Method", *Los Alamos Science Special Issue*, 1987.

McLaughlin, D., L. B. Reid, Shu-Guang Li and J. Hyman, "A Stochastic Method for Characterizing Ground-Water Contamination ", *Ground Water*, 1993.

Paleologos, E. K., "What Went Wrong With Stochastic Groundwater Hydrology? 1, Framework and Basic Concepts of Stochastic Methods", *Risk Analysis*, 2005.

Paleologos, E. K., "What Went Wrong With Stochastic Groundwater Hydrology? 2, Uncertainty versus Incomplete Knowledge and Model Structure versus Data and Prior Information ", *Risk Analysis*, 2005.

.," , µµ , 2007.

Paleologos, E. K., "The Lost Value of Groundwater and its Influence on Environmental Decision Making", *Risk Analysis*, 2008.

Press W.H., B.P.Flannery, S.A. Teukolsky, W.T. Vetterling [1987], "*Numerical Recipes, FORTRAN Edition*", Cambridge University Press, 1987.

Prickett T.A., T.G. Naymik, C.G.Lonnquist, "A Random Walk Solute Transport Model for Selected Groundwater Quality Evaluations", State of Illinois, Department of Energy and Natural Resources, 1981.

",

Sarris, T., "Effective Hydraulic Properties of Heterogeneous Bounded Aquifers", M.S.c. Thesis, University of South Carolina, 1999.

Spitz K., J.Moreno, "A Practical Guide to Groundwater and Solute Transport Modeling", A Wiley-Interscience Publication, 1996.

Sudicky E.A., "A Natural Gradient Experiment on Solute Transport in a Sand Aquifer: Spatial Variability of Hydraulic Conductivity and its Role in the Dispersion Process", *Water Resources Research*, Vol. 22, 2069-2082, 1986.

Tompson A.F.B., R.Ababou, L.W. Gelhar, "Implementation of the Three Dimensional Turning Bands Random Field Generator", *Water Resources Research*, Vol. 25, 2227-2243, 1989.

Tompson, A.F.B., L.W. Gelhar, "Numerical Simulation of Solute Transport in Three-Dimensional, Randomly Heterogeneous Porous Media", *Water Resources Research*, Vol.26, 2451-2562, 1990.

Uffink, G.J.M., "Analysis of dispersion by the random walk method", Ph.D. Thesis, Delft University of Technology, The Netherlands, 1990.

Yenigül, N. B., A. M. M. Elfeki., J.C. Gehrels, C.Akker, A.T.Hensebergn, F.M.Dekking, "Reliability Assessment of Groundwater Monitoring Networks at Landfill Sites", *Journal of Hydrology*, 308, 1-17, 2005.

Yenigül, N. B., "Groundwater Detection Monitoring System Design Under Conditions of Uncertainty" Eburon Academic Publishers, The Netherlands, 2006.

Yenigül, N. B., A. M. M. Elfeki., C. van den Akker and F. M. Dekking, "A Decision Analysis Approach for Optimal Groundwater Monitoring System Design Under Uncertainty", *Hydrol. Earth Syst. Sci. Discuss.*, 3, 27-68, 2006.

Zimmerman D.A., J.L. Wilson, "Description of and User's Manual for TUBA: A Computer Code for Generating Two-Dimensional Random Fields via the Turning Bands Method", SETA Inc., 1990.

9. μ

	1.1 :		μ		μ	(W	Vikipedia	ı)	•••••	•••••	1
	1.2: µ	J				()	•••••		3
	1.3 :						••••••	•••••			6
	2.1:		μ		μ						10
	2.2 :		К	μ					(0	Gelhar, 19	993)14
	2.3 :			Ν	Aonte C	Carlo (Pa	leologos	, 2005)	•••••	•••••	15
	3.1 : 3-I	D			μ ΤΒΝ	$M(\mu_{Y}=2)$	$2.3, \sigma_{Y}^{2} = 2$	$2.0, \lambda = 20$	<u>n</u>)		19
	3.2 : 2-I	D		μ	$(\mu_{Y} =$	2.3, $\sigma_{Y}^{2} =$	$2.0, \lambda = 20$) m)			20
	3.3 : μ	μ	μμ								21
	3.4 :		μ								22
	3.5 :										28
	3.6 :		μ								34
	4.1 :		μμ	μ		μ		•••••			40
	4.2 :		μ	μ				•••••			44
	4.3 :							•••••	•••••	•••••	46
	5.1 :		μ	2-	Dμ	l		(Spitz an	d More	no,1996)	51
	5.2 :		μ		μ	(2000	μ.)			μ	55
	5.3 :		μ	2000	32000	μ	(t=3	650 days	s)		59
	6.1 :		μ	h	l		(μ)		68
	6.2 :			μ		μ					
μ			(=0.00,	t=0.10m, t	sim=36	50 days)		•••••		•••••	72
	6.3 :			μ							
μ			(=0.50,	t=0.10m, t	sim=36	50 days)					72
	6.4 :				μ						
		μ		(=0.00,	t=0.1	0m, tsim	=3650 d	ays)			72
	6.5 :		μ								
		μ	μ	μ		μ		Cth=4	μ		91
	C.1 :		μ	6		Turning	Bands (Mantogle	ou and V	Wilson,19	982)114

3.1 :			μ	Log-l	Normal	μ		μ
(Y=logK, K	cm/sec	c) (Freeze,	1975)					17
3.2 :	μ	μ						(Gelhar, 1986)
								24
4.1 :			μ					
4.2 :		μ						47
4.3 :	μ							49
5.1 :	μ							55
5.2 :		μ		μ	μ			56
5.3:			μ			μ		60
6.1 :		Pd						65
6.2	:	Pd		μ				(=0.00
=1.00)								66
6.3 :						μ		70
6.4 :		Pd (%)		μ				71
6.5 :			μ				μ	
								74
6.6 :				μ		μμ	7.13	82
6.7 :			μ	TBRWN	1-μ			83
6.8 :	μ		μ	μ				
								84
6.9 :		μ	μ	50	0x300		μ	250x15087

11. μ μμ

μμ	5.1 :	1-D	' '	μ			μ	μ Xs
								53
μμ	5.2: μ					μ		56
μμ	5.3 :				μ	•••••	•••••••••••••••••	57
μμ	5.4 :			μ			•••••••••••••••••••••••••••••••••••••••	57
μμ	5.5 :					μ		57
μμ	5.6 :			μ	μ	μ	••••••	61
μμ	5.7 :				9300-970	0		61
μμ	5.8 :		μ	0-2	2000			62
μμ	5.9 :	μ				350	0-800	62
μμ	6.1 :	Pd	μ	μ	(=0.00	=1.00),	t=0.001.67
μμ	6.2 :	Pd	μ	μ	(=0.00	=1.00),	t=0.0567
μμ	6.3 :	Pd	μ	μ	(=0.00	=1.00),	t=0.2067
μμ	6.4 :	F	Pd	μ	μ		(ndf	s=0.125
ndfs=0.50)								70
μμ	6.5 :	Р	' d	μ			(ndf	s=0.125
ndfs=0.50)								70
μμ	6.6 :	Pd	μ			•••••		73
μμ	6.7:		μ	μ				
								74
μμ	6.8 :	μ			Pd		μ	=0.0075
μμ	6.9 :	μ			Pd		μ	=0.5075
μμ	6.10 :	μ			Pd		μ	=0.7576
μμ	6.11 :	μ			Pd		μ	=1.0076
μμ	6.12 :	μ			Pd		μ	=1.5076
μμ	6.13 :	μ			Pd		μ	=2.0077
μμ	6.14 :					, Y	enigul et al	- TBRWM
(ndfs=0.12	5 0.50))						77

				(Pd -	6.15:	μμ
78				•••••			(1-15))
	μ	00x300	250x150 5		μμ Pd		6.16 :	μμ
				•••••				
		500x300	250x150		μμ Pd		6.17 :	μμ
	••••••			•••••				
)	500x300	250x150		μμ Pd		6.18 :	μμ