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Abstract

The dynamic scattering characteristics of the cervical tissue interaction
with acetic acid application can provide objective discrimination between
normal and abnormal tissue. In this work a total of 371 observations taken
from 73 biopsies are used to construct a mathematical model able to separate
different types of tissue. The available data include Normal, Inflammation,
HPV, CIN1, CIN2, CIN3 and Cancer cases. The proposed algorithm is based
on a wavelet transformation and a 1-NN classifier. A 10-fold cross-validation
technique is used to evaluate the model considering the histology as the gold
standard. By using five features obtained from the wavelet transform, the
discrimination ability for all available classes is at the same level as using
the full initial set. This method, for distinguishing high grade lesions from
low grade lesions, performs better than methods proposed in previous work.
Furthermore, we use this method on cervical image sequences to map whole
areas to stages of the disease and the normal case. Such maps could assist
less experienced medical personnel in the diagnosis of cervical cancer.
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Chapter 1

Introduction

Cervical cancer affects thousands of women each year and it is one of the
most common forms of cancer in women worldwide, especially in developing
countries. It is associated with the Human Papilloma Virus (HPV) as one of
the major risk factors. Pre-cancerous cells usually develop slowly into cancer
so early detection is very important for effective treatment. Fortunately, more
than 90% of the cases are curable if the disease is detected and treated early
enough. Routine exams such as Pap smears can be very helpful. Pap test is
used to detect malignant and pre-malignant changes in the cervix. After the
abnormal cells are detected through the Pap test, the most usual procedure
is the examination through colposcopy to identify visible clues that suggest
an abnormal tissue.

Pap tests are assisting remarkably in the early detection of cervical can-
cer. However, this test has low accuracy (∼50%), and it is only used for
screening purposes. In addition, Pap tests are invasive in that a portion of
the cells from inside the cervix opening and outer part of the cervix are wiped
off with a stick or swab. These cells are then examined under a microscope
for abnormalities. The findings are classified into several different categories,
Normal, Low Grade and High Grade. A low grade result means that mild
dysplasia has been detected and it is related to CIN I (Cervical Intraepithe-
lial Neoplasia) or less (Inflammation, HPV). A high grade result indicates
moderate or severe dysplasia and it is related to CIN II and CIN III. Ac-
cording to these results, an abnormal Pap test is followed by colposcopy, to
allow physicians indicate the problematic areas that will be sent for biopsy
to confirm the presence of cervical neoplasia.

Usually, the colposcopic findings are based on the application of 3%-5% of
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Chapter 1: Introduction

acetic acid solution that is used to improve visualization of abnormal areas.
The acetic acid causes the abnormal cells to have a white appearance and
this is called the acetowhitening (AW) effect. Its degree and duration is cor-
related with the grade of the lesion (the more white, the more severe). Areas
of the cervix which turn white after the application of acetic acid or have
an abnormal vascular pattern are often considered for biopsy. Colposcopy’s
role is considered very crucial because it indicates the area of the sampling
tissue that will be sent for histological examination. However, the subjective
nature of colposcopic examination leads to several limitations about the accu-
racy of this procedure. Although this procedure is quite trivial in developed
countries, in developing countries the lack of trained personnel in this field
and the fact that repeated follow-up tests are crucial, lead to significantly
high death rate from cervical cancer. Therefore, an automatic and accurate
method for diagnosing cervical cancer in early stages would be necessary.

The increasing interest of many researchers in finding objective models
for the diagnosis of the disease improved the performance of conventional
colposcopy. The temporal kinetic of the acetowhitening process have been
studied with various methods. Pogue et al. [1] examine the change in the
reflected spectrum as a function of time after application of acetic acid. They
show that comparing initial and final slopes of the reflected intensity versus
time at 200s after the application of the acetic acid could distinguish CIN2/3
lesions from normal mature epithelium. Another method they study is to
compare the time average intensities to distinguish the two different tissues.
However, they do not report any performance results using these features
and other type of tissues like CIN1 lesions are not considered in the analysis.

Schmid-Saugeon et al. [2] focus on studying features based on the mor-
phological characteristics of the acetowhitening kinetics curves. The maxi-
mum whiteness point is considered of great importance and compute three
different features to describe it: i) the time of the maximum whitened point,
ii) its amplitude and iii) the corresponding amplitude finding by subtracting
the time-zero whiteness value to the maximum amplitude at the decaying
phase. Moreover, slope and integral at particular time steps are studied as
features as well. They study the discrimination of CIN2/3 lesions from the
combination of CIN1/Normal/Metaplasia. Their best results reach an accu-
racy of 88% and both sensitivity (SE) and specificity (SP) at 88%, by using
the slopes at two different points of the signal as features.

Wu et al. [3] study multivariate statistical algorithms based on principal
component analysis (PCA) and a support vector machine (SVM) for the
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diagnosis of CIN lesions based on the classification of the acetowhitening
kinetics process. PCA is used to transform the original time-resolved signal
into two principal component (PC) scores. These two scores are used as
features at a SVM classifier with a radial basis function (RBF) kernel. They
also provide results from the SVM algorithm using the original signal without
data reduction. Two tasks are studied; the first focus on the separation
of CIN lesions from non-CIN cervical tissue and the second focus on the
distinguish of high-grade CIN (CIN2/3) lesions from low-grade CIN (CIN1)
lesions and non-CIN cervical tissue. In the first trial both algorithms achieve
identical performance with a sensitivity of 95% and a specificity of 96%. In
the second trial the performance of the classification based on the whole signal
is slightly better than the one based on the two PC scores. More precisely,
the sensitivity is 91% for both algorithms, but the specificity is 90% and 87%
respectively, implying that some information from the transformation is lost.

Some other researchers are focused on developing systems for automated
analysis of cervical images. Park et al. [4] develop a diagnostic system that
can automatically identify neoplastic tissue from digital images. First, tissue
areas with similar optical patterns are clustered together and then classifi-
cation algorithms are used to determine whether these regions contain high
grade and cancerous lesions or low grade and normal tissue. Five features
are considered as more relevant for the classification: i) intensity values for
red, ii) green and iii) blue channels; iv) the ratio of intensity of the green
to red channel; and iv) the changes in grayscale intensity values. Their di-
agnostic performance reaches a sensitivity of 79% and specificity of 88%. A
potential weakness of this study is that is performed on patients with high
grade lesions and the performance may be lower in patients with low grade
or normal tissue.

Li et al. [5] propose an automatic means to calculate an opacity index
to discriminate high grade lesions from low grade and normal tissue. They
develop a fully automated acetowhite analysis system using only two cervical
images, one before and one after the application of acetic acid. By subtract-
ing the pre-acetic from the post acetic image and applying unsupervised
clustering methods they determine the opacity property of the acetowhite
epithelium. The opacity index is calculated based on the clustering results.
Although the sensitivity and specificity of the algorithm is 94% and 87%
respectively, they state that the the mucus should be removed prior to image
acquisition because it mimics the appearance of the acetowhite epithelium
and leads to false positive results. In addition more normal and low grade
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data need to be included for the system validation.
Acosta-Mesa et al. [6] use a 20-Nearest Neighbor (NN) classifier over the

entire length of the aceto-white temporal pattern to distinguish automatically
normal (normal tissue, immature metaplasia, mature metaplasia and ectopy)
from abnormal lesions (low and high grade). The discrimination ability of
the system reaches a 71% sensitivity and 59% specificity. However, more
discrimination cases should be presented, like the separation between low
grade and high grade lesions.

The experimental session of this work is based on the in-vivo quantitative
assessment of the dynamic scattering characteristics of the AW effect [7],[8].
More precisely, the intensity of back scattered light versus time is measured
for each pixel of the dynamic digital image of the cervix. The main focus of
this study is to explore the potential of some feature extraction techniques
for modeling these data and extract features that have good diagnostic ac-
curacy. The algorithms are evaluated with 64 subjects by a 1-NN classifier
considering the histopathology results as the gold standard. The major ac-
complishment of this work is that we present results for identifying each
stage of the disease and the normal cases versus all the other classes and not
only between high grade and low grade lesions. Moreover, our classification
performance for distinguish low grade from high grade cases outperforms the
results presented in previous works.

The rest of this study is organized as follows: in Chapter 2 we discuss
the feature extraction algorithms that are used in this work. We examine
four methods to extract features; in the first method we use the interpolated
and smoothened intensity-time data samples as features, in the second we
examine the slope between adjacent samples of the intensity versus time as
features, in the third the coefficients are extracted by the transformation
of the original signal using the Fourier Transform (FT) and in the fourth
method, the coefficients are extracted by the Discrete Wavelet Transforma-
tion (DWT). Chapter 3 gives a description about the data that we use to
evaluate these methods. The classification results based on a 1-NN classifier
are presented, as well. The evaluation shows the potential of the coefficients
produced by the DWT for best describing our data. The advantage of this
transformation is that it provides a lot of coefficients with almost zero magni-
tude, meaning that only few of them carry significant information. For that
reason we use a feature selection technique in order to select a small subset of
them. In Chapter 4 the evaluation of the selected features is shown. Chapter
5 presents the mapping produced by the dwt features in new images. Finally,
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the conclusion and the future work is discussed in Chapter 6.
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Chapter 2

Data Analysis

The data used in this work come from patients that were examined in clin-
ics of Hammersmith Hospital and St Mary’s Hospital in London, United
Kingdom and Alexandra Hospital in Athens, Greece. All patients under-
went a standard colposcopic examination with automated image capturing.
A reference image is captured in the beginning of the procedure. After the
application of a 3% acetic acid solution, a series of images are captured au-
tomatically every 5 sec and for a total time of 240 sec. The selection of 3%
concentration was chosen over the 5% based on observations showing that the
latter causes saturation effects making the discrimination between low-grade
and high-grade lesions harder [7].

A digital colposcope (DySIS) was developed by Forth-Photonics [9] to
capture images of the cervix during the colposcopy to measure the ace-
towhitening dynamic optical characteristics. A detailed description of the
device can be found in papers by Balas et al. [8]. In brief, tissue imaging is
performed with a 1024 × 768, 8 bit/channel digital color CCD camera. The
camera is interfaced with a computer for data display and processing. The
misalignment of the images due to patient movement during the examina-
tion is corrected by an embedded image registration algorithm. From the
green channel of the image stack the Intensity of the Back Scattered Light is
calculated for every pixel, expressing the temporal characteristics of the AW
phenomenon. The green channel has been selected due to its higher SNR
for the monitoring the AW effect compared to the other channels. Then, the
curves can be processed by applying various algorithms on them and a pseu-
docolor map can be generated, with different colors representing different
values of the curve characteristics.
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Chapter 2: Data Analysis

Aim of this study is to discriminate the type of the tissue (normal/abnor-
mal), using mathematical models. This procedure is known as classification.
A training set is used to train the model and a test set is provided in order
to measure its performance. Sometimes before the classification step, fea-
ture extraction is performed on the data. In that way the initial data are
transformed into a more dense representation, the so called features. This
is crucial especially in the cases that there is a large amount of information,
fact that could slow down the algorithms or even make them unusable. For
that reason it is useful to have a simple model (with few parameters) that
has adequate information to represent the data.

Sometimes not all of the features need to be used, so a further process is
essential for redundancy reduction by keeping a smaller informative subset
of them. This stage of processing is called feature selection. Often, these two
steps (feature extraction and feature selection) are combined and referred as
feature extraction. Moreover, by studying the performance of the features,
we can gain useful intuition on the underlying physical models.

2.1 Feature Extraction Methods

In order to extract the features from the initial signal we use many different
techniques, such as the Fourier Transform (FT), the Wavelet Transformation
(WT), the smoothened raw data and the slope method. The theoretical
framework of them is summarized below.

2.1.1 Fourier Transform

The Fourier transform [10] is a well-known mathematical tool to transform
time-domain signals to frequency-domain for efficient extraction of informa-
tion. It generates an approximation to a time-series data set using as a basis
the cosine and sine functions. The Fourier Transform (FT) decomposes a
signal into a representation involving complex exponential functions of dif-
ferent parameters, these parameters are the frequency components. FT is
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mathematically defined by the following two equations:

X(f) =

∫ +∞

−∞

x(t)e−j2πftdt (2.1a)

x(t) =

∫ +∞

−∞

X(f)ej2πftdt (2.1b)

where t and f stand for time and frequency respectively and x and X
denote the signal in time domain and in frequency domain respectively. Equa-
tion 2.1a is called the Fourier transform of x(t) and Equation 2.1b is called
the inverse Fourier transform of X(f).

When we work with discrete data, numerical computation of the Fourier
transform of the signal x(t) requires discrete sample values of x(t). In order
to deal with discrete time-series x(n), the discrete Fourier transform (DFT)
is used and defined by the following equation:

X[k] =
N−1
∑

n=0

x[n]e−j(2π/N)kn k = 0, 1, 2, ..., N − 1 (2.2)

whose inverse transformation is:

X[n] =
1

N

N−1
∑

k=0

X[k]ej(2π/N)kn n = 0, 1, 2, ..., N − 1 (2.3)

In Equations 2.2 and 2.3N denotes the number of samples. The DFT may
be executed with less computation by using a more efficient algorithm called
the fast Fourier transform (FFT). These algorithms reduce the problem of
calculating a N -point DFT to that of calculating many smaller-size DFTs.
The only constraint in using FFT is that the input waveform must have a
number of samples, each one being an integer power of two (2n). Although
this constraint may seem limiting, the FFT can be applied to any input
through the use of zero padding.

The sequence of frequency components of a signal obtained by FFT be-
comes the basis for extracting the frequency-domain features of the signal.
A typical process is to extract various features from FFT sequences, then se-
lect an optimal subset among the extracted features and finally use them for
the input vector for classification. However, this feature extraction process
requires a series of sub-processes for feature extraction and selection. In this
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Chapter 2: Data Analysis

thesis, we mainly focus on using the whole FFT sequence as features rather
than selecting a part of them.

The original signal sequence in time-domain consists of real numbers, but
the sequence of FFT of a signal is a sequence of complex numbers. Those
complex numbers contain important information about the transformed se-
quence including its magnitude and phase. In order to use an FFT sequence
practically as a feature vector, the original FFT sequence is multiplied by
its complex conjugate. The multiplied sequence is no longer a sequence of
complex numbers. Moreover, the last half of the multiplied sequence is the
duplicate of its first half because the last half of the original FFT sequence
corresponds to complex conjugates of the components in the first half of
the sequence. In fact, the multiplied sequence corresponds to the power of
the magnitudes of the original FFT sequence. Using this theory, a N point
long time-domain signal can be transformed to a N

2
long sequence of FFT

frequency coefficients by discarding the duplicate part of the frequency co-
efficients. These N

2
long FFT coefficients constitute frequency information

and have been used popularly as FFT-based feature vectors.

2.1.2 Wavelet Transformation

In general, features that represent frequency (i.e. Fourier Transform) outper-
form the ones that represent time, for the reason that frequency can contain
valuable information about the signal [10]. However, Fourier analysis has a
serious drawback, since the time information is lost when the signal is trans-
formed from time to frequency domain. That means that it is impossible to
say at which part of the signal the frequency components appear.

In order to overcome this drawback, time-frequency techniques are sug-
gested. One of the most popular methods is the Short-Time Frequency Trans-
form (STFT). With this method a window is used and the Fourier Transform
is applied only in a small section of the signal that is defined by the window.
In that way the signal is transformed to a two-dimensional function of time
and frequency that is defined by Equation (2.4).

STFT
(ω)
X (t′, f) =

∫

x(t)ω∗(t− t′)e−j2πftdt (2.4)

where x(t) is the time-domain signal, ω(t) is the window function, and
ω∗ is the complex conjugate of the window function ω.
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STFT is able to provide information about what frequency and at which
time a signal occurs, but with limited precision which depends on the size of
the window that is chosen. This drawback arises from the fact that once the
window is chosen, its size is the same for all the frequencies. The user has to
trade off between good frequency and good time resolution. More precisely,
a wide window provides good frequency resolution and poor time resolution,
while a narrow window gives good time resolution but poor frequency reso-
lution. But in most signals there are regions that time must be examined in
detail and regions where frequency must be the one to focus on.

For that purpose the introduction of the Wavelet Transform (WT) in
signal processing was of great importance, since it makes use of a scalable
modulated window [11]. In that way, when low frequency information must
be examined in detail wide time region intervals are used and when time must
be examined more precisely, short time region intervals are used. The window
is shifted along the signal and for every position the spectrum is calculated.
Then the same process is repeated with different sizes of windows. At the end
a set of time-frequency representations of the signal in different resolutions is
collected. Figure 2.1 illustrates the common formats for displaying a signal,
that is the time-based view, the frequency-based view, the STFT view and
the WT view.

The main idea of wavelet analysis is that a signal is decomposed into
shifted and scaled versions of a mother wavelet, while Fourier analysis de-
composes a signal into sine waves of various frequencies. Sine waves extend
from minus to plus infinity, in contrast to wavelets that have limited duration.
In the continuous time case the WT is defined by the following equation:

WTψx (τ, s) =
1

√

|s|

∫

x(t)ψ∗(
t− τ

s
)dt (2.5)

where the transformed signal WTψx (τ, s) is a function of two variables, τ
and s, representing translation and scale parameters, respectively, and ψ(t) is
the transforming function called the mother wavelet. The wavelet transform
represents the correlation between the signal x(t) and scaled versions of the
mother wavelet. The scaling of the prototype function involves contraction
and dilation of the signal, and the translation involves shifting this function
along the time axis.

When the signal is in discrete time, as the cases studying in this work,
the Discrete Wavelet Transform (DWT) is considered. DWT makes use of
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(a) TimeDomain (b) FrequencyDomain

(c) STFT (d) Wavelet

Figure 2.1: Different signal domains: Time Domain, Frequency Domain, STFT and
Wavelet Transform.

discrete wavelets that can only be scaled and translated in discrete steps,
so that the time-scaled space can be sampled in discrete intervals. This is
achieved by modifying the parameters s and τ into discrete [12]. Usually
the dyadic sampling is applied so that s = 2j and τ = 2jk, with j, k ∈ Z.
Although it is not the only possible choice, in this study we use these values
because they are very convenient, since going from one scale to the next that
means halving or doubling the translation step that is quite practical [12].

An efficient way of implement the DWT using highpass and lowpass filters
was developed by Mallat [13]. This way the signal is analyzed into a number
of different scales, each one representing a different resolution of the original
signal. For a signal x[n] = 2i, i ∈ N

∗ indicates the maximum number of
scales. At each stage of the decomposition the signal passes through a high-
pass and low-pass filter. After that, a downsampling by 2 is followed. The
downsampled outputs of the high-pass and low-pass filter consist the detail
and approximate coefficients of the signal respectively. The approximate
coefficients become the input to the next level of the decomposition. This
continues until one detail and one approximate coefficient is produced. The
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DWT coefficients at different levels are concatenated, starting with the last
level (coarsest) coefficients. In Figure 2.2 the decomposition of a signal x[n]
in its detail (dc) and approximate (ac) coefficients is shown.

Figure 2.2: Dyadic case of DWT decomposition algorithm. x[n] is the original signal to
be transformed. The approximate coefficients are indicated as ca and the detailed as cd.
The index at the coefficients shows the level of the decomposition they are produced.

The Haar Wavelet

Various wavelet families can be used in DWT [12, 14] (e.g. Haar, Daubechies,
Coiflet, Symlet,...), however in this work we focus on Haar wavelets [15, 16],
due to their low computational cost and simplicity.

The Haar mother wavelet ψ(t) can be described as:

ψ(t) =







1 0 < t < 1/2
−1 1/2 < t < 1
0 otherwise.

and its scaling function φ(t) as:

φ(t) =

{

1 0 ≤ t < 1
0 otherwise.

Haar transform coefficients can be considered as averages and differences
between every two adjacent values of the input data. An example will help
in understanding the transformation. Let f(x) = {a, b, c, d} the function
that would be transformed. There are 2 levels of decomposition since there
are 22 data points. The first level approximate coefficients are obtained by
taking the average of the couples {a, b} and {c, d}, that is ca11 = { (a+b)

2
} and

ca12 = { c+d
2
}, while the detail coefficients are obtained by the difference of
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the same couples divided by two, cd11 = { (a−b)
2

} and cd12{
(c−d)

2
}. Now the

new series consist of the first level approximate coefficients ca11 and ca12.
The second level approximate and detail coefficients are calculated with the
same way: ca21 = { (ca11+ca22)

2
} cd21 = { (ca11−ca12)

2
}. It should be pointed out

that ca21 is the overall average value of the whole sequence.

2.1.3 Raw Data

Besides the above feature extraction methods, we applied two more transfor-
mations, that are very simple. The first is to interpolate and smoothen the
raw data and then use them as features in the classification stage.

2.1.4 Slope

The slope technique is a simple method as well. Its notion is to calculate the
difference of the intensity of light between adjacent samples. The features
that are extracted with the slope method are (n− 1), where n is the length
of the samples. In order to achieve convenience between every method, the
data are interpolated and smoothening before the method is applied.

2.2 Classification

Two different evaluation tasks are examined. In Chapter 4 we evaluate each
method by using all the available extracted features and in Chapter 5 we
evaluate each feature individually and selected subsets of the initial features
as proposed by the feature selection method.
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Chapter 3

Evaluation of the Entire Set of
Features

In this Chapter we will evaluate the discrimination ability of the entire set
of features extracted by each method discussed in Chapter 3. Various classi-
fication tasks are presented and the results are based on the performance of
the Area Under the ROC curve (AUC) obtained by a 10-fold cross-validation
technique and a 1-Nearest Neighbor (NN) classifier.

3.1 Data Description

In this study we use two different datasets. The first one is used for training
while the second only for the mapping. In the training stage a total of 73
biopsies were taken from sixty-four subjects. As shown in Table 3.1, there
are seven types of tissue: 72 samples of Normal, 42 samples of Inflammation,
65 samples of HPV, 50 samples of CIN1, 26 samples of CIN2, 110 samples
of CIN3 and 6 samples of Cancer. These 371 curves represent the changes
of the intensity of the scattered light over time and they cover all the stages
of the disease and the normal case, so our model could be trained efficiently.
Figure 3.1 below depicts the characteristic curves of all available classes. The
second dataset includes images taken from patients during the examination
procedure. These data are classified into 3 main categories, according to
the most severe class. There are normal, low grade and high grade images.
These will be used to test the model that was trained with the first dataset.
A pseudocolor map is created and each class is represented with a different
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color. The data that are used for the mapping didn’t take part in the training
stage but only to visualize the results of the algorithms.

Subjects Observations Percentage
Normal 12 72 19%
Inflammation 7 42 11%
HPV 8 65 18%
CIN1 9 50 13%
CIN2 5 26 7%
CIN3 22 110 30%
Cancer 1 6 2%
Total 64 371 100%

Table 3.1: Analytical information about the amount of observations and percentage of
each class that took part in the training stage.

The first dataset contains observations taken from patients of hospitals
St. Mary, Hammerismith in London, UK and Alexandra in Athens, Greece,
following the aforementioned procedure with the application of acetic acid.
The intensity of light is measured with a frequency of 7 sec from 0 sec where
no acid has been applied, to 84 sec and with a frequency of 10 sec until 234
sec. The final measurement was taken in 240 sec. So each curve represents
29 measurements of the intensity in different time points. The second data
consists of fewer samples in time, since the measurements are taken until 185
sec. Once again, the intensity is measured every 7 sec until the time is 84 sec
and the remaining with a frequency of 10 sec. The second dataset contains
2 images of Normal cases, 2 images of Low Grade cases and 6 High Grade

images. The resolution of each image is 768 × 1024, so there are 786.432
pixels meaning equal number of extracted curves from it. Figures 3.2(a)
and 3.2(b) are examples of the type of data that we have in the first and
second dataset respectively.

3.2 Implementation

The main purpose of this work is to train a classifier that is able to identify
the class of each area. In order to explore which method is more beneficial
for our problem, we apply the extraction techniques in the data and train
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Figure 3.1: Characteristic curves of all the possible classes.

the classifier with the new feature set. In the first place, we use the entire
feature set extracted by each method, so we can see the accurate potential of
the technique. Then, we can select a minimum subset of features obtained
by the most promising extraction scheme. In general, the feature extraction
procedure is more time consuming than using the raw data, but it is beneficial
because we can examine better the meaning of the data and sometimes it can
produces better results. Besides, when the initial dataset is very large (has
a lot of features) the feature extraction and selection procedure is of major
importance, since the amount of data used in training could be minimized.
Figure 3.3 shows the main steps of our classification problem.

3.3 Smoothening and Resampling

In both training and mapping dataset, the intensity of light isn’t measured
periodically, so, in order to apply the feature extraction methods we have
to interpolate them. Moreover, DFT and the DWT algorithms require the
data samples to be in a power of 2. The first data are formed of 29 samples
and the second of 23. It is recommended to interpolate them finding the
following order of two so no information would be lost. Thus, in our case we
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Figure 3.2: Characteristic curve of a pixel and the whole image of a Normal class patient.

Figure 3.3: Steps in classification.

interpolate the data to have 32 (25) points. The issue that arises here is that
the two datasets are not in the same sampling format and this could lead
to inconvenience at the results. For that reason we repeate the procedure
twice. In the first place we use all the available information (until 240 sec)
so we could be more accurate about the important features that characterize
each class of the data. However, in the mapping stage the training data
are trained in the same format of the captured images. Thus, we keep the
information up to 185 sec and we discard the rest. After that, a smoothing
technique is applied so to reduce the noise and the measurement error. Both
interpolation and smoothing are done by using the cubic spline tool. The new
interpolated data are also used at the slope case and when no transformation
is applied, even though this isn’t needed.

3.4 Results

Two major classification tasks are studied. The first one tries to classify
various subclasses of the data and the second one attempts to distinguish each
class from the combination of all others. The classification accuracy (Acc.),
the Area Under ROC (AUC) and other performance measures like sensitivity
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(SE) and specificity (SP) are calculated. In particular for both Acc. and AUC
the standard deviation is also calculated and the performance is shown in %
percentage. All experiments report Monte-Carlo average results for 100 runs.
In order to achieve more accurate and unbiased results we use the 10 fold
cross-validation method. The classifier that is chosen as the most suitable for
these data is the 1-nearest neighbor. In the following Tables (3.2 - 3.15) the
performance using four different feature extraction methods are presented.

By studying the classification results, it is remarkable that the highest
performance is achieved when we use the raw data or the wavelet transfor-
mation. Especially, in some cases they reach the perfect score, (AUC=99%).
However, there are some cases that the slope method outperforms all the
others (i.e. HPV vs. Inflammation, Normal, Inflammation vs. HPV, CIN1
and HPV vs. all), indicating that the discrimination of these classes are best
described from differences between adjacent intensity measurements. The
most difficult classification case is the one that we merge the classes HPV

and CIN1 in one superclass and the classes Normal and Inflammation in
another one and try to distinguish them. At the classification stage many
different classifiers are tested, but the one that could represent better the
classification differences between every class seems to be the 1-nearest neigh-
bor and for that reason we use this one in our experiments.

From the evaluation results of the dwt method for classifying various
subclasses, the AUC performance varies between 92% - 99%, while for dis-
criminating each class versus all the others the AUC performance is between
96% - 97%. The results obtained from the raw data are AUC = [91% - 99%]
for the various subclasses classification and AUC = [96% - 97%] for the sec-
ond task. As for the slope case, the AUC varies between 93% - 99% and 93%
- 98% for the two tasks respectively. Finally, the FFT gives the least promis-
ing results with AUC performance varying between 82% - 97% for the first
classification and between 80% - 94% for discriminating each class versus all
others.
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3.4.1 Classification between various subclasses

method features AUC (std) Acc (std) SE SP
none 32 99.39 (0.12) 96.39 (0.36) 97.07 95.28
slope 31 99.42 (0.11) 95.49 (0.48) 97.10 92.89
fft 9 91.87 (0.71) 82.37 (0.89) 85.33 77.61
dwt 32 99.35 (0.14) 96.25 (0.30) 96.77 95.42

Table 3.2: High vs. Low grade classification results using several feature extraction
techniques. The results depict averages of 100 Monte-Carlo runs using the 1-NN classifier.

method features AUC (std) Acc (std) SE SP
none 32 99.22 (0.54) 96.35 (0.55) 95.60 96.92
slope 31 95.81 (0.90) 88.39 (1.10) 83.80 91.92
fft 8 95.80 (1.20) 86.78 (1.14) 82.60 90.00
dwt 32 99.54 (0.43) 96.00 (0.61) 95.20 96.62

Table 3.3: CIN1 vs. HPV classification results using several feature extraction techniques.
The results depict averages of 100 Monte-Carlo runs using the 1-NN classifier.

method features AUC (std) Acc (std) SE SP
none 32 96.11 (1.69) 85.76 (1.20) 88.60 82.38
slope 31 92.40 (2.20) 81.30 (2.19) 81.40 81.19
fft 9 92.34 (1.46) 83.04 (1.71) 84.60 81.19
dwt 32 95.90 (1.23) 85.76 (1.40) 87.80 83.33

Table 3.4: CIN1 vs. Inflammation classification results using several feature extraction
techniques. The results depict averages of 100 Monte-Carlo runs using the 1-NN classifier.
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method features AUC (std) Acc (std) SE SP
none 32 97.08 (0.82) 91.31 (1.40) 92.31 89.76
slope 31 98.67 (0.54) 95.47 (0.55) 98.69 90.48
fft 9 92.50 (2.44) 83.74 (1.26) 86.00 80.24
dwt 32 97.90 (0.84) 91.96 (1.18) 93.69 89.29

Table 3.5: HPV vs. Inflammation classification results using several feature extraction
techniques. The results depict averages of 100 Monte-Carlo runs using the 1-NN classifier.

method features AUC (std) Acc (std) SE SP
none 32 97.93 (0.68) 89.43 (0.90) 90.60 88.61
slope 31 93.77 (1.30) 86.48 (1.17) 83.20 88.75
fft 9 89.78 (1.84) 80.41 (1.19) 71.00 86.94
dwt 32 97.60 (0.69) 90.00 (0.52) 91.80 88.75

Table 3.6: Normal vs. CIN1 classification results using several feature extraction tech-
niques. The results depict averages of 100 Monte-Carlo runs using the 1-NN classifier.

method features AUC (std) Acc (std) SE SP
none 32 91.00 (0.86) 81.79 (0.87) 84.26 79.30
slope 31 93.73 (0.58) 86.35 (1.01) 86.91 85.79
fft 9 82.38 (1.27) 71.31 (1.55) 69.30 73.33
dwt 32 91.64 (1.05) 82.45 (1.09) 85.22 79.65

Table 3.7: Normal, Inflammation vs. HPV, CIN1 classification results using several
feature extraction techniques. The results depict averages of 100 Monte-Carlo runs using
the 1-NN classifier.

method features AUC (std) Acc (std) SE SP
none 32 97.76 (0.31) 91.30 (0.60) 93.52 88.99
slope 31 96.67 (0.29) 89.29 (0.58) 87.69 90.95
fft 9 86.58 (0.76) 77.78 (0.98) 78.17 77.37
dwt 32 97.91 (0.27) 91.33 (0.69) 93.47 89.11

Table 3.8: CIN vs. all other classes classification results using several feature extraction
techniques. The results depict averages of 100 Monte-Carlo runs using the 1-NN classifier.
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method features AUC (std) Acc (std) SE SP
none 32 99.67 (0.20) 96.40 (0.76) 96.76 95.40
slope 31 98.92 (0.27) 94.35 (0.98) 96.18 89.40
fft 9 97.43 (0.60) 92.18 (0.75) 94.19 86.70
dwt 32 99.62 (0.21) 96.26 (0.66) 96.65 95.20

Table 3.9: CIN2/3 vs. CIN1 classification results using several feature extraction tech-
niques. The results depict averages of 100 Monte-Carlo runs using the 1-NN classifier.
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3.4.2 Classification of each class vs. all others

method features AUC (std) Acc (std) SE SP
none 32 96.66 (0.37) 91.24 (0.85) 78.47 94.31
slope 31 96.88 (0.42) 92.33 (0.54) 79.44 95.43
fft 9 79.97 (1.10) 80.04 (1.17) 54.86 86.10
dwt 32 96.65 (0.43) 91.37 (0.72) 78.40 94.50

Table 3.10: Normal vs. all other classes classification results using several feature ex-
traction techniques. The results depict averages of 100 Monte-Carlo runs using the 1-NN
classifier.

method features AUC (std) Acc (std) SE SP
none 32 96.58 (0.55) 92.45 (0.67) 58.10 96.84
slope 31 94.23 (0.89) 92.79 (0.31) 74.64 95.11
fft 9 90.52 (0.67) 90.67 (0.74) 59.05 94.71
dwt 32 96.37 (0.73) 92.68 (0.66) 57.62 97.16

Table 3.11: Inflammation vs. all other classes classification results using several feature
extraction techniques. The results depict averages of 100 Monte-Carlo runs using the 1-NN
classifier.
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method features AUC (std) Acc (std) SE SP
none 32 95.71 (0.75) 93.02 (0.61) 80.31 95.72
slope 31 97.95 (0.23) 94.72 (0.47) 86.62 96.44
fft 9 91.11 (0.75) 88.57 (0.57) 62.23 94.17
dwt 32 95.66 (0.71) 93.11 (0.63) 80.54 95.78

Table 3.12: HPV vs. all other classes classification results using several feature extraction
techniques. The results depict averages of 100 Monte-Carlo runs using the 1-NN classifier.

method features AUC (std) Acc (std) SE SP
none 32 96.53 (0.47) 91.66 (0.60) 76.10 94.08
slope 31 92.56 (0.87) 90.61 (0.59) 62.80 94.94
fft 9 90.77 (0.85) 88.46 (0.69) 55.80 93.55
dwt 32 96.57 (0.59) 91.64 (0.54) 76.20 94.05

Table 3.13: CIN1 vs. all other classes classification results using several feature extraction
techniques. The results depict averages of 100 Monte-Carlo runs using the 1-NN classifier.

method features AUC (std) Acc (std) SE SP
none 32 96.75 (0.56) 95.15 (0.35) 69.04 97.12
slope 31 95.89 (0.59) 93.79 (0.35) 47.31 97.29
fft 9 93.89 (1.01) 93.05 (0.54) 49.62 96.32
dwt 32 97.11 (0.49) 94.92 (0.50) 67.50 96.99

Table 3.14: CIN2 vs. all other classes classification results using several feature extraction
techniques. The results depict averages of 100 Monte-Carlo runs using the 1-NN classifier.

method features AUC (std) Acc (std) SE SP
none 32 97.27 (0.37) 92.17 (0.57) 85.64 94.92
slope 31 97.37 (0.29) 91.31 (0.46) 84.55 94.16
fft 9 89.61 (0.80) 81.33 (0.81) 68.86 86.59
dwt 32 97.35 (0.34) 92.10 (0.64) 85.36 94.94

Table 3.15: CIN3 vs. all other classes classification results using several feature extraction
techniques. The results depict averages of 100 Monte-Carlo runs using the 1-NN classifier.
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Figure 3.4: Stem plot of amplitude of coefficients produced by the feature extraction meth-
ods for high grade and low grade lesions. (a) Raw data coefficients (b) Slope coefficients
(c) FFT coefficients and (d) DWT coefficients.

Figure 3.4 shows the amplitude of the coefficients produced by the ap-
plied feature extraction methods for discriminating high grade from low grade
lesions and the normal cases. More precisely, Figure 3.4(a) shows the am-
plitude of the raw data coefficients, that is the intensity of back scatter light
measured in time. Figure 3.4(b) presents the amplitude of the slope trans-
formation coefficients, that is the difference of the intensity of back scatter
light measured in time between adjacent time points. Figure 3.4(c) presents
the amplitude of the coefficients obtained by the FFT and Figure 3.4(d)
shows the amplitude of the DWT coefficients.

It can be observed that in the DWT case, only few coefficients provide sig-
nificant information about the data, as the majority has an almost zero am-
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plitude. Similar behavior is observed when we choose other mother wavelets
for the transformation, such as daubechies, coiflet and symlet. This means
that we expect to use a small subset of features without loss of informa-
tion and achieve dimensionality reduction. This is the main advantage of
the wavelet transformation compared to other methods. For that reason we
choose the dwt as the best transformation method. In the next chapter we
examine whether selecting a subset of the wavelet extracted features can
provide similar performance to the one reached by the initial set.
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Chapter 4

Evaluation Based on Selected
Features

4.1 Individual Feature Evaluation

Before the feature selection stage, the individual evaluation of the discrim-
ination ability of the extracted features is studied. In the case where no
transformation is applied at the original data, there are 32 coefficients and
each coefficient represents the intensity of the light at each time point. Table
4.1 shows the time point associated with each coefficient.

In the slope case, there are 31 available coefficients. Each coefficients
represent the difference between two data samples. Table 4.2 shows the time
interval that each coefficient is associated with. Studying the results by the
individual feature evaluation, we can retrieve valuable information about
which time changes are more important.

In the Fourier transformation there are 9 coefficients calculated and each
one is associated with a different frequency. Table 4.3 shows the frequency
that each coefficient is related to. Individual feature evaluation provides
information about the most important frequencies of our data.

In the Wavelet transformation there are 32 extracted coefficients. Each
of them represents a different time/frequency spot. As it was mentioned
before the number of samples indicates the levels of the wavelet decompo-
sition. Since there are 25 = 32 samples, the transformation consists of 5
levels (2j, j = #levels). The mathematical type that calculates the number
of the coefficients of each level is the following: Nj = N/2j, where Nj is
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the number of the coefficients, j is the level of decomposition and N is the
initial number of samples. So, the first level consists of 32/21 = 16 detail
coefficients, the second of 32/22 = 8, the third of 32/23 = 4, the forth of
32/24 = 2 and the fifth level of 32/25 = 1. There is also one approximate
coefficient. Now we will explain the physical meaning of each one of the co-
efficients and the way that they are calculated. Let’s imagine each coefficient
as a box that represents a particular time and frequency interval. The time
interval that each coefficient is associated with, depends on the level of its
appearance. So, the first level coefficients are associated with 2 adjacent val-
ues, the second level with 4 values, the third level with 8 values, the fourth
level with 16 values and the fifth level with all the data samples. Regarding
the frequency, the first level detail coefficients are included in the frequency
interval [fN q

2
, fNq], where fNq is the Nyquist frequency. The second level

detail coefficients are included in the [fN q
4
, fN q

2
] interval, the third level detail

in the [fN q
8
, fN q

4
] interval, the fourth level detail in the [fN q

16
, fN q

8
] and the fifth

level in the [fN q
16
, fN q

32
] interval. Finally the fifth level approximate coefficient,

that is associated with the mean value of the original data, appears in the
[0, fN q

32
] interval. Table 4.4 shows the frequency and time intervals that each

coefficient is associated with. The Wavelet transformation gives very good
results, although we use a simple wavelet like Haar.

No Transformation (32 coefficients)

coefficient 1 2 3 4 5 6 7 8

time (sec) 0 8 15 23 31 39 46 54

coefficient 9 10 11 12 13 14 15 16

time (sec) 62 70 77 85 93 101 108 116

coefficient 17 18 19 20 21 22 23 24

time (sec) 124 132 139 147 155 163 170 178

coefficient 25 26 27 28 29 30 31 32

time (sec) 186 194 201 209 217 224 232 240

Table 4.1: Time point that each coefficient is associated with, when no transformation is
applied.

Tables 4.5 - 4.8 show the individual feature performance for the low
grade vs. the high grade case based on each feature extraction method. All
of then are ranked in descending order based on the AUC performance given
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Slope (31 coefficients)

coefficient 1 2 3 4 5 6 7 8

time (sec) 0-8 8-15 15-23 23-31 31-39 39-46 46-54 54-62

coefficient 9 10 11 12 13 14 15 16

time (sec) 62-70 70-77 77-85 85-93 93-101 101-108 108-116 116-124

coefficient 17 18 19 20 21 22 23 24

time (sec) 124-132 132-139 139-147 147-155 155-163 163-170 170-178 178-186

coefficient 25 26 27 28 29 30 31

time (sec) 186-194 194-201 201-209 209-217 217-224 224-232 232-240

Table 4.2: Time interval that each coefficient is associated with. The coefficient represents
the slope between these two points.

Discrete Fourier Transform (9 coefficients)

coefficient 1 2 3 4 5 6 7 8 9

frequency (mHz) 0 8.1 16.1 24.2 32.3 40.4 48.4 56.5 64.6

Table 4.3: The frequency that each coefficient represents after the Discrete Fourier trans-
form.

by a 1-NN classifier. The results are obtained by 100 Monte Carlo runs of 10
fold cross validation sets. The rest classification cases are presented in the
Appendix A.

Table 4.5 shows the individual evaluation of the interpolated and smoothened
raw data, when we try to discriminate the low grade from the high grade
cases. Coefficient 14 gives the best result with an AUC performance of 83%.
Coefficients 16 and 15 follow, with AUC performance over 78%. From that
we can tell that the most important information that could discriminate the
two classes lays in the [101 - 116 sec] interval.

Table 4.6 shows the results obtained by the individual evaluation of
the slope case features for distinguishing low grade from high grade lesions.
In can be seen that the individual performance of some coefficients is high
enough. More precisely, coefficients 3, 2 and 4 achieve AUC performance over
90%, with the two first over 93%. Coefficient 1 gives also good results with
an AUC performance of 86%. From that we can tell that the most important
information is depicted in differences of the intensity of light between the [0
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Discrete Wavelet Transform (32 coefficients)

level freq. (mHz) coefficient time (sec) coefficient time (sec)

17 [ 0 - 8] 25 [124 - 132]

18 [ 15 - 23] 26 [140 - 147]

19 [ 31 - 39] 27 [155 - 163]

level 1 [32.3 - 64.6] 20 [ 46 - 54] 28 [170 - 178]

21 [ 62 - 70] 29 [186 - 194]

22 [ 77 - 85] 30 [201 - 209]

23 [ 93 - 101] 31 [217 - 224]

24 [108 - 116] 32 [232 - 240]

9 [ 0 - 23] 13 [124 - 147]

level 2 [16.2 - 32.3] 10 [ 31 - 54] 14 [155 - 178]

11 [ 62 - 85] 15 [186 - 209]

12 [ 93 - 116] 16 [217 - 240]

level 3 [ 8.1 - 16.2] 5 [ 0 - 54] 7 [124 - 178]

6 [ 62 - 116] 8 [186 - 240]

level 4 [ 4 - 8.1 ] 3 [ 0 - 116] 4 [124 - 240]

level 5 [ 2 - 4 ] 2 [ 0 - 240]

level 5 [ 0 - 2 ] 1 [ 0 - 240]

Table 4.4: Time and frequency interval that each coefficient is associated with in the
DWT transformation. The level of decomposition of each coefficient is also shown.

- 31 sec] interval.
Table 4.7 presents the individual evaluation of coefficients produced by

the Fourier Transform for the low grade versus high grade cases. We could
say that all the extracted coefficients give similar AUC performance, vary-
ing between 74% - 79%. Coefficient 3 that is associated with frequency of
16.1 mHz gives the best results. The individual performance of the Fourier
coefficients can’t outperform those extracted by the other methods.

Table 4.8 presents the individual evaluation for all the dwt coefficients for
discriminating low grade from high grade lesions. It can be observed that the
coefficient that achieves the best performance is coefficient 5 with AUC 96%.
Coefficients 18 and 9 give also excellent results with AUC 93%. Coefficients
17, 1, 3 and 19 follow with good performance, as well. By studying the above
results we conclude that all these coefficients depict changes that happen in
the beginning of the curve. That means that if we want to discriminate
the low grade form the high grade cases it is more important to observe the
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Without Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 14 16 15 5 11 12 18 6 13 7 17 19 25 8 20 10

AUC (%) 83 80 78 77 76 76 76 76 75 75 75 74 74 74 74 74

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 9 21 22 23 29 4 24 30 26 27 3 32 28 31 2 1

AUC (%) 73 71 71 70 70 69 69 69 68 68 68 68 65 64 60 56

Table 4.5: Low Grade vs High Grade. The individual performance of features used in
1-NN classification without feature extraction. The results are from 20 Monte Carlo runs
of 10-fold cross-validation. The features are ranked in descending order based on their
AUC performance.

Slope

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 3 2 4 1 5 6 7 27 31 29 28 23 24 26 13 30

AUC (%) 94 93 91 86 79 74 72 72 70 70 69 67 66 66 65 65

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

coefficient 21 20 9 8 25 14 16 17 11 19 10 18 22 12 15

AUC (%) 64 64 63 63 62 62 62 61 61 60 59 57 57 57 56

Table 4.6: Low Grade vs High Grade. The individual performance of features obtained
from the slope between two adjacent values, using a 1-NN classifier. The results are from
20 Monte Carlo runs of 10-fold cross-validation. The features are ranked in descending
order based on their AUC performance.

changes that take part in the beginning of the phenomenon.
By studying the results from the individual feature evaluation for discrim-

inating low grade from high grade cases from each transformation method,
we can say that the best results are achieved by the wavelet coefficient 5, that
is associated with changes that happen from 0 - 54 sec. This observation is
important, as just one coefficient is able to discriminate these two classes
with AUC 96%.
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Fourier transform

rank 1 2 3 4 5 6 7 8 9

coefficient 3 6 5 9 8 1 4 7 2

AUC (%) 79 79 78 78 78 76 76 76 74

Table 4.7: Low Grade vs High Grade. The individual performance of features obtained
from the DFT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of
10-fold cross-validation. The features are ranked in descending order based on their AUC
performance.

Wavelet Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 5 18 3 9 19 17 10 20 1 16 21 32 4 2 15 30

AUC (%) 96 94 92 86 85 81 79 76 72 72 70 70 67 67 66 66

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 12 31 11 25 8 28 23 13 22 6 29 27 14 24 7 26

AUC (%) 66 65 65 64 63 62 62 61 61 60 59 59 58 57 56 55

Table 4.8: Low Grade vs High Grade. The individual performance of features obtained
from the DWT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of
10-fold cross-validation. The features are ranked in descending order based on their AUC
performance.
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4.2 Coefficient Ranking

As described in Chapter 3, the best overall results are given by the wavelet
transformation and for that reason we focus on this method. In order to find
out which of these coefficients achieve the highest overall performance, we
sorted them by using the average testing AUC performances and calculated
their ranks. Table 4.9 presents DWT coefficients ranking for classifying
various subclasses and Table 4.10 for classifying each class versus all others.
In order to specify the coefficient that achieves the best performance for each
of the two cases, we sorted the ranks of each case and calculated an overall
rank. The ranks range from 1 (best) to 32 (poorest) coefficient. Moreover
the average AUC performance for each classifier is specified.

Considering the wavelet coefficients ranking of the classification between
various subclasses, we could say that the best 3 coefficients are 19, 3 and 1.
Their scores are significantly high compared to the others and their average
AUC performance are over 77%. Coefficients 19 and 3 are related to time
changes that occur in the first half of the curve (coefficient 19: [31 - 38
sec] and coefficient 3: [0 - 116 sec]) while coefficient 1 is the average of all
samples. The next features in the ranking are also related with changes in
the beginning of the curves (coefficients 18, 10, 9, 17 and 20). That means
that if we want to distinguish these classes the most significant information
lays in the first part of the curve, but a global information is also essential.

In the classification case where we want to identify each class versus all
the others, the best coefficients are 18, 3 and 5. Their AUC performance is
over 76%. Coefficients 18 and 5 are related to changes in the first quarter of
the curves, while coefficient 3 is related to changes that occur in the first half.
Other coefficients with good performance are 19, 9, 1 and 17. All of them
depict changes in the beginning apart from coefficient 1 that is the average
of all samples. As in the previous classification task, the most valuable
information lays in the early stages of the curves as well. Coefficients 1, 3,
5, 9, 18, and 19 seem to be very important.

As stated previously, in the mapping stage we use the training data up
to 185 sec. The wavelet coefficients that are produced with the new format
are associated with different time and frequency intervals and can be seen
in Table 4.11. Table 4.12 presents the wavelet coefficient ranking using
the new training format for distinguishing each case versus all the others, in
order to provide consistency in our results between the evaluation and the
mapping stage. Comparing Table 4.10 to Table 4.12, we see that the most
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Coefficient Ranking (Classification between various subclasses)

rank coefficient score AUC rank coefficient score AUC
id (average) id (average)

1 19 38 79 16 29 149 65

2 3 43 77 18 16 152 65

3 1 44 79 19 28 161 63

4 18 61 78 19 32 161 63

5 10 62 73 21 8 162 65

6 9 66 77 21 12 162 64

6 17 66 75 21 15 162 64

8 20 72 73 21 26 162 65

9 5 107 75 25 2 168 64

10 22 127 67 26 4 171 64

11 11 129 67 26 31 171 62

11 30 129 67 28 13 173 64

13 6 132 67 28 21 173 64

14 23 135 66 30 27 179 62

15 14 137 67 31 24 199 62

16 7 149 66 32 25 222 59

Table 4.9: DWT features ranking based on scores of 20 Monte-Carlo averages for classi-
fication of various subclasses.

valuable information lays in the same coefficients. From that we can say that
these coefficients have the potential to describe adequate our data, even if a
slightly different format is chosen.

Table 4.13 presents the individual evaluation of all the dwt coefficients
for discriminating low grade from high grade lesions, using the new data
format (information up to 185 sec). It can be observed that the coefficient
that achieves the best performance is again coefficient 5 with AUC 96%.
Coefficients 18 and 3 give also excellent results with AUC 93%. Coefficients
9, 19 and 17 follow with good performance. By studying the above results
we conclude that all these coefficients depict changes that happen in the
beginning of the curve. Comparing the coefficients individual performance
of Tables 4.8 and 4.13 we observe that the dominant coefficients remain
the same, with coefficient 5 be the best. Even though the discrimination
ability of coefficient 5 is very high for distinguishing high grade lesions from
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Coefficient Ranking (Classification of each class vs. all others)

rank coefficient score AUC rank coefficient score AUC
id (average) id (average)

1 18 32 77 16 22 111 65

2 3 35 76 18 7 112 63

3 5 36 77 19 29 113 63

4 19 44 72 20 31 114 64

5 9 48 75 21 30 115 63

6 1 55 74 22 26 117 63

7 17 61 73 23 16 118 62

8 10 76 69 24 21 122 64

9 20 85 68 25 13 123 63

10 4 93 65 25 28 123 63

11 14 96 65 27 12 125 63

12 2 98 66 28 15 133 61

13 8 102 65 29 32 136 61

14 23 105 66 30 24 137 62

14 6 105 66 31 25 139 60

16 11 111 66 32 27 148 60

Table 4.10: DWT features ranking based on scores of 20 Monte-Carlo averages for clas-
sification of each class vs. all the others.

low grade lesions, it is not adequate to identify all the available cases of the
disease by itself. Thus, the combination of two or more features is essential in
order to improve the classification performance in terms of accurate results.
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Discrete Wavelet Transform (32 coefficients by 185 sec)

level freq. (mHz) coefficient time (sec) coefficient time (sec)

17 [ 0 - 6] 25 [ 95 - 101]

18 [ 12 - 18] 26 [107 - 113]

19 [ 24 - 30] 27 [119 - 125]

level 1 [41.9 - 83.8] 20 [ 36 - 42] 28 [131 - 137]

21 [ 48 - 54] 29 [143 - 149]

22 [ 60 - 66] 30 [155 - 161]

23 [ 72 - 78] 31 [167 - 173]

24 [ 84 - 90] 32 [179 - 185]

9 [ 0 - 18] 13 [ 95 - 113]

level 2 [20.9 - 41.9] 10 [ 24 - 42] 14 [119 - 137]

11 [ 48 - 66] 15 [143 - 161]

12 [ 72 - 90] 16 [167 - 185]

level 3 [10.5 - 20.9] 5 [ 0 - 42] 7 [ 95 - 137]

6 [ 48 - 90] 8 [143 - 185]

level 4 [ 5.2 - 10.5] 3 [ 0 - 90] 4 [ 95 - 185]

level 5 [ 2.6 - 5.2] 2 [ 0 - 185]

level 5 [ 0 - 2.6] 1 [ 0 - 185]

Table 4.11: Time and frequency interval that each coefficient is associated with in the
DWT transformation when the data are used up to 185 sec. The level of decomposition
of each coefficient is also shown.
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Coefficient Ranking (Classification of each class vs. all (185 sec))

rank coefficient score AUC rank coefficient score AUC
id (average) id (average)

1 3 27 78 17 12 110 66

2 18 41 77 17 25 110 64

3 5 45 76 19 23 112 66

4 1 53 76 20 6 117 65

5 19 55 73 20 28 117 63

6 17 61 73 22 31 119 64

6 11 61 73 23 26 121 64

8 9 74 73 24 15 123 64

9 16 79 69 25 13 126 64

10 11 82 69 26 27 127 63

11 4 87 67 27 22 132 63

12 2 89 69 28 29 135 61

13 20 99 66 29 24 136 62

14 21 103 67 29 30 136 61

15 7 107 66 31 14 137 62

15 32 107 65 32 8 140 60

Table 4.12: DWT features (up to 185 sec) ranking based on scores of 20 Monte-Carlo
averages for classification of each class vs. all the others.

Wavelet Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 5 18 3 9 19 17 10 20 1 2 21 4 32 8 16 31

AUC (%) 96 93 93 91 89 87 84 79 78 67 67 66 64 64 64 63

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 12 30 13 6 15 25 28 11 22 23 24 29 14 27 26 7

AUC (%) 62 62 62 61 61 61 60 60 60 59 58 58 57 56 55 55

Table 4.13: Low Grade vs High Grade up to 185 sec. The individual performance of
features obtained from the DWT, using a 1-NN classifier. The results are from 20 Monte
Carlo runs of 10-fold cross-validation. The features are ranked in descending order based
on their AUC performance.
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4.3 Feature Selection

The next step of the procedure is to examine if the data can be reduced by
using a subset of these coefficients. This is achieved by using a backward
feature elimination method. Goal of the selection is to choose a minimum
subset of the entire set of features according to a certain evaluation criterion,
such that it can achieve similar performance with the initial set but with lower
computational cost. The selection procedure starts from the whole set and in
each iteration the optimal subset is found by eliminating the least promising
feature. The evaluation of each subset is done by 10-fold cross-validation
and in each iteration the feature that yields to the lower AUC performance
based on the 1-NN classifier, is dropped. There are more sophisticated feature
selection methods, but in this study we focus on studying the wavelet method
and not on applying the best selection algorithm. The feature selection
technique indicate that the combination of five features can achieve similar
performance with the one obtained by using all the available features.

Since the selected features will be used in the mapping stage that contains
temporal information up to 185 sec, we repeat the training procedure keeping
the information up to 185 sec and discarding the rest. Our feature selection
scheme results in the combination of haar coefficients 1,2,3,5 and 9, which
can achieve similar performance as using the whole set. In particular, the
sequence of the features elimination is 9, 3, 2, 1 and 5. This elimination is
done with regard to the high grade vs. low grade discrimination. Table 4.14
shows the frequency and time intervals that are associated with the selected
coefficients. We see that the first time slots are used. Once again we reach
the conclusion that the first part of the curve in time is the most important.

Coefficient Frequency (mHz) Time (sec)
1 0-2.6 0-185
2 2.6-5.2 0-185
3 5.2-10.5 0-90
5 10.5-20.9 0-42
9 20.9-41.9 0-18

Table 4.14: Frequency and time associated with the five selected haar dwt coefficients.

Figure 4.1 illustrates the way that high grade lesions and the combina-
tion of low grade lesions and normal tissue are projected by using the first
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two most important DWT coefficients, as obtained by the feature selection
scheme. It is clearly seen that most of the samples are not highly overlapped.
Making use of more features leads to a significant boost in the performance.
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Figure 4.1: Plot of the two most important features for High grade lesions versus Low
grade lesions, HPV, Inflammation and Normal tissue.

Tables 4.15 and 4.16 summarize the classification results when using the
entire amount of features and the selected subset, respectively. By studying
the results of the feature selection method, we observe that in every case
we can achieve similar performance by using all 32 features of the wavelet
transformation, as using only just 5 of them. This fact is very important since
we are able to use a very small subset among all the features and achieve the
same performance. This will lead to lower computational cost and moreover
we can see clearly which features critical for every case.

As stated previously, these 5 features are chosen so they can discriminate
the high grade from the low grade lesions efficiently. To go one step further,
we apply the feature selection scheme in each classification case, in order to
find out which coefficients are more suitable for each case. This time we use
the forward feature selection technique, since its faster. The procedure starts
from an empty set and in each iteration generates new subsets by adding a
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Classes AUC(%) Acc.(%) SE(%) SP(%)

Low vs High 99.27 (0.12) 95.88 (0.36) 94.79 96.55
CIN2/3 vs CIN1 99.30 (0.28) 94.97 (0.53) 96.14 91.80
CIN1 vs HPV 99.08 (0.45) 94.00 (1.01) 94.20 93.85
CIN1 vs Inflammation 96.09 (1.04) 86.30 (1.29) 85.00 87.86
CIN1 vs Normal 97.51 (0.92) 90.04 (1.26) 89.00 90.76
HPV vs Inflammation 97.17 (1.22) 89.58 (1.40) 91.77 86.19
Nor., Inf. vs HPV, CIN1 90.59 (0.73) 81.38 (1.05) 81.57 81.18
Normal vs All 96.93 (0.44) 92.22 (0.42) 83.33 94.36
Inflammation vs All 96.58 (0.74) 93.17 (0.38) 64.29 96.85
HPV vs All 95.38 (0.63) 91.54 (0.53) 74.85 95.08
CIN1 vs All 95.95 (0.48) 91.00 (0.61) 67.90 94.60
CIN2 vs All 95.84 (0.80) 94.30 (0.39) 62.31 96.71
CIN3 vs All 96.72 (0.23) 91.40 (0.56) 85.13 94.04
CIN vs All 97.33 (0.34) 90.90 (0.75) 91.26 90.53

Table 4.15: Classification results obtained by 32 dwt features using information up to 185
sec. The results depict averages of 100 Monte-Carlo runs using the 1-NN classifier.

feature selected by some evaluation criterion, in our case the AUC perfor-
mance. The maximum number of features selected is again set to 5. Tables
4.17 and 4.18 present the features selected for classifying various subclasses
and each class versus all others, respectively. For each case we show the rank
of the features that are added by the forward selection criterion and the AUC
performance that they achieve. Moreover, the AUC performance by using
all the available features is presented in the final column of the Tables, to
compare.

By studying the results of the feature selection method, we observe that
in most cases we can achieve the same or even better performance as by
using the whole feature set. Sometimes less than 5 features are adequate to
reach the performance of the initial set. It is of great importance the fact
that different coefficient subsets give the best results for each case. However,
this is expected, since different features are needed to characterize each class.
Moreover we can see clearly which features are critical for every case. An-
other aspect to mention is that the classification performance is improving
significantly when we use two features instead of one.
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Classes AUC(%) Acc.(%) SE(%) SP(%)

Low vs. High 99.01 (0.17) 95.85 (0.46) 94.67 96.55
CIN2/3 vs. CIN1 99.13 (0.28) 95.11 (0.42) 96.25 92.00
CIN1 vs HPV 98.23 (0.92) 94.09 (0.92) 93.70 94.38
CIN1 vs Inflammation 96.76 (0.78) 87.72 (1.06) 88.10 87.26
CIN1 vs Normal 94.87 (1.05) 90.12 (0.62) 88.00 91.60
HPV vs Inflammation 97.17 (1.14) 90.00 (1.61) 91.31 87.98
Nor., Inf. vs HPV, CIN1 88.77 (0.96) 82.62 (1.23) 83.57 81.67
Normal vs. All 95.39 (0.52) 91.86 (0.68) 80.69 94.60
Inflammation vs. All 96.92 (0.65) 93.29 (0.46) 66.19 96.75
HPV vs. All 94.43 (0.63) 91.24 (0.62) 74.75 94.87
CIN1 vs. All 94.17 (0.47) 91.56 (0.50) 71.20 94.86
CIN2 vs. All 95.62 (0.70) 94.30 (0.45) 62.69 96.68
CIN3 vs. All 96.29 (0.38) 91.35 (0.36) 84.95 94.04
CIN vs. All 96.61 (0.37) 91.75 (0.50) 92.61 90.87

Table 4.16: Classification results obtained by 5 dwt features using information up to 185
sec. The results depict averages of 100 Monte-Carlo runs using the 1-NN classifier.
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Feature Selection for Subclasses Classification

case coefficient AUC(%) AUC(%) (32 features)

1 97.41
CIN23 1,5 98.23

vs 1,5,4 98.82 99.30
CIN1 1,5,4,6 99.56

1,5,4,6,3 99.69

1 79.52
CIN1 1,2 96.76

vs 1,2,3 99.14 99.08
HPV 1,2,3,4 99.33

1,2,3,4,7 99.43

1 88.90
CIN1 1,2 94.50

vs 1,2,3 96.60 96.09
Inflammation 1,2,3,5 97.10

1,2,3,5,6 98.00

5 80.93
CIN1 5,1 93.57

vs 5,1,6 97.00 97.51
Normal 5,1,6,7 97.25

5,1,6,7,3 97.50

1 88.65
HPV 1,2 93.21
vs 1,2,3 97.52 97.17

Inflammation 1,2,3,5 98.17
1,2,3,5,9 98.57

9 77.71
Normal+Inflammation 9,2 86.81

vs 9,2,3 90.92 90.59
HPV+CIN1 9,2,3,18 91.59

9,2,3,18,4 91.94

18 87.43
CIN 18,3 92.56
vs 18,3,1 92.94 97.33
all 18,3,1,9 95.33

18,3,1,9,4 96.28

Table 4.17: Forward selection of wavelet features for various subclasses classification. The
number of selected features is set to 5.

48



Chapter 4: Evaluation Based on Selected Features

Feature Selection for Subclasses Classification

case coefficient AUC(%) AUC(%) (32 features)

5 88.46
Normal 5,3 91.79

vs 5,3,4 95.05 96.32
all 5,3,4,2 95.81

5,3,4,2,9 96.92

1 86.79
Inflammation 1,3 93.17

vs 7,3,2 95.57 96.58
all 1,3,2,5 95.96

1,3,2,5,9 96.90

3 79.48
HPV 3,9 87.55
vs 3,9,4 94.70 95.38
all 3,9,4,7 95.27

3,9,4,7,10 95.39

1 83.70
CIN1 1,4 91.25

vs 1,4,3 94.08 95.95
all 1,4,3,9 95.95

1,4,3,9,6 96.31

2 83.64
CIN2 2,1 94.05

vs 2,1,18 95.02 95.84
all 2,1,18,3 96.63

2,1,18,3,9 95.24

5 91.00
CIN3 5,1 93.83

vs 5,1,4 95.19 96.72
all 5,1,4,3 95.79

5,1,4,3,7 97.21

Table 4.18: Forward selection of wavelet features for classification of each class versus all
others. The number of selected features is set to 5.
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Chapter 5

Mapping and Visualization of
Results

After the classification stage and the conclusion we made about the time and
frequency characteristics of the coefficients in each transformation, we apply
the best transformation, that is the wavelet decomposition, in new data. The
new data are images taken from patients through a camera device in time
samples, while the acetic acid is applied on the tissue, so that a dynamical
image of the cervix is produced. The images are captured non periodically in
185 seconds. The capturing format is described below. For each case there
are 24 available images. The first image is captured before the application of
the acetic acid and the next 23 after that. The first 13 images are captured
every 7 seconds, from time period [0 - 84 sec]. The next 9 images are captured
every 10 seconds, from [94 - 174 sec] and the last frame is captured at 185
sec.

The main idea of the mapping is shown in Figure 5.2, but we will explain
it in detail, as well. The information for each patient is 23 images of 768∗1024
pixels, that means that we have 3-dimensional matrix 768 ∗ 1024 ∗ 23, where
the x dimension is the width of the image (x = 1024), the y dimension is the
height of the image (y = 768) and the third dimension is the number of the
frames (z = 23) (Figure 5.1). In order to process these data, we transform
the 3-D matrix into a 2-D one, by stacking the 1024 matrix columns matrix
one below the other, in order to make a 786432-length vector. In this way
the data are stored in a 786432∗23 matrix, that represents 786432 curves of
23 sampling points.

The proper method for the mapping stage is to apply the feature ex-
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traction technique to each curve, take the extracted coefficients, pass them
through the trained classifiers and then map the pixel based on the result
of the classification stage. However, this amount is very big and the compu-
tational cost in order to apply the feature extraction techniques and classi-
fication methods is so high that would make the method inefficient due to
interaction with patients. For that reason we decided to downscale the ini-
tial image and then apply the feature extraction techniques. After that, each
pixel of the image is passed through seven differently trained classifiers that
represent the seven available classes and have been trained with the data we
used at the first part of this work. The output of each classifier (soft label)
is stored and the pixel is classified to the class that is represented by the
classifier that had the highest output. Figure 5.2 shows the stages of the
mapping procedure.

Figure 5.1: 3-D Matrix with captured frames during the AW process.

Figures 5.4 - 5.12 help us visualize the algorithm results through the
mapping procedure. The available images that we use for the mapping depict
6 cases of high grade patients, 2 cases of low grade patients and 2 cases of
normal. For each patient we will present 6 images, the first two frames are the
images before and at 185 sec after the acetic acid application, respectively.
The third and fourth image present the mapping for distinguishing each
class versus all the others by using the five selected dwt features and all the
available 32 dwt features, respectively. The fifth image shows the mapping
that is produced for distinguish the high grade from the low grade lesions
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Figure 5.2: Stages of the mapping procedure.

using the five selected dwt coefficients. The chromatic legend of the mapping
based on the dwt method is presented at the north-east corner of each image.
Finally, the last image illustrates the mapping that is produced by professor
Balas method. In every image the biopsy points are indicated with circles.
From the available 10 cases we present 3 of them now (one of each case),
while the rest can be found in Appendix B.

The legend at the images shows the color that is used to describe each
class. More precisely, when the class is Normal no color is used for the
mapping of the pixel. In the Inflammation case the color blue is used, while
in the HPV the cyan. CIN1 is mapped with green color, CIN2 with yellow,
CIN3 with orange and finally Cancer with red. Figure 5.3 illustrates the
colormap that we use for each class. The colormap used by Balas method
is slightly different than in our case. More precisely, for the pixels that are
classified as normal, no color or blue is used, for the low grade cases the
colors green and red are chosen (red represents the more severe cases) and
for the high grade yellow and white (white represents the more severe cases).

We choose to present two different mappings based on the 5 selected dwt
features, since the discrimination between high grade and low grade lesions
is of great importance. The AUC and accuracy for this discrimination is 99%
and 96% respectively and it is at the same levels as the performance achieved
by the initial set. For that reason it is important to provide a mapping that
can distinguish these two classes with such accurate results.
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Figure 5.3: Legend of dwt colormap.
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Patient 71

By studying the mapped images of patient 71 we could say that the critical
regions where the biopsy points were taken are classified correctly by all
methods. We can see that in the critical areas there are no differences between
the mapping produced when we use 32 features and the one produced by
using 5. Some differences between these mappings can be seen in identifying
differently some non-biopsy areas. However, since they are classified as low
grade cases by both mappings, it is not of great importance.

(a) Pre acetic acid image

(b) Post acetic acid image

Figure 5.4: Pre acetic and post acetic image of patient 71 with high grade lesions. Figure
(a) shows the pre-acetic image (b) the image of the patient at 185 sec after the application
of the acid.
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(a) Mapping with 5 dwt features

(b) Mapping with 32 dwt features

Figure 5.5: Mapping of patient 71 with high grade lesions. Figures (a) and (b) show the
discrimination between all available classes by using the 5 selected dwt coefficients and all
the 32 dwt features, respectively. The legend on the top-right area of the figure indicates
the colors used to describe each class.
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(a) High grade - Low grade mapping

(b) Mapping with Balas method

Figure 5.6: Mapping of patient 71 with high grade lesions. Figure (a) shows the discrim-
ination between high grade, low grade lesions and normal tissue and (b) illustrates the
mapping produced by Balas method.
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Patient 77

Patient 77 represents a low grade case. Our mapping results classified both
regions marked by the biopsy points as low grade and more precisely mostly
as HPV class. It can be observed that no pixel is classified as high grade.
The mapping produced by the whole feature set compared to that obtained
by the 5 features don’t have significant difference. Moreover, the mapping
produced by professor Balas method classifies all biopsy areas as low grade,
as well.

(a) Pre acetic acid image

(b) Post acetic acid image

Figure 5.7: Pre acetic and post acetic image of patient 77 with low grade lesions. Figure
(a) shows the pre-acetic image (b) the image of the patient at 185 sec after the application
of the acid.
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(a) Mapping with 5 dwt features

(b) Mapping with 32 dwt features

Figure 5.8: Mapping of patient 77 with low grade lesions. Figures (a) and (b) show the
discrimination between all available classes by using the 5 selected dwt coefficients and all
the 32 dwt features, respectively. The legend on the top-right area of the figure indicates
the colors used to describe each class.
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(a) High grade - Low grade mapping P77

(b) Mapping with Balas method

Figure 5.9: Mapping of patient 77 with low grade lesions. Figure (a) shows the discrim-
ination between high grade, low grade lesions and normal tissue and (b) illustrates the
mapping produced by Balas method.
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Patient 38

Patient 38 represents a normal case. We can see that the biopsy areas are
classified as normal, by every method. Moreover, we can see that both images
have classified as normal the majority of the tissue areas in this patient is
classified as normal case. We don’t present the image with the high grade -
low grade mapping since it is identical to those of Figure 5.11.

(a) Pre acetic acid image

(b) Post acetic acid image

Figure 5.10: Pre acetic and post acetic image of patient 38 with normal tissue. Figure (a)
shows the pre-acetic image (b) the image of the patient at 185 sec after the application of
the acid.
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(a) Mapping with 5 dwt features

(b) Mapping with 32 dwt features

Figure 5.11: Mapping of patient 38 with normal lesions. Figures (a) and (b) show the
discrimination between all available classes by using the 5 selected dwt coefficients and all
the 32 dwt features, respectively. The legend on the top-right area of the figure indicates
the colors used to describe each class.
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Figure 5.12: Mapping of patient 38 with normal tissue produced by Balas method.
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Conclusions

The results show the potential of the proposed method not only as a diag-
nostic tool for cervical neoplasia, but as a screening method for identifying
different stages of the disease and the Normal cases, as well. It should be
mentioned that the selected feature subset is chosen as the best to describe
the overall characteristics of all classes. The performance is higher if the
optimal subset for each class is selected. Our results compared with those of
conventional colposcopy and other imaging-based techniques achieved higher
performance for diagnostic reasons.

It is also important the fact that we present results for distinguish each
stage of the disease and the normal cases versus all the other classes and for
identifying various subclasses of the disease, and not only between high grade
and low grade lesions, as shown in previous works. Furthermore, we present
analytical tables with the individual evaluation of each coefficient produced
by the applied extraction methods. This helps us not only to explore how
important is each coefficient by itself, but also show the potential of using
individual features for classify specicific classes.

Another important aspect is that using a feature selection scheme, we
manage to achieve similar performance for each classification case, by using
only 5 features among the available 32. That means that these features have
the potential to describe adequate all the data. To go further, we present the
subset of features that best describe each case and the classification results
that they achieve.

Finally, it should be mentioned that we provide a mapping of the cervical
image that could assist less experienced medical personnel in the diagnosis
of cervical cancer. Moreover, the decision of selecting biopsy points from
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critical sites would be more accurate. In the future, this technique could be
used as an alternative to conventional colposopy and Pap-tests, especially in
developing countries where trained physicians are limited.

There are also some open issues for further work. More classifiers could
be tried (i.e. svm classifiers) on the data and also some fusion schemes could
be applied in order to see whether the classification performance is improved.
Also, new feature extraction methods could be proposed and tested in order
to improve the classification performance and to help us gain useful intuition
on the physical characteristics of the data. The use of features obtained from
different extraction methods could produce more accurate and robust results.
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A.1 Classification between various subclasses

A.1.1 Normal vs CIN1

Without Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 1 10 28 27 2 26 29 30 9 13 31 11 12 23 20 19

AUC (%) 90 89 89 89 88 87 87 85 85 84 84 83 83 83 83 83

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 32 22 3 21 25 14 18 24 16 17 15 7 4 8 5 6

AUC (%) 82 82 82 81 81 81 80 80 79 79 79 77 75 74 72 72

Table A.1: Normal vs CIN1. The individual performance of features used in 1-NN
classification without feature extraction. The results are from 20 Monte Carlo runs of
10-fold cross-validation. The features are ranked in descending order based on their AUC
performance.

In the case where no transformation is applied, we can see that coefficient
1 has the best individual performance. This feature depicts the intensity of
the back scattered light that is in the beginning of the curve. We should
mention that the individual performance of every feature is quite good, con-
sidering the fact that the worst performance is high enough, about 72%.
Moreover, by studying the best features (AUC > 85%), we can observe that
the most important points in the curve are three, the one at the beginning
[0 - 8sec] (features 1 and 2), at [62 - 70sec] (features 9 and 10) and at the
end of the curve [194 - 225 sec] (features 26 - 30)

In the slope case the results aren’t as good as in the case without trans-
formation. Only few features achieve adequate performance. The feature
with the best individual performance is the one that represents the differ-
ence between the measurement of the intensity of light at the time point 8
sec and the one at 0 sec, with AUC performance 80%. Features 5, 3, 2, 26
and 6 give adequate results (AUC∼75%). From that we can say that the
most valuable information lays in the beginning of the curve.

All the features obtained by the Fourier Transform give similar results,
since the best one achieves AUC performance 82% and the worst 73%. The
majority of the features gives a performance of 77%. The best individual
performance is achieved by coefficient 1 (AUC = 82%). This feature is the
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Slope

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 1 5 3 2 26 6 25 24 14 4 20 23 11 21 8 7

AUC (%) 80 79 78 75 75 74 71 71 69 68 68 67 67 67 67 67

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

coefficient 10 19 13 27 22 16 15 18 12 31 9 29 28 17 30

AUC (%) 67 65 64 64 64 62 62 59 59 58 58 58 57 57 51

Table A.2: Normal vs CIN1. The individual performance of features used in 1-NN
classification without feature extraction. The results are from 20 Monte Carlo runs of
10-fold cross-validation. The features are ranked in descending order based on their AUC
performance.

Fourier transform

rank 1 2 3 4 5 6 7 8 9

coefficient 1 3 8 9 2 7 6 5 4

AUC (%) 82 79 78 78 77 75 75 73 73

Table A.3: Normal vs CIN1. The individual performance of features obtained from the
DFT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

DC component (0 Hz).
The coefficient with the best individual performance is the one with id=1.

This coefficient is the average of all samples and it contains the most valuable
information among all the other features. Other coefficients that give good
results are the 5, 17, 18, 19 and 9, all of them with AUC performance over
77%. By studying the performance of these features we could say that the
most important information that can distinguish these classes lays in the
beginning of the curve and the least valuable in the end of the curve because
most of these features give very poor results.
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Wavelet Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 1 5 17 18 19 9 7 10 29 3 11 2 28 15 12 14

AUC (%) 83 80 80 79 79 77 76 73 72 72 70 69 69 68 68 68

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 6 22 20 27 26 30 4 23 13 8 24 32 16 31 21 25

AUC (%) 68 67 66 65 64 64 64 64 63 63 62 59 58 58 58 56

Table A.4: Normal vs CIN1. The individual performance of features obtained from the
DWT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.
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A.1.2 HPV vs CIN1

Without Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 10 13 2 11 14 1 7 12 8 9 3 16 31 18 6 25

AUC (%) 90 89 89 88 87 86 84 83 83 83 82 81 81 79 79 77

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 4 20 15 30 24 23 22 21 17 19 26 29 28 27 5 32

AUC (%) 77 77 77 76 76 75 75 75 75 74 74 71 70 70 69 69

Table A.5: HPV vs CIN1. The individual performance of features used in 1-NN classi-
fication without feature extraction. The results are from 20 Monte Carlo runs of 10-fold
cross-validation. The features are ranked in descending order based on their AUC perfor-
mance.

As we can see, coefficient 10 reaches the best performance with AUC 90%.
By studying the individual performance of each coefficient we could say that
the most valuable information lays in the time interval [70 sec -100 sec] and
the beginning of the curve [0-7 sec]. The least valuable information lays in
the end of the curve.

Slope

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 7 25 12 6 3 14 9 24 8 5 13 15 10 16 27 1

AUC (%) 79 74 74 73 71 71 70 70 69 69 69 66 66 66 66 66

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

coefficient 11 26 30 23 28 19 18 2 4 22 20 31 29 17 21

AUC (%) 65 65 64 63 62 62 60 59 58 58 56 55 55 52 52

Table A.6: HPV vs CIN1. The individual performance of features obtained from the
slope between two adjacent values, using a 1-NN classifier. The results are from 20 Monte
Carlo runs of 10-fold cross-validation. The features are ranked in descending order based
on their AUC performance.

In the slope case coefficient 7 gives the best results. By studying the
results we could say that the most valuable information extracted by the
slope technique lays rather in the beginning of the curve than in the end.
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Fourier transform

rank 1 2 3 4 5 6 7 8 9

coefficient 1 2 4 7 5 8 6 9 3

AUC (%) 84 83 79 78 76 76 75 75 74

Table A.7: HPV vs CIN1. The individual performance of features obtained from the
DFT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

The coefficient with the best performance is the one that represents the
DC component, that is coefficient 1, with AUC 84%.

Wavelet Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 1 20 6 29 10 11 3 21 19 15 18 13 23 24 30 22

AUC (%) 84 79 76 73 72 72 71 70 70 70 70 70 69 68 65 65

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 12 17 5 14 8 28 26 7 16 9 2 4 32 31 25 27

AUC (%) 65 65 64 64 64 63 62 61 61 61 60 59 55 54 52 51

Table A.8: HPV vs CIN1. The individual performance of features obtained from the
DWT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

The coefficient with the best performance is the one that represents the
average of all samples and compared to the performance of the other coeffi-
cients is significant higher (AUC=84% and the next best one is lower than
AUC=80%).
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A.1.3 Inflammation vs CIN1

Without Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 2 10 3 11 9 4 8 1 6 17 12 31 7 13 5 14

AUC (%) 90 89 86 86 85 85 83 82 82 81 80 79 78 76 76 74

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 26 32 16 15 18 30 19 27 20 23 25 29 22 28 24 21

AUC (%) 74 73 72 71 70 69 68 67 66 65 65 64 64 63 63 62

Table A.9: Inflammation vs CIN1. The individual performance of features used in 1-NN
classification without feature extraction. The results are from 20 Monte Carlo runs of
10-fold cross-validation. The features are ranked in descending order based on their AUC
performance.

The coefficients with the best AUC results is the one with id=2 followed
by the one with id=10. Both of them achieved very good performance, AUC
over 89%. By studying the performance of the coefficients we could say that
the most valuable information lays in the beginning of the curve, especially
around 10 sec and 70 sec.

Slope

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 5 7 10 8 6 27 11 14 18 21 3 19 31 1 26 2

AUC (%) 86 79 79 75 75 74 73 72 70 70 69 69 69 68 67 67

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

coefficient 25 4 13 15 16 30 12 20 9 17 22 28 23 29 24

AUC (%) 67 66 66 66 65 64 63 63 63 62 58 56 55 55 55

Table A.10: Inflammation vs CIN1. The individual performance of features obtained
from the slope between two adjacent values, using a 1-NN classifier. The results are from
20 Monte Carlo runs of 10-fold cross-validation. The features are ranked in descending
order based on their AUC performance.

Considering the slope case for this classification, we can see that the best
performance is achieved by coefficient 5, that represents the difference of the
intensity at time around [31 - 38 sec]. Some other coefficients had adequate
performance, but lower enough than this one.
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Fourier transform

rank 1 2 3 4 5 6 7 8 9

coefficient 1 2 6 3 8 9 4 7 5

AUC (%) 88 79 76 76 76 74 74 72 71

Table A.11: Inflammation vs CIN1. The individual performance of features obtained
from the DFT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of
10-fold cross-validation. The features are ranked in descending order based on their AUC
performance.

In the Fourier Transform case the coefficient with the best performance is
again coefficient 1, with AUC=88% that represents the DC component. The
AUC performance is significant higher than the next best one (AUC=79%).

Wavelet Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 19 20 3 16 30 10 22 13 12 11 6 1 32 17 27 9

AUC (%) 86 80 75 74 74 73 73 73 72 72 71 70 70 69 69 69

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 26 18 14 23 7 15 24 29 2 25 21 4 8 5 31 28

AUC (%) 68 68 68 67 67 67 67 66 65 64 64 62 58 57 56 55

Table A.12: Inflammation vs CIN1. The individual performance of features obtained
from the DWT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of
10-fold cross-validation. The features are ranked in descending order based on their AUC
performance.

In the wavelet transformation two are the dominant coefficients, coeffi-
cient 19 and coefficient 20. This leads us to the fact that the more important
information that is able to discriminate the two classes lays between [30 - 55
sec].
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A.1.4 Inflammation vs HPV

Without Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 7 23 16 4 26 27 10 17 6 11 22 2 9 24 18 20

AUC (%) 83 82 82 81 81 81 81 81 81 81 81 80 80 80 80 79

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 13 12 25 19 14 21 32 31 5 3 15 30 1 28 8 29

AUC (%) 79 78 77 76 76 75 75 74 74 74 73 73 72 71 70 66

Table A.13: Inflammation vs HPV. The individual performance of features used in 1-NN
classification without feature extraction. The results are from 20 Monte Carlo runs of
10-fold cross-validation. The features are ranked in descending order based on their AUC
performance.

When we try to discriminate the Inflammation from the HPV case, with-
out using any transformation, we observe that half of the coefficients give
similar results in the performance, so we cannot reach a conclusion about
which time points provide the most important information.

Slope

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 5 8 12 19 13 4 2 1 10 6 24 11 3 7 14 16

AUC (%) 79 78 75 74 73 73 72 72 72 71 70 70 69 68 68 67

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

coefficient 29 18 30 9 28 20 15 22 27 23 21 31 17 26 25

AUC (%) 67 67 67 66 63 61 59 58 57 57 56 56 53 53 52

Table A.14: Inflammation vs HPV. The individual performance of features obtained from
the slope between two adjacent values, using a 1-NN classifier. The results are from 20
Monte Carlo runs of 10-fold cross-validation. The features are ranked in descending order
based on their AUC performance.

In the slope case there are two coefficients that give good results, coef-
ficient 5 and coefficient 8. These coefficients are associated with changes of
the light intensity between [31 - 38 sec] and [54 - 62 sec].

In the Fourier case the coefficients 4 and 5 achieve the highest perfor-
mance. These coefficients are related to frequencies of 24.2mHz and 32.3mHz,
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Fourier transform

rank 1 2 3 4 5 6 7 8 9

coefficient 4 5 1 3 6 8 9 7 2

AUC (%) 91 89 88 88 84 83 82 81 80

Table A.15: Inflammation vs HPV. The individual performance of features obtained
from the DFT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of
10-fold cross-validation. The features are ranked in descending order based on their AUC
performance.

and their performance is over 90%. The coefficient of the DC component gives
also very good results with AUC=88%.

Wavelet Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 1 3 2 19 9 26 17 6 23 16 22 8 20 18 10 31

AUC (%) 82 82 79 77 74 74 73 73 72 70 70 70 70 69 69 67

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 13 21 14 11 4 7 15 5 12 24 32 30 27 28 25 29

AUC (%) 67 66 66 66 65 65 64 63 60 59 58 58 56 56 53 52

Table A.16: Inflammation vs HPV. The individual performance of features obtained
from the DWT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of
10-fold cross-validation. The features are ranked in descending order based on their AUC
performance.

When we try to discriminate the classes using the wavelet transformation,
the coefficients with the best performance are coefficient 1 and 3. The first
one represents the average of all samples in the frequency interval [0-2mHz],
while the second is related to time interval [0-116sec] and frequency interval
[4mHz - 8.1mHz]. From that we could conclude to the fact that in that case it
is more essential the global behavior of the curves, rather changes in narrow
time intervals.
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A.1.5 Normal+Inflammation vs HPV+CIN1

Without Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 26 28 27 11 30 20 22 32 24 23 29 31 10 9 17 19

AUC (%) 78 78 76 74 74 73 73 72 72 70 70 70 69 69 68 68

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 25 16 13 18 21 1 2 3 12 4 15 7 6 14 8 5

AUC (%) 68 66 66 66 66 65 65 64 64 63 62 61 60 58 57 56

Table A.17: Normal+Inflammation vs HPV+CIN1. The individual performance of fea-
tures used in 1-NN classification without feature extraction. The results are from 20 Monte
Carlo runs of 10-fold cross-validation. The features are ranked in descending order based
on their AUC performance.

In the following example we categorize the Normal and Inflammation
cases into one superclass and the HPV and CIN1 cases to another superclass
and try to discriminate them. This is one of the most difficult cases as we
try to group two different classes together and handle them as one. The
coefficients with the best results are those who represent the intensity of
light in the time interval [194 - 209 sec].

Slope

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 5 1 2 6 3 13 10 11 7 19 14 4 8 23 29 15

AUC (%) 78 75 75 72 70 69 69 68 68 66 65 65 64 64 63 63

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

coefficient 27 21 20 9 16 17 12 24 25 22 26 28 18 30 31

AUC (%) 62 62 61 61 61 61 60 59 59 58 57 55 54 54 54

Table A.18: Normal+Inflammation vs HPV+CIN1. The individual performance of fea-
tures obtained from the slope between two adjacent values, using a 1-NN classifier. The
results are from 20 Monte Carlo runs of 10-fold cross-validation. The features are ranked
in descending order based on their AUC performance.

In the slope case coefficient 5 provides the best results with AUC perfor-
mance over 78%. The coefficients with the next best results are coefficients
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1 and 2 (AUC=75%). This leads us to the fact that the important informa-
tion that can discriminate the two classes is depicted by the difference of the
light intensity between the [31 -38 sec] and between [0 - 15sec], that is in the
beginning of the curves.

Fourier transform

rank 1 2 3 4 5 6 7 8 9

coefficient 9 8 1 6 5 7 3 4 2

AUC (%) 71 71 71 70 69 68 67 65 64

Table A.19: Normal+Inflammation vs HPV+CIN1. The individual performance of fea-
tures obtained from the DFT, using a 1-NN classifier. The results are from 20 Monte
Carlo runs of 10-fold cross-validation. The features are ranked in descending order based
on their AUC performance.

The results from the individual feature evaluation of the Fourier trans-
form are not very good, as the best performance is reached by coefficient 9
(AUC=71%). Coefficients 8 and 1 give similar results. That means that be-
sides the DC component, other valuable information is observed at 56.5mHz
and 64.6 mHz. The least important information is observed in lower frequen-
cies [8.1 - 24.2 mHz].

Wavelet Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 19 17 9 10 3 23 18 2 22 6 20 1 7 26 4 31

AUC (%) 79 76 75 71 69 69 69 69 68 68 67 67 67 66 65 63

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 24 28 27 14 11 12 21 25 30 8 29 5 16 13 32 15

AUC (%) 63 63 63 62 62 62 62 62 61 60 59 58 58 57 54 52

Table A.20: Normal+Inflammation vs HPV+CIN1. The individual performance of fea-
tures obtained from the DWT, using a 1-NN classifier. The results are from 20 Monte
Carlo runs of 10-fold cross-validation. The features are ranked in descending order based
on their AUC performance.

In general the results we took from the wavelet transformation are not
very high, as well. However, there are some coefficients that achieve better
performance than some others. The highest performance (AUC=79%) is
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achieved by coefficient 19. Coefficient 17 and 9 give also good results (AUC
over 75%) and coefficient 10 with AUC=71%, but the performance of all the
other coefficients were below 70%. We can conclude that in this case that the
most important information lays in the beginning of the curve [0 - 54 secs]
and the important frequency interval seems to be [16.2 - 64.6mHz], rather
than the lower frequencies.

77



Appendix A:

A.1.6 CIN23 vs CIN1

Without Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 12 11 19 14 13 15 10 16 18 21 17 5 22 20 9 26

AUC (%) 97 96 96 95 95 94 94 93 93 93 93 91 90 90 90 89

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 7 6 24 8 27 3 30 25 23 29 31 32 4 28 2 1

AUC (%) 89 88 88 88 87 85 85 85 85 85 83 83 82 80 76 73

Table A.21: CIN23 vs CIN1. The individual performance of features used in 1-NN
classification without feature extraction. The results are from 20 Monte Carlo runs of
10-fold cross-validation. The features are ranked in descending order based on their AUC
performance.

In the following case we try to classify the CIN23 case versus the CIN1
cases. The individual performance of many features produced without trans-
formation is very promising, as the best results were approaching a perfor-
mance of 97% AUC. An important thing to mention is that the coefficients
that produce the best results seem to be those that are related to the first
half part of the curve.

Slope

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 3 2 4 5 6 7 10 30 31 1 23 27 20 12 16 14

AUC (%) 89 88 87 83 80 79 74 73 71 70 69 69 68 68 67 67

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

coefficient 24 29 25 22 15 21 11 19 13 28 9 8 26 18 17

AUC (%) 66 66 66 65 65 64 64 63 63 62 62 61 60 60 58

Table A.22: CIN23 vs CIN1. The individual performance of features obtained from the
slope between two adjacent values, using a 1-NN classifier. The results are from 20 Monte
Carlo runs of 10-fold cross-validation. The features are ranked in descending order based
on their AUC performance.

The individual performance of the coefficients in the slope case, doesn’t
outperform that of the other methods. However, the coefficients 3,2 and 4
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achieve an AUC performance over 87%. The next best coefficients are 5 and
6, with AUC performance over 80%. That leads us to the conclusion that the
most important information lays on changes of the intensity of light between
adjacent samples in the beginning of the curve.

Fourier transform

rank 1 2 3 4 5 6 7 8 9

coefficient 2 1 9 8 6 3 7 4 5

AUC (%) 96 94 94 93 93 93 92 91 91

Table A.23: CIN23 vs CIN1. The individual performance of features obtained from the
DFT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

In the Fourier transform the coefficient performance is very good, since the
least significant coefficients achieves an AUC performance of 90%. Coefficient
2 achieves the highest AUC (96%) and is associated with frequency band of
8.1mHz. Once more, the performance of all the coefficients is almost the
same, without many variations.

Wavelet Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 1 5 18 9 19 3 10 20 32 8 16 4 11 17 28 14

AUC (%) 94 92 90 85 85 82 78 77 76 74 73 73 71 71 71 68

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 30 27 29 31 22 12 7 26 15 21 6 24 13 25 23 2

AUC (%) 68 68 68 68 67 67 66 66 65 64 64 63 60 60 59 55

Table A.24: CIN23 vs CIN1. The individual performance of features obtained from the
DWT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

Coefficient 1 achieves the best AUC performance of 94%. Other coeffi-
cients with good results are 5 and 18, with AUC performance of 92% and
90%, respectively. Coefficient 9, 18 and 3 follow, all of them with perfor-
mance over 82%. It seems that coefficient 1 that is related to the average
of all samples, is adequate to distinguish these two classes very good. The
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next best coefficients are associated with changes of the intensity of light that
happen in the first samples.
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A.1.7 CIN vs all

Without Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 14 10 13 9 8 6 7 1 16 29 25 11 18 2 31 23

AUC (%) 71 70 68 67 67 67 66 65 65 65 64 64 64 64 63 63

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 4 20 12 30 17 28 15 19 3 32 24 5 26 27 22 21

AUC (%) 63 63 62 62 62 61 61 60 60 59 59 58 58 57 57 56

Table A.25: CIN vs All. The individual performance of features used in 1-NN classification
without feature extraction. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

In the following case we try to classify the CIN case among all the others.
When we didn’t use any transformation, the results aren’t very promising,
as the best result is AUC=71%.

Slope

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 3 2 1 4 5 27 6 7 24 8 28 25 13 26 29 17

AUC (%) 85 83 83 78 75 73 70 70 69 67 67 67 66 65 61 61

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

coefficient 23 31 14 30 21 9 20 19 11 10 16 22 15 18 12

AUC (%) 61 61 60 60 60 59 59 58 58 58 57 56 55 54 52

Table A.26: CIN vs All. The individual performance of features obtained from the slope
between two adjacent values, using a 1-NN classifier. The results are from 20 Monte Carlo
runs of 10-fold cross-validation. The features are ranked in descending order based on
their AUC performance.

The individual performance of the coefficients in the slope case, are much
better than that without transformation. Coefficients 3, 2 and 1 achieve
AUC performance over 83%, while coefficient’s 4 performance is at 78%.
That leads us to the conclusion that the most important information lays in
changes of the intensity of light between adjacent samples in the beginning
of the curve. To be more specific the most important samples are those in
the [0 - 31 sec] interval.
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Fourier transform

rank 1 2 3 4 5 6 7 8 9

coefficient 1 3 8 9 7 6 4 5 2

AUC (%) 67 65 65 64 64 63 60 60 60

Table A.27: CIN vs All. The individual performance of features obtained from the
DFT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

In the Fourier transform the coefficients performance is lower than the
previous methods. We can observe that the best coefficient achieves a per-
formance of only AUC=67%. We should also mention that the performance
of all the coefficients is almost the same, without many variations.

Wavelet Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 5 18 9 17 3 19 30 20 10 1 14 29 32 23 7 31

AUC (%) 86 85 84 83 82 76 73 73 73 70 69 68 65 63 63 63

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 15 28 21 22 11 13 12 8 25 27 16 6 4 2 26 24

AUC (%) 62 62 62 61 61 61 61 61 60 60 59 59 59 56 56 55

Table A.28: CIN vs All. The individual performance of features obtained from the
DWT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

The Wavelet Transformation is the one that produced the coefficient with
the best performance. To be more specific, coefficient 5 achieves a perfor-
mance of AUC=86%. Coefficients 18, 9, 17 and 3 that are the next best
coefficients achieve a performance of AUC over 82%. From that we can say
that the most important information lays in the beginning of the curves,
since all the coefficients are associated with changes of the intensity of light
that happen in the first samples.
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A.2 Classification of each class vs. all others

A.2.1 Normal vs all

Without Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 28 27 24 11 19 26 22 20 23 30 31 12 2 29 13 18

AUC (%) 73 71 71 70 70 70 69 69 69 67 67 66 66 66 66 65

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 1 32 10 24 25 5 7 9 21 17 6 3 8 15 16 4

AUC (%) 65 64 64 63 63 63 62 62 62 61 61 60 60 60 59 59

Table A.29: Normal vs All. The individual performance of features used in 1-NN classi-
fication without feature extraction. The results are from 20 Monte Carlo runs of 10-fold
cross-validation. The features are ranked in descending order based on their AUC perfor-
mance.

When no transformation is applied we observe that the results from the
individual features performance aren’t very good as the highest performance
is only AUC=73%. The best features are 28 and 27, that represent the value
of the intensity of light at 217 sec and 209 sec respectively. From that, we
could say that in this classification case the individual values of the intensity
of light in various time slots don’t have the ability to distinguish the normal
cases among all the others.

Slope

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 3 1 2 4 6 23 24 5 25 22 17 26 20 18 21 29

AUC (%) 85 85 84 76 73 72 72 71 71 70 70 69 69 67 66 66

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

coefficient 19 31 13 11 27 14 10 28 7 9 30 16 15 12 8

AUC (%) 66 66 66 65 65 65 65 64 61 61 60 60 58 55 55

Table A.30: Normal vs All. The individual performance of features obtained from the
slope between two adjacent values, using a 1-NN classifier. The results are from 20 Monte
Carlo runs of 10-fold cross-validation. The features are ranked in descending order based
on their AUC performance.
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In the slope case the results we get from the individual feature evaluation
are much better than those without transformation. In fact, coefficients 3, 1
and 2 achieve AUC performance over 85%. That leads us to the conclusion
that the difference of the intensity of light between [0 - 15.5 sec] is very
crucial.

Fourier transform

rank 1 2 3 4 5 6 7 8 9

coefficient 1 9 3 6 8 5 7 2 4

AUC (%) 67 65 64 63 63 63 61 58 57

Table A.31: Normal vs All. The individual performance of features obtained from the
DFT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

The results of the individual feature evaluation from the FFT are quite
low compared to the other methods, since the best one achieved the poor
performance of AUC=67%. This coefficient is the one that represent the DC
component.

Wavelet Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 9 18 17 5 3 7 19 28 27 25 2 10 14 11 4 31

AUC (%) 86 85 85 81 81 71 71 71 70 70 69 68 68 68 67 67

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 8 27 26 23 32 12 1 22 13 30 20 21 6 15 16 24

AUC (%) 67 67 66 66 66 65 65 65 65 65 61 61 60 60 59 58

Table A.32: Normal vs All. The individual performance of features obtained from the
DWT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

In the wavelet transformation the individual performance of some features
is high enough. More specifically features 9, 18 and 17 achieved AUC perfor-
mance over 85%, with coefficient 9 achieving a performance of AUC∼86%.
From that we can say that the most important information lays in the be-
ginning of the curve and especially in the interval between [0-23.2sec]. The
most important frequencies seem to be the higher ones than the lower.
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A.2.2 Inflammation vs all

Without Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 17 2 23 9 16 32 18 11 10 13 4 31 3 20 5 12

AUC (%) 82 80 79 77 77 77 77 77 76 76 75 75 75 75 75 75

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 15 14 19 30 22 6 28 27 1 24 7 26 8 21 25 29

AUC (%) 74 74 74 74 74 73 73 73 73 73 73 72 71 71 70 68

Table A.33: Inflammation vs All. The individual performance of features used in 1-NN
classification without feature extraction. The results are from 20 Monte Carlo runs of
10-fold cross-validation. The features are ranked in descending order based on their AUC
performance.

In the case where we try to classify the Inflammation cases among all
others and we didn’t use any transformation at all, we can’t find many time
points able to discriminate efficiently the two classes. Most of the coeffi-
cients give similar results, with coefficient 17 achieving the best performance
(AUC=82%). This coefficient depicts the intensity of light at 132 sec, that
is approximately in the middle of the curve.

Slope

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 1 4 3 19 5 14 11 2 18 24 16 10 28 8 13 12

AUC (%) 76 74 71 71 70 69 69 67 67 66 65 64 64 63 63 63

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

coefficient 27 15 6 9 7 17 31 30 26 29 21 20 22 25 23

AUC (%) 61 61 61 60 60 60 59 59 59 58 58 56 55 53 52

Table A.34: Inflammation vs All. The individual performance of features obtained from
the slope between two adjacent values, using a 1-NN classifier. The results are from 20
Monte Carlo runs of 10-fold cross-validation. The features are ranked in descending order
based on their AUC performance.

The results that are obtained by the slope transformation aren’t very
promising, as the coefficient with the best performance achieves only AUC=75%.
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The two best coefficients with performance AUC=75% are coefficient 1 and
4, that means that the most valuable information lays in changes that happen
in the intensity of light at the beginning of the curves.

Fourier transform

rank 1 2 3 4 5 6 7 8 9

coefficient 4 3 1 8 2 5 9 6 7

AUC (%) 84 83 82 81 81 79 77 77 75

Table A.35: Inflammation vs All. The individual performance of features obtained from
the DFT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

Most of the coefficients that are extracted from the Fourier Transforma-
tion give very good results. In fact the best results are given by coefficient
4 and 3, with AUC performance over 83%. These coefficients are related to
frequencies 16.1 mHz and 24.2 mHz.

Wavelet Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 17 2 1 9 3 26 18 19 14 22 13 5 4 6 15 23

AUC (%) 75 75 75 72 71 71 71 70 70 69 69 68 66 66 63 62

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 30 16 24 10 25 8 20 12 21 32 31 27 7 11 29 28

AUC (%) 61 60 60 60 60 60 60 60 60 59 57 57 57 56 53 53

Table A.36: Inflammation vs All. The individual performance of features obtained from
the DWT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-
fold cross-validation. The features are ranked in descending order based on their AUC
performance.

In this classification case the individual performance of the features is
quite poor, since the best AUC performance is only 75%. The best coeffi-
cients are 17, 2 and 1 with performance 75% following by coefficient 9, with
performance 72%. From that we can say that the most important informa-
tion includes either all the samples of the curve or the ones that are in the
beginning.
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A.2.3 HPV vs all

Without Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 25 11 26 13 7 24 30 28 10 16 22 14 18 31 15 21

AUC (%) 74 74 74 72 72 71 70 70 70 69 68 66 66 66 66 66

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 23 32 29 20 12 27 1 6 17 4 9 19 3 8 2 5

AUC (%) 66 66 66 66 66 65 65 64 63 63 63 61 60 59 58 56

Table A.37: HPV vs All. The individual performance of features used in 1-NN classifi-
cation without feature extraction. The results are from 20 Monte Carlo runs of 10-fold
cross-validation. The features are ranked in descending order based on their AUC perfor-
mance.

For classifying HPV cases versus all the others without using any trans-
formation, the individual feature performance don’t give very promising re-
sults, since the best result is provided by coefficient 25 with performance
AUC=75%.

Slope

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 2 7 5 1 6 9 8 3 4 13 12 16 19 14 29 10

AUC (%) 75 75 74 73 70 70 69 69 68 67 65 64 64 63 62 62

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

coefficient 11 15 20 24 27 28 30 25 23 17 21 18 22 31 26

AUC (%) 62 60 60 59 59 58 58 57 57 55 54 53 52 52 51

Table A.38: HPV vs All. The individual performance of features obtained from the slope
between two adjacent values, using a 1-NN classifier. The results are from 20 Monte Carlo
runs of 10-fold cross-validation. The features are ranked in descending order based on
their AUC performance.

In the slope case, the individual feature performance is similar to that
without using any transformation at all. In particular feature 2 and 7 achieve
a performance of AUC=75%. Features 5, 1 and 6 follow with performance
over 70%. That leads us to the conclusion that the most important informa-
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tion in order to distinguish the HPV cases versus all the others lays in the
beginning of the curve.

Fourier transform

rank 1 2 3 4 5 6 7 8 9

coefficient 1 7 5 8 6 9 4 3 2

AUC (%) 73 72 71 71 71 71 71 64 63

Table A.39: HPV vs All. The individual performance of features obtained from the
DFT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

In the Fourier transform we can observe that the best results are given
by the DC component coefficient, while the next best results by coefficients
that represent higher frequencies. In this case the results aren’t high enough
as well, with the best performance being AUC=73%.

Wavelet Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 3 9 20 10 19 17 6 21 18 5 23 2 1 11 4 26

AUC (%) 78 76 76 75 74 72 71 70 69 68 67 66 66 65 64 63

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 31 8 22 7 24 12 30 29 14 15 28 16 25 13 27 32

AUC (%) 63 62 62 60 59 59 59 58 58 57 56 56 55 55 53 52

Table A.40: HPV vs All. The individual performance of features obtained from the
DWT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

In the Wavelet Transformation case, there were some coefficients that
give the best results among every other transformation that tries to classify
the HPV cases versus all the others. More precisely coefficient 3 achieves an
AUC performance over 78%. Coefficients 9, 20, 10 and 19 give quite good
results with AUC performance over 75%. This means that the most essential
information lays in the beginning of the curve.
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A.2.4 CIN1 vs all

Without Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 10 13 11 14 12 9 2 18 3 8 6 16 26 1 15 20

AUC (%) 90 86 85 85 84 84 82 81 80 80 80 79 79 79 79 79

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 19 17 30 31 7 29 4 24 27 22 21 25 23 32 28 5

AUC (%) 79 79 79 78 78 77 77 77 76 76 76 74 74 73 73 73

Table A.41: CIN1 vs All. The individual performance of features used in 1-NN classifi-
cation without feature extraction. The results are from 20 Monte Carlo runs of 10-fold
cross-validation. The features are ranked in descending order based on their AUC perfor-
mance.

In the case where we try to classify the CIN1 case versus all the others the
results are much better. In fact when no transformation is applied, coefficient
10 achieves a performance of AUC=90%. The most important in this case
is the fact that coefficients 9-14 give very good results, most of them over
84%. Also, we should mention that the most valuable information lays in
the interval [62 - 108 sec].

Slope

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 3 6 5 10 7 25 27 24 26 31 2 8 30 23 15 9

AUC (%) 75 74 71 70 69 68 66 66 65 65 65 63 63 62 62 62

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

coefficient 20 14 11 4 18 12 21 13 16 19 29 1 28 17 22

AUC (%) 62 62 62 61 61 60 59 59 59 59 58 57 56 55 53

Table A.42: CIN vs All. The individual performance of features obtained from the slope
between two adjacent values, using a 1-NN classifier. The results are from 20 Monte Carlo
runs of 10-fold cross-validation. The features are ranked in descending order based on
their AUC performance.

In the slope case the results in the individual feature evaluation aren’t
as promising as in the case without transformation. The best results are
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obtained by features 3, 5 and 6, all of them with performance over 71%. It is
remarkable that the best results come from coefficients that depict changes
in the intensity of light between the beginning of the curve. Coefficient 3
provides the best result with a performance of AUC=75%.

Fourier transform

rank 1 2 3 4 5 6 7 8 9

coefficient 1 2 8 9 3 7 4 5 6

AUC (%) 84 84 80 79 79 79 77 77 77

Table A.43: CIN1 vs All. The individual performance of features obtained from the
DFT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

In the Fourier Transform there are also two coefficients that give very
good results. In general, most of the coefficients give good results, since
the worst performance is over 76%. The two best coefficients are 1 and 2
with performance AUC=84%. The highest performance is achieved by the
coefficient that represents the DC component.

Wavelet Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 1 18 19 20 5 16 14 10 7 3 29 30 13 32 12 15

AUC (%) 84 75 72 70 70 69 68 68 68 68 68 66 66 66 65 64

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 8 28 11 6 24 22 21 4 9 26 23 27 31 17 25 2

AUC (%) 64 64 64 63 62 61 61 61 61 60 59 59 59 57 55 55

Table A.44: CIN1 vs All. The individual performance of features obtained from the
DWT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

In the wavelet transformation, coefficient 1 achieves the highest perfor-
mance of AUC=84%, while the next best result is at AUC=75%. This is a
significant difference and from that we can assume that coefficient 1 is very
important in order to distinguish the CIN1 class versus all the others. Coeffi-
cient 1 is the average of all samples and that means that a global information
of all the samples is very essential in this classification.
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A.2.5 CIN2 vs all

Without Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 32 16 14 21 11 31 17 13 28 8 25 29 27 19 30 15

AUC (%) 84 81 81 81 80 78 78 78 78 77 77 76 76 76 76 76

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 18 26 10 23 20 24 7 12 6 9 5 22 3 4 2 1

AUC (%) 76 75 75 74 73 72 72 71 71 69 66 66 62 62 61 60

Table A.45: CIN2 vs All. The individual performance of features used in 1-NN classifi-
cation without feature extraction. The results are from 20 Monte Carlo runs of 10-fold
cross-validation. The features are ranked in descending order based on their AUC perfor-
mance.

In the following case we try to classify the CIN2 cases versus all the others.
The best results are obtained by coefficient 32, that is the last sample of the
curve and achieves a performance of AUC=84%. By studying the behavior
of the coefficients we can say that the most valuable information for this class
lays in the middle and the ending of the curve.

Slope

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 10 12 7 11 4 3 13 16 2 9 15 8 14 6 5 28

AUC (%) 86 84 81 76 75 75 74 73 73 73 72 72 70 69 69 68

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

coefficient 1 29 23 18 25 20 24 17 27 22 30 26 21 19 31

AUC (%) 67 61 59 57 56 56 56 55 55 55 54 54 52 51 51

Table A.46: CIN2 vs All. The individual performance of features obtained from the slope
between two adjacent values, using a 1-NN classifier. The results are from 20 Monte Carlo
runs of 10-fold cross-validation. The features are ranked in descending order based on
their AUC performance.

The results that obtained by the slope case are very good and in fact this
transformation produces the coefficient with the best discrimination ability
among all the others. Coefficient 10 achieves a performance of AUC=86%.
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That means that the difference of the intensity of light between 77 sec and
69 sec is essential in this classification. Other coefficients with remarkable
results are 12 and 7, both of them with AUC performance over 80%. It
should be mention that the changes in the last samples of the curve don’t
produce very good results. Bu studying the behavior of all the coefficients
we could say that in this case the best results are achieved by coefficient that
depict differences in the middle part of the curve.

Fourier transform

rank 1 2 3 4 5 6 7 8 9

coefficient 1 6 2 5 7 4 9 3 8

AUC (%) 83 83 79 77 76 76 74 73 72

Table A.47: CIN2 vs All. The individual performance of features obtained from the
DFT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

In the Fourier Transformation coefficients 1 and 6 give the best results,
both with AUC performance over 82%. That means that the DC component
and frequency of 40.4 mHz are essential in order to discriminate this class.
It should be mentioned that all the coefficients produced by the Fourier
transform give adequate results, all of them with an AUC performance over
72%.

Wavelet Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 3 11 20 5 1 22 6 23 18 10 21 2 24 9 19 12

AUC (%) 85 82 81 81 80 76 76 75 75 74 73 73 72 68 68 67

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 17 31 8 28 4 29 13 25 30 27 16 14 7 26 15 32

AUC (%) 66 62 61 61 57 57 57 56 55 53 53 52 51 51 51 51

Table A.48: CIN2 vs All. The individual performance of features obtained from the
DWT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

In the wavelet transformation there are some features that achieve very
good performance. These are coefficient 3, 11, 20, 5 and 1, all of them
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with AUC performance over 80%. Coefficient 3 give the best results with
a performance of AUC=85%. All these coefficients are related to changes
of the intensity of light that occur in the early parts of the middle of the
curve. These results are in consistency with those obtained by the previous
transformations. It is remarkable that coefficient 1 that is the average of all
samples achieves quite good performance.
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A.2.6 CIN3 vs all

Without Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 14 12 10 6 8 15 13 9 11 7 19 17 25 16 18 21

AUC (%) 77 76 76 75 75 74 74 74 73 73 73 73 72 72 71 71

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 5 32 20 4 32 30 22 29 27 24 3 26 31 2 1 28

AUC (%) 71 69 69 68 67 67 67 67 67 66 65 65 61 61 60 60

Table A.49: CIN3 vs All. The individual performance of features used in 1-NN classifi-
cation without feature extraction. The results are from 20 Monte Carlo runs of 10-fold
cross-validation. The features are ranked in descending order based on their AUC perfor-
mance.

In the following case we try to classify the CIN3 case versus all the others.
When we don’t use any transformation, the results aren’t very promising, as
the best results are approaching a performance of AUC=76%. An important
thing to mention is that the coefficients that produce the best results are in
the first half part of the curve.

Slope

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 3 2 4 1 5 29 28 30 26 31 27 25 21 23 19 24

AUC (%) 89 88 85 81 78 77 77 76 75 74 74 73 71 71 69 69

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

coefficient 20 13 6 22 17 7 14 16 18 8 11 9 12 15 10

AUC (%) 68 67 67 66 65 64 64 64 61 60 60 59 59 58 57

Table A.50: CIN3 vs All. The individual performance of features obtained from the slope
between two adjacent values, using a 1-NN classifier. The results are from 20 Monte Carlo
runs of 10-fold cross-validation. The features are ranked in descending order based on
their AUC performance.

The individual performance of the coefficients in the slope case, is much
better than that without transformation. There are four coefficients that
achieve an AUC performance over 80%. Coefficient 3 and 2 achieve the ex-
cellent performance of AUC=89%. Coefficient 4 performance is at 85% while
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coefficient 1 at 81%. That leads us to the conclusion that the most important
information lays on changes of the intensity of light between adjacent sam-
ples in the beginning of the curve. To be more specific the most important
samples are those in the [0 - 31 sec] interval.

Fourier transform

rank 1 2 3 4 5 6 7 8 9

coefficient 4 1 2 6 5 8 9 3 7

AUC (%) 76 75 74 74 73 73 72 72 70

Table A.51: CIN3 vs All. The individual performance of features obtained from the
DFT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

In the Fourier transform the coefficient performance is lower than the
previous methods. We can observe that the best coefficient achieves a per-
formance of 76%. We should also mention that the performance of all the
coefficients is almost the same, without many variations. The coefficient with
the best performance is associated with frequency 24.2 mHz.

Wavelet Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 5 9 18 17 4 19 31 16 8 1 32 30 3 14 15 29

AUC (%) 92 89 89 81 78 77 77 77 76 75 74 74 73 73 73 72

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 27 28 7 26 13 10 23 25 20 12 21 6 2 22 24 11

AUC (%) 72 71 69 69 68 68 67 64 64 62 61 60 60 59 59 59

Table A.52: CIN3 vs All. The individual performance of features obtained from the
DWT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

The Wavelet Transformation produces the coefficient with the best perfor-
mance. To be more specific, coefficient 5 achieves a performance of AUC=92%.
Coefficient 9 and 18 achieve a performance of AUC=89%, while coefficient
17 comes fourth with a performance of 81%. From that we can say that the
most important information lays in the beginning of the curves, since all the
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coefficients are associated with changes of the intensity of light that happen
in the first samples.
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A.3 DWT classification of each class vs. all

others (185 sec)

Since the images that we use in the mapping stage contain information up
to 185 sec only, we will provide the individual performance of the wavelet
coefficients for each class versus all others with the new format.

Wavelet Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 5 9 17 18 3 19 15 10 16 30 32 4 8 29 7 14

AUC (%) 88 88 86 85 81 77 75 75 73 72 70 69 69 69 68 68

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 31 28 1 20 13 2 26 25 22 27 11 21 12 23 24 6

AUC (%) 68 67 66 65 65 64 64 64 63 62 61 61 60 58 55 53

Table A.53: Normal vs All. The individual performance of features obtained from the
DWT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

Wavelet Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 1 17 16 18 19 3 10 28 32 5 2 27 11 25 24 26

AUC (%) 87 76 75 75 72 72 72 70 69 69 68 67 66 65 65 65

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 7 14 4 29 6 9 22 23 8 31 21 30 20 12 15 13

AUC (%) 65 64 64 63 62 62 61 60 60 59 59 59 58 58 58 57

Table A.54: Inflammation vs All. The individual performance of features obtained from
the DWT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-
fold cross-validation. The features are ranked in descending order based on their AUC
performance.

We can see that each class is best described by different coefficients. The
individual performance of the best coefficient per case is high enough, varying
between 80% (HPV vs. All) and 90% (CIN3 vs. All). More precisely,
considering the normal case, coefficients 5 and 9 can identify this class versus
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Wavelet Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 3 6 9 11 17 2 21 18 22 20 10 5 23 1 7 4

AUC (%) 80 78 77 77 75 75 74 72 71 71 70 68 68 67 67 65

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 26 14 19 25 32 24 13 12 27 29 15 31 16 30 28 8

AUC (%) 65 65 65 64 64 63 62 61 60 59 58 58 56 56 53 52

Table A.55: HPV vs All. The individual performance of features obtained from the
DWT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

Wavelet Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 1 12 11 4 20 21 5 25 3 18 31 10 16 27 7 19

AUC (%) 84 73 72 70 70 69 68 68 67 67 67 67 66 65 65 65

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 13 28 15 23 24 32 17 9 30 8 29 26 6 2 14 22

AUC (%) 64 64 64 64 63 62 60 60 59 58 58 58 57 57 55 52

Table A.56: CIN1 vs All. The individual performance of features obtained from the
DWT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

all the others with AUC performance 88%. As for the Inflammation case,
coefficient 1 is the most suitable with performance 87%. Coefficient 3 can
discriminate HPV cases versus all the others with an AUC performance of
80%. Considering the CIN1 case, coefficient 1 is the most suitable once
more, with a performance of 84%. Coefficients 2 and 23 have the potential
to identify CIN2 cases with 84% performance. Finally, coefficient 5 achieves
a performance of 90% for distinguishing CIN3 cases.
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Wavelet Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 2 23 3 19 12 26 21 6 11 1 22 13 18 5 7 16

AUC (%) 84 84 79 78 77 77 77 76 76 75 75 73 72 72 72 70

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 10 24 9 31 17 25 15 4 20 27 14 28 32 29 8 30

AUC (%) 70 69 67 63 62 62 62 61 60 60 60 60 58 53 52 52

Table A.57: CIN2 vs All. The individual performance of features obtained from the
DWT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.

Wavelet Transformation

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

coefficient 5 18 3 9 19 10 17 1 16 20 30 4 8 28 32 15

AUC (%) 90 89 86 86 85 82 82 75 72 71 71 71 70 67 67 67

rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

coefficient 31 29 2 12 13 25 23 27 6 11 14 21 24 7 26 22

AUC (%) 66 65 65 64 64 63 62 62 60 60 60 60 60 59 55 55

Table A.58: CIN3 vs All. The individual performance of features obtained from the
DWT, using a 1-NN classifier. The results are from 20 Monte Carlo runs of 10-fold cross-
validation. The features are ranked in descending order based on their AUC performance.
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Appendix B presents the mapping of the rest patients. The images are
in the same format as the one described in Chapter 5. There are mappings
of 5 patients with high grade lesions, 1 patient with low grade lesions and
1 patient with normal tissue. The biopsy points are indicated with green
circles in high grade and low grade cases and with gray circle in the normal
case. For two high grade patients we don’t have information about the biopsy
points, however we will present the colormap of the images.

B.1 High Grade Patients

Patient 103

By studying the mapped images of patient 103 we could say that the criti-
cal regions where the biopsy points are taken, are classified correctly by all
methods. There are some differences between the mapping produced when
we use 32 features and the one by 5. However, the critical areas are not
misclassified.

(a) Pre acetic acid image (b) Post acetic acid image

Figure B.1: Pre acetic and post acetic image of patient 103 with high grade lesions. Figure
(a) shows the pre-acetic image (b) the image of the patient at 185 sec after the application
of the acid.
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(a) Mapping with 5 dwt features

(b) Mapping with 32 dwt features

Figure B.2: Mapping of patient 103 with high grade lesions. Figures (a) and (b) show the
discrimination between all available classes by using the 5 selected dwt coefficients and all
the 32 dwt features, respectively. The legend on the top-right area of the figure indicates
the colors used to describe each class.
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(a) Mapping of three classes

(b) Mapping with Balas method

Figure B.3: Mapping of patient 103 with high grade lesions. Figure (a) shows the dis-
crimination between high grade, low grade lesions and normal tissue and (b) illustrates
the mapping produced by Balas method.
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Patient 106

The case of patient 106 is a little different. There are four biopsy points
taken, but our method could classify as high grade only the three of them.
But we should be mentioned that this area is misclassified as low grade by
C. Balas method as well. This area is classified as HPV when we use the
5 selected features and as Normal when we use all the 32 features. All the
other biopsy areas are clearly seen that are high grade lesions. Comparing
the images provided by the dwt mapping and the one by Balas method we see
that in the two biopsy points at the top of the image, the high grade lesions
are better visualized by the dwt mapping. The southeast biopsy point is
visualized the same by both methods.

(a) Pre acetic acid image (b) Post acetic acid image

Figure B.4: Pre acetic and post acetic image of patient 106 with high grade lesions. Figure
(a) shows the pre-acetic image (b) the image of the patient at 185 sec after the application
of the acid.
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(a) Mapping with 5 dwt features

(b) Mapping with 32 dwt features

Figure B.5: Mapping of patient 106 with high grade lesions. Figures (a) and (b) show the
discrimination between all available classes by using the 5 selected dwt coefficients and all
the 32 dwt features, respectively. The legend on the top-right area of the figure indicates
the colors used to describe each class.
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(a) Mapping of three classes

(b) Mapping with Balas method

Figure B.6: Mapping of patient 106 with high grade lesions. Figure (a) shows the dis-
crimination between high grade, low grade lesions and normal tissue and (b) illustrates
the mapping produced by Balas method.
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Patient 107

In the case of patient 107, we can see that there is a wide high grade region.
Our method is able to classify correct all the biopsy areas and gives similar
results with C. Balas method. The mapping of the image when we use 32
and 5 features is the same for the critical areas.

(a) Pre acetic acid image

(b) Post acetic acid image

Figure B.7: Pre acetic and post acetic image of patient 107 with high grade lesions. Figure
(a) shows the pre-acetic image (b) the image of the patient at 185 sec after the application
of the acid.
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(a) Mapping with 5 dwt features

(b) Mapping with 32 dwt features

Figure B.8: Mapping of patient 107 with high grade lesions. Figures (a) and (b) show the
discrimination between all available classes by using the 5 selected dwt coefficients and all
the 32 dwt features, respectively. The legend on the top-right area of the figure indicates
the colors used to describe each class.
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(a) Mapping of three classes

(b) Mapping with Balas method

Figure B.9: Mapping of patient 107 with high grade lesions. Figure (a) shows the dis-
crimination between high grade, low grade lesions and normal tissue and (b) illustrates
the mapping produced by Balas method.
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Patient 110

About patient 110, there are no biopsy points marked in the images. How-
ever, we can see clearly the areas that seem to have high grade lesions. The
same can be observed at the mapped image provided by Balas method.

(a) Pre acetic acid image

(b) Post acetic acid image

Figure B.10: Pre acetic and post acetic image of patient 110 with high grade lesions.
Figure (a) shows the pre-acetic image (b) the image of the patient at 185 sec after the
application of the acid.

110



Appendix B:

(a) Mapping with 5 dwt features

(b) Mapping with 32 dwt features

Figure B.11: Mapping of patient 110 with high grade lesions. Figures (a) and (b) show the
discrimination between all available classes by using the 5 selected dwt coefficients and all
the 32 dwt features, respectively. The legend on the top-right area of the figure indicates
the colors used to describe each class.
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(a) Mapping of three classes

(b) Mapping with Balas method

Figure B.12: Mapping of patient 110 with high grade lesions. Figure (a) shows the dis-
crimination between high grade, low grade lesions and normal tissue and (b) illustrates
the mapping produced by Balas method.
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Patient 114

Patient 114 is another case where no biopsy points are marked in the images.
All mapped images show areas with high grade lesions.

(a) Pre acetic acid image

(b) Post acetic acid image

Figure B.13: Pre acetic and post acetic image of patient 114 with high grade lesions.
Figure (a) shows the pre-acetic image (b) the image of the patient at 185 sec after the
application of the acid.
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(a) Mapping with 5 dwt features

(b) Mapping with 32 dwt features

Figure B.14: Mapping of patient 114 with high grade lesions. Figures (a) and (b) show the
discrimination between all available classes by using the 5 selected dwt coefficients and all
the 32 dwt features, respectively. The legend on the top-right area of the figure indicates
the colors used to describe each class.
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(a) Mapping of three classes

(b) Mapping with Balas method

Figure B.15: Mapping of patient 114 with high grade lesions. Figure (a) shows the dis-
crimination between high grade, low grade lesions and normal tissue and (b) illustrates
the mapping produced by Balas method.
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B.2 Low Grade Patient

Patient 86

About patient 86, we can see that three of four biopsy points are classified
as low grade cases. However, the area around the southeast biopsy point is
classified as high grade with the wavelet transformation method. This area
is classified correctly as low grade by Balas method.

(a) Pre acetic acid image

(b) Post acetic acid image

Figure B.16: Pre acetic and post acetic image of patient 86 with low grade lesions. Figure
(a) shows the pre-acetic image (b) the image of the patient at 185 sec after the application
of the acid.
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(a) Mapping with 5 dwt features

(b) Mapping with 32 dwt features

Figure B.17: Mapping of patient 86 with low grade lesions. Figures (a) and (b) show the
discrimination between all available classes by using the 5 selected dwt coefficients and all
the 32 dwt features, respectively. The legend on the top-right area of the figure indicates
the colors used to describe each class.
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Figure B.18: Mapping of patient 86 with high grade lesions. Figure (a) shows the dis-
crimination between high grade, low grade lesions and normal tissue and (b) illustrates
the mapping produced by Balas method.
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B.3 Normal Patient

Patient 12

Patient 12 represents a normal case. We can see that the biopsy point is
classified correctly by all the available methods.

(a) Pre acetic acid image

(b) Post acetic acid image

Figure B.19: Pre acetic and post acetic image of patient 12 with normal tissue. Figure (a)
shows the pre-acetic image (b) the image of the patient at 185 sec after the application of
the acid.
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(a) Mapping with 5 dwt features

(b) Mapping with 32 dwt features

Figure B.20: Mapping of patient 106 with high grade lesions. Figures (a) and (b) show the
discrimination between all available classes by using the 5 selected dwt coefficients and all
the 32 dwt features, respectively. The legend on the top-right area of the figure indicates
the colors used to describe each class.
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Figure B.21: Mapping of patient 12 with normal tissue produced by Balas method.
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