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Abstract

This thesis addresses the estimation of geometric anisotropy parameters from
scattered spatial data obtained from environmental surveillance networks.
Environmental monitoring applications aim to provide real-time maps of air,
ground and water pollution in an automatic way. Maps illustrate where
pollution is coming form and where it is headed. Such information enables
public authorities to decide more quickly on appropriate action. Estimates
of geometric anisotropy improve the accuracy of spatial interpolation pro-
cedures that aim to generate those maps. The anisotropy parameters in
two dimensions involve the orientation angle of the principal anisotropy axes
and the anisotropy ratio (i.e., the ratio of the principal correlation lengths).
The approach that we employ is based on the Covariance Hessian Identity
(CHI) method [ , ], which links the mean gradient tensor with the
Hessian matrix of the covariance function | . We extend CHI to clus-
tered CHI (CCHI) for application in scattered data that include patches of
extreme values and clusters of varying sampling density. We compare the
performance of CHI and CCHI by means of synthetic datasets that involve
different spatial distributions and demonstrate the importance of segregation
for scattered data. We compare the performance of CCHI and various un-
supervised clustering algorithms with respect to anisotropy estimation. The
proposed clustering method CCHI marginally outperforms the competition.
In addition, CCHI has minimum parameter requirements. We investigate the
impact of CHI anisotropy estimation on the performance of spatial interpo-
lation by means of ordinary kriging using a data set that involves both real
background radioactivity measurements and a simulated release of a radioac-
tive plume. Finally we discuss and briefly examine the application of CHI
in combination with a moving window procedure to derive local estimates of
anisotropy. The motivation for this extension of CHI is its application to
Magnetic Resonance Imaging data.
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Outline

Introduction A general introduction about geostatistics and its possible
applications

Classic Geostatistics In the present chapter we examine some of the fun-
damental properties of Random Fields (RF), present the main concepts of
RF anisotropy, and discuss its classic estimation via directional variograms.
We introduce conditions required for the existence of a random field. Proper-
ties such as stationarity, differentiability and ergodicity are briefly discussed.
Moreover, the main types of anisotropy presented in the geostatistical liter-
ature are shortly described in terms of directional variograms.

Inference Methods In this chapter we present some of the inference meth-
ods for anisotropy parameter estimation and unsupervised clustering. Three
methods presented in this section are used to investigate the data sets in chap-
ters 5 and 6. First, the Covariance Hessian Identity (CHI ) method is briefly
described. The C'HI method is at the core of the Clustered C'HI algorithm
which is presented in the next chapter. Second, three different clustering
methods such as k-means, x-means and DBSCAN are described. These clus-
tering algorithms are used and compared in chapters five and six [ch. 5,ch. 6].
Some of them could be used instead of the clustering algorithm presented in
CCHI under in certain cases.

Clustered CHI Anisotropy Estimation method-CCHI This chapter
presents in detail the methodologies proposed for anisotropy estimation. The
procedures involved focus on the following tasks: (i) segmentation of the
sensor network in domains of normal and extreme values (ii) subsequent
partitioning of each domain into clusters of similar sampling density (iii)
estimation of anisotropy parameters in each cluster and (iv) aggregation of
the cluster parameters into coarse-grained anisotropy parameters valid in
each domain. The procedures are described below using the GDR data set
for illustration.

Anisotropy Analysis of Synthetic Data In this chapter we will present
synthetic data-sets used for the performance analysis of CHI and CCHI algo-
rithms. The synthetic scenarios are realizations of Gaussian Random Fields
(GRF) generated via the Fast Fourier Transform methodology described later
in subsection 1. In addition some of the on-grid GRFs are sub-sampled in
order to generate scatter data-sets. Several realizations of these scattered



data-sets are combined in order to generate clusters with various anisotropy
parameters as presented in subsection 2. Synthetic scattered sensor networks
are used to validate CCHI algorithm performance.

Anisotropy Analysis of Real Data Two different real-case scenarios
provided by the Furopean Radiological Exchange Platform (EURDEP) Gamma
Dose Rate (GDR) network are described later in this chapter. First, the
rain-event scenario which monitors radioactivity over the European conti-
nent during episodes of heavy rainfalls. Second, worst-case scenario monitors
the GDR over Europe several hours after a simulated nuclear accident at a
nuclear facility in Belgium. The performance of CCHI is compared to other
clustering algorithms in terms of anisotropy parameter estimation. In addi-
tion, a cross- validation analysis for the accuracy of the worst case scenario
is presented here, along with prediction maps generated by means of kriging.

Application of CHI method on MRI data In this chapter we inves-
tigate the application of CHI on Magnetic Resonance Imaging (MRI) data.
Nowadays medical imaging applications increasingly attract the interest of
the scientific community. MRI data have proved useful for imaging brain
diseases. In the following chapter, we present some of the basic data types
used in the literature and their connection to anisotropy estimation. We
discuss the application of C'HI to various data types. Finally we present ap-
plication of CHI on MRI data, by means of a moving window procedure, to
provide local estimates of water concentration anisotropy . Water concentra-
tion in the brain structure is highly connected to the diffusion of cancer cell’s,
therefor local estimates of anisotropy may provide useful information on tu-
mor modeling. Methods developed in Geostatistics aim to solve problems
dealing with the characterization of spatial and spatio-temporal phenomena.
Most of these phenomena emerge in scientific fields as mining, hydrology,
meteorology, oceanography and environmental monitoring systems. On one
hand, most observations are distributed over macro or earth-scale domains.
On the other hand, the underlying scale is not a requirement for applying
Geostatistics.

Conclusions Conclusions

Appendix A Some preliminary work about extension of CHI on three
dimensions



Appendix B Tutorial on Anisotropy estimation using R source code that
we developed for the Intamap R package.

Appendix C Help files for the R source code function that exist in Intamap
R package
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Table 1: Notation

Symbol Explanation

® Kronecker product

[l Norm of vector

|- Absolute value of scalar
['] Expected value

Partial derivative

Natural gradient

Sample average of x
Weighted sample average of x

Sample space
Sample point €

E
0
\Y
T Frequency space of x
T
x
Q
w
S Location space, usually S = R?

R™ N-dimensional euclidean Space

Prob{-} Probability of an event

S; Position, vector at location ¢

T Distance ||s; — s;||2 in original space

h Distance s; — s; in transformed space

x,X (81, 82) | Vector x,Value of X at location(sy, s2)

X Multi-dimensional matrix

XT Transpose of X

X(s) Random field, process

X(s,w),Xs | Realization of X

Ry Ratio of correlation lengths 1 over 1

0 Angle between major correlation length and x axes
Cy Covariance matrix of process X (s)

H Hessian matrix

X(f), C(k) | Spectral Density and Covariance Function

Qij, Qij Average sample derivatives and its estimate over i and j direction
Aff Equal to Qij for cluster ¢ which is part of domain g
_fj Weighted average over domain g of cluster slopes Qij
Wg:e Weight of cluster ¢ for Q_fj estimation over domain g
L? # of nodes on rectangular lattice

N, # of sensor locations inside the cluster ¢

N, # of sensors inside domain g

N, # of sensors used as Training set

N, # of sensors used as Validation set
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Table 2. Abbreviations

Abbreviation | Explanation

RF Random Field

GRF Gaussian Random Field

SRF Stationary Random Field

BLUP Best Linear Unbiased Predictor

CTI Covariance Tensor Identity

CHI Covariance Hessian Identity

CCTI Clustered Covariance Tensor Identity

CCHI Clustered Covariance Hessian Identity

GKP Gradient Kronencker Tensor Product

SDG Sampling Density Grid

SDM Sampling Density Matrix

SSD Similar Sampling Density (refer to clusters)

FFT Fast Fourier Transform

IFFT Inverse Fast Fourier Transform

et al and others

wrt with respect to

ie “id est”, that is

AD Anisotropic covariance function on multiple-cluster Domain analysis
ID Isotropic covariance function on multiple-cluster Domain analysis
AS Anisotropic covariance function on Single cluster analysis
IS Isotropic covariance function with Single cluster analysis




Chapter 1

Introduction

Accuracy has always been the goal in all scientific fields that involve estima-
tion and prediction problems. From the statistical point of view, accurate
estimation is translated into finding the best predictor of an unknown random
variable of scientific interest.

In spatial statistics, the optimum linear solution to this problem is pro-
vided by the Best Linear Unbiased Predictor (BLUP). BLUP has been devel-
oped independently in different scientific fields. Hence, BLUP is often given
different names, such as Gaussian process regression or Kolmogorov-Wiener
prediction. In geostatistics the spatial BLUP is known as Kriging. Various
researchers in the early 60s developed methods similar to Kriging. Accord-
ing to Cressie | | only the independent studies of Matheron in France
[ | and Gandin in Russia | ] incorporate all the components that
define the method known today as Kriging.

The main difference between Kriging and the original BLUP, presented
earlier by Yaglom in | |, is the dependence of the covariance function on
the spatial locations of the data. In addition, given a spatial process X (s),
this question arises: How does X (s) change over space? Anisotropy partly
answers this question. Anisotropy describes how a spatial process changes
along different directions. Ecker in | | states that, when modeling the
correlation structure of a spatial process X (s), the assumption of identical
properties in all directions (isotropy) is not always valid. Thus, anisotropy
has to be taken into account when modeling spatial processes.

There are various approaches in bibliography related to anisotropy pa-
rameters estimation. Some are based on Exploratory Data Analysis (EDA)
techniques. Important examples of the EDA approaches are those presented
by Kaluzny and Isaaks. Kaluzny in [ | proposed that directional
semi-variograms can model departure from isotropy. In the same context,
Isaaks | | proposed that a rose diagram or a contour plot of empirical

11
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variograms can give the same results. These EDA approaches do not directly
yield parameter values. The parameters are chosen either based on visual
inspection or by fitting the primary results (i.e. an empirical variogram) to
a parametric model. An alternative is the Maximum Likelihood Estimation
(MLE) approach | , , | which seeks optimal parameters for a
given covariance model conditioned by the data. However, multiple models
have to be examined in order to achieve an optimum fit using MLE. Ecker
in | | approaches anisotropy from a Bayesian perspective. The pos-
terior distribution of anisotropy parameters is estimated using a presumed
prior distribution and non iterative Monte Carlo sampling from an impor-
tance sampling density distribution. The recently proposed Covariance Hes-
sian Identity (CHI ) method, which is a non-parametric and non-iterative
method that applies to differentiable normal and lognormal random fields
[ , |. In two dimensions CHI provides anisotropy estimates related
to the spatial derivatives of the random field through closed forms. Seri-
ous advantages of CHI are that no prior information is needed and that it
is computationally efficient. These attributes make CHI very attractive for
automated procedures.

Anisotropy is a statistical property commonly used in geostatistics since
the origins of the field. Examples of geostatistical techniques that are ap-
plied to other signal processing fields are rare in the literature. There are,
though, applications such as image processing and medical imaging that can
take advantage of techniques developed for spatial statistics. In this the-
sis we concentrate on geostatistics, but we also investigate briefly, whether
the CHI anisotropy estimation method has potential benefits for medical
imaging applications.

The core issue addressed by this work is the estimation of the anisotropy
parameters [R, 0] of a random field (RF) X (s) in two dimensions. Preliminary
research on three dimensions is also presented. In our case X (s) describes the
Gamma Dose Rate distribution over Europe. In practice, there is only a finite
set of monitoring locations. An additional difficulty is that the observations of
a monitoring network are usually placed at the nodes of an irregular lattice.
In this work we propose separation of the study area into smaller areas.
Separation based on similar sampling density (SSD) of the sensor network
increases the accuracy of CHI . Accurate § and R estimates can then be
incorporated in the covariance function used in kriging interpolation and
hence improve the resulting prediction maps.

We also present a first attempt of anisotropy estimation in water concen-
tration patterns, obtained using Magnetic Resonance Imaging (MRI). Even
though the MRI data are sampled on micro scale, they exhibit spatial de-
pendence similar to problems that occur in Geostatistics. Anisotropy esti-
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mation on MRI data is important for the modeling of disease processes such
as brain tumors. CHI application may lead to important advances in this
scientific field. Existing methods, such as fractional anisotropy (FA) and rel-
ative anisotropy (RA), can only point out departure from isotropy. On the
other hand, the existing implementation of CHI provides estimates that fully
model geometric anisotropy in twodimensions (i.e. it provides the ratio of
correlation semi-axes and the direction of the major correlation axis).

Preliminary research presented in this thesis aims to solve the equations of
CHI in three dimensions. The solution of C'HI in three dimension can provide
important benefits for medical imaging. To date, the numerical minimization
approach that is used is trapped in local minimums. Closed form solution of
the thee dimensional equations is provided in the special case where one of the
anisotropy principal axes is aligned with the vertical axis of the coordinate
system.



Chapter 2

Classic Geostatistics

In the present chapter we examine some of the fundamental properties of
Random Fields (RF), present the main concepts of RF anisotropy, and dis-
cuss its classic estimation via directional variograms. We introduce condi-
tions required for the existence of a random field. Properties such as sta-
tionarity, differentiability and ergodicity are briefly discussed. Moreover, the
main types of anisotropy presented in the geostatistical literature are shortly
described in terms of directional variograms.

1 Random Fields

In this section we present the basic principles related to the theory of ran-
dom fields. A major influence is the technical report | | that we follow
through this section. We examine the basic properties that a set of finite-
dimensional functions must admit in order to be valid covariance models.
We discuss properties such as stationarity, continuity, separability, differen-
tiability and positive-definiteness.

One may find several descriptions or informal definitions of Random

Fields (RF). In most cases, these descriptions pass step by step through
random variable to random process and then generalize to multi - space ran-
dom processes called Random Fields. The definition of random fields often
comes with its analogous definition of random variables, with respect to an
arbitrary scientific experiment. Such a definition is found in | ]:
“ Random Variable is the outcome, that incorporates some uncertainty, of a
procedure or experiment designed to discover an unknown truth or effect. In
this sense Random Fields may be described as the total outcome of a very
large number of such experiments.”

14
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Random Fields differ from Random Processes only in the fact that their
parameters are defined over a spatially correlated multi - dimensional space.
So a Random Field is a stochastic model that is used to describe certain types
of spatial processes, such as those that often occur in geostatistics | ]-

1.0.1 Definition of Random Fields

As stated in | ] the study of a random field usually implies the study of
its covariance function. Most of the properties of a Random Field are analo-
gous to those of random processes. A function is a valid covariance function
only if it is positive-definite and continuous. However, in Random Fields
the covariance and correlation function are modified to incorporate some ge-
ometric or spatially dependent properties. Such a property is isotropy. The
covariance functions of Random Fields take into account the spatial depen-
dence in the set of sampling locations.

The formal definition of Random Fields is given in | | as

Definition 1. Random Field Let a probability space, (2, F, P), and a pa-
rameter set, S, be given. A random field is then a finite or real valued function
X (s,w) which, for every fized s € S is a measurable function of w € 2

We note here that for fixed w € ©, X(s,w) is a non-random function of s
(called position or coordinate) that is denoted x4 (called realization or sample
function). In case of an n-dimensional Euclidean space S = R™ with n > 2!
we will denote the random field as

Xs = X(s,w), seR"™

The expectation of a random field is by definition:
m(s) = E[Xs] = / X(s,w)dP(w),
Q

which may be expressed by using the finite dimensional distribution Fy(x) in
R! as follows :

m(s) = /R1 x dFs(z).

! The dimension of the coordinate system is valid for n > 0, but it is usually in the
range of one to four. Also for n = 1 it is usually called a stochastic or random process.
The term Random Fields implies that dimension is higher than one.
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The covariance function is correspondingly expressed as

C(si,s5) = Cov{ Xy, Xs, } = B[ X5, Xs,] — m(si)m(s;)
— //R2 Ty dZFSi’s].(x,y) —m(s;)m(s;)

If the covariance function exists, then the probability density function (pdf)
is obtained from the partial derivatives as

fSl,---Sk (ZL’I, e 7,I‘n) =

In this case, both expectation and covariance function can be expressed in
terms of probability density function as

mis) = [ ahia)ds,
Clss) = [ o0 e o i)dady = msm(s;)

1.0.2 Gaussian random fields

For the special category of Gaussian Random Fields (GRF), the joint prob-
ability density function can be fully described using the mean value m and
covariance function C.

1

fo(x) = ST WRITORITE eXP{—ﬁ(X —my)" O (x — my)}

The formal definition of Gaussian random fields is

Definition 2. A Gaussian random field is a random field where all the finite-
dimensional distributions, Fy, s , are multivariate normal distributions for
any choice of k and sy, ..., Sg.

1.0.3 Existence of Random Fields

A random field is usually described by its finite-dimensional (cumulative)
distributions :

Fy  s.(x1,...,2) = Prob{ Xy, <ay,..., X, <}

The study of these distributions is related to the existence of a random
field. The tool that someone must use for this purpose is the Kolmogorov’s
Theorem. If its conditions are met, then it guarantees the existence of such

a field.
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Theorem 1. Kolomogorov’s Existence Theorem: If a system of finite-
dimensional distributions, F} ... Fy, satisfies both symmetry and compatibility
conditions, then there ezists on some probability space (2, F, P) a random
field Xs : s € S having F) ... Fy as its finite-dimensional distributions.

Symmetry Condition: Given a set of finite-dimensional distribution
functions Fy, s, (z1,...,7;) and permutation 7 of the index set {1,...,k}
the following equation must hold:

Fsh...,sk. (33'1, cee 7xk) = Fsﬁh...,sﬂk (x7r17 ce ’xﬂ'k)‘

Compatibility Condition: Given a set of finite-dimensional distribu-
tion functions Fy, g, (z1,...,2x), the following equation must hold:

Fsl,...,sk,l (xly e >xk71) = Fsl,...,sk,l,sk (:Ch ey Th—1, OO)

This important theorem verifies the existence of a random field having this
arbitrary set of dimensional distributions. However this does not mean that
the existing field is unique. Kolomogorov provides a powerful theorem for
inspection of random fields in theory. However, in practice, the interest for
random fields usually comes with the inspection of continuity and differen-
tiability of the realizations.

Positive definiteness is fundamental for all covariance functions. Its def-
inition is given below:

Definition 3. Let k be a positive integer, and let s; € S and ¢; € R for
i = 1,...,k. Then the function C on S x S is said to be positive (semi)
definite on S if

kok
Z Z CiCjO(Si, Sj) Z 0
i=1 j=1
for any choice of {s1,...,s,} and {cy,...c} for any positive integer k.

This property is fundamental. Its importance comes from the fact that
a certain positive definite function is equivalent to the covariance function
of the respected random field. This comes from the proof of the following
theorem as presented in | ].

Theorem 2. The class of covariance functions coincides with the class of
positive definite functions.
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1.1 Mathematical properties of random fields
1.1.1 Stationarity of random fields

Stationarity for any random function is a property very similar to transition
invariance. This property ensures that the characteristics of a given function
stay the same over any shifting transformation, of an arbitrary set of n points.

Definition 4. Stationarity in the strict sense: A random field, is
said to be stationary in the strict sense if for any arbitrary set of k points
{s1,...sn} € S and for every random vector s € S

Fo (@, . xp) =Fg o1, 28),

i.e a translation of a point configuration in a given direction does not
change the multiple-joint distribution.

In practice this strict sense of stationarity is difficult to ascertain for
every arbitrary set of points. Instead, it is usually enough to admit wide
sense stationarity of a random field. Wide sense stationarity means that the
first and second moments of the field do not change over any arbitrary set of
points s € S.

Definition 5. Stationarity in the wide sense : A random field is sta-
tionary in the wide sense if

m(s) =m and C(Si,Sj) = C(I‘ij), where Iij = Sj — 8§;j

Often in place of wide sense stationarity one may find the notion of intrin-
sic stationarity. The only difference is that intrinsic stationarity demands
stationarity of the first two moments for the increment of an arbitrary pair
of values.

In any case stationarity in the strict sense implies stationarity in the
wide sense, whereas the opposite is not always true. On the other hand, for
Gaussian Random Fields these conditions are equivalent | , ].

1.1.2 Continuity, Differentiability, Separability and Ergodicity

Continuity As stated earlier, an important aspect of Random Fields is
the continuity and differentiability of the realizations or sample functions.
When we refer to the continuity of a random field, we indirectly refer to the
convergence of the sequences X(s,) of random variables at each location to
a certain value. Given that different types of convergence exist for random
variables, one may suspect more than one type of continuity for Random
Fields. There are three types of continuity whose definitions follow
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Definition 6. Continuity of random fields
Consider S C R™

(i) A random field X has continuous sample functions with probability one
in S if for every sequence {s,} for which ||s, —s|| — 0 as n — oo,

Prob{w : |X(sp,w) — X(s,w)] =0 asn—o0 forallse S} =1.

(i1) A random field X is almost surely continuous in S, if for every se-
quence {s,} for which ||s, —s|| - 0 asn — oo ,

Prob{w : | X (sp,w) — X(s,w)] >0 asn—oo}=1 forallse S

(111) A random field X is mean square continuous in S, if for every sequence
{sn} for which ||s, —s|| = 0 as n — oo,

E{|X(s,) = X(s)’} 20 asn—o0 foralsesS

As one may notice, these different types of continuity do not all guaran-
tee continuous sample functions. Only the first one admits, with “probability
one,” continuous sample functions. As the continuity of sample paths usu-
ally is more important or interesting in practice, it makes sense to include
additional conditions that guarantee this. In [ : | is stated that

separability of the random fields implies continuity of the sample functions.

Separability For any random process, separability ensures that finite di-
mensional distributions determine sample function properties only by requir-
ing that the sample functions’ values define a countable subset of positions in
R™. This does not apply to random fields | |. However in | | it is
stated that it is always possible to find an equivalent separable random field
X for any given random field Y. Given this statement one may assume that
an equivalent random field with continuous sample functions always exists.

Ergodicity According to | | a random field is ergodic if all the in-
formation about its joint probability distributions and the statistics can be
obtained from a single realization of the field. In practice, ergodicity is im-
portant because only a single realization of the field is usually available.
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1.1.3 Simulation of Random Fields

Several methods exist for random fields simulation.In this section we will
discuss briefly some of the most commonly used approaches. Simulation of
a random field aims to generate valid realizations of a specific random field.
One way to achieve this is to generate all possible realizations, which is not
always possible. A more efficient way is the Metropolis-Hastings algorithm
that samples realizations according to their probability. There are two main
types of simulations that generate random fields realizations: the uncondi-
tioned and the conditional. Unconditioned simulation takes into account
only the statistics (such as mean and covariance) of the simulated field, while
conditional simulation also considers the measurements at the sampling lo-
cations.

The main methods for unconditional simulation include LU decomposi-
tion, turning bands, Harmonics Superposition and Fast Fourier Transform.
We will use the latter to generate synthetic data. On the other hand, for con-
ditional simulation we use the LU decomposition along with a measurements
vector. A combination of unconditioned simulation with Kriging interpola-
tion is also used. Finally we use the Metropolis algorithm combined with
simulation annealing.

2 Variogram

Like the covariance, the variogram function is a useful tool for describing
the variation in space of a random function and in respect of a random field
[ |. Given a random function X(s), the variation of the field can be
described in terms of pairwise differences between points such as z(s;) and
x(s;). These differences

X(si) — X(s5)

are called increments. Looking at the definition of the theoretical variogram
below one may notice some relation to the variance of the increments. Ideally,
the expected value of increments is zero. These two relations lead to the
definition of second order stationarity for the increments, and in respect to
that, intrinsic stationarity for the random field X (s):

1) = S EIX(s) — X(5)7]

In any case, a constant mean or variance is not necessary in intrinsic station-
arity. The following parameters are often used to describe variograms:
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Figure 2.1: Theoretical Variogram

e nugget cy: The height of the jump discontinuity of the semi-variogram
at the origin.

e sill ¢;: Limit of the variogram value as lag distances approach infinity.

e range r.. The distance in which the difference of the variogram from
the sill becomes negligible.

In variogram models with a fixed nugget ¢y, it is the distance at which the
sill is reached; for models with an asymptotic sill, it is conventionally taken
to be the distance when the semi-variance first reaches 95% of the sill.

Experimental Variogram In practice, we use the experimental vari-
ogram to estimate the variogram. Given a data set S, we calculate the
pairwise distance vector rj:

rij:HSi_SjH2 i Si,SjGS

From the set of vector rj;, only the distances that are are approximately equal
an element of vector h will be used. The vector h is the separation set. The
separation set includes the set of distances that is chosen to calculate the
experimental variogram. The distances that belong to h are called lags.
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Figure 2.2: Directional Variogram in directions 0°,45°,90° and 135°from hor-
izontal axis of Zn observations measured in the top soil in a ood plain along
the river Meuse. The different sills along different directions indicate zonal
anisotropy.

Hence for the ki, lag we use only those pairs whose distance is approxi-
mately equal to the hy:

Sk = {Si,Sj | Tij ~ hk}

Denoting the number of those pairs by N, we can write the variogram
method of moments estimator as follows | ]:

() = 5 3 (X(s) = X(s,))"

In respect to an experimental variogram definition, the directional var-
iogram uses only those pairwise distances that are aligned with a specified
direction and tolerance.
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3 Anisotropy

Anisotropy is the opposite of isotropy, which implies that a certain prop-
erty has the same behavior across all directions. The etymology of the
word “anisotropic” comes from the combination of the ancient Greek words
“anisos” and “tropos.” The first word means “unequal” and the second one
means "in a way.”

As Clark stated in | |, the form of anisotropy seen most often in prac-
tice is that of direction-dependent range. When speaking about range, one
should have in mind the classic approach of anisotropy detection, the direc-
tional semi-variograms. When the combined plot of directional experimental
semi-variograms, or the iso-variogram lines, indicates that the range varies
with direction, without having similar behavior for the sill and the nugget,
then we may say that this behavior yields geometric or range anisotropy as
defined in | ].

Geometric Anisotropy The current practice in modeling geometric anisotropy
with semi-variograms | | is to estimate subjectively the axes of anisotropy
and the degree of anisotropy (i.e. the ratio of the maximum range to the min-
imum range) by visual inspection of the directional experimental variograms

or rose diagram; then based on these estimates, to transform the coordi-
nate system to achieve isotropy; and finally to fit an anisotropic model to

the omni-directional experimental semi-variogram that is recalculated in the

new coordinate system.

M1

M2

Y

Figure 2.3: The coordinate system h = (x,y) and the major axes of
anisotropy h' = (M1, M?2)
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In a 2-D space, a visual representation of geometrical anisotropy of ran-
dom fields may be approximated by concentric ellipses that approach the iso-
variogram lines of the examined random field. In the special case where the
iso-variogram lines are circular, the random field is isotropic. The geometric
anisotropy can be obtained by a linear transformation of spatial coordinates
or locations of the corresponding isotropic model. In 2D, given the vector of
coordinates s = (x,y) and a Rotation matrix U, we may transform our data
based on

s’ = Us
where U is

U—SR< [1 0 ] |:COS€ sin@]_

0 Rf@) —sinf cosf

Finally the transformed coordinates are linked to the original ones by means
of:
I cos sin T
7 7] = —Rigsing RY, cosl| |g]°

Zonal and other types of anisotropy Zonal anisotropy can be viewed
as the representation of two processes, one of which has a lower-dimensional
support. Besides geometric anisotropy, several other types of anisotropy have
been proposed; with zonal anisotropy to be the one that is most frequently
used. Other types of anisotropy are often derived in a way that explains
a certain behavior of variograms (sill and range anisotropy as defined from
Zimmerman in | |); however most of these types can be incorporated in
the spatial fields model as a trend, leaving only geometric anisotropy to be
modeled separately.

y(h) y(h)

Sill Sill

h h

Figure 2.4: Left variogram showing geometric anisotropy. Right variogram
showing zonal anisotropy.



Chapter 3

Inference Methods

In this chapter we present some of the inference methods for anisotropy
parameter estimation and unsupervised clustering. Three methods presented
in this section are used to investigate the data sets in chapters 5 and 6. First,
the Covariance Hessian Identity (CHI ) method is briefly described. The
CHI method is at the core of the Clustered C'HI algorithm which is presented
in the next chapter. Second, three different clustering methods such as k-
means, x-means and DBSCAN are described. These clustering algorithms
are used and compared in chapters five and six [ch. 5,ch. 6]. Some of them
could be used instead of the clustering algorithm presented in C'CHI under
in certain cases.

1 The Covariance Hessian Identity (CHI )
method

In this section we briefly describe the Covariance Tensor Identity (CHI )
method for anisotropy detection; presented in more depth in | , .
This method differs from classical approaches ,e.g. directional variograms
[ , ] and maximum likelihood, for identification of anisotropic
correlations in Spatial Random Fields, by means of a non-parametric and
non-iterative procedure.

The CHI method is a non parametric and non-iterative method that
applies to differentiable random fields with normal or log-normal probability
density functions. This relatively new approach is based on sample based esti-
mates of the random field spatial derivatives that are related to the anisotropy
parameters through closed form mathematical expressions. A fundamental
argument for the validity of this approach is the Covariance Hessian Identity

25
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introduced by | ] that links the second order derivatives of the covari-
ance function to the expected value of the first order derivatives of the field.
In | |, it is stated that assuming ergodic conditions, the covariance func-
tion can be estimated by means of suitable sample averages. As implied here,
CHI assumes stationarity and existence of the second order derivatives for
the covariance function.

Given that the SRF X (s) is differentiable, the Covariance Hessian Matrix
is
02C,(r)

B 87“1‘87"]'
For normal and log normal random fields the existence of the first order field
derivative is ensured by the existence of the second order derivative of the
covariance function at zero lag. As defined in | |, the Gradient Tensor
Product (GKP) is:

Hy; = (3.1)

X =VX(s) @ VX (s)" = 9, X(5)9;X(s), (3.2)

and its expected value

Based on | ], one may write the Covariance Hessian Identity as
Q= H(r)|r=o (34)

In the same article it is shown that, after differentiation of the Hessian matrix

at zero lag, equation (3.3) can be re-written using Finstein notation ' in

following form:

R2
Qij=— 5;(;) Ay (0)U;(8)Uy(8) i,3=1...d (3.5)
i
where [?j(;) expresses the ratio between correlation length § and correlation

length & and is equal to Ry = g—l In addition, U;;(0) are the elements of

1
the rotation matrix in d-dimensions. The parameter vector of angle 8 defines
the rotation angles for the rotation matrix U and dimension d of the random

field. The remaining term

!According to Einstein notation, when an index appears twice in a single term, it
implies that we are summing over all its possible values.
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is the Laplacian of the reduced isotropic covariance function. This term is
eliminated during the estimation procedure. An explicit description and the
proof of the previous functions can be found in | ].

As we stated earlier in this section, C'HI is valid in theory for any finite
number of dimensions d > 2. Assume that the slope tensor QAH is the GKP
element of highest value. Then it is proposed to cast the existing system
of equations in terms of ratios of the CHM elements H;;(0)/H1:(0) and the
respective sample slope tensors Qij(O) / QH(O). In practice, on regular grids
the sample slope tensors are estimated using discrete approximations of the
first-order partial derivatives, e.g. on square grids of step a:

Qij = (3.6)

1 iv: X (s, + aei) — X (sr) X (s + aej) — X (sg)

N a a
k=1

where e, ej are unit vectors in the respected directions.

In theory, these slope tensor ratios are equal; however, in practice, it is
necessary to take into account both modeling and sampling errors. For this
reason the residual of these terms is introduced as a function of the parameter
vector

Hyj(0)/Hi (0) = Qi;(0)/Q11(0) = €;;(6, Ra). (3.7)
The anisotropy parameters may be determined by minimization of the fol-

lowing cost function A({@;Rq) = 30, Z?gi €;;(0,Ry) ie.,

{6;: Ry} = argmin A(6; Ry) (3.8)
é;Rl

In Two Dimensions the authors work directly with equation (3.5) for
d=2.In| ] a closed form solution for this problem is provided. In two
dimensions, the slope tensors are Q;; € {Q11, Q12, @22} and the correspond-

ing ratios (Qa22/Q11, @12/Q11) are named (qaiag, Goze) respectively. The closed
form solution is

1 - 2qoss
0 = - tan !} (———— 3.9
5 (1= qdiag) (3.9)
Roay = 4|1+ L daseg (3.10)
C]diag + (1 =+ Qdiag) C082 6

where 6 € [—7/2,7/2] and Ry(1) € [0, c0).

In three Dimensions slope tensors may be written explicitly; however
this problem is hard to solve in closed form, and the estimation is performed
through minimization.
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Figure 3.1: Instance of a working Gamma Dose Rate monitoring network
over Europe.

2 Clustering-Segmentation Algorithms

In this section we give a brief description of some related work on clustering
algorithms. The goal of this work has been to provide a methodology able
to segment a monitoring sensor network in an almost-real time application.
The goal is to increase CHI anisotropy estimation performance, in terms
of accuracy, when dealing with large scatter datasets. Limitations to the
specified methodology arise both from CHI method assumptions and the
network structure itself.

A working sensor network has a transient geometry, as there are of-
ten missing or malfunctioning sensors (see fig.3.1). In addition, sometimes
smaller networks are combined with nation-wide or even continent-wide net-
works. It is possible then to have missing regions that cover a significant
percentage of the entire network area, due to synchronization errors or dif-
ferent reporting policies. Background CHI is designed to work on rectangular
grids; for scattered data it takes advantage of interpolation to project the in-
formation onto the grid. Due to the statistical nature of the CHI method, it
is preferable to not have very small clusters. This yields a limitation on the
minimum number of sensors that comprise a sensor cluster.
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2.1 K-means

There are various distance-based techniques;for unsupervised clustering of
data. However a standard approach is K-means | |. K-means requires
the user to specify in advance the parameter £ that represents the number of
clusters. Then k randomly chosen locations are initially selected as cluster
centers. All samples are assigned according to Euclidean distance to the
closest cluster centroid. These centroids are updated after each step. Each
updated centroid is calculated as the mean of the samples assigned to the
respective cluster. Then all distances from each centroid are re-calculated.
This procedure is repeated until the centroids remain fixed.

2.2 X - means

X-means is an improved version of the widely used k-means algorithm. As
described in | ], this new implementation solves to two of the three major
problems with k-means, the computational scaling of the original algorithm
and the need for prior knowledge of the number of clusters k.

The first problem is approached through a kd-tree implementation that
stores sufficient statistics at its nodes; this approach speeds up the algorithm
without approximations. The new improved version of k-means is a step
in the procedure of X-means. Another step, the one that addresses the
second problem, is the algorithm that estimates the number of clusters k.
The estimation of k is performed after each iteration of the k-means. Then
a subset of the current centroids is chosen to be split to improve the data
fitting. The selection of the subset is based on the Bayesian Information
Criterion (BIC) as presented in | ]

2.3 Density-Based Spatial Clustering of Applications
with Noise (DBSCAN)

The Density Based Spatial Clustering of Applications with noise (DBSCAN)
algorithm was first presented by Ester et al in | ]. According to the
authors, clustering algorithms of large spatial datasets often face three basic
requirements: 1) Minimal requirements of domain knowledge to determine
parameters. 2) Ability to discover clusters of arbitrary shapes. 3) Good
efficiency on large databases.

The DBSCAN algorithm tries to meet these requirements. The chosen
area of interest in each sample’s vicinity is named here eps-neighborhood.
The key idea of this algorithm is that the “density in the eps-neighborhood
has to exceed a certain threshold.” Two parameters are needed in advance:
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the neighborhood range (eps) and the minimum number of points (m) inside
this range. Any points that do not meet these criteria are treated as noise
and remain unassigned.

As explained in | | a naive approach to the algorithm would be to
demand that each point of a cluster has inside its neighborhood a minimum
number of points. However, in practice the algorithm demands that each
point p of a cluster, has a neighboring ¢, that meets this limitation; this way
it ensures that border points are not treated as noise. The point ¢ is called
core-point. Points (p, ¢) that meet this limitation (eps & m) are called directly
density-reachable. In addition, if a chain of directly density-reachable points
P1,- -+, Pp from p to q exists, this pair is called density-reachable. Moreover if
a point o exists that is density-reachable to both p and ¢, then the (p, q) pair is
called density-connected. These definitions support the density-based notion
of a cluster. Intuitively, a DBSCAN cluster is defined to be a set of density-
connected points which is maximal with respect to density-reachability. The
formal definition of a cluster as written in | ] follows:

Definition 7. Let D be a database of points. A cluster C with respect to eps
and m is a non-empty subset of D satisfying the following conditions:

1. Vp,q : If p € C and q s density-reachable from p with respect to. eps
and m, then q € C. (Mazimality)

2. Vp,q € C': pis density-connected to q with respect to eps and m. (Con-
nectivity)

The DBSCAN procedure can be summarized as follows: DBSCAN al-
gorithm starts from an arbitrary point p and retrieves all density-reachable
points from p. If p contains in its eps-neighborhood more than m points then
a new cluster is formed. This cluster contains p and its density-reachable
points. If p does not have enough neighbors it is considered temporarily as
noise, and then the algorithm moves to a new point. In last case p might be
assigned to a different cluster if it is density reachable from an other point.
On one hand, DBSCAN tends to merge clusters of different density if those
are close to each other by means of eps-neighborhood. On the other hand
clusters of similar density may be separated from each other if the distances
between clusters is larger than eps.



Chapter 4

Clustered CHI Anisotropy
Estimation method

This chapter presents in detail the methodologies proposed in this thesis for
anisotropy estimation. The procedures described below focus on the following
tasks: (i) segmentation of the sensor network in domains of normal and
extreme values; (ii) the subsequent partitioning of each domain into clusters
of similar sampling density; (iii) the estimation of anisotropy parameters in
each cluster; and (iv) the aggregation of the cluster parameters into coarse-
grained anisotropy parameters valid in each domain. The procedures are
described below using the GDR data set for illustration.

1 Clustered CHI

Consider an environmental sensor network (e.g., radioactivity probes) con-
taining N sampling points s; = (x;,v;), i = 1,..., N, where (z;,y;) are the
spatial coordinates on the globe expressed in an equidistant projection sys-
tem. The sampled process is denoted by X(s). We will assume that X(s)
is modeled by a spatial random field the realizations of which admit at least
first-order partial derivatives. This class includes fields with Gaussian covari-
ance, or Matérn covariance with smoothness index v > 1, or Spartan random
fields with finite spectral cutoff k. < oco. The CHI method assumes that the
data are generated from a second-order stationary (i.e., constant-mean and
translation-invariant covariance function) random field with differentiable re-
alizations.

Often, the stationarity assumption is not supported by the data. For ex-
ample, in the GDR data described in Section 2, the radioactive release gener-
ates a plume whose statistical properties differ markedly from the background

31
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radioactivity. To justify the stationarity assumption, we consider separately
subsets of the sampling network that contain a large number (e.g., N, > 25)
of extreme values. Thus, separate domains are defined that contain the
“normal” and “extreme” values respectively. Further, if the sampling den-
sity varies significantly over a domain, the latter is partitioned into clusters
of similar sampling density (SSD), using image segmentation methods based
on edge detection | |. In each cluster, we define a different anisotropy
estimation grid by tuning the grid step to the cluster sampling density, as
discussed in Section 1.1 below.

1.1 Segmentation of the Sensor Network

The segmentation procedure divides the network of sensor points into groups
in three stages: first, all the isolated and distant points are removed from
the sample. Second, domains containing clusters of “extreme values” are
separated from domains of normal values. Third, each domain is segmented
into clusters based on the local sampling density values.

1.1.1 Stage 1: Filtering of isolated and distant points

This step ensures that geostatistical analysis excludes values at remote lo-
cations which are not correlated with other sampling points. A rectangular
box centered at the network’s centroid is defined. The extent of the box in
the directions = and y is set to £40, and £40, where o,, 0, are the standard
deviations of the sample’s coordinate locations. Points outside the bound-
ary box that do not possess a neighbor within a circle of radius equal to
min(o,,0,) are removed. For the GDR data in our case study, this proce-
dure removes sensors on remote island locations, e.g., at the Azores or former
European colonies, as shown in Fig. 4.1. If necessary, the above step can be
applied iteratively.

1.1.2 Stage 2: Partition in “normal-value” and “extreme-value”
domains

The GDR data include values generated by two different fields, namely back-
ground radioactivity and a spreading plume. The study area is split into two
mutually exclusive and jointly exhaustive domains, based on the threshold
value x. = 250 nSv/h. The threshold follows from an expected range of
0.04 — 0.24 pSv/h (microSievert per hour) for natural background radiation
in Germany | |. The domain of extreme values, henceforth called G2,
includes the sensors whose values exceed z.. The “extreme-value” domain
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Figure 4.1: Spatial distribution of the sensor grid network over Europe.
The distant and isolated points, as identified by the filtering algorithm, are
marked by circles.

contains the locations affected by the spreading radioactive plume. The re-
maining sensor points belong to a domain of “normal” values, henceforth
referred to as G1. The domain G1 involves points registering background ra-
dioactivity levels, as well as points with instrument malfunctions, and spikes
generated by lightning (certain such events may also be included in G2). The
domain G1 contains around 2500 points and G2 approximately 1100 points.

In Fig. 4.2, we illustrate the partitioning on the sensor network into do-
mains of extreme values (black dots, near the center of the network) and
normal values (red dots). A map (interpolation) grid of 8000 nodes is also
shown (crosses denote the centers of grid cells). Gray (lighter) cells are as-
signed to G1, while blue (darker) cells are assigned to G2. The assignment
is based on the domain identity of the nearest-neighbor sensor to each grid
cell. In Fig. 4.3 we plot the natural logarithms of the GDR values registered
by the sensors.
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This stage can be modified depending on the case study. For example, if
one expects that the data follow the Gaussian distribution, spikes due to in-
strument malfunctions can be filtered using the iterative algorithm proposed
in [ ]. Also, different modeling approaches can be used to separate
the background from the extreme values (e.g., a trend function could be used
to model the spreading plume).
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Figure 4.2: Partitioning of the truncated sensor network between the
“normal-value” (G1, red dots) and “extreme-value” (G2, black dots) sets.
Partitioning of the map grid between the “normal-value” (G1, grey crosses)
and “extreme-value” (G2,blue crosses) domains.

1.1.3 Stage 3: Domain partitioning into SSD clusters

In the third stage, we define clusters according to the geographical location
and the local sampling density. Clustering based solely on the coordinates
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Figure 4.3: Natural logarithms of GDR values at the sensor locations overlaid
on the map grid. Grid nodes are partitioned into “normal-value” (G1, gray
crosses) and “extreme-value” (G2, blue crosses) domains.

(x;,y;) can be performed using various standard methods. Such choices in-
clude the mixture of Gaussians [V P00], which is based on the probability
density functions of the z; and y;; k-means || clusters the points according to
the distances of z; and y; from (iteratively defined) cluster centers; support
vector machines [('ST00]; and the k-median method [GNWOT7].

However, these approaches are not adequate for our purposes. Given
that CHI anisotropy estimates are more accurate in areas of higher sampling
density, the clustering should aim to exploit the increased accuracy of densely
sampled areas. In addition, the sensor network considered here is dynamic,
since different sensors may report at different times. It is thus necessary to
cluster the sensors without knowing a prior: the number of clusters.

Hence, we propose the following four-step procedure:
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Steps of clustering procedure

1. We construct a sampling density function for the sensor network.

2. We use edge detectors to identify potential clusters as the linked perime-
ters formed by the edges of the sampling density function.

3. We perform an initial assignment during which sensors are allocated to
the linked perimeters that contain them.

4. We reject clusters that include very few sensors. We assign each “or-
phan” sensor location to the cluster which contains its nearest neighbor
(assigned in the initial stage).

The proposed clustering is not motivated by physical reasons and does
not imply different anisotropy in each cluster.

Sampling density function To implement the first step, we define a sam-
pling density grid (SDG), which is in general different than the map (inter-
polation) grid. The SDG has L = |v/N| nodes per side and contains L?
rectangular cells that cover the sensor network area. For the data set stud-
ied, L = 50 for the SDG in G1. We construct a sampling density matrix
(SDM), which takes at each grid cell a value proportional to the number of
sensor points enclosed by the cell. Each sensor point is assigned the sampling
density value of the corresponding SDG cell. Algorithms based on density
functions | , ; | are widespread in spatial clustering
applications.

Edge detection The second step involves the application of edge detection
techniques to determine potential cluster perimeters based on the spatial
variability of the SDM | , Chap. 7]. The SDM is first smoothed by an
averaging 3 X 3 filter, to reduce the sensitivity of edge detection to noise. The
spatial variation of the smoothed SDM over G1 is shown in Fig. 4.4. The
gap between the two main peaks near the center is due to the missing points
that belong to G2.

We use the Laplacian of Gaussian (LoG) edge detector, which highlights
regions of rapid change and identifies “islands” of similar density | |. The
sensitivity of the method is controlled by the edge detector parameters. We
opt for a 5 x 5 LoG filter.

After identifying the candidate “edge” cells, potential cluster perimeters
are defined as sequences of linked edge cells. A cell is considered as “linked”
if it possesses a neighbor inside a 3 x 3 neighborhood. The results obtained
by applying this procedure are shown in Fig. 4.5.
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Sampling density matrix

Figure 4.4: Map of smoothed sampling density matrix (SDM) over the back-
ground domain G1.

Initial SSD cluster identification After all cells have been searched,
each linked perimeter is labeled as a potential cluster perimeter; cf. Fig. 4.5.
Sensor points are then assigned to the cluster perimeter that contains them,
leading to an initial cluster assignment. Sensor locations that lie outside
linked perimeters are not assigned to clusters at this stage. The initial as-
signment of sampling points is shown in Fig. 4.6. The cluster perimeters
are defined using cells of the SDG, but the sampling sites do not in general
coincide with the nodes of SDG.

Final SSD cluster assignment Based on our experience, meaningful SSD
clusters for CHI anisotropy detection should contain at least 25 sensor points.
Hence, smaller clusters are rejected. The sampling points inside such clusters
as well as unassigned sensor points form the set of “orphan” points. The
remaining clusters form the set of admissible clusters. The orphan points
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Figure 4.5: Identification of 22 potential cluster perimeters defined on the
SDG for the “normal-value” domain (G1). Color markers denote the lo-
cations of SDG cells that lie on the identified perimeters. The potential
perimeters involves 14 “large” contours and 8 isolated cells.

are assigned to the admitted cluster which contains their nearest assigned
neighbor.

All sensor sites are finally assigned to an SSD cluster that includes more
than 25 sensor points, as shown in Fig. 4.7. The convex hulls of the seven
final clusters are shown in Fig. 4.7. The red dots inside the convex hulls
represent the centroids of the final clusters. We use the convex hull for two
reasons: (1) For interpolation purposes, prediction points inside the hulls are
ensured to have neighbors in the sampling set. This is the approach also used
in the Matlab@®) griddata function. (2) The surface areas enclosed by the
convex hulls of the clusters are used to obtain relative cluster weights used
to derive aggregated anisotropy estimates (see Section 3.2.2).

1.2 Anisotropy Estimation

In the following, we describe the estimation of anisotropy in each SSD clus-
ter based on the CHI method. We also propose an expression for deriving



CHAPTER 4. CLUSTERED CHI ANISOTROPY ESTIMATION METHOD 39

3e+06 4e+06 5e+06
| | |
*
£

2e+06
|

Figure 4.6: Initial assignment of the sampling sites (stars) inside the “normal-
value” domain G1 to cluster perimeters. The centers of SDG perimeter cells
are denoted by color markers. Colored sampling points are assigned at this
stage to clusters, while points marked by black stars are unassigned.

coarse-grained domain averages of anisotropy. Finally, we discuss how the
anisotropy estimates are further used in the geostatistical analysis.

1.2.1 Cluster estimates of anisotropy

Estimates of the anisotropy parameters (R,#) in each cluster are derived
using the CHI method | ]. The angle 6 represents the angle between one
of the principal axes of anisotropy, arbitrarily called M;, and the horizontal
axis of the coordinate system. In geography, it is preferable to define the
anisotropy orientation in terms of the complementary angle. The ratio R =
&1 /& is equal to the correlation length along M; divided by the correlation
length along the orthogonal axis M.

Let us define the gradient tensor X, ;(s) = 8)8(8(1_5) 822(;), for 7,5 = 1,2. If
E[-] denotes the ensemble average and Cy(sy,ss) the covariance function of
the random field X (s), the Covariance Hessian Identity | | connects the
mean gradient tensor to the covariance as follows:
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Figure 4.7: Final assignment of sampling points in G1 to seven SSD clusters.
Color coding is used for both the sensor points (various markers) and the
convex hull boundaries of the clusters. The centroids of the final clusters are
marked by red dots.

. (4.1)

r=0

g 0X(s)0X(s)] = 0*Cx(r)
8si 88]' B 8Ti87“j

Equation (4.1) assumes second-order stationarity and differentiability of
X (s) in the mean square sense.

Let us assume that X(s) is second-order stationary with differentiable
sample functions, and that ergodic conditions hold (i.e., if the ensemble av-
erage of the gradient tensor can be estimated from the sample average). Let

Qij represent sample-based estimates of E[X; ;(s)] and ¢giag = %, Jofft = %

11 11
define the diagonal and off-diagonal ratios, respectively. Then, R and 6 are
given by [CHO8]:

A 1 2 o - 1— ia,
6=~ tan~! | 2L , RP=1+ dding - (4.2)
1 2
Gdiag — (1 + Qdiag) cOS? 0
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If X(s) is Gaussian or log-Gaussian, the existence of the second-order
partial derivatives of Cy(r) at zero lag in practice suffices to ensure the dif-
ferentiability of the sample functions. For a mathematical treatment of sam-
ple continuity and its application to partial derivatives of sample functions
see | , p. 63]; for a more applied viewpoint see | , p- 19-25], and
for explicit calculation of sufficient differentiability conditions see | ].

In each SSD cluster, the gqings and gop are estimated by means of finite
differences on the rectangular anisotropy estimation grid that covers the clus-
ter domain. The grid extends from @ min t0 Temax in the x—direction and
from Yemin 10 Yemax in the y—direction, where z.pim, = min(zy,...,2zN,),
Tmax = max(zy,...,xy,), are respectively the smallest and largest values of
the x coordinates for all points in the cluster ¢ (similarly for y). To avoid
bias related to the cell shape, square grid cells are used with step equal to

Qe = min(’xc;min - xc;max’a |yc;min - yc;max’)/ V Nca

where NV, is the number of sensor locations inside the cluster c.

The field values on the anisotropy estimation grids are obtained using a
non-parametric, deterministic interpolation approach, such as triangle-based
linear or minimum curvature interpolation. This introduces some bias in the
anisotropy estimation, since the interpolation model does not account for
anisotropy. However, the field generated on the anisotropy estimation grid
incorporates the anisotropic properties imparted by the data. The impact of
the interpolation method on the anisotropy estimates is studied in | ].
In general, dense sampling increases the estimation accuracy of ggiag and gog-

1.2.2 Coarse-grained domain estimates of anisotropy

Interpolating X (s) on a map grid using cluster estimates of anisotropy would
require a smoothing filter, e.g., moving windows. Alternatively, one can seek
an average estimate of anisotropy (over the clusters). Since we consider do-
mains with different statistical properties, the average should be conducted
separately in each domain. Given the nonlinearity of the C'HI expressions
in (4.2), a simple average of the cluster anisotropy parameters is not appro-
priate.

Let us assume that each domain involves K, clusters (¢ = 1, 2 in our case),
and that Aff, i,j =1,2, ¢c=1,..., K, represent the estimates of the mean
gradient tensor for the c-th cluster in the g-th domain. Anisotropy estimates
are based on the weighted average, ij, of the cluster gradient tensors:

K Ag;c
- Do Woe QF

ij — %,
Zc:l Wg;e

(4.3)
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The weights wg,. are set equal to the area A, enclosed by the convex
hull of each cluster. The values Q7; are then used in Egs. (4.2).

1.3 Incorporating CHI Anisotropy Estimates in the
Variogram Model

If the inference of the spatial model employs the experimental variogram,
(R, é) can be used to rotate and rescale the coordinate system to render
the spatial dependence isotropic | , |. Then, the omnidirectional
empirical variogram can be estimated and modeled. Spatial interpolation is
performed in the transformed coordinate system using the optimal isotropic
variogram model. In this case the transformed values of the map grid coor-
dinates should be used. Alternatively, (R,6) can be used as educated initial
guesses of the anisotropy parameters in maximum likelihood optimization.
This approach can lead to more accurate estimates of anisotropy, but it is
computationally prohibitive for large data sets.

The anisotropy parameter estimates given by (4.2) are sample statistics
and thus exhibit sample-to-sample fluctuations: a realization of an isotropic
random field may have R # 1. Hence, we need a statistical test for the
hypothesis that a data set is isotropic at a specified significance level. If the
isotropic hypothesis cannot be rejected, isotropy restoring transformations
can be skipped to reduce the computing time, without significant impact on
the accuracy of interpolation.

A non-parametric joint probability density function has been developed
and its confidence regions have been calculated | ]. These can be used
to test whether the isotropy assumption can be rejected at a given confidence
level. More specifically, the isotropy hypothesis cannot be rejected if

A e (NC—QN/(NC—TQ)TQ NC+2\/(NC—TQ)7“Q> (4.4)

N, — 2r, N, —2r,

where 7, is a constant that depends on the desired confidence level (for 95%
confidence r, ~ 6). In (4.4) N, > 25 is the number of sampling points in-
volved in the estimates: for a single domain and a single cluster N, = N,
while for a single domain with multiple clusters Zle N, = N. The test is
conservative (as shown by theoretical arguments and numerical simulations),
i.e.; it overestimates the width of the confidence region due to underestima-
tion of correlation effects. The accuracy of the test is compromised for small
data sets or sparsely sampled areas, due to poor estimation of (}?i, é)

In practice, statistical significance does not directly translate into inter-
polation performance. If N. > 1, the isotropic confidence interval of R is
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very narrow; hence, a small deviation of R from 1 may imply statistically
significant anisotropy, while it has little or no effect on the interpolation due
to the abundance of data. In this case we incur a relatively small compu-
tational cost by performing an isotropy restoring transformation for little or
no gain in performance. Reversely, if V. is small, the test may show that a
larger deviation of R from 1, potentially significant in the interpolation, may
be statistically insignificant, simply because there are not enough observa-
tions. In this case, one may think that an isotropy restoring transformation
is a good idea, even though the isotropy test does not call for it. However,
we should keep in mind that the estimate of R is also affected by the data
sparseness, and thus its value is highly uncertain. Essentially, if N, is small
the ability to accurately resolve the anisotropy deteriorates significantly.



Chapter 5

Anisotropy Analysis of
Synthetic Data

In this chapter we will present synthetic data-sets used for the performance
analysis of CHI and CCHI algorithms. The synthetic scenarios are real-
izations of Gaussian Random Fields (GRF) generated via the Fast Fourier
Transform methodology described later in subsection 1. In addition, some of
the on-grid GRF's are sub-sampled in order to generate scatter data-sets. Sev-
eral realizations of these scattered data-sets are combined in order to gener-
ate clusters with various anisotropy parameters as presented in subsection 2.
Synthetic scattered sensor networks are used to validate CCHI algorithm
performance.

1 Construction of Synthetic Gaussian Ran-
dom fields using the FFT spectral method

Several methods have been proposed for the generation of random fields
both on regular and irregular grids. A very popular one uses Fast Fourier
Transform as it is extremely beneficial if the field is sampled over a regular
(rectangular) lattice. Below we present the basic steps of the method.

1. Construction of a lattice in real space for covariance functions that
admit explicit real space expressions. It is also possible to construct
an equivalent lattice in spectral space, which is useful for covariance
functions that are valid only in spectral space such as the Spartan
Covariance Functions presented in | ].

44
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Figure 5.1: Construction of a lattice in real space (left) and in spectral space

(right).

2. Evaluation of Euclidean distances off all lattice points on real from the
reference point (0,0). Each coordinate is scaled with the respected
correlation length (¢;,&;) and rotated 6 degrees to include anisotropy
in the Random Field. The distance matrix H is calculated according
to the new coordinates. The H given in 2-D from

e [y e = 121
H(i, j) = /a'(i, §)? + 4/ (i, §)?

3. Evaluation of the desired covariance function on each point of the lattice
using the distance matrix H.

Exponential o%exp (—|H|)

Gaussian o?exp (—|H|?)
Spherical 0%(1—1.5H +0.5H%), 0 < H < 1, and 0 otherwise
Matérn JQW(Q\/;%)”KV(Q\/;%)

4. Construction of a random the fluctuation matrix using a real number
random matrix and calculating its Fast Fourier Transform. This way
we ensure that the inverse FFT will yield real numbers.

U = fft(randn([LL]))

where L is the number of cells per direction.
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5. Multiplication point to point of the random matrix with the square root
of the spectral covariance function C' and normalization of the random
fields according to lattice size.

X, =V

6. The inverse Fast Fourier Transform projects the constructed field back
to real space coordinates. Finally, we add the mean value of the simu-
lated field pu. B

X =ifft(Xy)+u

120

100

80

60

40

20

0 20 40 60 80 100 120

Figure 5.2: Synthetic Gaussian Random field N(100,10) on a 128-by-128
square lattice, constructed with the FFT method. Although the ellipse semi-
axes lengths are not shown in scale, the ellipse visualizes the geometric
anisotropy as estimated by CHI by means of (R, é) . The correlation lengths
of the constructed fields along 30 and 120 degrees are 4 and 8 respectively.
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2 Construction of a synthetic sensors network
from GRF

In order to examine the performance of our clustering algorithm and evaluate
the results of the combination of Clustering and CHI method, we generated
artificial sensor networks. The main idea is to sample each cluster from a
different GRF realization and then to project all the samples from different
clusters to a common coordinate system. Each GRF realization is generated
on lattice and sampled later on. The mean value, the anisotropy parameters,
the node’s length, and the selected samples change at each realization. On
the other hand centroids of the clusters are fixed.

An example of the datasets produced through this procedure is demon-
strated in figure (5.3). Visual inspection yields the existence of 4 differ-
ent clusters. All clusters were produced over a 32 x 32 grid using different
anisotropy parameters (see legend in figure 5.3).

Figure 5.3: A realization of the artificial sensor network. Clusters A,B and D
are sampled from a GRF 32 x 32 generated on a square grid with anisotropy
parameters [R = 2,60 = 30°]. The sample size for these clusters are 100,500
and 300 respectively for each cluster. Cluster C includes 1000 points sampled
from an equal size GRF of with parameters [R = 1.5,0 = —30°].
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3 Performance of CHI

In | , |, it was shown that the CHI method provides accurate es-
timates of anisotropy parameters of two-dimensional normal and log-normal
on-grid random fields. In addition the CHI method was applied to irregular
samples using bi-linear, bi-cubic and biharmonics spline interpolation meth-
ods to project the information on-grid. As expected, the accuracy of the
estimates of irregular samples (highly) depends on the choice of the interpo-
lation method and the spatial distribution of the data. This study examines
how the C'HI estimates depend on sampling density and spatial distribution
of the data.

3.1 The role of sampling Density

In order to examine how the sampling density of the data affects the anisotropy
estimation, we took the following steps. First, we constructed anisotropic
Gaussian random fields on a square grid (see also sub-section 1). Second, we
used different degrees of random sub-sampling to generate synthetic irreg-
ular samples that follow the original probability distribution (Fig 5.4, 5.5).
Third, we constructed a new grid whose number of cells is equal to the num-
ber samples as proposed in | |. Finally, we chose bi-linear interpolation
to estimate the values of the fields on the interpolation grid in order to apply
the CHI method. The choice of bi-linear interpolation meets goals of both
performance and speed. Since bi-linear interpolation is much faster than bi-
harmonics splines, while the accuracy of estimates is not compromised.

We generated randomly 200 GRF with arbitrary R and € in ranges of
[1,3] and [—45,45] respectively. Figure 5.6 shows the bias of anisotropy es-
timates R and 6 in respect to the percentage of pixels in the sub-sampled
realization. Notice that the accuracy of the estimates is proportional to the
sample size. As expected, the gaps among sample points decrease the accu-
racy of the CHI method.

Rowy Oswr | Rpar Ofunt
1.16 -9.71° | 1.19 -8.82°

Table 5.1: The estimates of the image for the full set (-ﬁifuzz, éfu”) and the

~ ~

selected subset (Rgup, Osup) presented in figure (5.4).
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Figure 5.4: Left: an original (full) realization of a GRF N(0,1) on grid
128x128 square grid. Right: the selected subset (sub).
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Figure 5.5: Full (left) and subset (right) histograms respectively. The plots
show that the subset and the full dataset follow the same distribution.
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Figure 5.6: Bias for R (left) and 6 (right) estimates with respect to the
percentage of pixels in the sub-sampled realization.
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3.2 The role of dispersion in the sampling sites
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Figure 5.7: (a) The original dataset. (b) Single cluster linear interpolation of
the two disjoint areas.(c) Linear interpolation on each area-cluster separately.

We have shown so far that CHI’s performance depends on the inter-
polation result of the scattered data. In addition, the interpolation result
significantly depends on the dispersion of the data sites. By dispersion we
refer to both spatial density and sets formation of the data. If the sampled
data contain large empty spaces among them, it is desirable to interpolate
each set separately. Figure (5.7) shows how interpolation between two vi-
sual clusters may change the anisotropy of the field. The two square clusters
on the left have been extracted from the same RF realization on a 128x128
square grid with anisotropy parameters [R = 2,6 = 0|

] \ CHI CCHI \ \ cluster, clusters ‘
R| 166 208 2.15 2.03
0 |12.15° -4.30° -1.64°  -8.02°

Table 5.2: Anisotropy estimates for figure 5.7. Columns CHI and CCHI cor-
respond to anisotropy estimates for subfigures (b) and (c) respectively.
Columns clustery and clustery correspond to the CHI anisotropy estimates
for the two disjoint areas calculated separately (as shown in subfigure (a)).

In order to determine whether this behavior is consistent for this type
of datasets we generated 200 GRF realizations on a 128x128 lattice with
anisotropy parameters R € [0,3] and 6 € [—45,45]. Then, we removed about
half of the observation points, mostly on the upper left and lower right of the
grid, in order to achieve clusters equivalent to figure 5.7’s sampling structure.

Table 5.3 shows mean FEsyy and standard deviation oo9 of C'HI and
CCHI bias over the 200 runs. (R',6") are the anisotropy parameters that
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the i realization of the field( the parameters that the realization was created
with). [Riy;, 00y | and [Rocy; » 0hcn | are the corresponding estimates of
CHI and CCHI respectively for this realization.

EQO[}[Ri — ES(] E200 [92 — 93{] 0200 [RZ — RZX] 0200 [91 - 93(]
CHI 0.33 -17.58° 0.54 17.83°
CCHI 0.07 1.79° 0.15 7.01°

Table 5.3: Mean bias (Fao) and standard deviation of the bias (oq99) based
on 200 runs for R' € [0, 3] & 6° € [—45°,45°]. The dispersion of the datasets
is shown above in Fig. 5.7.

One can notice, that CCHI outperforms CHI . This result is expected
since linear interpolation fills the gap between clusters with a completely
different pattern. To conclude, on the one hand there is strong evidence
that clustering significantly improves anisotropy estimates in cases where
the spatial support of the data is fragmented. On the other hand, if a dense
cluster is split there is no significant loss of accuracy.
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4 Performance of CCHI

In order to examine the impact of different clustering algorithms on anisotropy
estimation we generated synthetic clusters. Each sample point is assigned
to a certain cluster based on an index number. Only samples points that
belong to the same cluster are sampled from the same realization of the field.
Each cluster corresponds to a different realization for a single validation run.
Moreover on each validation run all the cluster realizations change.

In addition we selected a fixed the number of clusters (equal to four)
and a fixed maximum number of points per cluster (equal to 200,400,800,
and 2000 for each cluster). However the subsample percentage is random for
each cluster. The parameters of the each realization are also chosen randomly
within range shown later in table 5.4. Finally, the parameter sp controls the
size of the generation lattice’s cell and defines the dispersion of the samples
for each cluster.

Each GRF realization was generated following the same methodology
presented in section 2 of this chapter. The samples spatial distribution aims
to simulated a realistic multi-country monitoring sensor network.

Evaluation criterion is the bias between the estimated and original anisotropy
parameters from the entire domain. Given the original index, i.e. the index
that assigns all samples from the same realization to the same cluster, we
calculate a pair of anisotropy parameters for the entire domain as presented
in subsection 4.1.2.2. In the same way we estimate a pair of anisotropy
parameters based on index that each clustering algorithm calculates.

Number of cluster per run N. =14

Maximum number of sensors in clusters [a,b,c,d] N € [200, 400, 800 & 2000]
Mean value on each cluster m € [80,400]

Anisotropy ratio on each cluster R e [1,3]

Anisotropy direction on each cluster 0 € (—45°,45°)

Spreading of each cluster on common coordinate system sp € [0.5, 1.5]

Table 5.4: Statistics per cluster in synthetic data. Note that : 1) Upper limit
of points is different for each cluster. 2) Spreading affects the density of the
cluster

Figure 5.8 shows a realization of the simulated scenarios. Figure 5.9

shows the clustering results of the CCHI, DBSCAN, 4-means and x-means
algorithms on the same run. We cannot claim that this is a completely fair
comparison of these algorithms. Except for x-means and C'CHI, the other two
algorithms have no automatic procedure for estimating the number of clus-
ters. For this reason, we fixed k = 4 for k-means and in addition eps = 0.04
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and m = 6 for DBSCAN (eps denotes the neighborhood relative to the entire
domain and m is the number of points inside eps).

The average error of (R, #) and its standard deviation for 100 runs of each
algorithm are shown in table 5.5. Notice that CCHI marginally performs
better of the other algorithms. We do not claim that this is the best algorithm
for clustering in general. We claim though that it performs equally well to
other algorithms, in a large variety of data that contain both dense and
sparse areas, with minimal parameters configuration. The choice of 3x3 of
5x5 averaging filter for CCHI classifies a very large set of instances. All
examples on this thesis were performed using a 3x3 averaging filter.

X= CCTI 4means DBSCAN Xmeans
Eiwo[R — Ri] | 0.041  0.044 0.048 0.052
ow0[RY — Ri] | 0.089  0.090 0.107 0.102
Ewolff — 6% | -0.356°  0.331°  -2.752°  -8.117°

or0[0 — 0] | 31.082° 20.824°  33.687°  32.892°

Table 5.5: Average and standard deviation (100 runs) of the estimation bias
using four different clustering algorithms.
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Figure 5.8: Single realization of the synthetic network . Each color repre-
sents different clusters and in respect samples selected from a different GRF
realization (see table 5.4).



CHAPTER 5. ANISOTROPY ANALYSIS OF SYNTHETIC DATA 26

(a) CCTI (b) 4means

DBscan

600
I

500
I

400
I

g 0% o
£ 0%, 88 0508 0 8%t
337 5 o000 %
et el

300
I

200
I

100
I

(c) xmeans (d) DBSCAN

Figure 5.9: The original index (corresponds to the realization indices ) of the
dataset used is shown in figure 5.8. Top: The clustering result (single run)
for the CCHI and 4-means methods on (a) and (b) respectively. Bottom:
Left: X-means result with cluster variable number in the range [2,5]. Right:
Results for DBSACN with parameters eps = 0.04 and m = 6 (range of the
neighborhood and smaller cluster size respectively).



Chapter 6

Anisotropy Analysis of Real
Data

Two different real-case scenarios provided by the European Radiological Ex-
change Platform (EURDEP) Gamma Dose Rate (GDR) network are de-
scribed in this chapter. This chapter opens with a presentation of the rain-
event scenario which monitors the radioactivity over the European continent
during episodes of heavy rainfalls. Second, worst-case scenario monitors the
GDR over Europe several hours after a simulated nuclear accident at a nu-
clear facility in Belgium. The performance of CCHI is compared to other
clustering algorithms in terms of anisotropy parameter estimation. In addi-
tion, a cross- validation analysis for the accuracy of the worst case scenario
is presented here, along with prediction maps generated by means of kriging.

1 Rain-events Scenario

This dataset includes GDR data from the real-time monitoring network of
the European Radiological Exchange Platform (EURDEP) from 16 to 19
September 2006. During that time period, heavy rainfalls were reported all
over central Europe. According to [ |, rainfall tends to enhance GDR
measurements, as the natural activity in the air is washed out. The GDR
enhancement occurs for a time period between 30 and 120 minutes maximum.
As authors of | | state, due to reporting differences among the sensor
networks, the GDR data have been averaged hourly and aggregated with
EURDEP daily averages. The final dataset contains measurements in two
hour intervals for the three day period; i.e missing time slices are present due
to missing data.

57
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Figure 6.1: Two time instances of Rain-event scenario.

2 Worst-Case Scenario

This scenario involves a total of N = 3626 sampling sites with their positions
expressed in the INSPIRE coordinate system | ]. GDR is measured in
nanoSievert per hour (nSv/h). The network involves both densely sampled
areas (e.g., Germany and Austria) and sparsely sampled ones (e.g. South
Europe).

Real background radioactivity measurements are combined with simula-
tions that include systematic errors, local peaks due to washout effects caused
by heavy rainfall, single peaks due to lighting strikes, and areas of extreme
values resulting from the dispersion of a radioactive plume caused by a sim-
ulated reactor accident in central Europe. The simulations are generated
with the RODOS system | | using meteorological information from the
German weather service. The time of the simulated accident was 23:40 on
January 6, 2008. Forecasts of the plume dispersion were produced at +18h,
+30h, 4+42h, and +54h from the starting time, for over an area covering
2500 x 2500 km? centered at the city of Offenbach.
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Figure 6.2: The images below present the natural logarithm of the measured GDR
values over Europe for the simulated “worst case” scenario. In this simulated sce-
nario, a reactor of a nuclear plant, located in Belgium, explodes and the radioactive
plume is transferred throughout the air. We present 6 measurements taken at 12h
intervals between them, starting with an 18h delay from the simulated accident.
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3 Application to Real Data

In the previous section we showed that minimizing data gaps inside and
between clusters increases the accuracy of anisotropy estimation. However,
when working with real case scenarios, such as those presented in figures (6.3
& 6.4), we come across a modeling dilemma: On the one hand, one can aim
to minimize gaps by leaving out scattered stations. On the other hand, these
stations may contain important information that should be included in the
calculations. Unfortunately there is no convenient answer to this situation.

The original goal of this work was to be able to provide anisotropy esti-
mates of GDR from a European sensor network in an automatic procedure.
Both rain-event and worst-case scenarios present different instances of “dif-
ficult situations”. As one may notice by examining these different datasets,
the network density differs from country to country. In addition, countries
do not always broadcast their measurement to the network at the same time,
leaving large time and space gaps among live sensors.

Method | R 0
CCTI 1.05 38.25°
4means | 1.04 39.33°
DBSCAN | 1.11 -15.97°
Xmeans | 1.09 11.01°

Table 6.1: Anisotropy estimates for rain-event scenario

We provide weighted average of anisotropy to compare the clustering al-
gorithms. The weighted average is calculated by means of coarse-grained
anisotropy estimates as explained in section 1.2.2. If we examine table 6.1,
we may notice that 4-means and C'CHI estimates are very close, while the
remaining estimates seem to have different directions. Although there are
differences, all results seem to be quite isotropic, so it is not safe to extract
conclusions. However, in figure 6.3, we may notice that the clustering of
CCHI and 4-means is almost identical, and dividing the Swedish network
into two clusters does not affect the result. In view of similar behavior in
synthetic data, we point out that splitting a dense cluster does not affect the
coarse-grained anisotropy estimates if the anisotropy does not change inside
cluster. On the other hand, it has been shown (section 2) that merging two
distant clusters may decrease accuracy of anisotropy estimates (see x-means,
6.3,c). Finally, we observe in figure 6.4 that black squares in DBSCAN clus-
tering are considered as noise. These sensors do not meet cluster definition
of DBSCAN (see def 7). It is not easy to tell whether these stations improve
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the anisotropy estimates or not.

=

Method R 0
CCTI 1.378 -17.84°
4means 1.50 -16.08°
DBSCAN | 1.46 -15.48°
Xmeans 1.46 -16.00°

Table 6.2: Anisotropy estimates for worst-case scenario.

One may notice similar behavior in the worst case scenario (fig 6.4).
The k-means (actually 4-means) algorithm does not take into account the
sampling density of the data and favors large gaps among data. Moreover
x-means, which is a generalization of k-means, splits these data into two
clusters, leaving even larger gaps to be interpolated. DBSCAN, is designed
though to minimize these gaps. When there are areas that have a dense
network, like Central Europe, and others with only a few scattered networks
like Eastern Europe, it is hard to define the optimum eps-neighborhood . If
the eps-neighborhood is too large, then all points are assigned into a single
cluster. If eps-neighborhood is too small, then only dense clusters will be
found, leaving a large number of sensors unexploited.

The anisotropy estimates of the worst-case scenario shown in table 6.2
exhibit similar behavior for all four clustering algorithms. In fig 6.2, one
notices a highly radioactive plum with West to South-East orientation. The
direction of the plume agrees with the anisotropy estimate. The plume values
are extremely high compared to the background values. As explained above
in section 4, these values form a new stochastic-process and should be treated
separately.
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4 Cross-validation Analysis of Anisotropy Es-
timates Clustered CHI

We used the +42h time slice of the worst case scenario for the spatial analysis.
The statistics of the GDR data, given in Table 6.3, exhibit large variability
and strong deviations from Gaussianity.

Table 6.3: Statistics of the GDR data used in the case study. The symbols
used denote the following: @, (minimum value), ¢; (first quartile), g (me-
dian), my (mean value) g3 (third quartile), zy.x (maximum), o, (standard
deviation), py (skewness), ky (kurtosis).

Lmin q1 q2 my q3 Lmax Oy Hx kx

29.0 85.8 131.0 2442.0 3082.0 26990.0 4371.36 2.29 5.25

We have conducted tests on single-domain, single-cluster synthetic and
real data (not shown here), which show that application of the CHI improves
interpolation performance. Here we test the potential benefits of anisotropy
estimation for mapping of the radioactivity distribution by a cross-validation
approach on the GDR data set.

4.1 Study Design

In the following, we investigate the effect of incorporating anisotropy in the
variogram model on the performance of interpolation by ordinary kriging.
We also consider the effect of partitioning the study area into domains of
normal and extreme values. We evaluate the performance by means of cross-
validation analysis and by visual inspection of kriged maps.

To calculate cross-validation measures, we consider different partitions of
the N = 3626 points into a training set that contains Ny = N — |p N/100]
points and a wvalidation set containing N, = [pN/100] points. The GDR
values at the validation points are set aside for comparison with the predicted
values. For each partition p = (10, 30, 60, 90), fifty (50) sampling realizations
are generated by randomly selecting the training points, which are replaced
at the end of each run. We consider four approaches for spatial interpolation
that employ ordinary kriging (OK) to estimate the radioactivity field at the
validation sites.

The first approach (abbreviated as ID in Table 6.4) segregates the training
set into “normal-value” (G1) and “extreme-value” (G2) domains. The range
of values in G1 is 29.0 — 248.8 nSv/h, while in G2 it is 251.0 —26992.5 nSv/h.
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A separate variogram is estimated in each domain assuming isotropy. Each
validation point is assigned to one domain based on the domain identity of its
nearest neighbor in the training set. The predictions at the validation points
use the variogram function of the domain of ownership. The second approach
(abbr. AD) differs only in the fact that anisotropy parameters are estimated,
and their values are used to perform an isotropy restoring transformation
before the omni-directional experimental variograms are estimated and fitted
in each domain.

The third approach (abbr. IS) does not use partitioning of the sets and
bases the predictions on a single isotropic variogram model for the entire
study area. Finally, the fourth approach (abbr. AS), differs from IS in that
anisotropy parameters are estimated (for the entire domain) and used to
transform into an isotropic coordinate system before the omni-directional
variogram is estimated and fitted.

4.2 Spatial Model Parameter Estimation

[sotropic variogram models are estimated from the empirical omni-directional
variogram of the training set by means of weighted least squares (WLS)
fits. For the approaches that include anisotropy, (R, é) are estimated for the
training sets in G1 and G2. Bilinear interpolation, implemented by means
of the akima package, is used to estimate GDR on the anisotropy estimation
grids of each cluster. Examples of the interpolated field generated on the
anisotropy estimation grids in each domain are shown in Fig. 6.5. In these
plots, the GDR is measured on a logarithmic color scale; for reference note
that the natural logarithm of the threshold is log(z, = 250) = 5.5215.

Since G1 contains a number of clusters (cf. Fig. 4.7), (R, 0) are based on
the cluster average of the gradient tensor as given by Eq. (4.3). For each re-
alization, we test if the isotropic hypothesis is supported based on (4.4), and
then an isotropy restoring coordinate transformation is performed. The range
and sill of the omnidirectional variogram are estimated in the isotropic co-
ordinate system using the R function automap | ]. For each training
set, the optimal variogram is selected from among the exponential, Gaussian,
spherical and Matérn models. The estimates (R «9) are then incorporated to
obtain the anisotropic variogram model.

4.3 Spatial Interpolation and Cross-validation

The method of ordinary kriging (OK) is used for interpolation using the
gstat package | ]. Validation measures compare estimates with “true”
values at the validation locations. The validation measures are obtained by
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calculating (i) the spatial average over the validation set and (ii) an average
over the sampling realizations. For example, the mean error (ME) is defined
as:

1 em 1 & . A
ME:M;E;[X(SZ)—X(SD],

where M = 50, N, is the number of sensor locations in the validation set,
X (s!) denotes the OK prediction at s/, and the s/ represents the i—th sam-
pling point in the j—th realization. Similarly to ME, we define the mean
absolute error (MAE), mean absolute relative error (MARE), mean square
root error (MSRE) and mean relative square root error (MRSRE). We also
report the mean values of the linear correlation coefficient, r, of Spearman’s
rank correlation coefficient, p, and of Kendall’s rank correlation coefficient,

T.

The cross-validation results are reported in Table 6.4. The following
general tendencies can be observed. Partitioning of the training and val-
idation points into “normal-value” and “extreme-value” domains improves
performance compared to single-domain models. In addition, accounting
for anisotropy leads to improved performance over isotropic modeling as-
sumptions. For the least populous training set (p = 90), the two-domain,
anisotropic model performs better than the other models, with respect to
all validation measures. The two-domain, isotropic model follows in perfor-
mance.

The classification of performance is less definite for the larger training
sets, since the isotropic models can achieve better values of certain measures
(MAE, RMSE, RMSRE and r) than the anisotropic ones. This tendency is
more prominent for the single-domain than for the two-domain models. In
all cases the anisotropic models have a lower bias (in absolute value) and a
lower MARE than their isotropic counterparts. The hierarchical correlation
coefficients p and 7 are consistently higher for the anisotropic models, in con-
trast with the linear correlation coefficient. The non-parametric coefficients
are more reliable measures of correlation given the large deviation of the data
set from Gaussian behavior.

Overall, the domain partitioning improves the validation measures. The
only exception is the two-domain partitioning with isotropic variogram for
p = 60, which leads to very high errors. Similar behavior is observed for
the single-domain models at p = 90. These errors are due to points near the
boundary of the plume, the values of which are under- (over-) estimated.
These large errors appear in a few, out of the 50 configurations generated.
While we cannot claim with absolute certainty that incorporating anisotropy
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eliminates such boundary problems, the evidence (based on the 200 [total]
training configurations investigated here) is that the coupling of domain par-
titioning with anisotropy modeling avoids such instabilities.

4.4 Interpolated Maps

Interpolated values of the GDR distribution on a map grid containing 8000
nodes are generated using one (randomly chosen) of the p = 90 training con-
figurations. The training sensor locations and the logarithms of GDR values
at these locations are shown in Fig. 6.6. The visual analysis of the kriged
maps that follows should be considered in connection with the quantitative
cross-validation results listed in Table 6.4.

The kriged maps are shown in the plot table of Figure 6.7. The top row
shows maps created using two-domain partitioning, while the maps in the
bottom row are based on a single domain. The maps in the left column use
an isotropic variogram model assumption, while the maps in the right col-
umn use an anisotropic variogram model. Blank (white) patches correspond
to areas where the OK predictions are negative, leading to non-numeric loga-
rithms. Differences between the single- and two-domain approaches are easily
discerned: the former tends to over-estimate the background and smoothes
excessively the south-eastern tail of the plume. On the other hand, given
the large range of the GDR values, differences are not easily distinguished
between the isotropic and anisotropic models (left vs. right columns) in
Fig. 6.7. The most distinctive difference is that the isotropic model predicts
higher values along the Eastern parts of the plume. Both models predict
high values for the Eastern area, but there are directional differences. In
particular, the anisotropic model gives a clearer bending of the plume in
the South-East direction, which is in better agreement with the observed
behavior, as shown in Fig. 4.3.

In Fig. 6.8 we plot the differences between the isotropic and anisotropic
models’ predictions, using domain segregation in both cases. As shown in
Fig. 6.8(a), the differences between the two models in the background domain
are small, roughly in the range of —10 to 10 nSv/h. On the other hand, the
differences in the plume domain, shown in Fig. 6.8(b), range from < —3000 to
> 5000 nSv/h. Fig. 6.8(b) also shows that the isotropic model predicts higher
(lower) values than the anisotropic model along the boundaries (center) of
the plume.
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(a) Interpolated GDR on anisotropy estima-
tion grid in domain G1.

(b) Interpolated GDR on anisotropy estima-
tion grid in domain G2.

Figure 6.5: Interpolated log(GDR) fields used in the clustered CHI anisotropy
estimation.
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ME MAE MARE RMSE RMSRE T p T
1D -2.955 425.676 0.488 1144.454 3.023 0.965 0.920 0.795
p=10 AD -5.455 415.177 0.477 1148.318 3.031 0.965 0.921 0.797
IS -9.051 616.107 1.023 1369.577 4.686 0.950 0.806 0.644
AS -1.307 631.924 0.981 1417.986 4.735 0.947 0.812 0.649
1D -12.507 478.701 0.623 1263.680 4.615 0.957 0915 0.785
=30 AD -10.352 451.775 0.597 1238.962 4.656 0.958 0.917 0.789
IS -24.884 608.778 1.199 1389.701 5.663 0.947 0.804 0.641
AS -18.911 647.628 1.154 1467.948 5.788 0.941 0.808 0.644
ID | -4448.786 13070.149  67.467 176246.953 1451.137 0.926 0.888 0.754
— 60 AD -12.335 511.034 0.739 1355.581 5.730 0.951 0.903 0.768
pP= IS -31.959 645.676 1.521 1463.860 6.529 0.942 0.781 0.615
AS -24.276 652.488 1.418 1488.173 6.646 0.940 0.790 0.624
1D 36.618  1032.371 1.616 2763.816 10.767 0.832 0.824 0.673
=90 AD 3.900 1007.464 1.599 2621.611 9.532 0.852 0.832 0.681
IS | 3141.611 15769.644 113.482  67314.193  623.990 0.870 0.710 0.537
AS 802.443 99761.167 811.333 516659.990 5140.070 0.851 0.694 0.529

Table 6.4: Cross-validation measures calculated over the validation points
for different partitions p = (10, 30,60, 90) of the GDR data set and different
spatial modeling approaches. ID: Two-domain partitioning with isotropic
variograms. AD: Two-domain partitioning with anisotropic variograms. IS:
Single domain with isotropic variogram. AS: Single domain with anisotropic
variogram. Validation measures represent means over 50 realizations of spa-
tially averaged statistics. Numbers are rounded to the third decimal place.
ME: Mean error. MAE: Mean absolute error. MARE: Mean absolute relative
error. MRSE: Mean root square error. MRSRE: Mean root square relative
error. r: mean linear correlation coefficient. R: mean Spearman correlation
coefficient. 7 : mean Kendall’s tau.
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Figure 6.6: (a) Partitioning of the sensor training locations between the
“normal-value” (G1, red dots) and “extreme-value” (G2, black dots) sets.
(b) Natural logarithm of GDR values at the training locations. (a,b) The
map grid is partitioned into “normal-value” (G1, gray crosses) and “extreme-
value” (G2, blue crosses) domains.
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Figure 6.7: Interpolated GDR values with (top) and without (bottom) do-
main partitioning, using anisotropic (right) and isotropic(left) variograms.
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(a) Difference of OK predictions in G1. (b) Difference of OK predictions in G2.

Figure 6.8: Plots of the difference in Ordinary Kriging GDR predictions
between the isotropic and anisotropic models. The interpolation is performed
separately on the background (G1) and the plume (G2) domains.



Chapter 7

Application of CHI method on
MRI data

In this chapter we investigate the application of CHI on Magnetic Resonance
Imaging (MRI) data. Nowadays medical imaging applications increasingly
attract the interest of the scientific community. MRI data have proved useful
for imaging brain diseases. In the following chapter, we present some of the
basic data types used in the literature and their connection to anisotropy
estimation. We discuss the application of CHI to various data types. Finally
we present application of CHI on MRI data, by means of a moving window
procedure, to provide local estimates of water concentration anisotropy .
Water concentration in the brain structure is highly connected to the diffusion
of cancer cell’s, therefor local estimates of anisotropy may provide useful
information on tumor modeling.

Methods developed in Geostatistics aim to solve problems dealing with
the characterization of spatial and spatio-temporal phenomena. Most of
these phenomena emerge in scientific fields as mining, hydrology, meteorol-
ogy, oceanography and environmental monitoring systems. On one hand,
most observations are distributed over macro or earth-scale domains. On the
other hand, the underlying scale is not a requirement for applying Geostatis-
tics.

1 Magnetic Resonance Imaging
Magnetic Resonance Imaging, or MRI, is a method of imaging the interior
of structures non-invasively. An MRI device consists of a magnet, magnetic

gradient coils, an RF (radio frequency) transmitter and receiver, and a com-
puter that controls the acquisition of signals and computes the MR images.

73
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An atomic Nucleus is originally exposed to a static Magnetic field, ab-
sorbing energy. This energy is released in the form of a photon (resonates)
when a varying electromagnetic field is applied at the proper frequency. An
Image is computed from the resonance signals of which the frequency and
phase (timing) contain space information. In typical MRI images the inten-
sity is provided by the concentration, or density of observed nucleus and the
exponential relaxation times of the signals following the transient electro-
magnetic field | ] (see also subsection 1.1). The early work of Damadian
in | | showed that different tissues contain different amounts of water
and exhibit different water proton relaxation times. Therefor MRI images
may be considered as water concentration maps.

Water diffusion is strongly related to various disease processes. Structural
barriers inside tissues, cause anisotropic water diffusion. Hence anisotropy is
essential for understanding the abnormal development of diseases processes
[ ]. Therefor, anisotropy estimation of water concentration may provide
important advances in modeling water diffusion related diseases. Anisotropy
estimation from MRI data has already captured the interest of the scien-
tific community. Later on, in subsection 1.2 we shortly comment on some
important studies related to anisotropy estimation.

1.1 Data acquisition

In typical MRI images, the observed intensity (weights) S(T'R, TFE, G) for the
specified repetition time (TR), exposure time (TE ) and gradient strength of
the magnetic field G' for magnetic resonance data is expressed in | ]
as
S(TR,TE,G) = S(inf,0,0)e "#/T2(1 — 2¢~ (TR-TE/2)/T1)
+ e—TR/Tl6—72G262(A—6/3)ADC)

where S(inf,0,0) is the signal at TE=0, TR=inf. The terms TR,TE,T1 and
T2 are the repetition time, the exposure time, the spin-lattice and spin-spin
relaxation times, respectively ; v is the gyromagnetic ratio, § and G are the
duration and strength of the gradient pulse, is the duration of the pulse and
A is the time between on two pulses. Finally, the term ADC is the apparent
diffusion coefficient which is determined from

In[S(TE,G)/S(TE,0)] = —y*G*§* (A —§/3) ADC = —bADC

The direction of the diffusion sensitizing gradients can be controlled and the
apparent diffusion coefficient (ADC) can be measured along the respective
direction.
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Based on the equations above and in some cases contrast agents it is possi-
ble to extract different attributes by controlling the TE, TR and the number
of sensitizing gradients. Using positive contrast agents (Gadolinium), and
TR < 750ms and TE < 40ms it is possible to acquire spin-lattice (T1)
weighted images. Using negative contrast agents (SP10), and TR > 1500ms
and TE > Thms it is possible to acquire spin-spin (T2) weighted images. Re-
arranging the second equation it is possible to calculate a single ADC value
for each voxel in the brain. Using ADC values as color values it is possible
to construct Diffusion Weighted Images (DWI) for a specified direction. Fi-
nally, applying various diffusion sensitizing gradients it is possible to sample
enough data in order to define a second-order diffusion tensor (DT-MRI)
that captures the diffusion properties of water along specific directions and
represent it in the form of a tensor. | ].

1.2 Related Work

In this section we examine how anisotropy may be incorporated in Tumor
Modeling using different types of brain data. We are going to concentrate on
MRI (T1 & T2), ADC and DT-MRI data.

Moseley et al in | | examined the relationship between the dif-
fusion behavior of water protons in normal gray and white matter of living
cats with the diffusion-gradient strength and direction. In this particular
work the anisotropy in each voxel is characterized by the ratio of the differ-
ences and sums of ADCs with diffusion-sensitizing gradients applied in two
perpendicular directions; e.g x and y :

ADC, — ADC,
ADC, + ADC,.

(7.1)

Douek et al proposed in | ] a different approach. The anisotropy in
each voxel was characterized by the ratio of two apparent diffusion constants
(ADCs) measured with diffusion sensitizing gradient in two perpendicular
directions:

ADC,
ADC,’

This ratio was later displayed as a color image. In | | it was proposed
that in white matter voxels, where this ratio appeared to be in its maximum

value, corresponds to the ratio of the perpendicular and parallel fiber tract
direction ADC'| /ADC),.

(7.2)
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Gelderen et al proposed in | | a scalar anisotropy index that
is proportional to the standard deviation of three ADC's measured in three
mutually perpendicular directions ADC,, ADC, and ADC, divided by their
mean value (ADC):

V(ADC, — (ADC))?* + (ADC, — (ADC))? + (ADC, — (ADC))?)

507 (7.3)

Basser and Pierpaoli in | | proposed a new set of quantitative pa-
rameters derived form the effective Diffusion Tensor D.

sz Da:y D:Bz
D= Dy Dy, Dy
Da:z Dyz Dzz

First, they address a decomposition of the original tensor D into isotropic
and anisotropic tensors:

D= (D)I +D — (D)I
~ Y=

1sotropic anisotropic

where (D) = TT“C;(D) and I is the isotropic identity tensor. The anisotropic

tensor is called deviatoric or diffusion deviation tensor D’ as it measures the
deviation of D from the isotropic tensor (D) :

D' =D — (D)I

For the isotropic tensor the magnitude' of tensor (D)I is:
(D)I: (D)I = (D)VI:I=(D)v3

and for an anisotropic tensor D’ it is shown that

D : D' = /(M — (D)2 4 (Ao — (D)2 4 (A3 — (D)2 = /3Var())

! In order to measure the magnitude of the tensor T it is used the square root of the
generalized tensor product or tensor dot product /T : T:

where A denotes the eigenvalue of the T
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The Relative Anisotropy (RA) and Fractional Anisotropy (FA) are proposed
in the same work as the following and dimensionless measures of anisotropy.

e vD D' V/D':D'  /Var(\)
/D)D) VD)  EWN
3VD D
FA= \@ VD :D

2 Application of CHI as applied to MRI data

Tumor Modeling from MRI data is a relatively new scientific field but it
is becoming increasingly prominent. Important advances is this field have
followed Diffusion Tensor Imaging (DTI) development. However, DTI labs
and data are very rare due to extremely high costs of DTT equipment. One
important advancement from conventional MRIs is that a Diffusion Tensor
includes anisotropy information as shown in | ]. Therefor it is interesting
to discuss if the CHI method can be applied to MRI data. However, before
applying the CHI method to magnetic resonance data there are several issues
to be discussed.

Random process As explained in the previous sections, CHI is designed
to estimate anisotropy parameters of random fields. We have explained that
CHI provides a single value for anisotropy for the entire domain of inter-
est. This means that we have to accept that the way cancer cells diffuse
throughout the brain is a random process, if the CHI method is to work.
This constraint is not completely satisfied as there are structural barriers
in the brain whose sizes are not necessarily small compared to the domain
size. On the one hand, we may accept that within a small area of the brain
the cancer cells” movement is a random process, and that structural barriers
consist part of this random process. On the other hand, as the area of in-
terest decreases, the number of observation data also decreases given a fixed
resolution of the MRI machine. The CHI method consists of a statistical
analysis of the data. Therefore, it is important to keep in mind, though, that
as the input data size decreases, several accuracy problems occur that may
lead to either isotropic or extremely anisotropic estimates.

Microscopic scale Statistical analysis at a microscopic scale usually is
bounded from the MRI resolution ability. We refer to a microscopic scale
when the outer bounds of the area of interest consists the area of an MRI-
voxel. In order to estimate inter-voxel anisotropy, it is essential to acquire
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inter-voxel statistics related to the inter-voxel field’” gradients. Unfortunately
magnetic resonance imaging (MRI) data provide only a single value per voxel.
This value represents the average value of the metered property per voxel.
This restriction excludes MRI data from microscopic anisotropy analysis by
estimating anisotropy directly from the data. However, these datasets could
provide estimates for anisotropy per voxel by means of a moving window
procedure (see section 4). This approach presumes that the statistics of the
neighborhood, centered over an arbitrary pixel, fully represents the statistics
of the specified voxel. Gradient data acquisitions such as DWI and DT-MRI
have been used in the past in order to model anisotropy.

Diffusion Tensors vs Slope Tensors At the core of the CHI method
is the slope tensor. The expected slope tensor Qij for Gaussian Random
Fields (GRF) is linked to the Covariance Hessian Matrix H;; thought the
Covariance Hessian Identity | |. Slope tensors represent fully the second
order derivatives of the covariance function of a GRF and provide a global
anisotropy estimate of a given field. On the other hand, Diffusion Tensors are
local estimates per voxel. The MRI Diffusion Tensors represent the magnetic
diffusion gradient based on the attenuation of voxels through repeated scans.

The relation between the MRI Diffusion Tensor and the Slope Tensor
is unclear to date. This relation merits further study as the DT-MRI is a
complicated procedure and in order to define the relation, knowledge of each
stage of the procedure is needed.

3 Dimensions The DT-MRI data provide an 3 by 3 diffusion tensor D for
each voxel. Under the assumption that the diffusion tensor D can fully rep-
resent the second order derivatives of the covariance function; i.e Qij = Dy;,
we could apply the CHI method to estimate meaningful anisotropy param-
eters per voxel. However, since there is no analytical solution for anisotropy
parameters in three-dimensions, so one should approach this subject by min-
imizing the equation 3.8.

D:ca: Dazy Dzz 3.8
D= Dy, Dy, D,.| === [R,0] = (Ro,Rs,0,0,0),
sz Dyz Dzz

given that 0, ¢ & 1) are the Euler angles for a three-dimensional Euler rotation
matrix (see Appendix A) and Ry, R3; are ratios of the principal correlation
axis.

Even though the theoretical background exists, this optimization problem
suffers from multiple local minimums and has not been adequately solved yet.



CHAPTER 7. APPLICATION OF CHI METHOD ON MRI DATA 79

Some pre-limitary research on three-dimensional analysis can be found in the
Appendix A.

2 Dimensions In various medical imaging application, among them and
MRI, the three dimensional data are acquired from vertically aligned slices.
Even though the final result provides a three dimensional representation of
the measured quantities, the data acquisition is performed in two dimensions.
Therefor, it is not always valid to assume that the correlation of samples in
the direction of the third axis is captured in data. In this case we should
perform anisotropy analysis in two dimensions instead of three. In case we
focus on 2D images (e.g slices) the CHI method can be applied under the
assumption (Q;; = Dy)):

D— |:Dx$ Dwy:| eq:A.2,A.3

R,0
Dyy Dy [£.6)

2.1 Relation between anisotropy parameters and dif-
fusion in 2D tensor

In 2D the relation between anisotropy parameter and slope tensors are given
from | .

O'QCQ
Dy = —2—(cos® 0 + Ré)l sin? 6)
i
2 -2
Doy = Ugg (sin? @ + Ré)l cos® )
i

2,2

o :
Dyiy = Doy = E%C (sinfcosf + (1 — Ry,)

where ¢ = (1/2)Ac,(0), ¢,(0) is the isotropic covariance function evaluated
at zero lag, & is the correlation length of the direction originally selected as
major and o2 is the variance.

2.2 Relation between slope and diffusion tensor in three
dimensional space with aligned vertical axis.
In the special case where in a 3-dimensional system the one of the correlation

axis is aligned with the vertical axis of the coordinate system we may write
explicitly the anisotropy parameters. It is safe assume anisotropic behavior
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between slices equal to the anisotropy of the major or minor axes (see also
appendix A.1.1). The remaining diagonal element should be either:

D33 = maX(Du, D22) or min(Du, D22)

assuming that D3 = D3y = Doz = D3o = 0 which gives a tensor of the form

Dy Dy O
D — D21 D22 0
0 0 Dss

Again for D;;, 4,75 € [1,2] the equations are the same as in 2D case and the
addition term D33 can be easily estimated (see also Appendix A):

D22 D12
diag — Dlla Qott = D11
1 - 2qoss
6= —tan ' (—— 7.4
i (1= qdiag) (7.4)

1 - iay
Rg(l) = \/1 + Qaiag (7.5)

(aiag + (1 + Qdiag) cos? 6

/D33

and
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3 Spatial Interpolation Comparison Dataset
(SIC2004) and MRI data

The variable used in the SIC 2004 exercise is natural ambient (background)
radioactivity measured in Germany. The data, provided kindly by the Ger-
man Federal Office for Radiation Protection (BfS), are gamma dose rates
reported by means of the national automatic monitoring network (IMIS). In
the frame of SIC2004, a rectangular area was used to select 1008 monitoring
stations (from a total of around 2000 stations). The exercise consists of using
200 measurements (background) to estimate the values observed at the re-
maining 808 locations. In addition, a emergency data set was released, which
contains an anomaly. The anomaly was generated by a simulation model,
and does not represent measured levels [SIC].

We demonstrate anisotropy estimation on those datasets. Anisotropy
changes at the emergency scenario even if the majority of the observed data
remains the same. We may notice (figure 7.1) that the background sce-
nario demonstrates an isotropic behavior that can be seen both from the
CHI estimates and the semivariogram. On the other hand the anomaly that
was introduced into the data set changes both the direction and the ratio of
anisotropy. This behavior is also seen in the semi-variogram (figure 7.1). The
best approach to this issue would be to deal with the anomaly separately, as
it is not part of the background spatial process.

Emergency Background
R 1.4564 1.1469

~

0 49.9005 -39.7459

Table 7.1: Emergency and Background scenario C'HI anisotropy estimates
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Figure 7.1: Sic2004 dataset. Top: linear Interpolation result for emergency
(left) and background (right) scenarios. Note here different value range
for the two scenarios (see colorbars) . Middle: The semi-variograms on
22.5(blue), 67.5(green), 112.5(red), 157.5(cyan) degrees from x axes of the
emergency and background scenario respectively. Bottom: Ellipses semi-axes
representing the ratio and direction of anisotropy CHI estimates. The axes
lengths do not correspond to the true correlation lengths
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In comparison to spatial data of SIC2004 scenario, we demonstrate the
anisotropy estimates from an MRI images derived by CHI application (fig-
ures 7.2, 7.3, 7.4).The brain data shown in these figures, are selected MRI
slices (4,5,8) from a tumor-modeling scenario (240x240x14). The analysis is
performed only around the tumor area; due to morphological symmetry of
the brain we selected to present only the right part of the tumor area in the
following figures; equivalent results can be produced for any window area of
the brain.

Even though, there is no obvious relation of the MRI images with the
monitoring data presented earlier, the MRI images provide spatially corre-
lated data in micro scale. The MRI images consist maps of the water concen-
tration inside the brain. The water movement and the spatial dependence of
the water concentration samples (that are provided from MRI images) are
defined from the brain anatomy. Given that, MRI images provide spatially
distributed samples, it is reasonable to examine whether the correlation of
these samples changes differently in certain directions.

The MRI intensity images presented on the top-left of the figures are used
to map white and gray matter in the brain. It is known that cancer cells dif-
fuse differently in white and gray matter due to different water concentration.
The concentration images shown on the top-right, present the simulated con-
centration of low-glioma cells (brain cancer cells) after 100 days of isotropic
tumor diffusion. The extraction of white and gray matter is performed with
threshold application on the intensity image. Every voxel that admits in-
tensity value above 60 is marked as white matter; the remaining voxels are
marked as gray matter.

We applied the CHI method on both the intensity and concentration
images in order to compare the results (see figures 7.2, 7.3, 7.4 and table
7.2). Tt is clear that there is anisotropy in the area of interest in the intensity
images (left column on figures). However the anisotropy is not present in the
concentration image (right column on figures). This is verified both from the
CHI estimates and the empirical semi-variograms in all figures. We believe
that this difference in the behavior of the field is the result of the thresholding
procedure. In addition in figure 7.4 we notice that the intensity image yields
isotropy for the most of the area of interest. The results show significant
departure from anisotropy. This anisotropic behavior exists mostly because
of the dark spot on the top left of the intensity image that represents a
solid structure inside this brain area. This area has completely different
values from the (white) background and could be considered as an outlier.
Consider now the effect on anisotropy estimates of the analogous emergency
scenario. As shown by the emergency scenario above, outliers are able to
greatly affect anisotropy and for this reason should be dealt separately as
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in | ]. However, there in not enough information to perform statistical
analysis on such a small area.

slice R, 0. R; 0;
4 1.1671 5.6112 | 1.4958 79.6549
5 | 1.1427 -0.0517 | 1.7063 59.9122
8 1.209 -6.6583 | 1.4477 -38.7072

Table 7.2: CHI anisotropy estimates for slices 4,5 and 8 (shown later in
figures 7.2, 7.3 and 7.4 respectively). The indices “¢” and “i” denotes the
concentration and intensity images respectively.
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Figure 7.2: Slice 4 of the right part of the tumor area. Top-Right: Simulated
concentration of tumor cells after 100 days and the ellipse that respects the
CHI estimates for this simulation. Top-Left: Intensity MRI of the same area
that was the initial model for the simulation. The ellipse again respects the
CHI estimates for the intensity image. Bottom left and right: Directional
semi-variogram for intensity and concentration respectively. The direction
on the semi-variograms is 22.5(blue), 67.5(green), 112.5(red), 157.5(cyan)
degrees from x axes.
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Figure 7.3: Slice 5 of the right part of the tumor area. Top-Right: Simulated
concentration of tumor cells after 100 days and the ellipse that respects the
CHI estimates for this simulation. Top-Left: Intensity MRI of the same area
that was the initial model for the simulation. The ellipse again respects the
CHI estimates for the intensity image. Bottom left and right: Directional
semi-variogram for intensity and concentration respectively. The direction
on the semi-variograms is 22.5(blue), 67.5(green), 112.5(red), 157.5(cyan)
degrees from x axes.
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Figure 7.4: Slice 8 of the right part of the tumor area. Top-Right: Simulated
concentration of tumor cells after 100 days and the ellipse that respects the
CHI estimates for this simulation. Top-Left: Intensity MRI of the same area
that was the initial model for the simulation. The ellipse again respects the
CHI estimates for the intensity image. Bottom left and right: Directional
semi-variogram for intensity and concentration respectively. The direction
on the semi-variograms is 22.5(blue), 67.5(green), 112.5(red), 157.5(cyan)
degrees from x axes.
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4 Local CHI using moving Windows

So far we have presented the CHI method for global estimation of anisotropy
in the area of interest. In case the area of interest is too small (e.g. a small
part of the brain), then a global estimate of this area can be considered as a
local estimate when it is examined from distance.

In the field of magnetic resonance imaging there is a rising interest in
methods that can provide local estimates. To satisfy this need, we propose
a local extension of the CHI method in terms of the moving window filter.
This local method can be applied to MRI data. The local estimates of a
cell are the CHI estimates of its vicinity, which is defined by the moving
window size. The window moves across the area of interest and provides a
set of overlapping neighborhoods, each neighborhood can be used then es-
timate anisotropy parameters that are assigned later on the center of the
neighborhood (see figure 7.5). In any case, one should investigate whether
the requirements of the CHI method are met for the window area (i.e. er-
godicity and existence of a field’s derivatives) and whether the window’s size
is large enough to capture changes of the field inside the brain. Under the
assumption that the requirements are met for the window area, we provide
local estimates. In the following sections we present application of local
CHI using both synthetic and MRI data..

100

Figure 7.5: The local CHI anisotropy estimates are estimated using mov-
ing windows. The window moves across the area of interest and defines
overlapping neighborhoods. Anisotropy parameters are estimated for each
neighborhood and are assigned to its center.
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Figure 7.6: Left: GRF on a 128x128 lattice with anisotropy parameters
(R,0) = (2,30°). The arrow’s direction and relative length are equivalent to
the moving window CHI etsimates. The window size is 10 and the major
correlation length is 8.

4.1 Synthetic Data

We apply the moving window CHI on synthetic GRF N(0,1) with anisotropy
parameters (R,0) = (2,30°). We have selected a square 10 by 10 window
for the window filter. The length for the major and minor correlation axes
is 8 and 4 respectively. The angle between the major correlation axes and
the x-axis of the coordinate system is 30°. The generation of the GRF is
performed using the FFT method described in section 5.1.

In figure 7.6 we see the realization of the GRF and an enlarged part of
the same image in figure 7.7. We may notice on the enlarged part (figure 7.7)
that the direction of the majority of the arrows agrees with the theoretical
value of the synthetic GRF ( 30°). However there are parts that the direction
of the arrows change. This behavior is justified based on the local fluctuation
of the random field. This statement is also confirmed by the histograms of
the anisotropy estimates (R, 0) (figure 7.8).
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Figure 7.7: Enlarged image that demonstrates local anisotropy estimates
(right) using arrows. The arrow’s direction and relative length are equivalent
to the moving window CHI etsimates. The window size is 10 and the major
correlation length is 8.
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Figure 7.8: Histograms of the estimated local ratio R (top) and local direction
6° (bottom) for the synthetic data presented in figures 7.6 and 7.7. The GRF
was generated with anisotropy parameters (R, 0) = (2, 30).
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4.2 MRI data

We apply the local CHI on the 6 slice of an MRI intensity image (figure
7.9). The MRI anisotropy estimates (blue arrows) appear to demonstrate
the direction of the most correlated neighbor (details in the enlarged image
7.10). The length of the arrows represents the estimated anisotropy ratio.
Based on the fact that the intensity represents the water concentration inside
each pixel the following quiver plots demonstrate the local anisotropy esti-
mates for water concentration inside the brain. This information is useful for
brain-tractography and modeling various brain diseases that affect the water
concentration in brain.

1401

120

100

60T

401

-20 0] 20 40 60 80 100 120 140 180

Figure 7.9: Local CHI local estimates of anisotropy for slice 6 of the MRI
brain data. The arrow at each location demonstrates the direction of the
principal correlation axis and the length of the arrow is analogous to the
anisotropy ratio.
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Figure 7.10: Enlarged part of figure 7.9. The arrow at each location demon-
strates the direction of the principal correlation axis and the length of the
arrow is analogous to the anisotropy ratio.
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Conclusions

From the perspective of environmental surveillance, there is a need for com-
putationally efficient methods that can provide near real-time warnings for
developing environmental threats. This thesis introduces the clustered CHI
(CCHI) method for the estimation of geometric anisotropy parameters from
scattered two-dimensional spatial data. The proposed method incorporates
the computational efficiency of single-cluster CHI with a segmentation proce-
dure, which can partition a heterogeneously sampled study area into smaller
subsets to facilitate the spatial analysis. Based on our experience, the inter-
polation performance of clustered CHI improves when the sampling density,
the “degree of stationarity” and the differentiability of the sampled process
are increased.

To validate the above statement we presented some synthetic and real-
case scenarios to compare the behavior of original CHI and CCHI algorithms.
In addition, some other unsupervised clustering algorithms were also exam-
ined. An advantage of the CCHI clustering algorithm is that it does not
require prior knowledge of method specific parameters. The CCHI algo-
rithm was shown to behave well for several monitoring network scenarios
without additional parameter tuning.

We illustrate the CCHI method by application to a “difficult” GDR data
set which involves deviations from Gaussianity due to several factors, and
significant variations of the sampling density across the study area. Appli-
cation of CCHI leads to improved interpolation validation measures when
compared to estimates that are based on the isotropic variogram hypothesis.
The CHI method is computationally fast; for example, it requires only 0.17
seconds to estimate anisotropy in a domain containing around 2500 points,
if the domain is treated as a single cluster. Segregation of the domain into
clusters increases the computation time to about 9 seconds.

In addition to spatial statistics, other scientific fields that require estima-

93
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tion of anisotropy could benefit from the application of CHI .

We investigated how C'HI estimates can be used for medical imaging ap-
plications. We propose a local extension of CHI by means of a moving win-
dow fitler that gives meaningful results for local estimates of anisotropy. The
distributions of anisotropy estimates for the moving window CHI are con-
firmed with visual inspection of synthetic GRFs. The application of moving
window CHI on MRI data gives promising local estimates of anisotropy. Pre-
liminary efforts to solve the C'HI equations in three dimensions also provide
a starting point for further discussion on C'HI extensions. Three dimensional
CHI can benefit both Geostatistics and medical imaging applications. How-
ever further validation against other types of Magnetic Resonance data has
to be performed.

The R codes that we developed for the implementation of CCHI are part
of the R packages Intamap and IntamapInteractive, which can be down-
loaded from
http://sourceforge.net/projects/intamap/develop or from the Intamap
web site at: http://www.intamap.org.



Appendix A
Three Dimensional CHI

1 Appendix CHI method in 3D

From equation (17) in | | we note

- l(l)Acx(O)Uli(Q)Ulj<9) i,j=1...d (A1)

Y 0xr?

where Uj; are the elements of the 3d rotation matrix (x'z’x’) and 0 is an
angle vector 0 = (0, ¢,1) as presented in wolfram.

U=BCD
Where:

—siny cosy 0
0 0 1

cos¢ sing 0 1 0 0
D= |—sing cosgp 0| C= cosf sinf| B =

cosy siny 0
0 0 1 0 —sinf cosf

Figure A.1: Euler angles
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So:

Uil
U2
U13
U21
U22
U23
U3y
U32
U33

= cos 1 sin ¢ — cos # cos ¢ sin Y
= cos 1) sin ¢ + cos 0 cos ¢ sin Y
= sin ¢ sin 6

= —sin sin ¢ — cos 6 cos ¢ cos Y
= —siny sin ¢ + cos f cos ¢ cos Y
= cos 1 sinf

= sinfsin ¢

= —sinfcosd

= cosf

We may now rewrite equation ( .A.1) as

All together

Qu =
QlQ =
Qi3 =
Q23 =
Q33 =
Q22 =

We also have to set

g2(2
C R2 R
ufy 2(1>u21 3(1)u31)

<2
I U11U12 + R
z<2

2
2y U21U22 + Rg(l)u31u32>
U113 + Rg(  U21Ug3 + R3( )U31U33)
Ui2U13 + Rg(  UnaUg3 + R3( )U32U33)
<2
CC

2<-2

ufy + RQ(I)U23 + R3 | uis)
ufy + RQ( )u22 + R3(1)U32)

5 (
(
xCQ(
(
(

the ratio array to be R = (1, R2(1)>R3(1))
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u?, = cos? 0 cos? psin® 1) — 2 cos @ cos ¢ sin 1) sin ¢ cos ¥ + sin? ¢ cos? 1
u3, = sin® 1) sin® ¢ + 2sin 1 sin ¢ cos @ cos ¢ cos 1 + cos? O cos? ¢ cos? 1)
u?, = sin® sin? ¢
U1ty = cos? P sin? ¢ — cos? @ cos? ¢psin®
UgiUge = sin? ¢ sin? ¢ — cos? O cos® ¢ cos?
Us1tgy = — sin® @ cos 1 sin ¢
U113 = cos 1 sin ¢ sin v sin @ — cos @ cos ¢ sin? 1 sin 6
Ug1Uog = — sin 1) sin ¢ cos 1 sin @ — cos 6 cos ¢ sin” 1) sin 0
U3 u33 = sin 6 sin ¢ cos ¢
Uy2Uq3 = cOS 1 sin ¢ sin 1 sin § + cos @ cos ¢ sin® 1) sin @
Ugollag = — sin 1 sin ¢ cos 1) sin O + cos 6 cos ¢ sin? ¢ sin 0
U32U33 — — sin 0 0082 0
u?, = sin® 1 sin f
ul, = cos? 1) sin® 0
u3, = cos? 0
u?, = cos? 0 cos? ¢ sin® 1) + 2 cos § cos ¢ sin 1 sin ¢ cos ¢ + sin? ¢ cos? ¥
u3, = sin® 1) sin? ¢ — 2 sin 1 sin ¢ cos 6 cos ¢ cos Y + cos? f cos? ¢ cos?
u3, = cos? 1) sin® 0
If we want to write this problem in the using matrices then 1 can be
written :

[Q11] [ ui, U3y u3, ]

Q12 U1U12  U21U22  U3I1U32 1

Q13 _ 0262 Up1UI3  U1U23  U31U33 R2

(23 £ |ui2u13  UgoUpz  U3pUs3 Rﬁ‘”
@33 U U U3 S
| (22 ] | ufy Uz uzp |

So in order to get the parameters estimates we need to divide each one
of these equations with ()11 in order to reduce the number of unknown pa-
oz¢?
o 8 )
We may now use an optimization method in order to estimate the unknown
parameter vector.

rameters. Someone may notice that the term (%%-) is eliminated.

1.1 Special Case: One anisotropy principal axes aligned
to the coordinate system

In the special case where the z-axes of the coordinate system is aligned with
one of the anisotropy principal axes, then it is possible to provide closed form
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solution for three-dimensional data. The rotation matrix U takes the form:

cos¢ sing 0
U= |—sing cos¢p 0
0 0 1

So equations in 1 take the form:

Q1 = C’?Q (cos’p + RZ__sin?¢)

> 2
f3r2 Y
Q12 = & (cos¢sin g — R;,, sin ¢ cos o)
Q13=0
(23 =0
2,2
(33 = az%C Rgm
32
Qop = %(szngqﬁ + R | cos’®)

We may notice that everything besides Q33 is the same with 2D CHI .
Normalizing everything with Q11 we can write:

Q22 Q12
leag - Qlla ot = Qll

1 - 2qots
f = —tan (L A2
5 (1= qdiag) (A.2)
Roy = 4|1+ L daseg (A.3)
Qdiag + (1 + c]diag) COS2 0

and

| Q33
Rn = % (A.4)

where 0 € [—7/2,7/2] and {Rs(1), R3(1)} € [0, 00).
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Abstract

This tutorial describes the basic information needed in order to perform
anisotropy estimation using the Intamap and IntamapInteractive R
packages. The main aspects covered in this tutorial are the package
installation, a short description of the available methods for anisotropy
estimation, and a number of examples for each method.
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1 R basics

In this section we present some basic commands that you might find useful
in case you are not familiar with the R language. A good starting point for
learning R is the document “An introduction to R” that can be found under
the manuals menu at http://www.r-project.org/. There is also a search
engine for R at http://www.rseek.org.

1.1 Getting help

It it important to know how to use the help files for R functions. Placing a
“?” in front of any command name prints on the screen the help file for that
command. Examples for the commands “summary” and “plot” are shown
below:

#help for the summary command
?summary

#help for the plot command
?plot

1.2 Data manipulation

R packages usually include sample data sets. In order to see datasets that
have already been installed in your R system use the command

#print to screen available data sets.
data()

#print only base and sp datasets
data(package=c("base","sp"))

These datasets are saved in the form of a data.frame structure. In order to
load a specific set in your workspace you should use the data command

#check available variables in your workspace
1sO

#load data.frame meuse
data(meuse)


http://www.r-project.org/
http://www.rseek.org
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#you can now see the variable named meuse appearing in your workspace

1s()

We will describe how you can insert your own data as a data.frame in R.
The following example demonstrates how to read data from a csv or txt file.

#read the help file of read.csv command if you think it is necessary
?read.csv

#reading data from a csv file and save it in a data.frame:
myData=read.csv(file="path/myfile.csv")

#Another command to read data from a csv (or a even a txt ) file:
myData=read.table(file="path/myfile.csv",sep="," ,header=TRUE)

#An easy way to list the variables included in this R object is:
str(myData)

#The same operation is also possible with the following command:
summary (myData)

Note that is possible to insert data from a text file with a different ascii
character separator, just by using a different separator in the “sep” argument
in read.table command.

1.3 Using R packages

You can check which packages are installed in your computer by means of
the command:

library (O

The easiest way to extend the installed R functionality is to download and
install packages from the CRAN server using the following command (e.g. to
install package “sp”):

#install sp package from CRAN
install.packages("sp")

#To remove a package you should use the command:
remove .packages ("sp")
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After the package is downloaded to the computer, you have to load it in the
workspace in order to use the functions that it includes. This is done as
follows:

#load the already installed package sp.
library(sp)
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2 Installation of the Intamap package

First make sure you have already installed the latest R version (current is
2.9). You can find the necessary information and software for installing R at
http://www.r-project.org/.

After that you should download the Intamap and Intamaplnteractive
packages. At this moment these packages are not available from CRAN and
the only available public source can be found at http://sourceforge.net/
projects/intamap.

Click on Develop — Code — SVIN Browse to get the source files. We
suggest you download the full packages from the pkg folder. Alternatively,
it is possible to download and modify the source code that can be found in
the intamap and intamaplInteractive folders.

Windows users could install the Intamap packages as a local zip file.

Packages — Install package(s) from local zip file()

For Unix users the command to install the source packages should be
R CMD INSTALL intamap.tar.gz

The most common problem during installation is that some necessary CRAN
packages may not be installed on your computer. To solve this problem, you
should start R and issue the following command at the command line:

install.packages(c('sp','gstat','akima', 'rgdal', 'automap', 'mvtnorm','evd'))

By this point you should have already installed the Intamap package. Using
the following command inside the R command line, you should be able to
load the intamap library.

library(intamap) #loads to workspace intamap package
library(intamapInteractive) #loads to workspace intamapInteractive package
?estimateAnisotropy #print the help file

If you are familiar with R and do not wish to install the whole intamap
package (recommended), you could extract the zipped files into a working
directory and use only the files you need for anisotropy estimation (esti-
mateAnistropy.R, doSegmentation.R, anisotropyChoice.R).

#set the working directory to the specified folder setwd('path')

# load at workspace the source files source('estimateAnisotropy.R')
source('doSegmentation.R') source('anisotropyChoice.R')


http://www.r-project.org/
http://sourceforge.net/projects/intamap
http://sourceforge.net/projects/intamap
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3 Interpretation of Anisotropy Estimation Re-
sults

The values of the parameters returned from the anisotropy estimation rou-
tines are defined in the help function of each command.Below we present
some examples for illustration purposes.

The following script generates a synthetic gaussian field on a 128x128
grid using the run.Gen function, which is a custom function for generat-
ing synthetic fields, after we have first inserted the necessary parameters
(R and Theta) through standard input (aka keyboard). Next we use esti-
mateAnisotropyGrid intamap-internal function to estimate the parameters
of the generated field and draw an ellipse according to the estimated param-
eters. Note that the length of the axis of the ellipse drawed here are note
proportional to the actual correlation lenght of the field at each direction,
and it is only useful in order to interpret the result.

#Set the values R and theta for the simulated field
R=as.numeric(readline("Set anisotropy Ratio :"))
theta=as.numeric(readline("Set anisotropy direction (degrees) :"))

#run.Gen generates a field “N(0,1) on a grid 128x128
dat=run.Gen(theta=theta,xil=R*4,xi2=4)

#estimateParameters
res=intamap: ::estimateAnisotropyGrid(dat$x,dat$y,dat$z)

#plots an ellipse to illustrate the anisotropy parameters.

#As base we use an ellipse centered at (64,64) with the

#major axes alligned to x axes and small axes to be 20 grid cell
#length

plotEllipse(R=res$R,theta=res$theta,20,c(64,64))

print(res)

And the output looks like this :
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#Anisotropic synthetic field
#Anisotropy Ratio=1.5
#Anisotropy

direction= 60(deg)

#Anisotropic synthetic field
#Anisotropy Ratio=3
#Anisotropy

direction =-25 (deg)

#ANISOTROPY ESTIMATES ggNISOTRUPY ESTIMATES
$R
[1] 2.9409 [1] 1.45534

$theta.deg
$theta.de
[1] -24 351 [1] 58.34072
$Q $Q

Q11 Q22 Q12
11 22 12

[t ]Q493 51 1278 o9 616Q56 [1,] 1531.45 1106.69 -422.61
$doRotation $doRotation
[1] TRUE [1] TRUE

Figure B.1: (a) Synthetic Gaussian field with R =3 and theta =-25, (b)
Synthetic Gaussian field with R =1.5 and theta =60
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Assuming a Cartesian coordinate system of axes x and y, 6 represents the
angle between the horizontal axis and PA1, where PA1 is one of the principal
axes of the ellipse, arbitrarily selected (PA2 will denote the other axis). R
represents the ratio of the correlation along PA1 divided by the correlation
length PA2. Note that the returned value of R is always greater than one
(see 'value’ below.)

ratio: The estimate of the anisotropy ratio parameter. Using the degen-
eracy of the anisotropy under simultaneous ratio inversion and axis rotation
transformations, the returned value of the ratio is always greater than 1.

direction: The estimate of the anisotropy orientation angle. It returns
the angle between the major anisotropy axis and the horizontal axis, and its
value is in the interval (-90,90) degrees.

PA2

R=PA1/PA2

PA1

Figure B.2: Illustration of the anisotropy estimates.
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4 Examples of Anisotropy Estimation

As stated above, there are two ways of using the anisotropy estimation rou-
tines. The first one is to install the intamap package and use the default
values. The other option is to use selectively the internal anisotropy estima-
tion functions of the package. In the second approach, one can define options
such as different interpolation grids and interpolation methods (e.g., bicubic
and biharmonics splines) for the estimation of sample derivatives.

Function Package Usage

Package functions

estimateAnisotropy

4.1 INT Provides single cluster anis-
totropy estimates for 2D data.

doSegmentation

4.1 INT-IN  Performs clustering for 2D data
based on spatial and sampling
density criteria.

anisotropyChoice

4.1,4.2.2 INT-IN  Wraps the two previous func-

tions and provides anisotropy es-
timates for each cluster detected
and a weighted average of the 2D

dataset

Internal functions

estimateAnisotropySc

4.2 INT Single cluster for anisotropy esti-
mates. This function is called by
the estimateAnisotropy function.

segmentData

4.2.1 INT-IN  Segmentation-Clustering  func-

tion. This function is called by
the doSegmentation function.

Table B.1: Quick reference guide for the functions presented in the next
sections. INT and INT-IN refer to the Intamap and IntamapInteractive
packages.
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4.1 Using the defaults

This is the easy approach for using the anisotropy code. It is based on the
default (bilinear) interpolation method for all the cases. For single cluster
anisotropy parameters estimation we have two different approaches. First
approach if you only have a “SpatialPointsDataFrame” and the second one is
to create an “Intamap” object. For the anisotropy estimation using clustering
only the second approach is available.Here we use the Dataframes meuse and
quakes which are included in the R distribution.

library(intamap) #load intamap package
library(intamapInteractive) #load intamapInteractive package
data(meuse) #load meuse data.frame

#here we change this data.frame to Spatial data frame
#Type ~~7coordinates'' to get more info.
coordinates (meuse)="x+y

#To see what this data set involves type:
summary (meuse)

#For more info on the data set use:
‘meuse

#To see a plot of the coordinates use
plot (meuse)

#INTAMAP PACKAGE

#-First approach

#single cluster for scattered data. Using a SpatialPointsDataFrame
params=estimateAnisotropy(meuse,"cadmium")

print (params)

#-Second approach

#single cluster for scattered data. Using an Intamap Object
object=createIntamapObject (observations=meuse,data=meuse$cadmium)
params=estimateAnisotropy(object)

print (params$anisPar)

#INTAMAP-INTERACTIVE PACKAGE
data(quakes)
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coordinates(quakes)="long+lat

#only Second approach is available:

object=createIntamapObject (observations=quakes,data=quakes$mag)

#multiple clusters: returns the cluster index, the anisotropy estimation for
#each cluster and the average (non-linear ) anisotropy estimates for the hole
#area.

params=anisotropyChoice(object)

print (params$anisPar)

#to plot the clustering result you may type the following commands.
plot(coordinates(quakes),

pch=c(as.character (params$clusters$index)),
col=params$clusters$index)

4.2 Interactive approach

For more control over the internal parameters used in anisotropy estimation,
one needs to use the internal functions of intamap package. There are several
options that the user can change. First of all, one can select the interpolation
method used to construct the anisotropy estimation grid. Besides bilinear
interpolation (akima package), bilinear and tps interpolation methods are
also implemented and can be used interactively.

Below we give an example of a call to the estimateAnisotropySc func-
tion, and a list of the available arguments with a short description.

estimateAnisotropySc(x, y, r, len=length(x), method="linear”,
min.x=min(x),

max.x=max(x), min.y=min(y), max.y=max(y), deb=FALSE, pl=FALSE,
br)

library(intamap)
data(meuse)

x=meuse$x
y=meuse$y
z=meuse$cadmium
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Table B.2: Table of arguments used in the estimate AnisotropySc function

Input Description

X The x-axis coordinate of field

y The y-axis coordinate of field

r The field value in (xi,yi) point

len default length(x), defines the rank of the number of cells

to be used for the interpolation field. The total number
of cells is defined as len * aspect, where aspect is the the
aspect ratio (always > 1) of the coordinates

method | default “linear”. This specifies the interpolation method
used to construct the anisotropy estimation grid for
derivatives estimation. Choices are: “cubic”, “linear”,
“y4” (biharmonic spline)

min.x | default min(x), minimum x value for the interpolation

grid

max.x | default max(x), maximum x value for the interpolation
grid

min.y | default min(y), minimum y value for the interpolation
grid

max.y | default max(y), maximum x value for the interpolation
grid

deb toggles debugging mode; only used interactively, outside
intamap

pl toggles plot; only used interactively, outside intamap

br borders coordinates; only used interactively, outside in-
tamap

# the default method - linear interpolation
result=intamap: ::estimateAnisotropySc(x,y,z,pl=T)
print (result)

#plots the interpolated field and uses the biharmonic spline interpolation
#method.

result2=intamap:::estimateAnisotropySc(x,y,z,pl=T,method="v4")

print (result2)

#plots the interpolated field and uses the bicubic interpolation
#method.
result3=intamap:::estimateAnisotropySc(x,y,z,pl=T,method="cubic")
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print (result3)

#define a 100 times bigger interpolation grid

result4=intamap: ::estimateAnisotropySc(x,y,z,len=length(x)*100,pl=T,
method="linear")

print (result4)

4.2.1 Intamaplnteractive-Segmentation

Certain parameters can also be changed in the segmentation algorithm. The
main internal function used for segmentation is segmentData.

Below we show an example of a call to segmentData, and a list of the
available arguments with a short description.

segmentData=function(ddd,pl=FALSE,dev=FALSE,soft=0.2,br)

Table B.3: Table of arguments for the segmentData function

Input Description

ddd A nx2 or nx3 matrix containing the observations. First
column is the horizontal and the second one the vertical
coordinate.

pl boolean variable that toggles plotting. If TRUE sev-

eral plots during the segmentation procedure are shown.
(Only used interactively)

dev boolean variable that toggles saving the plots. (Only
used interactively)

soft parameter that controls the weight of sampling density
and distance from neighbouring clusters in the cost func-
tion.

br mx2 matrix with borders coordinates in case of plotting.

This parameter is actually deactivated in line 79.
Output

A list with the following elements (i) index: a nx1 array
with the indices. (ii) clusterNumber: The total number
of clusters detected

library(intamapInteractive) #load intamap interactive package
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data(quakes) #load quakes dataset

x=quakes$lat
y=quakes$long
z=quakes$mag

xyz=cbind(x,y,z)

#default values use default values and enable plot
result=intamapInteractive:::segmentData(xyz,pl=T,soft=0.2)

#change weights for the final assignement

# you may also read the description of the doSegmentation function
#in order to get the details.
result=intamapInteractive:::segmentData(xyz,pl=T,soft=0.5)

#note that with less than 200 observation points, only one cluster will be
#returned.

4.2.2 Intamaplnteractive- AnisotropyChoise

At this development stage it is not possible to pass other arguments besides
the IntamapObject in the anisotropyChoice function. In order to get a dif-
ferent interpolation method or apply a different interpolation grid, someone
will have to edit the source code of the anisotropyChoice function, using
the knowledge gained from the previous paragraphs. We demonstrate below
the parts of the code where these changes can be performed.

First, the parameter soft can be changed to a value different than 0.5
(in lines 78,79). Like the previous paragraph 4.2.1 one may use:

78:# do Segmentation
79:segmentResult=segmentData(ddd=xyz_d,pl=FALSE,dev=FALSE,soft=0.5)

One may also change the interpolation methods used to generate the
anisotropy estimation grid (line 124) according to the examples in 4.2.

124:tempPar=intamap: : :estimateAnisotropySc(temp[,1],temp[,2],temp[,3],
method="v4")

After the changes are completed, you can re-install the package source
code with the command:
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R CMD INSTALL intamaplInteractive

In a Windows environment, you may want to consult this tutorial for
the necessary tools required to build a package http://www.stat.osu.edu/
~liuliang/research/R-package-windows.pdf, or you can use the source
command to include the changes in your own scripts.


http://www.stat.osu.edu/~liuliang/research/R-package-windows.pdf
http://www.stat.osu.edu/~liuliang/research/R-package-windows.pdf

Appendix C

Help files for anisotropy
functions in Intamap package

estimateAnisotropy

estimate Anisotropy

Description

This function estimates geometric anisotropy parameters for 2-D scat-
tered data using the CTI method.

Usage

estimateAnisotropy(object,depVar)

Usage

estimateAnisotropy(object,depVar)

Arguments

object

(i) An Intamap type object (see intamap-package) con-
taining one SpatialPointsDataFrame data frame named
observations which includes the observed values (ii) or
a SpatialPointsDataFrame which includes both coordi-
nates and observations.

116
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depVar name of the dependent variable; this is used only in case

(ii).
Details

Given the input object that defines N coordinate pairs (x,y) and observed
values (z), this method estimates of the geometric anisotropy parameters.
Geometric anisotropy is a statistical property, which implies that the iso-
level contours of the covariance function are elliptical. In this case the
anisotropy is determined from the anisotropic ratio (R) and the orienta-
tion angle (\theta) of the ellipse.

Assuming a Cartesian coordinate system of axes x and y, \theta repre-
sents the angle between the horizontal axis and PA1, where PA1 is one
of the principal axes of the ellipse, arbitrarily selected (PA2 will denote
the other axis). R represents the ratio of the correlation along PA1 di-
vided by the correlation length PA2. Note that the returned value of R
is always greater than one (see value below.)

The estimation is based on the Covariance Tensor Identity (CTI) method.
In CTI, the Hessian matrix of the covariance function is estimated from
sample derivatives. The anisotropy parameters are estimated by explicit
solutions of nonlinear equations that link (R,\theta) with ratios of the
covariance Hessian matrix elements.

To estimate the sample derivatives from scattered data, a background
square lattice is used. The lattice extends in the horizontal direction from
x.min to x.max where x.min (x.max) is equal to the minimum (maximum)
x-coordinate of the data, and similarly in the vertical direction. The cell
step in each direction is equal to the length of the lattice to the respective
direction divided by the square root of N.

BiLinear interpolation, as implemented in akima package, is used to in-
terpolate the field’s z values at the nodes of the lattice.

The CTI method is described in detail in (Chorti and Hristopulos, 2008).

Note that to be compatible with gstat the returned estimate of the
anisotropy ratio is always greater than 1.

Value

(i) If the input is an Intamap object, the value is a modification of
the input object, containing a list element anisPar with the estimated
anisotropy parameters. (ii)if the input is a SpatialPointsDataFrame,
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then only the list anisPar is returned. The list anisPar contains the
following elements:

ratio The estimate of the anisotropy ratio parameter. Using
the degeneracy of the anisotropy under simultaneous ratio
inversion and axis rotation transformations, the returned
value of the ratio is always greater than 1.

direction The estimate of the anisotropy orientation angle. It re-
turns the angle between the major anisotropy axis and
the horizontal axis, and its value is in the interval (-90,90)
degrees.

Q A 3x1 array containing the sample estimates of the di-
agonal and off-diagonal elements (Q11,Q22,Q12) of the
covariance Hessian matrix evaluated at zero lag.

doRotation Boolean value indicating if the estimated anisotropy is
statistically significant. This value is based on a statisti-
cal test of the isotropic (R= 1) hypothesis using a non-
parametric approximation for the 95 percent confidence
interval for R. This approximation leads to conservative
(wider than the true) estimates of the confidence interval.
If doRotation==TRUE then an isotropy restoring trans-
formation (rotation and rescaling) is performed on the co-
ordinates. If doRotation==FALSE no action is taken.

Note

This function uses akima package to perform ”bilinear” interpolation.
The source code also allows other interpolation methods, but this option
is not available when the function is called from within INTAMAP.

In the gstat package, the anisotropy ratio is defined in the interval (0,1)
and the orientation angle is the angle between the vertical axis and the
major anisotropy axis, measured in the clockwise direction. If one wants
to use ordinary kriging inside INTAMAP the necessary transformations
are performed in the function estimateParameters.automap. If one
wants to use ordinary kriging in the gstat package (but outside IN-
TAMAP) the required transformations can be found in the source code
of the estimateParameters.automap function.

Author(s)
A.Chorti, D.T.Hristopulos,G. Spiliopoulos
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References

[1] http://www.intamap.org,

[2] A. Chorti and D. T. Hristopulos (2008). Non-parametric Identification
of Anisotropic (Elliptic) Correlations in Spatially Distributed Data Sets,
IEEE Transactions on Signal Processing, 56(10), 4738-4751 (2008).

[3] Em.Petrakis and D. T. Hristopulos (2009). A non-parametric test
of statistical isotropy for Differentiable Spatial Random Fields in Two
Dimensions. Work in progress. email: dionisi@mred.tuc.gr

Examples

library(intamap)
data(sic2004)
coordinates(sic.val)="x+y
sic.val$value=sic.val$dayx

params=NULL

estimateAnisotropy(sic.val,depVar = "joker")
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rotateAnisotropicData
rotateAnisotropicData

Description

This function applies an isotropic transformation of the coordinates spec-
ified in object.

Usage

rotateAnisotropicData(object,anisPar)

Usage

rotateAnisotropicData(object,anisPar)

Arguments

object (i) An Intamap type object (see intamap-package) con-
taining one SpatialPointsDataFrame data frame named
observations which includes the observed values (ii) or
a SpatialPointsDataFrame which includes both coordi-
nates and observations or (iii) SpatialPoints which in-
cludes only coordinates to be rotated.

anisPar An array containing the anisotropy parameters (anisotropy
ratio and axes orientation) (see estimateAnisotropy) for
the rotation. If object is the output of estimateAnisotropy
function, these parameters are part of object. In cases
(i) and (iii) anisPar defines the two anisotropy parame-
ters. For the definition of the anisotropy parameters see
estimateAnisotropy.

Details

This function performs a rotation and rescaling of the coordinate axes
in order to obtain a new coordinate system, in which the observations
become statistically isotropic. This assumes that the estimates of the
anisotropy ratio and the orientation angle provided in anisPar are accu-
rate.
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Value

(i) A modified object with transformed coordinates if rotateAnisotropic-
Data is called with an Intamap object as input (see intamap-package)
or (ii) the transformed coordinates if a SpatialPointsDataFrame is used
as input or (iii) the transformed coordinates if a SpatialPoints object
is the input.

Author(s)

Hristopulos Dionisis, Spiliopoulos Giannis

References

[1] http://www.intamap.org

[2] A. Chorti and D. T. Hristopulos (2008). Non-parametric Identification
of Anisotropic (Elliptic) Correlations in Spatially Distributed Data Sets,
IEEE Transactions on Signal Processing, 56(10), 4738-4751 (2008).

See Also

estimateAnisotropy

Examples

library(gstat)
data(sic2004)
coordinates(sic.val)="x+y
sic.val$value=sic.val$dayx

params=NULL

obj<-list(
observations=sic.val
)
obj<-estimateAnisotropy(obj)
print (obj$anisPar)

obj$observations<-rotateAnisotropicData(obj$observations,obj$anisPar)

obj<-estimateAnisotropy(obj)
print (obj$anisPar)
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anisotropyChoice anisotropyChoice

Description
This function combines segmentation of scattered 2D data and estimation
of anisotropy parameters using the CTI method.

Usage

anisotropyChoice(object)

Usage

anisotropyChoice(object)

Arguments
object An Intamap type object containing one SpatialPointsDataFrame
with observations.
Details

The function AnisotropyChoice function employs the doSegmentation
function to automatically separate the original dataset into clusters based
on the sampling density and the spatial locations of the data (see doSegmentation
for details). The results of the segmentation procedure and the anisotropy
analysis per cluster are returned in a matrix of dimension [cl]x5, where
[c]] is the number of clusters . Each row of the matrix contains the cluster
index, the anisotropy ratio, the anisotropy direction, the number of clus-
ter points and the area inside the convex hull of the cluster. In addition,
a single set of anisotropy parameters is returned in the element anisPar.
These parameters are calculated using weighted averages of the covari-
ance Hessian matrix estimates in each cluster. The weights are based on
the area enclosed by the convex hull of each cluster.
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Value

object: A modified Intamap type object is returned, which contains the
results of the anisotropy parameter estimation. The anisotropy parame-
ters are returned in the element anisPar as described below.

anisPar List element in object that contains a list with the fol-
lowing elements:
e ratioA coarse-grained anisotropy ratio for all the data

e directionA coarse-grained anisotropy orientation for
all the data

e clustersA matrix of dimension [cl]x5 which deter-
mines the anisotropy per cluster. Each row of clusters
gives the (cluster id, anisotropy ratio, anisotropy di-
rection, number of points, area) for each cluster de-
tected.

clusters list element added to the original object containing the
segmentation results.

e indexIndex array identifying the cluster in which each
observation point belongs. Zero value means that the
observations has been removed.

e clusterNumberNumber of clusters detected.

Note

This function uses the akima package to perform ”bilinear” and ”bicubic”
interpolation for the estimation of spatial derivatives

Author(s)
D.T. Hristopulos, G.Spiliopoulos, A.Chorti

References

[1] http://www.intamap.org

[2] A. Chorti and D. T. Hristopulos (2008). Non-parametric Identification
of Anisotropic (Elliptic) Correlations in Spatially Distributed Data Sets,
IEEE Transactions on Signal Processing, 56(10), 4738-4751 (2008).

[3] D. T. Hristopulos, M. P. Petrakis, G. Spiliopoulos, A. Chorti (2009).
Non-parametric estimation of geometric anisotropy from environmental
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sensor network measurements, StatGIS 2009: Geoinformatics for Envi-
ronmental Surveillance Proceedings (ed. G. Dubois).

Examples

library(intamapInteractive)

data(walker)

coordinates(walker)="X+Y
object=createIntamapObject (observations=walker)
object=anisotropyChoice(object)

print (summary(object$clusters$index))
print(object$anisPar)
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doSegmentation Spatial Segmentation - Clustering for Scattered
Observations

Description
This function performs segmentation of scattered 2D data based on sam-
pling density and location.

Usage

doSegmentation(object)

Usage

doSegmentation(object)

Arguments
object An Intamap type object containing the element (list) observations,
which includes the coordinates of the observation locations
Details

This function performs segmentation of scattered 2D data based on sam-
pling density and location. Let us assume that No is the number of
observation locations. If Noj 200, then a single cluster is returned. (1)
The segmentation algorithm first removes isolated distant points, if there
are any, from the observation locations. Points (xi,yi) are character-
ized as ’isolated’ and ’distant’ if they satisfy the following conditions :
abs(xi — mean(x)) > 4 * std(x)orabs(yi — mean(y)) > 4 * std(y) and
distance from closest neighbor > \sqrt(std(z)/2)? + (std(y)/2)?. After
the first step the size of the original dataset is reduced to N (N= No -
isolated points) points. (2) A sampling density matrix (lattice) consisting
of N cells that cover the study area is constructed. Each cell is assigned a
density value equal to the number of observation points inside the cell. In
addition, each observation point is assigned the sampling density value of
the containing cell. (3) Unsupervised clustering edge detection is used to
determine potential cluster perimeters. (4) Each closed region’s perimeter
is labeled with a different cluster (segment) number. (5) All observation
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points internal to a cluster perimeter are assigned to the specific clus-
ter. (6) Each cluster that contains fewer than 50 observation points is
rejected. (7) The observation points that have not initially been assigned
to a cluster and those belonging to rejected (small) clusters are assigned
at this stage. The assignment takes into account both the distance of
the points from the centroids of the accepted clusters as well as the mean
sampling density of the clusters.

Note: The Noj 200 empirical constraint is used to avoid extreme situations
in which the sampling density is concentrated inside a few cells of the
background lattice, thereby inhibiting the edge detection algorithm.

Value

A modified Intamap object which additionally includes the list element
clusters. This element is a list that contains (i) the indices of removed
points from observations; (ii) the indices of the clusters to which the
remaining observation points are assigned and (iii) the number of clusters
detected.

clusters list element added to the original object containing the
segmentation results.

e rmdistIndices of removed points.

e indexIndex array identifying the cluster in which each
observation point belongs.

o clusterNumberNumber of clusters detected.

Author(s)

A. Chorti, Spiliopoulos Giannis, Hristopulos Dionisis

References

[1] D. T. Hristopulos, M. P. Petrakis, G. Spiliopoulos, A. Chorti (2009).
Non-parametric estimation of geometric anisotropy from environmental
sensor network measurements, StatGIS 2009: Geoinformatics for Envi-
ronmental Surveillance Proceedings (ed. G. Dubois).

Examples

library(intamapInteractive)
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data(walker)

coordinates(walker)="X+Y
object=createIntamapObject (observations=walker)
object=doSegmentation(object)

print (summary (object$clusters$index))
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