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Abstract

The urban heat island phenomenon is mainly caused by the differences in the thermal

behaviour between urban and rural settlements that are associated with the thermal

properties of urban materials, urban geometry, air pollution, and the anthropogenic heat

released by urban activities. The UHI has a serious impact on the energy consumption

of buildings, increases smog production, while contributing to an increasing emission

of pollutants from power plants, including sulfur dioxide, carbon monoxide, nitrous

oxides and suspended particulates.

This thesis presents the applicability of artificial neural networks (ANNs) and learn-

ing paradigms for UHI intensity prediction in Athens, Greece. The proposed model is

tested using Elman, Feed-Forward and Cascade neural network architecture. The data

of time, ambient temperature and global solar radiation are used to train and test the

different models. The prediction accuracy is analysed and evaluated.

A new innovative way of visualize the urban heat island using geographic informa-

tion systems was developed. This will give a better perspective about the problem of

urban heat island to the general public.
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Chapter 1

Introduction

1.1 Urban heat island

Urban development leads to radical land cover change. As cities expand into surround-

ing forests, grasslands, and deserts, the natural cover is replaced with roads, buildings,

parks, and gardens. The environmental implications of this change are often subtle, as

in primitive or sparsely populated settlements, but in most modern cities the implica-

tions are dramatic and long term. Land cover change in cities has significant effects on

local climate: temperature, precipitation, humidity, wind, and, to a lesser extent, cloud

and radiation are all noticeably different between a city and its countryside. These dif-

ferences are sufficiently well documented in scientific literature that climatologists re-

gard cities as having unique local climates, much like lakes, valleys, and coastlines. One

of the most critical variables that best distinguishes city and country climates is the air

temperature. Substantive research points to the conclusion that cities are warmer, on

average, than their natural surroundings. The region of warmth associated with cities

is known as an urban heat island (UHI). In brief, the primary causes of heat island are

related to a city’s thermal, moisture, and radiation properties, all of which are markedly

different from those of the country. Heat islands are formed in urban and suburban

areas because of the fact that many common construction materials absorb and retain
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more of the sun’s heat than natural materials in less-developed rural areas. There are

two main reasons for this heating. First, most, most urban building materials are im-

permeable and watertight, so moisture is not readily available to dissipate the sun’s

heat. Second, dark materials in concert with canyon like configurations of buildings

and pavement collect and trap more of solar energy. Temperatures of dark, dry surfaces

in direct sun can reach up to 88◦C during the day, while vegetated surfaces with moist

soil under the same conditions might reach only 18◦C . Anthropogenic heat, or human

produced heat, slower wind speeds and air pollution in urban areas also contribute to

heat island formation.

Heat island phenomenon contributes to human discomfort, health problems, higher

energy bills and increased pollution. On top of the effects of global warming, heat island

is further reducing the habitability of urban and suburban areas. Considering that more

than 75 per cent of the world’s population lives in these areas ([26]), heat island impacts

are extremely consequential.

Heat islands exhibit five common characteristics:

1. When compared to undeveloped, rural areas, a heat island is warmer in general,

with distinct daily patterns of behaviour. Heat islands are often warmer, in rela-

tion to rural surroundings, after the sun goes down, and cooler after the sun rises.

Urban air in the ‘canopy layer’, below the tops of trees and buildings, can be as

much as 6◦C warmer than the air in rural areas.

2. Air temperatures are driven by the heating of urban surfaces, since many man-

made surfaces absorb more of the sun’s heat than natural vegetation does.

3. These differences in air and surface temperatures are enhanced when the weather

is calm and clear.

4. Areas with the least vegetation and greatest development tend to be hottest, and

heat islands tend to become more intense as cities grow larger.

2



5. Heat islands also display warmer air in the ‘boundary layer’, a layer of air up to

2000 metres high. Heat islands often create large plumes of warmer air over cities,

and temperature inversions (warmer air over cooler air) caused by heat islands

are not uncommon.

Heat islands have air temperatures that are warmer than temperatures in surround-

ing rural areas. The difference between urban and rural air temperatures, also called

the heat island intensity, is often used to measure the heat island effect. This intensity

varies throughout the day and night. In the morning, the urban–rural temperature dif-

ference is generally at its smallest. This difference grows throughout the day as urban

surfaces heat up and subsequently warm the urban air. The heat island intensity is usu-

ally largest at night, since urban surfaces continue to give off heat and slow the rate of

night-time cooling.

Figure 1.1: Summer and winter air temperatures in the central business district (urban)
and airport (rural) of Melbourne, Australia

Source: ([20])

Figures 1.1 and 1.2 show air temperatures and heat island intensity for typical

summer and winter days in a heat island. Figure 1.1 plots daily variations in air tem-
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perature in the central business district and at the airport of Melbourne, Australia [20].

These daily profiles are averaged from hourly data for December 1997 and for January

and February 1998 (summer) and for June, July and August 1998 (winter). This plot

shows that temperatures are always warmer in the central business district than they

are at the airport. From Figure 1.2, which plots the difference between the urban and

rural air temperatures, it is seen that the heat island is strongest at night [2.4◦C differ-

ential at 8:00pm in winter, 2.2◦C at midnight in summer] and weakest during the day

[1.0◦C at 11.00am in winter, 0.4◦C at 3.00pm in summer].

Figure 1.2: Summer and winter differences in air temperature between the central busi-
ness district and the airport of Melbourne, Australia

Source: ([20])

1.2 Scope of the thesis

The aim of the thesis is the prediction and visualisation of the UHI intensity in the

greater Athens area. The prediction of the phenomenon is achieved using artificial neu-

ral network. Different types and training methods of ANN are investigated in order to
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achieve the optimal prediction using small amount of data. The Geographic Informa-

tion System are used for the visualisation of the phenomenon using interpolation meth-

ods in order to construct the temperature value for all intermediate points between the

meteorological stations. The final result is a video-animation in witch each frame visu-

alise one interpolation image, that shows the time evolution of the phenomenon.

1.3 Structure of the thesis

The thesis divides logically into 6 chapters:

• Chapter 2 cover background material to the urban heat island effect and intensity

prediction.

• Chapter 3 presents the experimental site and data collection.

• Chapter 4 describes the urban heat island intensity prediction using artificial neu-

ral network.

• Chapter 5 describes the interpolation of temperature using geographic informa-

tion system.

• Chapter 6 provides a summary and concludes this thesis.
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Chapter 2

Literature Review

Urban heating has been considered a major problem of the cities’ inhabitants. The spe-

cific characteristics of urban-structures enable them to capture, store and release higher

quantities of heat as compared to their counterparts in rural areas. The presence of

normally abundant sources of anthropogenic heat in urban areas is the second driving

force of urban heating. The urban heating, caused by the specific characteristics of ur-

ban structures and anthropogenic heat sources, increases urban area temperatures as

compared to surrounding rural areas. Due to the severity of the problem, vast research

effort has been dedicated in order to measure and predict the UHI intensity.

In the study by Yi and Prybuton [29], neural network model used for prediction

of daily maximum ozone concentration in Dallas-Fort Worth area. Ozone in urban ar-

eas varies with the meteorological and vehicle emission parameters. The meteorologi-

cal parameters with the highest correlation to ozone concentrations include maximum

temperature, wind speed, wind direction, sky cover, humidity, and mixing height. The

data used in this study contain the average hourly ozone measurement and the average

hourly meteorological measurements for variables such as temperature, wind speed,

and wind direction. A standard three-layer ANN model with nine inputs and four hid-

den nodes, found to be superior the statistical methods.

According to a study by Jiang [10], a three-layer ANN with 17 inputs was developed
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to predict the air pollution levels (SO2, NO2 and PM10
1) of cities in China. As results

from this study an Air Pollution Index (API) reporting system, based on health effects,

was introduced for a consistent comparison among the pollution levels by different air

pollutants. The case study area was Shanghai but due the greatest prediction accuracy

from the previous model and the inputs to the model were not site-specific, allowing the

model to be applied to a number of locations across China. Another conclusion from

this study was that the needed dataset for proper training the ANN was at least 1 year

data.

In the study by Maqsood,Khan and Abraham [15], air temperature, wind speed and

relative humidity in Saskatchewan Canada were predicted for 24 h in advance by ANN.

They found that combining the outputs of a standard Feed-Forward ANN, a recurrent

ANN, a radial basis function network and a Hopfield network into a simple ”winner-

take-all” ensemble led to more accurate predictions of wind speed, relative humidity

and air temperature than any of the individual component network. The meteorological

data used in this study was only from one year (2001) and was divided into 4 different

datasets representing the four seasons of the year. For each season of the year a complete

different set of ANN was developed, achieving the best accurate temperature prediction

on winter time and the worst at fall.

According to the study by Smith, Hoogenboom and McClendon [25], air tempera-

ture prediction model for prediction horizons of 1 to 24 hours using Ward-style ANNs.

The prediction mean absolute error (MAE) for a year-round evaluation set ranged from

0.516◦C at the one-hour horizon to 1.873◦C at the twelve-hour horizon. The researchers

use for training the ANN data from the year 1997 to 2000 and consisted of approxi-

mately 1.25M measurements. Ward-style ANN use 258 inputs, including air temper-

ature, wind speed, relative humidity, solar radiation, and rainfall and hourly rates of

change at the time of prediction as well as the history of prior observations at 1-h in-

tervals going back 24 h. Also among the models’ inputs were four cyclic time-of-day

and four cyclic day-of-year terms. Also the above model were integrated into a general
1particulate matter < 10µm
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decision support system.

Tasadduq, Rehman, and Bubshait [27] used a back propagation ANN with batch

learning scheme for 24-h prediction in ambient temperature on a coastal location in

Saudi Arabia. They found that temperature can be predicted even with only one input

with good accuracy. The training dataset for the ANN was one year’s of hourly temper-

ature values. For the evaluation of the ANN they used data from 3 different years with

mean absolute error of 2.83◦C .

Additionally, a number of urban heat island prediction studies are based in the ANN

technology. In the study by Mihalakakou, Santamouris, Papanikolaou, Cartalis and

Tsangassoulis [19], a neural network architecture was developed to predict the urban

heat island intensity in Athens during both day and night period. The selected neural

network architecture consists of one hidden layer of sixteen to twenty seven log-sigmoid

neurons follows by an output layer of one linear neuron for predicting the night time

UHI and one hidden layer of eighteen to twenty two log-sigmoid neurons follows by an

output layer of one linear neuron for predicting the day time UHI. For every one of the

twenty three experimental station two neural networks were constructed one for day

and one for night time prediction. Data from two years were used in order to train and

test the accuracy of the prediction. The mean square error for UHI intensity prediction

during the night were 0.2 to 0.3 ◦C while for the day were 0.1 to 0.3 ◦C .

In the study performed by Kolokotroni, Davies, Croxford, Bhuiyan, Mavrogianni

[12],a validated method for predicting air temperatures within the UHI at discreet lo-

cations based on input data from one meteorological station for the time the predic-

tion is required and historic measured air temperatures within the city. It uses London

as a case-study to describe the method and its applications. The described prediction

model comprises of a suite of ANN models to predict site specific hourly air tempera-

ture within the Greater London Area. The model was developed using a feed forward

back-propagation ANN model with one hidden layer with seventeen neurons, based

on hourly air temperature measurements at 77 fixed temperature stations and hourly

meteorological data (off-site variables) from Heathrow. The hourly meteorological data
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required for the predictions are air temperature, relative humidity, cloud cover, wind

speed and global solar radiation.
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Chapter 3

Methodology and measurements

3.1 Experimental site description

The Greater Athens Area (GAA) is situated on a small peninsula located on the south-

eastern edge of the Greek mainland (Figure 3.1). It is divided by high mountains in

three main parts, which are connected by small openings. The central part is the Athens

basin which covers an area of 450km2, with a population density of 8000 inhabitants

per square kilometer, with the main axis orientated from South-SouthWest to North-

NorthEast. Athens basin is surrounded by high mountains in the north (Parnitha, 1426

m), in the west (Egaleo, 458 m) and in the east (Hymettus, 1026 m and Penteli, 1107

m), while it is open to the sea in the south (Saronikos Gulf). The other parts of the

Athens area are the Thriassion plain west of the Athens basin and the Mesogia plain

in the east. There are only small openings through which the Athens basin communi-

cates with these plains as well as the rest of Greek mainland. These openings play an

important role in air mass exchange between the Athens basin and the Thriassion and

Mesogia plains. The city of Athens is characterised by a strong heat island effect, mainly

caused by the accelerated industrialisation and urbanisation during recent years. From

previous measurements’ analysis is found that maximum heat island intensity in the

Athens centre is almost 16◦C while the mean value for the major central area of Athens
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reaches 12◦C . Also, absolute maximum temperatures in the central area is close to 15◦C

higher than in the suburban areas, while absolute minimum temperatures are up to 3◦C

higher in the centre [16].

Figure 3.1: The location of the 14 meteo station in the GAA

A manual scheme for classifying the day-by-day 850-hPa atmospheric circulation

over GAA was proposed and employed by [11]. According to this study, the synoptic

categories, illustrated in Figure 3.2, are the following :

• Long-wave trough, characterised by intense winds, especially during the cold pe-

riod of the year (Figure 3.2a).

• South-Westerly flow, characterised by a South-Westerly flow which is usually very

strong (Fig. 3.2b). North-Westerly flow, characterised by strong cold air advection

from the north or North-West (Figure 3.2c).
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• Zonal flow, characterised by a Westerly flow with considerably lower intensity in

the warm period of the year (Figure 3.2d).

• Closed low, characterised by the presence of a closed low accompanied by intense

winds, usually from the Northern sector and rainfall (Figure 3.2e).

• High pressure ridge, characterised by a weak pressure gradient and weak, vari-

able winds or calm conditions (Figure 3.2f).

• Closed anticyclone, characterised by the presence of a closed anticyclone that

extends over the Greek area accompanied by weak winds from the southern or

northern sector (Figure 3.2g).

• Category high-low, characterised by strengthening of the pressure gradient and

strong North-Easterlies that blow over the Aegean Sea and into the GAA (Fig-

ure 3.2h).

The anticyclonic circulation prevails over the Athens area with maximum occurrence

in January and June. A significant meteorological feature of the area is the predomi-

nance of high pressure systems combined with low pressure ones, resulting in rather

complicated flow regimes, especially during July and August. Conditions of a cyclonic

type seem to dominate in February and March while a south-westerly flow prevails in

November and April. The prevailing anticyclonic circulation in the Athens area favours

the strong development of the heat island phenomenon.

In a study performed by Livada, Santamouris, Niachou, Papanikolau and Mihalakakou[14]

reporting the results of the heat island study in Athens, it is found that near the sea, the

air temperatures are higher in the cold period due to the influence of the sea which

supports the maintenance of high air temperatures. It is also reported that high air tem-

peratures during the hot period of the year or low air temperatures in the cold period is

mostly related to the synoptic weather conditions and it cannot reasonably considered

as an index for the heat island effect development. The increase of the cooling load in
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Athens and the ecological footprint of urban heat island is studied by Santamouris, Pa-

paniaris, Michalakakou[23] and Santamouris, Pavlou, Synefa, Nichou, Kolokotsa [24].

Given the actual penetration of air conditioning in the country, the ecological foot-

print due to the heat island ranges 1.5–2 times the city’s surface area. Moreover the

maximum potential ecological footprint provided that all buildings are air conditioned

is almost 110,000 ha. The cost to compensate the heat island is calculated close to 4.13

Me/year or 164 eper household. The additional peak cooling electrical load to com-

pensate the heat island is 82.4 MW.

3.2 Data collection

In the present effort to predict the urban heat island effect in the area of Athens, a net-

work of 14 meteorological stations has been set up corresponding to the 13 Athens mu-

nicipalities plus the reference station (Table 3.1). The meteorological stations are placed

on the administrative municipalities buildings and are all 2 m above ground, North ori-

ented, shaded and ventilated. Each meteorological station contains a fully calibrated

high precision data logger (Tiny Tag data loggers) that measures air temperature every

15 min. The sensors’ characteristics are:

• Reading resolution 0.02 ◦C or better.

• Range −40 ◦C to +125 ◦C .

• Temperature stability ±0.01 ◦C /◦C change from 25 ◦C .

In addition, other meteorological data (solar radiation, wind velocity, etc.) are collected

from the National Observatory of Athens located at Thission, Athens . The specific site

is in a greenery area and is considered as the reference station of the overall analysis

although it is positioned almost in the centre of the peninsula. The experimental pe-

riod started on April 2009 in the framework of BRIDGE project (www.bridge-fp7.eu).
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Figure 3.2: Schematic presentation of the eight synoptic categories over GAA

Source: ([11])
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The present analysis uses data for one-year period (from April 2009 until May 2010)

targeting to minimise the need for long term historic data.

i Municipality LATITUDE LONGITUDE

1 Egaleo 37◦59′50” 23◦40′5”
2 Korydalos 37◦58′45” 23◦38′33”
3 Haidari 38◦0′45” 23◦39′35”
4 Ag. Varbara 37◦59′22” 23◦39′37”
5 Peristeri 38◦0′47” 23◦41′43”
6 Kamatero 38◦3′35” 23◦42′50”
7 Zefyri 38◦4′7” 23◦43′4”
8 Ilioupoli 37◦55′58” 23◦45′29”
9 Petroupoli 38◦2′26” 23◦41′16”

10 Agii Anargyri 38◦1′34” 23◦43′3”
11 Xalandri 38◦0′44” 23◦39′34”
12 Ilion 38◦1′54” 23◦42′27”
13 Kaissariani 37◦58′8” 23◦45′41”
14 National Observatory of Athens (reference site) 37◦58′24” 23◦43′5”

Table 3.1: The location of the 14 experimental sites
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Chapter 4

Prediction using Artificial Neural

Network

4.1 Artificial Neural Network

4.1.1 Introduction

Conserving the issue solving complex problems various systems have been developed.

Some belong to the conventional approaches and others in the category of ’smart’ sys-

tems. The inspiration came from biological neural systems that try to simulate. These

systems have made great progress and development and successfully applied to many

problems. Researchers from various fields design artificial neural networks for solv-

ing various problems related to pattern recognition, forecasting, optimisation, and the

auxiliary memory and control.

Conventional approaches have also been proposed for solving such problems. But

though they have been successful applications in a well-structured environments, none

of which was flexible enough to be successfully implemented in the same environment

partially disordered. The advantage of artificial neural networks that generalise about

the existing application and therefore can give answers to the problem even when the
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initial data change.

4.1.2 Brief historical overview

The research on neural networks went through three periods of growth. The first wave

of interest around them, then known as interconnection models or models of parallel

distributed processing, emerged in 1943 from the nerve-biologist McCulloch[17] and

mathematician specialising in statistics Pitts who made the introduction of simplified

neurons in the publication ”A Logical Calculus of Ideas Immanent in nervous activ-

ity”. These neurons were presented as models of biological neurons and as fundamen-

tal structures in a chain that would perform calculations. This post inspired John von

Noemann to develop a new digital computer or an electronic brain as he called it.

The second period was in the 1960 from the computer scientist Frank Rosenblatt that

motivated from the above work, investigated the observations which led to the genesis

of the first neural network known as the perceptron and the convergence perceptron

theorem in 1962. Here is the book by Mincky and Papert ”Perceptrons: An introduction

to computational Geometry” in 1969 which shows the constraints on the simple per-

ceptron. Their results were soothing for the enthusiasm that existed from researchers

around the subject and especially to the community of computer science. The recession

lasted for about 20 years.

In the early 1980’s research and interest in these networks showed a significant re-

covery.The main result behind this development includes a new approach by Hopfield

in 1982 [28] and the algorithm ”back-propagation algorithm for multilayer perceptrons

(multilayer feed-forward networks)” first proposed by Werbos, and then re proposed

several times until published by Rumelhart [3] in 1986.

Anderson and Rosenfeld[2] have reported an extensive history surrounding the de-

velopment of artificial neural networks.
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4.1.3 Biological neuron

The human ability to think, remember and solve problems is identified in the brain.

As is known from Biology, the structural unit of the brain is the neuron. A typical

biological neuron (Figure 4.1) consists of the soma is the nucleus, the dendrites through

which signals from neighboring neurons (entry points) and the axon is the output of the

neuron and the means of connecting with other neurons. Between two dendrites, one

from the axon and one from the soma, is a tiny gap between called a synapse. Synapses

by chemical processes accelerate or retard the flow of electrical charges in the body

of the neuron. The learning ability and memory, showing on the brain is due to the

ability of synapses to alter their conductivity. The electrical signals that enter the body

through the dendrites are combined and if the result exceeds some threshold the signal

propagates through the axon to other neurons.

Figure 4.1: Typical biological neuron

The brain of a newborn human consists of about 100 billion neurons, each of which

is associated with about 1000 other neurons. This is done through the axon of each

neuron in which lead an equal number of dendrites of other neurons. Since any such

connection includes a synapse there are about 100 trillion synapses (100 000 000 000

000), which affect the brain function. It is obvious that any attempt to copy the structure

and functioning of the brain at such scale is impossible. In fact, models which include

built thousands of artificial neurons, are highly artificial one million synapses have very

limited functionality.
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Although the response time of biological neurons is in the order of milliseconds

(msec), but the brain is able to take amazingly complex decisions quickly. In a sense,

this is because the computing capacity of the brain and the information it contains is

shared throughout the volume. It is about a parallel and distributed computing system.

These characteristics are the main motive behind the desire to model the human brain

with artificial neural networks.

4.1.4 Artificial neuron

The artificial neuron is a computer model whose parts are assigned directly to those of

the biological neuron. A neuron is a processing information unit which is fundamental

to the functioning of the NN. In Figure 4.2 we see the model of a neuron and we can

observe three basic elements:

1. A set of synaptic connections, which each one is characterised by a weight. Namely

a variable-signal xj at the entrance of the synapse j that is connected to the k-

neuron multiplied by the weight of the synapse wkj . It should explain that the first

of the indicators in each weight refers to the neuron which is the weight belongs

and the second index refers to the neuron from witch the input vector originate.

The weight wkj is positive if the synapse is excited and negative if it is inhibitory.

2. An aggregate link that adds the input signals after they have been weighted by the

weights of the synapses of the neuron. The operations are described to this point

make a linear combination.

3. An activation function that reduces-normalizes the field width of the output neu-

ron in a finite field is usually the time [0, 1] or [−1, 1].

Neurons usually include an outer threshold θk which has the capacity to reduce the

input of the activation function. Also the input of the activation function can be in-

creased by introducing a bias in the position of the threshold, ie the bias makes the

inverse energy than the threshold.
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In mathematical terms we can describe a neuron k by the following equations:

uk =

p∑
j=1

wkjxj (4.1)

yk = φ(uk − θk) (4.2)

where

• x1, x2, ..., xp is the signals-input variables

• wk1, wk2, ..., wkp are the synaptic weights of neuron k

• uk is the linear combination

• θk is the threshold

• φ() is the action function (linear or non linear)

• yk is the output of the neuron

There are three typical activation-transfer function:����� ����� �����
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Figure 4.2: Artificial neuron
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1. The unit step or threshold function Figure 4.3(a), which gives the output result

(usually 1) only if the value calculated by the summing function is greater than a

threshold value υ is expressed by:

φ(υ) =

 1 υ > 0

0 υ < 0
(4.3)

2. The function sign Figure 4.3(b) which gives the output a negative (or positive)

information if the value calculated by the summing function is smaller (or larger)

than a threshold value υ. It is expressed by:

φ(υ) =

 1 υ > 0

−1 υ < 0
(4.4)

3. The sigmoid function which is expressed by the general formula:

φ(υ) =
1

1 + exp(−aυ)
(4.5)

where a is a factor regulating the speed of transition between two asymptotic

values. The sigmoid function Figure 4.3(c) is important because it provides non-

linearity of the neuron, which is essential for modelling of non-linear phenomena.

Artificial neurons enable the implementation of simple algebraic functions, such as

an artificial neuron implementation of logic functions AND, OR, and NOT. For example,

the implementation of the NOT function is used as the trigger unit step function with

threshold θ = −0.5. The input values can range from 0 (false) to 1 (true). If the input of

the neuron is 0 then multiplied by the weight w = −1 gives Σ = 0. This value exceeds

the threshold of−0.5 when the produced output is 1. If the input value is 1 then Σ = −1,

the value is below the threshold of −0.5, thus produce an output 0.

Finally in Figure 4.4 we can observe the correlation of the natural (organic) with

artificial neuron seeing the identical structure and function.
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Figure 4.4: Equivalent natural-artificial neuron
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4.1.5 Artificial neural networks

Neural Networks (NN) or Artificial Neural Networks (ANN) are an attempt to ap-

proach the operation of the human brain by a machine through mathematical functions.

They have the ability to perform calculations on massively parallel manner. The archi-

tecture is based on the architecture of biological neural networks found in the human

brain as consisting of a number of artificial neurons organised into structures similar

to those of the human brain. In Figure 4.5 shows the structure of a ANN, discern the

inputs, the input layer, the hidden layer, the output layer, outputs and the wkj are the

input weight.

Output

Hidden

Input

Wkj

Figure 4.5: Structure of a Artificial Neural Network

The NN is a collection of neurons (Processing Units - PUs) linked together. A neuron

is a unit of information processing which is fundamental for the functioning of a neural

network. Each neuron has many inputs but only one output which in turn can provide

input for other neurons. The connections between neurons differ in their importance

which is weight factor. The processing of each neuron is determined by the transfer

function that defines each output in relation to the inputs and rates of the weight. To

use a NN, first must be trained to learn. Learning consists in determining the appro-

priate weight factors of the NN to perform the desired calculations, performed using
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algorithms known as learning rules-algorithms. The role of weight coefficients can be

interpreted as a store of knowledge which is provided through examples. In this way

the NN learn from their environment, the physical model that provides the data.

4.1.6 Basic characteristics of neural networks

1. Size of neural network

The size of the NN is sometimes associated with the user experience and the na-

ture of the problem. Beginners tend to use small networks and reduce the length of

the application accordingly. Those who have fairly extensive experience leave the

nature of the problem to decide on the size of the network. With the simulation of

neural networks through programs that is available on personal computers today

and the great progress of computer systems, a neural network with thousands of

neurons and perhaps a hundred thousand links may not yet be a practical upper

limit for non-static examples using forward or reverse propagation.

2. Neuron activation function Typically the activation function is a continuous func-

tion that increases monotonically between a minimum and a maximum of (−1and1)

as the weighted sum of increases in quantity. After one of the primary objectives

of activation function is to keep the outputs of neurons within reasonable limits.

3. Number of layers The back propagation networks usually have three layers, but

more can be beneficial under some circumstances. It is sometimes better to use

two smaller hidden layers in spite of one bigger layer. Some examples of neural

networks which are often predetermined number of layers. The hidden layers

act as layers of composition, extracting features from the inputs. Usually a larger

number of hidden layers increases the processing power of the neural network but

requires significantly more time on education and a greater number of training

examples to train the network properly.

4. Number of neurons at each layer
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The number of neurons in the input and output layers are defined by the nature of the

problem.

4.1.7 Architecture of neural networks

Topological structure is the main feature of ANN and refers to architecture in which

available and interconnect multiple neurons. Two basic properties define the architec-

ture of a network: 1)the number layers and 2)the connections between neurons. A third

feature, which is normally associated with the manner in which the neurons is struc-

tured, is the learning algorithm which is used to training the network.

4.1.8 Key features of neural networks

There are three characteristics inextricably linked with NN.

1. Their ability to learn by example : While NN is not the only systems capable of

learning by examples, however distinguished for their ability to organise the in-

formation of the input data into useful forms. These forms are essentially a model

that represents the true relationship between the input and output.

2. The possibility of considering them as distributed memory: The characterisation

of ANN as distributed memory, stems from the fact that the coding information is

distributed to all the weights of the network.

3. The ability for pattern recognition: The NN has excellent ability to identify pat-

terns as they are affected by incomplete and or noisy data. Once a ANN trained to

recognize conditions and situations require only one cycle of operation to identify

a specific situation.
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4.1.9 Benefits from using neural networks

These three key features of NN are, yet their advantages. But the use of NN give the

following useful properties:

1. Non-linearity. This is because a NN is constructed by connecting neurons, which

are non-linear devices. The non-linearity is very important property, especially if

the physical mechanism to produce the input signals are non-linear (the case of

most physical problems).

2. Design of Input-Output A common example of learning called supervised learn-

ing involves changing the NN weights, using a training set of samples or examples

of projects. Each example consists of a unique signal input and desired response.

The practice of repeated network for many examples, until the network reaches a

steady state, now where there are changes in the weights. Thus the network learns

from examples of constructing a design entry and exit to the problem at hand.

3. Adaptability. NN have the potential to adjust their weights to changes in their

environment. Sometimes adjustments lead to reduced system performance, so we

must be sufficient stability-plasticity dilemma.

4. Evidentiary Response. A NN is designed to provide information not only on the

specific model chosen, but also for confidence in the decision is taken.

5. Related Information. Knowledge is represented by a very structured and active

state of the NN.

6. Resistance to errors. The NN has great tolerance to structural errors. This means

that the malfunction or destruction of a neuron or some links are not likely to

seriously disrupt their operations and, as mentioned, the information they enclose

are not localised to a specific point but pervasive throughout the network.
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7. Implementation with VLSI technology . The compact parallel nature of the NN

makes it possible to implement in VLSI technology, so that NN can be used in real

applications.

8. Uniformity of Analysis and Planning. The concept is that the same notation is

used in all fields that contain the application neural network which is indicated

in several ways: These neurons represent a common ingredient in all neural net-

works. This property makes it possible to share theories and learning algorithms

in different applications of neural networks.

9. Analogy with Neurobiology. The design of neural networks is an analogy of the

brain. The neurobiologists view NN as investigated to explain neurobiological

phenomena. Similarly, the engineers look to neurobiology for new ideas to solve

complex problems.

10. Neural networks can provide each model time series (t +1).

4.1.10 Disadvantages of neural networks

Are mentioned below without a particular analysis of the disadvantages of the NN and

their use:

1. The NN offers many degrees of freedom in modelling.

2. Training is essential.

3. The explanation and translation of weights in the NN is not possible due to non-

the linearity.

4. The influence of events can not be removed directly.
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4.1.11 Learning and recall

4.1.11.1 Introduction

The ANN perform two basic functions: learning and recall. Learning is the process of

changing the weights values of the network, so given a specific input vector to pro-

duced this output vector. This procedure is also called training of ANN. Their ability to

learn from examples makes neural networks an extremely powerful programming tool

when the main rules are not completely defined or when there is a inaccuracy rate and

controversy in the data. Recall is procedure for calculating an output vector for a given

vector input and weights.

The general way to modify the weights in an ANN is training, witch is categorised

in three types of learning in ANN, the supervised learning, the graduated learning and

unsupervised learning.

In supervised learning in the network are pairs of input vector - desired output. The

ANN with the current state (weight), produces an output that differs from the original

desired output. This difference is called error and based on that and a learning algo-

rithm is usually adjusts the weights.

In graduated learning the output is classified as ’good’ or ’bad’ based on a numerical

scale and the weights adjusted by based on this characterisation.

Finally, the response of the unsupervised learning is based on its ability to be re-

configured by the input vectors. This internal reconfiguration is so that a specific set

inputs to react strongly a particular neuron. Such sets entries correspond to concepts

and features of the real world which the ANN is required to learn.

In practice, most applications of ANN use supervise learning, for which there are

several algorithms. In algorithm based on the Delta rule learning, the difference be-

tween actual and desired output is minimised through a process least squares. The

algorithm back-propagation, changes the weights based on the calculation of the contri-

bution each weight in the total error. In competitive learning artificial neurons compete,

somehow, between the and only one with the greatest response to given input modifies
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the weights it. Finally, the random learning , changes in the weights introduced ran-

domly and depending on whether the output is improved or not by some predefined

criteria from the user, the changes are adopted or rejected.

4.1.11.2 Knowledge representation

The term knowledge refers to stored information or models used by a person or machine

to interpret, predict and approximate react to the outside world[6].

The maximum work for a neural network to learn a model of the world (environ-

ment) in which they are installed and maintain the model satisfactorily with the real

world to achieve its objectives an application of interest. The knowledge of the world

consists of two types of information:

1. The known state of the world, represented by factors on what is known. This type

of knowledge referred to as a prior information.

2. Observations of the world, acquired from sensors designed to explore the environ-

ment in which the neural network supposed to work. Usually these observations

contain noise for sensors, and subject to errors . In any case, observations obtained

in this way give the main part information, from which we get the examples used

to train the neural network.

Each example consists of a pair of input/output: an input signal and the correspond-

ing desired response for the NN. This is the reason why a set of examples represent

knowledge about the environment of interest. The given set of examples of such a de-

sign a neural network can be made as follows:

• First a suitable architecture is selected for the NN, with an input layer consisting of

as many neurons as the number of input parameter for the problem to be solved by

neurons and an output layer consisting as many neurons as outputs parameters

required for this problem. A subset of example data is used for the network’s

education through an appropriate algorithm. This phase is called learning.
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• Second, the performance results given by the trainee network, the remaining dataset

that have not been introduced before. The performance of the network then calcu-

lated up by comparing the output gave us the neural network compared with the

desired output.

The second phase of the network is called generalisation, a term which is borrowed

from psychology. In this lies a fundamental difference between designing a neural net-

work and classical information processing. In the latter case usually proceed first form-

ing a mathematical model environmental observations verifying the model with real

data and then building the design from the base model. In contrast design a neural net-

work based directly on real data with all data to make direct all the work. For that the

NN not only provides a perfect model of the environment in which installed, but shows

a job processing large of interest.

In a particular neural network architecture the representation of the environment

knowledge is defined by the values of the network’s free parameters (eg weights and

activations thresholds). The way of knowledge representation is different from one neu-

ral network architecture to another thus it holds the key to the performance.

The issue of knowledge representation in an ANN is yet very complicated. The issue

becomes even more complex when multiple sources of information act on the network

and these sources interact. However, there are 4 knowledge representation rules that is

common sense. These rules described below:

Rule 1 Similar inputs from similar groups should usually produce similar representations

within the system, for this should be classified in the same category.

Rule 2 Items are categorised into different groups should have different representations

on the network. The second rule is contrary to first.

Rule 3 If a particular feature is important, then there should be a large number of neurons

involved in the representation of this object on the network.
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Rule 4 Prior information and non volatilities should not be included in designing of the

NN thus simplifying the system planning.

The last rule is particularly important because the inheritance of results provide the

NN with a specialised structure. This is highly desirable for several reasons:

• Biological, optical and control networks are known to be very specific.

• A NN with specialised structure usually has fewer free parameters available for

normalisation than a fully connected network. Therefore requires less data entry

for training, learns quickly and often generalizes better.

• The rate of information transmission through a specialised network is accelerat-

ing.

• The cost of building a dedicated network is reduced because of its smaller size

compared with a fully connected.

4.1.11.3 Learning with error correction

In this type of learning the required update (change, adaptation) of synaptic weights

calculated by presenting the ANN input (vectors), comparing the resulting responses to

the desired response and then changing the weights for direction to reduce the error .

In particular :

• dk(t): the desired output (target response) of neuron k in the discrete time time t.

• x(t): the input vector applied to the input layer ANN.

• yk(t): the response of the kth neuron

Apparently the pair (x(t),dk(t)) is an example in neuron at time t. The error (difference)

between the desired output dk(t) and the actual output yk(t) is: ek(t) = dk(t) − yk(t)
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under which we define the following criterion (cost function):

I = E

[∑
k

e2k(t)

]
(4.6)

called Mean Square Error criterion (MSE) and expresses the average value of the sum of

squared errors. Here E[] is the statistical operator expected (mean) value and the ANN

operates in a stationary environment with probabilistic unknown probability distribu-

tions. The summation in I extends to all k output, all output neurons. The problem

of learning is now selected synaptic weights to minimize the mean square error. The

exact solution of this problem requires knowledge of the static properties of stochastic

processes inherent in each case. For this reason an approximate solution by minimizing

the instantaneous squared error criterion:

J =
1

2

∑
k

e2k(t) (4.7)

in the synaptic weights of the ANN wkj where wkj is the weight of the jth synapse of

the kthneuron. The renewed (new) value wkj(t + 1) of the presumed synaptic weight is

given by:

wkj(t+ 1) = wkj(t) + ∆wkj(t) (4.8)

To begin the learning rule (4.8) we need some preliminary knowledge for the weights

values at time t = 0. If the ANN contains only linear data processing, so J (4.7) is ex-

actly square, then the algorithm leads step-by-step in global minimum. But when the

ANN contains non linearities, then the global minimum can no always be taken because

algorithm can be trapped in a local minimum. Moreover, because the learning error cor-

rection behaves like closed recursion system the value of learning rate γ must be chosen

very carefully to ensure process stability. This is because the learning rate has great in-

fluence on the performance of the method and affects not only the convergence speed

of learning but also in its outcome. If γ has a small value the process goes smoothly,
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but can take a long time the system to converge to a stable solution. Conversely, if the

value of γ is large the course of learning is accelerated, but there is a risk that the process

differs and the system becomes unstable.

4.2 Experimental procedure

4.2.1 Creation of data sets

The most important factors on the creation of successful ANN, in order to solve the

specific problem, is the selection of the input variables as well as the creation of the data

sets. In our study the input variables for the prediction of urban heat island intensity

using NN are as follows:

• Date to represent the yearly climatic variations (the date is converted into the num-

ber of days starting from the 1st of January) and ranges within [1,365].

• Time, the time is converted into minutes of the day and ranges within [0,1380].

• Ambient temperature (◦C ) is measured by the various experimental sites de-

scribed in the previous section.

• Global solar radiation (W/m2) measured by the National Observatory of Athens.

The raw ambient temperature data of the different experimental sites had difference

starting and ending dates, so only the common dates were chosen. Furthermore the

sampling rate of the experimental sites were ten minutes but global radiation data had

a sample rate of one hour thus only one temperature measurement for six, were kept in

order to have the same time period. The measurement that was selected to be included

in the final data set had initial time stamps from 00 to 09 minutes for every hour of the

day due to the difference synchronisation between the experimental sites. All remaining

measurements were given a new time stamp of 00 minutes for every hour.
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Input Data Output Data

Day of year Time (min)
Ambient

Temperature
(◦C )

Global solar
radiation
(W/m2)

Ambient
Temperature

(◦C )
91 0 6.52 0 6.636
91 60 6.636 0 6.633
91 120 6.633 0 6.459
91 180 6.459 0 6.14
91 240 6.14 0 6.09
91 300 6.09 0 5.682
91 360 5.682 5 5.02
91 420 5.02 33 4.707
91 480 4.707 93 4.922
91 540 4.922 145 5.348
91 600 5.348 263 5.803
. . . . .
. . . . .
. . . . .

125 960 26.288 319 25.233
125 1020 25.233 294 22.457
125 1080 22.457 81 21.197
125 1140 21.197 0 19.905
125 1200 19.905 0 20.487
125 1260 20.487 0 20.357

. . . . .

. . . . .

. . . . .
194 1020 22.282 330 21.998
194 1080 21.998 126 21.65
194 1140 21.65 10 19.857
194 1200 19.857 0 18.703
194 1260 18.703 0 18.665
194 1320 18.665 0 18.273
194 1380 18.273 0 17.69

Table 4.1: Snapshot from the input dataset-one hour prediction horizon
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Neural networks generally provide improved performance when the data are nor-

malised. The use of original data as input to the neural network may cause a conver-

gence problem. All the temperature and global solar radiation data sets are, therefore,

normalised in the range [−1, 1] by dividing the difference between the actual value x

and minimum values by the difference between the maximum xmax and minimum val-

ues xmin, i.e.

xnor =
x− xmin

xmax − xmin

(4.9)

The main goal of normalisation, in combination with the weight initialisation, is to

allow the squashed activity function to work at least at the beginning of the learning

phase. Thus, the gradient, which is a function of the derivative of the non-linearity, will

always be different from zero. At the end of each algorithm, the outputs are transformed

into its original data format.

For every experimental site three different data sets were created. The only differ-

ence in the data sets were the output or result data. Each one of three data set represent

one of the three different prediction horizon used in our study. The three prediction

horizons are: one, twelve and twenty-four hours ahead. To create the data set a special

function was constructed in order to shift the output data to the correct place. Initially

the structure of the data were datex, timex, ambientTemperaturex, globalRadiationx as

input and ambientTemperaturex as output data, were subsciptx represent the line num-

ber in the data set. If the prediction horizon was set to be twelve hours, all the output

data will be moved twelve places up, so for the input date1, time1, ambientTemperature1,

globalRadiation1 the output would be ambientTemperature13. The first 12 measurement

of the output data will be discarded and the last day of data set.

4.2.2 Architectures of ANN used in our case study

The selection of the networks architecture is based on various results presented in the

literature as well as in a preliminary trial and error procedure for various neural net-
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works types. The non-linear autoregressive network with exogenous inputs (NARX),

Hopfield, Radial basis function network and Learning Vector Quantization (LVQ) neu-

ral networks were also tested without providing any encouraging results for the specific

problem.

4.2.2.1 Feed-Forward

Feed-Forward NN (Figure 4.6)is an artificial neural network where input layer con-

sists of the inputs of the neural and connected to an output layer composed of neurons

(computational nodes). In this network, the information moves in only one direction,

forward, from the input nodes, through the hidden nodes (if any) and to the output

nodes. There are no cycles or loops in the network. The feed-forward NN was the first

and arguably simplest type of artificial neural network devised.
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Figure 4.6: Schematics diagram for the Feed-Forward neural network.
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4.2.2.2 Elman

Elman NN (Figure 4.7) is a simplified version of recurrent NN. Recurrent NN are an

architecture of NN where connections between units form a directed cycle. This creates

an internal state of the network which allows it to exhibit dynamic temporal behaviour.

Unlike feed-forward NN, recurrent NN can use their internal memory to process arbi-

trary sequences of inputs. This makes them applicable to tasks such as unsegmented

connected handwriting recognition, where they have achieved the best known results.

Elman is three-layer network, with the addition of a set of ”context units” in the input

layer. There are connections from the middle (hidden) layer to these context units fixed

with a weight of one. At each time step, the input is propagated in a standard feed-

forward fashion, and then a learning rule is applied. The fixed back connections result

in the context units always maintaining a copy of the previous values of the hidden

units (since they propagate over the connections before the learning rule is applied).

Thus the network can maintain a sort of state, allowing it to perform such tasks as

sequence-prediction that are beyond the power of a standard multilayer perceptron.

4.2.2.3 Cascade

Cascade is an architecture (Figure 4.8) and supervised learning algorithm for artificial

neural networks developed by Scott Fahlman at Carnegie Mellon in 1991[5]. Instead of

just adjusting the weights in a network of fixed topology, Cascade begins with a minimal

network, then automatically trains and adds new hidden units one by one, creating a

multi-layer structure. Once a new hidden unit has been added to the network, its input-

side weights are frozen. This unit then becomes a permanent feature-detector in the

network, available for producing outputs or for creating other, more complex feature

detectors. The Cascade-Correlation architecture has several advantages over existing

algorithms: it learns very quickly, the network determines its own size and topology, it

retains the structures it has built even if the training set changes, and it requires no back

propagation of error signals through the connections of the network.
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Figure 4.7: Equivalent natural-artificial neuron
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Figure 4.8: Equivalent natural-artificial neuron
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4.2.3 Training algorithms of neural networks used in our case study

4.2.3.1 Levenberg-Marquardt

The Levenberg-Marquardt algorithm (trainlm) was designed to approach second-order

training speed without having to compute the Hessian matrix1. When the performance

function has the form of a sum of squares (as is typical in training feed-forward net-

works), then the Hessian matrix can be approximated as

H = JTJ (4.10)

and the gradient can be computed as

g = JT e (4.11)

where J is the Jacobian matrix that contains first derivatives of the network errors with

respect to the weights and biases, and e is a vector of network errors. The Jacobian ma-

trix can be computed through a standard back-propagation technique [8] that is much

less complex than computing the Hessian matrix. The iterative calculation of weights

using Levenberg-Marquardt is

wk+1 = wk − (JTJ + µI)−1JT e (4.12)

where µ a rate that increases or decreases depending on whether the recurrence is suc-

cessful or not, ie if the cost function is increased or decreased respectively after the

iteration. I is the diagonal identity matrix.

4.2.3.2 Scaled conjugate gradient

The scaled conjugate gradient algorithm (trainscg) uses a numerical approximation for

the second derivatives (Hessian matrix)[18], but it avoids instability by combining the

1Hessian matrix is the square matrix of second-order partial derivatives of a function
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model-trust region approach from the Levenberg-Marquardt algorithm with the conju-

gate gradient approach. This allows scaled conjugate gradient to compute the optimal

step size in the search direction without having to perform the computationally expen-

sive line search used by the traditional conjugate gradient algorithm. Of course, there is

a cost involved in estimating the second derivatives.

4.2.3.3 Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton

Newton’s method (trainbfg) is an alternative to the conjugate gradient methods for fast

optimisation. The basic step of Newton’s method is:

wk+1 = wk − A−1k gk (4.13)

where A−1k is the Hessian matrix of the performance index at the current values of the

weights and biases. Newton’s method often converges faster than conjugate gradient

methods. Unfortunately, it is complex and expensive to compute the Hessian matrix for

feed-forward neural networks. There is a class of algorithms that is based on Newton’s

method, but which does not require calculation of second derivatives. These are called

quasi-Newton (or secant) methods. They update an approximate Hessian matrix at each

iteration of the algorithm.

4.2.3.4 Gradient descent

With the gradient descent (traingd) learning algorithm the weight and biases are up-

dated in the direction of the negative gradient of the performance function. Gradient

descent requires the definition of an error function to measure the neuron’s error in

approximating the target. The sum of squared errors:

E =
Pr∑
p=1

(tp − op)2 (4.14)
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is usually used, where tp and op are respectively the target and actual output for the

p-th pattern, and PT is the total number of input-target pairs in the training set.The aim

of gradient descent is to find the weight values that minimize E . This is achieved by

calculating the gradient of E in weight space, and to move the weight vector along the

negative gradient.

4.2.3.5 Gradient descent with momentum and adaptive learning rate

Gradient descent with momentum and adaptive learning rate (traingdx) combines adap-

tive learning rate with momentum training. Traingd training function updates the

weight and bias values according to gradient descent momentum and an adaptive learn-

ing rate.

4.2.3.6 Resilient back propagation

Resilient back propagation (trainrp), is a learning heuristic for supervised learning in

feed-forward artificial neural networks[22]. This is a first-order optimisation algorithm.

Trainrp takes into account only the sign of the partial derivative over all inputs, and

acts independently on each weight. For each weight, if there was a sign change of the

partial derivative of the total error function compared to the last iteration, the update

value for that weight is multiplied by a factor η−, where η− < 1. If the last iteration

produced the same sign, the update value is multiplied by a factor of η+, where η− > 1.

The update values are calculated for each weight in the above manner, and finally each

weight is changed by its own update value, in the opposite direction of that weight’s

partial derivative, so as to minimise the total error function. η+ is empirically set to 1.2

and η− to 0.5.

41



4.2.3.7 Comparison between different neural network architecture and training al-

gorithms

After preliminary test three different neural network architectures and six training al-

gorithms were selected (mention above). Each neural network consists of one to three

hidden layers with 20–40 neurons each, followed by an output layer of one neuron. The

tangent sigmoid function was selected as a definitive result from the preliminary tests

as transfer function 4.5. The Koridalos site was randomly selected to evaluate the per-

formance of the 6 different training algorithms and 3 neural network architecture. A

series of test were performed in order to find the optimal training function for each one

of the three neural network architectures. The 1 and 24 hours datasets were used in

order to carry out those tests.

The results of the tests are shown in Table 4.2.3.7. The mean value, standard devia-

tion and MSE2 of the absolute difference between the measured and predicted ambient

temperature for each hour of Koridalos site. The best performance is achieved by:

• The Cascade neural network using the BFGS quasi-Newton ( 4.2.3.3) as training

function.

• The Elman neural network with the Levenberg-Marquardt ( 4.2.3.1) as training

function.

• Feed-Forward neural network with scaled conjugate gradient ( 4.2.3.2) as training

function.

Another sires of test was conducted using another location, Peristeri, to verify the

previous results. The results are shown in Table 4.3 and confirm the results of the pre-

vious experiment.

In the next step the results from the three neural networks, are compared in order

to examine the prediction accuracy. The optimum results for each neural network were

2Mean Square Value
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Training function 1h 24h

Mean value Standard
deviation MSE2 Mean value Standard

deviation MSE2

Feed-Forward
trainlm 2.220 1.601 0.621 2.513 2.274 0.955
trainscg 2.041 1.385 0.484 2.291 1.970 0.820
trainbfg 22.355 12.376 38.023 30.355 17.376 45.023
traingd 7.471 7.215 6.859 8.873 6.997 8.285
traingdm 15.643 10.772 20.319 18.323 12.033 26.518
traingnrp 10.66 7.677 11.252 7.533 6.074 6.409

Cascade
trainlm 1.965 1.483 0.423 2.153 2.681 1.07
trainscg 1.954 1.342 0.393 2.163 1.978 0.773
trainbfg 1.666 1.084 0.593 0.942 0.845 0.131
traingd 3.606 3.259 1.812 3.476 3.14 1.668
traingdm 3.042 3.032 1.23 3.593 3.799 2.303
traingnrp 2.088 1.547 0.535 2.325 2.487 1.052

Elman
trainlm 1.137 1.192 0.342 2.53 2.357 1.026
trainscg 1.897 1.295 0.367 1.517 1.085 0.303
trainbfg 1.975 1.321 0.614 1.254 0.967 0.652
traingd 2.56 1.723 0.78 1.556 1.294 0.314
traingdm 2.443 1.445 0.574 1.383 1.068 0.235
traingnrp 3.215 1.687 0.691 1.469 1.325 0.325

Table 4.2: Performance comparison of difference training functions for Koridalos site.
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Training function 1h 24h

Mean value Standard
deviation MSE2 Mean value Standard

deviation MSE2

Feed-Forward
trainlm 3.606 3.259 1.812 4.128 5.655 4.348
trainscg 3.174 2.457 1.407 3.087 3.087 2.253
trainbfg 7.707 5.638 9.454 14.607 10.348 23.87
traingd 9.201 7.23 12.596 7.677 5.402 6.144
traingdm 6.98 6.779 8.493 10.595 8.019 13.464
traingnrp 6.89 6.391 7.157 11.877 10.265 14.669

Cascade
trainlm 2.93 2.269 1.166 3.691 3.908 2.745
trainscg 2.805 2.155 1.043 2.764 2.682 1.454
trainbfg 2.89 2.281 1.157 2.912 2.636 1.411
traingd 6.317 7.253 6.964 5.172 5.109 3.599
traingdm 6.831 5.684 5.88 4.689 4.776 3.54
traingnrp 2.994 2.282 1.233 3.381 4.217 2.475

Elman
trainlm 2.234 1.351 0.911 1.142 0.736 0.151
trainscg 3.299 2.041 1.16 1.268 0.923 0.173
trainbfg 3.754 2.545 2.84 3.412 1.785 0.985
traingd 2.886 1.92 0.52 1.835 1.575 0.571
traingdm 3.315 5.818 3.122 3.202 7.685 3.652
traingnrp 3.125 2.958 2.958 3.587 2.218 2.504

Table 4.3: Performance comparison of difference training function for Peristeri site.
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Figure 4.9: Comparison between the three different ANN for 1-h prediction horizon

chosen. Figure 4.9 and 4.10 present the measured versus the predicted values for Kori-

dalos site for 1-h and 24-h prediction horizon respectively. The best fit of the measured

to the observed data is achieved by the Elman followed by the Cascade and the Feed-

Forward architecture. Another method was used for verifying the previous result. The

mean value and standard deviation of the percentage error ( 4.15) were utilised to cal-

culate the difference between the measured and the predicted temperature values. Also

the mean square value were calculated(Table 4.2.3.7).

PrecentError =
|Experiment− TheoreticalV alue|

Theoreticalvalue
× 100% (4.15)

Training function 1h 24h

Mean value Standard
deviation MSE3 Mean value Standard

deviation MSE3

Feed-Forward 2.8 2.2 1.12 2.0 1.9 0.93
Cascade 2.4 1.5 0.65 1.3 1.2 0.79
Elman 1.8 1.0 0.35 0.8 0.5 0.32

Table 4.4: Performance comparison of three ANN architectures for Koridalos site.

The results from both test clearly shows that the optimal ANN for predicting the

urban heat island intensity is Elman with the Levenberg-Marquardt ( 4.2.3.1) as training

function. The specific network architecture is used for all sites.
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4.2.4 Results

Training and verification of the ANN is performed using the data collected during the

period from 06/04/2009 to 07/09/2009 for each experimental site. Therefore the train-

ing and verification period is shortened to five months. The data are fed into the ANN

as blocks of 24 values corresponding to each hour of the day. The neural network has

a training period of 40-60 days. The remaining data are used to verify the quality of

network and adaptation of the neural network to the new data. Figure 4.12 and ??

show the measured and predicted temperatures of 5 different locations (i.e. Ilion, Ze-

fyri, Petoupoli, Aegaleo and Agii Anargyri) and for two different dates 19-20/06/2009

and 05-06/07/2009 respectively. As we can see in Figure 4.12, the diurnal fluctua-

tion of temperatures is very smooth and is followed by the 1 hour and 24 hours Elman

prediction algorithms quite accurately. Furthermore, although the daily temperature

fluctuations depicted in Figure ?? are not as smooth and predictable, the Elman NN

manages to follow the measured data most of the time.

Another significant aspects of the proposed neural network architecture that should

be examined are the alterations in prediction accuracy due to seasonal variations and the

neces¬sities to retrain the network when the season changes. In Figures 4.14 and 4.14

the measured and predicted temperatures are depicted for Haidari and Agia Barbara
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Figure 4.10: Comparison between the three different ANN for 24-h prediction horizon
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Figure 4.11: Measured-predicted temperatures for 19-24/06/2009

experimental sites. Although the prediction accuracy is not always the highest possible,

especially for the 48 hours prediction horizon, the overall prediction accuracy does not

change significantly with the seasonal changes. The seasonal changes of the standard

deviation between the measured and predicted values for Haidari and Agia Barbara

sites are tabulated in Table 4.5. Another significant aspect is the methodology’s response

to different weather conditions or during weather changes. For this reason the ANN’s

response is studied for two experimental sites i.e. Koridalos and Haidari as well as

for day to day temperature changes (Figure 4.15). As we can see in the specific figure,

although outdoor temperature is considerably decreased from 19/6/2009 to 20/6/2009,

and also increased from 23/8/2009 to 24/8/2009, the ANN follows this change in a

successful manner especially for the 24 hours prediction horizon.

Moreover isothermal images are developed to imprint the UHI intensity over Athens.

The mapping of the region is performed is using Google Earth while the isothermal lines

are added by Surfer 8 software. For each day that the UHI over Athens is analysed, a

set of four images is constructed to visualise the ANN prediction:

• The first image maps the isotherms over Athens using the measured data of the
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Figure 4.12: Measured-predicted temperatures for 05-09/06/2009

specific day and time.

• The second image represents the isotherms of Athens urban heat island based on

the 1 hour prediction results for the specific day and time.

• The third image maps the isotherms of Athens urban heat island based on the 24

hour prediction results for the specific day and time.

• The fourth image plots the isotherms of Athens urban heat island based on the 48

hour prediction results for the specific day and time.

Indicatively the isothermal maps of the UHI intensity over Athens for two days (i.e.

1/7/2009 and 18/6/2009) are illustrated in Figures 4.16- 4.17. The prediction of the

maximum temperatures for the 1/7/2009 has a maximum error of 1.6◦C and 1.9◦C for

the 24 hour and 48-hour prediction horizon respectively. Moreover the visualisation of

UHI intensity prediction shows that the isotherms of the 24 hour prediction are very
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Figure 4.13: Monthly comparison for measured-predicted temperature for Haidari ex-
perimental station

Prediction horizon Agia Barbara Haidari
1 h 24 h 48 h 1 h 24 h 48 h

12/05/2009 - 31/06/2009 0.5516 0.9301 0.7581 0.5532 1.4003 1.0013
01/06/2009 - 30/06/2009 0.4392 0.8087 0.7330 1.0013 1.0267 0.5104
01/07/2009 - 31/07/2009 0.7787 0.7930 1.2449 0.5767 0.8057 0.9998
01/08/2009 - 31/08/2009 0.4127 0.5587 0.9892 0.5326 0.5731 1.0996
01/09/2009 - 06/09/2009 0.4682 0.5061 0.9300 0.7029 0.7274 1.1727

Table 4.5: Seasonal variations of standard divination between measured and predicted
temperatures for Agia Barbara and Haidari sites.
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Figure 4.14: Monthly comparison for measured-predicted temperature for Agia Barbara
experimental station
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Figure 4.15: Response of the ANN to weather changes
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close to the actual measured ones while the 48 hours prediction has a slightly differ-

ent picture. Therefore the specific NN architecture and methodology followed is quite

accurate for the 24 hours prediction horizon.

The urban heat island intensity is then calculated versus the reference station, i.e.

National Observatory of Athens. The predicted versus the measured urban heat island

intensity for three sites (i.e. Agia Barbara, Egaleo and Halandri) and for 24-hours predic-

tion are depicted in Figures 4.18, 4.19, 4.20 respectively. The figures show a satisfactory

fitting with a RMSE less than 0.3 and R2 to be close or higher than 0.9 for all three sites

which represents a good prediction of the urban heat island intensity.

Figure 4.16: The UHI in Athens during 18/06/2009
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Figure 4.17: The UHI in Athens during 01/07/2009
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Figure 4.18: The measured UHI versus predicted UHI 24h for the Agia Barbara site

Figure 4.19: The measured UHI versus predicted UHI 24h for the Egaleo site

53



Figure 4.20: The measured UHI versus predicted UHI 24h for the Halandri site
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Chapter 5

Interpolation using Geographic

Information System

5.1 Introduction on Geographic Information System

Geographic Information System (GIS) is an organised collection of hardware and soft-

ware computer systems, spatial data and human resources (Figure 5.1) with the purpose

of collecting, recording, updating, managing, analysing and informing in any form with

respect to the geographical environment.

The GIS offers quick and easy access to large volumes of geographic data. The key to

success is that they provide the ability to edit, analyse data in a region and manipulate

individual characteristics. The functions of a GIS can be used where there is a need

for spatial data management or even where there is a need for analysis of the spatial

dimension of data.

There are essentially two types of GIS data: vector and raster. These differ in how the

spatial data is displayed and stored. Morris ans Simmonds[20], Gordon and Kapetsky[7]

presented in a summary manner useful comparisons between them. In both systems,

a geographic coordinate system is necessary for viewing the site. Many geographic

coordinate systems are defined, ranging from simple Cartesian coordinate system XY,
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Figure 5.1: The components of a GIS

Source: (http://www.gsdi-africa.com)
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grid spatial presentation that corresponds to the real world such as pairs of longitude

and latitude and reaching the World Geodetic System (WGS84) or Universal Transverse

Mercator (UTM).

In the vector representation of spatial data are represented as points, lines and poly-

gons. A point defined as a simple set of coordinates. Examples of items can be con-

sidered as a police station or locations of meteorological stations etc. Features such as

rivers, canals and roads are easily shown as lines. . Lines have start and end, points are

referred to as nodes but they can include a large number of vertices ie sides. The poly-

gons are shown as areas which are within a set of lines. A polygon consists of a number

of lines but is characterised by the fact that the initial and final node is the same. For this

study examples of polygons can be reported as a separate type of land use, city limits

or the coastline of a country.

In the raster representation during a spatial analysis, either events or otherwise con-

tinuous data are represented. The raster data are generally divided into two categories

the layers and images. Values in a layer raster represent certain measured quantities or

categorise a phenomenon like altitude, pollution, temperature, etc. For example with a

value of 10 in a cell, one can represent forest in a land cover map. Corresponding values

in a cell with an image may represent the reflected light or energy of a satellite image or

a scanned image.

As a simple raster represents only one subject like land use, soils, rivers, roads, etc.,

many rasters should be used to fully illustrate an area. A raster consists of a number

of cells. Each cell is a square that corresponds to a particular part of a region. All the

cells of a raster should have the same size. The size of cell can be any size but should

normally be sufficiently small to serve the requested analysis. So a cell may represent a

square kilometre, one square meter or one square centimetre.

The cell size of a raster of a region that is selected depends on the analysis of data

required. The cell should be small enough to capture the required detail, , but large

enough so in order to achieve productivity for the computer storage. The more ho-

mogeneous variables exist in a specific area in terms of topography and land cover, the

57



greater may be the size of the cell without affecting the accuracy of the analysis. The GIS

allows the storage and analysis of different raster examination in the same database.

5.1.1 Introduction

During the last decades many countries found that the needs for reliable and updated

infor- mation about the earth, society and the environment could not be met by the

traditional ways of collecting, recording, reporting and information processing. Thus,

especially since the early 80s, enormous growth has been performed in the Geographic

Information Systems (GIS). There are many definitions of what a GIS is. The GIS repre-

sents ”a powerful set of tools for collecting, storing, taking, at any time transformation

and display spatial data in real world”.

The GIS has three main components which are in constant balance and interdepen-

dency. These three parts are machines (hardware), algorithms (software) and available

resources. It should be noted that the overwhelming progress done for the first two

components of GIS, makes any discussion of specific computer systems and software

meaningless. The mechanical parts of a GIS is computers, networks and various pe-

ripheral devices such as designers, printers, scanners, digitizers, etc.

The last 25 years, problems associated with geographic information management

were solved in a global and national level with the help of GIS. Before the GIS develop-

ment we used to study the world using models such as maps and the globe sphere. But

with the rapid development of hardware and software industry these models could be

developed and introduced to PC. The computational models are combined with analy-

sis tools to construct a GIS. In a GIS it is not only possible to study a specific map, but

every possible map. With the right data, one can see very easily and quickly in front

of any computer any information from anywhere in the world ranging from political

boundaries, cities and population density of the earth to land use, energy consumption

and impressions deposits a small Greek island.

In a digital map these processes are simpler, because information consists of levels,
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or a collection of geographic features among themselves. So adding or subtracting one

or more levels of information, very quickly creates various versions of the same map.

Each geographical object or entity (river, city, etc.) is called feature. For example, sea

level does not consist of a collection of geographic entities, but it is a single, continuous

area that changes from one area to another as needed, with water depth. The geograph-

ical area is called the surface. Similar surfaces can represent soil temperature, altitude,

and generally phenomena that vary continuously in space (continuous fields).

Geographic objects can be represented by an infinite number of shapes. In reality,

however, an object is represented by one of the three geometric shapes: Polygon, Line,

Point. Polygons are represented as all entities that have boundaries such as provinces of

Greece, lakes etc. Geological entities such as rivers, roads, utility networks etc are rep-

resented as lines . As points are represented entities that are too small to be represented

as polygons such as cities, elevation points, sampling locations, fire hydrant locations,

hot spots (WiFi) places etc. In general all the features are represented as lines, points or

polygons and are called vector data.

In contrast to the features, surfaces (raster data) have a numeric value rather than

shape. Phenomena that vary continuously in space such as temperature, rainfall, slope,

altitude do not have any shape such as roads and rivers. Such geographical phenom-

ena are more easily represented as surfaces than as attributes (features). The surface

is represented as a square table of equal size cells, with each cell to represent a unit

area, for example, 1 square meter. It contains a numeric value with the phenomenon

it represents, for example, with a temperature of 20◦C , or a depth or altitude of 200

meters.

A feature is not only the shape and geographical information but also a host of other

features which are not related to the geometry of that feature. For example, the de-

scriptive characteristics of a layer containing polygons of the prefectures may be the

population, name, the unemployment rate, etc. All of the descriptive characteristics of

the layer are stored in a table. This table has one record (row) for each attribute and each

record consists of fields (columns) in which descriptive characteristics data are stored.
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The scale of a map is expressed as a ratio and the relationship between the size of the

map features and size that have the characteristics of the real world. A scale 1 : 1000000

means that the characteristics of the map you see on screen is 1000000 times smaller than

in reality. In a digital map you can enlarge or reduce any feature.

5.1.2 Representation discrete objects - Vector models

The GIS represent the real world, in various ways. Each entity can be recorded and

presented in different ways. The purpose of each application and scale visualisation of

our data leads us to the need to decide how to represent each entity using the GIS. There

are three ways to display entities. The points, lines and polygons.

5.1.2.1 Point entities

The points represent small entities whose their depiction of polygons is impossible.

Each section contains information relating to the coordinates of many times the altitude

at which it is located. An important factor, of course, is the scale at which we work. For

example, a house can be visualised as a point if the scale is small. In case, however, the

scale of the object is large, could be presented as polygons.

5.1.2.2 Linear entities

The lines help us represent entities that are in fact linear, such as roads, rivers and rail-

ways. Also used to present virtual entities such as the borders of states or the aircraft

runways. Linear entities are essentially a sequence of points which are joined together.

In this case we again recorded the coordinates and altitude of all points that make up

the entity. We can thus see the entity in three dimensions.

5.1.2.3 Polygonal entities

The polygon illustrate surfaces which may be lakes, states, forests, etc. Technically, these

consist of a set of rows. Usually, the larger the scale imaging, the more entities may be
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represented by polygons. The figure below we see how we can represent the real world

with points, lines and polygons. In this example, the point entities depict fire hydrants,

streets linear and polygonal parcels of a neighbourhood.

Figure 5.2: Polygonal, linear and point entities in a neighbourhood

Source: www.co.dakota.mn.us

5.1.2.4 Representation of continuous space - raster model

The simplest form of visualisation data in raster model, consisting of serial (scalar)

placement of the cell (Figure 5.3). Specifically, each cell is determined by the pair row-

column of the corresponding table and a number value identifying the type or attribute

value that it represent. This approach provides a standard but arbitrary polygons sys-

tem for storing geographic data. Therefore, this technique is by nature associated with
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a coordinate system, but does not necessarily require perfect correlation. Basically the

system uses a raster table i, j, to express/represent the spatial variations in a PC.

Figure 5.3: Raster Data

Source: webhelp.esri.com

5.1.2.5 Triangular model (Triangulated Irregular Network)

A triangular model (TIN) is an efficient and accurate model representation of a contin-

uous surface, especially when it comes to heights. A TIN model created with special

software with the following way:

• Originally collect coordinates points x, y, z, collection lines (break lines) which

have abrupt change of the surface, collecting exclusion areas such as lakes, etc.

and gathering areas which must be the TIN as shoreline islands, etc.

• The software taking into account the above data sets and other parameters of ac-

curacy and tolerances, creating an optimum network of triangles, which is called

a triangulation of Delaunay(1). In a TIN, each triangle is created to be equilateral
1In mathematics and computational geometry, a Delaunay triangulation for a set P of points in a plane

is a triangulation DT(P) such that no point in P is inside the circumcircle of any triangle in DT(P). De-
launay triangulations maximize the minimum angle of all the angles of the triangles in the triangulation;
they tend to avoid skinny triangles.
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as possible.

• Each triangle has a façade with a gradient change in slope. From a TIN an altitude

of a point X, Y coordinates can be found by locating the corresponding triangle

first and then intermediate interpolation the amount within the triangle. In a TIN a

flat surface requires a small number of points to be represented and a mountainous

region requires a large number of points especially if you have sudden changes in

terrain.

A TIN consists of points, lines and polygons. Points (mass points) are elevation points

measured by topographical instruments, or data conversion and have coordinates X, Y,

Z. The cracks show areas where there is a large discontinuity in surface soil. Examples

are the streams, ridges and edges of buildings, etc. The exception areas are polygons

that do not want to create triangles, such as lakes in particular, rivers, roads, etc. Finally,

the model can be confined within the limits of any area desired. These limits are usually

defined by the shoreline of an island or limits an area you want to calculate volumes.

5.1.2.6 Coordinates system

The representation of a point entity in a map is made using a pair X, Y coordinates, in

relation with a reference system. A straight line obviously needs two pairs of coordi-

nates, at the beginning and at the end of the line. If the line changes direction, then we

need a pair of coordinates at each change. Finally a polygon can be considered as a line

with the same beginning and end. We use two kinds of coordinates, or a combination

for the determination of each point: linear (distance from a start of measurement) and

angular (a measure of the angle between any content management - starting measuring

the angular size - and direction to the point of interest. The linear coordinates in the

orthonormal system of axes we say often Cartesian. Geodetic coordinates2 are called

the two angles that define the position of a point on the surface of the ellipsoid of ref-

erence. The geodetic latitude φ is the angle between the perpendicular to the surface
2Refers to a location on earth defined by its latitude, longitude and elevation.
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Figure 5.4: Triangulated Irregular Network

Source:www.geog.buffalo.edu
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of the ellipsoid and the equatorial plane of the ellipsoid. The geodetic latitude λ is the

angle between the plane of the prime meridian and the meridian that passes through

the point of interest.

The main projection systems used in Greece are:

1. The system HATT with datum 3, the Old Greek Datum, with beginning to the

pedestal of the Athens Observatory and the elliptic Bessel. All Greece is divided

into about 130 spheroids tables to reduce distortion. The centres of trapezes chang-

ing every 30’ with integer coordinates in degrees and 15’ or 45’. This system was

used by various political services and the Hellenic Military Geographical Service

(GYS) in scales 1:5000, 1:2000, etc.

2. The Greek Geodetic Reference System 1987 (GGRS 87), is the new Greek Da-

tum implemented in 1987, using the ellipsoid GRS80, beginning with the central

pedestal of Dionysus. Greece is divided into one zone, central meridian λ0 = 240

and scale factor 0.9996. The Central Meridian at Y-axis and the equator as the axis

of X having no negative coordinates, the central meridian considered to have a

value of X0 = 500000 meters. The projection is Transverse Mercator

3. The UTM system with the European Datum of 1950 (also known as ED50) ) has

as its starting point the Postdam in Germany and uses the ellipsoid of Hayford.

Greece is divided into two zones of the sixth with central meridians λ0 = 260 and

λ0 = 270 with scale factor 0.9996. These zones are number 34 and 35 respectively.

The system is used by the GYS maps 1:50000 and 1:250000.

Finally another coordinate system used in Greece is the World Geodetic System of 1984

(WGS84). The U.S. Department of Defense planned, financed and maintained the pro-

gram, launch satellites and the operation of ground stations for monitoring the global

positioning system (GPS). The measurement of distance between the control stations

and the satellites allowed the calculation of the location of these stations in a global

3geodetic reference system
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three-dimensional Cartesian geocentric system. The spatial frame of reference created

by the way, was one of the elements to create the first single global system, WGS72. The

first fundamental overhaul of the system was in 1984. The new WGS84 system includes

the equivalent of an older original point, which is now the geocentric coordinates of

points in the spatial frame of reference.

Figure 5.5: The azimuthal, the conical and cylindrical projection

5.1.3 Interpolation using Geographic Information System

The geostatistical analyst interpolation techniques are used to create a continuous sur-

face either from the measured sample points stored in a point feature layer or by using

the polygon centroids and then predict the values at unmeasured locations from the

surface created. Many studies have been done using the geostatistical analyst and some
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of the fields that benefit by virtue of these interpolation techniques include agricultural

production, temperature data, soil contamination, mining, health care and meteorol-

ogy. Some of these studies that used the geostatistical analyst interpolation techniques

are summarised below.

5.1.3.1 Methods of interpolation

5.1.3.1.1 Inverse Distance Weighted One of the most commonly used techniques for

interpolation of scatter points is inverse distance weighted (IDW) interpolation. Inverse

distance weighted methods are based on the assumption that the interpolating surface

should be influenced most by the nearby points and less by the more distant points.

The interpolating surface is a weighted average of the scatter points and the weight

assigned to each scatter point diminishes as the distance from the interpolation point to

the scatter point increases. To predict a value for any unmeasured location, IDW will

use the measured values surrounding the prediction location. Those measured values

closer to the prediction location will have more influence on the predicted value than

those farther away. Thus, IDW assumes that each measured point has a local influence

that diminishes with distance. It weighs the points closer to the prediction location

greater than those farther away, hence the name inverse distance weighted.

A general form for IDW is:

Zs0 =
N∑
i=1

λiZsi (5.1)

where Zs0 represents the estimated value at location s0, N devotes the number of

points around the estimated point and λi is:

λi =
dpio∑N
i=1 d

p
io

(5.2)

where dio is the distance between location so and location s (d2io = (Xso−Xs)
2+(Yso−Ys)2)

and p is a positive real number, called the power parameter. The most common value
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of p is 2. A general form of interpolating a value using IDW is:

Z =

∑N
i=1

Zi

d2i∑N
i=1

1

d2i

(5.3)

Z is the value at an unknown location.

5.1.3.1.2 Spline Spline interpolation consists of the approximation of a function by

means of series of polynomials over adjacent intervals with continuous derivatives at

the end-point of the intervals. Smoothing spline interpolation enables to control the

variance of the residuals over the data set. The solution is estimated by an iterative

process. It is also referred to as the basic minimum curvature technique or thin plate in-

terpolation as it possesses two main features: (a) the surface must pass exactly through

the data points, and (b) the surface must have minimum curvature.

Z0 =

∑s
i=1 Zi

1

dki∑N
i=1

1

dki

(5.4)

In this formula Z0 is the estimated value of point 0; is Zi value of control point i;

is the distance between control point i and point 0; s is the number of control point in

estimating; k is a designated power.

5.1.3.1.3 Kriging Geostatistical methods create surfaces incorporating the statistical

properties of the measured data. Because geostatistics is based on statistics, these meth-

ods produce not only prediction surfaces but also error or uncertainty surfaces, giving

the user an indication of how good the predictions are. Kriging is divided into two

distinct tasks: quantifying the spatial structure of the data and producing a prediction.

Quantifying the spatial data structure, known as variography, is fitting a spatial depen-

dence model to the data. To make a prediction for an unknown value for a specific

location, Kriging will use the fitted model from the variography, the spatial data config-
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uration and the values of the measured sample points around the prediction location.

Geostatistical analyst provides many tools to help determine the parameters to be used

and the defaults are also provided so that a surface can be created quickly. Kriging is

a moderately quick interpolator that can be exact or smooth depending on the mea-

surement error model. It is very flexible and allows the user to investigate graphs of

spatial autocorrelation. Kriging uses statistical models that allow a variety of map out-

puts including predictions, prediction standard error, standard error of indicators, and

probability. The flexibility of Kriging can require a lot of decision making. Kriging as-

sumes that the data comes from a stationary stochastic process. A stochastic process is a

collection of random variables that are ordered in space and/or time such as elevation

measurements. The selection of a Kriging method is based on the autocorrelation of

radon concentrations between two points, which is formulated as follows:

Z(s) = µ(s) + ε(s) (5.5)

Z(s) consists of two parts: a deterministic trend µ(s), (i.e. flow direction) and a

random auto correlated error ε(s). The symbol s simply indicates the location of a point.

5.1.3.2 Data preparation

ArcGis from ERSI were selected as GIS software for the implementation of the case

study. A feature layer ware constructed with the location of all meteorological station

(Figure 5.6) and a spatial database (with ArcSDE) with all the available data (time stamp

and temperature) as shown in Figure 5.7. In order to perform the interpolation methods

for the temperature data, a join had to be done between the location and spatial data.

The data had to be in the form as presented in Figure 5.8.

A limitation exist on the database software that the ArcGis use, Microsoft Sql Ex-

press. The limitation is that the database cannot have more than 254 different tables (a

table for every different interpolation is needed). So with this implementation only 254

hours could be available for interpolation at any given time. So an alternative database
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Figure 5.6: Location of meteorological stations

Figure 5.7: Spatial database

Figure 5.8: Data structure for interpolation
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was investigated in order to lift the above limitation. The Microsoft Sql Server edition

was selected with the cooperation of a special feature of ArcGis software, ArcSDE spa-

tial view4. With that specific feature was possible to make a left outer join (5) between

the tables (part of the feature layer) with the location information of each meteorolog-

ical station and the table with temperature from the database. The time stamp of each

mesurement set was selected to be the name of the table with the following conven-

tion:character ’A’+ ’month +day of the month’ + ’time in 24-hour format’. Character ’A’

was needed due to the name convention that the program use. All the above procedure

had to be done in order to transform the data in a compatibly form for the software to

be able to execute different methods of interpolation.

5.1.3.3 Analysis

5.1.3.3.1 Interpolation methods comparison After bibliographic research [4], three

different methods of interpolation were selected to be tested as more suitable for tem-

perature prediction. The three interpolation method selected are: 1)IDW, 2)spline and

3)Kriging. The following procedure were selected in the test. A subset of entire dataset

was selected in order to test the accuracy of the different methods of interpolation. The

subset consist 384 measurements from 11-05-2008 to 27-05-2008. A randomly selected

meteorological station (Egaleo) was exclude from the data as a test station. For every

one of the three interpolation methods and the whole subset, the predicted value from

the interpolation was extracted from the interpolation images-rasters and compared

with the measured temperature value. Preliminary test were conducted in order to find

the optimum values for the different parameters of each interpolation method ie num-

ber of points, maximum distance etc. Due to the large number of data and computa-

tional power-time needed for the interpolations, a script for each interpolation method

was developed using Python as programming language (for more information about

4ArcSDE Spatial Views : tool for organizing information from multiple feature classes and geodatabase
tables into a single “virtual feature class” or table at the database level.

5left outer join for table A and B always contains all records of the ”left” table (A), even if the join-
condition does not find any matching record in the ”right” table (B).
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the script see Appendix A) for automation the process. Mean Absolute Error (MAE)

and Mean Square Root Error (MSRE) are chosen as the two indicators to evaluate the

precision of the interpolation methods. The results are shown in Table 5.1 (the values

are in ◦C ). Firstly, the errors of the four interpolation methods are not great. The small-

est MSRE is about 1◦C , the greatest MSRE 1.46◦C ;the smallest MAE is about 0.68◦C ,

the greatest MAE 0.95◦C . Kriging-spherical and Kriging-circular are the best two meth-

ods of interpolation for our case, spline is the second and IDW interpolation method has

the lowest precision. It can be clearly seen from the above results, Kriging-spherical was

selected as interpolation method for the rest of the study.

Interpolation Method MAE MSRE

Kriging Spherical 0.68 1.03
Kriging Circular 0,72 1,08

IDW 0.78 1.22
Spline 0.95 1.46

Table 5.1: Interpolation Comparison

5.1.3.3.2 Data representation As a result from the previous investigation, Kriging

Spherical was selected as the more suitable method of temperature interpolation-prediction

for our study. Later on using the ArcSDE a join was made using the hole dataset - 2481

hourly temperature measurements for all thirteen meteorological stations with their lo-

cation. In this step all the available meteorological stations are included in the interpo-

lation proses. The Spherical Kriging interpolation Python script was properly modified

in order to access the spatial data from the SQL server database in order to perform the

interpolation. As a result from the processes 2481 different interpolation images were

constructed for all the available dataset. Figure 5.9 shows an interpolation image with

one of the highest days Figure 5.10 shows an average day and Figure 5.11 shows one of

the coolest day on the dataset.

A video-animation was constructed will all the interpolation images. This was pos-

sible using a new feature of the GIS software called time aware raster. The animation
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Figure 5.9: Temperature interpolation 12/06/2009 05:00
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Figure 5.10: Temperature interpolation 06/07/2009 16:00
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created is a great tool to visual examine the evolution of the UHI phenomenon during

the small periods (day) and longer periods (months) of time. Also the animation can be

used for the information of the general public about the UHI phenomenon.
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Chapter 6

Summary

6.1 Future research prospects

While this thesis examines the prediction using ANN and visualization of the UHI in

GAA , there are still possibilities for further study of this phenomenon.

1. Examine the association between the UHI intensity, electricity demand[1] and

population .

2. On line implementation of the prediction and visualisation.

3. Integration with an urban DSS (Decision support system) system.

4. Year around temperature measurements for verification of the predictive ability of

ANN on the autumn, winter, spring season.

5. Measurement of relative humidity[9] and wind speed[21] in order to examine their

impact and the potential prediction in UHI intensity.

6.2 Conclusion

Important heat island studies have been performed in Europe during the last decades

showing that the deep understanding of the phenomenon plays an important role in
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fighting its consequences to the climate change. Advanced artificial intelligence tech-

niques such as neural networks offer on the other hand a valuable tool to be used for

the prediction of the specific phenomenon. The neural networks prediction accuracy is

mainly based on the quality and quantity of the available data. The aim of the present

thesis was to investigate the feasibility of predicting the urban heat island phenomenon

using a limited data series. The Athens case study was used to demonstrate the feasi-

bility and accuracy of the overall approach. The methodology presented in the present

thesis showed that the urban heat island intensity can be predicted quite accurately for

at least a 24-h prediction horizon using a limited set of data. Therefore the NN pre-

diction methodology can be an important tool for peak energy load predictions during

heat waves and hot summer days contributing to the demand and supply energy man-

agement.

In this thesis, we compared different spatial interpolation techniques for spatial tem-

perature prediction. Using GIS and interpolation techniques a new innovative way was

presented to visualize the UHI. As the above investigation using ANN; the main goal

was to investigate methods in order to produce sufficiently accurate results with lim-

ited data. The animation produced can be a very effective tool for the information of

the general public about the problem of UHI.

In conclusion, the final words of this thesis should came from the doyen of urban cli-

matology, Helmut Landsberg[13], who stresses this importance of applying the knowl-

edge gained from academic work on urban climates:

The knowledge we have acquired about urban climates should not re-

main an academic exercise. It should be applied to the design of new towns

or the reconstruction of old ones.
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Appendix A

Python code for Kriging Spherical

interpolation method

#

# The f e i l d N a m e i s a s h a p e f i l e wi th t h e l o c a t i o n s o f t h e s t a t i o n s and with t h e

# t e m p e r a t u r e

#

#

#

# Impor t sys t em modules

import arcpy

from arcpy import env

from arcpy . sa import *

from numpy import *

import xlrd

import xlwt

#
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# I n i t i a l i t a t i o n

#

method=” kr ig ingSpher i caPoint6 ”

workspace=” c :\\ TempInter\\ t e s t D i a f o r e I n t e r p o l a t i o n \\”+method+” . gdb”

s c r a t c h =” c :\\ tempInter \\temp . gdb”

feildName=” ThesisStathmonOutEgaleo ” # s h a p e f i l e name

# f o r g e t t i n g t h e t e m p e r a t u r e 23 .667893 37 .997403

x =23.667893

y =37.997403

xlsOutf i lename=workspace+”\\”+method+” . x l s ”

# x l s F i l e n a m e =w o r k s p a c e +”\\ a l l w . x l s ”

xlsFi lename=”C:\\ TempInter\\ t e s t D i a f o r e I n t e r p o l a t i o n \\ egaleo . x l s ”

# s e t t h e w o r k s p a c e

arcpy . env . workspace=workspace

arcpy . env . scratchWorkspace= s c r a t c h

# o v e r i t e d a t a

arcpy . env . overwriteOutput = True

# g e t a l l t h e f e i l d s

f i l d s = arcpy . L i s t F i e l d s ( feildName )

# r i d o f t h e 4 c o l u s and h o l d o lny t h e t e m p e r a t u r e v a l u e s > f i l d s [ 0 ] . name #=u ’ F2 ’

f i l d s = f i l d s [ 4 : len ( f i l d s ) ]

# c a l c u l a t e t h e i n d e r p o l a t e i n

for f i l d in f i l d s :

# a= Idw ( f e i ldName , f i l d . name )
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a= Kriging ( feildName , f i l d . name , ” S p h e r i c a l ” , 0 . 0 0 0 7 , RadiusFixed ( 8 ) )

a . save ( workspace+”\\”+ f i l d . name)

# g e t t h e ra s t e rNames

data = arcpy . L i s t D a t a s e t s ( ” * ” , ” Raster ” )

f i lanemes = [ ]

r e s u a l t s = [ ] # ones ( ( 1 , l e n ( d a t a ) ) , d t y p e = f l o a t )

# g e t c e l l v a l u e

for tx in range ( 0 , len ( data ) ) :

r e s u a l t s . append ( arcpy . GetCellValue management ( data [ tx ] , s t r ( x )+ ” ”+ s t r ( y ) , ”1” ) )

f i lanemes . append ( data [ tx ] )

# g e t t h e r e a l v a l u e s o f t h e p o i n t

book = xlrd . open workbook ( xlsFi lename )

sheet = book . sheet by index ( 0 )

colValues= sheet . c o l v a l u e s ( 0 , 0 )

d i a f o r a= ones ( ( 1 , len ( colValues ) ) , dtype= f l o a t )

for t t in range ( 0 , len ( colValues ) ) :

d i a f o r a [ 0 , t t ]= f l o a t ( s t r ( colValues [ t t ] ) )− f l o a t ( s t r ( r e s u a l t s [ t t ] ) )

# s a v e d a t a t o t h e e x c e l f i l e

book = xlwt . Workbook ( encoding=” utf−8” )

sheet = book . add sheet ( ” Resaul t s ”+method )
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sheet . wri te ( 0 , 0 , ”Data” )

sheet . wri te ( 0 , 1 , ”x= ”+ s t r ( x ) )

sheet . wri te ( 1 , 1 , ”y= ”+ s t r ( y ) )

sheet . wri te ( 0 , 2 , method )

for x in range ( 2 , len ( r e s u a l t s ) ) :

sheet . wri te ( x , 0 , f i lanemes [ x ] )

sheet . wri te ( x , 1 , f l o a t ( s t r ( r e s u a l t s [ x ] ) ) )

sheet . wri te ( x , 2 , f l o a t ( s t r ( colValues [ x ] ) ) )

sheet . wri te ( x , 3 , f l o a t ( s t r ( colValues [ x ]))− f l o a t ( s t r ( r e s u a l t s [ x ] ) ) )

book . save ( xlsOutf i lename )
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