
ELECTRONICS AND COMPUTER ENGINEERING DEPARTMENT

ΤΕCHNICAL UNIVERSITY OF CRETE

A SYSTEM TO MEASURE, CONTROL

AND MINIMIZE END-TO-END HEAD

TRACKING LATENCY IN IMMERSIVE

SIMULATIONS, INVESTIGATING

USER EXPERIENCE

Giorgos Papadakis

10/4/2013

Thesis submitted in fulfillment of the requirements for the degree of Master of

Science in Electronics and Computer Engineering.

Department of Electronic and Computer Engineering. Laboratory of Distributed

Multimedia Information Systems and Applications MUSIC

CHANIA 2013

1

Abstract

System latency (time delay) and its visible consequences are fundamental Virtual

Environment (VE) deficiencies that can hamper user perception and performance. In

order to realize this goal, we present an immersive simulation system which

improves upon current latency measurement and minimization techniques.

Hardware used for latency measurements and minimization is assembled by low-

cost and portable equipment, most of them commonly found in an academic facility

without reduction in accuracy of measurements. We present a custom-made

mechanism of measuring and minimizing end-to-end head tracking latency in an

immersive VE. The mechanism is based on an oscilloscope comparing two signals.

One is generated by the head-tracker movement and reported by a shaft encoder

attached on a servo motor moving the tracker. The other is generated by the visual

consequences of this movement in the VE and reported by a photodiode attached to

the computer monitor. Visualization and application-level control of latency in the

VE was implemented using the XVR platform. To achieve interoperability between

the head-tracker orientation data API and the VE application an intermediate API

was developed. Minimization processes resulted in almost 50% reduction of initial

measured latency. The description of the mechanism by which VE latency is

measured and minimized will be essential to guide system countermeasures such as

predictive compensation. The system presented in this thesis will be used to

investigate the effect of latency on spatial awareness states.

This thesis also presents an experimental methodology exploring the effect of

tracking latency on object recognition after exposure to an immersive VE, in terms of

both scene context and associated awareness states. The immersive simulation

consisted of a radiosity-rendered space divided in three zones including a

kitchen/dining area, an office area and a lounge area. The space was populated by

objects consistent as well as inconsistent with each zone’s context. The simulation

was displayed on a stereo head-tracked Head Mounted Display. Participants across

three conditions of varying latency (system minimum latency vs. typical VE latency

vs. extensive latency) were exposed to the VE. The same API developed for tracker

2

reading by the VE application was used from latency addition to the readings.

Following the exposure participants were asked to complete an object-based memory

recognition task. Participants also reported one of two states of awareness following

each recognition response which reflected either the recollection of contextual detail,

or the sense of familiarity.

3

Declaration

The work in this thesis is original and no portion of the work referred to here has

been submitted in support of an application for another degree or qualification of

this or any other university or institution of learning.

Signed: Date:

Giorgos Papadakis

4

Acknowledgments

 Αρχικά, θα ήθελα να εκφράσω τις ιδιαίτερες ευχαριστίες μου στην κ.

Κατερίνα Μανιά, την επιβλέπουσα καθηγήτρια μου, που με τις γνώσεις της

αλλά πάνω από όλα με πάντα ευχάριστη διάθεση και με πολύ υπομονή μου

προσέφερε ανεκτίμητη βοήθεια σε αυτή την εργασία.

Οφείλω επίσης ένα ιδιαίτερο ευχαριστώ στο καθηγητή κ. Ε. Κουτρούλη του

οποίου η βοήθεια ήταν καθοριστική στο να μπορέσω να ξεπεράσω τις πολλές

δυσκολίες που είχα με τον σχεδιασμό και την υλοποίηση του συστήματος και

στον καθηγητή ψυχολογίας κ. M. Coxxon για τη βοήθειά που μου προσέφερε με

τα ερωτηματολόγια των πειραμάτων.

Ένα μεγάλο ευχαριστώ στα μέλη του εργαστηρίου στην Βαγγελιώ την

Κατερίνα και τον Γιώργο για την πολύτιμη βοήθεια που μου προσέφεραν στην

διεξαγωγή των πειραμάτων, βοηθώντας πολλές ώρες στο γραφείο της υποδοχής

αλλά και στα παλαιότερα μέλη τον Αλέξανδρο και τον Γιάννη με τους οποίους

περάσαμε πολλές ευχάριστες ώρες στον εργαστήριο έχοντας άριστη συνεργασία

και κατά τη διάρκεια των μεταπτυχιακών μας σπουδών.

Ευχαριστώ επίσης το Εργαστήριο Διανεμημένων Πληροφοριακών

Συστημάτων και Εφαρμογών, το Τμήμα Ηλεκτρονικών Μηχανικών και

Μηχανικών Η/Υ και το Πολυτεχνείο Κρήτης τα οποία μου παρείχαν πολύτιμη

χρηματοδότηση και υλικοτεχνικό εξοπλισμό.

 Πάνω από όλα όμως θα ήθελα να ευχαριστήσω τους γονείς μου και την

αδερφή μου, για, την πίστη τους σε μένα, και την υποστήριξή τους όλο το

διάστημα των σπουδών μου και τους αφιερώνω αυτή την εργασία. Τέλος, θα

ήθελα να ευχαριστήσω τους φίλους μου, για την ηθική και ψυχολογική στήριξη

από την αρχή μέχρι και το τέλος αυτής της εργασίας.

5

Στους γονείς και την αδερφή μου

6

It is never too late to be what you might have been.

George Eliot

Ποτέ δεν είναι αργά να γίνεις αυτό που θα μπορούσες να έχεις γίνει

George Eliot

http://www.brainyquote.com/quotes/authors/g/george_eliot.html
http://www.brainyquote.com/quotes/authors/g/george_eliot.html

7

Publications

2011 Papadakis, G., Mania, K., Coxon, M., Koutroulis E. “The effect of tracking delay

on awareness states in immersive virtual environments: an initial exploration.”

ACM SIGGRAPH VRCAI '11. Proceedings of the 10th International

Conference on Virtual Reality Continuum and Its Applications in Industry

Pages 475-482

2011 Papadakis, G., Mania, K., Koutroulis, E. A System to Measure Control and

Minimize End-to-End Tracking Latency in Immersive Simulations. ACM

SIGGRAPH VRCAI '11. Proceedings of the 10th International Conference on

Virtual Reality Continuum and Its Applications in Industry Pages 581-584

2009 Papadakis, G., Mania, K. “The Cognitive Impact of Head Tracking Latency in

Immersive Simulations.” ACM SIGGRAPH Symposium on Applied Perception in

Graphics and Visualization 2009. Pages 136-136.

8

Table of Contents

Abstract .. 1

Declaration... 3

Acknowledgments .. 4

Publications ... 7

Table of Contents .. 8

List of Tables ... 13

List of Figures .. 14

CHAPTER 1. Introduction ... 20

1.1. Main Contributions .. 21

1.2. Thesis Outline ... 22

CHAPTER 2: Technical Background ... 22

CHAPTER 3: Τhe Virtual Environment Application... 22

CHAPTER 4: Hardware and Software setup for Latency Measurements and

Minimization ... 22

CHAPTER 5: Latency Experiment ... 23

CHAPTER 6: Conclusion ... 23

CHAPTER 2. Technical Background .. 23

2.1. Computer Graphics Rendering .. 23

2.1.1. The physical Behavior of Light ... 23

2.1.2. Computer Graphics illumination ... 27

2.1.3. Ray Tracing .. 31

2.1.4. Radiosity .. 33

2.1.5. Texture mapping .. 40

2.1.6. OpenGL .. 47

9

2.1.7. Direct3D ... 50

2.1.8. Comparison of OpenGL and Dierct3D .. 51

2.2. Virtual Reality Systems .. 55

2.2.1. Mainstream Virtual Reality ... 55

2.2.2. Immersive VR Systems .. 56

2.3. Effects of Latency in Virtual Environment Users ... 70

2.4. Measuring Latency ... 73

2.4.1. Virtual Environment Pipeline ... 77

2.4.2. Added Latency sources .. 81

2.4.3. Hardware ... 85

2.5. Latency Minimization .. 85

2.6. Memory awareness states and schemata .. 87

2.6.1. Memory and Perception .. 87

2.6.2. The remember/know paradigm .. 88

2.5.4 Effect of Latency on Spatial Awareness .. 91

2.7. Chapter Summary .. 92

CHAPTER 3. Τhe Virtual Environment Application ... 93

3.1. XVR Overview .. 93

3.2. S3D: The XVR Scripting Language... 95

3.2.1. Classes .. 97

3.2.2. Functions .. 99

3.3. XVR Development Studio ... 102

3.3.1. Wizards .. 103

3.3.2. Perspectives ... 105

3.3.3. Menus ... 108

10

3.3.4. Views .. 109

3.4. XVR Browser ... 112

3.5. XVR Tracking .. 115

3.5.1. Using the tracker as a VRPN device .. 115

3.5.2. Using the tracker as joystick .. 116

3.5.3. Accessing tracker data directly from the DLL .. 118

3.6. Moving the camera ... 124

3.7. ΧVR Stereo rendering .. 125

3.7.1. Quad buffered Stereo rendering ... 125

3.7.2. XVR side-by-side stereoscopic rendering ... 126

3.8. Chapter Summary .. 128

CHAPTER 4. Hardware and Software setup for Latency Measurements and

Minimization ... 129

4.1. Tracker.. 129

4.2. Rotary Encoder ... 130

4.3. Rotational Mechanism ... 136

4.4. Photodiode... 137

4.5. Other parts of the digital circuit ... 138

4.5.1. Digital-to analog converter.. 138

4.5.2. Current-to-voltage converter .. 143

4.5.3. LM555 timer .. 144

4.6. Oscilloscope ... 146

4.7. Calculating display metrics ... 154

4.8. Adjusting stereo parallax ... 154

4.9. Reading from the Tracker .. 155

11

4.9.1. Using the tracker as joystick device to read head position 155

4.9.2. Using the C++ Intersense tracker API .. 157

4.10. Intermediate DLL API for InterSense trackers ... 160

4.11. Latency Minimization .. 164

4.12. Measurements ... 165

4.12.1. Captured data ... 168

4.12.2. High frequency noise removal (moving average) 169

4.12.3. Linear interpolation .. 170

4.12.4. Results .. 172

4.13. Chapter Summary .. 173

CHAPTER 5. Latency Experiment.. 174

5.1. The 3D Scene for Latency Experiments ... 174

5.1.1. Creating the Scene .. 174

5.1.2. Radiosity Solution .. 175

5.1.3. Exporting geometry for XVR .. 179

5.2. Pilot studies ... 181

5.2.1. Preliminary Results .. 182

5.3. The Main Experiment... 188

5.3.1. Apparatus .. 188

5.3.2. Participants .. 188

5.3.3. Visual Content ... 189

5.3.4. Procedure ... 192

5.3.5. Simulator Sickness .. 196

5.4. Statistical Analysis .. 197

5.4.1. Analysis of Variance ... 197

12

5.5. Results and Discussion .. 198

5.5.1. Total Correct (Hits) ... 198

5.5.2. Total Misses – Present Objects .. 199

5.5.3. Total Misses – Absent Objects ... 199

5.5.4. Confidence ... 200

5.5.5. Awareness States .. 201

5.6. Chapter Summary .. 203

CHAPTER 6. Conclusion ... 204

6.1. Main Contributions .. 204

References/Bibliography .. 206

APPENDIX A .. 215

APPENDIX B ... 216

APPENDIX C .. 219

APPENDIX D .. 220

APPENDIX E ... 224

APPENDIX F ... 225

APPENDIX G .. 241

13

List of Tables

Table 1: Absolute encoder standard binary encoding ... 132

Table 2: Ablolute encdoer gray encoding ... 133

Table 3: Incremental encoder coding for clockwise rotation .. 134

Table 4: Incremental encoder coding for counter-clockwise rotation 135

Table 5: Number of correct responses and standard deviations as a function of

viewing condition (no latency, high latency) and schema consistency (consistent,

inconsistent)... 182

Table 6: Mean confidence rating and standard deviation as a function of viewing

condition (Hi latency, No latency) and context consistency (consistent, inconsistent)

 ... 183

Table 7: Proportion of correct responses and standard deviations as a function of

viewing condition (Hi latency, No latency), context consistency (consistent,

inconsistent) and reported awareness state (Type A, Type B, Guess) 184

Table 8 .. 198

Table 9 .. 199

Table 10 .. 199

Table 11 .. 200

Table 12 .. 201

14

List of Figures

Figure 1: The visible portion of the electromagnetic spectrum. 24

Figure 2: Light transmitted through a material .. 25

Figure 3: Light absorbed by a material .. 26

Figure 4: Light refracted through a material .. 26

Figure 5: Light reflected off a material in different ways, from left to right, specular,

diffuse, mixed, retro-reflection and finally gloss (Katedros n.d.) 27

Figure 6: The differences between a simple computer-generated polyhedral cone

(left), with linearly interpolated shading to give appearance of curvature (Gouraud

Shading). Note Mach bands at edges of faces (middle) and a more complex shading

calculation, interpolating curved surface normals (Phong Shading). This is necessary

to eliminate Mach Bands (right). .. 29

Figure 7: Graphical depiction of the rendering equation (Yee, Pattanaik and

Greenberg 2001) .. 31

Figure 8: Ray Tracing ... 33

Figure 9: Radiosity patches (McNamara 2000) ... 35

Figure 10: Relationship between two patches (Katedros n.d.) 36

Figure 11: Nusselt’s analog. The form factor from the differential area to element

 is proportional to the area of the double projection onto the base of the

hemisphere (Nusselt 1928). ... 37

Figure 12: The hemicube (Langbein n.d.) .. 38

Figure 13: Differences between ray tracing (middle) and radiosity (right hand image).

 ... 40

Figure 14: Difference between standard direct illumination and radiosity 40

Figure 15: 1) 3D model without textures, 2) 3D model with textures. 41

15

Figure 16: Examples of multitexturing.1) Untextured sphere, 2) Texture and bump

maps, 3) Texture map only, 4) Opacity and texture maps. ... 42

Figure 17: Taurus pt. 92 textured 3d model. Rendered in marmoset engine (real time

game engine). .. 44

Figure 18: Diffuse, normal and specular map of the above 3d model. 44

Figure 19: Mesh without any texture (left image). Reflection image projected onto the

object (right image). .. 45

Figure 20: Mesh with diffuse map only (left image). Opacity texture applied on the

mesh (right image).. 46

Figure 21: Normal mapping used to re-detail simplified meshes. 46

Figure 22: Simplified version of the OpenGL Graphics Pipeline Process 49

Figure 23: A binocular HMD .. 57

Figure 24: An HMD of the type used in this research, with no periphery shielding.. 60

Figure 25: The two eyes converge on the object of attention .. 63

Figure 26: The cube is shifted to the right in left eye's image (left) and to the left on

right eye's image (right) ... 63

Figure 27: We see a single, Cyclopean, image from the two eyes' images 64

Figure 28: The brain gives each point in the Cyclopean image a depth value,

represented here by a grayscale depth map ... 64

Figure 29: Different points of convergence and accommodation in stereopsis. 65

Figure 30: On-axis stereo rendering (incorrect). ... 66

Figure 31: Off-axis stereo rendering (correct). .. 67

Figure 32: Off-axis stereo rendering equation. ... 68

Figure 33: Scene for testing presence in a VR (Meehan, et al. 2003) 73

16

Figure 34: Early latency measurement technique using a camera (Liang, Shaw and

Green 1991) .. 74

Figure 35: Miné's latency measuring technique using an oscilloscope (Miné 1993) ... 75

Figure 36: Double buffering in monoscopic rendering ... 79

Figure 37: Double buffering in passive stereo rendering. ... 80

Figure 38: The VE pipeline .. 81

Figure 39: Single, double and triple buffering operation (v-sync enabled).................. 83

Figure 40: VE system timing diagram (Hill, Adelstein and Ellis 2004) 85

Figure 41: XVR Data Flow ... 94

Figure 42: XVR Loop .. 95

Figure 43: XVR classes and functions .. 97

Figure 44: The XVE Development Studio IDE ... 103

Figure 45: The XVR wizards. .. 104

Figure 46: The XVR project wizard .. 105

Figure 47: Editor perspective .. 107

Figure 48: Debug perspective ... 108

Figure 49: XVR console .. 110

Figure 50: Navigator view ... 111

Figure 51: Variables view .. 112

Figure 52: Embedding XVR Application into html page. ... 113

Figure 53: A joystick pointing device .. 117

Figure 54: CVmJoystick predefined class .. 118

Figure 55: Intersense DLL API tracker reading data structure 122

Figure 56: Accessing tracker data directly from the DLL API 124

17

Figure 57: Rotating the camera with the tracker .. 125

Figure 58: Stereoscopic side-by-side rendering in XVR .. 126

Figure 59: Multi display modes .. 127

Figure 60: Using the two HMD displays as one (horizontal span).............................. 128

Figure 61: Overview of the data-acquisition system for measuring the end-to-end

latency .. 129

Figure 62: Rotary encoder for angle-measuring devices marked in 3-bit binary (left)

and 3-bit gray (right). The inner ring corresponds to Contact 1 in the table. Black

sectors are "on". Zero degrees is on the right-hand side, with angle increasing

counterclockwise .. 134

Figure 63: The rotational motor .. 137

Figure 64: The EG & G Vactec visible light photodiode used for our measurements

 ... 137

Figure 65: The photodiode mechanical characteristics ... 138

Figure 66: Functional block diagram of the digital to analog encoder used in our

latency measurement system. ... 143

Figure 67: Operational amplifier current-to-voltage converter 144

Figure 68: LM555 timer connection diagram .. 145

Figure 69: The laboratory-built prototype comprising the tracker rotation mechanism

with the shaft encoder attached and the signal-conditioning electronic circuits 146

Figure 70: Basic oscilloscope (WorldTechPub n.d.) ... 148

Figure 71: The DSO1012A oscilloscope used for our measurements 152

Figure 72: The diagram of the servo-mechanism which is used to control the tracker

rotation ... 153

Figure 73: Digital circuit overview ... 153

Figure 74: Calculating display metrics .. 154

18

Figure 75: Re-adjusting stereo parallax ... 155

Figure 76: When inserted, Windows recognize the Intrtrax2 tracker as a joystick ... 155

Figure 77: Accessing tracker data as Joystick readings with the plug 'n' play Microsoft

driver .. 156

Figure 78: Accessing tracker data as Joystick readings with the InterSense Joystick

Driver interface ... 157

Figure 79: Intermediate DLL API development ... 161

Figure 80: Accessing tracker data as using the Intermediate DLL API for Internense

trackers ... 162

Figure 81: Aging tracker reports using a circular buffer ... 163

Figure 82: Loading both DLL versions with and without delayed reporting 164

Figure 83: Turning of triple buffering and Vertical Sync from the graphics card

control panel .. 165

Figure 84: Turning off VSync from the VE application and setting frame rate to

maximum ... 165

Figure 85: Test scene for latency measurements .. 167

Figure 86: An example of the signals measured using the oscilloscope, corresponding

to the tracker position and the display brightness level, respectively 168

Figure 87: Raw captured data plot ... 169

Figure 88: Moving average on a set of data. ... 170

Figure 89: Given the two red points, the blue line is the linear interpolant between

the points, and the value y at x may be found by linear interpolation 171

Figure 90: Moving average (blue) and linear interpolation (black) 172

Figure 91: Top view of the experimental scene, without shading 177

Figure 92: Flat shaded version of the experimental scene (left) vs. the radiosity

solution (right) (top view) ... 177

19

Figure 93: Rendering of experimental scene with no shading 178

Figure 94: Flat shaded rendering of the experimental scene .. 178

Figure 95: Radiosity solution rendering of the experimental scene 179

Figure 96: The AAM exporter plugin window ... 181

Figure 97: Photo of participant ... 189

Figure 98: The experimental VE scene ... 192

Figure 99: Simple 3d pattern scene used for calibration. .. 194

Figure 100: The bare environment top view ... 196

20

CHAPTER 1. Introduction

The work presented in this thesis aims to implement an innovative latency

measurement mechanism as well as an immersive simulation of minimum latency.

End-to-end latency in a Virtual Environment (VE) is defined as the time lag

between a user’s action in the VE and the system’s response to this action. VE latency

comprises of four different types; user-input device lag, application-dependent

processing lag, rendering lag and synchronization lag. The user input device lag is

the lag introduced from the communication between the tracking system and the VE

application. The application- dependent processing lag is the time required for the

computation of the 3D model and depends on the complexity of the model and the

application itself. The rendering lag is the time that passes until data sent from the

VE application to the rendering hardware appears on a monitor or immersive

display. The rendering lag depends on the scene and the viewpoint rendered at each

time, so it varies through the VE application run-time.

The synchronization lag is the total time that data is waiting during the necessary

communication of involved input devices, in- between the parallel processing stages

of the VE application. It is application-relevant and depends on rendering processing

stages which may not be well-synchronized to avoid delays of transmission. These

stages are independent and it is possible that the input device deposits new tracking

data shortly after the application reads the previous data. Thus, the application is

busy processing the previous input before it reads and starts to process the new

input, so that input data is delayed. Moreover, there is a fifth kind of lag, i.e. the

frame-rate-induced lag, resulting from the fact that data displayed progressively

become out of date, while the display is not updated fast. This type of lag is

distinguished from other lag sources and is not considered as end-to-end latency. It

is, though, perceivable by the users exposed to a VE and is considered unacceptable

because of the resulting slow frame rates (Wloka 1995). Excessive system latency is a

well-known defect of VE and teleoperation systems (Ellis, Mania, et al. 2004). It is

particularly troublesome for head-tracked systems since delays in head orientation

21

measurement give rise to errors in presented visual direction (Stanney, Mourant and

Kennedy 1998), (Mania, Adelstein, et al. 2004). The work presented in this thesis aims

to implement an immersive simulation of minimum latency as well as a latency

measurement mechanism. We extend past latency measurement and minimization

techniques to build a port- able, low-cost, custom-made but also accurate latency

measurement system and, ultimately, create a VE with minimal head tracking

latency.

The term Virtual Environment (VE) is generally understood to mean an

environment that is described in three dimensions be presented on a computer

display. They are perhaps most commonly encountered in computer games, but are

also found in research, simulation, training and design — particularly architectural

design. The term Immersive Virtual Environment (IVE) in this thesis is referred to

VEs that are displayed using equipment that produces an ego-centric view, allowing

the view position and direction to be changed by moving the head and body in a

natural way (Sutherland 1965). Today, this may be achieved through the use of an at

least three degrees-of-freedom spatial tracker and a stereoscopic head-mounted

display (HMD). When using an IVE one can attain a sense that one is actually present

within the virtual environment that is displayed, and ‘presence’ has in fact been

identified as a key feature for their general use (Held and Durlach 1992), or even

their defining factor in terms of the human experience (Steuer 1992).

1.1. Main Contributions

 The development of a novel low-cost, custom-made portable latency

measuring mechanism extending past latency measurement techniques.

 The development of a simulation system with minimum end-to-end latency

to be controlled for a variety of head and hand tracking devices relevant to

navigation of 3D environments and teleportation.

 An experiment exploring whether the cognitive impact of latency is severe for

spatial awareness by investigating the effect of latency on 3D spatial

cognition, spatial awareness states and 3D mental models and imagery.

22

1.2. Thesis Outline

This thesis is divided into a number of chapters. A brief summary of each chapter

is presented here.

CHAPTER 2: Technical Background

This chapter introduces a set of fundamental terms in computer graphics starting

with defining light and its properties, light energy, photometry and radiometry and

continuing with computer graphics illumination models analysis. Furthermore, this

chapter illustrates the complex variety of tools and equipment required to create,

view and interact with immersive VEs. It provides background information

regarding the key technologies used in order to implement the experimental

framework and experimental protocol put forward and an overview of the

technologies necessary to display and interact with immersive VEs.

Subsequently, latency and its effects on users of Virtual Environments are

analyzed and methods for measurement and minimization of latency in Virtual

Environments are presented. The last section of this chapter is focused on memory

awareness states and schemata.

CHAPTER 3: Τhe Virtual Environment Application

In this chapter, the technical requirements of the head-tracked stereoscopic 3D

interactive system are introduced. The architecture of the application developed for

the experiments is presented, along with the inherent architecture of the XVR

Environment used to develop it.

CHAPTER 4: Hardware and Software setup for Latency Measurements and

Minimization

Chapter 4 describes the hardware and software setup used for measuring the

end-to-end head tracking latency of our VE system. In this chapter we also present

the data collected from end-to end latency measurements. We describe techniques

23

we used for controlling and minimizing latency and we compare data before and

after the application of these techniques.

CHAPTER 5: Latency Experiment

This chapter is concerned with the experimental methods employed when the

actual experiments were conducted measuring the effect of latency in immersive

simulations. The experimental procedure is presented, as well as the results of the

experiments.

CHAPTER 6: Conclusion

Finally, the results and contributions of this thesis are presented. Future work,

unveiled by relevant conclusions is suggested.

CHAPTER 2. Technical Background

2.1. Computer Graphics Rendering

2.1.1. The physical Behavior of Light

Light is one form of electromagnetic radiation, a mode of propagation of energy

through space that includes radio waves, radiant heat, gamma rays and X-rays. One

way in which the nature of electromagnetic radiation can be pictured is as a pattern

of waves propagated through an imaginary medium. Primary properties of light are

intensity, propagation direction, frequency or wavelength spectrum, and

polarization, while its speed in a vacuum, 299,792,458 meters per second, is one of

the fundamental constants of nature. The term “visible light” is used to describe the

subset of the spectrum of electromagnetic energy to which the human eye is

sensitive. This subset, usually referred to as the visual range or the visual band,

consists of electromagnetic energy with wavelengths in the range of 380 to 780

nanometers, although the human eye has very low sensitivity to a wider range of

wavelengths, including the infrared and ultraviolet ranges. The range of visible light

24

is shown in Figure 1. As shown, the wavelength at which the human eye is most

sensitive is 555 nm.

In the field of computer graphics three types of light interaction are primarily

considered: absorption, reflection and transmission. In the case of absorption, an

incident photon is removed from the simulation with no further contribution to the

illumination within the environment. Reflection considers incident light that is

propagated from a surface back into the scene and transmission describes light that

travels through the material upon which it is incident and can then return to the

environment, often from another surface of the same physical object. Both reflection

and transmission can be subdivided into three main types:

 Specular: When the incident light is propagated without scattering as if

reflected from a mirror or transmitted through glass.

 Diffuse: When incident light is scattered in all directions.

 Glossy: This is a weighted combination of diffuse and specular.

Figure 1: The visible portion of the electromagnetic spectrum.

Most materials do not fall exactly into one of the material categories described

above but instead exhibit a combination of specular and diffuse characteristics.

25

In order to create shaded images of three dimensional objects, we should analyze

in detail how the light energy interacts with a surface. Such processes may include

emission, transmission, absorption, refraction, interference and reflection of light (Palmer

1999).

Emission

Emission is when light is emitted from an object or surface, for example the sun

or man-made sources, such as candles or light bulbs. Emitted light is composed of

photons generated by the matter emitting the light; it is therefore an intrinsic source

of light.

Transmission

Transmission describes a particular frequency of light that travels through a

material returning into the environment unchanged as shown in Figure 2. As a result,

the material will be transparent to that frequency of light. Most materials are

transparent to some frequencies, but not to others. For example, high frequency light

rays, such as gamma rays and X-rays, will pass through ordinary glass, but the lower

frequencies of ultraviolet and infrared light will not.

Figure 2: Light transmitted through a material

Absorption

Absorption describes light as it passes through matter resulting in a decrease in

its intensity as shown in Figure 3, i.e. some of the light has been absorbed by the

object. An incident photon can be completely removed from the simulation with no

further contribution to the illumination within the environment if the absorption is

great enough.

26

Figure 3: Light absorbed by a material

Refraction

Refraction describes the bending of a light ray when it crosses the boundary

between two different materials as shown in Figure 4. This change in direction is due

to a change in speed. Light travels fastest in empty space and slows down upon

entering matter. The refractive index of a substance is the ratio of the speed of light in

space (or in air) to its speed in the substance. This ratio is always greater than one.

Figure 4: Light refracted through a material

Interference

Interference is an effect that occurs when two waves of equal frequency are

superimposed. This often happens when light rays from a single source travel by

different paths to the same point. If, at the point of meeting, the two waves are in

phase (the crest of one coincides with the crest of the other), they will combine to

form a new wave of the same frequency. However the amplitude of this new wave is

the sum of the amplitudes of the original waves. The process of forming this new

wave is called constructive interference (Flavios n.d.). If the two waves meet out of

phase (a crest of one wave coincides with a trough of the other), the result is a wave

whose amplitude is the difference of the original amplitudes. This process is called

destructive interference (Flavios n.d.). If the original waves have equal amplitudes,

27

they may completely destroy each other, leaving no wave at all. Constructive

interference results in a bright spot; destructive interference produces a dark spot.

 Reflection considers incident light that is propagated from a surface back into

the scene. Reflection depends on the smoothness of the material’s surface

relative to the wavelength of the radiation (Physics of light And colour n.d.).

A rough surface will affect both the relative direction and the phase

coherency of the reflected wave. Thus, this characteristic determines both the

amount of radiation that is reflected back to the first medium and the purity

of the information that is preserved in the reflected wave. A reflected wave

that maintains the geometrical organization of the incident radiation and

produces a mirror image of the wave is called a specular reflection, as can be

seen in Figure 5.

Figure 5: Light reflected off a material in different ways, from left to right, specular, diffuse,

mixed, retro-reflection and finally gloss (Katedros n.d.)

2.1.2. Computer Graphics illumination

An illumination model computes the color at a point in terms of light directly

emitted by the light source(s) (Foley, et al. 1990). A local illumination model

calculates the distribution of light that comes directly from the light source(s). A

global illumination model additionally calculates reflected light from all the surfaces

in a scene which could receive light indirectly via intereflections from other surfaces.

Global illumination models include, therefore, all the light interaction in a scene,

allowing for soft shadows and color bleeding that contribute towards a more

photorealistic image. The rendering equation expresses the light being transferred

28

from one point to another (Kajiya 1986). Most illumination computations are

approximate solutions of the rendering equation:

 () () () ∫ () ()

Where;

 are points in the environment,

 () is related to the intensity passing from to ,

 () is a ‘geometry’ term that is 0 when are occluded from each other

and 1 otherwise,

 () is related to the intensity of light reflected from to from the

surface at , the integral is over all points on all surfaces ,

 () is related to the intensity of light that is emitted from to .

Thus, the rendering equation states that the light from that reaches consists of

light emitted by itself and light scattered by to from all other surfaces which

themselves emit light and recursively scatter light from other surfaces. The

distinction between view-dependent rendering algorithms and view-independent

algorithms is a significant one. View-dependent algorithms discretize the view plane

to determine points at which to evaluate the illumination equation, given the

viewer’s direction, such as ray-tracing (Dingliana n.d.), (A. S. Glassner, Principles of

Digital Image Synthesis 1995). View-independent algorithms discretize the

environment and process it in order to provide enough information to evaluate the

illumination equation at any point and from any viewing direction, such as

Radiosity.

Bouknight (1970) introduced one of the first models for local illumination of a

surface. This included two terms, a diffuse term and an ambient term. The diffuse

term is based upon the Lambertian reflection model, which makes the value of the

outgoing intensity equal in every direction and proportional to the cosine of the

angle between the incoming light and the surface normal. The ambient term is

constant and approximates diffuse inter-object reflection. Gouraud (1971) extended

29

this model to calculate the shading across a curved surface approximated by a

polygonal mesh. His method calculated the outgoing intensities at the polygon

vertices and then interpolated these values across the polygon as shown in Figure

6(middle).

Prong (1975) introduced a more sophisticated interpolation scheme where the

surface normal is interpolated across a polygon and the shading calculation is

performed at every visible point, as shown in Figure 6 (right). He also introduced a

specular term. Specular reflection is when the reflection is stronger in one viewing

direction, i.e. there is a bright spot called a specular highlight. This is readily

apparent on shiny surfaces. For an ideal reflector, such as a mirror, the angle of

incidence equals the angle of specular reflection. Although this model is not

physically based, its simplicity and efficiency make it still the most commonly used

local reflection model.

Figure 6: The differences between a simple computer-generated polyhedral cone (left), with

linearly interpolated shading to give appearance of curvature (Gouraud Shading). Note Mach bands

30

at edges of faces (middle) and a more complex shading calculation, interpolating curved surface

normals (Phong Shading). This is necessary to eliminate Mach Bands (right).

A global illumination model adds to the local illumination model, the light that is

reflected from other non-light surfaces to the current surface. A global illumination

model is physically correct and produces realistic images resulting in effects such as

color bleeding and soft shadows. When measured data is used for the geometry and

surface properties of objects in a scene, the image produced should then be

theoretically indistinguishable from reality. However, global illumination algorithms

are also more computationally expensive.

Global illumination algorithms produce solutions of the rendering equation

proposed by (Kajiya 1986):

 ∫

where is the radiance leaving a surface, is the radiance emitted by the

surface, is the radiance of an incoming light ray arriving at the surface from light

sources and other surfaces, is the bi-directional reflection distribution function of

the surface, is the angle between the surface normal and the incoming light ray and

 is the differential solid angle around the incoming light ray.

The rendering equation is graphically depicted in Figure 7. In this figure is an

example of a direct light source, such as the sun or a light bulb, is an example of

an indirect light source i.e. light that is being reflected off another surface, , to

surface . The light seen by the eye () is simply the integral of the indirect and

direct light sources modulated by the reflectance function of the surface over the

hemisphere .

31

Figure 7: Graphical depiction of the rendering equation (Yee, Pattanaik and Greenberg 2001)

The problem of global illumination can be seen when you have to solve the

rendering equation for each and every point in the environment. In all but the

simplest case, there is no closed form solution for such an equation so it must be

solved using numerical techniques and therefore this implies that there can only be

an approximation of the solution (Lischinski n.d.). For this reason most global

illumination computations are approximate solutions to the rendering equation.

The two major types of graphics systems that use the global illumination model

are radiosity and ray tracing. In this work, we utilized radiosity rendering; however,

we will refer to ray-tracing in order to emphasize algorithmic differences which

guided us to our choice of radiosity.

2.1.3. Ray Tracing

Ray tracing is global illumination algorithm which calculates specular reflections

(view dependent) and results in a rendered image. Rays of light are traced from the

eye through the center of each pixel of the image plane into the scene, these are called

primary rays. When each of these rays hits a surface it spawns two child rays, one for

the reflected light and one for the refracted light. This process continues recursively

for each child ray until no object is hit, or the recursion reaches some specified

32

maximum depth. Rays are also traced to each light source from the point of

intersection. These are called shadow rays and they account for direct illumination of

the surface, as shown in Figure 8. If a shadow ray hits an object before intersecting

with the light source(s), then the point under consideration is in shadow. Otherwise,

there must be clear path from the point of intersection of the primary ray to the light

source and thus a local illumination model can be applied to calculate the

contribution of the light source(s) to that surface point.

The simple ray tracing method outlined above has several problems. Due to the

recursion involved and the possibly large number of rays that may be cast, the

procedure is inherently expensive. Diffuse interaction is not modeled, nor is specular

interaction, other than that by perfect mirrors and filters. Surfaces receiving no direct

illumination appear black. In order to overcome this, an indirect illumination term,

referred to as ambient light, is accounted for by a constant ambient term, which is

usually assigned an arbitrary value (Glassner 1989). Shadows are hard-edged and the

method is very prone to aliasing. The result of ray tracing is a single image rendered

for a particular position of the viewing plane, resulting in a view –dependent

technique.

In ray tracing each ray must be tested for intersection with every object in the

scene. Thus, for a scene of significant complexity, the method rapidly becomes

impracticable. Several acceleration techniques have been developed, which may be

broadly categorized into two approaches: reducing the number of rays and reducing

the number of intersection tests. Hall and Greenberg noted that the intensity of each

ray is reduced by each surface it hits, thus the number of rays should be stopped

before any unnecessary recursion to a great depth occurs (Hall and Greenberg 1983).

Another approach, which attempts to minimize the number of ray object

intersections, is spatial subdivision. This method encloses a scene in a cube that is

then partitioned into discrete regions, each of which contains a subset of the objects

in the scene. Each region may then be recursively subdivided until each sub-region

(voxel or cell) contains no more than a preset maximum number of objects.

33

Several methods for subdividing space exist. (A. S. Glassner, Space Subdivision

for Fast Ray Tracing, Vol.4, No. 10 1984) proposes the use of an octree, e.g. a structure

where the space is bisected in each dimension, resulting in eight child regions. This

subdivision is repeated for each child region until the maximum tree depth is

reached, or a region contains less than a certain number of objects. Using such a

framework allows for spatial coherence, i.e. the theory that similar objects in a scene

affect neighboring pixels. Rays are traced through individual voxels, with

intersection tests performed only for the objects contained within, rather than for all

the objects in the scene. The ray is then processed through the voxels by determining

the entry and exit points for each voxel traversed by the ray until an object is

intersected or the scene boundary is reached.

Figure 8: Ray Tracing

Ray tracing was not employed in this work because of the extreme computational

demand of this method when real time scenes are produced. In order to achieve

interactive frame rates, a view independent rendering framework is needed. Recent

research explores methods for real time ray tracing (Mortensen, et al. 2008).

2.1.4. Radiosity

34

Radiosity is a global illumination algorithm. It is used in 3D computer graphics

rendering. It is a solution of the rendering equation for scenes with purely diffuse

surfaces using the finite element method. Contrasting Monte Carlo algorithms (i.e.

path tracing) which handle all types of light paths, usual radiosity methods only take

into account paths which leave a light source and are reflected diffusely a number of

times (possibly zero) before hitting the eye. Such paths are represented as "LD*E".

Calculations made with radiosity do not depend on the viewpoint. That makes

radiosity calculations useful for all viewpoints but also increases computational

complexity.

Initially radiosity methods were developed in about 1950 in the engineering field

of heat transfer. Later they were refined for application to the problem of rendering

computer graphics in 1984 by researchers at Cornell University (Goral, et al. 1984).

The heat transfer theory describes radiation as the transfer of energy from a surface

when that surface has been thermally excited. This encompasses both surfaces that

are basic emitters of energy, as with light sources and surfaces that receive energy

from other surfaces and thus have energy to transfer. The thermal radiation theory

can be used to describe the transfer of many kinds of energy between surfaces,

including light energy.

As in thermal heat transfer, the basic radiosity method for computer image

generation makes the assumption that surfaces are diffuse emitters and reflectors of

energy, emitting and reflecting energy uniformly over their entire area. Thus, the

radiosity of a surface is the rate at which energy leaves that surface (energy per unit

time per unit area). This includes the energy emitted by the surface as well as the

energy reflected from other surfaces in the scene. Light sources in the scene are

treated as objects that have self emittance.

35

Figure 9: Radiosity patches (McNamara 2000)

The surfaces of the scene to be rendered are each divided up into one or more

smaller surfaces (patches) (Figure 9). A form factor is computed for each pair of

patches. Form factors are coefficients describing how well the patches can see each

other. Each form factor represents the proportion of light leaving one patch (patch i)

that will arrive at the other (patch j) (Siegel and Howell 1992). Patches that are far

away from each other, or oriented at oblique angles relative to one another, will have

smaller form factors. If other patches are in the way, the form factor will be reduced

or zero, depending on whether the occlusion is partial or total. Thus the radiosity

equation is:

 ∑

Where:

 = Radiosity of patch x

 = Emissivity of patch x

 = Reflectivity of patch x

36

 = Form factor of patch y relative to patch x

The reciprocity relationship of form factor (Siegel and Howell 1992) states:

Where and are the areas of patch j and i respectively, as shown in Figure 10.

Figure 10: Relationship between two patches (Katedros n.d.)

As the environment is closed, the emittance functions, reflectivity values and

form factors form a system of simultaneous equations that can be solved to find the

radiosity of each patch. The radiosity is then interpolated across each of the patches

and finally the image can then be rendered. The equation is monochromatic, so color

radiosity rendering requires calculation for each of the required colors.

The basic form factor equation is difficult even for simple surfaces. The number

of calculations to compute the matrix solution scales according to n3, where n is the

number of patches. This becomes prohibitive for realistically large values of n.

Nusselt (1928) developed a geometric analog that allows the simple and accurate

calculation of the form factor between a surface and a point on a second surface. The

Nusselt Analog involves placing a hemispherical projection body, with unit radius,

37

at a point on the surface. The second surface - - is spherically projected onto the

projection body and then cylindrically projected onto the base of the hemisphere. The

form factor then may be approximated by the area projected on the base of the

hemisphere divided by the area of the base of the hemisphere, as shown in Figure 11.

Figure 11: Nusselt’s analog. The form factor from the differential area to element is

proportional to the area of the double projection onto the base of the hemisphere (Nusselt 1928).

Cohen and Greenberg (1985) proposed that the form factor between each pair of

patches could also be calculated by placing a hemi-cube on each patch and projecting

the environment on to it as defined by the Nusselt Analog. Each face of the hemicube

is subdivided into a set of small, usually square (“discrete”) areas, each of which has

a precomputed delta form factor value, as shown in Figure 12. When a surface is

projected onto the hemicube, the sum of the delta form factor values of the discrete

areas of the hemicube faces which are covered by the projection of the surface is the

form factor between the point on the first surface (about which the cube is placed)

and the second surface (the one which was projected). The speed and accuracy of this

method of form factor calculation can be affected by changing the size and number of

discrete areas on the faces of the hemicube.

38

Figure 12: The hemicube (Langbein n.d.)

Radiosity assumes that an equilibrium solution can be reached; that all of the

energy in an environment is accounted for, through absorption and reflection. It

should be noted that because of the assumption of only perfectly diffuse surfaces, the

basic radiosity method is viewpoint independent, i.e. the solution will be the same

regardless of the viewpoint of the image. The diffuse transfer of light energy between

surfaces is unaffected by the position of the camera. This means that as long as the

relative position of all objects and light sources remains unchanged, the radiosity

values need not be recomputed for each frame. This has made the radiosity method

particularly popular in architectural simulation, targeting high-quality walkthroughs

of static environments. Figure 13 demonstrates the difference in image quality that

can be achieved with radiosity compared to ray tracing.

However, there are several problems with using the hemicube radiosity method.

It can only model diffuse reflection in a closed environment; it is limited to polygonal

environments; it is prone to aliasing and has excessive time and memory

requirements. Also, only after all the radiosities have been computed in the scene is

the resultant image displayed. There is a form factor between each pair of patches, so

in an environment with N patches, N2 form factors must be stored. For a scene of

moderate complexity this will require a vast amount of storage and as the form factor

calculation is non-trivial the time taken to produce a solution can be extensive. This

means that the user is unable to alter any of the parameters of the environment until

39

the entire computation is complete. Then once the alteration is made, the user must

once again wait until the full solution is recomputed.

The visual quality of the rendered images in radiosity also strongly depends on

the method employed for discretizing the scene into patches. A too fine discretization

may give rise to artifacts, while with a coarse discretization, areas with high radiosity

gradients may appear (Gibson and Hubbold 1997).To overcome these problems, the

discretization should adapt to the scene. That is, the interaction between two patches

should account for the distance between them as well as their surface area. In other

words, surfaces that are far away are discretized less finely than surfaces that are

nearby. These aspects are considered by the adaptive discretization method

proposed by (Languénou , Bouatouch and Tellier 1992). It performs both

discretization and system resolution at each iteration of the shooting process, which

allows for interactivity. (Gibson and Hubbold 1997) demonstrated another solution

for this problem by presenting an oracle that stops patch refinement once the

difference between successive levels of elements becomes perceptually unnoticeable.

Progressive refinement radiosity (Cohen, Chen, et al. 2004) works by not

attempting to solve the entire system simultaneously. Instead, the method proceeds

in a number of passes and the result converges towards the correct solution. At each

pass, the patch with the greatest unshot radiosity is selected and this energy is

propagated to all other patches in the environment. This is repeated until the total

unshot radiosity falls below some threshold. Progressive refinement radiosity

generally yields a good approximation to the full solution in far less time and with

lesser storage requirements, as the form factors do not all need to be stored

throughout. Many other extensions to radiosity have been developed and a very

comprehensive bibliography of these techniques can be found in (Ashdown 2004).

40

Figure 13: Differences between ray tracing (middle) and radiosity (right hand image).

Figure 14: Difference between standard direct illumination and radiosity

For the creation of the 3d scene for the VE application which was utilized for this

thesis and is described in 0 we used the radiosity rendering.

2.1.5. Texture mapping

Texture mapping is a technique used in order to add detail, surface texture or to

colorize a 3d model or graphic generated by a computer. Texture mapping is used

for creating 3d objects for objects, avatars, rooms for virtual worlds. The size of

texture map varies. It is recommended that pixel dimensions are a combination from

powers of 2 (i.e. 32, 64, 128, 256 and 512 etc.)

41

Figure 15: 1) 3D model without textures, 2) 3D model with textures.

 A texture map is applied (mapped) to the surface of a shape or polygon

(Radoff 2008). This process is analogous to applying patterned paper to a plain white

box. Every vertex in a polygon is assigned a texture coordinate (which in the 2d case

is also known as a UV coordinate) either via explicit assignment or by procedural

definition. Image sampling locations are then interpolated across the face of a

polygon to produce a visual result that seems to have more richness than could

otherwise be achieved with a limited number of polygons. Multitexturing is the use

of more than one texture at a time on a polygon. For instance, a light map texture

may be used to light a surface as an alternative to recalculating that lighting every

time the surface is rendered. Another multitexture technique is bump mapping,

which allows a texture to directly control the facing direction of a surface for the

purposes of its lighting calculations; it can give a very good appearance of a complex

surface, such as tree bark or rough concrete that takes on lighting detail in addition to

the usual detailed coloring. Bump mapping has become popular in recent video

games as graphics hardware has become powerful enough to accommodate it in real-

time.

 Texture filtering directs the way the resulting pixels on the screen are

calculated from the texels (texture pixels) . The nearest-neighbor interpolation is the

fastest method is to use, but bilinear interpolation or trilinear

interpolations between mipmaps are two commonly used alternatives which

42

reduce aliasing or jaggies. In the event of a texture coordinate being outside the

texture, it is either clamped or wrapped.

Figure 16: Examples of multitexturing.1) Untextured sphere, 2) Texture and bump maps,

3) Texture map only, 4) Opacity and texture maps.

The essential map types are described below:

Color (or Diffuse) Maps

As the name would imply, the first and most obvious use for a texture map is to

add color or texture to the surface of a model. This could be as simple as applying a

wood grain texture to a table surface, or as complex as a color map for an entire game

character (including armor and accessories). However, the term texture map, as it's

often used is a bit of a misnomer—surface maps play a huge role in computer

graphics beyond just color and texture. In a production setting, a character or

environment's color map is usually just one of three maps that will be used for

almost every single 3D model.

Specular Map

Also known as; gloss map. A specular map tells the software which parts of a

model should be shiny or glossy, and also the magnitude of the glossiness. Specular

maps are named for the fact that shiny surfaces, like metals, ceramics, and some

plastics show a strong specular highlight (a direct reflection from a strong light

source). Specular highlights are the white reflection on the rim of a coffee mug.

Another common example of specular reflection is the tiny white glimmer in

43

someone's eye, just above the pupil.

A specular map is typically a grayscale image, and is absolutely essential for surfaces

that aren't uniformly glossy. An armored vehicle, for example, requires a specular

map in order for scratches, dents, and imperfections in the armor to come across

convincingly. Similarly, a game character made of multiple materials would need a

specular map to convey the different levels of glossiness between the character's skin,

metal belt buckle, and clothing material.

Bump, Displacement, or Normal Map

A bit more complex than either of the two previous examples, bump maps are a

form of texture map that can help give a more realistic indication of bumps or

depressions on the surface of a model.

To increase the impression of realism, a bump or normal map would be added to

more accurately recreate the coarse, grainy surface of, for instance, a brick, and

heighten the illusion that the cracks between bricks are actually receding in space. Of

course, it would be possible to achieve the same effect by modeling each and every

brick by hand, but a normal mapped plane is much more computationally efficient.

Normal mapping is a significant process incorporated in the development of modern

computer games.

Bump, displacement, and normal maps are a discussion in their own right, and

are absolutely essential for achieving photo-realism in a render.

44

Figure 17: Taurus pt. 92 textured 3d model. Rendered in marmoset engine (real time game

engine).

Figure 18: Diffuse, normal and specular map of the above 3d model.

Aside from these three map types, there are one or two others you'll see relatively

often:

Reflection Map

45

It the software which portions of the 3D model should be reflective. If a model's

entire surface is reflective or if the level of reflectivity is uniform a reflection map is

usually omitted. Reflection maps are grayscale images, with black indicating 0%

reflectivity and pure white indicating a 100% reflective surface.

Figure 19: Mesh without any texture (left image). Reflection image projected onto the object

(right image).

Transparency (or Opacity) Map

Exactly like a reflection map, except it tells the software which portions of the

model should be transparent. A common use for a transparency map would be a

surface that would otherwise be very difficult, or too computationally expensive to

duplicate, like a chain link fence. Using a transparency, instead of modeling the links

individually can be quite convincing as long as the model doesn't feature too close to

the foreground, and uses far fewer polygons.

46

Figure 20: Mesh with diffuse map only (left image). Opacity texture applied on the mesh (right

image).

 Texture maps are crucial for the design of the virtual scene. They facilitate the

reduction of the polygonal complexity of the 3d models used, which in any other

way would hinder rendering performance. In particular, the normal maps of some

low polygon count models used in our scene were acquired from their high polygon

versions to keep all the fine details of the models, thus maintaining an acceptable

lighting quality with low computational cost. An example of this method can be seen

on the following picture. Another use of texture maps, are opacity maps which allow

for the otherwise opaque window in our scene to become transparent.

Figure 21: Normal mapping used to re-detail simplified meshes.

UVW mapping

UVW mapping is a mathematical technique for coordinate mapping. In computer

graphics, it is most commonly a R2 to R3 map, suitable for converting a 2D image (a

47

texture) to a three dimensional object of a given topology. "UVW", like the standard

Cartesian coordinate system, has three dimensions; the third dimension allows

texture maps to wrap in complex ways onto irregular surfaces. Each point in a UVW

map corresponds to a point on the surface of the object. The graphic designer or

programmer generates the specific mathematical function to implement the map, so

that points on the texture are assigned to (XYZ) points on the target surface.

Generally speaking, the more orderly the unwrapped polygons are, the easier it is for

the texture artist to paint features onto the texture. Once the texture is finished, all

that has to be done is to wrap the UVW map back onto the object, projecting the

texture in a way that is far more flexible and advanced, preventing graphic artifacts

that accompany more simplistic texture mappings such as planar projection. For this

reason, UVW mapping is commonly used to texture map non-platonic solids, non-

geometric primitives, and other irregularly-shaped objects, such as characters and

furniture.

UVW mapping was used for mapping the illuminated textures for the scene

created for the VE application utilized in this thesis. Details about creation of the

scene geometry, creation of the illuminated textures and the mapping of textures to

the geometry are discussed in 0.

2.1.6. OpenGL

OpenGL (Open Graphics Library) is a standard specification developed by

Silicon Graphics Inc. (SGI) in 1992 and managed by the non-profit technology

consortium Khronos Group; defining a cross-language, cross-platform API used in

authoring 2D and 3D computer graphics applications. It is widely used in CAD,

virtual reality, scientific visualization, information visualization, flight simulation,

and video games. The interface consists of over 250 different function calls which can

be used to draw from simple primitives to complex three-dimensional scenes.

Two main purposes served by OpenGL are:

48

 Presenting a single, uniform interface to hide complexities of interfacing with

different 3D accelerators

 Requiring support of the full OpenGL feature set for any implementation

(with software emulation if needed) to hide differing capabilities of hardware

platforms.

OpenGL's basic operation is converting primitives such as points, lines and

polygons, into pixels using a graphics pipeline known as the OpenGL state machine.

Most OpenGL commands either issue primitives to the graphics pipeline, or

configure how these primitives are processed by the pipeline. Prior to OpenGL 2.0,

each stage of the pipeline performed a static function and was configurable only

within tight limits. OpenGL 2.0 offers several fully programmable stages using

OpenGL Shading Language (GLSL).

OpenGL is a low-level, procedural API, requiring the dictation of each of the

exact steps to render a scene, in contrast with descriptive (aka scene graph or

retained mode) APIs, where a programmer only the description of is needed and the

library manages the rendering details. OpenGL's low-level design requires good

knowledge of the graphics pipeline by the programmer, but also gives a certain

amount of freedom to novel rendering algorithms implementation.

OpenGL has historically influenced the development of 3D accelerators,

promoting a base level of functionality common now in consumer-level hardware:

 Rasterized points, lines and polygons as basic primitives

 A transform and lighting pipeline

 Texture mapping

 Alpha blending

 Z-buffering

A brief description of the process in the graphics pipeline (Figure 22) could be:

49

1. Evaluation, of the polynomial functions which define certain inputs, like NURBS

(Non-uniform rational basis spline) surfaces, approximating curves and the

surface geometry.

2. Transforming and lighting of vertex operations, depending on their material.

Also clipping of non-visible parts of the scene in order to reduce the viewing

volume.

3. Rasterization or conversion of the components described above into pixels. The

polygons are represented by the appropriate color by means of interpolation

algorithms.

4. Per-fragment operations, i.e. updating values depending on incoming and

previously stored depth values, or color combinations, etc.

5. Insertion of fragments into the frame buffer.

Figure 22: Simplified version of the OpenGL Graphics Pipeline Process

Functionality far above this baseline is provided by many modern 3D

accelerators, but these new features are usually not radical revisions of this basic

pipeline but enhancements of it.

OpenGL it provides only rendering functions (output-only). The core API has no

concept of windowing systems, audio, printing to the screen or input devices,

allowing the code that does the rendering to be completely independent of the

50

operating system it is running on making OpenGL capable for cross-platform

development. However, some integration with the native windowing system is

required to allow clean interaction with the host system and performed through add-

on APIs.

GLUT – The OpenGL Utility Toolkit

The OpenGL Utility Toolkit (GLUT) is a utility library for OpenGL programs. It

primarily performs system-level communication with the host operating system.

Functions performed include window definition, window control, and monitoring of

keyboard and mouse input. Routines for drawing a number of geometric primitives

(both in solid and wireframe mode) are also provided, including cubes, spheres, and

the Utah teapot. GLUT has some limited support for creating pop-up menus as well.

The two intentions of GLUT are to allow the creation of portable code between

different operating systems (GLUT is cross-platform) and to assist learning of

OpenGL. OpenGL programming while using GLUT usually takes only a few lines of

code and does not require knowledge of operating system–specific windowing APIs.

2.1.7. Direct3D

Direct3D is part of Microsoft's DirectX application programming interface (API).

Direct3D is available for Microsoft Windows operating systems (Windows 95 and

above), and for other platforms through open source software (e.g. Wine). Direct3D

is used to render three dimensional graphics in applications where performance is

important, such as games. Direct3D also allows applications to run fullscreen rather

than embedded in a window. Direct3D utilizes hardware acceleration if it is available

on the graphics card, allowing for hardware acceleration of the entire 3D rendering

pipeline or even only partial acceleration. Direct3D exposes the advanced graphics

capabilities of 3D graphics hardware, including z-buffering, spatial anti-aliasing,

alpha blending, mipmapping, atmospheric effects, and perspective-correct texture

mapping. Integration with other DirectX technologies enables Direct3D to deliver

51

such features as video mapping, hardware 3D rendering in 2D overlay planes, and

even sprites, providing the use of 2D and 3D graphics in interactive media titles.

Direct3D contains many commands for 3D rendering; however, since version 8,

Direct3D has superseded the old DirectDraw framework and is also responsible for

2D graphics rendering (Microsoft 2013). Microsoft endeavors to constantly update

Direct3D to support the latest technology available on 3D graphics cards. Direct3D

offers full vertex software emulation but no pixel software emulation for features is

available in hardware. For example, if software programmed using Direct3D requires

pixel shaders and the video card on the user's computer does not support that

feature, Direct3D will not emulate it, although it will compute and render the

polygons and textures of the 3D models, although at a usually degraded quality and

performance compared to the hardware equivalent. The API includes a Reference

Rasterizer (or REF device), which emulates a generic graphics card in software, albeit

it is too slow for most real-time 3D applications. It is typically only used for

debugging.

2.1.8. Comparison of OpenGL and Dierct3D

Direct3D and OpenGL are two competing application programming interfaces

(APIs). They can be used in applications in order to render 2D and 3D computer

graphics, utilizing hardware acceleration when available. Modern graphics

processing unit (GPUs) may implement a specific version of one or both of Direct3D

and OpenGL.

Generally, Direct3D is designed for 3D hardware interfaces virtualization.

Direct3D rives freedom to the game programmer from accommodation of the

graphics hardware. OpenGL, on the other hand, is designed to be a 3D hardware-

accelerated rendering system that can also be emulated in software. There are

functional differences in how the two APIs operate. Direct3D expects hardware

resources management from the application; OpenGL requires that the

implementation does it. This tradeoff for OpenGL decreases difficulty in developing

for the API, while at the same time increasing the complexity of creating a high-

52

performance implementation or driver. With Direct3D, hardware resources must be

managed independently by the developer; however, the implementation is simpler,

there is the flexibility that the developers allocate resources in the most efficient way

possible for their application.

Another functional difference between the APIs was the way they handled

rendering to textures until about 2005. The Direct3D method (SetRenderTarget()) is

convenient, while prior versions of OpenGL required manipulating pixel buffers (P-

buffers). This was cumbersome and risky: if the programmer's codepath was

different from that anticipated by the driver maker, the code would have fallen back

to software rendering, causing a substantial performance drop. However,

widespread support for the "frame buffer objects" extension, which provided an

OpenGL equivalent of the Direct3D method, successfully addressed this

shortcoming, and the "render target" feature of OpenGL brought OpenGL up to par

with Direct3D in this respect.

The two APIs provide nearly the same level of function outside of a few minor

functional differences. Hardware and software vendors generally respond rapidly to

changes in DirectX, while new features in OpenGL are mainly implemented first by

vendors and afterward retroactively applied to the standard.

OpenGL was originally designed for SGI workstations. It includes a number of

features, like stereo rendering and the "imaging subset", that were generally

considered of limited utility for games - although stereoscopic gaming has drawn a

lot more interest as of 2011. The API as a whole contains about 250 calls, but only a

subset of perhaps 100 are useful for game development. However, no official

gaming-specific subset was ever defined. MiniGL, released by 3Dfx as a stopgap

measure to support glQuake, might have served as a starting point, but additional

features like stencil were soon adopted by games, and support for the entire OpenGL

standard continued. Today, workstations and consumer machines use the same

architectures and operating systems, and so modern incarnations of the OpenGL

53

standard still include these features, although only special workstation-class video

cards accelerate them.

One of the most heavily disputed differences between the two APIs is the

OpenGL extension mechanism. This mechanism gives the ability to any driver to

advertise its own extensions to the API and introducing new functions such as blend

modes, new ways to transfer data to GPUs, or different texture wrapping

parameters. This allows new functions to be exposed quickly, but can lead to

confusion if different vendors implement similar extensions with different APIs.

Many of these extensions are periodically standardized by the OpenGL Architecture

Review Board (ARB), and some are made a core part of future OpenGL revisions.

OpenGL has always seen more use in the professional production and display of

graphics, such as in computer animated films and scientific visualization graphics

market than DirectX, while DirectX is used mostly for computer games. Currently

both OpenGL and DirectX have a large enough overlap in functionality that either

could be used for most common purposes, with the operating system itself often

being the primary criterion dictating which is used, with DirectX the common choice

on Windows, and OpenGL being used on nearly everything else. Some esoteric

applications still divide the applicability of the two APIs: doing accelerated 3D across

a network connection is only directly supported by OpenGL with GLX, for example.

Presiously many professional graphics cards only supported OpenGL, now

virtually all professional cards which work on the Windows platform will also

support Direct3D. This has changed in the professional graphics market from largely

Unix-based hardware like SGIs and Suns to less expensive PC-based systems,

leading to the growth of Windows in this market segment, while at the same time

providing a new market for OpenGL software in Unix-based consumer systems

running Linux or Apple OS X.

The main reason for OpenGL's dominance in the professional market was it’s

performance. Many professional graphics applications were originally written in IRIS

GL for high-end SGI workstations, which were far more capable, both graphically

54

and in raw CPU power, than the PCs of the time. Later, many of these were ported to

OpenGL, even as the personal computer was evolving into a system powerful

enough to run some professional graphics applications. Users were able to run Maya,

for example, the successor to Alias on SGIs or Windows-based personal computers

(and today on Linux, Mac OS X, and Windows). Price competition eventually broke

SGI's dominance in the market, but the established base of OpenGL software

engineers and the broadening user base for OpenGL in Apple, Linux, and other

operating systems, have resulted in a market where both DirectX and OpenGL are

viable, widespread APIs.

The other reason for OpenGL's early advantage was marketing and design.

DirectX is a set of APIs that were not marketed towards professional graphics

applications. Indeed, they were not even designed with those applications in mind.

DirectX was an API designed for low-level, high-performance access to broadly

available, lower-performance, consumer-priced graphics hardware for the purpose of

game development. OpenGL is a much more general purpose 3D API, targeting a

full range of graphics hardware from low-end commodity graphics cards up to

professional and scientific graphics visualization well out of the range of the average

consumer, and providing features that are not necessarily exclusive towards any

particular kind of user.

Gaming developers typically haven't demanded as wide an API as professional

graphics system developers. Many games don't need overlay planes, stencils, and so

on, although this hasn't prevented some game developers from using them when

available. In particular, game designers are rarely interested in the pixel invariance

demanded in certain parts of the OpenGL standards, which are conversely highly

useful to film and computer-aided modeling.

As described in 0 for the development of the VE application used for this thesis

we used the XVR VE application framework. The he integrated 3D engine of the XVR

framework built on top of OpenGL, allows to manage the visual output not only on a

55

standard graphical window (either on the web or hosted locally), but also on more

advanced devices such as Stereo Projection Systems and Head Mounted Displays.

2.2. Virtual Reality Systems

2.2.1. Mainstream Virtual Reality

Virtual reality (VR) is a term that applies to computer-simulated environments

that can simulate physical presence in places in the real world, as well as in

imaginary worlds. Most current virtual reality environments are primarily visual

experiences, displayed either on a computer screen or through special stereoscopic

displays, but some simulations include additional sensory information, such as

sound through speakers or headphones. Some advanced, haptic systems now

include tactile information, generally known as force-feedback, in medical and

gaming applications. Furthermore, virtual reality covers remote communication

environments which provide virtual presence of users with the concepts of

telepresence and telexistence or a virtual artifact either through the use of standard

input devices such as a keyboard and mouse, or through multimodal devices such as

a wired glove, head trackers, and omnidirectional treadmills. The simulated

environment can be similar to the real world in order to create a lifelike experience,

for example, in simulations for pilot or combat training, or it can differ significantly

from reality, such as in VR games. In practice, it is currently very difficult create a

high-fidelity virtual reality experience, due largely to technical limitations on

processing power, image resolution, and communication bandwidth; however, the

technology's proponents hope that such limitations will be overcome as processor,

imaging, and data communication technologies become more powerful and cost-

effective over time.

Virtual reality is often used to describe a wide variety of applications commonly

associated with immersive, highly visual, 3D environments. The development of

CAD software, graphics hardware acceleration, head mounted displays (HMDs),

database gloves, and miniaturization have helped popularize the notion. In the book

The Metaphysics of Virtual Reality (Heim 1993), seven different concepts of virtual

56

reality are identified: simulation, interaction, artificiality, immersion, telepresence,

full-body immersion, and network communication. People often identify VR with

head mounted displays and data suits.

2.2.2. Immersive VR Systems

Immersive systems are high tech, three dimensional display systems that allow

users to be "immersed" into a displayed image. In an immersive environment,

images are often displayed in stereoscopic 3D. Tracking systems can also be utilized,

enabling a user to move all around these 3D images and even interact with them.

The result is an experience that very much looks and feels like it is "real."

(Björk and Holopainen 2004), in Patterns in Game Design, divide immersion into

four categories: sensory-motoric immersion, cognitive immersion, emotional

immersion and spatial immersion. The last one tends to be the most suitable for the

purposes of this thesis. Spatial immersion occurs when a user feels the simulated

world is perceptually convincing. The user feels that he or she is really "there" and

that a simulated world looks and feels "real".

Head-Mounted Displays (HMDs)

A head-mounted display (Figure 23) is a display device, attached on the head or

as part of a helmet . A head-mounted-display can have either one (monocular HMD)

or two (binocular HMD) small displays with lenses and semi-transparent mirrors

embedded in a helmet, eye-glasses (also known as data glasses) or visor. The display

units are miniaturized and may include CRT, LCDs, liquid crystal on silicon (LCos),

or OLED. Sometimes multiple micro-displays are employed in order to increase total

resolution and field of view.

57

Figure 23: A binocular HMD

Some of the main characteristics of Head-Mounted Displays are:

The main characteristics of HMDs are (Cakmakci and Rolland 2006):

Ability to show stereoscopic imagery

A binocular HMD has the ability to display separate images to each eye, so it can

be used to display stereoscopic imagery. It should be borne in mind that so-called

'Optical Infinity' is generally taken by flight surgeons and display experts as about 9

meters. This is the distance at which, given the average human eye rangefinder

"baseline" (distance between the eyes or Inter-Pupillary Distance (IPD)) of between 6

and 8 cm, the angle of an object at that distance becomes essentially the same from

each eye. At smaller ranges, the perspective from each eye is significantly different

and the expense of generating two different visual channels through the Computer-

Generated Imagery (CGI) system becomes worthwhile.

Inter-Pupillary Distance (IPD)

The distance between the two eyes. It is measured at the pupils. It is important in

designing Head-Mounted Displays.

Field of view (FOV)

58

Most HMDs offer considerably less than humans FOV which is around 180°.

Typically, a greater field of view results in a greater sense of immersion and better

situational awareness. Consumer-level HMDs typically offer a FOV of about 30-40°

while professional HMDs offer a field of view of 60° to 150°.

Resolution

HMDs usually mention either the total number of pixels or the number of pixels

per degree. Listing the total number of pixels (e.g. 1600×1200 pixels per eye) is

borrowed from how the specifications of computer monitors are presented.

However, the pixel density, usually specified in pixels per degree or in arcminutes

per pixel, is also used to determine visual acuity. 60 pixels/degree (1 arcmin/pixel) is

usually referred to as eye limiting resolution, above which increased resolution is not

noticed by people with normal vision. HMDs typically offer 10 to 20 pixels/degree,

though advances in micro-displays help increase this number.

Binocular overlap

Binocular overlap is the visible area that is mutual to both eyes. Binocular overlap

is the basis for the sense of depth and stereo, allowing humans to sense which objects

are near and which objects are far. Humans have a binocular overlap of about 100°

(50° to the left of the nose and 50° to the right). The larger the binocular overlap

offered by an HMD, the greater the sense of stereo. Overlap is sometimes specified in

degrees (e.g. 74°) or as a percentage indicating how much of the visual field of each

eye is common to the other eye.

Distant focus (“Collimation”)

Optical techniques may be used to present the images at a distant focus, which

seems to improve the realism of images that in the real world would be at a distance.

A key application for HMDs is training and simulation, allowing to virtually

placing a trainee in a situation that is either too expensive or too dangerous to

replicate in a real-life. Training with HMDs covers a wide range of applications from

59

driving, welding and spray painting, flight and vehicle simulators, dismounted

soldier training, medical procedure training and more.

Depth perception inside an HMD requires different images for the left and right

eyes. There are multiple ways to provide these separate images:

 Use dual video inputs, thereby providing a completely separate video signal

to each eye. The advantage of dual video inputs is that it provides the

maximum resolution for each image and the maximum frame rate for each

eye. The disadvantage of dual video inputs is that it requires separate video

outputs and cables from the device generating the content.

 Time-based multiplexing: Techniques such as frame sequential combine two

separate video signals into one signal by alternating the left and right images

in successive frames. Time-based multiplexing preserves the full resolution

per each image, but reduces the frame rate by half. For example, if the signal

is presented at 60 Hz, each eye is receiving just 30 Hz updates. This may

become an issue with accurately presenting fast-moving images.

 Side by side or top/bottom multiplexing: This method allocates half of the

image to the left eye and the other half of the image to the right eye. Side-by-

side and top/bottom multiplexing provide full-rate updates to each eye, but

reduce the resolution presented to each eye. Many 3D television broadcasts

chose to provide side-by-side 3D which saves the need to allocate extra

transmission bandwidth and is more suitable to fast-paced sports action

relative to time-based multiplexing techniques.

Not all HMDs provide depth perception. Some lower-end modules are

essentially bi-ocular devices where both eyes are presented with the same image. 3D

video players sometimes allow maximum compatibility with HMDs by providing

the user with a choice of the 3D format to be used.

Head-mounted displays may also be used with tracking sensors that allow

changes of angle and orientation to be recorded. When such data is available in the

system computer, it can be used to generate the appropriate computer-generated

60

imagery (CGI) for the angle-of-look at the particular time. This allows the user to

"look around" a virtual reality environment simply by moving the head without the

need for a separate controller to change the angle of the imagery. In radio-based

systems (compared to wires), the wearer may move about within the tracking limits

of the system.

Our HMD used in the experiments for this thesis was Kaiser Electro-optics Pro-

View 50 Head Mounted Display with a Field-of-View comprising 50 degrees

diagonal (Figure 24). The HMD was capable of displaying two separate images with

100% overlapping at XGA resolution (1024H x 768V) with full color and 60Hz

Vertical scan rate. The projection field of view was 50° diagonal; 30° (V) x 40° (H) and

the Inter-Pupillary distance was adjustable from 55 to75 cm.

Figure 24: An HMD of the type used in this research, with no periphery shielding

Stereoscopy

Stereoscopy (also called stereoscopic or 3-D imaging) is a technique for creating

or enhancing the illusion of depth in an image by presenting two offset images

61

separately to the left and right eye of the viewer. Both of these 2-D offset images are

then combined in the brain to give the perception of 3d depth. Three strategies have

been used to accomplish this: have the viewer wear eyeglasses to combine separate

images from two offset sources, have the viewer wear eyeglasses to filter offset

images from a single source separated to each eye, or have the light source split the

images directionally into the viewer's eyes (no glasses required; known as

autostereoscopy).

Stereoscopy creates the illusion of three-dimensional depth from images on a

two-dimensional plane. Human vision uses several cues to determine relative depths

in a perceived scene. Some of these cues are:

 Stereopsis (horizontal disparity of human eyes)

This is the difference in the images projected onto the back the eye (and

then onto the visual cortex) because the eyes are separated horizontally by the

interocular distance.

 Accommodation of the eyeball (eyeball focus)

This is the muscle tension needed to change the focal length of the eye

lens in order to focus at a particular depth.

 Convergence

This is the muscle tension required to rotate each eye so that it is facing

the focal point.

 Occlusion of one object by another

An object that blocks another is assumed to be in the foreground.

 Subtended visual angle of an object of known size

The closer a viewed object is, the more visual angle subtends at the eye.

 Linear perspective (convergence of parallel edges)

62

Objects get smaller the further away they are and parallel lines converge

in distance.

 Vertical position

Objects higher in the scene generally tend to be perceived as further away.

 Lighting shadows:

Closer objects are brighter, distant ones dimmer. There a number of other

more subtle cues implied by lighting, the way a curved surface reflects light

suggests the rate of curvature, shadows are a form of occlusion.

 Relative motion:

Objects further away seem to move more slowly than objects in the

foreground.

 Change in size of textured pattern detail:

Close objects appear in more detail, distant objects less.

 Atmospheric haze:

Distant objects get blurred by the atmosphere.

 Change in size of textured pattern detail:

Close objects appear in more detail, distant objects less.

All the above cues, with the exception of the first three, are present in traditional

two-dimensional images such as paintings, photographs, and television. Stereoscopy

is the enhancement of the illusion of depth in a photograph, movie, or other two-

dimensional image by presenting a slightly different image to each eye, and thereby

adding the first of these cues (stereopsis) as well. It is important to note that the

second cue is still not satisfied and therefore the illusion of depth is incomplete.

Stereopsis appears to be processed in the visual cortex in binocular cells having

receptive fields in different horizontal positions in the two eyes. Such a cell is active

63

only when its preferred stimulus is in the correct position in the left eye and in the

correct position in the right eye, making it a disparity detector.

When a person stares at an object, the two eyes converge so that the object

appears at the center of the retina in both eyes. Other objects around the main object

appear shifted in relation to the main object. In the following example (Figure 25),

whereas the main object (dolphin) remains in the center of the two images in the two

eyes, the cube is shifted to the right in the left eye's image and is shifted to the left

when in the right eye's image (Figure 26).

Figure 25: The two eyes converge on the object of attention

Figure 26: The cube is shifted to the right in left eye's image (left) and to the left on right eye's

image (right)

64

Figure 27: We see a single, Cyclopean, image from the two eyes' images

Figure 28: The brain gives each point in the Cyclopean image a depth value, represented here by

a grayscale depth map

Because each eye is in a different horizontal position, each has a slightly different

perspective on a scene yielding different retinal images. Normally two images are

not observed, but rather a single view of the scene, a phenomenon known as

singleness of vision. Nevertheless, stereopsis is possible with double vision. This

form of stereopsis was called qualitative stereopsis (Ogle 1950). If the images are very

different (such as by going cross-eyed, or by presenting different images in a

stereoscope) then one image at a time may be seen, a phenomenon known as

binocular rivalry.

While stereopsis is considered the dominant depth cue in most people, if the

other cues are presented incorrectly they can have a strong detrimental effect. In

order to render a stereo pair one needs to create two images, one for each eye in such

65

a way that when independently viewed they will present an acceptable image to the

visual cortex and it will fuse the images and extract the depth information as it does

in normal viewing. If stereo pairs are created with a conflict of depth cues then one of

a number of things may occur: one cue may become dominant and it may not be the

correct/intended one, the depth perception will be exaggerated or reduced, the image

will be uncomfortable to watch, the stereo pairs may not fuse at all and the viewer

will see two separate images (Figure 29).

Figure 29: Different points of convergence and accommodation in stereopsis.

Stereoscopic Rendering

There are a couple of methods of setting up a virtual camera and rendering two

stereo pairs, many methods are strictly incorrect since they introduce vertical

parallax. An example of this is called the "Toe-in" method, while incorrect it is still

often used because the correct "off axis" method requires features not always

supported by rendering packages. Toe-in is usually identical to methods that involve

a rotation of the scene. The toe-in method is still popular for the lower cost filming

because offset cameras are uncommon and it is easier than using parallel cameras

which requires a subsequent trimming of the stereo pairs.

On-axis (Incorrect)

66

In this projection the camera has a fixed and symmetric aperture; each camera is

pointed at a single focal point. Images created using the "on-axis" method will still

appear stereoscopic but the vertical parallax it introduces will cause increased

discomfort levels. The introduced vertical parallax increases out from the center of

the projection plane and is more important as the camera aperture increases (Figure

30).

Figure 30: On-axis stereo rendering (incorrect).

Off-axis (Correct)

This is the correct way to create stereo pairs. It introduces no vertical parallax and

is therefore creates the less stressful stereo pairs. Note that it requires a non-

symmetric camera frustum (Figure 31); this is supported by some rendering

packages, in particular, OpenGL.

Objects that lie in front of the projection plane will appear to be in front of the

computer screen, objects that are behind the projection plane will appear to be "into"

the screen. It is generally easier to view stereo pairs of objects that recede into the

screen; to achieve this one would place the focal point closer to the camera than the

objects of interest. Note this doesn't lead to as dramatic an effect as objects that pop

out of the screen.

67

Figure 31: Off-axis stereo rendering (correct).

The degree of the stereo effect depends on both the distance of the camera to the

projection plane and the separation of the left and right camera. Too large a

separation can be hard to resolve and is known as hyperstereo. A good ballpark

separation of the cameras is 1/20 of the distance to the projection plane; this is

generally the maximum separation for comfortable viewing. Another constraint in

general practice is to ensure the negative parallax (projection plane behind the object)

does not exceed the eye separation.

A common measure is the parallax angle defined as (⁄)

where is the horizontal separation of a projected point between the two eyes and

 is the distance of the eye from the projection plane (Figure 32). For easy fusing by

the majority of people, the absolute value of theta should not exceed 1.5 degrees for

all points in the scene. Note is positive for points behind the scene and negative

for points in front of the screen. It is not uncommon to restrict the negative value of

theta to some value closer to zero since negative parallax is more difficult to fuse

especially when objects cut the boundary of the projection plane.

68

Figure 32: Off-axis stereo rendering equation.

Head Tracking

Head-mounted displays may also be used with tracking sensors that allow

changes of angle and orientation to be recorded. When such data is available in the

system computer, it can be used to generate the appropriate computer-generated

imagery (CGI) for the angle-of-look at the particular time. This allows the user to

"look around" a virtual reality environment simply by moving the head without the

need for a separate controller to change the angle of the imagery. In radio-based

systems (compared to wires), the wearer may move about within the tracking limits

of the system.

There are currently two types of available tracking device that may be employed

according to their capability of tracking rotational movement (3-degrees-of-freedom)

and rotational as well as translational movement (6-degrees-of-freedom).

The 3-degrees-of-freedom (3-dof) tracker allows the viewpoint to be rotated

around the x, y and z axis, which provides the ability to orient the viewing direction

left or right, up or down, or twist it laterally. When using a 3-dof tracker only

rotation is accounted for with no provision for translating the viewpoint through the

environment except on pre-defined paths, so the application of such devices will

typically require the subject to remain seated in a static location.

69

By comparison, the 6-degrees-of-freedom (6-dof) devices track not only the

rotational position of the head, but also the physical location in space. 6-dof devices

therefore allow the environment to not only be scrutinized by rotating the head, but

also navigated by physically walking or moving around. It should be noted however

that since the HMD will obscure the users normal view of the physical environment

and because of the attached cabling, this type of interaction with the environment

must be carefully thought out and does not lend itself to every application.

A common set of metrics is to evaluate the performance of the of head trackers

are

 Accuracy

This is a measure of the error in the position and orientation reported by the

tracker.

 Resolution

This is the smallest change in position and orientation that can be detected by

the tracker.

 Update rate

 This is the rate at which position and orientation measurements are reported

by the tracker to the host computer.

 Latency (also known as Lag)

This is the delay between a change in position and orientation and the report

of the change to the host computer.

 Working volume

This is the volume within which the tracker can measure position and

orientation with its specified accuracy and resolution.

A good position tracker should have high accuracy, ne resolution and high

update rate. Its latency should be low and its working volume should be large.

Ideally, it should not need any specialized environment for operation.

70

In addition, the parts of the tracker that need to be worn should be small and

light in weight, to ensure user comfort.

2.3. Effects of Latency in Virtual Environment Users

End-to-end latency in a Virtual Environment (VE) is defined as the time lag

between a user’s action in the VE and the system’s response to this action. VE lag

comprises of four different types

 User-input-device lag

The input device reports 3d position and/or orientation data to the VR application.

The user input device lag is the lag introduced from the communication between the

tracking system and the VE application.

 Application-dependent processing lag

The application-dependent processing lag is the time required for the computation of

the 3D model. Once the user input device data arrives to the host workstation, the

application processes it. Processing lag is highly application-dependent and thus

highly variable.

 Rendering lag

The rendering lag is the time that passes until data sent from the VE application to

the rendering hardware appears on a monitor or immersive display. The rendering

lag depends on the scene and the viewpoint rendered at each time, so it varies

through the VE application run-time. The scan-out of the display causes additional

lag.

 Synchronization lag

The synchronization lag is the total time that data is waiting during the necessary

communication of involved input devices, in-between the parallel processing stages

of the VE application. It is application-relevant and depends on rendering processing

stages which are not well-synchronized to avoid delays of transmission. These stages

are independent and it is possible that the input device deposits new tracking data

71

shortly after the application reads the previous data. Thus, the application is busy

processing the previous input before it reads and starts to process the new input, so

that input data is delayed.

 Frame-rate-induced lag

Moreover, there is a fifth kind of lag, i.e. the frame-rate-induced lag, resulting from

the fact that data displayed progressively become out of date, while the display is not

updated fast. This type of lag is distinguished from other lag sources and is not

considered as end-to-end latency. It is, though, perceivable by the users and results

in slow frame rates while exposed to a VE to be considered unacceptable (Wloka

1995).

Excessive system latency is a well-known defect of VE and teleoperation systems

(Ellis, Mania, et al. 2004). It is particularly troublesome for head-tracked systems

since delays in head orientation measurement give rise to errors in presented visual

direction.

Perceptible latency that is experienced by its visual consequences on a display is

one of the most notable problems facing current VE applications. (Ellis, Adelstein, et

al. 1999). Perceptible latency has been shown to have undesirable effects on users of

virtual environments, including a lack of accuracy during tracking tasks, loss of

immersion (Garrett, Aguilar and Barniv 2002) and cybersickness, a form of motion

sickness that occurs as a result of exposure to VEs, poses a serious threat to the

usability of VR systems and is one of the most important health and safety issues that

may influence the advancement of VE technology (Stanney, Mourant and Kennedy

1998), as well as disorientation, discomfort and even nausea (Kennedy, et al. 1992).

Although manufacturers of high performance computer graphics systems often

sacrifice latency for frame rate, findings of (Ellis, Adelstein, et al. 1999) suggest they

could improve their systems’ interactivity by altering their existing trade-off.

High end-to-end latency can severely degrade users’ performance in a VE (Ellis,

Bréant, et al. 1997), (Ellis, Wolfram and Adelstein 2002). The RMS (Root Mean

Square) tracking errors, which are an objective measure of user’s performance, are

72

caused mostly by visual latency, rather than spatial sensor distortion or low update

rates (Ellis, Adelstein, et al. 1999). Latency also affects users’ performance on 3D

object placement tasks (Watson, et al. 2003), in terms of completion time and

accuracy (Liu, et al. 1993). While users can exhibit sensorimotor adaptation that

might improve manual performance when time delays exist in situations where task

preview is available (Cunningham, Billock and Tsou 2001), (Cunningham,

Chatziastros, et al. 2001), the presence of delay has been shown to hinder operator

adaptation to other display distortions such as static displacement offset (Held,

Efstathiou and Greene 1966).

More recently interest has been directed towards the subjective impact of latency

on the users’ reported sense of presence. Latency, as well as update rate, is

considered as a factor affecting the operator’s sense of presence in the environment

(Welch, et al. 1996), (Uno and Slater 1997). Lower latencies were associated with a

higher self-reported sense of presence and a statistically higher change in heart rate

for users, while exposed to a stress-inducing (fear of heights), photorealistically

rendered VE, involving walking around a narrow pit (Meehan, et al. 2003) (Figure

33). The role of VE scene content and resultant relative object motion on latency

detection has been examined by presenting observers in a head-tracked, stereoscopic

head mounted display with environments having differing levels of complexity

ranging from simple geometrical objects to a radiosity-rendered scene representing a

hypothetical real-world setting (Mania, Adelstein, et al. 2004). Such knowledge will

help understand latency perception mechanisms and, in turn, guide VE designers in

the development of latency countermeasures. In this study, a radiosity-rendered

scene of two interconnected rooms was employed. Latency discrimination observed

was compared with a previous study in which only simple geometrical objects,

without radiosity rendering or a ‘real-world’ setting, were used employing formal

psychophysical techniques which are far-removed from simulated tasks. The user is

instructed to report the consequences of latency focused on differences between

paired stimuli of varied tracking latency. They reveal that the Just Noticeable

Difference (JND) for latency discrimination by trained observers, averages ~15ms or

73

less, independent of scene complexity and real-world meaning. Such studies were,

though, far-removed from real application scenarios of interaction with synthetic

scenes or remote telemanipulation applications because the user is required to solely

focus on identifying the visual or other consequences of latency while no other task is

performed. Moreover, there is always an issue that due to the intense nature of

psychophysical experimentation, a small amount of users are normally tested,

resulting in doubts concerning the generality of such results.

Figure 33: Scene for testing presence in a VR (Meehan, et al. 2003)

Although previous research identifies the detrimental effect of tracking latency

on mainly motor task performance, it could be true that for generic spatial awareness

tasks such as navigation or visual search, the effect of latency is less severe and

humans adapt to it while forming a detailed mental map of the space. In this thesis,

we explore whether the effect of latency on spatial cognition, memory performance

and spatial awareness severely hampers spatial awareness in an Immersive Virtual

Environment (IVE) or whether humans are good at perceiving 3D space while using

the memory awareness methodology detailed below, irrespectively of relatively high

latency.

2.4. Measuring Latency

74

In order to examine the effects of latency in a VE it is necessary that end-to-end

latency is effectively measured minimized and controlled. Several measurement

techniques have been introduced through years.

In an early measurement method (Liang, Shaw and Green 1991), an

electromagnetic tracker was attached to a moving pendulum (Figure 34). Tracker

readings were time-stamped and stored in a host computer. The computer monitor

was displaying the current time of the clock that was generating the time stamps. A

video camera was simultaneously recording the monitor display and the swing of

the pendulum. The video was later analyzed frame-by-frame. End-to-end latency

was determined by comparing the display time when the pendulum was passing by

the zero-crossing point and the time stamp stored on the host computer.

Figure 34: Early latency measurement technique using a camera (Liang, Shaw and Green 1991)

Later, the use of an oscilloscope instead of a video camera was introduced (Miné

1993), (Jacoby, Adelstein and Ellis 1996). The oscilloscope was used to compare three

inputs, estimating the end-to-end latency. The first input was deducted from a LED-

photodiode pair that was marking the zero-crossing point of the pendulum. The

second input was deducted from a Digital-to-Analog (D/A) converter attached to the

host computer, reporting tracker position readings. Comparing these two inputs

75

determined the input device lag. Additionally, a third photodiode was monitoring

brightness changes on the system’s display, while a specific polygon displayed was

changing color from white to black and vice-versa at the time that zero crossings

were reported to the system. Comparison between the first and the third input was

used to measure the overall end-to end latency.

Figure 35: Miné's latency measuring technique using an oscilloscope (Miné 1993)

In a more recent study, a slightly modified technique was used (Jacoby, Adelstein

and Ellis 1996). Instead of the first LED-photodiode pair responsible for monitoring

and reporting the motion of the pendulum, a swing arm motor equipped with a shaft

encoder was used. The arm repeatedly moved the tracker back-and-forth through a

pre-set threshold point and the encoder reported crosses of the threshold to an

oscilloscope. This input was, at first, compared with the input deducted from a

76

photodiode monitoring the VE system’s screen, which was displaying the same

rectangular color transition as in (Miné 1993).

In another study, the previous techniques are modified by directly monitoring

the RGB analog output signals of the VGA, instead of using a photodiode in order to

monitor the display (Hill, Adelstein and Ellis 2004). Critical portions of the VE

application code are also “trapped”, thus, producing timestamps and signals to the

oscilloscope. These signals were used to bridge internal and external measurements

and provide information about timing at different stages of the VE execution.

However, taking into account the RGB signal instead of the photodiode readings of

the monitor does not fairly offer an accurate measurement of the end-to-end latency,

as it does not correspond to what the user actually sees. Relevant research also

attempts to minimize latency by assessing its level relevant to the internal system

components, and reorganizing the communication between them more efficiently.

Recent estimating methods make use of video analysis comparing movement of

the head tracker and the resulting movement of a simulated image on a screen that

are captured simultaneously using a video camera (Steed 2008). However, such

estimation methods do not provide more accurate measurements nor do they

provide information concerning latency increases throughout the processing of the

interactive VE itself. This information is essential in order to be able to understand

how these different stages contribute to the overall latency and thus, be able to

reorganize these components in order to achieve minimal latency.

Recent estimating methods make use of video analysis comparing movement of

the head tracker and the resulting movement of a simulated image on a screen. The

simultaneous movements are captured using a video camera (Steed 2008) or encoded

by photodiode readings of luminance gradients (one gradient that the tracked object

is moved across and another gradient that is produced by the VE) (Di Luca 2010).

However, such estimation methods result in potentially less accurate measurements

than using oscilloscope readings of electronic signals from the VE host computer

and, therefore, cannot be further expanded in order to provide information

77

concerning latency increases throughout the processing of the interactive VE itself.

This information is essential in order to be able to understand how these different

stages contribute to the overall latency and thus, be able to reorganize these

components in order to achieve minimal latency.

In 3.8 of this thesis we presented a custom-made mechanism of measuring and

minimizing end-to-end head tracking latency in an immersive VE. Our mechanism

builds on previous mechanisms by using an oscilloscope to compare two signals,

assembled by low-cost, custom-made and portable equipment. One signal is

generated by the head-tracker movement and reported by a shaft encoder attached

on a servo motor moving the tracker. The other signal is generated by the visual

consequences of this movement in the VE and reported by a photodiode attached to

the computer monitor. The end-to-end head tracking latency of the VE is the

measured time-shift between these two signals. The presented system calculates this

time-shift by off-line processing the tracker position and display brightness

measurements stored in a computer derived from the oscilloscope using a USB

connection. Thus, an accurate measuring mechanism is provided, utilizing

equipment commonly found in an academic facility.

2.4.1. Virtual Environment Pipeline

The VE visual pipeline (Figure 38) covers all steps up to the display of a VE scene

on the output device of interest starting from the sensor inputs that contribute to the

rendering of that scene. The graphics pipeline typically accepts some representation

of three-dimensional primitives as an input and results in a 2D raster image as

output. OpenGL and Direct3D are two notable 3d graphic standards, both describing

very similar graphic pipeline. The latency for a VE system is the sum of the

completion times required for each of the consecutive processes in the pipeline

illustrated by Figure 38.

The tracker acquires the current position and orientation information of the head.

Although various motion trackers may use different transduction methods to acquire

position and orientation information, we are only concerned with latency. Therefore,

78

the relevant metric for a given tracker is simply the length of time between data

acquisition and when that data is deposited into shared memory and made available

to the next component in the pipeline, the simulation/graphics subsystem. This data

is deposited, through the tracker driver into shared memory, making data available

to the next component in the pipeline, e.g. the simulation application.

The simulation/graphics subsystem carries out a number of actions on the tracker

data retrieved from shared memory. First, application-related calculations that are

part of the physical simulation or graphical user interface are performed on the CPU.

These are calculations that may be viewpoint dependent and may impact on the

viewable image. Any simulation or application-related calculations that do not rely

on updates of the user’s viewing position or of other sensed input action can be pre-

computed outside of the direct path of the VE pipeline, and therefore do not need to

contribute to overall latency.

After the completion of these calculations, the geometry of the scene is

transferred to the Graphics Processor Unit (GPU) of the graphics card. In the case of

stereoscopic visualization, viewpoint transformations specific to each channel of the

stereo viewpoint are performed. The resulting image (or images in case of stereo

viewpoints) is subsequently rasterized into pixels and drawn into a temporary buffer

of the graphics hardware video ram (VRAM), e.g. the back video buffer. The

rendering time of an image may depend on the number of polygons, vertices,

textures, pixels, or a combination of all of these. The final stage of the pipeline is the

buffer swap from the back to front buffer (Figure 36Figure 37, Figure 37). The use of

the back buffer at the VRAM serves as a staging area where images are assembled

before scanned onto the display in order to avoid visual discontinuities and artifacts

that would otherwise occur if parts of the front buffer were changed during the scan-

out process. To avoid visual discontinuities that would arise from modifying the

front video buffer while scanning to the screen, the buffer swap is generally

performed during the vertical blank interval of the monitor, when the screen is dark.

79

After the image is swapped to the front buffer, pixels will be scanned out onto the

display in rows from the top of the screen down, and from left to right within each

row. Because of the scan-out, the latency of a scene will vary, being lower in the

upper left portion of the display than in the lower right. To simplify the discussion of

latency in this thesis, we refer to the latency in the system only up to the uppermost

left pixel of the output device. At each refresh cycle of the screen a pulse called V-

sync is generated. Synchronization between buffer swapping and the v-sync signal

prevents “image tearing” by timing video time swaps to match the vertical blank

interval of the monitor. The v-sync pulse indicates when the front buffer is ready to

accept the next video frame, and only then the back buffer is being swapped. When

synchronization between the back/front buffer swap and the v-sync pulse is used the

maximum frame rate of the graphics redraw is limited by the interval between

successive v-syncs, no matter how quickly video buffers can be filled with newer

image information.

Figure 36: Double buffering in monoscopic rendering

80

Figure 37: Double buffering in passive stereo rendering.

The latency of the VE system is the sum of the completion times required for each

of the consecutive processes in the pipeline to be processed. In order to measure end-

to-end latency, we have to also take into account the time that pixels take to be

scanned onto the display; this is dependent on the hardware of the display. Thus, the

term ‘internal latency’ indicates the latency contributed from all the processes of the

VE visual pipeline except from the scan-out process.

81

Figure 38: The VE pipeline

2.4.2. Added Latency sources

Triple Buffering

Multiple buffering is the use of more than one buffer to hold a block of data, so

that a "reader" will see a complete (though perhaps aged) version of the data, rather

than a partially-updated version of the data being created by a "writer".

In computer graphics systems double buffering of video frames to avoid visual

discontinuities is commonly used. While the front buffer in video memory (VRAM)

is directly scanned onto a monitor as an analog video signal, the back buffer in

VRAM serves as a staging area where new images can be assembled. With double

buffering, an image is swapped to the front buffer only when the image has been

completely assembled in the back buffer. This prevents visual artifacts that would

otherwise occur if parts of the front buffer were changed during the scan-out process.

Synchronization between buffer swapping and the v-sync signal prevents image

“tearing” (Meehan, et al. 2003) by timing video buffer swaps to match the vertical

82

blank interval of the monitor. The back buffer is swapped to the front to begin

scanning only when the display hardware is ready to accept the next video frame, as

indicated by the VGA video v-sync pulse. Double buffering necessarily requires

more video memory and CPU time than single buffering because of the video

memory allocated for the back buffer, the time for the copy operation, and the time

waiting for synchronization. Moreover, when v-sync/buffer swap synchronization is

used, the interval between successive v-syncs limits the maximum frame rate of the

graphics redraw, regardless how quickly video buffers can be filled with new image

information.

When v-sync is enabled, the graphics card can often fill both buffers and then

have to stop working on any new frames until the monitor indicates it is ready for a

new frame for its next refresh. Only then can the graphics card clear the primary

buffer, switch buffers and begin rendering the next frame in the secondary buffer.

This waiting is what causes a drop in FPS when v-sync is enabled on many systems.

In order to avoid this drop, modern graphic cards actually triple-buffer the video

memory. In triple buffering the VE pipeline o back buffers and can immediately start

drawing in the one that is not involved in such copying. The third buffer, the front

buffer, is read by the graphics card to display the image on the monitor. Once the

monitor has been drawn, the front buffer is flipped with (or copied from) the back

buffer holding the last complete screen. Since one of the back buffers is always

complete, the graphics card never has to wait for the software to complete.

Consequently, the software and the graphics card are completely independent, and

can run at their own pace. Finally, the displayed image was started without waiting

for synchronization and thus with minimum lag.

83

Figure 39: Single, double and triple buffering operation (v-sync enabled).

Dynamic and Static Asynchrony

While the triple-buffer’s frame of additional delay involves extra time between

the simulation/graphics application software and the output display hardware, the

remaining of unnecessary latency, stems from a lack of synchronization between the

software and the input tracking device. This asynchrony between the tracker and

simulation/graphics subsystems has two components: one that dynamically varies

from update-to-update and the other that remains constant.

The dynamic component results from the absence of synchronization between the

tracker readings and graphics application updates. Without synchronization, the

tracker sampling frequency is not identical to (nor an exact integer multiple of) the

graphics VSync rate. For example, as (Hill, Adelstein and Ellis 2004) describe, for a

tracker that updates by ~120Hz rate and a VE application that generates graphics at

an ~60hz rate, the time of data retrieval from shared memory by the ~60 Hz

84

simulation/graphics application keeps slipping farther behind the instant data is

deposited by an ~120 Hz tracker driver. This slip represents a linear growth in age

from one cycle to the next of data in shared memory. This growth continues until the

shared memory contents are old enough (1/120 sec or 8.3ms) to be supplanted by a

fresher sample from the tracker. The slip and resetting is illustrated in Figure 40 by

the repeating (cyan) wedge-shaped segments, representing the duration data

remains in shared memory from arrival until retrieval by the simulation/graphics

application. Based on the ideal of the simple ramp pattern and the measured

minimum and maximum values reported in Figure 40, shared memory time accounts

for a theoretical average (mean ± variance) of 4.2 ± 1.2 ms in additional latency.

The constant component is the interval that follows completion of all simulation

graphics computations for the cycle until that cycle’s image is swapped into the front

video buffer. While this latency component follows completion of the cycle’s

computations, it is still due to static asynchrony with the input device. Because

tracker data is read from shared memory at the top of the 60 Hz simulation/graphics

cycle, and because all computation occupies only the first 1.3ms in Hill’s study

(2004), (summing from the application, left eye, and right eye simulation application

components in Figure 40), the remainder of the cycle until the video buffer swap is

spent idle. Essentially, the results of the completed simulation and graphics

calculations age by the duration of this idle time. As measured from the system once

the extra 16.7ms from triple buffer has been removed, Figure 40 indicates that the

idle time following all computation can add up to 14.5ms of pre-swap delay to the

latency path between tracker readings and visual display. Removal of the triple

buffer was necessary to make the plot in Figure 40 because this was the only way to

associate particular OpenGL buffer swap function callbacks with their specific

simulation frame. A portion of the pre-swap delay is unavoidable because it is still

needed to perform queued GPU calculations. The triple buffer’s extra latency was

removed in the manner described in a subsequent section.

85

Figure 40: VE system timing diagram (Hill, Adelstein and Ellis 2004)

2.4.3. Hardware

2.5. Latency Minimization

In a VE, the expected minimum achievable latency is the sum of lag contributed

from each of the three pipeline components, i.e. the tracking system component, the

application-dependent processing component and the rendering component (Wloka

1995) (Figure 38). According to previous research on latency minimization, the initial

latency measured (45 ± 1.8ms) was by far higher than the minimum predicted by

adding known latencies of the system components (Hill, Adelstein and Ellis 2004).

The additional lag was found to be caused by the synchronization lag and lies

between the three other subsystems. Part of this lag lies between the graphics

application and the display rendering subsystem and is mostly caused by the

synchronization that occurs between the buffer swapping and the v-sync signal (Hill,

Adelstein and Ellis 2004). The rendering subsystem video memory (VRAM) consists

of two buffers, the back buffer where changes are made to the image and the front

buffer from which the image is displayed at the screen. Moreover, most of the

86

modern graphic cards, in fact, triple-buffered the image, adding an extra frame of

delay to the VE system. Though this triple buffering may have been useful for high

performance 180 Hz CRT displays, this was unnecessary for the 60Hz Head Mounted

Displays (HMDs) used in previous work (Hill, Adelstein and Ellis 2004), as well as,

for the Rockwell-Collins Proview XL50 to be used in future work. Triple buffering

and vertical-sync can be disabled though, by turning off the proper settings in the

graphics card’s control panel. To prevent image tearing, the v-sync signal may be

reused, without restricting the buffers swap rate, ensuring that swapping is

regulated in order that only one swapping occurs at each v-sync.

Lack of synchronization also occurs between the application software and the

tracking device. This asynchrony consists of two components, one that varies at each

update and one that remains constant. The varying component, called dynamic

asynchrony, results from the absence of synchronization between the tracker device

readings and the updates of the graphics application. The tracker sampling sequence

is usually not identical to the graphics v-sync rate. This asynchrony has been

eliminated (Hill, Adelstein and Ellis 2004) by synchronizing the tracker readings with

the v-sync signal, after doubling the signal frequency (60 Hz) in order to match the

one of the tracker (Polhemus Fastrack, 120Hz). The constant component, called static

asynchrony, is the time that passes when the data processing is completed, however,

at the same time the data remain idle waiting for the next monitor update cycle.

Avoiding this “ageing” of processed data, implies receiving data from the tracker the

last possible instant, necessary for completing all the computation needed to display

the next frame in time. Since the update rate of the screen in (Hill, Adelstein and Ellis

2004) was 60Hz and the tracker update rate was 120 Hz, at each update cycle of the

graphics subsystem, the tracker reports data two times. Software and hardware

modifications can be used in order that the graphics subsystem skips the first reading

of the tracker and uses the “fresher” second one, such as internally clocked “sleep”

functions of the graphics application. This modification resulted in the elimination of

up to 8.3ms of added latency (half of the screen update cycle) (Hill, Adelstein and

Ellis 2004). The final modified VE resulted in a constant latency of 8.5ms for a simple

87

~100 polygon test environment and 13ms for a more realistic ~35k test environment,

without taking into account the refresh (frame) rate latency. An important fact is that

both of these measurements were in the 8-20ms range of perceptual tolerance for

latency in a head tracked HMD-based VE system, however,

2.6. Memory awareness states and schemata

While previous background knowledge in this chapter introduces the basic

principles of computer graphics and provides technical information relating to the

complexities of IVE generation, this section provides background information

regarding the memory schema and awareness states theory employed in this thesis.

The effect of latency in spatial cognition in immersive simulations has inspired

numerous studies carried out in real and Virtual Environments (VE). VEs are now

becoming an increasingly popular alternative approach for research exploration

spatial cognition. Moreover, simulation fidelity is based on simulation of spatial

awareness as in the real world. This study includes an experiment exploring whether

the effect of latency on spatial cognition, memory performance and spatial awareness

severely hampers spatial awareness in an Immersive Virtual Environment (IVE) or

whether humans are good at perceiving 3D space while using the memory

awareness methodology detailed below, irrespectively of relatively high latency.

2.6.1. Memory and Perception

Human Memory is a system for storing and retrieving information acquired

through our senses (Baddeley 1977), (Riesberg 1997). The briefest memory store lasts

for only a fraction of a second. Such sensory memories are perhaps best considered

as an integral part of the process of perceiving. Both vision and hearing, for instance,

appear to have a temporary storage stage, which could be termed short-term

auditory or visual memory and that could last for a few seconds. In addition to these,

though, humans clearly retain long-term memory for sights and sounds. Similar

systems exist in the case of other senses such as smell, taste and touch. In this section,

the memory awareness methodology and memory schema theories employed in this

thesis are analyzed.

88

2.6.2. The remember/know paradigm

In this section, the main methodology employed in this thesis is going to be

analyzed. This methodology forms the core of the experimental design presented in

0.

In the process of acquiring a new knowledge domain, visual or non-visual,

information retained is open to a number of different states. Accurate recognition

memory can be supported by: a specific recollection of a mental image or prior

experience (remembering); reliance on a general sense of knowing with little or no

recollection of the source of this sense (knowing); strong familiarity rather than an

un-informed guess (familiar); and guesses. ‘Remembering’ has been further defined

as ‘personal experiences of the past’ that are recreated mentally (Gardiner and

Richardson-Klavenhn 1992). Meanwhile ‘knowing’ refers to ‘other experiences of the

past but without the sense of reliving it mentally’. (Tulving 1992) provided the first

demonstration that these responses can be made in a memory test, item by item out

of a set of memory recall questions, to report awareness states as well. He reported

illustrative experiments in which participants were instructed to report their states of

awareness at the time they recalled or recognized words they had previously

encountered in a study list. If they remembered what they experienced at the time

they encountered the word, they made a ‘remember’ response. If they were aware

they had encountered the word in the study list but did not remember anything they

experienced at that time, they expressed a ‘know’ response. The results indicated that

participants could quite easily distinguish between experiences of remembering and

knowing. These distinctions provide researchers a unique window into the different

subjective experiences an individual has of their memories.

Measures of the accuracy of memory can therefore be enhanced by self-report of

states of awareness such as ‘remember’, ‘know’, ‘familiar’ and ‘guess’ during

recognition (Conway, et al. 1997), (Brandt, Gardiner and MacRae 2006). Object

recognition studies in VE simulations have demonstrated that low interaction fidelity

interfaces, such as the use of a mouse compared to head tracking, as well as low

89

visual fidelity, such as flat-shaded rendering compared to radiosity rendering,

resulted in a higher proportion of correct memories that are associated with those

vivid visual experiences of a ‘remember’ awareness state (Mania, Troscianko, et al.

2003), (Mania, Wooldridge, et al. 2006), (Mania, Badariah and Coxon 2010). As a

result of these studies, a tentative claim was made that those immersive

environments that are distinctive because of their variation from ‘real’ representing

low interaction or visual fidelity recruit more attentional resources. This additional

attentional processing may bring about a change in participants’ subjective

experiences of ‘remembering’ when they later recall the environment, leading to

more vivid mental experiences. The present research builds upon this pattern of

results and its possible explanations.

Whilst researchers may be interested in measuring differences between the

memorial experiences of remembering and knowing, there is recent evidence to

suggest that how this is implemented in a practical sense can influence the accuracy

of our measures of these. Specifically, the instructions and terminology influence the

accuracy of participants’ remember-know judgments (McCabe and Geraci 2009). In

the past, there have been concerns raised about the use of the terms ‘remember’ and

‘know’ because the meaning that participants attach to these terms may be slightly

different to those intended by the researchers. In clinical populations this has been a

particular concern, and several researchers have replaced the terms ‘remember’ and

‘know’ with those of ‘type a’ and ‘type b’ (e.g. (Levine, et al. 1998); (Wheeler and

Stuss 2003)). Recent evidence has suggested that these changes are also beneficial

when measuring ‘remember’ and ‘know’ judgments in non-clinical populations

(McCabe and Geraci 2009). Participants are generally more accurate, in that there are

less false-alarms, when ‘remember’ and ‘know’ are replaced with the terms ‘type a’

and ‘type b’ in any instructions given. This procedure was therefore followed here.

Moreover, it has been shown that memory performance is frequently influenced

by context-based expectations (or ‘schemas’) which aid retrieval of information in a

memory task (Minsky 1975). A schema can be defined as a model of the world based

on past experience which can be used as a basis of remembering events and provides

90

a framework for retrieving specific facts. In terms of real world scenes, schemas

represent the general context of a scene such as ‘office’, ‘theatre’ etc. and facilitates

memory for the objects in a given context according to their general association with

that schema in place. Previously formed schemas may determine in a new, but

similar environment, which objects are looked at and encoded into memory (e.g.,

fixation time). They also guide the retrieval process and determine what information

is to be communicated at output (Brewer and Treyens 1981).

(Pichert and Anderson 1966) schema model predicts better memory performance

for schema consistent items, e.g. items that are likely to be found in a given

environment, claiming that in-consistent items are mostly ignored. Contrarily, the

dynamic memory model (Holingworth and Henderson 1998) suggests that schema-

inconsistent information for a recently-encountered episodic event will be easily

accessible and, therefore, leads to better memory performance. Previous VE

experiments revealed that schema consistent elements of VE scenes were more likely

to be recognized than inconsistent information (Mourkoussis, et al. 2010), (Mania,

Robinson and Brandt 2005), supporting the broad theoretical position of (Pichert and

Anderson 1966). Such information has led to the development of a selective

rendering framework. In this experimental framework, scene elements which are

expected to be found in a VE scene may be rendered in lower quality, in terms of

polygon count thereby reducing computational complexity without affecting object

memory (Zotos, Mania and Mourkoussis 2009).

The experimental framework presented here and tested through limited pilot

studies aims to investigate the specific effects of tracking delay on both the accuracy

and the phenomenological aspects of object memories acquired in a VE. When

adopted for full-scale experimentation, it is of interest to identify whether the

presence of added tracking latency applied to a system of minimum tracking latency

is associated with the stronger vivid visually induced recollections that have

previously been demonstrated with lower interaction or visual fidelity [Mania et al.

2010]. A secondary goal is to investigate the potentially positive effect of schemas on

object recognition tasks post-VE exposure.

91

2.5.4 Effect of Latency on Spatial Awareness

 The utility of certain VEs for training such as flight simulators is predicated

upon the accuracy of the spatial representation formed in the VE. Spatial memory

tasks, therefore, are often incorporated in benchmarking processes when assessing

the fidelity of a VE simulation. Spatial awareness is significant for human

performance efficiency of such tasks as they require spatial knowledge of an

environment. A central research issue therefore for real-time VE applications for

training is how participants mentally represent an interactive computer graphics

world and how their recognition and memory of such worlds correspond to real

world conditions.

 The experimental methodology presented focuses upon exploring the effect

of head-tracking latency on object-location recognition memory and its associated

awareness states while immersed in a radiosity-rendered synthetic simulation of a

complex scene. The space was populated by objects consistent as well as inconsistent

with each zone’s context, displayed on a head-tracked, stereo-capable HMD. The

main premise of the spatial awareness methodologies that memory performance is

an imperfect reflection of the cognitive activity that underlies performance on

memory tasks.

Although previous research identifies the detrimental effect of tracking latency

on mainly motor task performance, it could be true that for generic spatial awareness

tasks such as navigation or visual search, the effect of latency is less severe and

humans adapt to it while forming a detailed mental map of the space. In this thesis,

we also explore whether the effect of latency on spatial cognition, memory

performance and spatial awareness severely hampers spatial awareness in an

Immersive Virtual Environment (IVE) or whether humans are good at perceiving 3D

space while using the memory awareness methodology detailed below,

irrespectively of relatively high latency.

The technical implementation of this thesis includes:

92

 The development of a mechanism to measure end-to-end head tracking

latency.

 The software rearrangements for controlling and minimizing latency as well

adding constant amounts of latency.

 The development of an experimental 3D scene to be displayed on a stereo-

capable high-end HMD in order to conduct a formal experiment investigating

the effect of latency on spatial awareness states

Technical details as well as experiment data are presented in the following

chapters.

2.7. Chapter Summary

This chapter introduced a set of fundamental terms of computer graphics starting

with defining light energy and its properties and light propagation. Subsequently,

computer graphics illumination models were analyzed. The following sections were

focused on visual perception and its application to computer graphics rendering.

Furthermore, this chapter illustrated the complex variety of tools and equipment

required to create, view and interact with immersive virtual environments. It

provided background information regarding the key technologies used in this study

and an overview of the technologies necessary to display and interact with

immersive virtual environments.

Most importantly, this chapter presented the shortcoming of previous latency

measurement approaches. In this thesis we present a low cost portable latency

measurement approach which extends previous techniques and is also used to

evaluate the cognitive impact of head tracking latency in immersive simulations.

We will proceed with analyzing the VE application framework used in this thesis.

93

CHAPTER 3. Τhe Virtual Environment Application

In this section we will analyze the technical framework of the XVR Development

Environment utilized for the implementation of the VE application used to measure

and minimize tracking latency as well as assess the cognitive impact of end-to-end

head tracking latency in immersive simulations.

3.1. XVR Overview

XVR is technology for the rapid development of Virtual Reality applications.

Using a modular architecture and a VR-oriented scripting language, XVR content can

be embedded on a variety of container application and making it suitable to write

content ranging from web-oriented presentation to more complex VR installations.

Originally created for the development of web-enabled virtual reality applications,

XVR has evolved in the recent years to an all-around technology for interactive

applications. Beside web3d content management, XVR supports a wide range of VR

devices (such as trackers, 3d mice, motion capture devices, stereo projection systems

and HMDs) and uses a state-of-the-art graphics engine for the real-time visualization

of complex three-dimensional models that is perfectly adequate even for advanced

off-line VR installations. XVR applications are developed using a dedicated scripting

language whose constructs and commands are targeted to VR, and give the

possibility to developers to deal with 3D animation, positional sounds effect, audio

and video streaming and user interaction. In its current form XVR is an ActiveX

component running on the various Windows platforms, and can be embedded in

several container applications including the web browser Internet Explorer.

94

Figure 41: XVR Data Flow

XVR (Figure 41) is actually divided in two main modules: the ActiveX Control

module, which hosts the very basic components of the technology, such as the

versioning check and the plug-in interfaces, and the XVR Virtual Machine (VM)

module, which contains the core of the technology, such as the 3d Graphics engine,

the Multimedia engine and all the software modules managing the other built-in

XVR features. It is also possible to load additional modules which offer advanced

functionalities, like the support to VR devices, as we decided to keep them separated

so that web applications, which usually do not need any of these advanced features,

are not afflicted by additional downloading times. The XVR-VM, like many other

Virtual Machines, contains a set of bytecode instructions, a set of registers, a stack

and an area for storing methods. The XVR Scripting Language (S3D) allows

specifying the behavior of the application, providing the basic language

functionalities and the VR-related methods, available as functions or classes. The

script is then compiled in a bytecode which is processed and executed by the XVR-

VM.

When accessing a web page hosting an XVR application, after checking the

version and, if needed, downloading the right version of the VM module, the

95

bytecode of the application is downloaded and, subsequently, so do all the data files

related to the application, such as 3d models, textures, sounds etc. After the

downloading phase the bytecode is executed: first, all the necessary initializations are

performed, then the proper application starts. The modularity of XVR allow to easily

adapt it both for web and for stand-alone applications, according to the specific

needs, as it be considered as made of a central core (the XVR-VM) and several

additional modules, the main being the ActiveX Control for the web access. In

general an XVR program can be represented as a main loop which integrates several

loops, each one running at its own frequency, such as graphics, physics, networking,

tracking, and even haptics, at least for the hi-level control loop (Figure 42).

Figure 42: XVR Loop

3.2. S3D: The XVR Scripting Language

In general an XVR program is always based on 6 fundamental functions. These

predefined functions constitute the basis of any project:

 OnDownload()

The OnDownload () function is performed at the very beginning and

triggers the download of the data files needed from the application.

 OnInit()

96

The OnInit () function is the place where to put the initialization code for

the app. All the commands are executed sequentially. All the other functions

are not active until OnInit () completes its execution.

 OnFrame()

The OnFrame () is the place for functions and methods that produce

graphics output. This is the only function where the graphics context is

visible. Placing graphics command outside this function would produce no

results.

 OnTimer()

The OnTimer () function runs independently (i.e. at a different rate) by

OnFrame () and it’s where to put commands that must be independent from

the rendering task. As the timer is hi-res, it is possible to setup some

parameters so that this function can be called up to 1k times per second.

 OnEvent ()

The OnEvent () function is independent from both OnTimer() and

OnFrame(). It gets called whenever the application receives an event message.

Event messages can be external (i.e. some Windows messages) or internal (i.e.

generated anywhere in the XVR program). Events and messages are

supported in XVR because they add flexibility to the programming

environment for task where fixed timers are not the best option. If the

application does not need them, this function can be ignored.

 OnExit()

The OnExit () function is called when the application quits or when the

user close the page the application is in.

Beyond the basic functions, XVR offers lots of predefined classes, functions and

data structures, and the user has the possibility to define new ones.

97

Figure 43: XVR classes and functions

3.2.1. Classes

The main set of classes and functions is related to the 3D graphics environment

management. The Scene and Camera functions allow to, respectively, setup the

graphical scene and the viewpoint properties. The latter functionalities are available

also by means of the CVmCamera class.

The VmLight classes provide the functionalities related to lighting. The 3d models

are managed by the VmMesh class, which handles the geometric properties of the

model, and by the VmObject class, which deals with reference systems and

geometrical transformations. Two superclasses based on the VmObject class, the

VmAvatar and the VmCharacter, allow manipulating complex hierarchies of objects,

98

respectively with and without the support of real-time geometry deformation. The

appearance of the objects is managed by the VmMaterial and VmTexture classes. Other

graphics related classes are the VmBillboard, VmText and VmTerrain which deal with

more specific components.

The integrated 3D engine, built on top of OpenGL, allows to manage the visual

output not only on a standard graphical window (either web or local hosted), but

also on more advanced devices such as Stereo Projection Systems and Head Mounted

Displays. The perspective tuning for stereoscopy is supported and it is relatively

simple to port applications from and to different visualization hardware. The engine

uses state of the art algorithms of culling, simplification, normal mapping and image

caching to achieve good real-time performances even with high-complexity models.

Although the S3D scripting language offers high-level functionalities to manage

the 3d contents, it also allows mixing low-level functionalities to realize special

effects or personal implementations not directly supported by the language. This is

achieved through an almost complete wrapping of OpenGL functions that can be put

straight in an S3D script. Moreover, XVR supports an even lower level of

programming by the insertion of vertex programs to directly manipulate the

graphics pipeline, a feature commonly available on the current 3d graphics boards.

As in any other environment which allows mixing different programming levels, a

particular attention must be put when using the lo-level functionalities, which can

heavily modify the application graphical status and its flow.

Another set of classes is devoted to user interaction and communication. Among

the built-in classes, the most commonly used are the VmMouse and the VmJoystick

which, together with a set of keyboard related functions, handle the basic interaction

with the application. The available additional external modules allow controlling

also advanced interfaces, such as sensorized data gloves and body suits, magnetic,

inertial and ultrasonic trackers, and 3d mice.

Network communication is handled by means of IP functions, which offer TCP

connection-oriented or connectionless UDP functionalities, and html-related Data

99

functions, which allow the hosting web page to communicate with the XVR

application so that they can reciprocally interact and modify their status. This means

that commands can be sent to the application from the html page, which can

therefore constitute the primary GUI for the application, and messages can be sent

from the application to the html page, which can change its aspect or open popup

windows etc.

A bi-dimensional graphical overlay output is provided by the Console functions.

The GUI functions are completed by the VmMenu and VmFileManager classes whose

functionalities can be trivially deduced.

Finally XVR offers a set of multimedia related classes. Among these, the

CVmMidi, CVmAvi and CVmMp3 add the support to play background music, speech

and movies. The CVmAWav provides the 3d sound functionalities, giving the

possibility to dynamically create sound sources and to position them in the 3d space.

XVR supports also remotely located sound servers allowing the use of more than one

planar 3d audio systems in order to realize a complete positional audio system able

to localize the acoustical source not only in the plane surrounding the user, but

rather in the whole space adding a better perception of the up-down directionality.

Other functions exist, implementing various functionalities related to files, math and

strings manipulation.

3.2.2. Functions

XVR offers a wide set of functions to manage several features of its environment.

Most of them are related to the graphical scene, and often refer to global attributes

which do not need to be accessed through dedicated classes.

Scene functions

These functions allow defining the graphical scene and its parameters. A scene is

basically a graphical loop; it is delimitated by the SceneBegin() and SceneEnd()

commands. All the graphical commands (including OpenGL functions) must be

called inside a SceneBegin()...SceneEnd() block, or they will not produce any visible

100

effect. The scene is drawn according to the current camera settings, which are read

upon calling SceneBegin() and remain constant until SceneEnd(). Therefore any change

in camera properties is effective only in the next scene loop. The very basic properties

(FOV, near plane Z, far plane Z) are assigned using the SET command. Additional

properties may be configurable through scene functions. With the scene functions is

also possible to realize split screens and stereoscopic visualization.

Camera Functions

With these functions it is possible to manage the camera (i.e. the viewpoint) and

its properties. The camera setup affects how the frame image of the scene is

produced. Up to 8 different cameras may be used, but only one at each time. The

available functions allow to position and rotate the camera, to fix a specific target or

orientation, to read camera movements from an external animation file and to

retrieve its main properties.

OpenGL Functions

This set of functions constitutes a wrapping of several OpenGL functions which

provide a low-level graphical programming layer, which can be mixed with the high-

level XVR graphical functionalities. This allows realizing special «effects» not directly

implemented in XVR or using particular modalities by expert programmers. The

wrapper also adds polymorphism to OpenGL functions, providing only one version

of each function instead of having different ones depending on the parameters type.

Texture Functions

These functions allow specifying some global parameters of the texture

environment.

Console Functions

Console functions allow visualizing overlayed 2D text using system fonts. In

addition to text, console functions offer also basic 2d drawing functionalities and

support transparency. The console layer is drawn independently from the 3D scene,

101

and thus console functions may be inserted anywhere in the code (i.e. not necessarily

inside a SceneBegin()…SceneEnd() block).

Network Functions

Different instances of XVR applications may communicate between them, or with

an external host, making use of the XVR networking functions. It is possible to use

both connectionless UDP and connection-oriented TCP protocols.

I/O Functions

I/O functions manage the communication with external devices (keyboard or

serial devices) and with the HTML page hosting the application. The I/O with the

HTML page is achieved by means of two functions: DataIn() (from HTML page to

XVR) and DataOut() (from XVR to HTML page). In the HTML page the interaction

must be opportunely managed by means of HTML-related scripting features (using

JavaScript, VBScript etc.).

File Functions

This group of functions offers an interface to the file system and allows managing

the download of data files from the network. It is possible to control the

downloading status in order to implement asynchronous downloads.

Strings and Text Functions

This set of functions deal with strings manipulation/parsing, and with text

output.

Math Functions

XVR, in addition to the basic mathematical functions natively available in the

language as commands, provides a set of additional mathematical functions which

also deal with matrices and vectors.

Timer Functions

102

This set of functions deal with the timer functionalities. XVR allow specifying a

high resolution timer (up to 1ms).

Global settings Functions

These functions allow specifying some parameters of the global XVR

environment, such as the Frame Rate, the Timer Resolution, the Cursor Shape, the

Audio 3d properties, or more specifically regarding the global graphical

environment, such as the Ambient Light, the Fade properties, the Background etc.

Other Functions

Various remaining XVR functions not grouped at the categories above.

3.3. XVR Development Studio

XVR Developer Studio is an Integrated Development Environment which allows

the programmer to create and manage XVR projects, to author the script code, to

compile the script in a byte code to be interpreted by the XVR run-time Virtual

Machine and to execute this code either in an HTML test page or via the XVRGlut

application.

The IDE includes also a debugger. The IDE provides a wizard dialog. The dialog

allows creating new resources through the wizard process. XVR Studio Developer

inherits the concept of workspace from Eclipse.

103

Figure 44: The XVE Development Studio IDE

3.3.1. Wizards

Using the new wizard command you can access the wizard dialog. The dialog

allows creating new resources through the wizard process. The wizard is accessible

both from the file menu and the main toolbar. XVR Developer Studio provides

several wizards used to create different kinds of resources.

As depicted in the Figure 45 actually there are five different wizard categories:

 General: used to create empty project, any type of file and folders

 OpenGL Shader files: used to create shaders

 SVN: used to get resources directly from an SVN repository

 XVR Project Wizard: used to create new XVR projects

 Other: other wizard, in particular the category allows to create CSS and

HTML resources

104

Figure 45: The XVR wizards.

XVR Project Wizard

The XVR project wizard category provides two different entries. The first one

creates a new XVR empty project. The users have to specify the name for the new

project and the folder where the project will be created.

The other wizard allows a user to create a new XVR projects from templates. As

the former, the wizard requires the user to enter a name for the project and the

directory where the project has to be created. Furthermore the user has to choose

between six different templates.

An error message will be displayed on top of the dialog if one or more

parameters entered are not valid. The user can not finish the wizard procedure until

all the entries are valid.

105

Once finished the wizard creation process, the new XVR project will be available

in the navigator view.

Figure 46: The XVR project wizard

3.3.2. Perspectives

A perspective is a visual container for a set of views and editors (parts). These

parts exist wholly within the perspective and are not shared. A perspective is also

like a page within a book. It exists within a window along with any number of other

perspectives and, like a page within a book, only one perspective is visible at any

time.

XVR Developer Studio has two default perspectives. The main perspective is

called Editor Perspective. When you start XVR Developer Studio, the editor

perspective is used by default.

Editor Perspective

106

The editor perspective is composed by:

 a navigator view on the left

 an outline view on the left

 a console view on the bottom

 one or more editor in the center

Debug Perspective

When a project is ran in debug mode, once the first breakpoint is reached, the

editor asks to the user if he would like to switch to the debug perspective view. Once

the debug session ends the IDE automatically switch the perspective back to the

Editor Perspective. The user can also switch the perspective using the perspective

toolbar located in the upper right corner of the editor.

In the side picture the switch perspective dialog is shown

The debug perspective has been designed to make easier debugging. It provides

the following views more than those provided by the editor perspective:

 an expression view on the right

 a variables view on the right

 a debug view on the bottom

107

Figure 47: Editor perspective

108

Figure 48: Debug perspective

3.3.3. Menus

File menu

The file menu allows to; Create new projects, files, folders, etc.., using wizards,

Import external projects, Save the active editor and Exit the application.

View Menu

The view menu allows to:

 Select a view to display (e.g. Outline and Navigator). If the view has been

previously closed it will be reopened, otherwise it will just focused.

 display the editor preferences dialog(see IDE preferences)

Edit menu

109

The edit menu allows to; Undo/redo the last/previous edit action performed in the

active editor, Copy, cut and paste, Search and replace text in all the files contained in

the workspace, Search and replace text in the selected editor.

Run menu

The run menu allows to:

 Build the active project. The result of the build process will be printed on the

console view (see Console view)

 Run the active project. Using this command the project will be first compiled

 run the active project without build it before

 Run the active project in debug mode. Using this command the project will be

first compiled.

Help menu

The help menu allows to; Display help and Display the XVR Developer Studio

project "about".

3.3.4. Views

An editor is typically used to edit or browse a document or input object.

Modifications made in an editor follow an open-save-close lifecycle model. A view is

typically used to navigate a hierarchy of information, open an editor, or display

properties for the active editor. In contrast to an editor, modifications made in a view

are saved immediately. The layout of editors and views within a page is controlled

by the active perspective.

Console view

The console view can contains one or more different console. A console allows

writing and displaying to the user what happens during his work. When the IDE is

started there are not console, but each console will be created when the editor needs

to write contents to it.

110

XVR Studio developer uses two different consoles:

 The first one, called XVR CONSOLE displays the result of the last project

build

 The other one displays the output coming from the last run.

Figure 49: XVR console

Navigator view

The navigator view displays all the projects contained in the workspace. Each

project corresponds to the root of a tree that reflects the resources contained in the

project.

If you double-click on a folder, the tree node is expanded/collapsed to

display/hide its content. If you double-click on a leaf of the tree the IDE will open it

with an editor selected on the basis of the file extension.

111

Figure 50: Navigator view

The navigator has a contextual menu accessible by right-clicking on it which

allows performing several actions. Among the others it allows to:

 if you click on the root of a project or on a resource inside of it, to set the

active project

 if you click on an HTML file, to set the active HTML file which will be used

when launching a run on Internet Explorer

 if you click on an S3D file, to set the active S3D file which will be used as the

main entry point of the application while the project is compiled

Outline view

The outline view allows to inspect the active document in the editor listing the

elements of which is composed by using a tree like structure. The elements displayed

depend on which type of document you are outlining.

Debug view

The debug view displays the running process launched from the editors. When

the process is blocked on a breakpoint, the view displays on which breakpoint the

112

execution is blocked. The view allows also controlling the process flow with a set of

buttons placed in the toolbar on the top right corner of the view.

Variables view

Once the process is blocked on a breakpoint, the variables view displays all the

variables available in the scope and allows to inspect the value of these.

Figure 51: Variables view

Expressions view

Once the process is blocked on a breakpoint, the expressions view allows

executing:

 Algebraic expressions using also the values available in the scope.

 External functions. If the editors fails to execute the function or it is not

allowed to execute such a function an error message is displayed as returned

value. Actually only the function glGet is allowed and you have to specify the

integer value of the OpenGL constant you want to query the value of.

3.4. XVR Browser

113

XVR can use the Internet Explorer rendering engine in order to render the 3D

scene (photo). In order to achieve that, the XVR application needs to be embedded

inside a web page (Figure 52).

Figure 52: Embedding XVR Application into html page.

These lines will be automatically added if using XVRStudio to generate the

HTML page which hosts the XVR application.

The parameters which can be specified by the user are:

Param name Value - Meaning Value - Format
ScriptName The name of the .bin file

containing the XVR

application bytecode.

String ("Filename.bin")

EngineVersion The number of the XVR

Engine version needed to

execute the specified

bytecode.

4 numeric characters ("0140")

BackgroundColor The default background

color of the XVR 3d

graphical context. The

format is the same of the

HTML.

Same as in HTML ("#RRGGBB",

hex format)

114

ForceUpdate Forces the download of the

specified version of the

XVR Engine without

checking the local version.

None ("")

UserParam A string containing one of

more user-defined

parameters which will be

passed to the OnDownload

() and OnInit () functions.

String ("Myparams 0 1 2")

EngineParam

A string containing one of

more parameters which

will be used to initialize the

engine. The supported

parameters are:

String ("DEPTH=24;STEREO")

NOLOGO Hides the rotating cube logo

during the download phase.

STEREO Enables, if available, the

support to the Quadbuffer

Stereo OpenGL mode.

DEPTH=nn Sets the depth of the DEPTH

buffer to nn bits. Depending on

the graphics board, the

maximum depth may be 16, 24,

32.

STENCIL=nn Activates the Stencil buffer

reserving nn bits.

FOV=nn Sets the 3d scene Field Of View

to nn degrees.

115

NEAR=nn Sets the 3d scene Near plane

distance to nn.

FAR=nn Sets the 3d scene Far plane

distance to nn.

 QUIET Suppresses warning messages.

3.5. XVR Tracking

XVR supports 3 different types of tracking data reading;

 Reading from a Joystick device

 Reading from an external DLL API

 Reading tracking data VRPN (network) packets

Our InterSense tracker supports all the above methods of reporting tracking data

via the InterSense Server interface.

3.5.1. Using the tracker as a VRPN device

VRPN protocol

VRPN (Virtual-Reality Peripheral Network) is a device-independent and

network-transparent system for accessing virtual reality peripherals in VR

applications. VRPN is a set of classes within a library and a set of servers that are

designed to implement a network-transparent interface between application

programs and the set of physical devices (tracker, etc.) used in a virtual-reality (VR)

system. The idea is to have a PC or other host at each VR station that controls the

peripherals (tracker, button device, haptic device, analog inputs, sound, etc.). VRPN

provides connections between the application and all of the devices using the

appropriate class-of-service for each type of device sharing this link. The application

remains unaware of the network topology. Note that it is possible to use VRPN with

devices that are directly connected to the machine that the application is running on,

either using separate control programs or running all as a single program.

116

VRPN also provides an abstraction layer that makes all devices of the same base

class look the same; for example, all tracking devices look like they are of the type

VRPN Tracker. This merely means that all trackers produce the same types of

reports. At the same time, it is possible for an application that requires access to

specialized features of a certain tracking device (for example, telling a certain type of

tracker how often to generate reports), to derive a class that communicates with this

type of tracker. If this specialized class were used with a tracker that did not

understand how to set its update rate, the specialized commands would be ignored

by that tracker. The current system types are Analog, Button, Dial, ForceDevice,

Sound, Text, and Tracker. Each of these abstracts a set of semantics for a certain type

of device. There are one or more servers for each type of device, and a client-side

class to read values from the device and control its operation. It also provides for

 Time-stamping of data

 Clock-synchronizing of clients and servers

 Multiple simultaneous accesses to peripheral devices

 Automatic reconnection of failed servers

 Storage and playback of sessions

The VRPN client (application-side) library has been tested on a various computer

systems. There are drivers for a large number of trackers and VR peripheral devices

and is supported by the most VE Development applications.

3.5.2. Using the tracker as joystick

The InterSense trackers data can be accessed as data from a Joystick device. A

joystick is an input device consisting of a stick that pivots on a base and reports its

angle or direction to the device it is controlling.

Joysticks (Figure 53) are often used to control video games, and usually have one

or more push-buttons whose state can also be read by the computer. Most joysticks

are two-dimensional, having two axes of movement (similar to a mouse), but one

117

and three-dimensional joysticks do exist. A joystick is generally configured so that

moving the stick left or right signals movement along the X axis, and moving it

forward (up) or back (down) signals movement along the Y axis. In joysticks that are

configured for three-dimensional movement, twisting the stick left (counter-

clockwise) or right (clockwise) signals movement along the Z axis. These three axes -

X Y and Z - are, in relation to an aircraft or a head tracker, roll, pitch, and yaw.

Figure 53: A joystick pointing device

An analog joystick is a joystick which has continuous states, i.e. returns an angle

measure of the movement in any direction in the plane or the space (usually using

potentiometers) and a digital joystick gives only on/off signals for four different

directions, and mechanically possible combinations (such as up-right, down-left,

etc.). Additionally joysticks often have one or more fire buttons, used to trigger some

kind of action. These are simple on/off switches. A hat switch is a control on some

joysticks. It is also known as a POV (point of view) switch. It allows one to look

around in their virtual world, browse menus etc. For example, many flight

simulators use it to switch the player's views.

118

Some joysticks have haptic feedback capability. These are thus active devices, not

just input devices. The computer can return a signal to the joystick that causes it to

resist the movement with a returning force or make the joystick vibrate.

The XVR VE application can be configured to access the joystick’s pitch, roll, and

yaw tracking data using the built-in CVmJoystick class (Figure 54). This class manages

joystick devices, allowing to retrieving data from them. It is also possible to create a

virtual joystick which can be used to replicate remote joystick actions.

Figure 54: CVmJoystick predefined class

3.5.3. Accessing tracker data directly from the DLL

A Dynamic-link, or DLL, is Microsoft's implementation of the shared library

concept in the Microsoft Windows and OS/2 operating systems. These libraries

usually have the file extension DLL, OCX (for libraries containing ActiveX controls),

or DRV (for legacy system drivers). The file formats for DLLs are the same as for

Windows EXE files — that is, Portable Executable (PE) for 32-bit and 64-bit

Windows, and New Executable (NE) for 16-bit Windows. As with EXEs, DLLs can

contain code, data, and resources, in any combination. DLLs provide a mechanism

for shared code and data, allowing a developer of shared code/data to upgrade

functionality without requiring applications to be re-linked or re-compiled.

The Intrertrax2 tracker provides a DLL API (Figure 55) for accessing tracker data

from C, C++, Visual Basic and other applications supporting readings from DLL

libraries.

ISD_STATION_DATA_TYPE

119

This data structure is used to return current data for a station, including position,

orientation, time stamp, button and analog channel state. It is passed to

ISD_GetTrackingData as part of ISD_TRACKING_DATA_TYPE

typedef struct

{

 ISD_STATION_STATE_TYPE Station[ISD_MAX_STATIONS];

}

ISD_TRACKER_DATA_TYPE;

typedef struct

{

 BYTE TrackingStatus;

 BYTE NewData;

 BYTE CommIntegrity;

 BYTE BatteryState;

 float Euler[3];

 float Quaternion[4];

 float Position[3];

 float TimeStamp;

 float StillTime;

 float BatteryLevel;

 float CompassYaw;

 Bool ButtonState[MAX_NUM_BUTTONS];

 short AnalogData[ISD_MAX_CHANNELS];

 BYTE AuxInputs[ISD_MAX_AUX_INPUTS];

120

 float AngularVelBodyFrame[3];

 float AngularVelNavFrame[3];

 float AccelBodyFrame[3];

 float AccelNavFrame[3];

 float VelocityNavFrame[3];

 float AngularVelRaw[3];

 DWORD Reserved[64];

}

ISD_STATION_DATA_TYPE;

TrackingStatus

Tracking status byte. Available only with IS-900 firmware versions 4.13

and higher, and isense.dll versions 3.54 and higher. It is a value from 0 to

255 that represents tracking quality.

NewData

 TRUE if this is new data. Every time ISD_GetData is called this flag is

reset.

CommIntegrity

 Communication integrity of wireless link.

BatteryState

 Wireless devices only 0=n/a, 1=low, 2=ok.

Euler

 Orientation in Euler, returned in degrees.

Quaternion

 Orientation in Quaternion form.

Position

Station position in meters.

121

TimeStamp

Only if requested, in seconds.

StillTime

InertiaCube and PC-Tracker products only.

BatteryLevel

Battery Voltage, if available.

CompassYaw

Magnetometer heading, computed based on current orientation.

ButtonState

Only if requested.

AnalogData

Only if requested. Current hardware is limited to 10 channels, only 2 are used.

The only device using this is the IS-900 wand that has a built-in analog joystick.

Channel 1 is x-axis rotation, channel 2 is y-axis rotation. Values are from 0 to

255, with 127 representing the center.

AuxInputs

Only if requested.

AngularVelBodyFrame

Angular rotation speed in sensor body coordinate frame. This is the processed

angular rate, with current biases removed, rad/sec. This is the angular rate used

to produce orientation updates.

AngularVelNavFrame

Angular rotation speed in world coordinate frame, with boresight and other

transformations applied, rad/sec.

AccelBodyFrame

Acceleration in sensor body coordinate frame, meter^2/sec. Only factory

calibration is applied to this data, gravity component is not removed.

AccelNavFrame

Acceleration in the navigation (earth) coordinate frame, meters/sec^2. This is the

accelerometer measurements with calibration, and current sensor orientation

122

applied, and gravity subtracted. This is the best available estimate of

acceleration.

VelocityNavFrame

meters/sec, 6-DOF systems only.

AngularVelRaw

Raw gyro output, only factory calibration is applied. Some errors due to

temperature dependent gyro bias drift will remain.

Figure 55: Intersense DLL API tracker reading data structure

The XVR VE application supports importing C functions from external DLLs

through the build in CVmExternDll class.

When importing the DLL XVR will use the library as an object, and the function

will became the method of the object. In order to load the library, the CVmExternDLL

object with the name of the library is used.

library = CVmExternDLL("myLib.dll");

This command creates a CVmExternDll object. This object refers to the library,

but now is empty and you have to add method with the __AddFunction(). In case the

DLL is not available it generates a fatal error. The DLL is also not available if DLL

dependencies (other DLLs) are not available. Since Engine 150 optional second

parameter of CVmExternDLL is a Boolean that allows specifying to nicely return a

void in case of missing DLL.

This function takes the return value, the name of the exported function, and the

type of the parameter.

library.__AddFunction(C_FLOAT, "myFunction", C_PFLOAT, C_INT);

Now the function can be used like a method of your library.

b = library.myFunction(a, 3);

123

The allowed types of parameters are;

C_VOID void, used only for return value

C_INT signed 32 bit int

C_FLOAT 32 bit float

C_DOUBLE 64 bit double

C_PCHAR an array of char

C_PSTR the same as above

C_PINT an array of int

C_PFLOAT a vector of float

C_PDOUBLE an array of double (Since Engine 150)

C_PFLOAT_1 force the vector of float to be one element

long

C_PFLOAT_X same as above where X is a number from

1 to 16

124

The previous tables indicate that there is an incompatibility between the data

types that the InterSense DLL API provides and the data types than the XVR can

read from an external DLL. Thus the API cannot be used as is for tracking data

readings (Figure 56).

Figure 56: Accessing tracker data directly from the DLL API

3.6. Moving the camera

The viewpoint, also called camera, is managed through this set of functions. Up

to eight different camera setups may be handled at the same time, but only one is

used to render the current scene. The available functions allow to position and rotate

the camera, to fix a specific target or orientation, to read camera movements from an

external animation file and to retrieve all these properties.

function TrackerMove()

125

{

 var rScale = -360;

 var move = 0.0;

 static var xpos=0.0 , ypos=0.0, zpos=0.0;

 static var x_pos=0.0, z_pos=0.0;

var cammat = array(16);

 var jx,jy,jz;

 jx=(library.getX()+180)/360;

 jy=(library.getY()+180)/360;

 jz=0.5;

 CameraSetRotation(rScale*jy,[1,0,0]);

 CameraRotate(rScale*jx,[0,1,0]);

 CameraRotate(-rScale*jz,[0,0,1]);

}

Figure 57: Rotating the camera with the tracker

3.7. ΧVR Stereo rendering

3.7.1. Quad buffered Stereo rendering

XVR supports the standard quad buffered OpenGL way to produce stereo

images. Using this feature is extremely easy, but you need to have a graphics card

that supports quad buffered OpenGL such as the NVIDIA Quadro family or the ATI

Fire GL family.

To activate quad buffer support you just need to add this in the .HTML file

associated to the project (place it next to the other XVR Control params):

126

<PARAM NAME="EngineParam" VALUE="STEREO">

3.7.2. XVR side-by-side stereoscopic rendering

XVR has built in support to adjust the perspective correction needed for stereo

visualization. Stereoscopic output in XVR was achieve by using the Side-by-Side

stereo rendering and use the Horizontal Span of the graphics card driver to send the

2 different outputs to the 2 VGA channels of the HMD.

Inside the OnFrame function the following code sections were used:

SceneBeginRel(0.0,0.0 , 0.5,1.0 , VR_STEREO_LEFT); //Rendering the left half of the

screen (left eye)

 Rendering code();

 …

SceneEnd();

SceneBeginRel(0.5,0.0 , 0.5,1.0 , VR_STEREO_RIGHT); // Rendering the right half of

the screen (right eye)

 Rendering code();

 …

SceneEnd();

Figure 58: Stereoscopic side-by-side rendering in XVR

The HMD displays were combined as a single display using the display driver

Horizontal span feature. Each monitor of the HMD has a 1024x768 pixels resolution

so the resulting combined large screen has a resolution of 2048x768 pixels. Half of the

pixels (1024x768) are displayed at each monitor.

DualView vs. Horizontal Span

127

Graphics cards in windows support two types of desktop and application

visualizations using two monitors.

Dual view:

The two monitor can be configures independently. Different resolutions and

settings can be applied and. The two monitors are logically placed side by side and

windows can be dragged from one monitor to the other. Applications can either be

aware of the existence of two monitors or can only be aware of the monitor they are

initially launched in.

Span (vertical or horizontal)

The two displays are combined to one virtual display. There are two options of

placement; placed side-by-side (horizontal span) or placed one on top of the other

(vertical span). Applications are not aware of the excistence of two separate displays.

This mode has been discontinued after windows xp.

Figure 59: Multi display modes

128

Figure 60: Using the two HMD displays as one (horizontal span)

3.8. Chapter Summary

This chapter provided information regarding the XVR application framework by

analyzing the framework development language the integrated development

environment and other software components. We also presented examples of using

the framework.

In the following chapter we will present the hardware and software setup for the

latency measurement mechanism and the results of latency minimization techniques

to our system.

129

CHAPTER 4. Hardware and Software setup for Latency Measurements and

Minimization

In this chapter, we will describe the latency measurement system proposed in

this thesis and how this system is used. In the following sections we will analyze

particular parts composing the system as shown in Figure 61, Figure 71, Figure 72.

Along with the hardware setup of our latency measurement system we will also

discuss the software setup and reorganizations used for interoperability between the

hardware setup and the VE applications and for latency minimization. In the last

section of this chapter the data from the latency measurements from out system as

well as the results of the minimization techniques used, are presented.

Figure 61: Overview of the data-acquisition system for measuring the end-to-end latency

4.1. Tracker

For our measurements we had an Intersense Intertrax2 and an Intersense

InsertiaCube3, head trackers available. Both are portable high performance trackers.

The Intertrax2 combines readings from multiple sensors, 3 Gyroscopes, 2

magnetometers and 2 accelerometers to produce 3 degrees of freedom (pitch, yaw

and roll) head movement reports with relative angular resolution of 0.02degs. The

InsertiaCube3 has 0.03degs resolution and it can provide future position predictions

130

The internal (hardware) latency of both trackers is 4ms. The Intertrax2 connects

to the host computer through a USB connection while the InsertiaCube3 connects

through a parallel port interface (there is also a USB interface converter).

Through preliminary measurements there was not found any particular

difference in terms of latency between the two trackers. Overall the Intertrax2 tracker

was found to be more stable than the InsertiaCube3 and so the final measurements

described in the present chapter and the subsequent evaluation experiment

discussed in CHAPTER 5 were conducted using this tracker (Intertrax2).

4.2. Rotary Encoder

A rotary encoder, is an electro-mechanical device, attached to a rotating object

(i.e. a wheel or motor), used for converting the angular position or motion of a shaft

or axle to an analog or digital signal (Encoders n.d.) (Repas n.d.). Rotary encoders are

categorized in incremental and absolute in terms of output. Incremental encoders

output provides information about the motion of the shaft. This information can be

further processed elsewhere into information such as acceleration, speed, distance,

rotations per minute (RPM) and position. Absolute encoders output specifies the

current position of the shaft. In such terms absolute encoders are angle transducers.

Rotary encoders are utilized in many applications requiring precise shaft unlimited

rotation like industrial controls, robotics, special purpose photographic lenses,

computer input devices (such as optomechanical mice and trackballs), and rotating

radar platforms.

Absolute digital encoders produce a distinctive digital code for each unique angle

of the shaft (Encoders n.d.). An incremental rotary encoder provides cyclical outputs

on encoder rotation. Absolute encoders mostly have multiple code rings with various

binary weightings which provide data representing the absolute position of the

encoder within one turn. This kind of encoder is referred to as a parallel absolute

encoder. The distinctive feature of the absolute encoder is that it reports the absolute

position of the encoder to the electronics directly upon power-up with no requisite

for indexing. A typical incremental encoder works differently by providing an A and

131

a B pulse output that does not provide any usable count information in their own

right; rather, the counting is done in the external electronics. The starting point

where of the counting depends on the counter in the external electronics rather than

on the position of the encoder. In order that the position information, provided by

the encoder is useful, this position must be referenced to the device to which it is

attached, typically using an index pulse. The distinctive feature of the incremental

encoder is that it reports an incremental position change of the encoder to the

calculating electronics (Mitchell Electronics n.d.).

The basic types of absolute rotary encoders are optical and mechanical. In

mechanical absolute encoders a metal disc that contains a set of concentric rings with

openings is fixed to an insulating disc. The disc is rigidly fixed to the shaft. A row of

sliding contacts is fixed to a stationary object so that each contact wipes against the

metal disc at a varying distance from the shaft. Some of the contacts touch metal,

while others fall in the gaps where the metal has been cut out, as the disc rotates with

the shaft. The metal sheet is connected to an electric current source, and each contact

is connected to a discrete electrical sensor. The metal pattern is designed such way

that each possible position of the axle creates a distinctive binary code in which some

of the contacts are connected to the current source (i.e. switched on) and others are

not (i.e. switched off). In optical absolute encoders, the optical encoder's disc is glass

made or plastic with transparent and opaque areas. A light source and photo

detector array reads the optical pattern that result from the disc's position at any one

time. The angle of the shaft can be determined by a controlling device such as a

microprocessor or microcontroller that reads the code. The absolute analog type

produces a unique dual analog code that can be translated into an absolute angle of

the shaft (by using a special algorithm).

An example of a binary code, in a simplified encoder with only three contacts, is

shown underneath.

132

Table 1: Absolute encoder standard binary encoding

Sector Contact 1 Contact 2 Contact 3 Angle

1 off off off 0° to 45°

2 off off ON 45° to 90°

3 off ON off 90° to 135°

4 off ON ON 135° to 180°

5 ON off off 180° to 225°

6 ON off ON 225° to 270°

7 ON ON off 270° to 315°

8 ON ON ON 315° to 360°

In general, where there are n contacts, the number of distinct positions of the

shaft is . In this example, is 3, so there are 2³ or 8 positions.

In the example above, as the disc rotates a standard binary count is produced by

the contacts. Though, this has the disadvantage that if the disc breaks between two

adjacent sectors, or the contacts are not perfectly aligned, it can be not possible to

determine the angle of the shaft. However in a real-world device, the contacts are

never perfectly aligned, so each switches at a different moment. If contact 1 switches

first, followed by contact 3 and then contact 2, for example, the actual sequence of

codes is:

off-on-on (starting position)

on-on-on (first, contact 1 switches on)

on-on-off (next, contact 3 switches off)

on-off-off (finally, contact 2 switches off)

133

In order, the sectors corresponding to these codes in the table are 4, 8, 7 and then

5. So, from the sequence of codes produced, the shaft appears to have jumped from

sector 4 to sector 8 and then gone backwards to sector 7, then backwards again to

sector 5, which is where we expected to find it. In many situations, this behavior is

undesirable and could cause system failure. (I.e. in an encoder were used in a robot

arm, the controller would think that the arm was in the wrong position, and try to

correct the error by turning it through 180°, possibly damaging the arm).

Gray encoding is used to avoid the problem above. Gray encoding is a system of

binary counting in which adjacent codes differ in only one position. For the three-

contact example given above, the Gray-coded version would be as follows.

Table 2: Ablolute encdoer gray encoding

Sector Contact 1 Contact 2 Contact 3 Angle

1 off off off 0° to 45°

2 off off ON 45° to 90°

3 off ON ON 90° to 135°

4 off ON off 135° to 180°

5 ON ON off 180° to 225°

6 ON ON ON 225° to 270°

7 ON off ON 270° to 315°

8 ON off off 315° to 360°

In this example, only one of the contacts changing its state from on to off or vice

versa is involved in the transition from sector 4 to sector 5, like all other transitions,

involves. This means that the sequence of incorrect codes shown in the previous

illustration is impossible.

134

Figure 62: Rotary encoder for angle-measuring devices marked in 3-bit binary (left) and 3-bit

gray (right). The inner ring corresponds to Contact 1 in the table. Black sectors are "on". Zero degrees

is on the right-hand side, with angle increasing counterclockwise

When an incremental rotary encode is rotated only cylindrical output is

provided. Incremental rotary encoders can be either mechanical or optical. The

mechanical type is typically used as digital potentiometers on equipment including

consumer devices and requires debouncing. Because mechanical switches require

debouncing, mechanical encoders are limited in the rotational speeds they can

handle.

Incremental encoders are used to track either linear or rotary motion and can be

used to determine position and velocity. Very accurate measurements can be made

because the direction can be determined.

They employ two outputs called A & B, which are 90 degrees out of phase and

are called quadrature outputs.

The state diagram:

Table 3: Incremental encoder coding for clockwise rotation

Phase A B

1 0 0

2 0 1

135

3 1 1

4 1 0

Table 4: Incremental encoder coding for counter-clockwise rotation

Phase A B

1 1 0

2 1 1

3 0 1

4 0 0

The two output wave forms are 90 degrees out of phase, which is all that the

quadrature term means. These signals are decoded to produce a count up pulse or a

countdown pulse. For software decoding, the A & B outputs are read, either via an

interrupt on any edge or polling, and the table above is used to decode the direction.

For example, if the last value was 00 and the current value is 01, the device has

moved one half step in the clockwise direction. The mechanical types would be

debounced first by requiring that the same (valid) value be read a certain number of

times before recognizing a state change.

In case the encoder is turning too fast, an invalid transition may occur, such as

00->11. Then there is no way to know which way the encoder turned; if it was 00->01-

>11, or 00->10->11. In case of even faster turning, a backward count may occur.

Example: consider the 00->01->11->10 transition (3 steps forward). If the encoder is

turning too fast, the system might read only the 00 and then the 10, which yields a

00->10 transition (1 step backward).

This same principle is used in ball mice to track whether the mouse is moving to

the right/left or forward/backward.

136

Single output rotary encoders cannot be utilized to sense motion direction. They

can be used for systems that measure rate-of-movement variables such as velocity

and RPM and in certain applications to measure distance of motion

Our encoder was an absolute rotary encoder. The encoder was capable of

selection between single and multi-turn modes using an input signal. The encoder

was capable of 14-bit resolution when used in singleturn mode. It was powered

using a standard 5V DC supply. The complete datasheet of the encoder can be found

in APPENDIX D.

4.3. Rotational Mechanism

The rotational mechanism of our apparatus was based on a direct current (DC)

electric motor.

An electric motor is an electromechanical device that converts between electrical

and mechanical energy (Fink and Beaty 1999). A DC motor is designed to run on

direct current electric power. DC electric motors, depending on how they generate

motor, are categorized into brushed or brushless DC electric motors. A brushed DC

electric motor can have low cost and easy motor speed control by varying the supply

voltage. In such terms a brushed DC motor was ideal for our latency measurement

mechanism.

The rotary encoder was attached to the rotating axis of the electro motor (Figure

69). Our head tracker was attached to another axis. Rotation of the electro motor axis

was transferred to the rotating axis of the head tracker using a roller chain using 1-1

gear ration, so that rotation of the electromotor was resulting in the same rotational

changes in the rotary encoder and the head tracker.

137

Figure 63: The rotational motor

4.4. Photodiode

A photodiode is a type of photodetector. It senses light. Photodiodes are capable

of converting light into either current or voltage, depending upon the mode of

operation (Nic, Jirat and Kosata 2006).

For our measurements we used a visible light sensitive planar silicon photodiode

in recessed ceramic package (Figure 64), (Figure 65). The package incorporates an

infrared rejection filter. These diodes have very high shunt resistance and have good

blue response. Detailed electro-optical characteristics of the photodiode can be found

in APPENDIX E.

Figure 64: The EG & G Vactec visible light photodiode used for our measurements

138

Figure 65: The photodiode mechanical characteristics

4.5. Other parts of the digital circuit

4.5.1. Digital-to analog converter

A digital-to-analog converter (DAC or D-to-A) is a device used to convert a

digital signal (binary code) to an analog signal (current or voltage) (Integrated n.d.).

A DAC converts an abstract finite-precision digital number (usually a fixed-point

binary number) into the corresponding voltage. In particular, DACs are often used to

convert finite-precision digital time series data to a continually varying (i.e. analog)

139

electric signal. Typically a DAC converts the numerical data into a concrete sequence

of impulses that are subsequently processed by a reconstruction filter using some

form of interpolation to fill in data between the impulses. Other DAC methods (e.g.,

methods based on Delta-sigma modulation) produce a pulse-density modulated

signal that can then be filtered in a similar way to produce a smoothly varying signal.

As per the Nyquist–Shannon sampling theorem, a DAC can reconstruct the original

signal from the sampled data provided that its bandwidth meets certain

requirements (e.g., a baseband signal with bandwidth less than the Nyquist

frequency). Digital sampling introduces quantization error that manifests as low-

level noise addition to the reconstructed signal.

The sequence of numbers usually updates the analogue voltage at uniform

sampling intervals instead of impulses. These data are persisted to the DAC,

typically with a clock signal that causes each number to be latched in sequence, at

which time the DAC output voltage changes rapidly from the previous value to the

value represented by the currently latched number. This has an effect that the output

voltage is held in time at the current value until the next input number is latched

resulting in a piecewise constant or 'staircase' shaped output. This is equivalent to a

zero-order hold operation and has an effect on the frequency response of the

reconstructed signal. Multiple harmonics above the Nyquist frequency are caused by

the fact that DACs output a sequence of piecewise constant values or rectangular

pulses. Usually, these harmonics can be removed with a low pass filter that acts as a

reconstruction filter in applications that require it.

Types

The most common types of electronic DACs are (Integrated n.d.):

 The pulse-width modulator:

 Oversampling DACs

 The binary-weighted DAC

 The R-2R ladder DAC

 The thermometer-coded DAC

140

 Hybrid DACs

 The segmented DAC

Performance

DACs are very important to system performance. The most important

characteristics of these devices are (Integrated n.d.):

 Resolution: This is the number of possible output levels the DAC is designed

to reproduce. This is usually stated as the number of bits it uses, which is the

base two logarithm of the number of levels. For instance a 1 bit DAC is

designed to reproduce 2 (21) levels while an 8 bit DAC is designed for 256

(28) levels. Resolution is related to the effective number of bits (ENOB) which

is a measurement of the actual resolution attained by the DAC.

 Maximum sampling frequency: This is a measurement of the maximum

speed at which the DACs circuitry can operate and still produce the correct

output. As stated in the Nyquist–Shannon sampling theorem, a signal must

be sampled at over twice the frequency of the desired signal. For instance, to

reproduce signals in the entire audible spectrum, which includes frequencies

of up to 20 kHz, it is necessary to use DACs that operate at over 40 kHz. The

CD standard samples audio at 44.1 kHz, thus DACs of this frequency are

often used. A common frequency in cheap computer sound cards is 48 kHz —

many work at only this frequency, offering the use of other sample rates only

through (often poor) internal resampling.

 Monotonicity: Very important characteristic for DACs used as a low

frequency signal source or as a digitally programmable trim element. Refers

to the ability of a DAC's analog output to move only in the direction that the

digital input moves (i.e., if the input increases, the output doesn't dip before

asserting the correct output.) THD+N: A very important DAC characteristic

for dynamic and small signal DAC applications. Measurement of the

distortion and noise introduced to the signal by the DAC. Expressed as a

141

percentage of the total power of unwanted harmonic distortion and noise that

accompany the desired signal.

 Dynamic range: This is a measurement of the difference between the largest

and smallest signals the DAC can reproduce. Dynamic range is expressed in

decibels. Usually related to DAC resolution and noise floor.

Other measurements, such as jitter and phase distortion, can also be very

important for some applications of DACs.

Figures of merit

 Static performance (Integrated n.d.):

o Differential nonlinearity (DNL); Indicator of how much two adjacent

code analog values deviate from the ideal 1 LSB step.

o Integral nonlinearity (INL); indicator of how much the DAC transfer

characteristic deviates from an ideal one. Ideally a straight line; INL

shows how much the actual voltage at a given code value differs from

that line, in LSBs (1 LSB steps).

o Noise; ultimately limited by the thermal noise generated by passive

components (i.e. resistors). Usually a little less than 1 μV (microvolt)

of white noise for audio applications and in room temperatures. This

limits performance to less than 20~21 bits even in 24-bit DACs.

o Offset

o Gain

 Frequency domain performance

o Spurious-free dynamic range (SFDR) Indicator of the ratio between

the powers of the converted main signal and the greatest undesired

spur. Measured in dB.

o Signal-to-noise and distortion ratio (SNDR) Indicator of the ratio

between the powers of the converted main signal and the sum of the

noise and the generated harmonic spurs. Measured in dB.

142

o i-th harmonic distortion (HDi) Indicator the power of the i-th

harmonic of the converted main signal

o Total harmonic distortion (THD); The sum of the powers of all HDi

o If the maximum DNL error is less than 1 LSB, then the D/A converter

is guaranteed to be monotonic. However, many monotonic converters

may have a maximum DNL greater than 1 LSB.

 Time domain performance:

o Glitch energy

o Time nonlinearity (TNL)

o Response uncertainty

AD7840

For our system we used the AD 7840, a complete 14-Bit Voltage Output DAC,

matching our 14-bit encoder (Figure 66). The AD7840 is a fast, complete 14-bit

voltage output D/A converter. It consists of a 14-bit DAC, 3 V buried Zener reference,

DAC output amplifier and high speed control logic. It provides the complete

function for creating AC signals and DC voltages to 14-bit accuracy. It features an on-

chip reference, an output buffer amplifier and 14-bit D/A converter. The AD7840 is

capable of 14-bit parallel and serial interfacing. In the parallel mode, data setup times

of 21 ns and write pulse widths of 45 ns make the AD7840 compatible with modern

16-bit microprocessors and digital signal processors. In the serial mode, the part

features a high data transfer rate of 6 MHz. In our system we used the parallel

interface matching out encoder.

The analog output from the AD7840 provides a bipolar output range of ± 3 V. The

AD7840 is fully specified for dynamic performance parameters such as signal-to-

noise ratio and harmonic distortion as well as for traditional DC specifications. Full

power output signals up to 20 kHz can be created.

Full specifications of the AD7840 encoder can be found in APPENDIX F.

143

Figure 66: Functional block diagram of the digital to analog encoder used in our latency

measurement system.

4.5.2. Current-to-voltage converter

A current-to-voltage converter is an amplifier that converts current to voltage. A

common application of current-to-voltage-converters is in receivers for optical

communications (Current-to-voltage converter n.d.). They convert the current

generated by a photodetector into a voltage signal for further amplification. The

input ideally has zero impedance. The input signal is a measured as a current. The

output may have low impedance, or may be matched to a driven transmission line in

high-frequency applications. The output signal is measured as a voltage. The gain,

or ratio of output to input, is expressed in units of ohms because the output is a

voltage and the input is a current. When constructed as a simple operational

amplifier circuit (Figure 67), the gain is equal to the negative of feedback resistance.

An operational amplifier is a DC-coupled high-gain electronic voltage amplifier with

a differential input and, usually, a single-ended output. An operational amplifier

produces an output voltage usually hundreds of thousands times larger than the

voltage difference between its input terminals.

144

Figure 67: Operational amplifier current-to-voltage converter

4.5.3. LM555 timer

For the timing of the Digital-to-Analog Converter in our system a LM555 digital

timer circuit was used (Figure 68).

A timer is a specific type of clock which can be utilized for controlling the

sequence of an event or process (dictionary n.d.). Although a stopwatch counts

upwards from zero for measuring elapsed time, a timer counts down from a

specified time interval. Timers can be mechanical, electromechanical, electronic

(quartz), or even software. All modern computers include digital timers of one kind

or another. When the set period expires some timers simply indicate so (e.g., by an

audible signal), while others operate electrical switches, such as a time switch, which

cuts electrical power.

Electronic timers are quartz clocks controlled by electronic circuits. Electronic

timers have higher precision than mechanical timers and furthermore are less

expensive than most mechanical and electromechanical timers.

The 555 timer IC is an integrated circuit (chip) used in many timers, pulse

generations and oscillators.it is a low price, high stability and easy to use.

145

Figure 68: LM555 timer connection diagram

146

Figure 69: The laboratory-built prototype comprising the tracker rotation mechanism with the

shaft encoder attached and the signal-conditioning electronic circuits

4.6. Oscilloscope

An oscilloscope is an electronic test instrument used to observe constantly

varying signal voltages (Kularatna 2003). The signals are usually displayed as a 2-

dimensional graph of one or more electrical potential differences using the vertical or

 axis, plotted as a function of time, (horizontal or axis). Although an oscilloscope

displays voltage on its vertical axis, any other quantity that can be converted to a

voltage can be displayed as well. Oscilloscopes are commonly used to observe the

exact wave shape of an electrical signal. In addition to the amplitude of the signal, an

147

oscilloscope can show distortion, the time between two events (such as pulse width,

period, or rise time) and relative timing of two related signals. (Kularatna 2003)

A typical oscilloscope is shown in Figure 70. It is divided into four sections: the

display, vertical controls, horizontal controls and trigger controls.

The display; usually an LCD or CRT panel laid out with both horizontal and

vertical reference lines. It is also referred as the graticule. Additionally to the screen,

most display sections also include with three basic controls; a focus knob, an

intensity knob and a beam finder button.

The vertical section; it controls the amplitude of the demonstrated signal. It

carries a Volts-per-Division () selector knob, an AC/DC/Ground selector

switch and the vertical (primary) input for the instrument. Additionally, this section

is typically equipped with the vertical beam position knob. And controls the time

base or “sweep” of the instrument. The primary control is the Seconds-per-Division

() selector switch. This section also includes a horizontal input for plotting

dual - axis signals. The horizontal beam position knob is usually located in this

section.

The trigger section controls the initial event of the sweep. The trigger can be set

automatically to restart on each sweep or it can be configured to respond to internal

or external events. The main controls of this section are the source and coupling

selector switches. An external trigger input (EXT Input) and level adjustment are

typically also included.

In addition to the basic instrument, most oscilloscopes are supplied with a probe

as shown in (Figure 70: Basic oscilloscope). The probe connects to any input on the

instrument and typically has a resistor of ten times the oscilloscope's input

impedance. This results in a .1 (-10X) attenuation factor, but helps to isolate the

capacitive load presented by the probe cable from the signal being measured. Some

probes have a switch allowing the operator to bypass the resistor when appropriate

(Kularatna 2003).

148

Figure 70: Basic oscilloscope (WorldTechPub n.d.)

The signal to be measured is fed to one of the input connectors. These connectors

are usually a coaxial connector such as a BNC or UHF type. For lower frequencies

Binding posts or banana plugs may be used. If the signal source has its own coaxial

connector, then a simple coaxial cable is used; otherwise, a specialized cable called a

"scope probe", supplied with the oscilloscope, is used. In general, for routine use, an

open wire test lead for connecting to the point being observed is not satisfactory, and

a probe is generally necessary. General-purpose oscilloscopes usually present an

input impedance of 1 mega-ohm in parallel with a small but known capacitance such

as 20 pico-farads. This allows the use of standard oscilloscope probes. Scopes for use

with very high frequencies may have 50 ohm inputs, which must be either connected

directly to a 50 ohm signal source or used with Z0 or active probes. Less-frequently-

used inputs include one (or two) for triggering the sweep, horizontal deflection for

X-Y mode displays, and trace brightening/darkening, sometimes called "Z-axis"

inputs.

149

The digital storage oscilloscope, abbreviated as DSO, is currently the preferred

type for most industrial applications. It replaces the unreliable storage method used

in analog storage scopes with digital storage. Digital storage can store data without

degradation as long as required. It also allows complex processing of the signal by

high-speed digital signal processing circuits (Kularatna 2003).

Bandwidth is a measure of the range of frequencies that can be displayed; it

refers primarily to the vertical amplifier, although the horizontal deflection amplifier

has to be fast enough to handle the fastest sweeps. The bandwidth of the oscilloscope

is limited by the vertical amplifiers and the CRT (in analog instruments) or by the

sampling rate of the analog to digital converter in digital instruments. The

bandwidth is defined as the frequency at which the sensitivity is 0.707 of the

sensitivity at lower frequency (a drop of 3 dB). The rise time of the fastest pulse that

can be resolved by the scope is related to its bandwidth approximately (Spitzer and

Howarth 1972):

Bandwidth (Hz) x rise time (sec) = 0.35

For example, an oscilloscope intended to resolve pulses with a rise time of 1

nanosecond would have a bandwidth of 350 MHz For a digital oscilloscope, a rule of

thumb is that the continuous sampling rate should be ten times the highest frequency

desired to resolve; for example a 20 Megasamples/second rate would be applicable

for measuring signals up to about 2 MHz.

Modern oscilloscopes have triggered sweeps to display events with unchanging

or slowly (visibly) changing waveforms, which occur at times that may not be evenly

spaced, Compared to simpler oscilloscopes with sweep oscillators that are always

running, triggered-sweep oscilloscopes are markedly more versatile. A triggered

sweep starts at a selected point on the signal, providing a stable display. In this way,

triggering allows the display of periodic signals such as sine waves and square

waves, as well as non-periodic signals such as single pulses, or pulses that don't

recur at a fixed rate. With triggered sweeps, the scope will blank the beam and start

to reset the sweep circuit each time the beam reaches the extreme right side of the

150

screen. For a period of time, called holdoff, (extendable by a front-panel control on

some better oscilloscopes), the sweep circuit resets completely and ignores triggers.

Once holdoff expires, the next trigger initiates a sweep. The trigger event is usually

the input waveform reaching some user-specified threshold voltage (trigger level) in

the specified direction (going positive or going negative—trigger polarity). In some

cases, variable holdoff time can be really useful to make the sweep ignore interfering

triggers that occur before the events one wants to observe. In the case of repetitive,

but quite-complex waveforms, variable holdoff can create a stable display that can't

otherwise practically be obtained. Trigger holdoff defines a certain period following

a trigger during which the scope will not trigger again. This makes it easier to

establish a stable view of a waveform with multiple edges which would otherwise

cause another trigger. Triggered sweeps can display a blank screen if there are no

triggers. To avoid this, these sweeps include a timing circuit that generates free-

running triggers so a trace is always visible. Once triggers arrive, the timer stops

providing pseudo-triggers. Automatic sweep mode can be de-selected when

observing low repetition rates.

Some oscilloscopes offer single sweeps. The sweep circuit is manually armed

(typically by a pushbutton or equivalent) "Armed" means it's ready to respond to a

trigger. Once the sweep is complete, it resets, and will not sweep until re-armed. This

mode, combined with an oscilloscope, captures single-shot events.

Types of trigger include (Kularatna 2003):

 External trigger, a pulse from an external source connected to a dedicated

input on the scope.

 Edge trigger, an edge-detector that generates a pulse when the input signal

crosses a specified threshold voltage in a specified direction. These are the

most-common types of triggers; the level control sets the threshold voltage,

and the slope control selects the direction (negative or positive-going).

 Video trigger, a circuit that extracts synchronizing pulses from video formats

such as PAL and NTSC and triggers the timebase on every line, a specified

151

line, every field, or every frame. This circuit is typically found in a waveform

monitor device; although some better oscilloscopes include this function.

 Delayed trigger, which waits a specified time after an edge trigger before

starting the sweep. As described under delayed sweeps, a trigger delay

circuit (typically the main sweep) extends this delay to a known and

adjustable interval. In this way, the operator can examine a particular pulse in

a long train of pulses.

Four our measurements we used the Agilent DSO1012A digital oscilloscope

(Figure 71). This is a 2 channel 100 MHz oscilloscope. The first channel is connected

to the DAC converter thus it is monitoring the signal from the rotary encoder and the

second channel is monitoring the signal from the photodetector.

The DSO1012A features:

 100 MHz bandwidth

 2 analog channels

 2 GSa/s sample rate half channel, 1 GSa/s each channel

 20 kpts memory half channel, 10 kpts each channel

It also offers features as:

 Sequence mode for easier debug

 Recording and playback of up to 1000 occurrences of a trigger event for

further examination. Waveforms can be stored to internal or external memory

(USB flash drive).

 Digital filtering on waveforms.

 Ability to apply a real-time digital filter the input source waveform to

eliminate unwanted frequencies from the display. Digital filtering selections

include low-pass, high-pass, band-pass and band-reject filters. Frequency

limits are selectable between 250 Hz and the full bandwidth of the

oscilloscope.

 Advanced triggering

152

Triggering options including edge, pulse width, composite video, pattern and

alternate channel trigger modes. These modes ensure capturing and viewing

hard-to-find signal conditions.

Technical sheets of the DSO1012A can be found at the APPENDIX G.

Figure 71: The DSO1012A oscilloscope used for our measurements

153

Figure 72: The diagram of the servo-mechanism which is used to control the tracker rotation

Figure 73: Digital circuit overview

154

4.7. Calculating display metrics

As described in section 2.2.2 in order the scene is correctly projected to the HMD,

metrics of the scene have to be calculated in order that the correct parameters are

applied to the VR application (XVR).

SceneSetParam(VR_TRACKER_POSITION,0.0,0.0,1);

 SceneSetParam(VR_SCREEN_SIZE,1,0.75);

 SceneSetParam(VR_EYE_SEPARATION,0.065);

Figure 74: Calculating display metrics

4.8. Adjusting stereo parallax

Stereo parallax can be readjusted on request by recalculating display metrics.

function OnEvent()

{

 if(Keypressed(VK_NUMPAD1))

 { scrsz-=0.2;

 SceneSetParam(VR_TRACKER_POSITION,0.0,0,scrsz);

 SceneSetParam(VR_SCREEN_SIZE,scrsz,scrsz*0.75);

 }

 else if(Keypressed(VK_NUMPAD2))

 {

 scrsz+=0.2;

 SceneSetParam(VR_TRACKER_POSITION,0.0,0,scrsz);

 SceneSetParam(VR_SCREEN_SIZE,scrsz,scrsz*0.75);

 }

}

155

Figure 75: Re-adjusting stereo parallax

4.9. Reading from the Tracker

4.9.1. Using the tracker as joystick device to read head position

Using the plug ‘n’ play Microsoft Joystick driver

When plugged in a Windows pc the Intretrax2 tracker is immediately recognized

as a joystick device and a driver from Microsoft provides tracking data access (Figure

77). As we measured the end-to-end tracking latency of this configuration we found

that it was significantly high (~200ms) possible to low tracking data update rate from

the Microsoft driver, thus this configuration was unacceptable for our low-latency

system.

Figure 76: When inserted, Windows recognize the Intrtrax2 tracker as a joystick

156

Figure 77: Accessing tracker data as Joystick readings with the plug 'n' play Microsoft driver

Using the InterSense server joystick emulation driver

InterSense Server provides a joystick interface for reading tracker data from the

Intertrax2 tracker. This driver is different from the “plug ‘n’ play” Microsoft driver

and it comprises of two intermediate interfaces the InterSense Joystick Interface

Driver, which is the back-end interface and the InterSense Joystick Driver which is

the front-end interface (Figure 78).

157

Figure 78: Accessing tracker data as Joystick readings with the InterSense Joystick Driver

interface

The driver had a very good performance in terms of end-to-end latency but it

caused system instability when running demanding, in terms of computational

power, VE applications. The driver was crushing causing operating system crashes

(Blue Screens of Death - BSOD) after which the system was rebooting.

The problems with latency and stability discussed in this section made the

joystick interface of the tracker unusable for out VE application.

4.9.2. Using the C++ Intersense tracker API

InterSense provides SDK and DLL/shared library, as well as troubleshooting

tools. The API can be used by the application software to initialize and retrieve data

from the InterSense devices using the InterSense library (isense.dll / libisense.so /

libisense.dylib). This library and API is provided to simplify communications with

all models of InterSense tracking devices. It can detect, configure, and get data from

up to 32 trackers, which may have multiple (up to 8) stations in some cases, such as

the IS-900 processor. The library maintains compatibility with existing devices, and

158

also makes the applications forward compatible with all future InterSense products.

The library is intended to be backwards compatible, in the sense that software

written for older versions of the DLL should generally run without recompilation

using the current version.

API organizes data in C++ structures and passes pointer to return values. Below

we can see the call to the API that returns the tracking data from the tracker.

SD_GetTrackingData()

Bool ISD_GetTrackingData(ISD_TRACKER_HANDLE handle,

ISD_TRACKING_DATA_TYPE *Data)

Get data from all configured stations. Data is places in the

ISD_TRACKING_DATA_TYPE structure. TimeStamp is only available if requested

by setting TimeStamped field to TRUE. Returns FALSE if failed for any reason.

 Handle

Handle to the tracking device. This is a handle returned by ISD_OpenTracker()

or ISD_OpenAllTrackers().

 Data

Pointer to a structure of type ISD_TRACKER_DATA_TYPE. See below for

structure definition. Orientation data order is Yaw, Pitch, and Roll for Euler angles

and W, X, Y, Z for quaternions.

ISD_TRACKING_DATA_TYPE

typedef struct { ISD_STATION_DATA_TYPE

Station[ISD_MAX_STATIONS]; } ISD_TRACKING_DATA_TYPE;

typedef struct {

BYTE TrackingStatus;

BYTE NewData;

159

BYTE CommIntegrity;

BYTE BatteryState

float Euler[3];

float Quaternion[4];

float Position[3];

float TimeStamp;

float StillTime;

float BatteryLevel;

float CompassYaw;

Bool ButtonState[ISD_MAX_BUTTONS];

short AnalogData[ISD_MAX_CHANNELS];

BYTE AuxInputs[ISD_MAX_AUX_INPUTS];

float AngularVelBodyFrame[3];

float AngularVelNavFrame[3];

float AccelBodyFrame[3];

float AccelNavFrame[3];

float VelocityNavFrame[3];

float AngularVelRaw[3];

BYTE MeasQuality;

BYTE bReserved2;

BYTE bReserved3;

BYTE bReserved4;

DWORD TimeStampSeconds;

DWORD TimeStampMicroSec;

DWORD OSTimeStampSeconds;

DWORD OSTimeStampMicroSec;

160

float Reserved[55];

float Temperature;

float MagBodyFrame[3]; } ISD_STATION_DATA_TYPE;

This API combines the performance in terms of latency of the Intersence interface

driver (which in fact is built upon this API) and is comparable in stability with the

Microsoft Driver. It also provides the extensibility to build a compatible interface for

the XVR VE application framework.

4.10. Intermediate DLL API for InterSense trackers

In order to overcome the problems and software incompatibilities described in

previous sections we developed an intermediate DLL tracker data access API for the

InterSense tracking devices and the XVR development Studio. The Intermediate API

is a DLL that serves as an intermediate proxy between the original InterSense API

isense.dll and the XVR Development Studio external DLL access API

(CVmExternDLL). It is also expandable to other VE applications that are

incompatible with the complex data structures of the InterSense DLL API and need

to simpler data types.

Intermediate DLL API uses the InterSense API to read tracking data directly from

the tracking device and converts the complex data structures to simpler readable

from the CVmExternDLL. The Intermediate DLL API was written in C++ (Figure 79).

161

Figure 79: Intermediate DLL API development

162

Figure 80: Accessing tracker data as using the Intermediate DLL API for Internense trackers

The Intermediate ALL API for InterSense tracers exports the following functions;

DLLIMPORT void OpnTrckr(void);

Opens the default tracker

DLLIMPORT double getX(void);

Returns the X axis value of the tracker as a double

DLLIMPORT double getY(void);

Returns the Y axis value of the tracker as a double

DLLIMPORT double getZ(void);

Returns the Z axis value of the tracker as a double

DLLIMPORT void ClsTrckr(void);

Closes the default tracker

163

The intermediate DLL API for InterSense tracker also provides input delaying

functionality. This functionality was useful for the experiments described in a later

section for which we needed to add a constant amount of latency to our head

tracking input in our VE application in order to assess the latency impact on memory

awareness states. Delaying of head tracking input is achieved by aging tracker

reports in a circular buffer (Figure 81) to increase latency without affecting frame rate

or tracking rate.

Figure 81: Aging tracker reports using a circular buffer

In order to use the aging feature of the Intermediate DLL API for InterSense

trackers, a multiple versions of DLL with a circular buffer enabled were compiled.

The size of the circular buffer also varied from version to version. The appropriate

DLLwas loaded at the XVR VE application (Figure 82).

Library1=CVmExternDLL("isensenew.dll");

Library2=CVmExternDLL("isensenew_delayed12.dll");

164

Library3=CVmExternDLL("isensenew_delayed25.dll");

Figure 82: Loading both DLL versions with and without delayed reporting

4.11. Latency Minimization

 “Triple buffering” and its consequent added latency were eliminated by

removing the graphics system’s frame timing by disabling the feature at the graphics

card control panel (Figure 83). Instead of using the OpenGL v-sync dependent

setting, we directly coupled the timing of our simulation-graphics application to the

display VSync through a combination of custom software and hardware measures.

This removes the extra frame of latency, but maintains a steady frame rate and

prevents image tearing. First, the OpenGL software control panel setting responsible

for synchronizing the buffer swap with the vertical blank interval is turned off. While

this has the effect of deactivating the additional third buffer, double buffering

remains intact and all drawing still occurs to the back buffer. However, since the

hardware VSync is not being used, the draw cycle is no longer locked to 60 Hz, and

runs instead at a higher rate (130-300 Hz, depending on VE image complexity)

(Figure 84). Because, the buffer swap is no longer tied to the display’s vertical blank

interval, images are swapped into the front buffer as soon as they are completed.

This results in image tearing where portions of successive separate images generated

during each 60 Hz interval appear as distinct horizontal bands within the same

display frame.

165

Figure 83: Turning of triple buffering and Vertical Sync from the graphics card control panel

Figure 84: Turning off VSync from the VE application and setting frame rate to maximum

4.12. Measurements

In our system, the end-to-end-latency is measured using a variation of the

techniques described in section 2.4, designed to accurately measure latency of the

Intertrax2 and the InsertiaCube3 head tracker, by utilizing a low-cost, custom-made

portable measuring mechanism with relative angular resolution of 0.02° and internal

latency of 2ms. Previous methods used a pendulum which was moving a 6 DOF

(Degrees of Freedom) positional tracker about the 3-rotational axes (i.e. roll, pitch

and yaw) and along the 3 positional axes (i.e. x, y and z). The orbit of the tracker

movement was forming an arc and a photodiode or encoder was reporting crossings

166

through a point. In the proposed system, the tracker is capable only to perform

rotational 3-DOF movement tracking resulting in higher accuracy because of

translational error control. In particular, the tracker movement at the measurements

is restricted to rotational only, on one axis. The data-acquisition system for

measuring the end-to-end latency is illustrated in Figure 61. A custom made modular

servo-mechanism, depicted in Figure 63, with a 14-bit, parallel-output digital rotary

encoder attached to its shaft rotates the tracker back-and-forth within a preset

threshold angle. The 14-bit resolution of the encoder matches the angular resolution

of the tracker used in this study. The angular velocity and arc of the movement are

fully controllable through a power supply and a double-pole/double-throw switch.

The encoder output signals are interfaced to a D/A converter and then passed to the

oscilloscope. The XVR VE application is configured such that passing through a

threshold angle results in VE changes. Both the tracker and the VE application are

zero-calibrated prior to the measurements.

The original scene is photorealistically illuminated using pre-computed radiosity

textures and stereoscopically rendered, using XVR’s side-by-side stereoscopic

rendering feature. The VE represents a room as described in section 5.1. The polygon

count of the scene was ~140,000 polygons. A box is superimposed at every frame on

the uppermost left corner of the screen (Figure 5). The application is configured to

change the color of the box from black to white and vice versa at each threshold

crossing of the tracker. A photodiode with spectral sensitivity in the visible light is

attached to the front of the monitor and it is used to measure the brightness changes

of the superimposed box. Rather than using the Head Mounted Display (HMD)

system to be utilized for future experimental work, we used a standard LCD monitor

configured to refresh at 60Hz similar to our Kaiser Electro-optics Pro-View 50 Head

Mounted Display described in CHAPTER 2 that was also used in experiments about

the effect of latency in immersive simulations described in 0. The small dimensions of

the HMD displays make it hard to attach a photodiode on it. The refresh rate of both

LCD and HMD displays is similar (60 Hz). Each monitor is configured to display the

VE at 1024*1024 768 resolution matching the resolution of the HMD displays. The

167

photodiode output signal is amplified using an operational amplifier-based current-

to-voltage converter. The laboratory-built prototype comprising the tracker rotation

mechanism with the shaft encoder attached and the signal-conditioning electronic

circuits is depicted in a digital oscilloscope with waveform storage capability is used

to measure and store parallel digital samples of the D/A converter and amplifier

output signals, corresponding to the tracker position and the display brightness

level, respectively. An example of these signals is illustrated in Figure 86.

The oscilloscope used in the experimental setup is configured to acquire 10.000

samples at a time frame of 1 second (i.e. one sample per 1/10 of a millisecond).

Figure 85: Test scene for latency measurements

The samples acquired by the oscilloscope are downloaded to a PC through a USB

communication interface. Implemented software compares the individual values of

the signals measured, in order to calculate the time-shift between the passing of the

tracker through the threshold angle and the black-to-white transition of the

polygons. This time-shift is equal to the end-to-end latency of the system. Estimates

(mean ± standard deviation) of the VE latency were derived from averaging

measurements of a hundred back-and-forth threshold crossings by our rotation

mechanism; fifty of them when moving the tracker from right to left and fifty vice-

versa. The estimated latency of our system was measured to be 90ms ±10% before

minimization processes were applied as described below, inclusive of the latency

induced by the refresh rate of the screen (Figure 87).

168

Figure 86: An example of the signals measured using the oscilloscope, corresponding to the

tracker position and the display brightness level, respectively

4.12.1. Captured data

The DSO1012A offers data capturing to a USB flash memory as CSV data. Each

capture stores 10000 continuous samples at specified frame. A frame of 1 second was

chosen

169

Figure 87: Raw captured data plot

4.12.2. High frequency noise removal (moving average)

Moving average is a type of finite impulse response filter used to analyze a set of

data points by creating a series of averages of different subsets of the full data set.

Given a series of numbers and a fixed subset size, the moving average can be

obtained by first taking the average of the first subset. The fixed subset size is then

shifted forward, creating a new subset of numbers, which is averaged. This process is

repeated over the entire data series. The moving average is the plot line connecting

all the averages. A moving average is a set of numbers, each of which is the average

of the corresponding subset of a larger set of data points. A moving average may also

use unequal weights for each data value in the subset to emphasize particular values

in the subset. A moving average is a type of convolution and so it can be viewed as

an example of a low-pass filter used in signal processing. When used with non-time

series data, a moving average filters higher frequency components without any

-1,500000

-1,000000

-0,500000

0,000000

0,500000

1,000000

-1,000000 -0,500000 0,000000 0,500000 1,000000 Zero point CH2 Volt

Detector CH1 Volt

Encoder CH2 Volt

170

specific connection to time, although typically some kind of ordering is implied.

Viewed simplistically it can be regarded as smoothing the data.

Figure 88: Moving average on a set of data.

4.12.3. Linear interpolation

Linear interpolation is a method of curve fitting using linear polynomials. It is

heavily employed in mathematics (particularly numerical analysis), and numerous

applications including computer graphics (Meijering 2002). It is a simple form of

interpolation.

The linear interpolant is the straight line between two given points, given by the

coordinates () and(). For a value in the interval(), the value along

the straight line is given from the equation

which can be derived geometrically from Figure 89: Given the two red points, the

blue line is the linear interpolant between the points, and the value y at x may be

171

found by linear interpolation. It is a special case of polynomial interpolation with

 .

Solving this equation for , which is the unknown value at , gives

 ()

() ()

which is the formula for linear interpolation in the interval (). Outside this

interval, the formula is identical to linear extrapolation.

This formula can also be interpreted as a weighted average. The weights are

inversely related to the distance from the end points to the unknown point; the closer

point has more influence than the farther point. Thus, the weights are

 and

,

which are normalized distances between the unknown point and each of the end

points.

Figure 89: Given the two red points, the blue line is the linear interpolant between the points,

and the value y at x may be found by linear interpolation

Linear interpolation on a set of data points (), ()… () is defined as

the concatenation of linear interpolants between each pair of data points. This results

in a continuous curve, with a discontinuous derivative (in general), thus of

differentiability class .

172

 () ()

where denotes the linear interpolation polynomial defined above

 () ()
 () ()

()

It can be proven using Rolle's theorem that if f has a continuous second

derivative, the error is bounded by

| |
()

)

 |()|

The approximation between two points on a given function gets worse with the

second derivative of the function that is approximated.

Figure 90: Moving average (blue) and linear interpolation (black)

4.12.4. Results

The estimated latency of our system was measured to be 90ms ±10% before

minimization processes were applied as described below, inclusive of the latency

induced by the refresh rate of the screen.

y = 0,00016818011358725500x - 0,78493507860027000000

-1

-0,5

0

0,5

1

1,5

0 2000 4000 6000 8000 10000 12000

E-F

E-F

Linear (E-F)

173

After disabling added latency sources described in section 2.4.2, the end-to-end

latency of our system was measured again using the same measurement technique

described above. The new estimated latency of our VE was measured to be slightly

below 50ms ±10%, a reduction of almost 50%, inclusive of the latency induced by the

refresh rate of the screen. The estimated latency and the latency reduction is less or

comparable to previous work (Hill, Adelstein and Ellis 2004), in this case using a

more complex environment of high polygon count, accurate measurements via an

oscilloscope and a custom-made, low-cost, portable system.

4.13. Chapter Summary

I this chapter we presented the hardware and software setup for the latency

measurement mechanism presented in this thesis. We analyzed the digital circuit

components and setup of the measurement mechanism and introduced the

Intermediate DLL API used for interoperability between our head tracker hardware

and the VE application.

174

CHAPTER 5. Latency Experiment

5.1. The 3D Scene for Latency Experiments

In order to explore whether the cognitive impact of latency is severe for spatial

awareness or whether there is adaptation to latency occurring, we investigated the

effect of latency on 3D spatial cognition, spatial awareness states and 3D mental

models and imagery.

A 3d scene depicting an apartment was created. The 3d apartment scene included

3 sub-areas, the office sub-area, the kitchen sub-area and the lounge sub-area. The 3d

scene contained objects both consistent and inconsistent to each sub-area. In order to

define the type and the degree of consistency of objects which could be found in an

apartment scene results from a previous study (Zotos, Mania and Mourkoussis 2009)

were used. This study (Zotos, Mania and Mourkoussis 2009), in order to define

which objects were consistent and which objects were inconsistent in relation to the

context of the scene (type of consistency), a set of questionnaires were designed that

contained a list of objects asking participants to “Rate each object for how likely the object

would to be appear in a room like this.” The methodology was similar to the one

described in the (Brewer and Treyens 1981) paper and pilot questionnaires were

created containing a list of objects related to three sub-areas in the apartment of this

(Zotos, Mania and Mourkoussis 2009) study:

 An office area

 A lounge area

 A kitchen area

5.1.1. Creating the Scene

An eight by eight meters virtual house was chosen as the rendered displayed

environment, divided in four zones according to the experiment’s specifications. The

four zones designed was the lounge, office and kitchen area.

3D models were created or downloaded from 3D models’ repositories and

were placed in a scene with the help of an industry-standard 3D modeling software

175

(Autodesk 3ds Max 2011). The final result can be seen in Figure 95, which depicts the

scene in lit mode (after calculating the lighting space of the scene).

5.1.2. Radiosity Solution

As described in a previous section radiosity calculates diffuse reflections in a

scene and results in a finely divided geometrical mesh. Heat transfer theory describes

radiation as the transfer of energy from a surface when that surface has been

thermally excited. This encompasses both surfaces that are basic emitters of energy,

as with light sources and surfaces that receive energy from other surfaces and thus

have energy to transfer.

The radiosity algorithm was utilized in order to simulate light propagation and

render the scene. In order to apply the radiosity solution, the following parameters

should be defined:

 Number of iterations:

The maximum number of radiosity iterations. The radiosity engine bounces

rays around the scene and distributes energy on surfaces. Between the

iterations, the engine measures the amount of variance (noise between

surfaces) that was computed. As the number of algorithmic iterations of

surface light propagation increases, it improves the radiosity shading

accuracy and polygon count. For our solution we used 3 iterations.

 Minimum and maximum mesh size:

Defines the minimum mesh size that faces are not divided smaller than.

Maximum mesh size is the size of the largest faces after adaptive subdivision.

For our solution we used maximum mesh of 0.4m and minimum mesh of

0.01m.

 Initial quality (%):

This parameter sets the quality percentage at which to stop the Initial Quality

stage, up to 100%. For example, if the initially quality is set to 80%, the result

is a radiosity solution that is 80% accurate in relation to total energy

176

distribution. A quality of 80 to 85% is usually sufficient for good results. For

our solution we used 85%.

 Global subdivision settings:

This parameter turns on the radiosity mesh for the entire scene.

 Regather indirect illumination:

In addition to recalculating all the direct lighting, the algorithm recalculates

the indirect lighting at each pixel by regathering illumination data from the

existing radiosity solution. Using this option, the most accurate, artifact-free

images can be produced, adding, however, a considerable amount of

rendering time.

 Photometric lights:

Photometric lights use photometric (light energy) values that enable the user

to more accurately define lights as they would be in the real world. The user

can create lights with various distribution and color characteristics, or import

specific photometric files available from lighting manufacturers.

Radiosity algorithms display view-independent diffuse inter-reflections in a

scene assuming the conservation of light energy in a closed environment. The

surfaces of objects are divided into patches or elements. Despite transmitting energy

to others, a patch will also reflect the energy from other meshes that arrives on its

surface into the scene. These processes will be iterated until energy equilibrium in

the closed space is achieved. Radiosity produces color-bleeding effects from one

surface to another, shades inside the shadow area and creates soft-edge shadow with

penumbrae along shadow boundaries. All of these results imitate the physical

propagation of light in the real environment. The number of algorithmic iterations of

surface light propagation as increases improves the radiosity shading accuracy and

polygon count.

Figure 92 (right) and Figure 95 show the scene after applying the radiosity

solution compared to the initial geometry used as input (Figure 91 and Figure 93)

and the direct illumination, flat shaded rendering of the scene in Figure 92 (left) and

Figure 94.

177

Figure 91: Top view of the experimental scene, without shading

Figure 92: Flat shaded version of the experimental scene (left) vs. the radiosity solution (right)

(top view)

178

Figure 93: Rendering of experimental scene with no shading

Figure 94: Flat shaded rendering of the experimental scene

179

Figure 95: Radiosity solution rendering of the experimental scene

5.1.3. Exporting geometry for XVR

XVR studio offers plugins for exporting the geometry from the 3d modeling

applications to the AAM file format.

AAM (once the acronym of Ascii Animated Mesh, now waiting for a better

meaning) is the XVR native format for the description of triangular meshes. Its

features are:

 optimized for loading times in XVR

 1:1 correspondent to XVR data structures

 available in ASCII (to easily allow inspection and manual modifications) or

binary (for faster loading)

 support to multitexturing, animation, smoothing groups, user properties,

shaders, skinning

 exporter plugins for 3D Modeling Applications

Scenes created with 3d modelers may be provided with a highly realistic

precomputed lighting, as off-line rendering can make use of lighting models much

more sophisticated of those suitable for real-time. It is anyway possible to export

180

AAM models preserving this rendering information, by “rendering on textures”.

Basically some textures are created which may be:

 Complete maps (material + diffuse map + lighting map, combined in one

single texture layer)

 Lighting maps (which result in two texture layers, the “traditional” diffuse

map + lighting map)

For our VE the following procedure was used:

 The whole 3d scene was selected and selected and was “Rendered to Texture”

item from the Rendering menu.

 In the “Output” frame, a complete map on the diffuse channel texture map

type was generated

 Shadows, Direct Light and Indirect Light were turned On

 Map size of 256x256 was used for baked textures of most of the objects except

from the walls the ceiling and the floor were maps size of 2048x2048 was used

 The 3d application generated baked texture with the TIFF picture format. The

TIFF textures were converted to JPEG textures in order to be used with the

XVR application.

 Geometry of the scene was exported to the AAM file format using the XVR

AAM exporter plugin.

181

Figure 96: The AAM exporter plugin window

5.2. Pilot studies

In order to determine the appropriate number of objects contained in the VE and

the memory task and the appropriate exposure time of the participants in the main

experiment scene, a pilot study was conducted in October 2011. 20 participants

belonging to the research population of the Technical University of Crete were

recruited, with their age ranging from 18-28.

Two versions of the same VE scene of an apartment consisting of 3 sub-areas

(kitchen, office, lounge) described in 5.1 were used in the pilot studies. The first

version contained 30 objects, 10 placed at each of the three sub-areas and the other

contained 24 objects, 8 placed at each of the sub-areas. In both versions half of the

objects placed at each of the sub-areas were consistent with the context of each sub-

area and the other half were inconsistent (see 5.1).

182

Participants were exposed to a Virtual Environment setup close to the setup of

the main study to follow except of the 2 latency conditions (instead of 3).

From the beginning of the pilot study it was clear that the participants were

having difficulties in the memory placement task in the 30-objects version scene,

therefore we gave up this version and continued the pilot studies with the 24-objects

version.

The remaining group of participants were exposed to the scene with the 24

objects which was decided to be used to the subsequent main

experiment.Preliminary analysis was conducted within the results of this group.

5.2.1. Preliminary Results

The accuracy of memory was measured by counting the number of correct

positions of objects (out of a possible 24). Awareness state data was considered in

terms of prior probabilities. Prior probabilities reflect on the following: “Given that

the response of a participant is correct (correct placement of object), what is the

probability that the participant has chosen a particular awareness state?” Prior

probabilities were obtained by calculating the proportions of correct answers falling

in each of the three memory awareness categories for each participant.

Total Correct

The total number of objects that were identified in the correct location was

counted for each participant (Table 5).

Table 5: Number of correct responses and standard deviations as a function of viewing condition

(no latency, high latency) and schema consistency (consistent, inconsistent)

No latency (n=4) High latency (n=4)

 Consistent Inconsistent Consistent Inconsistent

Total correct (out of 24)

7.00

(3.92)

6.75

(3.40)

5.75

(1.71)

5.50

(3.70)

183

Trends in the data indicate that, of these participants, more items were being

correctly recalled in the correct location with no latency (M= 6.88) than with hi

latency (M= 5.63). This seemingly does not depend upon whether the objects are

consistent or inconsistent. These pilot data are based on a small number of

participants (n=4) and are at this stage inappropriate for further parametric statistical

analysis. The reliability of this trend will be verified using a 2x2 mixed analysis of

variance (ANOVA) with viewing condition (no latency, hi latency) entered as a

between subjects variable and the context consistency of the objects (consistent,

inconsistent) entered as a within subjects variable in the main experiment.

Confidence

Confidence reports (No confidence, Low confidence, Moderate confidence, Confident,

Certain) were converted to numerical values ranging from 1 assigned to ‘No

confidence’ and 5 assigned to ‘Certain’. Mean values are presented in Table 6.

Table 6: Mean confidence rating and standard deviation as a function of viewing condition (Hi

latency, No latency) and context consistency (consistent, inconsistent)

No latency (n=4) High latency (n=4)

 Consistent Inconsistent Consistent Inconsistent

Confidence (5-point scale)

3.52

(.58)

3.56

(.50)

2.77

(.46)

3.35

(.71)

Trends in the data indicate that, of these participants, confidence ratings were

slightly higher for responses to inconsistent objects (M=3.46) than consistent objects

(M=2.90), and that confidence ratings were slightly higher in the no latency condition

(M=3.54) than the hi-latency condition (M=2.81). Importantly, there are suggestions of

184

an interaction, with confidence ratings generally lower in the hi-latency condition for

consistent objects (M=2.27) than any other.

As per the above section, these pilot data are based on a small number of

participants (n=4) and are at this stage inappropriate for further parametric statistical

analysis.

Awareness states

The proportion of correct responses assigned to each awareness state is displayed

in Table 3.

Table 7: Proportion of correct responses and standard deviations as a function of viewing

condition (Hi latency, No latency), context consistency (consistent, inconsistent) and reported

awareness state (Type A, Type B, Guess)

No latency (n=4) High latency (n=4)

 Consistent Inconsistent Consistent Inconsistent

TYPE A 0.55 (.46) .67 (.34) .24 (.17) .77 (.30)

TYPE B 0.10 (.21) .33 (.34) .14 (.10) .19 (.32)

Guess 0.34 (.45) .00 (.00) .63 (.38) .04 (.07)

Trends in the data indicate that, of these participants, more inconsistent objects

were associated with a remember response (M= 0.72) than consistent objects

(M=0.39), and a similar pattern is found for ‘know’ responses (M=.26 vs. M=0.12).

Naturally, consistent objects were therefore associated mainly with guess responses

(M=0.48) compared to guess responses for inconsistent objects (M=0.02).

In general there are no indications in this data set that the proportion of

remember responses differ greatly between the no latency condition (M=0.55) and the

hi latency condition (M=0.49), with similar indications with the proportion of know

responses in the no latency condition (M=0.10) and the hi latency condition (M=0.12),

185

as well as the proportion of guess responses in the no latency condition (M=0.34) and

the hi latency condition (M=0.38).

However, there appears to be the first signs of an interaction between the latency

condition (no latency, high latency) and the object consistency (consistent,

inconsistent) across the three reported awareness states. In particular, there are a

disproportionately large proportion of guess responses for consistent objects in the

high latency condition (M=0.63), and correspondingly a disproportionately low

proportion of remember responses for consistent objects in the same latency

condition (M=0.24).

These pilot data are based on a small number of participants (n=4) and are at this

stage inappropriate for further parametric statistical analysis. The reliability of these

trends will be verified with a series of mixed analysis of variance (ANOVA) for

each awareness state with viewing condition (no latency, high latency) entered as a

between subjects variable and the context consistency of the objects (consistent,

inconsistent) entered as a within subjects variable in the main experiment.

Discussion of pilot data

The preliminary analyses of the pilot data indicated that latency in the VE

simulation may influence the accuracy of memory for objects in that environment.

The correct objects and their locations may be remembered more accurately when

there is no latency than when there is high latency. The pilot data also indicated that

object consistency with the visual scene may have an influence too. Interestingly, the

proportion of correct responses that had a vivid ‘remember’ experience was greater

when the objects were inconsistent with the environment, than when they were

consistent. This appears to potentially interact with latency, with a disproportionate

number of correct responses to consistent objects in the high latency condition being

associated with guesses. Confidence scores interacted with latency and object

consistency in a similar way, with lower confidence scores for responses to consistent

objects in the high latency condition.

186

It has been noted previously by some of these authors that pure accuracy

measurements are an imperfect measure of the memorial experience in VE

simulations. This has to some extent been predicated by consistently high

performance on accuracy tasks that is underpinned by differential patterns in actual

memorial experience (Mania, Troscianko, et al. 2003), (Mania, Badariah and Coxon

2010), (Bennett et al. 2010). In this initial pilot exploration there are some suggestions

that, unlike previous variations, variations in latency may impact upon overall

accuracy. This can be explained simply as additional perceptual processing resources

that may have been dedicated to interpreting and updating the internal mental scene

as a result of the latency can instead be redistributed to processing the objects within

it. That is to say, navigating a world in which there is no latency may minimize the

perceptual resources needed to cope with this unnatural motion and instead allow

these to be re-distributed to other perceptual tasks such as object recognition.

In terms of the memorial experiences that underpin these recollections, past

studies have indicated that low visual fidelity environments, or low interactivity,

may be more attentionally demanding because of their novelty or variation from

‘real’ resulting in more vivid remember responses (Mania, Badariah and Coxon

2010). That is to say that deviation from ‘real’ may capture attention. This is typified

in the current experiment in conditions where the objects are not ones you might

expect in the environment (inconsistent objects) for which there are clear indications

that this may lead to more vivid ‘remember’ experiences of seeing them in the VE

simulation. Potentially of more interest are the measurements of memorial

experiences associated with inconsistent objects when there is a high latency. This

combination of conditions is potentially the least consistent with reality in that the

interactivity, the latency, and the objects are inconsistent with reality. Interestingly

this combination produced the highest proportion of ‘remember’ responses in this

exploratory data set which is consistent with the attentional hypothesis that has been

put forward based upon consistency with reality. More broadly, the suggestion is

tentatively supported that vivid recollective experiences occur more frequently when

there is a match between the novelty of the object being remembered and the novelty

187

of the environment it is in. That is, that objects and their environments are processed

in an interactive way that is determined by consistency (Davenport and Potter 2004).

Nevertheless, the present data also pose an interesting challenge for

interpretation. There are initial indications that participants had particular difficulty

with consistent objects in the hi-latency condition, with generally lower accuracy,

lower confidence ratings and a disproportionate amount of guess responses. One

possibility is that interacting with a high latency VE simulation is particularly

demanding of perceptual processing resources, such that any remaining resources

are devoted to processing and interpreting objects that ‘pop-out’ by varying from

reality at the expense of interpreting those that are consistent. This would suggest at

least two stages at which attentional demands may influence processing of objects in

similar VE simulations. The first stage may be based upon additional processing

demands that arise from the VE environment. If these demands are interactive (e.g.

latency) then these make more demands of processing resources than those that are

less interactive (e.g. radiosity). The second stage then makes use of the remaining

processing resources. Where these are novel aspects of the environment that vary

from ‘real’ may receive more attention than those that are consistent. If sufficient

resources are available then both novel and non-novel items may be attended to for

processing. This interpretation if of course tentative and rests on a number of

assumptions that would require further testing if this result was found with a larger

sample size. A larger sample size, though, could eliminate such effects and showcase

that perceptual adaptation is occurring in a manner that subjects adapt to added

latency and communicate similar object recognition performance irrespectively of the

presence of high latency levels. We describe the main complete formalized

experiment in the following section.

Our understanding of how such processes work within fully immersive

environments, such as those that VEs provide, is only now beginning to be explored

and it is possible, indeed likely, that there will be differences between real-world

experiences and simulated scenes. In any case, the pilot study results presented here

stimulate a number of considerations for further testing when the full-scale

188

experiments are conducted with the appropriate number of participants and

parametric statistical manipulation of data is possible. There is some indication that a

high saliency environment may have a profound effect upon memory for the objects

and their locations within it.

5.3. The Main Experiment

5.3.1. Apparatus

The VEs were presented in stereo XGA resolution (2 channels of XGA (1024*768)

resolution) on a Kaiser Electro-Optics Pro-View 50 Head Mounted Display with a

Field-of-View comprising 50 degrees diagonal. An Intersense Intertrax2, three degree

of freedom tracker was utilized for rotation. The viewpoint was set in the middle of

the virtual room and navigation was restricted only to freely circle around that

viewpoint (yaw) and to 180 degrees vertical head rotation (pitch). Participants were

sitting on a swivel chair during exposure. The application ran on a standard PC with

an average cost graphics card. Participants weren’t allowed to move

forward/backward and navigate through the scene.

5.3.2. Participants

60 participants (Figure 97) were recruited belonging to the research population of

the Technical University of Crete, their age ranging from 18-28. The 60 participants

formed 3 balanced for age and gender, groups of 20, corresponding to the three

latency conditions. Participants in all conditions were naive as to the purpose of the

experiment. All participants had normal or corrected to normal vision and no

reported neuromotor or stereovision impairment. The experimental VE was set up in

a dedicated experimental space on campus, which was darkened to remove any

periphery disturbance during the exposure.

189

Figure 97: Photo of participant

5.3.3. Visual Content

The original scene was photorealistically illuminated using pre-computed

radiosity textures and stereoscopically rendered, using XVR’s side-by-side

stereoscopic rendering feature. The VE represented a room as shown in Figure 98.

The radiosity-rendered space was divided in three zones including a kitchen/dining

area, an office area and a lounge area. The space was populated by objects consistent

as well as inconsistent with each zone’s context. Four consistent objects and four

inconsistent objects populated each zone resulting in 24 objects located in the scene

overall, 8 in each zone. The polygon count of the scene was ~180,000 polygons.

The between-subjects factor was “minimized System Latency” vs. “standard

latency” vs. “400ms added to minimum system latency” and the within-subjects factor

190

was “Context specific” vs. “Inconsistent objects”. According to the experimental group

that they were assigned to, participants completed a memory recognition task

including self-report of spatial awareness states and confidence rating for each

recognition after exposure to one out of the three experimental conditions.

 Minimized System Latency, referred as “Low Latency”: A stereo-rendered

radiosity simulation of a scene displayed on a stereo head-tracked HMD

including consistent as well as inconsistent objects in each zone. The tracking

latency utilized was the minimum system latency of around 50ms.

 Elevated Latency, A stereo-rendered radiosity simulation of a scene displayed

on a stereo head-tracked HMD including consistent as well as inconsistent

objects in each zone. The tracking latency utilized was around 90ms.

 400ms latency added to Minimum System Latency, referred as “Hi Latency”:

A stereo-rendered radiosity simulation of a scene displayed on a stereo head-

tracked HMD including consistent as well as inconsistent objects in each

zone. The tracking latency utilized was the minimized system latency of

around 50ms with added latency of approx. 400ms.

The experimental scene in all latency conditions consisted of the so-called “Room

frame” objects: walls, floor, ceiling and doors. It also included standard objects such

as desks, dining table, chairs, shelves etc. According to (Brewer and Treyens 1981),

“the room frame contains the information about rooms that one can be nearly certain

about before encountering a particular room”. As mentioned the scene was

populated by four consistent objects in each zone as well as four inconsistent objects

for each zone. The list of objects was assembled based on an initial pilot study which

explored which objects were expected to be found in each area and which were not

(Zotos, Mania and Mourkoussis 2009). According to this study, 25 participants

ranked the objects on the list. The consistency of each item was rated on a scale from

1 to 6 according to whether each object was expected to be found in each area or not,

with 6 being the most expected, and 1 being the least. Based on these ratings,

consistent objects were selected from the high end of the scale, and the inconsistent

ones from the low end.

191

The objects were distributed over locations indicated in a testing blueprint

similar to the one presented in Figure 98. Participants were required to select from a

recognition list provided which object was present in each location. All twenty-four

objects positioned in the house scene as follow:

Kitchen Area

Consistent Mixer Saucepan Toaster Fruits

Inconsistent Bike wheel Shovel Calculator Baseball bat

Lounge Area

Consistent Remote

Control

Flower vase Ashtray Magazine

Inconsistent Tennis racket Hammer Warrior

Helmet

Basketball

Office Area

Consistent Pencils Laptop Books Printer

Inconsistent Trumpet Tennis ball Cashier

Machine

Sword

192

Figure 98: The experimental VE scene

5.3.4. Procedure

The experiment was set to be completed in three stages by each participant.

Initially, a preliminary training phase took place requiring participants to wear the

HMD device. During this stage, all appropriate adjustments were conducted

accordingly for each individual. After participants familiarized themselves with the

device and the stereoscopic VE then the second stage of the experiment was initiated

which was the main phase of the experiment. The third stage took effect when

participants finished the main experiment, requiring them to complete an online

memory recognition questionnaire.

193

The experiments were conducted during May 2012. Participants were led to

believe that the main experiment was just a practice phase before the actual main

experiment took place, aiming to familiarize them with the HMD (see APPENDIX A

for a detailed description). The reason for this was to prevent the participants from

being aware of the experimental task prior to exposure and avoid the development of

mnemonics. Participants were given identical instructions across conditions. The

room where the experiment was taking place was kept dark during exposure.

The Inter Pupillary Distance (IPD) of each participant was measured prior to

exposure and the stereo application’s parallax was adjusted accordingly for each

individual. All participants had time to feel comfortable with the apparatus and 3D

environments during the practice phase. A practice scene was created which

included 3D primitive shapes such as boxes and cylinders (Figure 99) and

participants were let to look around the scene just like the main phase. After the

practice phase, the main scene of the experiment was loaded while participants were

still led to believe that this was just a practice phase thus, they were not aware of the

experimental task to follow. Participants were instructed to look around the room at

their own pace and to examine it in all directions for 210 seconds of exposure either

to the low, the elevated or the high latency condition. The time of exposure was

defined after detailed pilot studies which ensured that there were no apparent floor

(the task being too hard) or ceiling (the task being too easy) effects.

194

Figure 99: Simple 3d pattern scene used for calibration.

After the exposure, participants were led to another room and asked to complete

a memory recognition questionnaire (APPENDIX B). Participants were not informed

that they would subsequently complete a memory task. The questionnaires were

administered within 1 minute after VE exposure.

 A top view of the bare environment was provided including 24 numbered

vacant object positions, 8 positions for each of the three sub-areas, in which an object

had been present (Figure 100). In the memory recognition test administered,

participants were required to select which object they considered they saw during

exposure in each numbered position, selecting objects from an object recognition list

as well as one out of 5 levels of confidence: No confidence, Low confidence, Moderate

confidence, Confident, Certain, and two choices of awareness states: TYPE A, TYPE B

(description below). A recognition list was devised including a list of objects per scene

zone. Each zone included in alphabetical order the eight present objects as well as

195

eight absent objects (four inconsistent and four consistent) in each zone. The list

included a total of 48 objects;

 Twelve consistent objects that were present (4 at each sub-area)

 Twelve consistent objects that were absent (4 at each sub-area)

 Twelve inconsistent objects that were present (4 at each sub-area)

 Twelve inconsistent objects that were absent (4 at each sub-area)

Prior to the memory recognition task, awareness states were explained to the

participants in the following terms:

 TYPE A means that you can recall specific details. For example, you can

visualize clearly the object in the room in your head, in that particular

location. You virtually ‘see’ again elements of the room in your mind, or you

recollect other specific information about when you saw it.

 TYPE B means that you just ‘know’ the correct answer and the alternative you

have selected just ‘stood out’ from the choices available. In this case you can’t

visualize the specific image or information in your mind.

196

Figure 100: The bare environment top view

The list of objects was assembled based on an initial pilot study which explored

which objects were expected to be found in each area and which were not. 25

participants ranked the objects on the list. The consistency of each item was rated on

a scale from 1 to 6 according to whether they expected to find each object in each

area, or not with 6 being the most expected and 1 being the least. Based on these

ratings, consistent objects were selected from the high end of the scale and the

inconsistent ones from the low end.

5.3.5. Simulator Sickness

197

Simulator sickness which is a potential side effect of all HMDs in general, has

been observed during the experiment presented here too. Participants reported

several symptoms related to simulator sickness such as fatigue, headache, dizziness,

visual discomfort, and nausea. There also exist other indirect effects of VEs on the

visual system such as eyestrain, changes in binocular vision and visual acuity,

balance, nausea, and motion sickness. Participants experienced the aforementioned

symptoms to varying degrees. Various articles exist in related literature focusing on

possible causes of simulator sickness such as system latency (DiZio, Lackner and

Matin 1997), (Cobb, et al. 1999), limited Field-of-View (DiZio, Lackner and Matin

1997), Image scale factor (Draper, et al. 20001), etc. Apart from the previous factors

that provoke simulator sickness, other aspects of the HMD that contribute to

participant discomfort exist. The HMD itself weighted 1 Kg making some

participants uncomfortable during the experiment. Additionally, as a result of

improper adjustment of the Interpupillary Distance (IPD) participants perceive

dissimilar imagery from their eyes. Nevertheless, the experiments reported here were

conducted without any participant interrupting the procedure because of simulator

sickness.

5.4. Statistical Analysis

This section presents the basic statistical principles employed in order to analyze

the acquired memory recognition self-report.

5.4.1. Analysis of Variance

In statistics, ANalysis Of VAriance (ANOVA) is a collection of statistical models,

and their associated procedures. ANOVA procedures are powerful parametric

methods for testing the significance of the differences between sample means where

more than two conditions are used, or even when several independent variables are

involved (Coolican 1999). ANOVA is used to compare the variance between the two

groups with the variability within each of the groups. This comparison is in the form

of a ratio known as the F-test. A high value for F indicates a strong effect, i.e. the

variance between groups is higher than the variance within the groups. The strength

198

of the effect is given by the p value. The p value represents the probability that there

is no between groups variance. This is called the null hypothesis and is disproved if a

value of p below 0.05 is returned.

5.5. Results and Discussion

5.5.1. Total Correct (Hits)

The total number of objects that were identified in the correct location were

summed for each participant.

Table 8

The total number of objects identified in the correct location (displayed in Table

8) was analyzed using a 2x3 mixed ANOVA. Latency (hi, mid, lo) was entered as a

between subjects variable, with the context consistency of the objects (consistent,

inconsistent) entered as a within subjects variable. A minimum alpha level of .05 was

used throughout the analyses to judge a reliable difference.

No reliable main effects of latency were found (F(2,58)=0.54, p>.05) and no

interaction was found between latency and the context consistency of the objects

(F(2,58)=0.04, p>.05). However, there was a main effect of the context consistency of

the objects (F(1,58)=6.85, p<.05, partial eta-squared = 0.11). More objects were

reported in the correct position when they were inconsistent with the context (Mean

= 6.31, SD = 2.79) compared when to objects that were consistent with the context

(Mean = 5.44, SD = 2.25).

 Hi Latency (n= 20) Mid Latency (n=20) Low Latency (n=21)

 Consistent Inconsistent Consistent Inconsistent Consistent Inconsistent

Total

correct

(out of

24)

5.10 (2.29) 5.90 (2.38) 5.40 (2.68) 6.40 (2.98) 5.81 (1.78) 6.62 (3.04)

199

5.5.2. Total Misses – Present Objects

The total number of objects that were incorrectly placed, but had been present in

the room, were summed for each participant.

Table 9

The total number of misses for present objects (displayed in Table 9) was

analyzed using a 2x3 mixed ANOVA. Latency (hi, mid, lo) was entered as a between

subjects variable, with the context consistency of the objects (consistent, inconsistent)

entered as a within subjects variable. A minimum alpha level of .05 was used

throughout the analyses to judge a reliable difference. No reliable main effects of

latency (F(2,58)=0.50, p>.05), context consistency of the objects (F(1,58)=0.87, p>.05),

or an interaction between the two were found (F(2,58)=1.92 p>.05).

5.5.3. Total Misses – Absent Objects

The total number of objects that were selected which had not been in the room

was summed for each participant.

Table 10

 Hi Latency (n= 20) Mid Latency (n=20) Lo Latency (n=21)

 Consistent Inconsistent Consistent Inconsistent Consistent Inconsistent

Total

misses

(presen

t)

3.05 (1.57) 3.65 (2.43) 3.30 (2.54) 2.45 (1.90) 3.57 (1.54) 2.90 (2.00)

 Hi Latency (n= 20) Mid Latency (n=20) Lo Latency (n=21)

200

The total number of misses for absent objects (displayed in Table 10) was

analyzed using a 2x3 mixed ANOVA. Latency (hi, mid, lo) was entered as a between

subjects variable, with the context consistency of the objects (consistent, inconsistent)

entered as a within subjects variable. A minimum alpha level of .05 was used

throughout the analyses to judge a reliable difference.

No reliable main effects of latency were found (F(2,58)=0.22, p>.05) and no

interaction was found between latency and the context consistency of the objects

(F(2,58)=0.35, p>.05). However, there was a main effect of the context consistency of

the objects (F(1,58)=41.19, p<.001, partial eta-squared = 0.42). Absent objects

consistent with the context were incorrectly chosen more often (Mean = 2.97) than

absent objects that were inconsistent with the context (Mean = 1.52).

5.5.4. Confidence

Confidence reports (No confidence, Low confidence, Moderate confidence,

Confident, Certain) were converted to numerical values ranging from 1 assigned to

‘No confidence’ and 5 assigned to ‘Certain’. Confidence for correct responses only

was analyzed. One participant was removed from the dataset due to incomplete

data.

Table 11

 Consistent Inconsistent Consistent Inconsistent Consistent Inconsistent

Total

misses

(absent)

3.00 (2.36) 1.71 (1.23) 2.80 (2.04) 1.55 (1.35) 3.09 (1.34) 1.30 (1.03)

 Hi Latency (n= 20) Mid Latency (n=19) Lo Latency (n=21)

 Consistent Inconsistent Consistent Inconsistent Consistent Inconsistent

201

The average confidence ratings for correct responses (displayed in Table 11) were

analyzed using a 2x3 mixed ANOVA. Latency (hi, mid, lo) was entered as a between

subjects variable, with the context consistency of the objects (consistent, inconsistent)

entered as a within subjects variable. A minimum alpha level of .05 was used

throughout the analyses to judge a reliable difference.

No reliable main effects of latency were found (F(2,57)=1.11, p>.05) and no

interaction was found between latency and the context consistency of the objects

(F(2,57)=0.55, p>.05). However, there was a main effect of the context consistency of

the objects (F(1,57)=11.01, p<.005, partial eta-squared = 0.16). Higher levels of

confidence were reported when the correctly identified objects were inconsistent

with the context (Mean = 3.80) compared to when objects that were consistent with

the context were chosen (Mean = 3.39).

5.5.5. Awareness States

Table 12

Total

correct

(out of

xxx)

3.11 (0.87) 3.70 (1.04) 3.56 (0.95) 3.85 (0.72) 3.49 (0.74) 3.86 (0.72)

 Hi Latency Mid Latency Lo Latency

 Consistent Inconsistent Consistent Inconsistent Consistent Inconsistent

TYPE

A
0.29 (0.15) 0.43 (0.18) 0.33 (0.14) 0.39 (0.19) 0.31 (0.12) 0.41 (0.16)

TYPE

B
0.17 (0.12) 0.12 (0.13) 0.15 (0.15) 0.13 (0.15) 0.17 (0.10) 0.10 (0.10)

202

The proportion of the total correct responses (displayed in Table 12) were

analyzed with two separate 3x2 mixed ANOVAs for each awareness state (Type A,

Type B). Latency (hi, mid, lo) was entered as a between subjects variable, with the

context consistency of the objects (consistent, inconsistent) entered as a within

subjects variable. A minimum alpha level of .05 was used throughout the analyses to

judge a reliable difference.

No reliable main effects of latency were found for either Memory A awareness

states (F(2,58)=0.004, p>.05) or Memory B awareness states (F(2,58)=0.004, p>.05).

Similarly, no interactions were found between latency and the context consistency of

the objects for either Memory A awareness states (F(2,58)=1.42, p>.05) or Memory B

awareness states (F(2,58)=0.54, p>.05). However, there was a main effect of context

consistency on Memory A awareness states (F(1,57)=9.08, p<.005, partial eta-squared

= 0.14) and a main effect of context consistency on Memory B awareness states

(F(1,58)=4.44, p<.05, partial eta-squared = 0.07). When objects were correctly

recognised in the correct location, a higher proportion of these correct responses

were reported as Memory A awareness state (remember) with inconsistent objects

(Mean = .41) compared to with consistent objects (Mean = .31). Conversely,

participants reported a higher proportion of correct responses as Memory B

awareness states (know) with consistent objects (Mean = .16) compared to with

inconsistent objects (Mean = .12).

The results of the experiment indicate the following

 There is a statistical difference between the type of response people gave,

participants tended to respond that they had a vivid memory when they

correctly placed an object (Mem A, Mean = 4.42) rather than a feeling of

knowing (Mem B, Mean = 1.46).

 There is a statistical difference between the category of object also,

participants tended to correctly place objects that were inconsistent (Mean

= 3.15) compared to objects that were consistent (Mean = 2.72).

203

 There was also a significant interaction between the category of the object

and the type of response. A higher number of vivid memories were

reported with inconsistent objects (Mean = 5.06) than consistent objects

(Mean = 3.77).

The latency manipulation is not making any difference to any part of the analysis.

Despite the indications in the pilot study, analyses of the full study haven't revealed

any influence of the latency manipulation. This means, that there is adaptation

occurring of users to latency which results in similar object memory recognition in

both latency conditions. However, these data do demonstrate an interaction between

the memorial experience people are having (Mem A/Mem B) and the type of object

(consistent/inconsistent).

It is also worth noting that the data for the 'awareness states' analysis were not

normally distributed. If you more stringent criteria are applied to judge significance

(e.g. at least p<0.01) won't change the results much but would remove any difference

between consistent and inconsistent objects in terms of Memory B type responses.

5.6. Chapter Summary

This chapter presented an evaluation study of the effect of head tracking latency

in spatial cognition in immersive simulations. The task utilized for this evaluation is

memory recognition, drawn from formalized methodologies of memory psychology.

In order to evaluate spatial awareness while exposed to a rendered scene with 3

different levels of latency; minimized latency, medium latency and high-latency

level. A scene was designed which included several areas and sub-areas and a

memory recognition task was completed. The scene was designed so that it contains

objects with differing levels of scene consistency based on the area they were placed.

Furthermore, the results of the research project have been presented and

discussed in this chapter. The following chapter draws conclusions from the

findings, discusses limitations of the current research and makes recommendations

for the future.

204

CHAPTER 6. Conclusion

6.1. Main Contributions

In this thesis we presented a custom-made mechanism of measuring and

minimizing end-to-end head tracking latency in an immersive VE. Our mechanism

builds on previous mechanisms by using an oscilloscope to compare two signals,

assembled by low-cost, custom-made and portable equipment. One signal is

generated by the head-tracker movement and reported by a shaft encoder attached

on a servo motor moving the tracker. The other signal is generated by the visual

consequences of this movement in the VE and reported by a photodiode attached to

the computer monitor. The end-to-end head tracking latency of the VE is the

measured time-shift between these two signals. The presented system calculates this

time-shift by off-line processing the tracker position and display brightness

measurements stored in a computer t derived from the oscilloscope using a USB

connection. Thus, an accurate measuring mechanism is provided, utilizing

equipment commonly found in an academic facility. Subsequent software

reorganizations to the VE system result in the reduction of the overall system latency

resulting to a VE with minimal end-to-end head-tracking latency.

The utility of simulation environments for training, such as flight simulators, or

collaborative 3D design, as well as remote tele-operation manipulations is predicated

upon the accuracy of the 3D spatial representation formed mentally. Spatial

awareness is essential for human performance efficiency of tasks requiring spatial

knowledge of an environment (Mania, Badariah and Coxon 2010). A central research

issue therefore for such simulations is how participants cognitively represent 3D

spatial elements and how their memory and recognition of such worlds corresponds

to real world conditions.

The system presented in this thesis was used to investigate the effect of latency

levels, ranging from the minimum system latency to added latency, on spatial

awareness states. The main premise of future work is that accuracy of memory

performance per se is an imperfect reflection of the cognitive activity that underlies

205

user performance. Memory, in the sense of ‘information’ for subsequent analysis,

plays an important role in perceptual systems such as the visual, auditory, haptic and

kinesthetic systems (Mania, Troscianko, et al. 2003), (Mania, Wooldridge, et al. 2006).

Memory research has established that accurate memory recollections can be linked

with the subjective awareness states “Remember”, which is a recollection based on a

mental image or a prior experience, and “Know”, which is a general sense of

knowing with no or little recollection of this sense (Mania, Badariah and Coxon

2010). It has been shown that latency does not affect memory recognition and

memory awareness states. This could mean that there are strong adaptation

processes occurring and related ‘perceptual compensation’ results in similar spatial

awareness while being immersed in an environment of minimum latency as well as

in one of somehow higher latency. Therefore, latency could be crucial for tele-

operation tasks to be successful; however, generic spatial awareness can be achieved

in latency-rich environments. Future work should confirm or contradict such

findings also involving immersive environments of varied rendering quality.

206

References/Bibliography

Ashdown, Ian. "http://tralvex.com/pub/rover/abs-ian0.htm." Radiosity Bibliography.

March 2004.

Baddeley, A. "Human Memory, Theory and Practice." Psychology Press, 1977.

Björk, Staffan , and Jussi Holopainen. Patterns in Game Design. 2004.

Bouknight, J. "A procedure for generation of three dimensional half-toned computer

graphics presentations." Communications of the ACM. Vol. 13 (9). 1970. 527-536.

Brandt, K. R., J. M. Gardiner, and C. N. MacRae. "The distinctiveness effect in

forenames: The role of subjective experiences and recognition memory."

British Journal of Psychology, 2006: 269-280.

Brewer, W. F., and J. Treyens. "Role of Schemata in Memory for Places." Cognitive

Psychology 13 (1981): 207-230.

Cakmakci, O., and J. P. Rolland. "Head-Worn Displays: A Review." IEEE Journal of

Display Technology, Vol. 2, No. 3, 2006.

Cobb, S., S. Nichols, A. Ramsey, and J. Wilson. "Virtual reality incuced symptoms

and effects (VRISE)." Presence: Teleoperators & Virtual Environments, 1999: 169-

186.

Cohen, M. F., and D. P. Greenberg. "The Hemi-Cube: A radiosity solution for

complex environments." Computer Graphics (SIGGRAPH '85 Proceedings). 1985.

31-40.

Cohen, M. F., S. E. Chen, J. R. Wallace, and D. P. Greenberg. "A progressive

refinement approach to fast radiosity image generation." Edited by Computer

Graphics. SIGGRAPH 1988 Proceedings. 2004. 75-84.

Conway, M. A., J. M. Gardiner, T. J. Perfect, S. J. Anderson, and G. M. Cohen.

"Changes in Memory Awareness During Learning: The acquisition of

knowledge by psychology undergraduates." Journal of Experimental

Psychology: General 126, no. 4 (1997): 393 – 413.

207

Coolican, H. "Research Methods and Statistics in Psychology." Hodder & Stoughton

Educational, 1999.

Cunningham, D. W., A. Chatziastros, M. von der Heyde, and H. H. Bulthoff.

"Driving in the future: Temporal visuomotor adaptation and generalization."

Journal of Vision 1 (2001): 88-98.

Cunningham, D. W., V. A. Billock, and B. H. Tsou. "Sensorimotor adaptation to

violations in temporal contiguity." Psychological Science. Vol. 12. no. 6. 2001.

532-535.

Current-to-voltage converter. n.d. http://en.wikipedia.org/w/index.php?title=Current-

to-voltage_converter&oldid=542629706 (accessed 2013).

Davenport, J. L., and M. C. Potter. "Scene Consistency in Object and Background

Perception." Psychological Science 15, no. 8 (2004): 559-564.

Di Luca, M. "New Method to measure end-to-end delay of virtual reality." Presence

19, no. 6 (2010): 569-584.

dictionary, Merriam-Webster online. Timer. n.d. http://www.merriam-

webster.com/dictionary/timer (accessed 2012).

Dingliana, J. "Image Synthesis Group,." Trinity College, Dublin. n.d.

http://isg.cs.tcd.ie/dingliaj/3d4ii/Light1.ppt (accessed March 2004).

DiZio, Paul, J. R. Lackner , and L. Matin. "Combined influences of gravitoinertial

force level and visual field pitch on visually perceived eye level." Journal of

Vestibular Research, 1997: 1-12.

Draper, M. H., E. S. Viirre, T. A. Furness, and V. J. Gawon. "Effects of image scale and

system time delay on simulator sickness within head-coupled virtual

encironments." Humnan Factors 43(1), 20001: 129-146.

Ellis, S. R., A. Wolfram, and B. D. Adelstein. "Large amplitude three-dimensional

tracking in augmented environments: a human performance trade-off

between system latency and update rate." 46th Annual Meeting Human Factors

and Ergonomics Society. 2002. 2149-2154.

208

Ellis, S. R., B. D. Adelstein, S. Baumler, G. J. Jense, and R. H. Jacoby. "Sensor spatial

distortion, visual latency, and update rate effects on 3D tracking in virtual

environments." VR ’99. 1999. 218-221.

Ellis, S. R., K. Bréant, B. M. Menges, and B. D. Adelstein. "Operator interaction with

virtual objects: effects of system latency." HCI International,. 1997. 973-976.

Ellis, S. R., K. Mania, B. D. Adelstein, and M Hill. "Generaliza-bility of latency

detection in a variety of virtual environments." 48th Annual Meeting Human

Factors and Ergonomics Society. 2004.

Encoders. n.d.

http://irtfweb.ifa.hawaii.edu/~tcs3/tcs3/0306_conceptual_design/Docs/05_Enc

oders/encoder_primer.pdf (accessed 2013).

Fink, Donald G., and H. Wayne, Beaty. Standard Handbook for Electrical Engineers.

McGraw-Hill, 1999.

Flavios. "Light and optic theory and principles." n.d.

http://homepages.tig.com.au/~flavios/diffrac.htm (accessed March 2004).

Foley, J., A. Van Dam, S. Feiner, and J. Hughes. Computer Graphics: Principles and

Practice. Addison-Wesley Publishing Co., 1990.

Gardiner, J. M., and A. Richardson-Klavenhn. "Remembering and Knowing." In

Handbook of Memory, by E. Tulving and F. I. M. Craik. Oxford: Oxford

University Press, 1992.

Garrett, A., M. Aguilar, and Y. Barniv. "A recurrent neural network approach to

virtual environment latency reduction." IJCNN. Honolulu, HI, 2002.

Gibson, S., and R.J. Hubbold. "Perceptually Driven Radiosity." Computer Graphics

Forum 16. 1997. 129-140.

Glassner. "An Introduction to Ray tracing." Morgan kaufmann, 1989.

Glassner, A. S. "Principles of Digital Image Synthesis." San Fransisco, California:

Morgan Kaufmann Publishers, 1995.

209

Glassner, A. S. "Space Subdivision for Fast Ray Tracing, Vol.4, No. 10." IEEE

Computer Graphics & Applications, 1984: 15-22.

Goral, C. M., K. E. Torrance, D. P. Greenberg, and B. Battaile. "Modeling the

interaction of light between diffuse surfaces." Computer Graphics 18, no. 3 (July

1984).

Goraud, H. "Continuous shading of curved surfaces." IEEE Transactions on Computers

20, no. 6 (1971): 623-628.

Heim, Michael. The Metaphysics of Virtual Reality. Oxford University Press, 1993.

Held, R., A. Efstathiou, and M. Greene. "Adaptation to displaced and delayed visual

feedback from the hand." Journal of Experi-mental Psychology 72, no. 6 (1966):

887-891.

Held, R., and N. Durlach. "Telepresence." Presence: Teleoperators and Virtual

Environments. 1992. 109–112.

Hill, Michael I., Bernard D. Adelstein, and Stephen R. Ellis. "Achieving Minimum

Latency in Virtual Environment Applications." IMAGE Society Annual

Conference. Scottsdale AZ, 2004.

Holingworth, A., and J. M. Henderson. "Does consistent scene context facilitate object

perception?" Journal of Experimental Psychology: General 127, no. 4 (1998): 398-

415.

Integrated, Maxim. ADC and DAC Glossary. n.d.

http://www.maximintegrated.com/app-notes/index.mvp/id/641 (accessed

April 2013).

Jacoby, R. H., B. D. Adelstein, and S. R. Ellis. "Improved temporal response in virtual

environments through system hardware and software reorganization." SPIE

Conference on Stereoscopic Dis-plays and Applications. 1996. 271-284.

Kajiya, J. T. "The Rendering Equation." ACM SIGGRAPH. 1986. 143-150.

210

Katedros. "Illumination: simulation and perception." n.d.

http://www.maf.vu.lt/katedros/cs2/lietuva/courses/spalvos/ illumination5.pdf

(accessed February 2004).

Kennedy, R. S., N. E. Lane, M. G. Lilienthal, K. S. Berbaum , and L. J. Hettinger.

"Profile analysis of simulator sickness symptoms: application to virtual

environment systems." Presence 1, no. 3 (1992): 295-301.

Kularatna, Nihal. Fundamentals of Oscilloscopes", Digital and Analogue Instrumentation:

Testing and Measurement, Institution of Engineering and Technology. Institution

of Engineering and Technology, 2003.

Langbein, F. C. "Advanced Rendering - Radiosity." Cardiff University, (course notes).

n.d. http://cyl.cs.cf.ac.uk/teaching/graphics/G-20-V_2.pdf (accessed February

2004).

Languénou , E., K. Bouatouch , and P. Tellier . "An adaptive Discretization Method

for Radiosity." Computer Graphics Forum 11. 1992. 205-216.

Levine, B., et al. "Episodic memory and the self in a case of isolated retrograde

amnesia." Brain 121 (1998): 1951-1973.

Liang, J., C. Shaw, and M. Green. "On temporal-spatial realism in the virtual reality

environment." 4th ACM Symposium on User In-terface Software and Technology.

ACM Press, 1991. 19-25.

Lischinski, D. "Radiosity." n.d. http://www.cs.huji.ac.il/~danix/advanced/notes3.pdf

(accessed December 2003).

Liu, A, G. Tharp, S. Lai, L. French, and L. W. Stark. "Some of what one needs to know

about using head-mounted displays to improve teleoperator performance."

IEEE Transactions on Robotics and Automation 9, no. 5 (1993): 638-648.

Mania, K., B. D. Adelstein, S. R. Ellis, and M. Hill. "Perceptual sensitivity to head

tracking latency in virtual environments with varying degrees of scene

complexity." ACM Siggraph Symposium on Applied Perception in Graphics and

Visualization. ACM Press, 2004. 39-47.

211

Mania, K., D. Wooldridge, M. Coxon, and A. Robinson. "The effect of visual and

interaction fidelity on spatial cognition in immersive virtual environments."

IEEE Transactions on Visualization and Computer Graphics 12, no. 3 (2006): 396-

404.

Mania, K., S. Badariah, and M. Coxon. "Cognitive transfer of training from immersive

virtual environments to reality." ACM Transactions on Applied Perception 7, no.

2 (2010): 9:1-9:14.

Mania, K., T. Troscianko, R. Hawkes, and A. Chalmers. "Fidelity metrics for virtual

environment simulations based on spatial memory awareness states."

Presence, Teleoperators and Virtual Environments (MIT Press) 12, no. 3 (2003):

296-310.

Mania, Katerina, A. Robinson, and K. Brandt. "The Effect of Memory Schemas on

Object Recognition in Virtual Environments." Presence Teleoperators and Virtual

Environments (MIT Press) 6, no. 1 (2005): 73-86.

McCabe, D. P., and L. D. Geraci. "The influence of instructions and terminology on

the accuracy of remember-know judgements." Consciousness and Cognition 18

(2009): 401-413.

McNamara, A. "Comparing Real and Synthetic Scenes using Human Judgments of

Lightness." Ph.D thesis. University of Bristol, 2000.

Meehan, M., S. Razzaque, M. C. Whitton, and F. P. Jr. Brooks. "Effect of latency on

presence in stressful virtual environments." IEEE Virtual Reality Conference.

Los Angeles, 2003. 141-148.

Meijering, Erik. "A chronology of interpolation: from ancient astronomy to modern

signal and image processing." Proceedings of the IEEE 90 (3). 2002. 319–342,.

Microsoft. DirectX Software Development Kit. 2013. http://www.microsoft.com/en-

us/download/details.aspx?id=9977 (accessed 2013).

Miné, M. R. "Characterization of end-to-end delays in head-mounted display

systems." Chapel Hill, NC, University of North Carolina, 1993.

212

Minsky, M. "A framework for representing knowledge." The Psychology of Computer

Vision. Edited by P. H. Winston. McGraw-Hill, 1975.

Mitchell Electronics, Inc. TI-5000EX Serial/Incremental Encoder Test System User

Manual. n.d. http://www.mitchell-

electronics.com/downloads/Catalog_PriceList/TI5000EXManual.pdf (accessed

2011).

Mortensen, J., et al. "Real-Time Global Illumination for VR Applications." IEEE

Computer Graphics and Applications - ISI Impact Factor: 1.87, 2008: 56-64.

Mourkoussis, N., F. Rivera, T. Troscianko, T. Dixon, R. Hawkes, and Katerina Mania.

"Quantifying Fidelity for Virtual Environment simulations employing

memory schema assumptions." ACM Transactions on Applied Perception (ACM

Press) 8, no. 1 (2010): 2:2-2:21.

Nic, M., J. Jirat, and B. Kosata. Compendium of Chemical Terminology. IUPAC, 2006.

Nusselt, W. "Grapische Bestimmung des Winkelverhaltnisses bei der

Warmestrahlung." Zeitschrift des Vereines Deutscher Ingenieure. 1928. 72(20):673.

Ogle, K. N. "Researchers in binocular vision." New York: Hafner Publishing

Company, 1950.

Palmer, S. E. " Vision Science – Photons to Phenomenology." Massachusetts Institute

of Technology Press, 1999.

Phong, B. T. "Illumination for Computer-Generated Images." Communications of the

ACM 18, no. 6 (1975): 449-455.

"Physics of light And colour." Molecular Expressions. n.d.

http://micro.magnet.fsu.edu/primer/java/reflection/specular/ (accessed

February 2004).

Pichert, J. W., and R. C. Anderson. "Taking a different perspectives on a story."

Journal of Educational Psychology 69 (1966): 309-315.

213

Radoff, Jon. Anatomy of MMORPG. 2008. http://radoff.com/blog/2008/08/22/anatomy-

of-an-mmorpg.

Repas, Robert. Multiturn absolute encoders. n.d. http://machinedesign.com (accessed

2013).

Riesberg, D. "Cognition: Exploring the Science of the Mind." London, UK: Norton

and Company, 1997.

Siegel, R., and J. R. Howell. Thermal Radiation Heat Transfer. 3rd Edition. New York,

NY: Hemisphere Publishing Corporation, 1992.

Spitzer, Frank, and Barry Howarth. Principles of modern Instrumentation. New York:

Holt, Rinehart and Winston, 1972.

Stanney, K. M., R. R. Mourant, and R. S. Kennedy. "Human factors issues in virtual

environments: A review of the literature." Presence 7, no. 4 (1998): 327-351.

Steed, A. "A simple method for estimating the latency of interac-tive, real-time

graphics simulations." ACM VRST '08. 2008.

Steuer, J. "Defining Virtual Reality: Dimensions Determining Telepresence." Journal of

Communication 42, 1992: 506–508.

Sutherland, I. "The Ultimate Display." IFIP Congress. 1965. 506–508.

Tulving, E. Elements of Episodic Memory. Oxford: Oxford Science Publications, 1992.

Uno, M., and M. Slater. "The sensitivity of presence to collision response." IEEE

VRAIS. 1997. 95-101.

Watson, B., N. Walker, P. Woytiuk, and W. Ribarsky. "Maintaining usability during

3D placement despite delay." IEEE Virtual Reality 2003. 2003. 133-140.

Welch, R. B., T. T. Blackmon, A. Liu, B. A. Mellers, and L. W. Stark. "The effects of

pictorial realism, delay of visual feedback and observer interactivity on the

subjective sense of presence." Presence: Teleoperators and Virtual Environments

5, no. 3 (1996): 263-273.

214

Wheeler, M. A., and D. T. Stuss. "Remembering and knowing in patients with frontal

lobe injuries." Cortex 39 (2003): 827-846.

Wloka, M. "Lag in Multiprocessor Virtual Reality." Presence Vir-tual Environments and

Teleoperators (MIT Press) 4, no. 1 (1995): 50-63.

WorldTechPub. n.d. http://www.WorldTechPub.com.

Yee, H., S. Pattanaik, and D. P. Greenberg. "Spatiotemporal sensitivity and Visual

Attention for efficient rendering of dynamic Environments." ACM

Transactions on Computer Graphics 20 (2001): 39-65.

Zotos, Alexandros, K. Mania, and N. Mourkoussis. "A Schema-based Selective

Rendering Framework." ACM Siggraph Symposium on Applied Perception in

Graphics and Visualization. Chania, Crete, Greece, 2009. 85-92.

215

APPENDIX A

Σενάριο πειράματος

Σας ευχαριστούμε που συμμετέχετε στη διαδικασία των πειραμάτων μας. Το πείραμα αποτελείται από 3 στάδια.

Ακολουθούν οι λεπτομέρειες για κάθε στάδιο ξεχωριστά. Αφού διαβάσετε προσεκτικά τις λεπτομέρειες για κάθε στάδιο, είστε

έτοιμοι να ξεκινήσετε.

Συνοπτικά, το πρώτο στάδιο αποσκοπεί στην εξοικείωση σας με τον εξοπλισμό και τα τρισδιάστατα γραφικά. Το δεύτερο

στάδιο είναι και το κύριο πείραμα. Το τελευταίο στάδιο αποτελείται από μία ενότητα ανασκόπησης.

Στάδιο 1. Εξοικείωση με τον εξοπλισμό και τα τρισδιάστατα γραφικά

Εξάσκηση σε ένα απλό περιβάλλον

Είστε έτοιμοι να συμμετάσχετε στο πρώτο στάδιο. Σκοπός είναι να εξοικειωθείτε με τον εξοπλισμό (Head Mounted

Display ή HMD) και τα τρισδιάστατα γραφικά. Έχετε όσο χρόνο επιθυμείτε για να περιηγηθείτε σε έναν ανοιχτό χώρο.

Χρησιμοποιήστε τον εξοπλισμό για να στρέψετε την καρέκλα σας 360 μοίρες και να κοιτάξετε προς όλες τις γωνίες. Ρωτήστε

ελεύθερα για οποιαδήποτε απορία ή διακόψτε την διαδικασία εάν αισθανθείτε αδιαθεσία.

Εξάσκηση σε ένα πιο ρεαλιστικό περιβάλλον

Αφού αισθανθείτε άνετα με τον εξοπλισμό και την περιήγηση στο πρώτο τρισδιάστατο χώρο ζητήστε από τον υπεύθυνο

του πειράματος να “φορτώσει” μια καινούργια πιο ρεαλιστική σκηνή. Σκοπός είναι να εγκλιματιστείτε σε πιο ρεαλιστικές

συνθήκες από τις προηγούμενες ώστε να είστε έτοιμοι για το επόμενο στάδιο που είναι και το βασικό. Η καινούρια σκηνή

περιγράφει ένα δωμάτιο με αντικείμενα και περιοχή κουζίνας, γραφείου και σαλονιού και το απαιτούμενο είναι να

παρατηρήσετε όλους τους χώρους και τα αντικείμενα των χώρων αυτών.

Στάδιο 2. Το κύριο πείραμα. Περιήγηση σε μια τρισδιάστατη σκηνή.

Αφού έχετε εξοικειωθεί πλήρως με τον εξοπλισμό, τη περιήγηση σε τρισδιάστατους ρεαλιστικούς χώρους αλλά και

εξωτερικά ερεθίσματα όπως ήχοι, καλείστε να περιηγηθείτε σε μια πολυπλοκότερη σκηνή. Λεπτομέρειες για την πλοήγηση

και το σενάριο του πειράματος θα δοθούν αμέσως πριν την πραγματοποίηση του.

Στάδιο 3. Ανασκόπηση

Σύμφωνα με την εμπειρία που αποκομίσατε από τη τελευταία σκηνή που είδατε (στάδιο 2), απαντήστε στη φόρμα

ανασκόπησης που ακολουθεί. Έχετε όσο χρόνο επιθυμείτε για να διαβάσετε τις οδηγίες και να απαντήσετε σε όλες τις

ερωτήσεις.

Παρακαλώ μη συζητήσετε με τους υπόλοιπους συμμετέχοντες οτιδήποτε έχει σχέση με τις εντυπώσεις σας από την

πλοήγηση ή το στάδιο ανασκόπησης. Παρόλα αυτά, μπορείτε να ρωτήσετε τους υπεύθυνους του πειράματος για οποιαδήποτε

απορία έχετε.

Αυτό είναι και το τελικό στάδιο. Ευχαριστούμε για τη συμμετοχή σας και ελπίζουμε να διασκεδάσατε τη διαδρομή!! 

216

APPENDIX B

ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΜΝΗΜΗΣ

Για κάθε αριθμημένη θέση αντικειμένου στη λίστα, ανατρέξτε στην κάτοψη του περιβάλλοντος και διαλέξτε από τη λίστα

αντικειμένων ανά περιοχή το αντικείμενο που νομίζετε ότι βρίσκεται σε αυτή τη θέση. Στη συνέχεια, σημειώστε πόσο βέβαιοι

είσαστε για κάθε επιλογή σας. Τέλος, επιλέξτε τον τύπο που ακριβέστερα περιγράφει πώς σκεφτήκατε πριν κάνετε την επιλογή

σας. Εάν οποιαδήποτε από αυτούς τους όρους είναι παράξενος για σας, ανατρέξτε στον οδηγό επιλογών:

- ΤΥΠΟΣ Α σημαίνει ότι μπορείτε να θυμηθείτε με σαφήνεια κάθε αντικείμενο, σε αυτή τη

συγκεκριμένη τοποθεσία μέσα στο μυαλό σας. Μπορείτε ουσιαστικά να «δείτε» και πάλι τα

αντικείμενα του δωματίου στο μυαλό σας ή θυμάστε συγκεκριμένη άλλη πληροφορία σε σχέση με

όταν τα βλέπατε στο χώρο.

- ΤΥΠΟΣ Β σημαίνει ότι απλά «ξέρετε» τη σωστή απάντηση που έχετε επιλέξει η οποία απλώς

«ξεχώρισε» από τις διαθέσιμες επιλογές. Σε αυτή την περίπτωση δεν μπορείτε να απεικονίσετε την

συγκεκριμένη εικόνα ή πληροφορία στο μυαλό σας.

Για κάθε θέση αντικειμένου στη λίστα, ανατρέξτε στην κάτοψη του περιβάλλοντος και διαλέξτε από τη λίστα

αντικειμένων το αντικείμενο που νομίζετε ότι βρίσκεται σε αυτή τη θέση. Στη συνέχεια, σημειώστε πόσο βέβαιοι είσαστε για

κάθε επιλογή σας. Τέλος, επιλέξτε τον τύπο που ακριβέστερα περιγράφει πώς σκεφτήκατε πριν κάνετε την επιλογή σας. Εάν

οποιαδήποτε από αυτούς τους όρους είναι παράξενος να σας, ανατρέξτε στον οδηγό επιλογών παραπάνω:

Αντικείμενο Θέση 1: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

Αντικείμενο Θέση 2: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

Αντικείμενο Θέση 3: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

Αντικείμενο Θέση 4: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

Αντικείμενο Θέση 5: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

Αντικείμενο Θέση 6: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

Αντικείμενο Θέση 7: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

217

Αντικείμενο Θέση 8: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

Αντικείμενο Θέση 9: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

Αντικείμενο Θέση 10: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

Αντικείμενο Θέση 11: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

Αντικείμενο Θέση 12: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

Αντικείμενο Θέση 13: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

Αντικείμενο Θέση 14: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

Αντικείμενο Θέση 15: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

Αντικείμενο Θέση 16: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

Αντικείμενο Θέση 17: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

Αντικείμενο Θέση 18: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

Αντικείμενο Θέση 19: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

Αντικείμενο Θέση 20: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

218

Αντικείμενο Θέση 21: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

Αντικείμενο Θέση 22: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

Αντικείμενο Θέση 23: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

Αντικείμενο Θέση 24: ..

Βεβαιότητα: ⃝ Καθόλου βέβαιος/η ⃝ Χαμηλή βεβαιότητα ⃝ Μεσαία Βεβαιότητα ⃝ Βέβαιος/η ⃝ Απόλυτα Βέβαιος/η

Επίγνωση: ⃝ ΤΥΠΟΣ Α ⃝ ΤΥΠΟΣ Β

219

APPENDIX C

220

APPENDIX D

221

222

223

224

APPENDIX E

225

APPENDIX F

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

APPENDIX G

242

243

244

	XVR_STUDIO

