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Abstract 

System latency (time delay) and its visible consequences are fundamental Virtual 

Environment (VE) deficiencies that can hamper user perception and performance. In 

order to realize this goal, we present an immersive simulation system which 

improves upon current latency measurement and minimization techniques. 

Hardware used for latency measurements and minimization is assembled by low-

cost and portable equipment, most of them commonly found in an academic facility 

without reduction in accuracy of measurements. We present a custom-made 

mechanism of measuring and minimizing end-to-end head tracking latency in an 

immersive VE. The mechanism is based on an oscilloscope comparing two signals. 

One is generated by the head-tracker movement and reported by a shaft encoder 

attached on a servo motor moving the tracker. The other is generated by the visual 

consequences of this movement in the VE and reported by a photodiode attached to 

the computer monitor. Visualization and application-level control of latency in the 

VE was implemented using the XVR platform. To achieve interoperability between 

the head-tracker orientation data API and the VE application an intermediate API 

was developed. Minimization processes resulted in almost 50% reduction of initial 

measured latency. The description of the mechanism by which VE latency is 

measured and minimized will be essential to guide system countermeasures such as 

predictive compensation. The system presented in this thesis will be used to 

investigate the effect of latency on spatial awareness states.  

This thesis also presents an experimental methodology exploring the effect of 

tracking latency on object recognition after exposure to an immersive VE, in terms of 

both scene context and associated awareness states. The immersive simulation 

consisted of a radiosity-rendered space divided in three zones including a 

kitchen/dining area, an office area and a lounge area. The space was populated by 

objects consistent as well as inconsistent with each zone’s context. The simulation 

was displayed on a stereo head-tracked Head Mounted Display. Participants across 

three conditions of varying latency (system minimum latency vs. typical VE latency 

vs. extensive latency) were exposed to the VE. The same API developed for tracker 
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reading by the VE application was used from latency addition to the readings. 

Following the exposure participants were asked to complete an object-based memory 

recognition task. Participants also reported one of two states of awareness following 

each recognition response which reflected either the recollection of contextual detail, 

or the sense of familiarity. 
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CHAPTER 1. Introduction 

The work presented in this thesis aims to implement an innovative latency 

measurement mechanism as well as an immersive simulation of minimum latency. 

End-to-end latency in a Virtual Environment (VE) is defined as the time lag 

between a user’s action in the VE and the system’s response to this action. VE latency 

comprises of four different types; user-input device lag, application-dependent 

processing lag, rendering lag and synchronization lag. The user input device lag is 

the lag introduced from the communication between the tracking system and the VE 

application. The application- dependent processing lag is the time required for the 

computation of the 3D model and depends on the complexity of the model and the 

application itself.  The rendering lag is the time that passes until data sent from the 

VE application to the rendering hardware appears on a monitor or immersive 

display. The rendering lag depends on the scene and the viewpoint rendered at each 

time, so it varies through the VE application run-time.    

The synchronization lag is the total time that data is waiting during the necessary 

communication of involved input devices, in- between the parallel processing stages 

of the VE application. It is application-relevant and depends on rendering processing 

stages which may not be well-synchronized to avoid delays of transmission. These 

stages are independent and it is possible that the input device deposits new tracking 

data shortly after the application reads the previous data. Thus, the application is 

busy processing the previous input before it reads and starts to process the new 

input, so that input data is delayed. Moreover, there is a fifth kind of lag, i.e. the 

frame-rate-induced lag, resulting from the fact that data displayed progressively 

become out of date, while the display is not updated fast. This type of lag is 

distinguished from other lag sources and is not considered as end-to-end latency. It 

is, though, perceivable by the users exposed to a VE and is considered unacceptable 

because of the resulting slow frame rates (Wloka 1995). Excessive system latency is a 

well-known defect of VE and teleoperation systems (Ellis, Mania, et al. 2004). It is 

particularly troublesome for head-tracked systems since delays in head orientation 
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measurement give rise to errors in presented visual direction (Stanney, Mourant and 

Kennedy 1998), (Mania, Adelstein, et al. 2004). The work presented in this thesis aims 

to implement an immersive simulation of minimum latency as well as a latency 

measurement mechanism. We extend past latency measurement and minimization 

techniques to build a port- able, low-cost, custom-made but also accurate latency 

measurement system and, ultimately, create a VE with minimal head tracking 

latency.   

The term Virtual Environment (VE) is generally understood to mean an 

environment that is described in three dimensions be presented on a computer 

display. They are perhaps most commonly encountered in computer games, but are 

also found in research, simulation, training and design — particularly architectural 

design. The term Immersive Virtual Environment (IVE) in this thesis is referred to 

VEs that are displayed using equipment that produces an ego-centric view, allowing 

the view position and direction to be changed by moving the head and body in a 

natural way (Sutherland 1965). Today, this may be achieved through the use of an at 

least three degrees-of-freedom spatial tracker and a stereoscopic head-mounted 

display (HMD). When using an IVE one can attain a sense that one is actually present 

within the virtual environment that is displayed, and ‘presence’ has in fact been 

identified as a key feature for their general use (Held and Durlach 1992), or even 

their defining factor in terms of the human experience (Steuer 1992). 

1.1. Main Contributions 

 The development of a novel low-cost, custom-made portable latency 

measuring mechanism extending past latency measurement techniques. 

 The development of a simulation system with minimum end-to-end latency 

to be controlled for a variety of head and hand tracking devices relevant to 

navigation of 3D environments and teleportation. 

 An experiment exploring whether the cognitive impact of latency is severe for 

spatial awareness by investigating the effect of latency on 3D spatial 

cognition, spatial awareness states and 3D mental models and imagery. 
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1.2. Thesis Outline 

This thesis is divided into a number of chapters. A brief summary of each chapter 

is presented here. 

CHAPTER 2: Technical Background 

This chapter introduces a set of fundamental terms in computer graphics starting 

with defining light and its properties, light energy, photometry and radiometry and 

continuing with computer graphics illumination models analysis. Furthermore, this 

chapter illustrates the complex variety of tools and equipment required to create, 

view and interact with immersive VEs. It provides background information 

regarding the key technologies used in order to implement the experimental 

framework and experimental protocol put forward and an overview of the 

technologies necessary to display and interact with immersive VEs. 

Subsequently, latency and its effects on users of Virtual Environments are 

analyzed and methods for measurement and minimization of latency in Virtual 

Environments are presented. The last section of this chapter is focused on memory 

awareness states and schemata.  

CHAPTER 3: Τhe Virtual Environment Application 

In this chapter, the technical requirements of the head-tracked stereoscopic 3D 

interactive system are introduced. The architecture of the application developed for 

the experiments is presented, along with the inherent architecture of the XVR 

Environment used to develop it. 

CHAPTER 4: Hardware and Software setup for Latency Measurements and 

Minimization 

Chapter 4 describes the hardware and software setup used for measuring the 

end-to-end head tracking latency of our VE system. In this chapter we also present 

the data collected from end-to end latency measurements. We describe techniques 
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we used for controlling and minimizing latency and we compare data before and 

after the application of these techniques. 

CHAPTER 5: Latency Experiment 

This chapter is concerned with the experimental methods employed when the 

actual experiments were conducted measuring the effect of latency in immersive 

simulations. The experimental procedure is presented, as well as the results of the 

experiments.  

CHAPTER 6: Conclusion 

Finally, the results and contributions of this thesis are presented. Future work, 

unveiled by relevant conclusions is suggested. 

CHAPTER 2. Technical Background 

2.1. Computer Graphics Rendering 

2.1.1. The physical Behavior of Light 

Light is one form of electromagnetic radiation, a mode of propagation of energy 

through space that includes radio waves, radiant heat, gamma rays and X-rays. One 

way in which the nature of electromagnetic radiation can be pictured is as a pattern 

of waves propagated through an imaginary medium. Primary properties of light are 

intensity, propagation direction, frequency or wavelength spectrum, and 

polarization, while its speed in a vacuum, 299,792,458 meters per second, is one of 

the fundamental constants of nature. The term “visible light” is used to describe the 

subset of the spectrum of electromagnetic energy to which the human eye is 

sensitive. This subset, usually referred to as the visual range or the visual band, 

consists of electromagnetic energy with wavelengths in the range of 380 to 780 

nanometers, although the human eye has very low sensitivity to a wider range of 

wavelengths, including the infrared and ultraviolet ranges. The range of visible light 
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is shown in Figure 1. As shown, the wavelength at which the human eye is most 

sensitive is 555 nm.  

In the field of computer graphics three types of light interaction are primarily 

considered: absorption, reflection and transmission. In the case of absorption, an 

incident photon is removed from the simulation with no further contribution to the 

illumination within the environment. Reflection considers incident light that is 

propagated from a surface back into the scene and transmission describes light that 

travels through the material upon which it is incident and can then return to the 

environment, often from another surface of the same physical object. Both reflection 

and transmission can be subdivided into three main types: 

 Specular: When the incident light is propagated without scattering as if 

reflected from a mirror or transmitted through glass. 

 Diffuse: When incident light is scattered in all directions. 

 Glossy: This is a weighted combination of diffuse and specular. 

 

Figure 1: The visible portion of the electromagnetic spectrum. 

 

Most materials do not fall exactly into one of the material categories described 

above but instead exhibit a combination of specular and diffuse characteristics. 
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In order to create shaded images of three dimensional objects, we should analyze 

in detail how the light energy interacts with a surface. Such processes may include 

emission, transmission, absorption, refraction, interference and reflection of light (Palmer 

1999). 

Emission 

Emission is when light is emitted from an object or surface, for example the sun 

or man-made sources, such as candles or light bulbs. Emitted light is composed of 

photons generated by the matter emitting the light; it is therefore an intrinsic source 

of light.  

Transmission 

Transmission describes a particular frequency of light that travels through a 

material returning into the environment unchanged as shown in Figure 2. As a result, 

the material will be transparent to that frequency of light. Most materials are 

transparent to some frequencies, but not to others. For example, high frequency light 

rays, such as gamma rays and X-rays, will pass through ordinary glass, but the lower 

frequencies of ultraviolet and infrared light will not. 

 

Figure 2: Light transmitted through a material 

 

Absorption 

Absorption describes light as it passes through matter resulting in a decrease in 

its intensity as shown in Figure 3, i.e. some of the light has been absorbed by the 

object. An incident photon can be completely removed from the simulation with no 

further contribution to the illumination within the environment if the absorption is 

great enough. 
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Figure 3: Light absorbed by a material 

 

Refraction 

Refraction describes the bending of a light ray when it crosses the boundary 

between two different materials as shown in Figure 4. This change in direction is due 

to a change in speed. Light travels fastest in empty space and slows down upon 

entering matter. The refractive index of a substance is the ratio of the speed of light in 

space (or in air) to its speed in the substance. This ratio is always greater than one. 

 

Figure 4: Light refracted through a material 

 

Interference 

Interference is an effect that occurs when two waves of equal frequency are 

superimposed. This often happens when light rays from a single source travel by 

different paths to the same point. If, at the point of meeting, the two waves are in 

phase (the crest of one coincides with the crest of the other), they will combine to 

form a new wave of the same frequency. However the amplitude of this new wave is 

the sum of the amplitudes of the original waves. The process of forming this new 

wave is called constructive interference (Flavios n.d.). If the two waves meet out of 

phase (a crest of one wave coincides with a trough of the other), the result is a wave 

whose amplitude is the difference of the original amplitudes. This process is called 

destructive interference (Flavios n.d.). If the original waves have equal amplitudes, 
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they may completely destroy each other, leaving no wave at all. Constructive 

interference results in a bright spot; destructive interference produces a dark spot. 

 

 Reflection considers incident light that is propagated from a surface back into 

the scene. Reflection depends on the smoothness of the material’s surface 

relative to the wavelength of the radiation (Physics of light And colour n.d.). 

A rough surface will affect both the relative direction and the phase 

coherency of the reflected wave. Thus, this characteristic determines both the 

amount of radiation that is reflected back to the first medium and the purity 

of the information that is preserved in the reflected wave. A reflected wave 

that maintains the geometrical organization of the incident radiation and 

produces a mirror image of the wave is called a specular reflection, as can be 

seen in Figure 5. 

 

Figure 5: Light reflected off a material in different ways, from left to right, specular, diffuse, 

mixed, retro-reflection and finally gloss (Katedros n.d.) 

 

2.1.2. Computer Graphics illumination 

An illumination model computes the color at a point in terms of light directly 

emitted by the light source(s) (Foley, et al. 1990). A local illumination model 

calculates the distribution of light that comes directly from the light source(s). A 

global illumination model additionally calculates reflected light from all the surfaces 

in a scene which could receive light indirectly via intereflections from other surfaces. 

Global illumination models include, therefore, all the light interaction in a scene, 

allowing for soft shadows and color bleeding that contribute towards a more 

photorealistic image. The rendering equation expresses the light being transferred 
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from one point to another (Kajiya 1986). Most illumination computations are 

approximate solutions of the rendering equation: 

 (   )   (   )  (   )   ∫  (     ) (   )   

 

  

Where; 

       are points in the environment, 

  (   ) is related to the intensity passing from   to  , 

  (   ) is a ‘geometry’ term that is 0 when     are occluded from each other 

and 1 otherwise, 

  (     ) is related to the intensity of light reflected from   to   from the 

surface at  , the integral is over all points on all surfaces  , 

  (   ) is related to the intensity of light that is emitted from   to  . 

Thus, the rendering equation states that the light from   that reaches   consists of 

light emitted by   itself and light scattered by   to   from all other surfaces which 

themselves emit light and recursively scatter light from other surfaces. The 

distinction between view-dependent rendering algorithms and view-independent 

algorithms is a significant one. View-dependent algorithms discretize the view plane 

to determine points at which to evaluate the illumination equation, given the 

viewer’s direction, such as ray-tracing (Dingliana n.d.), (A. S. Glassner, Principles of 

Digital Image Synthesis 1995). View-independent algorithms discretize the 

environment and process it in order to provide enough information to evaluate the 

illumination equation at any point and from any viewing direction, such as 

Radiosity. 

Bouknight (1970) introduced one of the first models for local illumination of a 

surface. This included two terms, a diffuse term and an ambient term. The diffuse 

term is based upon the Lambertian reflection model, which makes the value of the 

outgoing intensity equal in every direction and proportional to the cosine of the 

angle between the incoming light and the surface normal. The ambient term is 

constant and approximates diffuse inter-object reflection. Gouraud (1971) extended 
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this model to calculate the shading across a curved surface approximated by a 

polygonal mesh. His method calculated the outgoing intensities at the polygon 

vertices and then interpolated these values across the polygon as shown in Figure 

6(middle). 

Prong (1975) introduced a more sophisticated interpolation scheme where the 

surface normal is interpolated across a polygon and the shading calculation is 

performed at every visible point, as shown in Figure 6 (right). He also introduced a 

specular term. Specular reflection is when the reflection is stronger in one viewing 

direction, i.e. there is a bright spot called a specular highlight. This is readily 

apparent on shiny surfaces. For an ideal reflector, such as a mirror, the angle of 

incidence equals the angle of specular reflection. Although this model is not 

physically based, its simplicity and efficiency make it still the most commonly used 

local reflection model. 

 

Figure 6: The differences between a simple computer-generated polyhedral cone (left), with 

linearly interpolated shading to give appearance of curvature (Gouraud Shading). Note Mach bands 



30 

 

at edges of faces (middle) and a more complex shading calculation, interpolating curved surface 

normals (Phong Shading). This is necessary to eliminate Mach Bands (right). 

 

A global illumination model adds to the local illumination model, the light that is 

reflected from other non-light surfaces to the current surface. A global illumination 

model is physically correct and produces realistic images resulting in effects such as 

color bleeding and soft shadows. When measured data is used for the geometry and 

surface properties of objects in a scene, the image produced should then be 

theoretically indistinguishable from reality. However, global illumination algorithms 

are also more computationally expensive. 

Global illumination algorithms produce solutions of the rendering equation 

proposed by (Kajiya 1986): 

           ∫        

where      is the radiance leaving a surface,    is the radiance emitted by the 

surface,     is the radiance of an incoming light ray arriving at the surface from light 

sources and other surfaces,   is the bi-directional reflection distribution function of 

the surface,   is the angle between the surface normal and the incoming light ray and 

   is the differential solid angle around the incoming light ray.  

The rendering equation is graphically depicted in Figure 7. In this figure     is an 

example of a direct light source, such as the sun or a light bulb,     is an example of 

an indirect light source i.e. light that is being reflected off another surface,  , to 

surface   . The light seen by the eye (    ) is simply the integral of the indirect and 

direct light sources modulated by the reflectance function of the surface over the 

hemisphere  . 
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Figure 7: Graphical depiction of the rendering equation (Yee, Pattanaik and Greenberg 2001) 

 

The problem of global illumination can be seen when you have to solve the 

rendering equation for each and every point in the environment. In all but the 

simplest case, there is no closed form solution for such an equation so it must be 

solved using numerical techniques and therefore this implies that there can only be 

an approximation of the solution (Lischinski n.d.). For this reason most global 

illumination computations are approximate solutions to the rendering equation.  

The two major types of graphics systems that use the global illumination model 

are radiosity and ray tracing. In this work, we utilized radiosity rendering; however, 

we will refer to ray-tracing in order to emphasize algorithmic differences which 

guided us to our choice of radiosity. 

2.1.3. Ray Tracing 

Ray tracing is global illumination algorithm which calculates specular reflections 

(view dependent) and results in a rendered image. Rays of light are traced from the 

eye through the center of each pixel of the image plane into the scene, these are called 

primary rays. When each of these rays hits a surface it spawns two child rays, one for 

the reflected light and one for the refracted light. This process continues recursively 

for each child ray until no object is hit, or the recursion reaches some specified 
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maximum depth. Rays are also traced to each light source from the point of 

intersection. These are called shadow rays and they account for direct illumination of 

the surface, as shown in Figure 8. If a shadow ray hits an object before intersecting 

with the light source(s), then the point under consideration is in shadow. Otherwise, 

there must be clear path from the point of intersection of the primary ray to the light 

source and thus a local illumination model can be applied to calculate the 

contribution of the light source(s) to that surface point. 

The simple ray tracing method outlined above has several problems. Due to the 

recursion involved and the possibly large number of rays that may be cast, the 

procedure is inherently expensive. Diffuse interaction is not modeled, nor is specular 

interaction, other than that by perfect mirrors and filters. Surfaces receiving no direct 

illumination appear black. In order to overcome this, an indirect illumination term, 

referred to as ambient light, is accounted for by a constant ambient term, which is 

usually assigned an arbitrary value (Glassner 1989). Shadows are hard-edged and the 

method is very prone to aliasing. The result of ray tracing is a single image rendered 

for a particular position of the viewing plane, resulting in a view –dependent 

technique.  

In ray tracing each ray must be tested for intersection with every object in the 

scene. Thus, for a scene of significant complexity, the method rapidly becomes 

impracticable. Several acceleration techniques have been developed, which may be 

broadly categorized into two approaches: reducing the number of rays and reducing 

the number of intersection tests. Hall and Greenberg noted that the intensity of each 

ray is reduced by each surface it hits, thus the number of rays should be stopped 

before any unnecessary recursion to a great depth occurs (Hall and Greenberg 1983). 

Another approach, which attempts to minimize the number of ray object 

intersections, is spatial subdivision. This method encloses a scene in a cube that is 

then partitioned into discrete regions, each of which contains a subset of the objects 

in the scene. Each region may then be recursively subdivided until each sub-region 

(voxel or cell) contains no more than a preset maximum number of objects. 
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Several methods for subdividing space exist. (A. S. Glassner, Space Subdivision 

for Fast Ray Tracing, Vol.4, No. 10 1984) proposes the use of an octree, e.g. a structure 

where the space is bisected in each dimension, resulting in eight child regions. This 

subdivision is repeated for each child region until the maximum tree depth is 

reached, or a region contains less than a certain number of objects. Using such a 

framework allows for spatial coherence, i.e. the theory that similar objects in a scene 

affect neighboring pixels. Rays are traced through individual voxels, with 

intersection tests performed only for the objects contained within, rather than for all 

the objects in the scene. The ray is then processed through the voxels by determining 

the entry and exit points for each voxel traversed by the ray until an object is 

intersected or the scene boundary is reached. 

 

Figure 8: Ray Tracing 

Ray tracing was not employed in this work because of the extreme computational 

demand of this method when real time scenes are produced. In order to achieve 

interactive frame rates, a view independent rendering framework is needed. Recent 

research explores methods for real time ray tracing (Mortensen, et al. 2008). 

 

2.1.4. Radiosity 
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Radiosity is a global illumination algorithm. It is used in 3D computer graphics 

rendering. It is a solution of the rendering equation for scenes with purely diffuse 

surfaces using the finite element method. Contrasting Monte Carlo algorithms (i.e. 

path tracing) which handle all types of light paths, usual radiosity methods only take 

into account paths which leave a light source and are reflected diffusely a number of 

times (possibly zero) before hitting the eye. Such paths are represented as "LD*E". 

Calculations made with radiosity do not depend on the viewpoint. That makes 

radiosity calculations useful for all viewpoints but also increases computational 

complexity.  

Initially radiosity methods were developed in about 1950 in the engineering field 

of heat transfer. Later they were refined for application to the problem of rendering 

computer graphics in 1984 by researchers at Cornell University (Goral, et al. 1984). 

The heat transfer theory describes radiation as the transfer of energy from a surface 

when that surface has been thermally excited. This encompasses both surfaces that 

are basic emitters of energy, as with light sources and surfaces that receive energy 

from other surfaces and thus have energy to transfer. The thermal radiation theory 

can be used to describe the transfer of many kinds of energy between surfaces, 

including light energy.  

As in thermal heat transfer, the basic radiosity method for computer image 

generation makes the assumption that surfaces are diffuse emitters and reflectors of 

energy, emitting and reflecting energy uniformly over their entire area. Thus, the 

radiosity of a surface is the rate at which energy leaves that surface (energy per unit 

time per unit area). This includes the energy emitted by the surface as well as the 

energy reflected from other surfaces in the scene. Light sources in the scene are 

treated as objects that have self emittance. 
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Figure 9: Radiosity patches (McNamara 2000) 

 

The surfaces of the scene to be rendered are each divided up into one or more 

smaller surfaces (patches) (Figure 9). A form factor is computed for each pair of 

patches. Form factors are coefficients describing how well the patches can see each 

other. Each form factor represents the proportion of light leaving one patch (patch i) 

that will arrive at the other (patch j) (Siegel and Howell 1992). Patches that are far 

away from each other, or oriented at oblique angles relative to one another, will have 

smaller form factors. If other patches are in the way, the form factor will be reduced 

or zero, depending on whether the occlusion is partial or total. Thus the radiosity 

equation is: 

 

        ∑     

 

   

 

 

Where: 

  = Radiosity of patch x 

  = Emissivity of patch x 

  = Reflectivity of patch x 
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   = Form factor of patch y relative to patch x 

The reciprocity relationship of form factor     (Siegel and Howell 1992) states: 

 

            

 

Where    and    are the areas of patch j and i respectively, as shown in Figure 10. 

 

Figure 10: Relationship between two patches (Katedros n.d.) 

 

As the environment is closed, the emittance functions, reflectivity values and 

form factors form a system of simultaneous equations that can be solved to find the 

radiosity of each patch. The radiosity is then interpolated across each of the patches 

and finally the image can then be rendered. The equation is monochromatic, so color 

radiosity rendering requires calculation for each of the required colors. 

The basic form factor equation is difficult even for simple surfaces. The number 

of calculations to compute the matrix solution scales according to n3, where n is the 

number of patches. This becomes prohibitive for realistically large values of n. 

Nusselt (1928) developed a geometric analog that allows the simple and accurate 

calculation of the form factor between a surface and a point on a second surface. The 

Nusselt Analog involves placing a hemispherical projection body, with unit radius, 
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at a point on the    surface. The second surface -    - is spherically projected onto the 

projection body and then cylindrically projected onto the base of the hemisphere. The 

form factor then may be approximated by the area projected on the base of the 

hemisphere divided by the area of the base of the hemisphere, as shown in Figure 11. 

 

Figure 11: Nusselt’s analog. The form factor from the differential area     to element    is 

proportional to the area of the double projection onto the base of the hemisphere (Nusselt 1928). 

 

Cohen and Greenberg (1985) proposed that the form factor between each pair of 

patches could also be calculated by placing a hemi-cube on each patch and projecting 

the environment on to it as defined by the Nusselt Analog. Each face of the hemicube 

is subdivided into a set of small, usually square (“discrete”) areas, each of which has 

a precomputed delta form factor value, as shown in Figure 12. When a surface is 

projected onto the hemicube, the sum of the delta form factor values of the discrete 

areas of the hemicube faces which are covered by the projection of the surface is the 

form factor between the point on the first surface (about which the cube is placed) 

and the second surface (the one which was projected). The speed and accuracy of this 

method of form factor calculation can be affected by changing the size and number of 

discrete areas on the faces of the hemicube. 
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Figure 12: The hemicube (Langbein n.d.) 

 

Radiosity assumes that an equilibrium solution can be reached; that all of the 

energy in an environment is accounted for, through absorption and reflection. It 

should be noted that because of the assumption of only perfectly diffuse surfaces, the 

basic radiosity method is viewpoint independent, i.e. the solution will be the same 

regardless of the viewpoint of the image. The diffuse transfer of light energy between 

surfaces is unaffected by the position of the camera. This means that as long as the 

relative position of all objects and light sources remains unchanged, the radiosity 

values need not be recomputed for each frame. This has made the radiosity method 

particularly popular in architectural simulation, targeting high-quality walkthroughs 

of static environments. Figure 13 demonstrates the difference in image quality that 

can be achieved with radiosity compared to ray tracing.  

However, there are several problems with using the hemicube radiosity method. 

It can only model diffuse reflection in a closed environment; it is limited to polygonal 

environments; it is prone to aliasing and has excessive time and memory 

requirements. Also, only after all the radiosities have been computed in the scene is 

the resultant image displayed. There is a form factor between each pair of patches, so 

in an environment with N patches, N2 form factors must be stored. For a scene of 

moderate complexity this will require a vast amount of storage and as the form factor 

calculation is non-trivial the time taken to produce a solution can be extensive. This 

means that the user is unable to alter any of the parameters of the environment until 
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the entire computation is complete. Then once the alteration is made, the user must 

once again wait until the full solution is recomputed. 

The visual quality of the rendered images in radiosity also strongly depends on 

the method employed for discretizing the scene into patches. A too fine discretization 

may give rise to artifacts, while with a coarse discretization, areas with high radiosity 

gradients may appear (Gibson and Hubbold 1997).To overcome these problems, the 

discretization should adapt to the scene. That is, the interaction between two patches 

should account for the distance between them as well as their surface area. In other 

words, surfaces that are far away are discretized less finely than surfaces that are 

nearby. These aspects are considered by the adaptive discretization method 

proposed by (Languénou , Bouatouch and Tellier 1992). It performs both 

discretization and system resolution at each iteration of the shooting process, which 

allows for interactivity. (Gibson and Hubbold 1997) demonstrated another solution 

for this problem by presenting an oracle that stops patch refinement once the 

difference between successive levels of elements becomes perceptually unnoticeable. 

Progressive refinement radiosity (Cohen, Chen, et al. 2004) works by not 

attempting to solve the entire system simultaneously. Instead, the method proceeds 

in a number of passes and the result converges towards the correct solution. At each 

pass, the patch with the greatest unshot radiosity is selected and this energy is 

propagated to all other patches in the environment. This is repeated until the total 

unshot radiosity falls below some threshold. Progressive refinement radiosity 

generally yields a good approximation to the full solution in far less time and with 

lesser storage requirements, as the form factors do not all need to be stored 

throughout. Many other extensions to radiosity have been developed and a very 

comprehensive bibliography of these techniques can be found in (Ashdown 2004). 
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Figure 13: Differences between ray tracing (middle) and radiosity (right hand image). 

 

Figure 14: Difference between standard direct illumination and radiosity 

For the creation of the 3d scene for the VE application which was utilized for this 

thesis and is described in 0 we used the radiosity rendering. 

2.1.5. Texture mapping 

Texture mapping is a technique used in order to add detail, surface  texture or to 

colorize a 3d model or graphic generated by a computer.  Texture mapping is used 

for creating 3d objects for objects, avatars, rooms for virtual worlds. The size of 

texture map varies. It is recommended that pixel dimensions are a combination from 

powers of 2 (i.e. 32, 64, 128, 256 and 512 etc.) 
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Figure 15: 1) 3D model without textures, 2) 3D model with textures. 

 A texture map is applied (mapped) to the surface of a shape or polygon 

(Radoff 2008). This process is analogous to applying patterned paper to a plain white 

box. Every vertex in a polygon is assigned a texture coordinate (which in the 2d case 

is also known as a UV coordinate) either via explicit assignment or by procedural 

definition. Image sampling locations are then interpolated across the face of a 

polygon to produce a visual result that seems to have more richness than could 

otherwise be achieved with a limited number of polygons. Multitexturing is the use 

of more than one texture at a time on a polygon. For instance, a light map texture 

may be used to light a surface as an alternative to recalculating that lighting every 

time the surface is rendered. Another multitexture technique is bump mapping, 

which allows a texture to directly control the facing direction of a surface for the 

purposes of its lighting calculations; it can give a very good appearance of a complex 

surface, such as tree bark or rough concrete that takes on lighting detail in addition to 

the usual detailed coloring. Bump mapping has become popular in recent video 

games as graphics hardware has become powerful enough to accommodate it in real-

time. 

 Texture filtering directs the way the resulting pixels on the screen are 

calculated from the texels (texture pixels) . The nearest-neighbor interpolation is the 

fastest method is to use, but bilinear interpolation or trilinear 

interpolations between mipmaps are two commonly used alternatives which 
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reduce aliasing or jaggies. In the event of a texture coordinate being outside the 

texture, it is either clamped or wrapped. 

 

 

Figure 16: Examples of multitexturing.1) Untextured sphere, 2) Texture and bump maps, 

3) Texture map only, 4) Opacity and texture maps. 

The essential map types are described below:  

Color (or Diffuse) Maps 

As the name would imply, the first and most obvious use for a texture map is to 

add color or texture to the surface of a model. This could be as simple as applying a 

wood grain texture to a table surface, or as complex as a color map for an entire game 

character (including armor and accessories). However, the term texture map, as it's 

often used is a bit of a misnomer—surface maps play a huge role in computer 

graphics beyond just color and texture. In a production setting, a character or 

environment's color map is usually just one of three maps that will be used for 

almost every single 3D model. 

Specular Map 

Also known as; gloss map. A specular map tells the software which parts of a 

model should be shiny or glossy, and also the magnitude of the glossiness. Specular 

maps are named for the fact that shiny surfaces, like metals, ceramics, and some 

plastics show a strong specular highlight (a direct reflection from a strong light 

source). Specular highlights are the white reflection on the rim of a coffee mug. 

Another common example of specular reflection is the tiny white glimmer in 
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someone's eye, just above the pupil.  

 

A specular map is typically a grayscale image, and is absolutely essential for surfaces 

that aren't uniformly glossy. An armored vehicle, for example, requires a specular 

map in order for scratches, dents, and imperfections in the armor to come across 

convincingly. Similarly, a game character made of multiple materials would need a 

specular map to convey the different levels of glossiness between the character's skin, 

metal belt buckle, and clothing material. 

Bump, Displacement, or Normal Map 

A bit more complex than either of the two previous examples, bump maps are a 

form of texture map that can help give a more realistic indication of bumps or 

depressions on the surface of a model.  

 

To increase the impression of realism, a bump or normal map would be added to 

more accurately recreate the coarse, grainy surface of, for instance, a brick, and 

heighten the illusion that the cracks between bricks are actually receding in space. Of 

course, it would be possible to achieve the same effect by modeling each and every 

brick by hand, but a normal mapped plane is much more computationally efficient. 

Normal mapping is a significant process incorporated in the development of modern 

computer games.   

Bump, displacement, and normal maps are a discussion in their own right, and 

are absolutely essential for achieving photo-realism in a render.  
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Figure 17: Taurus pt. 92 textured 3d model. Rendered in marmoset engine (real time game 

engine). 

 

 

Figure 18: Diffuse, normal and specular map of the above 3d model.  

Aside from these three map types, there are one or two others you'll see relatively 

often: 

Reflection Map 
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It the software which portions of the 3D model should be reflective. If a model's 

entire surface is reflective or if the level of reflectivity is uniform a reflection map is 

usually omitted. Reflection maps are grayscale images, with black indicating 0% 

reflectivity and pure white indicating a 100% reflective surface. 

 

 

Figure 19: Mesh without any texture (left image). Reflection image projected onto the object 

(right image). 

Transparency (or Opacity) Map 

Exactly like a reflection map, except it tells the software which portions of the 

model should be transparent. A common use for a transparency map would be a 

surface that would otherwise be very difficult, or too computationally expensive to 

duplicate, like a chain link fence. Using a transparency, instead of modeling the links 

individually can be quite convincing as long as the model doesn't feature too close to 

the foreground, and uses far fewer polygons. 
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Figure 20: Mesh with diffuse map only (left image). Opacity texture applied on the mesh (right 

image). 

 Texture maps are crucial for the design of the virtual scene. They facilitate the 

reduction of the polygonal complexity of the 3d models used, which in any other 

way would hinder rendering performance. In particular, the normal maps of some 

low polygon count models used in our scene were acquired from their high polygon 

versions to keep all the fine details of the models, thus maintaining an acceptable 

lighting quality with low computational cost. An example of this method can be seen 

on the following picture. Another use of texture maps, are opacity maps which allow 

for the otherwise opaque window in our scene to become transparent. 

 

Figure 21: Normal mapping used to re-detail simplified meshes. 

UVW mapping 

UVW mapping is a mathematical technique for coordinate mapping. In computer 

graphics, it is most commonly a R2 to R3 map, suitable for converting a 2D image (a 
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texture) to a three dimensional object of a given topology. "UVW", like the standard 

Cartesian coordinate system, has three dimensions; the third dimension allows 

texture maps to wrap in complex ways onto irregular surfaces. Each point in a UVW 

map corresponds to a point on the surface of the object. The graphic designer or 

programmer generates the specific mathematical function to implement the map, so 

that points on the texture are assigned to (XYZ) points on the target surface. 

Generally speaking, the more orderly the unwrapped polygons are, the easier it is for 

the texture artist to paint features onto the texture. Once the texture is finished, all 

that has to be done is to wrap the UVW map back onto the object, projecting the 

texture in a way that is far more flexible and advanced, preventing graphic artifacts 

that accompany more simplistic texture mappings such as planar projection. For this 

reason, UVW mapping is commonly used to texture map non-platonic solids, non-

geometric primitives, and other irregularly-shaped objects, such as characters and 

furniture. 

UVW mapping was used for mapping the illuminated textures for the scene 

created for the VE application utilized in this thesis. Details about creation of the 

scene geometry, creation of the illuminated textures and the mapping of textures to 

the geometry are discussed in 0. 

 

2.1.6. OpenGL 

OpenGL (Open Graphics Library) is a standard specification developed by 

Silicon Graphics Inc. (SGI) in 1992 and managed by the non-profit technology 

consortium Khronos Group; defining a cross-language, cross-platform API used in 

authoring 2D and 3D computer graphics applications. It is widely used in CAD, 

virtual reality, scientific visualization, information visualization, flight simulation, 

and video games. The interface consists of over 250 different function calls which can 

be used to draw from simple primitives to complex three-dimensional scenes.  

Two main purposes served by OpenGL are: 
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 Presenting a single, uniform interface to hide complexities of interfacing with 

different 3D accelerators  

 Requiring support of the full OpenGL feature set for any implementation 

(with software emulation if needed) to hide differing capabilities of hardware 

platforms. 

OpenGL's basic operation is converting primitives such as points, lines and 

polygons, into pixels using a graphics pipeline known as the OpenGL state machine. 

Most OpenGL commands either issue primitives to the graphics pipeline, or 

configure how these primitives are processed by the pipeline. Prior to OpenGL 2.0, 

each stage of the pipeline performed a static function and was configurable only 

within tight limits. OpenGL 2.0 offers several fully programmable stages using 

OpenGL Shading Language (GLSL). 

OpenGL is a low-level, procedural API, requiring the dictation of each of the 

exact steps to render a scene, in contrast with descriptive (aka scene graph or 

retained mode) APIs, where a programmer only the description of is needed and the 

library manages the rendering details. OpenGL's low-level design requires good 

knowledge of the graphics pipeline by the programmer, but also gives a certain 

amount of freedom to novel rendering algorithms implementation. 

OpenGL has historically influenced the development of 3D accelerators, 

promoting a base level of functionality common now in consumer-level hardware: 

 Rasterized points, lines and polygons as basic primitives 

 A transform and lighting pipeline 

 Texture mapping 

 Alpha blending 

 Z-buffering 

 

A brief description of the process in the graphics pipeline (Figure 22) could be: 



49 

 

1. Evaluation, of the polynomial functions which define certain inputs, like NURBS 

(Non-uniform rational basis spline) surfaces, approximating curves and the 

surface geometry. 

2. Transforming and lighting of vertex operations, depending on their material. 

Also clipping of non-visible parts of the scene in order to reduce the viewing 

volume. 

3. Rasterization or conversion of the components described above into pixels. The 

polygons are represented by the appropriate color by means of interpolation 

algorithms. 

4. Per-fragment operations, i.e. updating values depending on incoming and 

previously stored depth values, or color combinations, etc. 

5. Insertion of fragments into the frame buffer. 

 

Figure 22: Simplified version of the OpenGL Graphics Pipeline Process 

Functionality far above this baseline is provided by many modern 3D 

accelerators, but these new features are usually not radical revisions of this basic 

pipeline but enhancements of it. 

OpenGL it provides only rendering functions (output-only). The core API has no 

concept of windowing systems, audio, printing to the screen or input devices, 

allowing the code that does the rendering to be completely independent of the 
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operating system it is running on making OpenGL capable for cross-platform 

development. However, some integration with the native windowing system is 

required to allow clean interaction with the host system and performed through add-

on APIs. 

GLUT – The OpenGL Utility Toolkit 

The OpenGL Utility Toolkit (GLUT) is a utility library for OpenGL programs. It 

primarily performs system-level communication with the host operating system. 

Functions performed include window definition, window control, and monitoring of 

keyboard and mouse input. Routines for drawing a number of geometric primitives 

(both in solid and wireframe mode) are also provided, including cubes, spheres, and 

the Utah teapot. GLUT has some limited support for creating pop-up menus as well. 

The two intentions of GLUT are to allow the creation of portable code between 

different operating systems (GLUT is cross-platform) and to assist learning of 

OpenGL. OpenGL programming while using GLUT usually takes only a few lines of 

code and does not require knowledge of operating system–specific windowing APIs.  

2.1.7. Direct3D 

Direct3D is part of Microsoft's DirectX application programming interface (API). 

Direct3D is available for Microsoft Windows operating systems (Windows 95 and 

above), and for other platforms through open source software (e.g. Wine). Direct3D 

is used to render three dimensional graphics in applications where performance is 

important, such as games. Direct3D also allows applications to run fullscreen rather 

than embedded in a window. Direct3D utilizes hardware acceleration if it is available 

on the graphics card, allowing for hardware acceleration of the entire 3D rendering 

pipeline or even only partial acceleration. Direct3D exposes the advanced graphics 

capabilities of 3D graphics hardware, including z-buffering, spatial anti-aliasing, 

alpha blending, mipmapping, atmospheric effects, and perspective-correct texture 

mapping. Integration with other DirectX technologies enables Direct3D to deliver 
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such features as video mapping, hardware 3D rendering in 2D overlay planes, and 

even sprites, providing the use of 2D and 3D graphics in interactive media titles. 

Direct3D contains many commands for 3D rendering; however, since version 8, 

Direct3D has superseded the old DirectDraw framework and is also responsible for 

2D graphics rendering (Microsoft 2013). Microsoft endeavors to constantly update 

Direct3D to support the latest technology available on 3D graphics cards. Direct3D 

offers full vertex software emulation but no pixel software emulation for features is 

available in hardware. For example, if software programmed using Direct3D requires 

pixel shaders and the video card on the user's computer does not support that 

feature, Direct3D will not emulate it, although it will compute and render the 

polygons and textures of the 3D models, although at a usually degraded quality and 

performance compared to the hardware equivalent. The API includes a Reference 

Rasterizer (or REF device), which emulates a generic graphics card in software, albeit 

it is too slow for most real-time 3D applications. It is typically only used for 

debugging.  

2.1.8. Comparison of OpenGL and Dierct3D 

Direct3D and OpenGL are two competing application programming interfaces 

(APIs). They can be used in applications in order to render 2D and 3D computer 

graphics, utilizing hardware acceleration when available. Modern graphics 

processing unit (GPUs) may implement a specific version of one or both of Direct3D 

and OpenGL. 

Generally, Direct3D is designed for 3D hardware interfaces virtualization. 

Direct3D rives freedom to the game programmer from accommodation of the 

graphics hardware. OpenGL, on the other hand, is designed to be a 3D hardware-

accelerated rendering system that can also be emulated in software. There are 

functional differences in how the two APIs operate. Direct3D expects hardware 

resources management from the application; OpenGL requires that the 

implementation does it. This tradeoff for OpenGL decreases difficulty in developing 

for the API, while at the same time increasing the complexity of creating a high-
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performance implementation or driver. With Direct3D, hardware resources must be 

managed independently by the developer; however, the implementation is simpler, 

there is the flexibility that the developers allocate resources in the most efficient way 

possible for their application. 

Another functional difference between the APIs was the way they handled 

rendering to textures until about 2005. The Direct3D method (SetRenderTarget()) is 

convenient, while prior versions of OpenGL required manipulating pixel buffers (P-

buffers). This was cumbersome and risky: if the programmer's codepath was 

different from that anticipated by the driver maker, the code would have fallen back 

to software rendering, causing a substantial performance drop. However, 

widespread support for the "frame buffer objects" extension, which provided an 

OpenGL equivalent of the Direct3D method, successfully addressed this 

shortcoming, and the "render target" feature of OpenGL brought OpenGL up to par 

with Direct3D in this respect. 

The two APIs provide nearly the same level of function outside of a few minor 

functional differences. Hardware and software vendors generally respond rapidly to 

changes in DirectX, while new features in OpenGL are mainly implemented first by 

vendors and afterward retroactively applied to the standard. 

OpenGL was originally designed for SGI workstations. It includes a number of 

features, like stereo rendering and the "imaging subset", that were generally 

considered of limited utility for games - although stereoscopic gaming has drawn a 

lot more interest as of 2011. The API as a whole contains about 250 calls, but only a 

subset of perhaps 100 are useful for game development. However, no official 

gaming-specific subset was ever defined. MiniGL, released by 3Dfx as a stopgap 

measure to support glQuake, might have served as a starting point, but additional 

features like stencil were soon adopted by games, and support for the entire OpenGL 

standard continued. Today, workstations and consumer machines use the same 

architectures and operating systems, and so modern incarnations of the OpenGL 
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standard still include these features, although only special workstation-class video 

cards accelerate them. 

One of the most heavily disputed differences between the two APIs is the 

OpenGL extension mechanism. This mechanism gives the ability to any driver to 

advertise its own extensions to the API and introducing new functions such as blend 

modes, new ways to transfer data to GPUs, or different texture wrapping 

parameters. This allows new functions to be exposed quickly, but can lead to 

confusion if different vendors implement similar extensions with different APIs. 

Many of these extensions are periodically standardized by the OpenGL Architecture 

Review Board (ARB), and some are made a core part of future OpenGL revisions. 

OpenGL has always seen more use in the professional production and display of 

graphics, such as in computer animated films and scientific visualization graphics 

market than DirectX, while DirectX is used mostly for computer games. Currently 

both OpenGL and DirectX have a large enough overlap in functionality that either 

could be used for most common purposes, with the operating system itself often 

being the primary criterion dictating which is used, with DirectX the common choice 

on Windows, and OpenGL being used on nearly everything else. Some esoteric 

applications still divide the applicability of the two APIs: doing accelerated 3D across 

a network connection is only directly supported by OpenGL with GLX, for example. 

Presiously many professional graphics cards only supported OpenGL, now 

virtually all professional cards which work on the Windows platform will also 

support Direct3D. This has changed in the professional graphics market from largely 

Unix-based hardware like SGIs and Suns to less expensive PC-based systems, 

leading to the growth of Windows in this market segment, while at the same time 

providing a new market for OpenGL software in Unix-based consumer systems 

running Linux or Apple OS X. 

The main reason for OpenGL's dominance in the professional market was it’s 

performance. Many professional graphics applications were originally written in IRIS 

GL for high-end SGI workstations, which were far more capable, both graphically 
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and in raw CPU power, than the PCs of the time. Later, many of these were ported to 

OpenGL, even as the personal computer was evolving into a system powerful 

enough to run some professional graphics applications. Users were able to run Maya, 

for example, the successor to Alias on SGIs or Windows-based personal computers 

(and today on Linux, Mac OS X, and Windows). Price competition eventually broke 

SGI's dominance in the market, but the established base of OpenGL software 

engineers and the broadening user base for OpenGL in Apple, Linux, and other 

operating systems, have resulted in a market where both DirectX and OpenGL are 

viable, widespread APIs. 

The other reason for OpenGL's early advantage was marketing and design. 

DirectX is a set of APIs that were not marketed towards professional graphics 

applications. Indeed, they were not even designed with those applications in mind. 

DirectX was an API designed for low-level, high-performance access to broadly 

available, lower-performance, consumer-priced graphics hardware for the purpose of 

game development. OpenGL is a much more general purpose 3D API, targeting a 

full range of graphics hardware from low-end commodity graphics cards up to 

professional and scientific graphics visualization well out of the range of the average 

consumer, and providing features that are not necessarily exclusive towards any 

particular kind of user. 

Gaming developers typically haven't demanded as wide an API as professional 

graphics system developers. Many games don't need overlay planes, stencils, and so 

on, although this hasn't prevented some game developers from using them when 

available. In particular, game designers are rarely interested in the pixel invariance 

demanded in certain parts of the OpenGL standards, which are conversely highly 

useful to film and computer-aided modeling. 

As described in 0 for the development of the VE application used for this thesis 

we used the XVR VE application framework. The he integrated 3D engine of the XVR 

framework built on top of OpenGL, allows to manage the visual output not only on a 
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standard graphical window (either on the web or hosted locally), but also on more 

advanced devices such as Stereo Projection Systems and Head Mounted Displays. 

2.2. Virtual Reality Systems 

2.2.1. Mainstream Virtual Reality 

Virtual reality (VR) is a term that applies to computer-simulated environments 

that can simulate physical presence in places in the real world, as well as in 

imaginary worlds. Most current virtual reality environments are primarily visual 

experiences, displayed either on a computer screen or through special stereoscopic 

displays, but some simulations include additional sensory information, such as 

sound through speakers or headphones. Some advanced, haptic systems now 

include tactile information, generally known as force-feedback, in medical and 

gaming applications. Furthermore, virtual reality covers remote communication 

environments which provide virtual presence of users with the concepts of 

telepresence and telexistence or a virtual artifact either through the use of standard 

input devices such as a keyboard and mouse, or through multimodal devices such as 

a wired glove, head trackers, and omnidirectional treadmills. The simulated 

environment can be similar to the real world in order to create a lifelike experience, 

for example, in simulations for pilot or combat training, or it can differ significantly 

from reality, such as in VR games. In practice, it is currently very difficult create a 

high-fidelity virtual reality experience, due largely to technical limitations on 

processing power, image resolution, and communication bandwidth; however, the 

technology's proponents hope that such limitations will be overcome as processor, 

imaging, and data communication technologies become more powerful and cost-

effective over time. 

Virtual reality is often used to describe a wide variety of applications commonly 

associated with immersive, highly visual, 3D environments. The development of 

CAD software, graphics hardware acceleration, head mounted displays (HMDs), 

database gloves, and miniaturization have helped popularize the notion. In the book 

The Metaphysics of Virtual Reality (Heim 1993), seven different concepts of virtual 
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reality are identified: simulation, interaction, artificiality, immersion, telepresence, 

full-body immersion, and network communication. People often identify VR with 

head mounted displays and data suits. 

2.2.2. Immersive VR Systems 

Immersive systems are high tech, three dimensional display systems that allow 

users to be "immersed" into a displayed image.  In an immersive environment, 

images are often displayed in stereoscopic 3D.  Tracking systems can also be utilized, 

enabling a user to move all around these 3D images and even interact with them.  

The result is an experience that very much looks and feels like it is "real." 

(Björk and Holopainen 2004), in Patterns in Game Design, divide immersion into 

four categories: sensory-motoric immersion, cognitive immersion, emotional 

immersion and spatial immersion. The last one tends to be the most suitable for the 

purposes of this thesis. Spatial immersion occurs when a user feels the simulated 

world is perceptually convincing. The user feels that he or she is really "there" and 

that a simulated world looks and feels "real". 

Head-Mounted Displays (HMDs) 

A head-mounted display (Figure 23) is a display device, attached on the head or 

as part of a helmet . A head-mounted-display can have either one (monocular HMD) 

or two (binocular HMD) small displays with lenses and semi-transparent mirrors 

embedded in a helmet, eye-glasses (also known as data glasses) or visor. The display 

units are miniaturized and may include CRT, LCDs, liquid crystal on silicon (LCos), 

or OLED. Sometimes multiple micro-displays are employed in order to increase total 

resolution and field of view. 
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Figure 23: A binocular HMD 

Some of the main characteristics of Head-Mounted Displays are: 

The main characteristics of HMDs are (Cakmakci and Rolland 2006): 

Ability to show stereoscopic imagery 

A binocular HMD has the ability to display separate images to each eye, so it can 

be used to display stereoscopic imagery. It should be borne in mind that so-called 

'Optical Infinity' is generally taken by flight surgeons and display experts as about 9 

meters. This is the distance at which, given the average human eye rangefinder 

"baseline" (distance between the eyes or Inter-Pupillary Distance (IPD)) of between 6 

and 8 cm, the angle of an object at that distance becomes essentially the same from 

each eye. At smaller ranges, the perspective from each eye is significantly different 

and the expense of generating two different visual channels through the Computer-

Generated Imagery (CGI) system becomes worthwhile. 

Inter-Pupillary Distance (IPD) 

The distance between the two eyes. It is measured at the pupils. It is important in 

designing Head-Mounted Displays. 

Field of view (FOV) 
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Most HMDs offer considerably less than humans FOV which is around 180°. 

Typically, a greater field of view results in a greater sense of immersion and better 

situational awareness. Consumer-level HMDs typically offer a FOV of about 30-40° 

while professional HMDs offer a field of view of 60° to 150°. 

Resolution 

HMDs usually mention either the total number of pixels or the number of pixels 

per degree. Listing the total number of pixels (e.g. 1600×1200 pixels per eye) is 

borrowed from how the specifications of computer monitors are presented. 

However, the pixel density, usually specified in pixels per degree or in arcminutes 

per pixel, is also used to determine visual acuity. 60 pixels/degree (1 arcmin/pixel) is 

usually referred to as eye limiting resolution, above which increased resolution is not 

noticed by people with normal vision. HMDs typically offer 10 to 20 pixels/degree, 

though advances in micro-displays help increase this number. 

Binocular overlap 

Binocular overlap is the visible area that is mutual to both eyes. Binocular overlap 

is the basis for the sense of depth and stereo, allowing humans to sense which objects 

are near and which objects are far. Humans have a binocular overlap of about 100° 

(50° to the left of the nose and 50° to the right). The larger the binocular overlap 

offered by an HMD, the greater the sense of stereo. Overlap is sometimes specified in 

degrees (e.g. 74°) or as a percentage indicating how much of the visual field of each 

eye is common to the other eye. 

Distant focus (“Collimation”) 

Optical techniques may be used to present the images at a distant focus, which 

seems to improve the realism of images that in the real world would be at a distance. 

A key application for HMDs is training and simulation, allowing to virtually 

placing a trainee in a situation that is either too expensive or too dangerous to 

replicate in a real-life. Training with HMDs covers a wide range of applications from 



59 

 

driving, welding and spray painting, flight and vehicle simulators, dismounted 

soldier training, medical procedure training and more. 

Depth perception inside an HMD requires different images for the left and right 

eyes. There are multiple ways to provide these separate images: 

 Use dual video inputs, thereby providing a completely separate video signal 

to each eye. The advantage of dual video inputs is that it provides the 

maximum resolution for each image and the maximum frame rate for each 

eye. The disadvantage of dual video inputs is that it requires separate video 

outputs and cables from the device generating the content. 

 Time-based multiplexing: Techniques such as frame sequential combine two 

separate video signals into one signal by alternating the left and right images 

in successive frames. Time-based multiplexing preserves the full resolution 

per each image, but reduces the frame rate by half. For example, if the signal 

is presented at 60 Hz, each eye is receiving just 30 Hz updates. This may 

become an issue with accurately presenting fast-moving images. 

 Side by side or top/bottom multiplexing: This method allocates half of the 

image to the left eye and the other half of the image to the right eye. Side-by-

side and top/bottom multiplexing provide full-rate updates to each eye, but 

reduce the resolution presented to each eye. Many 3D television broadcasts 

chose to provide side-by-side 3D which saves the need to allocate extra 

transmission bandwidth and is more suitable to fast-paced sports action 

relative to time-based multiplexing techniques. 

Not all HMDs provide depth perception. Some lower-end modules are 

essentially bi-ocular devices where both eyes are presented with the same image. 3D 

video players sometimes allow maximum compatibility with HMDs by providing 

the user with a choice of the 3D format to be used. 

Head-mounted displays may also be used with tracking sensors that allow 

changes of angle and orientation to be recorded. When such data is available in the 

system computer, it can be used to generate the appropriate computer-generated 
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imagery (CGI) for the angle-of-look at the particular time. This allows the user to 

"look around" a virtual reality environment simply by moving the head without the 

need for a separate controller to change the angle of the imagery. In radio-based 

systems (compared to wires), the wearer may move about within the tracking limits 

of the system. 

Our HMD used in the experiments for this thesis was Kaiser Electro-optics Pro-

View 50 Head Mounted Display with a Field-of-View comprising 50 degrees 

diagonal (Figure 24). The HMD was capable of displaying two separate images with 

100% overlapping at XGA resolution (1024H x 768V) with full color and 60Hz 

Vertical scan rate. The projection field of view was 50° diagonal; 30° (V) x 40° (H) and 

the Inter-Pupillary distance was adjustable from 55 to75 cm. 

 

Figure 24: An HMD of the type used in this research, with no periphery shielding 

Stereoscopy 

Stereoscopy (also called stereoscopic or 3-D imaging) is a technique for creating 

or enhancing the illusion of depth in an image by presenting two offset images 
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separately to the left and right eye of the viewer. Both of these 2-D offset images are 

then combined in the brain to give the perception of 3d depth. Three strategies have 

been used to accomplish this: have the viewer wear eyeglasses to combine separate 

images from two offset sources, have the viewer wear eyeglasses to filter offset 

images from a single source separated to each eye, or have the light source split the 

images directionally into the viewer's eyes (no glasses required; known as 

autostereoscopy). 

Stereoscopy creates the illusion of three-dimensional depth from images on a 

two-dimensional plane. Human vision uses several cues to determine relative depths 

in a perceived scene. Some of these cues are: 

 Stereopsis (horizontal disparity of human eyes) 

This is the difference in the images projected onto the back the eye (and 

then onto the visual cortex) because the eyes are separated horizontally by the 

interocular distance. 

 Accommodation of the eyeball (eyeball focus) 

This is the muscle tension needed to change the focal length of the eye 

lens in order to focus at a particular depth. 

 Convergence 

This is the muscle tension required to rotate each eye so that it is facing 

the focal point. 

 Occlusion of one object by another 

An object that blocks another is assumed to be in the foreground. 

 Subtended visual angle of an object of known size 

The closer a viewed object is, the more visual angle subtends at the eye. 

 Linear perspective (convergence of parallel edges) 
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Objects get smaller the further away they are and parallel lines converge 

in distance. 

 Vertical position 

Objects higher in the scene generally tend to be perceived as further away. 

 Lighting shadows: 

Closer objects are brighter, distant ones dimmer. There a number of other 

more subtle cues implied by lighting, the way a curved surface reflects light 

suggests the rate of curvature, shadows are a form of occlusion. 

 Relative motion: 

Objects further away seem to move more slowly than objects in the 

foreground. 

 Change in size of textured pattern detail: 

Close objects appear in more detail, distant objects less. 

 Atmospheric haze: 

Distant objects get blurred by the atmosphere. 

 Change in size of textured pattern detail: 

Close objects appear in more detail, distant objects less. 

All the above cues, with the exception of the first three, are present in traditional 

two-dimensional images such as paintings, photographs, and television. Stereoscopy 

is the enhancement of the illusion of depth in a photograph, movie, or other two-

dimensional image by presenting a slightly different image to each eye, and thereby 

adding the first of these cues (stereopsis) as well. It is important to note that the 

second cue is still not satisfied and therefore the illusion of depth is incomplete. 

Stereopsis appears to be processed in the visual cortex in binocular cells having 

receptive fields in different horizontal positions in the two eyes. Such a cell is active 
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only when its preferred stimulus is in the correct position in the left eye and in the 

correct position in the right eye, making it a disparity detector. 

When a person stares at an object, the two eyes converge so that the object 

appears at the center of the retina in both eyes. Other objects around the main object 

appear shifted in relation to the main object. In the following example (Figure 25), 

whereas the main object (dolphin) remains in the center of the two images in the two 

eyes, the cube is shifted to the right in the left eye's image and is shifted to the left 

when in the right eye's image (Figure 26). 

 

Figure 25: The two eyes converge on the object of attention 

 

Figure 26: The cube is shifted to the right in left eye's image (left) and to the left on right eye's 

image (right) 
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Figure 27: We see a single, Cyclopean, image from the two eyes' images 

 

Figure 28: The brain gives each point in the Cyclopean image a depth value, represented here by 

a grayscale depth map 

Because each eye is in a different horizontal position, each has a slightly different 

perspective on a scene yielding different retinal images. Normally two images are 

not observed, but rather a single view of the scene, a phenomenon known as 

singleness of vision. Nevertheless, stereopsis is possible with double vision. This 

form of stereopsis was called qualitative stereopsis (Ogle 1950). If the images are very 

different (such as by going cross-eyed, or by presenting different images in a 

stereoscope) then one image at a time may be seen, a phenomenon known as 

binocular rivalry. 

While stereopsis is considered the dominant depth cue in most people, if the 

other cues are presented incorrectly they can have a strong detrimental effect. In 

order to render a stereo pair one needs to create two images, one for each eye in such 
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a way that when independently viewed they will present an acceptable image to the 

visual cortex and it will fuse the images and extract the depth information as it does 

in normal viewing. If stereo pairs are created with a conflict of depth cues then one of 

a number of things may occur: one cue may become dominant and it may not be the 

correct/intended one, the depth perception will be exaggerated or reduced, the image 

will be uncomfortable to watch, the stereo pairs may not fuse at all and the viewer 

will see two separate images (Figure 29). 

 

Figure 29: Different points of convergence and accommodation in stereopsis. 

Stereoscopic Rendering 

There are a couple of methods of setting up a virtual camera and rendering two 

stereo pairs, many methods are strictly incorrect since they introduce vertical 

parallax. An example of this is called the "Toe-in" method, while incorrect it is still 

often used because the correct "off axis" method requires features not always 

supported by rendering packages. Toe-in is usually identical to methods that involve 

a rotation of the scene. The toe-in method is still popular for the lower cost filming 

because offset cameras are uncommon and it is easier than using parallel cameras 

which requires a subsequent trimming of the stereo pairs. 

On-axis (Incorrect) 
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In this projection the camera has a fixed and symmetric aperture; each camera is 

pointed at a single focal point. Images created using the "on-axis" method will still 

appear stereoscopic but the vertical parallax it introduces will cause increased 

discomfort levels. The introduced vertical parallax increases out from the center of 

the projection plane and is more important as the camera aperture increases (Figure 

30). 

 

Figure 30: On-axis stereo rendering (incorrect). 

Off-axis (Correct) 

This is the correct way to create stereo pairs. It introduces no vertical parallax and 

is therefore creates the less stressful stereo pairs. Note that it requires a non-

symmetric camera frustum (Figure 31); this is supported by some rendering 

packages, in particular, OpenGL. 

Objects that lie in front of the projection plane will appear to be in front of the 

computer screen, objects that are behind the projection plane will appear to be "into" 

the screen. It is generally easier to view stereo pairs of objects that recede into the 

screen; to achieve this one would place the focal point closer to the camera than the 

objects of interest. Note this doesn't lead to as dramatic an effect as objects that pop 

out of the screen. 



67 

 

 

Figure 31: Off-axis stereo rendering (correct). 

The degree of the stereo effect depends on both the distance of the camera to the 

projection plane and the separation of the left and right camera. Too large a 

separation can be hard to resolve and is known as hyperstereo. A good ballpark 

separation of the cameras is 1/20 of the distance to the projection plane; this is 

generally the maximum separation for comfortable viewing. Another constraint in 

general practice is to ensure the negative parallax (projection plane behind the object) 

does not exceed the eye separation. 

A common measure is the parallax angle defined as             (    ⁄ ) 

where    is the horizontal separation of a projected point between the two eyes and 

  is the distance of the eye from the projection plane (Figure 32). For easy fusing by 

the majority of people, the absolute value of theta should not exceed 1.5 degrees for 

all points in the scene. Note       is positive for points behind the scene and negative 

for points in front of the screen. It is not uncommon to restrict the negative value of 

theta to some value closer to zero since negative parallax is more difficult to fuse 

especially when objects cut the boundary of the projection plane. 
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Figure 32: Off-axis stereo rendering equation. 

Head Tracking 

Head-mounted displays may also be used with tracking sensors that allow 

changes of angle and orientation to be recorded. When such data is available in the 

system computer, it can be used to generate the appropriate computer-generated 

imagery (CGI) for the angle-of-look at the particular time. This allows the user to 

"look around" a virtual reality environment simply by moving the head without the 

need for a separate controller to change the angle of the imagery. In radio-based 

systems (compared to wires), the wearer may move about within the tracking limits 

of the system. 

There are currently two types of available tracking device that may be employed 

according to their capability of tracking rotational movement (3-degrees-of-freedom) 

and rotational as well as translational movement (6-degrees-of-freedom).  

The 3-degrees-of-freedom (3-dof) tracker allows the viewpoint to be rotated 

around the x, y and z axis, which provides the ability to orient the viewing direction 

left or right, up or down, or twist it laterally.  When using a 3-dof tracker only 

rotation is accounted for with no provision for translating the viewpoint through the 

environment except on pre-defined paths, so the application of such devices will 

typically require the subject to remain seated in a static location.  
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By comparison, the 6-degrees-of-freedom (6-dof) devices track not only the 

rotational position of the head, but also the physical location in space. 6-dof devices 

therefore allow the environment to not only be scrutinized by rotating the head, but 

also navigated by physically walking or moving around. It should be noted however 

that since the HMD will obscure the users normal view of the physical environment 

and because of the attached cabling, this type of interaction with the environment 

must be carefully thought out and does not lend itself to every application. 

A common set of metrics is to evaluate the performance of the of head trackers 

are 

 Accuracy 

This is a measure of the error in the position and orientation reported by the 

tracker. 

 Resolution 

This is the smallest change in position and orientation that can be detected by 

the tracker. 

 Update rate 

 This is the rate at which position and orientation measurements are reported 

by the tracker to the host computer. 

 Latency (also known as Lag) 

This is the delay between a change in position and orientation and the report 

of the change to the host computer. 

 Working volume 

This is the volume within which the tracker can measure position and 

orientation with its specified accuracy and resolution. 

A good position tracker should have high accuracy, ne resolution and high 

update rate. Its latency should be low and its working volume should be large. 

Ideally, it should not need any specialized environment for operation. 
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In addition, the parts of the tracker that need to be worn should be small and 

light in weight, to ensure user comfort. 

2.3. Effects of Latency in Virtual Environment Users 

End-to-end latency in a Virtual Environment (VE) is defined as the time lag 

between a user’s action in the VE and the system’s response to this action. VE lag 

comprises of four different types 

 User-input-device lag 

The input device reports 3d position and/or orientation data to the VR application. 

The user input device lag is the lag introduced from the communication between the 

tracking system and the VE application. 

 Application-dependent processing lag 

The application-dependent processing lag is the time required for the computation of 

the 3D model. Once the user input device data arrives to the host workstation, the 

application processes it. Processing lag is highly application-dependent and thus 

highly variable. 

 Rendering lag 

The rendering lag is the time that passes until data sent from the VE application to 

the rendering hardware appears on a monitor or immersive display. The rendering 

lag depends on the scene and the viewpoint rendered at each time, so it varies 

through the VE application run-time. The scan-out of the display causes additional 

lag.  

 Synchronization lag 

The synchronization lag is the total time that data is waiting during the necessary 

communication of involved input devices, in-between the parallel processing stages 

of the VE application. It is application-relevant and depends on rendering processing 

stages which are not well-synchronized to avoid delays of transmission. These stages 

are independent and it is possible that the input device deposits new tracking data 
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shortly after the application reads the previous data. Thus, the application is busy 

processing the previous input before it reads and starts to process the new input, so 

that input data is delayed.  

 Frame-rate-induced lag 

Moreover, there is a fifth kind of lag, i.e. the frame-rate-induced lag, resulting from 

the fact that data displayed progressively become out of date, while the display is not 

updated fast. This type of lag is distinguished from other lag sources and is not 

considered as end-to-end latency. It is, though, perceivable by the users and results 

in slow frame rates while exposed to a VE to be considered unacceptable (Wloka 

1995). 

Excessive system latency is a well-known defect of VE and teleoperation systems 

(Ellis, Mania, et al. 2004). It is particularly troublesome for head-tracked systems 

since delays in head orientation measurement give rise to errors in presented visual 

direction. 

Perceptible latency that is experienced by its visual consequences on a display is 

one of the most notable problems facing current VE applications. (Ellis, Adelstein, et 

al. 1999). Perceptible latency has been shown to have undesirable effects on users of 

virtual environments, including a lack of accuracy during tracking tasks, loss of 

immersion (Garrett, Aguilar and Barniv 2002) and cybersickness, a form of motion 

sickness that occurs as a result of exposure to VEs, poses a serious threat to the 

usability of VR systems and is one of the most important health and safety issues that 

may influence the advancement of VE technology (Stanney, Mourant and Kennedy 

1998), as well as disorientation, discomfort and even nausea (Kennedy, et al. 1992).  

Although manufacturers of high performance computer graphics systems often 

sacrifice latency for frame rate, findings of (Ellis, Adelstein, et al. 1999) suggest they 

could improve their systems’ interactivity by altering their existing trade-off. 

High end-to-end latency can severely degrade users’ performance in a VE (Ellis, 

Bréant, et al. 1997), (Ellis, Wolfram and Adelstein 2002). The RMS (Root Mean 

Square) tracking errors, which are an objective measure of user’s performance, are 
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caused mostly by visual latency, rather than spatial sensor distortion or low update 

rates (Ellis, Adelstein, et al. 1999). Latency also affects users’ performance on 3D 

object placement tasks (Watson, et al. 2003), in terms of completion time and 

accuracy (Liu, et al. 1993). While users can exhibit sensorimotor adaptation that 

might improve manual performance when time delays exist in situations where task 

preview is available (Cunningham, Billock and Tsou 2001), (Cunningham, 

Chatziastros, et al. 2001), the presence of delay has been shown to hinder operator 

adaptation to other display distortions such as static displacement offset (Held, 

Efstathiou and Greene 1966).  

More recently interest has been directed towards the subjective impact of latency 

on the users’ reported sense of presence. Latency, as well as update rate, is 

considered as a factor affecting the operator’s sense of presence in the environment 

(Welch, et al. 1996), (Uno and Slater 1997). Lower latencies were associated with a 

higher self-reported sense of presence and a statistically higher change in heart rate 

for users, while exposed to a stress-inducing (fear of heights), photorealistically 

rendered VE, involving walking around a narrow pit (Meehan, et al. 2003) (Figure 

33). The role of VE scene content and resultant relative object motion on latency 

detection has been examined by presenting observers in a head-tracked, stereoscopic 

head mounted display with environments having differing levels of complexity 

ranging from simple geometrical objects to a radiosity-rendered scene representing a 

hypothetical real-world setting (Mania, Adelstein, et al. 2004). Such knowledge will 

help understand latency perception mechanisms and, in turn, guide VE designers in 

the development of latency countermeasures. In this study, a radiosity-rendered 

scene of two interconnected rooms was employed. Latency discrimination observed 

was compared with a previous study in which only simple geometrical objects, 

without radiosity rendering or a ‘real-world’ setting, were used employing formal 

psychophysical techniques which are far-removed from simulated tasks. The user is 

instructed to report the consequences of latency focused on differences between 

paired stimuli of varied tracking latency. They reveal that the Just Noticeable 

Difference (JND) for latency discrimination by trained observers, averages ~15ms or 
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less, independent of scene complexity and real-world meaning. Such studies were, 

though, far-removed from real application scenarios of interaction with synthetic 

scenes or remote telemanipulation applications because the user is required to solely 

focus on identifying the visual or other consequences of latency while no other task is 

performed. Moreover, there is always an issue that due to the intense nature of 

psychophysical experimentation, a small amount of users are normally tested, 

resulting in doubts concerning the generality of such results. 

 

Figure 33: Scene for testing presence in a VR (Meehan, et al. 2003) 

Although previous research identifies the detrimental effect of tracking latency 

on mainly motor task performance, it could be true that for generic spatial awareness 

tasks such as navigation or visual search, the effect of latency is less severe and 

humans adapt to it while forming a detailed mental map of the space. In this thesis, 

we explore whether the effect of latency on spatial cognition, memory performance 

and spatial awareness severely hampers spatial awareness in an Immersive Virtual 

Environment (IVE) or whether humans are good at perceiving 3D space while using 

the memory awareness methodology detailed below, irrespectively of relatively high 

latency.  

2.4. Measuring Latency 
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In order to examine the effects of latency in a VE it is necessary that end-to-end 

latency is effectively measured minimized and controlled. Several measurement 

techniques have been introduced through years. 

In an early measurement method (Liang, Shaw and Green 1991), an 

electromagnetic tracker was attached to a moving pendulum (Figure 34). Tracker 

readings were time-stamped and stored in a host computer. The computer monitor 

was displaying the current time of the clock that was generating the time stamps. A 

video camera was simultaneously recording the monitor display and the swing of 

the pendulum. The video was later analyzed frame-by-frame. End-to-end latency 

was determined by comparing the display time when the pendulum was passing by 

the zero-crossing point and the time stamp stored on the host computer.  

 

Figure 34: Early latency measurement technique using a camera (Liang, Shaw and Green 1991) 

Later, the use of an oscilloscope instead of a video camera was introduced (Miné 

1993), (Jacoby, Adelstein and Ellis 1996). The oscilloscope was used to compare three 

inputs, estimating the end-to-end latency. The first input was deducted from a LED-

photodiode pair that was marking the zero-crossing point of the pendulum. The 

second input was deducted from a Digital-to-Analog (D/A) converter attached to the 

host computer, reporting tracker position readings. Comparing these two inputs 
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determined the input device lag. Additionally, a third photodiode was monitoring 

brightness changes on the system’s display, while a specific polygon displayed was 

changing color from white to black and vice-versa at the time that zero crossings 

were reported to the system. Comparison between the first and the third input was 

used to measure the overall end-to end latency.  

 

Figure 35: Miné's latency measuring technique using an oscilloscope (Miné 1993) 

In a more recent study, a slightly modified technique was used (Jacoby, Adelstein 

and Ellis 1996). Instead of the first LED-photodiode pair responsible for monitoring 

and reporting the motion of the pendulum, a swing arm motor equipped with a shaft 

encoder was used. The arm repeatedly moved the tracker back-and-forth through a 

pre-set threshold point and the encoder reported crosses of the threshold to an 

oscilloscope. This input was, at first, compared with the input deducted from a 
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photodiode monitoring the VE system’s screen, which was displaying the same 

rectangular color transition as in (Miné 1993). 

In another study, the previous techniques are modified by directly monitoring 

the RGB analog output signals of the VGA, instead of using a photodiode in order to 

monitor the display (Hill, Adelstein and Ellis 2004). Critical portions of the VE 

application code are also “trapped”, thus, producing timestamps and signals to the 

oscilloscope. These signals were used to bridge internal and external measurements 

and provide information about timing at different stages of the VE execution. 

However, taking into account the RGB signal instead of the photodiode readings of 

the monitor does not fairly offer an accurate measurement of the end-to-end latency, 

as it does not correspond to what the user actually sees. Relevant research also 

attempts to minimize latency by assessing its level relevant to the internal system 

components, and reorganizing the communication between them more efficiently. 

Recent estimating methods make use of video analysis comparing movement of 

the head tracker and the resulting movement of a simulated image on a screen that 

are captured simultaneously using a video camera (Steed 2008). However, such 

estimation methods do not provide more accurate measurements nor do they 

provide information concerning latency increases throughout the processing of the 

interactive VE itself. This information is essential in order to be able to understand 

how these different stages contribute to the overall latency and thus, be able to 

reorganize these components in order to achieve minimal latency. 

Recent estimating methods make use of video analysis comparing movement of 

the head tracker and the resulting movement of a simulated image on a screen. The 

simultaneous movements are captured using a video camera (Steed 2008) or encoded 

by photodiode readings of luminance gradients (one gradient that the tracked object 

is moved across and another gradient that is produced by the VE) (Di Luca 2010). 

However, such estimation methods result in potentially less accurate measurements 

than using oscilloscope readings of electronic signals from the VE host computer 

and, therefore, cannot be further expanded in order to provide information 
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concerning latency increases throughout the processing of the interactive VE itself. 

This information is essential in order to be able to understand how these different 

stages contribute to the overall latency and thus, be able to reorganize these 

components in order to achieve minimal latency. 

In 3.8 of this thesis we presented a custom-made mechanism of measuring and 

minimizing end-to-end head tracking latency in an immersive VE. Our mechanism 

builds on previous mechanisms by using an oscilloscope to compare two signals, 

assembled by low-cost, custom-made and portable equipment. One signal is 

generated by the head-tracker movement and reported by a shaft encoder attached 

on a servo motor moving the tracker. The other signal is generated by the visual 

consequences of this movement in the VE and reported by a photodiode attached to 

the computer monitor. The end-to-end head tracking latency of the VE is the 

measured time-shift between these two signals. The presented system calculates this 

time-shift by off-line processing the tracker position and display brightness 

measurements stored in a computer derived from the oscilloscope using a USB 

connection. Thus, an accurate measuring mechanism is provided, utilizing 

equipment commonly found in an academic facility. 

2.4.1. Virtual Environment Pipeline 

The VE visual pipeline (Figure 38) covers all steps up to the display of a VE scene 

on the output device of interest starting from the sensor inputs that contribute to the 

rendering of that scene. The graphics pipeline typically accepts some representation 

of three-dimensional primitives as an input and results in a 2D raster image as 

output. OpenGL and Direct3D are two notable 3d graphic standards, both describing 

very similar graphic pipeline. The latency for a VE system is the sum of the 

completion times required for each of the consecutive processes in the pipeline 

illustrated by Figure 38. 

The tracker acquires the current position and orientation information of the head. 

Although various motion trackers may use different transduction methods to acquire 

position and orientation information, we are only concerned with latency. Therefore, 
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the relevant metric for a given tracker is simply the length of time between data 

acquisition and when that data is deposited into shared memory and made available 

to the next component in the pipeline, the simulation/graphics subsystem. This data 

is deposited, through the tracker driver into shared memory, making data available 

to the next component in the pipeline, e.g. the simulation application. 

The simulation/graphics subsystem carries out a number of actions on the tracker 

data retrieved from shared memory. First, application-related calculations that are 

part of the physical simulation or graphical user interface are performed on the CPU. 

These are calculations that may be viewpoint dependent and may impact on the 

viewable image. Any simulation or application-related calculations that do not rely 

on updates of the user’s viewing position or of other sensed input action can be pre-

computed outside of the direct path of the VE pipeline, and therefore do not need to 

contribute to overall latency. 

After the completion of these calculations, the geometry of the scene is 

transferred to the Graphics Processor Unit (GPU) of the graphics card. In the case of 

stereoscopic visualization, viewpoint transformations specific to each channel of the 

stereo viewpoint are performed. The resulting image (or images in case of stereo 

viewpoints) is subsequently rasterized into pixels and drawn into a temporary buffer 

of the graphics hardware video ram (VRAM), e.g. the back video buffer. The 

rendering time of an image may depend on the number of polygons, vertices, 

textures, pixels, or a combination of all of these. The final stage of the pipeline is the 

buffer swap from the back to front buffer (Figure 36Figure 37, Figure 37). The use of 

the back buffer at the VRAM serves as a staging area where images are assembled 

before scanned onto the display in order to avoid visual discontinuities and artifacts 

that would otherwise occur if parts of the front buffer were changed during the scan-

out process.  To avoid visual discontinuities that would arise from modifying the 

front video buffer while scanning to the screen, the buffer swap is generally 

performed during the vertical blank interval of the monitor, when the screen is dark. 



79 

 

After the image is swapped to the front buffer, pixels will be scanned out onto the 

display in rows from the top of the screen down, and from left to right within each 

row. Because of the scan-out, the latency of a scene will vary, being lower in the 

upper left portion of the display than in the lower right. To simplify the discussion of 

latency in this thesis, we refer to the latency in the system only up to the uppermost 

left pixel of the output device. At each refresh cycle of the screen a pulse called V-

sync is generated. Synchronization between buffer swapping and the v-sync signal 

prevents “image tearing” by timing video time swaps to match the vertical blank 

interval of the monitor. The v-sync pulse indicates when the front buffer is ready to 

accept the next video frame, and only then the back buffer is being swapped. When 

synchronization between the back/front buffer swap and the v-sync pulse is used the 

maximum frame rate of the graphics redraw is limited by the interval between 

successive v-syncs, no matter how quickly video buffers can be filled with newer 

image information. 

 

Figure 36: Double buffering in monoscopic rendering 
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Figure 37: Double buffering in passive stereo rendering. 

The latency of the VE system is the sum of the completion times required for each 

of the consecutive processes in the pipeline to be processed. In order to measure end-

to-end latency, we have to also take into account the time that pixels take to be 

scanned onto the display; this is dependent on the hardware of the display. Thus, the 

term ‘internal latency’ indicates the latency contributed from all the processes of the 

VE visual pipeline except from the scan-out process. 
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Figure 38: The VE pipeline 

2.4.2. Added Latency sources 

Triple Buffering 

Multiple buffering is the use of more than one buffer to hold a block of data, so 

that a "reader" will see a complete (though perhaps aged) version of the data, rather 

than a partially-updated version of the data being created by a "writer". 

In computer graphics systems double buffering of video frames to avoid visual 

discontinuities is commonly used. While the front buffer in video memory (VRAM) 

is directly scanned onto a monitor as an analog video signal, the back buffer in 

VRAM serves as a staging area where new images can be assembled. With double 

buffering, an image is swapped to the front buffer only when the image has been 

completely assembled in the back buffer.  This prevents visual artifacts that would 

otherwise occur if parts of the front buffer were changed during the scan-out process.  

Synchronization between buffer swapping and the v-sync signal prevents image 

“tearing” (Meehan, et al. 2003) by timing video buffer swaps to match the vertical 
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blank interval of the monitor. The back buffer is swapped to the front to begin 

scanning only when the display hardware is ready to accept the next video frame, as 

indicated by the VGA video v-sync pulse. Double buffering necessarily requires 

more video memory and CPU time than single buffering because of the video 

memory allocated for the back buffer, the time for the copy operation, and the time 

waiting for synchronization. Moreover, when v-sync/buffer swap synchronization is 

used, the interval between successive v-syncs limits the maximum frame rate of the 

graphics redraw, regardless how quickly video buffers can be filled with new image 

information. 

When v-sync is enabled, the graphics card can often fill both buffers and then 

have to stop working on any new frames until the monitor indicates it is ready for a 

new frame for its next refresh. Only then can the graphics card clear the primary 

buffer, switch buffers and begin rendering the next frame in the secondary buffer. 

This waiting is what causes a drop in FPS when v-sync is enabled on many systems. 

In order to avoid this drop, modern graphic cards actually triple-buffer the video 

memory. In triple buffering the VE pipeline o back buffers and can immediately start 

drawing in the one that is not involved in such copying. The third buffer, the front 

buffer, is read by the graphics card to display the image on the monitor. Once the 

monitor has been drawn, the front buffer is flipped with (or copied from) the back 

buffer holding the last complete screen. Since one of the back buffers is always 

complete, the graphics card never has to wait for the software to complete. 

Consequently, the software and the graphics card are completely independent, and 

can run at their own pace. Finally, the displayed image was started without waiting 

for synchronization and thus with minimum lag. 
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Figure 39: Single, double and triple buffering operation (v-sync enabled). 

Dynamic and Static Asynchrony 

While the triple-buffer’s frame of additional delay involves extra time between 

the simulation/graphics application software and the output display hardware, the 

remaining of unnecessary latency, stems from a lack of synchronization between the 

software and the input tracking device. This asynchrony between the tracker and 

simulation/graphics subsystems has two components: one that dynamically varies 

from update-to-update and the other that remains constant. 

The dynamic component results from the absence of synchronization between the 

tracker readings and graphics application updates. Without synchronization, the 

tracker sampling frequency is not identical to (nor an exact integer multiple of) the 

graphics VSync rate. For example, as (Hill, Adelstein and Ellis 2004) describe, for a 

tracker that updates by ~120Hz rate and a VE application that generates graphics at 

an ~60hz rate, the time of data retrieval from shared memory by the ~60 Hz 
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simulation/graphics application keeps slipping farther behind the instant data is 

deposited by an ~120 Hz tracker driver. This slip represents a linear growth in age 

from one cycle to the next of data in shared memory. This growth continues until the 

shared memory contents are old enough (1/120 sec or 8.3ms) to be supplanted by a 

fresher sample from the tracker. The slip and resetting is illustrated in Figure 40 by 

the repeating (cyan) wedge-shaped segments, representing the duration data 

remains in shared memory from arrival until retrieval by the simulation/graphics 

application. Based on the ideal of the simple ramp pattern and the measured 

minimum and maximum values reported in Figure 40, shared memory time accounts 

for a theoretical average (mean ± variance) of 4.2 ± 1.2 ms in additional latency. 

The constant component is the interval that follows completion of all simulation 

graphics computations for the cycle until that cycle’s image is swapped into the front 

video buffer. While this latency component follows completion of the cycle’s 

computations, it is still due to static asynchrony with the input device. Because 

tracker data is read from shared memory at the top of the 60 Hz simulation/graphics 

cycle, and because all computation occupies only the first 1.3ms in Hill’s study 

(2004), (summing from the application, left eye, and right eye simulation application 

components in Figure 40), the remainder of the cycle until the video buffer swap is 

spent idle. Essentially, the results of the completed simulation and graphics 

calculations age by the duration of this idle time. As measured from the system once 

the extra 16.7ms from triple buffer has been removed, Figure 40 indicates that the 

idle time following all computation can add up to 14.5ms of pre-swap delay to the 

latency path between tracker readings and visual display. Removal of the triple 

buffer was necessary to make the plot in Figure 40 because this was the only way to 

associate particular OpenGL buffer swap function callbacks with their specific 

simulation frame. A portion of the pre-swap delay is unavoidable because it is still 

needed to perform queued GPU calculations. The triple buffer’s extra latency was 

removed in the manner described in a subsequent section. 
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Figure 40: VE system timing diagram (Hill, Adelstein and Ellis 2004) 

2.4.3. Hardware 

2.5. Latency Minimization 

In a VE, the expected minimum achievable latency is the sum of lag contributed 

from each of the three pipeline components, i.e. the tracking system component, the 

application-dependent processing component and the rendering component (Wloka 

1995) (Figure 38). According to previous research on latency minimization, the initial 

latency measured (45 ± 1.8ms) was by far higher than the minimum predicted by 

adding known latencies of the system components (Hill, Adelstein and Ellis 2004). 

The additional lag was found to be caused by the synchronization lag and lies 

between the three other subsystems. Part of this lag lies between the graphics 

application and the display rendering subsystem and is mostly caused by the 

synchronization that occurs between the buffer swapping and the v-sync signal (Hill, 

Adelstein and Ellis 2004). The rendering subsystem video memory (VRAM) consists 

of two buffers, the back buffer where changes are made to the image and the front 

buffer from which the image is displayed at the screen. Moreover, most of the 
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modern graphic cards, in fact, triple-buffered the image, adding an extra frame of 

delay to the VE system. Though this triple buffering may have been useful for high 

performance 180 Hz CRT displays, this was unnecessary for the 60Hz Head Mounted 

Displays (HMDs) used in previous work (Hill, Adelstein and Ellis 2004), as well as, 

for the Rockwell-Collins Proview XL50 to be used in future work. Triple buffering 

and vertical-sync can be disabled though, by turning off the proper settings in the 

graphics card’s control panel. To prevent image tearing, the v-sync signal may be 

reused, without restricting the buffers swap rate, ensuring that swapping is 

regulated in order that only one swapping occurs at each v-sync. 

Lack of synchronization also occurs between the application software and the 

tracking device. This asynchrony consists of two components, one that varies at each 

update and one that remains constant. The varying component, called dynamic 

asynchrony, results from the absence of synchronization between the tracker device 

readings and the updates of the graphics application. The tracker sampling sequence 

is usually not identical to the graphics v-sync rate. This asynchrony has been 

eliminated (Hill, Adelstein and Ellis 2004) by synchronizing the tracker readings with 

the v-sync signal, after doubling the signal frequency (60 Hz) in order to match the 

one of the tracker (Polhemus Fastrack, 120Hz). The constant component, called static 

asynchrony, is the time that passes when the data processing is completed, however, 

at the same time the data remain idle waiting for the next monitor update cycle. 

Avoiding this “ageing” of processed data, implies receiving data from the tracker the 

last possible instant, necessary for completing all the computation needed to display 

the next frame in time. Since the update rate of the screen in (Hill, Adelstein and Ellis 

2004) was 60Hz and the tracker update rate was 120 Hz, at each update cycle of the 

graphics subsystem, the tracker reports data two times. Software and hardware 

modifications can be used in order that the graphics subsystem skips the first reading 

of the tracker and uses the “fresher” second one, such as internally clocked “sleep” 

functions of the graphics application. This modification resulted in the elimination of 

up to 8.3ms of added latency (half of the screen update cycle) (Hill, Adelstein and 

Ellis 2004). The final modified VE resulted in a constant latency of 8.5ms for a simple 
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~100 polygon test environment and 13ms for a more realistic ~35k test environment, 

without taking into account the refresh (frame) rate latency. An important fact is that 

both of these measurements were in the 8-20ms range of perceptual tolerance for 

latency in a head tracked HMD-based VE system, however, 

2.6. Memory awareness states and schemata 

While previous background knowledge in this chapter introduces the basic 

principles of computer graphics and provides technical information relating to the 

complexities of IVE generation, this section provides background information 

regarding the memory schema and awareness states theory employed in this thesis. 

The effect of latency in spatial cognition in immersive simulations has inspired 

numerous studies carried out in real and Virtual Environments (VE). VEs are now 

becoming an increasingly popular alternative approach for research exploration 

spatial cognition. Moreover, simulation fidelity is based on simulation of spatial 

awareness as in the real world. This study includes an experiment exploring whether 

the effect of latency on spatial cognition, memory performance and spatial awareness 

severely hampers spatial awareness in an Immersive Virtual Environment (IVE) or 

whether humans are good at perceiving 3D space while using the memory 

awareness methodology detailed below, irrespectively of relatively high latency. 

2.6.1. Memory and Perception 

Human Memory is a system for storing and retrieving information acquired 

through our senses (Baddeley 1977), (Riesberg 1997). The briefest memory store lasts 

for only a fraction of a second. Such sensory memories are perhaps best considered 

as an integral part of the process of perceiving. Both vision and hearing, for instance, 

appear to have a temporary storage stage, which could be termed short-term 

auditory or visual memory and that could last for a few seconds. In addition to these, 

though, humans clearly retain long-term memory for sights and sounds. Similar 

systems exist in the case of other senses such as smell, taste and touch. In this section, 

the memory awareness methodology and memory schema theories employed in this 

thesis are analyzed. 
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2.6.2. The remember/know paradigm 

In this section, the main methodology employed in this thesis is going to be 

analyzed. This methodology forms the core of the experimental design presented in 

0. 

In the process of acquiring a new knowledge domain, visual or non-visual, 

information retained is open to a number of different states. Accurate recognition 

memory can be supported by: a specific recollection of a mental image or prior 

experience (remembering); reliance on a general sense of knowing with little or no 

recollection of the source of this sense (knowing); strong familiarity rather than an 

un-informed guess (familiar); and guesses. ‘Remembering’ has been further defined 

as ‘personal experiences of the past’ that are recreated mentally (Gardiner and 

Richardson-Klavenhn 1992). Meanwhile ‘knowing’ refers to ‘other experiences of the 

past but without the sense of reliving it mentally’. (Tulving 1992) provided the first 

demonstration that these responses can be made in a memory test, item by item out 

of a set of memory recall questions, to report awareness states as well. He reported 

illustrative experiments in which participants were instructed to report their states of 

awareness at the time they recalled or recognized words they had previously 

encountered in a study list. If they remembered what they experienced at the time 

they encountered the word, they made a ‘remember’ response. If they were aware 

they had encountered the word in the study list but did not remember anything they 

experienced at that time, they expressed a ‘know’ response. The results indicated that 

participants could quite easily distinguish between experiences of remembering and 

knowing. These distinctions provide researchers a unique window into the different 

subjective experiences an individual has of their memories. 

Measures of the accuracy of memory can therefore be enhanced by self-report of 

states of awareness such as ‘remember’, ‘know’, ‘familiar’ and ‘guess’ during 

recognition (Conway, et al. 1997), (Brandt, Gardiner and MacRae 2006). Object 

recognition studies in VE simulations have demonstrated that low interaction fidelity 

interfaces, such as the use of a mouse compared to head tracking, as well as low 
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visual fidelity, such as flat-shaded rendering compared to radiosity rendering, 

resulted in a higher proportion of correct memories that are associated with those 

vivid visual experiences of a ‘remember’ awareness state (Mania, Troscianko, et al. 

2003), (Mania, Wooldridge, et al. 2006), (Mania, Badariah and Coxon 2010). As a 

result of these studies, a tentative claim was made that those immersive 

environments that are distinctive because of their variation from ‘real’ representing 

low interaction or visual fidelity recruit more attentional resources. This additional 

attentional processing may bring about a change in participants’ subjective 

experiences of ‘remembering’ when they later recall the environment, leading to 

more vivid mental experiences. The present research builds upon this pattern of 

results and its possible explanations. 

Whilst researchers may be interested in measuring differences between the 

memorial experiences of remembering and knowing, there is recent evidence to 

suggest that how this is implemented in a practical sense can influence the accuracy 

of our measures of these. Specifically, the instructions and terminology influence the 

accuracy of participants’ remember-know judgments (McCabe and Geraci 2009). In 

the past, there have been concerns raised about the use of the terms ‘remember’ and 

‘know’ because the meaning that participants attach to these terms may be slightly 

different to those intended by the researchers. In clinical populations this has been a 

particular concern, and several researchers have replaced the terms ‘remember’ and 

‘know’ with those of ‘type a’ and ‘type b’ (e.g. (Levine, et al. 1998); (Wheeler and 

Stuss 2003)). Recent evidence has suggested that these changes are also beneficial 

when measuring ‘remember’ and ‘know’ judgments in non-clinical populations 

(McCabe and Geraci 2009). Participants are generally more accurate, in that there are 

less false-alarms, when ‘remember’ and ‘know’ are replaced with the terms ‘type a’ 

and ‘type b’ in any instructions given. This procedure was therefore followed here. 

Moreover, it has been shown that memory performance is frequently influenced 

by context-based expectations (or ‘schemas’) which aid retrieval of information in a 

memory task (Minsky 1975). A schema can be defined as a model of the world based 

on past experience which can be used as a basis of remembering events and provides 
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a framework for retrieving specific facts. In terms of real world scenes, schemas 

represent the general context of a scene such as ‘office’, ‘theatre’ etc. and facilitates 

memory for the objects in a given context according to their general association with 

that schema in place. Previously formed schemas may determine in a new, but 

similar environment, which objects are looked at and encoded into memory (e.g., 

fixation time). They also guide the retrieval process and determine what information 

is to be communicated at output (Brewer and Treyens 1981).  

(Pichert and Anderson 1966) schema model predicts better memory performance 

for schema consistent items, e.g. items that are likely to be found in a given 

environment, claiming that in-consistent items are mostly ignored. Contrarily, the 

dynamic memory model (Holingworth and Henderson 1998) suggests that schema-

inconsistent information for a recently-encountered episodic event will be easily 

accessible and, therefore, leads to better memory performance. Previous VE 

experiments revealed that schema consistent elements of VE scenes were more likely 

to be recognized than inconsistent information (Mourkoussis, et al. 2010), (Mania, 

Robinson and Brandt 2005), supporting the broad theoretical position of (Pichert and 

Anderson 1966). Such information has led to the development of a selective 

rendering framework. In this experimental framework, scene elements which are 

expected to be found in a VE scene may be rendered in lower quality, in terms of 

polygon count thereby reducing computational complexity without affecting object 

memory (Zotos, Mania and Mourkoussis 2009). 

The experimental framework presented here and tested through limited pilot 

studies aims to investigate the specific effects of tracking delay on both the accuracy 

and the phenomenological aspects of object memories acquired in a VE. When 

adopted for full-scale experimentation, it is of interest to identify whether the 

presence of added tracking latency applied to a system of minimum tracking latency 

is associated with the stronger vivid visually induced recollections that have 

previously been demonstrated with lower interaction or visual fidelity [Mania et al. 

2010]. A secondary goal is to investigate the potentially positive effect of schemas on 

object recognition tasks post-VE exposure. 
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2.5.4 Effect of Latency on Spatial Awareness 

 The utility of certain VEs for training such as flight simulators is predicated 

upon the accuracy of the spatial representation formed in the VE. Spatial memory 

tasks, therefore, are often incorporated in benchmarking processes when assessing 

the fidelity of a VE simulation. Spatial awareness is significant for human 

performance efficiency of such tasks as they require spatial knowledge of an 

environment. A central research issue therefore for real-time VE applications for 

training is how participants mentally represent an interactive computer graphics 

world and how their recognition and memory of such worlds correspond to real 

world conditions.  

 The experimental methodology presented focuses upon exploring the effect 

of head-tracking latency on object-location recognition memory and its associated 

awareness states while immersed in a radiosity-rendered synthetic simulation of a 

complex scene. The space was populated by objects consistent as well as inconsistent 

with each zone’s context, displayed on a head-tracked, stereo-capable HMD. The 

main premise of the spatial awareness methodologies that memory performance is 

an imperfect reflection of the cognitive activity that underlies performance on 

memory tasks. 

Although previous research identifies the detrimental effect of tracking latency 

on mainly motor task performance, it could be true that for generic spatial awareness 

tasks such as navigation or visual search, the effect of latency is less severe and 

humans adapt to it while forming a detailed mental map of the space. In this thesis, 

we also explore whether the effect of latency on spatial cognition, memory 

performance and spatial awareness severely hampers spatial awareness in an 

Immersive Virtual Environment (IVE) or whether humans are good at perceiving 3D 

space while using the memory awareness methodology detailed below, 

irrespectively of relatively high latency.  

The technical implementation of this thesis includes: 
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 The development of a mechanism to measure end-to-end head tracking 

latency. 

 The software rearrangements for controlling and minimizing latency as well 

adding constant amounts of latency. 

 The development of an experimental 3D scene to be displayed on a stereo-

capable high-end HMD in order to conduct a formal experiment investigating 

the effect of latency on spatial awareness states 

Technical details as well as experiment data are presented in the following 

chapters. 

2.7. Chapter Summary 

This chapter introduced a set of fundamental terms of computer graphics starting 

with defining light energy and its properties and light propagation. Subsequently, 

computer graphics illumination models were analyzed. The following sections were 

focused on visual perception and its application to computer graphics rendering.  

Furthermore, this chapter illustrated the complex variety of tools and equipment 

required to create, view and interact with immersive virtual environments. It 

provided background information regarding the key technologies used in this study 

and an overview of the technologies necessary to display and interact with 

immersive virtual environments. 

Most importantly, this chapter presented the shortcoming of previous latency 

measurement approaches. In this thesis we present a low cost portable latency 

measurement approach which extends previous techniques and is also used to 

evaluate the cognitive impact of head tracking latency in immersive simulations. 

We will proceed with analyzing the VE application framework used in this thesis. 
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CHAPTER 3. Τhe Virtual Environment Application 

In this section we will analyze the technical framework of the XVR Development 

Environment utilized for the implementation of the VE application used to measure 

and minimize tracking latency as well as assess the cognitive impact of end-to-end 

head tracking latency in immersive simulations. 

3.1. XVR Overview 

XVR is technology for the rapid development of Virtual Reality applications. 

Using a modular architecture and a VR-oriented scripting language, XVR content can 

be embedded on a variety of container application and making it suitable to write 

content ranging from web-oriented presentation to more complex VR installations. 

Originally created for the development of web-enabled virtual reality applications, 

XVR has evolved in the recent years to an all-around technology for interactive 

applications. Beside web3d content management, XVR supports a wide range of VR 

devices (such as trackers, 3d mice, motion capture devices, stereo projection systems 

and HMDs) and uses a state-of-the-art graphics engine for the real-time visualization 

of complex three-dimensional models that is perfectly adequate even for advanced 

off-line VR installations. XVR applications are developed using a dedicated scripting 

language whose constructs and commands are targeted to VR, and give the 

possibility to developers to deal with 3D animation, positional sounds effect, audio 

and video streaming and user interaction. In its current form XVR is an ActiveX 

component running on the various Windows platforms, and can be embedded in 

several container applications including the web browser Internet Explorer.  
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Figure 41: XVR Data Flow 

 

XVR (Figure 41) is actually divided in two main modules: the ActiveX Control 

module, which hosts the very basic components of the technology, such as the 

versioning check and the plug-in interfaces, and the XVR Virtual Machine (VM) 

module, which contains the core of the technology, such as the 3d Graphics engine, 

the Multimedia engine and all the software modules managing the other built-in 

XVR features. It is also possible to load additional modules which offer advanced 

functionalities, like the support to VR devices, as we decided to keep them separated 

so that web applications, which usually do not need any of these advanced features, 

are not afflicted by additional downloading times. The XVR-VM, like many other 

Virtual Machines, contains a set of bytecode instructions, a set of registers, a stack 

and an area for storing methods. The XVR Scripting Language (S3D) allows 

specifying the behavior of the application, providing the basic language 

functionalities and the VR-related methods, available as functions or classes. The 

script is then compiled in a bytecode which is processed and executed by the XVR-

VM. 

When accessing a web page hosting an XVR application, after checking the 

version and, if needed, downloading the right version of the VM module, the 
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bytecode of the application is downloaded and, subsequently, so do all the data files 

related to the application, such as 3d models, textures, sounds etc. After the 

downloading phase the bytecode is executed: first, all the necessary initializations are 

performed, then the proper application starts. The modularity of XVR allow to easily 

adapt it both for web and for stand-alone applications, according to the specific 

needs, as it be considered as made of a central core (the XVR-VM) and several 

additional modules, the main being the ActiveX Control for the web access. In 

general an XVR program can be represented as a main loop which integrates several 

loops, each one running at its own frequency, such as graphics, physics, networking, 

tracking, and even haptics, at least for the hi-level control loop (Figure 42). 

 

Figure 42: XVR Loop 

3.2. S3D: The XVR Scripting Language 

In general an XVR program is always based on 6 fundamental functions. These 

predefined functions constitute the basis of any project: 

 OnDownload() 

The OnDownload () function is performed at the very beginning and 

triggers the download of the data files needed from the application. 

 OnInit() 



96 

 

The OnInit () function is the place where to put the initialization code for 

the app. All the commands are executed sequentially. All the other functions 

are not active until OnInit () completes its execution. 

 OnFrame()  

The OnFrame () is the place for functions and methods that produce 

graphics output. This is the only function where the graphics context is 

visible. Placing graphics command outside this function would produce no 

results. 

 OnTimer()  

The OnTimer () function runs independently (i.e. at a different rate) by 

OnFrame () and it’s where to put commands that must be independent from 

the rendering task. As the timer is hi-res, it is possible to setup some 

parameters so that this function can be called up to 1k times per second. 

 OnEvent () 

The OnEvent () function is independent from both OnTimer() and 

OnFrame(). It gets called whenever the application receives an event message. 

Event messages can be external (i.e. some Windows messages) or internal (i.e. 

generated anywhere in the XVR program). Events and messages are 

supported in XVR because they add flexibility to the programming 

environment for task where fixed timers are not the best option. If the 

application does not need them, this function can be ignored. 

 OnExit() 

The OnExit () function is called when the application quits or when the 

user close the page the application is in. 

Beyond the basic functions, XVR offers lots of predefined classes, functions and 

data structures, and the user has the possibility to define new ones. 
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Figure 43: XVR classes and functions 

3.2.1. Classes 

The main set of classes and functions is related to the 3D graphics environment 

management. The Scene and Camera functions allow to, respectively, setup the 

graphical scene and the viewpoint properties. The latter functionalities are available 

also by means of the CVmCamera class. 

The VmLight classes provide the functionalities related to lighting. The 3d models 

are managed by the VmMesh class, which handles the geometric properties of the 

model, and by the VmObject class, which deals with reference systems and 

geometrical transformations. Two superclasses based on the VmObject class, the 

VmAvatar and the VmCharacter, allow manipulating complex hierarchies of objects, 



98 

 

respectively with and without the support of real-time geometry deformation. The 

appearance of the objects is managed by the VmMaterial and VmTexture classes. Other 

graphics related classes are the VmBillboard, VmText and VmTerrain which deal with 

more specific components.  

The integrated 3D engine, built on top of OpenGL, allows to manage the visual 

output not only on a standard graphical window (either web or local hosted), but 

also on more advanced devices such as Stereo Projection Systems and Head Mounted 

Displays. The perspective tuning for stereoscopy is supported and it is relatively 

simple to port applications from and to different visualization hardware. The engine 

uses state of the art algorithms of culling, simplification, normal mapping and image 

caching to achieve good real-time performances even with high-complexity models. 

Although the S3D scripting language offers high-level functionalities to manage 

the 3d contents, it also allows mixing low-level functionalities to realize special 

effects or personal implementations not directly supported by the language. This is 

achieved through an almost complete wrapping of OpenGL functions that can be put 

straight in an S3D script. Moreover, XVR supports an even lower level of 

programming by the insertion of vertex programs to directly manipulate the 

graphics pipeline, a feature commonly available on the current 3d graphics boards. 

As in any other environment which allows mixing different programming levels, a 

particular attention must be put when using the lo-level functionalities, which can 

heavily modify the application graphical status and its flow.  

Another set of classes is devoted to user interaction and communication. Among 

the built-in classes, the most commonly used are the VmMouse and the VmJoystick 

which, together with a set of keyboard related functions, handle the basic interaction 

with the application. The available additional external modules allow controlling 

also advanced interfaces, such as sensorized data gloves and body suits, magnetic, 

inertial and ultrasonic trackers, and 3d mice.  

Network communication is handled by means of IP functions, which offer TCP 

connection-oriented or connectionless UDP functionalities, and html-related Data 
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functions, which allow the hosting web page to communicate with the XVR 

application so that they can reciprocally interact and modify their status. This means 

that commands can be sent to the application from the html page, which can 

therefore constitute the primary GUI for the application, and messages can be sent 

from the application to the html page, which can change its aspect or open popup 

windows etc. 

A bi-dimensional graphical overlay output is provided by the Console functions. 

The GUI functions are completed by the VmMenu and VmFileManager classes whose 

functionalities can be trivially deduced. 

Finally XVR offers a set of multimedia related classes. Among these, the 

CVmMidi, CVmAvi and CVmMp3 add the support to play background music, speech 

and movies. The CVmAWav provides the 3d sound functionalities, giving the 

possibility to dynamically create sound sources and to position them in the 3d space. 

XVR supports also remotely located sound servers allowing the use of more than one 

planar 3d audio systems in order to realize a complete positional audio system able 

to localize the acoustical source not only in the plane surrounding the user, but 

rather in the whole space adding a better perception of the up-down directionality. 

Other functions exist, implementing various functionalities related to files, math and 

strings manipulation. 

3.2.2. Functions 

XVR offers a wide set of functions to manage several features of its environment. 

Most of them are related to the graphical scene, and often refer to global attributes 

which do not need to be accessed through dedicated classes. 

Scene functions 

These functions allow defining the graphical scene and its parameters. A scene is 

basically a graphical loop; it is delimitated by the SceneBegin() and SceneEnd() 

commands. All the graphical commands (including OpenGL functions) must be 

called inside a SceneBegin()...SceneEnd() block, or they will not produce any visible 
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effect. The scene is drawn according to the current camera settings, which are read 

upon calling SceneBegin() and remain constant until SceneEnd(). Therefore any change 

in camera properties is effective only in the next scene loop. The very basic properties 

(FOV, near plane Z, far plane Z) are assigned using the SET command. Additional 

properties may be configurable through scene functions. With the scene functions is 

also possible to realize split screens and stereoscopic visualization. 

Camera Functions 

With these functions it is possible to manage the camera (i.e. the viewpoint) and 

its properties. The camera setup affects how the frame image of the scene is 

produced. Up to 8 different cameras may be used, but only one at each time. The 

available functions allow to position and rotate the camera, to fix a specific target or 

orientation, to read camera movements from an external animation file and to 

retrieve its main properties. 

OpenGL Functions 

This set of functions constitutes a wrapping of several OpenGL functions which 

provide a low-level graphical programming layer, which can be mixed with the high-

level XVR graphical functionalities. This allows realizing special «effects» not directly 

implemented in XVR or using particular modalities by expert programmers. The 

wrapper also adds polymorphism to OpenGL functions, providing only one version 

of each function instead of having different ones depending on the parameters type. 

Texture Functions 

These functions allow specifying some global parameters of the texture 

environment. 

Console Functions 

Console functions allow visualizing overlayed 2D text using system fonts. In 

addition to text, console functions offer also basic 2d drawing functionalities and 

support transparency. The console layer is drawn independently from the 3D scene, 
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and thus console functions may be inserted anywhere in the code (i.e. not necessarily 

inside a SceneBegin()…SceneEnd() block). 

Network Functions 

Different instances of XVR applications may communicate between them, or with 

an external host, making use of the XVR networking functions. It is possible to use 

both connectionless UDP and connection-oriented TCP protocols. 

I/O Functions 

I/O functions manage the communication with external devices (keyboard or 

serial devices) and with the HTML page hosting the application.  The I/O with the 

HTML page is achieved by means of two functions: DataIn() (from HTML page to 

XVR) and DataOut() (from XVR to HTML page). In the HTML page the interaction 

must be opportunely managed by means of HTML-related scripting features (using 

JavaScript, VBScript etc.). 

File Functions 

This group of functions offers an interface to the file system and allows managing 

the download of data files from the network. It is possible to control the 

downloading status in order to implement asynchronous downloads. 

Strings and Text Functions 

This set of functions deal with strings manipulation/parsing, and with text 

output. 

Math Functions 

XVR, in addition to the basic mathematical functions natively available in the 

language as commands, provides a set of additional mathematical functions which 

also deal with matrices and vectors. 

Timer Functions 
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This set of functions deal with the timer functionalities. XVR allow specifying a 

high resolution timer (up to 1ms). 

Global settings Functions 

These functions allow specifying some parameters of the global XVR 

environment, such as the Frame Rate, the Timer Resolution, the Cursor Shape, the 

Audio 3d properties, or more specifically regarding the global graphical 

environment, such as the Ambient Light, the Fade properties, the Background etc. 

Other Functions 

Various remaining XVR functions not grouped at the categories above. 

3.3. XVR Development Studio 

XVR Developer Studio is an Integrated Development Environment which allows 

the programmer to create and manage XVR projects, to author the script code, to 

compile the script in a byte code to be interpreted by the XVR run-time Virtual 

Machine and to execute this code either in an HTML test page or via the XVRGlut 

application.  

The IDE includes also a debugger. The IDE provides a wizard dialog. The dialog 

allows creating new resources through the wizard process. XVR Studio Developer 

inherits the concept of workspace from Eclipse. 
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Figure 44: The XVE Development Studio IDE 

3.3.1. Wizards 

 

Using the new wizard command you can access the wizard dialog. The dialog 

allows creating new resources through the wizard process. The wizard is accessible 

both from the file menu and the main toolbar. XVR Developer Studio provides 

several wizards used to create different kinds of resources. 

As depicted in the Figure 45 actually there are five different wizard categories:  

 General: used to create empty project, any type of file and folders  

 OpenGL Shader files: used to create shaders  

 SVN: used to get resources directly from an SVN repository  

 XVR Project Wizard: used to create new XVR projects  

 Other: other wizard, in particular the category allows to create CSS and 

HTML resources  
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Figure 45: The XVR wizards. 

 

XVR Project Wizard 

The XVR project wizard category provides two different entries. The first one 

creates a new XVR empty project. The users have to specify the name for the new 

project and the folder where the project will be created. 

The other wizard allows a user to create a new XVR projects from templates. As 

the former, the wizard requires the user to enter a name for the project and the 

directory where the project has to be created. Furthermore the user has to choose 

between six different templates. 

 

An error message will be displayed on top of the dialog if one or more 

parameters entered are not valid. The user can not finish the wizard procedure until 

all the entries are valid. 
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Once finished the wizard creation process, the new XVR project will be available 

in the navigator view. 

 

Figure 46: The XVR project wizard 

3.3.2. Perspectives 

A perspective is a visual container for a set of views and editors (parts). These 

parts exist wholly within the perspective and are not shared. A perspective is also 

like a page within a book. It exists within a window along with any number of other 

perspectives and, like a page within a book, only one perspective is visible at any 

time. 

XVR Developer Studio has two default perspectives. The main perspective is 

called Editor Perspective. When you start XVR Developer Studio, the editor 

perspective is used by default. 

Editor Perspective 
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The editor perspective is composed by:  

 a navigator view on the left  

 an outline view on the left  

 a console view on the bottom  

 one or more editor in the center  

Debug Perspective 

When a project is ran in debug mode, once the first breakpoint is reached, the 

editor asks to the user if he would like to switch to the debug perspective view. Once 

the debug session ends the IDE automatically switch the perspective back to the 

Editor Perspective. The user can also switch the perspective using the perspective 

toolbar located in the upper right corner of the editor.  

In the side picture the switch perspective dialog is shown 

The debug perspective has been designed to make easier debugging. It provides 

the following views more than those provided by the editor perspective:  

 an expression view on the right  

 a variables view on the right  

 a debug view on the bottom 
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Figure 47: Editor perspective 
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Figure 48: Debug perspective 

3.3.3. Menus 

File menu 

The file menu allows to; Create new projects, files, folders, etc.., using wizards, 

Import external projects, Save the active editor and Exit the application. 

View Menu 

The view menu allows to:  

 Select a view to display (e.g. Outline and Navigator). If the view has been 

previously closed it will be reopened, otherwise it will just focused.  

 display the editor preferences dialog(see IDE preferences)  

Edit menu 
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The edit menu allows to; Undo/redo the last/previous edit action performed in the 

active editor, Copy, cut and paste, Search and replace text in all the files contained in 

the workspace,  Search and replace text in the selected editor. 

Run menu 

The run menu allows to:  

 Build the active project. The result of the build process will be printed on the 

console view (see Console view)  

 Run the active project. Using this command the project will be first compiled  

 run the active project without build it before  

 Run the active project in debug mode. Using this command the project will be 

first compiled. 

Help menu 

The help menu allows to; Display help and Display the XVR Developer Studio 

project "about". 

3.3.4. Views 

An editor is typically used to edit or browse a document or input object. 

Modifications made in an editor follow an open-save-close lifecycle model. A view is 

typically used to navigate a hierarchy of information, open an editor, or display 

properties for the active editor. In contrast to an editor, modifications made in a view 

are saved immediately. The layout of editors and views within a page is controlled 

by the active perspective. 

Console view 

The console view can contains one or more different console. A console allows 

writing and displaying to the user what happens during his work. When the IDE is 

started there are not console, but each console will be created when the editor needs 

to write contents to it.  
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XVR Studio developer uses two different consoles:  

 The first one, called XVR CONSOLE displays the result of the last project 

build  

 The other one displays the output coming from the last run. 

 

Figure 49: XVR console 

Navigator view 

The navigator view displays all the projects contained in the workspace. Each 

project corresponds to the root of a tree that reflects the resources contained in the 

project.  

If you double-click on a folder, the tree node is expanded/collapsed to 

display/hide its content. If you double-click on a leaf of the tree the IDE will open it 

with an editor selected on the basis of the file extension. 
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Figure 50: Navigator view 

The navigator has a contextual menu accessible by right-clicking on it which 

allows performing several actions. Among the others it allows to:  

 if you click on the root of a project or on a resource inside of it, to set the 

active project 

 if you click on an HTML file, to set the active HTML file which will be used 

when launching a run on Internet Explorer 

 if you click on an S3D file, to set the active S3D file which will be used as the 

main entry point of the application while the project is compiled 

Outline view 

The outline view allows to inspect the active document in the editor listing the 

elements of which is composed by using a tree like structure. The elements displayed 

depend on which type of document you are outlining. 

Debug view 

The debug view displays the running process launched from the editors. When 

the process is blocked on a breakpoint, the view displays on which breakpoint the 
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execution is blocked. The view allows also controlling the process flow with a set of 

buttons placed in the toolbar on the top right corner of the view. 

Variables view 

Once the process is blocked on a breakpoint, the variables view displays all the 

variables available in the scope and allows to inspect the value of these. 

 

Figure 51: Variables view 

Expressions view 

Once the process is blocked on a breakpoint, the expressions view allows 

executing:  

 Algebraic expressions using also the values available in the scope.  

 External functions. If the editors fails to execute the function or it is not 

allowed to execute such a function an error message is displayed as returned 

value. Actually only the function glGet is allowed and you have to specify the 

integer value of the OpenGL constant you want to query the value of. 

3.4. XVR Browser 
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XVR can use the Internet Explorer rendering engine in order to render the 3D 

scene (photo). In order to achieve that, the XVR application needs to be embedded 

inside a web page (Figure 52). 

 

Figure 52: Embedding XVR Application into html page. 

These lines will be automatically added if using XVRStudio to generate the 

HTML page which hosts the XVR application. 

The parameters which can be specified by the user are: 

 

Param name Value - Meaning Value - Format 
ScriptName      The name of the .bin file 

containing the XVR 

application bytecode. 

String ("Filename.bin") 

EngineVersion The number of the XVR 

Engine version needed to 

execute the specified 

bytecode.  

4 numeric characters ("0140") 

BackgroundColor The default background 

color of the XVR 3d 

graphical context. The 

format is the same of the 

HTML. 

Same as in HTML ("#RRGGBB", 

hex format) 
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ForceUpdate Forces the download of the 

specified version of the 

XVR Engine without 

checking the local version. 

None ("") 

UserParam A string containing one of 

more user-defined 

parameters which will be 

passed to the OnDownload 

() and OnInit () functions. 

String ("Myparams 0 1 2") 

EngineParam 

  

  

  

  

  

  

  

A string containing one of 

more parameters which 

will be used to initialize the 

engine. The supported 

parameters are: 

String ("DEPTH=24;STEREO") 

NOLOGO Hides the rotating cube logo 

during the download phase. 

STEREO Enables, if available, the 

support to the Quadbuffer 

Stereo OpenGL mode. 

DEPTH=nn Sets the depth of the DEPTH 

buffer to nn bits. Depending on 

the graphics board, the 

maximum depth may be 16, 24, 

32. 

STENCIL=nn Activates the Stencil buffer 

reserving nn bits. 

FOV=nn Sets the 3d scene Field Of View 

to nn degrees. 



115 

 

NEAR=nn Sets the 3d scene Near plane 

distance to nn. 

FAR=nn Sets the 3d scene Far plane 

distance to nn. 

  QUIET Suppresses warning messages. 

 

3.5. XVR Tracking 

XVR supports 3 different types of tracking data reading; 

 Reading from a Joystick device 

 Reading from an external DLL API 

 Reading tracking data VRPN (network) packets 

Our InterSense tracker supports all the above methods of reporting tracking data 

via the InterSense Server interface. 

3.5.1. Using the tracker as a VRPN device 

VRPN protocol 

VRPN (Virtual-Reality Peripheral Network) is a device-independent and 

network-transparent system for accessing virtual reality peripherals in VR 

applications. VRPN is a set of classes within a library and a set of servers that are 

designed to implement a network-transparent interface between application 

programs and the set of physical devices (tracker, etc.) used in a virtual-reality (VR) 

system. The idea is to have a PC or other host at each VR station that controls the 

peripherals (tracker, button device, haptic device, analog inputs, sound, etc.). VRPN 

provides connections between the application and all of the devices using the 

appropriate class-of-service for each type of device sharing this link. The application 

remains unaware of the network topology. Note that it is possible to use VRPN with 

devices that are directly connected to the machine that the application is running on, 

either using separate control programs or running all as a single program. 
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VRPN also provides an abstraction layer that makes all devices of the same base 

class look the same; for example, all tracking devices look like they are of the type 

VRPN Tracker. This merely means that all trackers produce the same types of 

reports. At the same time, it is possible for an application that requires access to 

specialized features of a certain tracking device (for example, telling a certain type of 

tracker how often to generate reports), to derive a class that communicates with this 

type of tracker. If this specialized class were used with a tracker that did not 

understand how to set its update rate, the specialized commands would be ignored 

by that tracker. The current system types are Analog, Button, Dial, ForceDevice, 

Sound, Text, and Tracker. Each of these abstracts a set of semantics for a certain type 

of device. There are one or more servers for each type of device, and a client-side 

class to read values from the device and control its operation. It also provides for 

 Time-stamping of data 

 Clock-synchronizing of clients and servers 

 Multiple simultaneous accesses to peripheral devices 

 Automatic reconnection of failed servers 

 Storage and playback of sessions 

The VRPN client (application-side) library has been tested on a various computer 

systems. There are drivers for a large number of trackers and VR peripheral devices 

and is supported by the most VE Development applications. 

3.5.2. Using the tracker as joystick 

The InterSense trackers data can be accessed as data from a Joystick device. A 

joystick is an input device consisting of a stick that pivots on a base and reports its 

angle or direction to the device it is controlling. 

Joysticks (Figure 53) are often used to control video games, and usually have one 

or more push-buttons whose state can also be read by the computer. Most joysticks 

are two-dimensional, having two axes of movement (similar to a mouse), but one 
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and three-dimensional joysticks do exist. A joystick is generally configured so that 

moving the stick left or right signals movement along the X axis, and moving it 

forward (up) or back (down) signals movement along the Y axis. In joysticks that are 

configured for three-dimensional movement, twisting the stick left (counter-

clockwise) or right (clockwise) signals movement along the Z axis. These three axes - 

X Y and Z - are, in relation to an aircraft or a head tracker, roll, pitch, and yaw.  

 

Figure 53: A joystick pointing device 

An analog joystick is a joystick which has continuous states, i.e. returns an angle 

measure of the movement in any direction in the plane or the space (usually using 

potentiometers) and a digital joystick gives only on/off signals for four different 

directions, and mechanically possible combinations (such as up-right, down-left, 

etc.). Additionally joysticks often have one or more fire buttons, used to trigger some 

kind of action. These are simple on/off switches. A hat switch is a control on some 

joysticks. It is also known as a POV (point of view) switch. It allows one to look 

around in their virtual world, browse menus etc. For example, many flight 

simulators use it to switch the player's views. 
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Some joysticks have haptic feedback capability. These are thus active devices, not 

just input devices. The computer can return a signal to the joystick that causes it to 

resist the movement with a returning force or make the joystick vibrate. 

The XVR VE application can be configured to access the joystick’s pitch, roll, and 

yaw tracking data using the built-in CVmJoystick class (Figure 54). This class manages 

joystick devices, allowing to retrieving data from them. It is also possible to create a 

virtual joystick which can be used to replicate remote joystick actions. 

 

Figure 54: CVmJoystick predefined class 

3.5.3. Accessing tracker data directly from the DLL 

A Dynamic-link, or DLL, is Microsoft's implementation of the shared library 

concept in the Microsoft Windows and OS/2 operating systems. These libraries 

usually have the file extension DLL, OCX (for libraries containing ActiveX controls), 

or DRV (for legacy system drivers). The file formats for DLLs are the same as for 

Windows EXE files — that is, Portable Executable (PE) for 32-bit and 64-bit 

Windows, and New Executable (NE) for 16-bit Windows. As with EXEs, DLLs can 

contain code, data, and resources, in any combination. DLLs provide a mechanism 

for shared code and data, allowing a developer of shared code/data to upgrade 

functionality without requiring applications to be re-linked or re-compiled. 

The Intrertrax2 tracker provides a DLL API (Figure 55) for accessing tracker data 

from C, C++, Visual Basic and other applications supporting readings from DLL 

libraries. 

ISD_STATION_DATA_TYPE  
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This data structure is used to return current data for a station, including position, 

orientation, time stamp, button and analog channel state. It is passed to 

ISD_GetTrackingData as part of ISD_TRACKING_DATA_TYPE 

 

typedef struct 

{ 

    ISD_STATION_STATE_TYPE Station[ISD_MAX_STATIONS]; 

}  

ISD_TRACKER_DATA_TYPE; 

 

 

typedef struct 

{ 

    BYTE    TrackingStatus; 

    BYTE    NewData;           

    BYTE    CommIntegrity; 

    BYTE    BatteryState; 

    float   Euler[3]; 

    float   Quaternion[4]; 

    float   Position[3]; 

    float   TimeStamp;     

    float   StillTime;     

    float   BatteryLevel;     

    float   CompassYaw;     

    Bool    ButtonState[MAX_NUM_BUTTONS]; 

    short   AnalogData[ISD_MAX_CHANNELS]; 

    BYTE    AuxInputs[ISD_MAX_AUX_INPUTS]; 
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    float   AngularVelBodyFrame[3]; 

    float   AngularVelNavFrame[3]; 

    float   AccelBodyFrame[3]; 

    float   AccelNavFrame[3]; 

    float   VelocityNavFrame[3]; 

    float   AngularVelRaw[3]; 

    DWORD   Reserved[64]; 

}  

ISD_STATION_DATA_TYPE; 

 

TrackingStatus 

Tracking status byte. Available only with IS-900 firmware versions 4.13 

and higher, and isense.dll versions 3.54 and higher. It is a value from 0 to 

255 that represents tracking quality. 

NewData 

      TRUE if this is new data. Every time ISD_GetData is called this flag is 

reset. 

CommIntegrity 

     Communication integrity of wireless link. 

BatteryState 

      Wireless devices only 0=n/a, 1=low, 2=ok. 

Euler 

      Orientation in Euler, returned in degrees. 

Quaternion 

      Orientation in Quaternion form. 

Position 

Station position in meters. 
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TimeStamp 

Only if requested, in seconds. 

StillTime 

InertiaCube and PC-Tracker products only. 

BatteryLevel 

Battery Voltage, if available. 

CompassYaw 

Magnetometer heading, computed based on current orientation. 

ButtonState 

Only if requested. 

AnalogData 

Only if requested. Current hardware is limited to 10 channels, only 2 are used. 

The only device using this is the IS-900 wand that has a built-in analog joystick. 

Channel 1 is x-axis rotation, channel 2 is y-axis rotation. Values are from 0 to 

255, with 127 representing the center. 

AuxInputs 

Only if requested. 

AngularVelBodyFrame 

Angular rotation speed in sensor body coordinate frame. This is the processed 

angular rate, with current biases removed, rad/sec. This is the angular rate used 

to produce orientation updates. 

AngularVelNavFrame 

Angular rotation speed in world coordinate frame, with boresight and other 

transformations applied, rad/sec. 

AccelBodyFrame 

Acceleration in sensor body coordinate frame, meter^2/sec. Only factory 

calibration is applied to this data, gravity component is not removed. 

AccelNavFrame 

Acceleration in the navigation (earth) coordinate frame, meters/sec^2. This is the 

accelerometer measurements with calibration, and current sensor orientation 
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applied, and gravity subtracted. This is the best available estimate of 

acceleration. 

VelocityNavFrame 

meters/sec, 6-DOF systems only. 

AngularVelRaw 

Raw gyro output, only factory calibration is applied. Some errors due to 

temperature dependent  gyro bias drift will remain. 

Figure 55: Intersense DLL API tracker reading data structure 

The XVR VE application supports importing C functions from external DLLs 

through the build in CVmExternDll class.  

When importing the DLL XVR will use the library as an object, and the function 

will became the method of the object. In order to load the library, the CVmExternDLL 

object with the name of the library is used. 

library = CVmExternDLL("myLib.dll"); 

This command creates a CVmExternDll object. This object refers to the library, 

but now is empty and you have to add method with the __AddFunction(). In case the 

DLL is not available it generates a fatal error. The DLL is also not available if DLL 

dependencies (other DLLs) are not available. Since Engine 150 optional second 

parameter of CVmExternDLL is a Boolean that allows specifying to nicely return a 

void in case of missing DLL. 

This function takes the return value, the name of the exported function, and the 

type of the parameter. 

library.__AddFunction(C_FLOAT, "myFunction", C_PFLOAT, C_INT); 

 

Now the function can be used like a method of your library. 

b = library.myFunction(a, 3); 
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The allowed types of parameters are; 

C_VOID void, used only for return value 

C_INT signed 32 bit int 

C_FLOAT 32 bit float 

C_DOUBLE 64 bit double 

C_PCHAR an array of char 

C_PSTR the same as above 

C_PINT an array of int 

C_PFLOAT a vector of float 

C_PDOUBLE an array of double (Since Engine 150) 

C_PFLOAT_1 force the vector of float to be one element 

long 

C_PFLOAT_X same as above where X is a number from 

1 to 16 
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The previous tables indicate that there is an incompatibility between the data 

types that the InterSense DLL API provides and the data types than the XVR can 

read from an external DLL. Thus the API cannot be used as is for tracking data 

readings (Figure 56). 

 

 

Figure 56: Accessing tracker data directly from the DLL API 

3.6. Moving the camera 

The viewpoint, also called camera, is managed through this set of functions. Up 

to eight different camera setups may be handled at the same time, but only one is 

used to render the current scene. The available functions allow to position and rotate 

the camera, to fix a specific target or orientation, to read camera movements from an 

external animation file and to retrieve all these properties. 

function TrackerMove() 
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{ 

 var rScale = -360; 

 var move = 0.0; 

 static var xpos=0.0 , ypos=0.0, zpos=0.0; 

 static var x_pos=0.0, z_pos=0.0; 

var cammat = array(16); 

 var jx,jy,jz; 

 jx=(library.getX()+180)/360; 

 jy=(library.getY()+180)/360; 

 jz=0.5;  

 CameraSetRotation(rScale*jy,[1,0,0]); 

 CameraRotate(rScale*jx,[0,1,0]); 

 CameraRotate(-rScale*jz,[0,0,1]); 

} 

Figure 57: Rotating the camera with the tracker 

3.7. ΧVR Stereo rendering 

 

3.7.1. Quad buffered Stereo rendering 

XVR supports the standard quad buffered OpenGL way to produce stereo 

images. Using this feature is extremely easy, but you need to have a graphics card 

that supports quad buffered OpenGL such as the NVIDIA Quadro family or the ATI 

Fire GL family. 

To activate quad buffer support you just need to add this in the .HTML file 

associated to the project (place it next to the other XVR Control params): 
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<PARAM NAME="EngineParam" VALUE="STEREO"> 

 

3.7.2. XVR side-by-side stereoscopic rendering 

XVR has built in support to adjust the perspective correction needed for stereo 

visualization. Stereoscopic output in XVR was achieve by using the Side-by-Side 

stereo rendering and use the Horizontal Span of the graphics card driver to send the 

2 different outputs to the 2 VGA channels of the HMD. 

Inside the OnFrame function the following code sections were used: 

SceneBeginRel( 0.0,0.0 , 0.5,1.0 , VR_STEREO_LEFT );  //Rendering  the left half of the 

screen (left eye) 

     Rendering code(); 

     …          

SceneEnd(); 

 

SceneBeginRel( 0.5,0.0 , 0.5,1.0 , VR_STEREO_RIGHT); // Rendering  the right half of 

the screen (right eye) 

     Rendering code(); 

     …          

SceneEnd(); 

Figure 58: Stereoscopic side-by-side rendering in XVR 

The HMD displays were combined as a single display using the display driver 

Horizontal span feature. Each monitor of the HMD has a 1024x768 pixels resolution 

so the resulting combined large screen has a resolution of 2048x768 pixels. Half of the 

pixels (1024x768) are displayed at each monitor. 

DualView vs. Horizontal Span 
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Graphics cards in windows support two types of desktop and application 

visualizations using two monitors. 

Dual view: 

The two monitor can be configures independently. Different resolutions and 

settings can be applied and. The two monitors are logically placed side by side and 

windows can be dragged from one monitor to the other. Applications can either be 

aware of the existence of two monitors or can only be aware of the monitor they are 

initially launched in. 

Span (vertical or horizontal) 

The two displays are combined to one virtual display. There are two options of 

placement; placed side-by-side (horizontal span) or placed one on top of the other 

(vertical span). Applications are not aware of the excistence of two separate displays. 

This mode has been discontinued after windows xp. 

 

Figure 59: Multi display modes 
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Figure 60: Using the two HMD displays as one (horizontal span) 

3.8. Chapter Summary 

This chapter provided information regarding the XVR application framework by 

analyzing the framework development language the integrated development 

environment and other software components. We also presented examples of using 

the framework. 

In the following chapter we will present the hardware and software setup for the 

latency measurement mechanism and the results of latency minimization techniques 

to our system. 
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CHAPTER 4. Hardware and Software setup for Latency Measurements and 

Minimization 

In this chapter, we will describe the latency measurement system proposed in 

this thesis and how this system is used. In the following sections we will analyze 

particular parts composing the system as shown in Figure 61, Figure 71, Figure 72. 

Along with the hardware setup of our latency measurement system we will also 

discuss the software setup and reorganizations used for interoperability between the 

hardware setup and the VE applications and for latency minimization. In the last 

section of this chapter the data from the latency measurements from out system as 

well as the results of the minimization techniques used, are presented. 

 

Figure 61: Overview of the data-acquisition system for measuring the end-to-end latency 

4.1. Tracker 

For our measurements we had an Intersense Intertrax2 and an Intersense 

InsertiaCube3, head trackers available. Both are portable high performance trackers. 

The Intertrax2 combines readings from multiple sensors, 3 Gyroscopes, 2 

magnetometers and 2 accelerometers to produce 3 degrees of freedom (pitch, yaw 

and roll) head movement reports with relative angular resolution of 0.02degs. The 

InsertiaCube3 has 0.03degs resolution and it can provide future position predictions  
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The internal (hardware) latency of both trackers is 4ms. The Intertrax2 connects 

to the host computer through a USB connection while the InsertiaCube3 connects 

through a parallel port interface (there is also a USB interface converter). 

Through preliminary measurements there was not found any particular 

difference in terms of latency between the two trackers. Overall the Intertrax2 tracker 

was found to be more stable than the InsertiaCube3 and so the final measurements 

described in the present chapter and the subsequent evaluation experiment 

discussed in CHAPTER 5 were conducted using this tracker (Intertrax2). 

4.2. Rotary Encoder 

A rotary encoder, is an electro-mechanical device, attached to a rotating object 

(i.e. a wheel or motor), used for converting the angular position or motion of a shaft 

or axle to an analog or digital signal (Encoders n.d.) (Repas n.d.). Rotary encoders are 

categorized in incremental and absolute in terms of output. Incremental encoders 

output provides information about the motion of the shaft. This information can be 

further processed elsewhere into information such as acceleration, speed, distance, 

rotations per minute (RPM) and position. Absolute encoders output specifies the 

current position of the shaft. In such terms absolute encoders are angle transducers. 

Rotary encoders are utilized in many applications requiring precise shaft unlimited 

rotation like industrial controls, robotics, special purpose photographic lenses, 

computer input devices (such as optomechanical mice and trackballs), and rotating 

radar platforms.  

Absolute digital encoders produce a distinctive digital code for each unique angle 

of the shaft (Encoders n.d.). An incremental rotary encoder provides cyclical outputs 

on encoder rotation. Absolute encoders mostly have multiple code rings with various 

binary weightings which provide data representing the absolute position of the 

encoder within one turn. This kind of encoder is referred to as a parallel absolute 

encoder. The distinctive feature of the absolute encoder is that it reports the absolute 

position of the encoder to the electronics directly upon power-up with no requisite 

for indexing. A typical incremental encoder works differently by providing an A and 



131 

 

a B pulse output that does not provide any usable count information in their own 

right; rather, the counting is done in the external electronics. The starting point 

where of the counting depends on the counter in the external electronics rather than 

on the position of the encoder. In order that the position information, provided by 

the encoder is useful, this position must be referenced to the device to which it is 

attached, typically using an index pulse. The distinctive feature of the incremental 

encoder is that it reports an incremental position change of the encoder to the 

calculating electronics (Mitchell Electronics n.d.). 

The basic types of absolute rotary encoders are optical and mechanical. In 

mechanical absolute encoders a metal disc that contains a set of concentric rings with 

openings is fixed to an insulating disc. The disc is rigidly fixed to the shaft. A row of 

sliding contacts is fixed to a stationary object so that each contact wipes against the 

metal disc at a varying distance from the shaft. Some of the contacts touch metal, 

while others fall in the gaps where the metal has been cut out, as the disc rotates with 

the shaft. The metal sheet is connected to an electric current source, and each contact 

is connected to a discrete electrical sensor. The metal pattern is designed such way 

that each possible position of the axle creates a distinctive binary code in which some 

of the contacts are connected to the current source (i.e. switched on) and others are 

not (i.e. switched off). In optical absolute encoders, the optical encoder's disc is glass 

made or plastic with transparent and opaque areas. A light source and photo 

detector array reads the optical pattern that result from the disc's position at any one 

time. The angle of the shaft can be determined by a controlling device such as a 

microprocessor or microcontroller that reads the code. The absolute analog type 

produces a unique dual analog code that can be translated into an absolute angle of 

the shaft (by using a special algorithm). 

An example of a binary code, in a simplified encoder with only three contacts, is 

shown underneath. 
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Table 1: Absolute encoder standard binary encoding 

Sector Contact 1 Contact 2 Contact 3 Angle 

1 off off off 0° to 45° 

2 off off ON 45° to 90° 

3 off ON off 90° to 135° 

4 off ON ON 135° to 180° 

5 ON off off 180° to 225° 

6 ON off ON 225° to 270° 

7 ON ON off 270° to 315° 

8 ON ON ON 315° to 360° 

 

In general, where there are n contacts, the number of distinct positions of the 

shaft is  . In this example,   is 3, so there are 2³ or 8 positions. 

In the example above, as the disc rotates a standard binary count is produced by 

the contacts. Though, this has the disadvantage that if the disc breaks between two 

adjacent sectors, or the contacts are not perfectly aligned, it can be not possible to 

determine the angle of the shaft. However in a real-world device, the contacts are 

never perfectly aligned, so each switches at a different moment. If contact 1 switches 

first, followed by contact 3 and then contact 2, for example, the actual sequence of 

codes is: 

off-on-on (starting position) 

on-on-on (first, contact 1 switches on) 

on-on-off (next, contact 3 switches off) 

on-off-off (finally, contact 2 switches off) 
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In order, the sectors corresponding to these codes in the table are 4, 8, 7 and then 

5. So, from the sequence of codes produced, the shaft appears to have jumped from 

sector 4 to sector 8 and then gone backwards to sector 7, then backwards again to 

sector 5, which is where we expected to find it. In many situations, this behavior is 

undesirable and could cause system failure. (I.e. in an encoder were used in a robot 

arm, the controller would think that the arm was in the wrong position, and try to 

correct the error by turning it through 180°, possibly damaging the arm). 

Gray encoding is used to avoid the problem above. Gray encoding is a system of 

binary counting in which adjacent codes differ in only one position. For the three-

contact example given above, the Gray-coded version would be as follows. 

Table 2: Ablolute encdoer gray encoding 

Sector Contact 1 Contact 2 Contact 3 Angle 

1 off off off 0° to 45° 

2 off off ON 45° to 90° 

3 off ON ON 90° to 135° 

4 off ON off 135° to 180° 

5 ON ON off 180° to 225° 

6 ON ON ON 225° to 270° 

7 ON off ON 270° to 315° 

8 ON off off 315° to 360° 

 

In this example, only one of the contacts changing its state from on to off or vice 

versa is involved in the transition from sector 4 to sector 5, like all other transitions, 

involves. This means that the sequence of incorrect codes shown in the previous 

illustration is impossible. 
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Figure 62: Rotary encoder for angle-measuring devices marked in 3-bit binary (left) and 3-bit 

gray (right). The inner ring corresponds to Contact 1 in the table. Black sectors are "on". Zero degrees 

is on the right-hand side, with angle increasing counterclockwise 

When an incremental rotary encode is rotated only cylindrical output is 

provided. Incremental rotary encoders can be either mechanical or optical. The 

mechanical type is typically used as digital potentiometers on equipment including 

consumer devices and requires debouncing. Because mechanical switches require 

debouncing, mechanical encoders are limited in the rotational speeds they can 

handle.  

Incremental encoders are used to track either linear or rotary motion and can be 

used to determine position and velocity. Very accurate measurements can be made 

because the direction can be determined. 

They employ two outputs called A & B, which are 90 degrees out of phase and 

are called quadrature outputs. 

The state diagram: 

Table 3: Incremental encoder coding for clockwise rotation 

Phase A B 

1 0 0 

2 0 1 
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3 1 1 

4 1 0 

 

Table 4: Incremental encoder coding for counter-clockwise rotation 

Phase A B 

1 1 0 

2 1 1 

3 0 1 

4 0 0 

 

The two output wave forms are 90 degrees out of phase, which is all that the 

quadrature term means. These signals are decoded to produce a count up pulse or a 

countdown pulse. For software decoding, the A & B outputs are read, either via an 

interrupt on any edge or polling, and the table above is used to decode the direction. 

For example, if the last value was 00 and the current value is 01, the device has 

moved one half step in the clockwise direction. The mechanical types would be 

debounced first by requiring that the same (valid) value be read a certain number of 

times before recognizing a state change. 

In case the encoder is turning too fast, an invalid transition may occur, such as 

00->11. Then there is no way to know which way the encoder turned; if it was 00->01-

>11, or 00->10->11. In case of even faster turning, a backward count may occur. 

Example: consider the 00->01->11->10 transition (3 steps forward). If the encoder is 

turning too fast, the system might read only the 00 and then the 10, which yields a 

00->10 transition (1 step backward). 

This same principle is used in ball mice to track whether the mouse is moving to 

the right/left or forward/backward. 
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Single output rotary encoders cannot be utilized to sense motion direction. They 

can be used for systems that measure rate-of-movement variables such as velocity 

and RPM and in certain applications to measure distance of motion  

Our encoder was an absolute rotary encoder. The encoder was capable of 

selection between single and multi-turn modes using an input signal. The encoder 

was capable of 14-bit resolution when used in singleturn mode. It was powered 

using a standard 5V DC supply. The complete datasheet of the encoder can be found 

in APPENDIX D. 

4.3. Rotational Mechanism 

The rotational mechanism of our apparatus was based on a direct current (DC) 

electric motor. 

An electric motor is an electromechanical device that converts between electrical 

and mechanical energy (Fink and Beaty 1999). A DC motor is designed to run on 

direct current electric power. DC electric motors, depending on how they generate 

motor, are categorized into brushed or brushless DC electric motors. A brushed DC 

electric motor can have low cost and easy motor speed control by varying the supply 

voltage. In such terms a brushed DC motor was ideal for our latency measurement 

mechanism. 

The rotary encoder was attached to the rotating axis of the electro motor (Figure 

69). Our head tracker was attached to another axis. Rotation of the electro motor axis 

was transferred to the rotating axis of the head tracker using a roller chain using 1-1 

gear ration, so that rotation of the electromotor was resulting in the same rotational 

changes in the rotary encoder and the head tracker.  
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Figure 63: The rotational motor 

4.4. Photodiode 

A photodiode is a type of photodetector. It senses light. Photodiodes are capable 

of converting light into either current or voltage, depending upon the mode of 

operation (Nic, Jirat and Kosata 2006). 

For our measurements we used a visible light sensitive planar silicon photodiode 

in recessed ceramic package (Figure 64), (Figure 65). The package incorporates an 

infrared rejection filter. These diodes have very high shunt resistance and have good 

blue response. Detailed electro-optical characteristics of the photodiode can be found 

in APPENDIX E. 

 

Figure 64: The EG & G Vactec visible light photodiode used for our measurements 
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Figure 65: The photodiode mechanical characteristics 

 

4.5. Other parts of the digital circuit 

4.5.1. Digital-to analog converter 

A digital-to-analog converter (DAC or D-to-A) is a device used to convert a 

digital signal (binary code) to an analog signal (current or voltage) (Integrated n.d.). 

A DAC converts an abstract finite-precision digital number (usually a fixed-point 

binary number) into the corresponding voltage. In particular, DACs are often used to 

convert finite-precision digital time series data to a continually varying (i.e. analog) 
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electric signal. Typically a DAC converts the numerical data into a concrete sequence 

of impulses that are subsequently processed by a reconstruction filter using some 

form of interpolation to fill in data between the impulses. Other DAC methods (e.g., 

methods based on Delta-sigma modulation) produce a pulse-density modulated 

signal that can then be filtered in a similar way to produce a smoothly varying signal. 

As per the Nyquist–Shannon sampling theorem, a DAC can reconstruct the original 

signal from the sampled data provided that its bandwidth meets certain 

requirements (e.g., a baseband signal with bandwidth less than the Nyquist 

frequency). Digital sampling introduces quantization error that manifests as low-

level noise addition to the reconstructed signal. 

The sequence of numbers usually updates the analogue voltage at uniform 

sampling intervals instead of impulses. These data are persisted to the DAC, 

typically with a clock signal that causes each number to be latched in sequence, at 

which time the DAC output voltage changes rapidly from the previous value to the 

value represented by the currently latched number. This has an effect that the output 

voltage is held in time at the current value until the next input number is latched 

resulting in a piecewise constant or 'staircase' shaped output. This is equivalent to a 

zero-order hold operation and has an effect on the frequency response of the 

reconstructed signal. Multiple harmonics above the Nyquist frequency are caused by 

the fact that DACs output a sequence of piecewise constant values or rectangular 

pulses. Usually, these harmonics can be removed with a low pass filter that acts as a 

reconstruction filter in applications that require it. 

Types 

The most common types of electronic DACs are  (Integrated n.d.): 

 The pulse-width modulator: 

 Oversampling DACs  

 The binary-weighted DAC 

 The R-2R ladder DAC  

 The thermometer-coded DAC 
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 Hybrid DACs 

 The segmented DAC 

Performance 

DACs are very important to system performance. The most important 

characteristics of these devices are (Integrated n.d.): 

 Resolution: This is the number of possible output levels the DAC is designed 

to reproduce. This is usually stated as the number of bits it uses, which is the 

base two logarithm of the number of levels. For instance a 1 bit DAC is 

designed to reproduce 2 (21) levels while an 8 bit DAC is designed for 256 

(28) levels. Resolution is related to the effective number of bits (ENOB) which 

is a measurement of the actual resolution attained by the DAC. 

 Maximum sampling frequency: This is a measurement of the maximum 

speed at which the DACs circuitry can operate and still produce the correct 

output. As stated in the Nyquist–Shannon sampling theorem, a signal must 

be sampled at over twice the frequency of the desired signal. For instance, to 

reproduce signals in the entire audible spectrum, which includes frequencies 

of up to 20 kHz, it is necessary to use DACs that operate at over 40 kHz. The 

CD standard samples audio at 44.1 kHz, thus DACs of this frequency are 

often used. A common frequency in cheap computer sound cards is 48 kHz — 

many work at only this frequency, offering the use of other sample rates only 

through (often poor) internal resampling. 

 Monotonicity: Very important characteristic for DACs used as a low 

frequency signal source or as a digitally programmable trim element. Refers 

to the ability of a DAC's analog output to move only in the direction that the 

digital input moves (i.e., if the input increases, the output doesn't dip before 

asserting the correct output.) THD+N: A very important DAC characteristic 

for dynamic and small signal DAC applications. Measurement of the 

distortion and noise introduced to the signal by the DAC. Expressed as a 
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percentage of the total power of unwanted harmonic distortion and noise that 

accompany the desired signal.  

 Dynamic range: This is a measurement of the difference between the largest 

and smallest signals the DAC can reproduce. Dynamic range is expressed in 

decibels. Usually related to DAC resolution and noise floor. 

Other measurements, such as jitter and phase distortion, can also be very 

important for some applications of DACs. 

Figures of merit 

 Static performance (Integrated n.d.): 

o Differential nonlinearity (DNL); Indicator of how much two adjacent 

code analog values deviate from the ideal 1 LSB step. 

o Integral nonlinearity (INL); indicator of how much the DAC transfer 

characteristic deviates from an ideal one. Ideally a straight line; INL 

shows how much the actual voltage at a given code value differs from 

that line, in LSBs (1 LSB steps). 

o Noise; ultimately limited by the thermal noise generated by passive 

components (i.e. resistors). Usually a little less than 1 μV (microvolt) 

of white noise for audio applications and in room temperatures. This 

limits performance to less than 20~21 bits even in 24-bit DACs. 

o Offset 

o Gain 

 Frequency domain performance 

o Spurious-free dynamic range (SFDR) Indicator of the ratio between 

the powers of the converted main signal and the greatest undesired 

spur. Measured in dB. 

o Signal-to-noise and distortion ratio (SNDR) Indicator of the ratio 

between the powers of the converted main signal and the sum of the 

noise and the generated harmonic spurs. Measured in dB. 
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o i-th harmonic distortion (HDi) Indicator the power of the i-th 

harmonic of the converted main signal 

o Total harmonic distortion (THD);  The sum of the powers of all HDi 

o If the maximum DNL error is less than 1 LSB, then the D/A converter 

is guaranteed to be monotonic. However, many monotonic converters 

may have a maximum DNL greater than 1 LSB. 

 Time domain performance: 

o Glitch energy 

o Time nonlinearity (TNL) 

o Response uncertainty 

AD7840 

For our system we used the AD 7840, a complete 14-Bit Voltage Output DAC, 

matching our 14-bit encoder (Figure 66). The AD7840 is a fast, complete 14-bit 

voltage output D/A converter. It consists of a 14-bit DAC, 3 V buried Zener reference, 

DAC output amplifier and high speed control logic. It provides the complete 

function for creating AC signals and DC voltages to 14-bit accuracy. It features an on-

chip reference, an output buffer amplifier and 14-bit D/A converter. The AD7840 is 

capable of 14-bit parallel and serial interfacing. In the parallel mode, data setup times 

of 21 ns and write pulse widths of 45 ns make the AD7840 compatible with modern 

16-bit microprocessors and digital signal processors. In the serial mode, the part 

features a high data transfer rate of 6 MHz. In our system we used the parallel 

interface matching out encoder. 

The analog output from the AD7840 provides a bipolar output range of ± 3 V. The 

AD7840 is fully specified for dynamic performance parameters such as signal-to-

noise ratio and harmonic distortion as well as for traditional DC specifications. Full 

power output signals up to 20 kHz can be created. 

Full specifications of the AD7840 encoder can be found in APPENDIX F. 
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Figure 66: Functional block diagram of the digital to analog encoder used in our latency 

measurement system. 

4.5.2. Current-to-voltage converter 

A current-to-voltage converter is an amplifier that converts current to voltage. A 

common application of current-to-voltage-converters is in receivers for optical 

communications (Current-to-voltage converter n.d.). They convert the current 

generated by a photodetector into a voltage signal for further amplification. The 

input ideally has zero impedance. The input signal is a measured as a current. The 

output may have low impedance, or may be matched to a driven transmission line in 

high-frequency applications. The output signal is measured as a voltage.  The gain, 

or ratio of output to input, is expressed in units of ohms because the output is a 

voltage and the input is a current. When constructed as a simple operational 

amplifier circuit (Figure 67), the gain is equal to the negative of feedback resistance. 

An operational amplifier is a DC-coupled high-gain electronic voltage amplifier with 

a differential input and, usually, a single-ended output. An operational amplifier 

produces an output voltage usually hundreds of thousands times larger than the 

voltage difference between its input terminals. 
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Figure 67: Operational amplifier current-to-voltage converter 

4.5.3. LM555 timer 

For the timing of the Digital-to-Analog Converter in our system a LM555 digital 

timer circuit was used (Figure 68). 

A timer is a specific type of clock which can be utilized for controlling the 

sequence of an event or process (dictionary n.d.). Although a stopwatch counts 

upwards from zero for measuring elapsed time, a timer counts down from a 

specified time interval. Timers can be mechanical, electromechanical, electronic 

(quartz), or even software. All modern computers include digital timers of one kind 

or another. When the set period expires some timers simply indicate so (e.g., by an 

audible signal), while others operate electrical switches, such as a time switch, which 

cuts electrical power. 

Electronic timers are quartz clocks controlled by electronic circuits. Electronic 

timers have higher precision than mechanical timers and furthermore are less 

expensive than most mechanical and electromechanical timers. 

The 555 timer IC is an integrated circuit (chip) used in many timers, pulse 

generations and oscillators.it is a low price, high stability and easy to use. 
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Figure 68: LM555 timer connection diagram 
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Figure 69: The laboratory-built prototype comprising the tracker rotation mechanism with the 

shaft encoder attached and the signal-conditioning electronic circuits 

 

4.6. Oscilloscope 

An oscilloscope is an electronic test instrument used to observe constantly 

varying signal voltages (Kularatna 2003). The signals are usually displayed as a 2-

dimensional graph of one or more electrical potential differences using the vertical or 

  axis, plotted as a function of time, (horizontal or   axis). Although an oscilloscope 

displays voltage on its vertical axis, any other quantity that can be converted to a 

voltage can be displayed as well. Oscilloscopes are commonly used to observe the 

exact wave shape of an electrical signal. In addition to the amplitude of the signal, an 
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oscilloscope can show distortion, the time between two events (such as pulse width, 

period, or rise time) and relative timing of two related signals. (Kularatna 2003) 

A typical oscilloscope is shown in Figure 70. It is divided into four sections: the 

display, vertical controls, horizontal controls and trigger controls.  

The display; usually an LCD or CRT panel laid out with both horizontal and 

vertical reference lines. It is also referred as the graticule. Additionally to the screen, 

most display sections also include with three basic controls; a focus knob, an 

intensity knob and a beam finder button. 

The vertical section; it controls the amplitude of the demonstrated signal. It 

carries a Volts-per-Division (         ) selector knob, an AC/DC/Ground selector 

switch and the vertical (primary) input for the instrument. Additionally, this section 

is typically equipped with the vertical beam position knob. And controls the time 

base or “sweep” of the instrument. The primary control is the Seconds-per-Division 

(       ) selector switch. This section also includes a horizontal input for plotting 

dual  -  axis signals. The horizontal beam position knob is usually located in this 

section. 

The trigger section controls the initial event of the sweep. The trigger can be set 

automatically to restart on each sweep or it can be configured to respond to internal 

or external events. The main controls of this section are the source and coupling 

selector switches. An external trigger input (EXT Input) and level adjustment are 

typically also included. 

In addition to the basic instrument, most oscilloscopes are supplied with a probe 

as shown in (Figure 70: Basic oscilloscope ). The probe connects to any input on the 

instrument and typically has a resistor of ten times the oscilloscope's input 

impedance. This results in a .1 (-10X) attenuation factor, but helps to isolate the 

capacitive load presented by the probe cable from the signal being measured. Some 

probes have a switch allowing the operator to bypass the resistor when appropriate 

(Kularatna 2003). 
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Figure 70: Basic oscilloscope (WorldTechPub n.d.) 

The signal to be measured is fed to one of the input connectors. These connectors 

are usually a coaxial connector such as a BNC or UHF type. For lower frequencies 

Binding posts or banana plugs may be used. If the signal source has its own coaxial 

connector, then a simple coaxial cable is used; otherwise, a specialized cable called a 

"scope probe", supplied with the oscilloscope, is used. In general, for routine use, an 

open wire test lead for connecting to the point being observed is not satisfactory, and 

a probe is generally necessary. General-purpose oscilloscopes usually present an 

input impedance of 1 mega-ohm in parallel with a small but known capacitance such 

as 20 pico-farads. This allows the use of standard oscilloscope probes. Scopes for use 

with very high frequencies may have 50 ohm inputs, which must be either connected 

directly to a 50 ohm signal source or used with Z0 or active probes. Less-frequently-

used inputs include one (or two) for triggering the sweep, horizontal deflection for 

X-Y mode displays, and trace brightening/darkening, sometimes called "Z-axis" 

inputs. 
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The digital storage oscilloscope, abbreviated as DSO, is currently the preferred 

type for most industrial applications. It replaces the unreliable storage method used 

in analog storage scopes with digital storage. Digital storage can store data without 

degradation as long as required. It also allows complex processing of the signal by 

high-speed digital signal processing circuits (Kularatna 2003). 

Bandwidth is a measure of the range of frequencies that can be displayed; it 

refers primarily to the vertical amplifier, although the horizontal deflection amplifier 

has to be fast enough to handle the fastest sweeps. The bandwidth of the oscilloscope 

is limited by the vertical amplifiers and the CRT (in analog instruments) or by the 

sampling rate of the analog to digital converter in digital instruments. The 

bandwidth is defined as the frequency at which the sensitivity is 0.707 of the 

sensitivity at lower frequency (a drop of 3 dB). The rise time of the fastest pulse that 

can be resolved by the scope is related to its bandwidth approximately (Spitzer and 

Howarth 1972): 

Bandwidth (Hz) x rise time (sec) = 0.35  

For example, an oscilloscope intended to resolve pulses with a rise time of 1 

nanosecond would have a bandwidth of 350 MHz For a digital oscilloscope, a rule of 

thumb is that the continuous sampling rate should be ten times the highest frequency 

desired to resolve; for example a 20 Megasamples/second rate would be applicable 

for measuring signals up to about 2 MHz. 

Modern oscilloscopes have triggered sweeps to display events with unchanging 

or slowly (visibly) changing waveforms, which occur at times that may not be evenly 

spaced, Compared to simpler oscilloscopes with sweep oscillators that are always 

running, triggered-sweep oscilloscopes are markedly more versatile. A triggered 

sweep starts at a selected point on the signal, providing a stable display. In this way, 

triggering allows the display of periodic signals such as sine waves and square 

waves, as well as non-periodic signals such as single pulses, or pulses that don't 

recur at a fixed rate. With triggered sweeps, the scope will blank the beam and start 

to reset the sweep circuit each time the beam reaches the extreme right side of the 
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screen. For a period of time, called holdoff, (extendable by a front-panel control on 

some better oscilloscopes), the sweep circuit resets completely and ignores triggers. 

Once holdoff expires, the next trigger initiates a sweep. The trigger event is usually 

the input waveform reaching some user-specified threshold voltage (trigger level) in 

the specified direction (going positive or going negative—trigger polarity). In some 

cases, variable holdoff time can be really useful to make the sweep ignore interfering 

triggers that occur before the events one wants to observe. In the case of repetitive, 

but quite-complex waveforms, variable holdoff can create a stable display that can't 

otherwise practically be obtained. Trigger holdoff defines a certain period following 

a trigger during which the scope will not trigger again. This makes it easier to 

establish a stable view of a waveform with multiple edges which would otherwise 

cause another trigger. Triggered sweeps can display a blank screen if there are no 

triggers. To avoid this, these sweeps include a timing circuit that generates free-

running triggers so a trace is always visible. Once triggers arrive, the timer stops 

providing pseudo-triggers. Automatic sweep mode can be de-selected when 

observing low repetition rates. 

Some oscilloscopes offer single sweeps. The sweep circuit is manually armed 

(typically by a pushbutton or equivalent) "Armed" means it's ready to respond to a 

trigger. Once the sweep is complete, it resets, and will not sweep until re-armed. This 

mode, combined with an oscilloscope, captures single-shot events. 

Types of trigger include (Kularatna 2003): 

 External trigger, a pulse from an external source connected to a dedicated 

input on the scope. 

 Edge trigger, an edge-detector that generates a pulse when the input signal 

crosses a specified threshold voltage in a specified direction. These are the 

most-common types of triggers; the level control sets the threshold voltage, 

and the slope control selects the direction (negative or positive-going).  

 Video trigger, a circuit that extracts synchronizing pulses from video formats 

such as PAL and NTSC and triggers the timebase on every line, a specified 
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line, every field, or every frame. This circuit is typically found in a waveform 

monitor device; although some better oscilloscopes include this function. 

 Delayed trigger, which waits a specified time after an edge trigger before 

starting the sweep. As described under delayed sweeps, a trigger delay 

circuit (typically the main sweep) extends this delay to a known and 

adjustable interval. In this way, the operator can examine a particular pulse in 

a long train of pulses. 

Four our measurements we used the Agilent DSO1012A digital oscilloscope 

(Figure 71). This is a 2 channel 100 MHz oscilloscope. The first channel is connected 

to the DAC converter thus it is monitoring the signal from the rotary encoder and the 

second channel is monitoring the signal from the photodetector.  

The DSO1012A features: 

 100 MHz bandwidth 

 2 analog channels 

 2 GSa/s sample rate half channel, 1 GSa/s each channel 

 20 kpts memory half channel, 10 kpts each channel 

It also offers features as: 

 Sequence mode for easier debug 

 Recording and playback of up to 1000 occurrences of a trigger event for 

further examination. Waveforms can be stored to internal or external memory 

(USB flash drive). 

 Digital filtering on waveforms. 

 Ability to apply a real-time digital filter the input source waveform to 

eliminate unwanted frequencies from the display. Digital filtering selections 

include low-pass, high-pass, band-pass and band-reject filters. Frequency 

limits are selectable between 250 Hz and the full bandwidth of the 

oscilloscope. 

 Advanced triggering 
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Triggering options including edge, pulse width, composite video, pattern and 

alternate channel trigger modes. These modes ensure capturing and viewing 

hard-to-find signal conditions. 

Technical sheets of the DSO1012A can be found at the APPENDIX G. 

 

Figure 71: The DSO1012A oscilloscope used for our measurements 
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Figure 72: The diagram of the servo-mechanism which is used to control the tracker rotation 

 

Figure 73: Digital circuit overview 



154 

 

4.7. Calculating display metrics 

As described in section 2.2.2 in order the scene is correctly projected to the HMD, 

metrics of the scene have to be calculated in order that the correct parameters are 

applied to the VR application (XVR). 

SceneSetParam(VR_TRACKER_POSITION,0.0,0.0,1); 

 SceneSetParam(VR_SCREEN_SIZE,1,0.75); 

 SceneSetParam(VR_EYE_SEPARATION,0.065); 

Figure 74: Calculating display metrics 

4.8. Adjusting stereo parallax 

Stereo parallax can be readjusted on request by recalculating display metrics. 

function OnEvent() 

{ 

 if(Keypressed(VK_NUMPAD1)) 

 { scrsz-=0.2; 

  SceneSetParam(VR_TRACKER_POSITION,0.0,0,scrsz); 

  SceneSetParam(VR_SCREEN_SIZE,scrsz,scrsz*0.75); 

 } 

 else if(Keypressed(VK_NUMPAD2)) 

 { 

  scrsz+=0.2; 

  SceneSetParam(VR_TRACKER_POSITION,0.0,0,scrsz); 

  SceneSetParam(VR_SCREEN_SIZE,scrsz,scrsz*0.75); 

 } 

} 



155 

 

Figure 75: Re-adjusting stereo parallax 

 

4.9. Reading from the Tracker 

4.9.1. Using the tracker as joystick device to read head position 

Using the plug ‘n’ play Microsoft Joystick driver 

When plugged in a Windows pc the Intretrax2 tracker is immediately recognized 

as a joystick device and a driver from Microsoft provides tracking data access (Figure 

77). As we measured the end-to-end tracking latency of this configuration we found 

that it was significantly high (~200ms) possible to low tracking data update rate from 

the Microsoft driver, thus this configuration was unacceptable for our low-latency 

system. 

 

Figure 76: When inserted, Windows recognize the Intrtrax2 tracker as a joystick 
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Figure 77: Accessing tracker data as Joystick readings with the plug 'n' play Microsoft driver 

Using the InterSense server joystick emulation driver 

InterSense Server provides a joystick interface for reading tracker data from the 

Intertrax2 tracker. This driver is different from the “plug ‘n’ play” Microsoft driver 

and it comprises of two intermediate interfaces the InterSense Joystick Interface 

Driver, which is the back-end interface and the InterSense Joystick Driver which is 

the front-end interface (Figure 78). 
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Figure 78: Accessing tracker data as Joystick readings with the InterSense Joystick Driver 

interface 

The driver had a very good performance in terms of end-to-end latency but it 

caused system instability when running demanding, in terms of computational 

power, VE applications. The driver was crushing causing operating system crashes 

(Blue Screens of Death - BSOD) after which the system was rebooting. 

The problems with latency and stability discussed in this section made the 

joystick interface of the tracker unusable for out VE application. 

4.9.2. Using the C++ Intersense tracker API 

InterSense provides SDK and DLL/shared library, as well as troubleshooting 

tools.  The API can be used by the application software to initialize and retrieve data 

from the InterSense devices using the InterSense library (isense.dll / libisense.so / 

libisense.dylib). This library and API is provided to simplify communications with 

all models of InterSense tracking devices.  It can detect, configure, and get data from 

up to 32 trackers, which may have multiple (up to 8) stations in some cases, such as 

the IS-900 processor. The library maintains compatibility with existing devices, and 
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also makes the applications forward compatible with all future InterSense products.  

The library is intended to be backwards compatible, in the sense that software 

written for older versions of the DLL should generally run without recompilation 

using the current version. 

API organizes data in C++ structures and passes pointer to return values. Below 

we can see the call to the API that returns the tracking data from the tracker. 

SD_GetTrackingData()  

Bool ISD_GetTrackingData( ISD_TRACKER_HANDLE handle,                      

ISD_TRACKING_DATA_TYPE *Data )   

 

 

Get data from all configured stations.  Data is places in the 

ISD_TRACKING_DATA_TYPE structure.  TimeStamp is only available if requested 

by setting TimeStamped field to TRUE.  Returns FALSE if failed for any reason.   

 Handle 

Handle to the tracking device.  This is a handle returned by ISD_OpenTracker() 

or ISD_OpenAllTrackers(). 

 Data 

Pointer to a structure of type ISD_TRACKER_DATA_TYPE.  See below for 

structure definition.  Orientation data order is Yaw, Pitch, and Roll for Euler angles 

and W, X, Y, Z for quaternions. 

ISD_TRACKING_DATA_TYPE   

typedef struct {     ISD_STATION_DATA_TYPE 

Station[ISD_MAX_STATIONS]; } ISD_TRACKING_DATA_TYPE;    

typedef struct {     

BYTE    TrackingStatus;     

BYTE    NewData;      
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BYTE    CommIntegrity;      

BYTE    BatteryState      

float   Euler[3];      

float   Quaternion[4];      

float   Position[3];      

float   TimeStamp;      

float   StillTime;      

float   BatteryLevel;      

float   CompassYaw;   

Bool    ButtonState[ISD_MAX_BUTTONS];      

short   AnalogData[ISD_MAX_CHANNELS];      

BYTE    AuxInputs[ISD_MAX_AUX_INPUTS];    

float   AngularVelBodyFrame[3];      

float   AngularVelNavFrame[3];      

float   AccelBodyFrame[3];      

float   AccelNavFrame[3];      

float   VelocityNavFrame[3];      

float   AngularVelRaw[3];      

BYTE    MeasQuality;      

BYTE    bReserved2;      

BYTE    bReserved3;      

BYTE    bReserved4;   

DWORD   TimeStampSeconds;      

DWORD   TimeStampMicroSec;   

DWORD   OSTimeStampSeconds;      

DWORD   OSTimeStampMicroSec;   
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float   Reserved[55];     

float   Temperature;      

float   MagBodyFrame[3]; } ISD_STATION_DATA_TYPE; 

 

This API combines the performance in terms of latency of the Intersence interface 

driver (which in fact is built upon this API) and is comparable in stability with the 

Microsoft Driver. It also provides the extensibility to build a compatible interface for 

the XVR VE application framework. 

4.10. Intermediate DLL API for InterSense trackers 

In order to overcome the problems and software incompatibilities described in 

previous sections we developed an intermediate DLL tracker data access API for the 

InterSense tracking devices and the XVR development Studio. The Intermediate API 

is a DLL that serves as an intermediate proxy between the original InterSense API 

isense.dll and the XVR Development Studio external DLL access API 

(CVmExternDLL). It is also expandable to other VE applications that are 

incompatible with the complex data structures of the InterSense DLL API and need 

to simpler data types. 

Intermediate DLL API uses the InterSense API to read tracking data directly from 

the tracking device and converts the complex data structures to simpler readable 

from the CVmExternDLL. The Intermediate DLL API was written in C++ (Figure 79). 
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Figure 79: Intermediate DLL API development 
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Figure 80: Accessing tracker data as using the Intermediate DLL API for Internense trackers 

The Intermediate ALL API for InterSense tracers exports the following functions; 

DLLIMPORT void OpnTrckr(void); 

Opens the default tracker 

DLLIMPORT double getX(void); 

Returns the X axis value of the tracker as a double 

DLLIMPORT double getY(void); 

Returns the Y axis value of the tracker as a double 

DLLIMPORT double getZ(void); 

Returns the Z axis value of the tracker as a double 

DLLIMPORT void ClsTrckr(void); 

Closes the default tracker 
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The intermediate DLL API for InterSense tracker also provides input delaying 

functionality. This functionality was useful for the experiments described in a later 

section for which we needed to add a constant amount of latency to our head 

tracking input in our VE application in order to assess the latency impact on memory 

awareness states. Delaying of head tracking input is achieved by aging tracker 

reports in a circular buffer (Figure 81) to increase latency without affecting frame rate 

or tracking rate. 

 

Figure 81: Aging tracker reports using a circular buffer 

In order to use the aging feature of the Intermediate DLL API for InterSense 

trackers, a multiple versions of DLL with a circular buffer enabled were compiled. 

The size of the circular buffer also varied from version to version. The appropriate 

DLLwas loaded at the XVR VE application (Figure 82). 

Library1=CVmExternDLL("isensenew.dll"); 

Library2=CVmExternDLL("isensenew_delayed12.dll"); 
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Library3=CVmExternDLL("isensenew_delayed25.dll"); 

Figure 82: Loading both DLL versions with and without delayed reporting 

4.11. Latency Minimization 

 “Triple buffering” and its consequent added latency were eliminated by 

removing the graphics system’s frame timing by disabling the feature at the graphics 

card control panel (Figure 83). Instead of using the OpenGL v-sync dependent 

setting, we directly coupled the timing of our simulation-graphics application to the 

display VSync through a combination of custom software and hardware measures. 

This removes the extra frame of latency, but maintains a steady frame rate and 

prevents image tearing. First, the OpenGL software control panel setting responsible 

for synchronizing the buffer swap with the vertical blank interval is turned off. While 

this has the effect of deactivating the additional third buffer, double buffering 

remains intact and all drawing still occurs to the back buffer. However, since the 

hardware VSync is not being used, the draw cycle is no longer locked to 60 Hz, and 

runs instead at a higher rate (130-300 Hz, depending on VE image complexity) 

(Figure 84). Because, the buffer swap is no longer tied to the display’s vertical blank 

interval, images are swapped into the front buffer as soon as they are completed. 

This results in image tearing where portions of successive separate images generated 

during each 60 Hz interval appear as distinct horizontal bands within the same 

display frame. 
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Figure 83: Turning of triple buffering and Vertical Sync from the graphics card control panel 

 

Figure 84: Turning off VSync from the VE application and setting frame rate to maximum 

4.12. Measurements 

In our system, the end-to-end-latency is measured using a variation of the 

techniques described in section 2.4, designed to accurately measure latency of the 

Intertrax2 and the InsertiaCube3 head tracker, by utilizing a low-cost, custom-made 

portable measuring mechanism with relative angular resolution of 0.02° and internal 

latency of 2ms. Previous methods used a pendulum which was moving a 6 DOF 

(Degrees of Freedom) positional tracker about the 3-rotational axes (i.e. roll, pitch 

and yaw) and along the 3 positional axes (i.e. x, y and z). The orbit of the tracker 

movement was forming an arc and a photodiode or encoder was reporting crossings 
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through a point. In the proposed system, the tracker is capable only to perform 

rotational 3-DOF movement tracking resulting in higher accuracy because of 

translational error control. In particular, the tracker movement at the measurements 

is restricted to rotational only, on one axis. The data-acquisition system for 

measuring the end-to-end latency is illustrated in Figure 61. A custom made modular 

servo-mechanism, depicted in Figure 63, with a 14-bit, parallel-output digital rotary 

encoder attached to its shaft rotates the tracker back-and-forth within a preset 

threshold angle. The 14-bit resolution of the encoder matches the angular resolution 

of the tracker used in this study. The angular velocity and arc of the movement are 

fully controllable through a power supply and a double-pole/double-throw switch. 

The encoder output signals are interfaced to a D/A converter and then passed to the 

oscilloscope. The XVR VE application is configured such that passing through a 

threshold angle results in VE changes. Both the tracker and the VE application are 

zero-calibrated prior to the measurements. 

The original scene is photorealistically illuminated using pre-computed radiosity 

textures and stereoscopically rendered, using XVR’s side-by-side stereoscopic 

rendering feature. The VE represents a room as described in section 5.1. The polygon 

count of the scene was ~140,000 polygons. A box is superimposed at every frame on 

the uppermost left corner of the screen (Figure 5). The application is configured to 

change the color of the box from black to white and vice versa at each threshold 

crossing of the tracker. A photodiode with spectral sensitivity in the visible light is 

attached to the front of the monitor and it is used to measure the brightness changes 

of the superimposed box. Rather than using the Head Mounted Display (HMD) 

system to be utilized for future experimental work, we used a standard LCD monitor 

configured to refresh at 60Hz similar to our Kaiser Electro-optics Pro-View 50 Head 

Mounted Display described in CHAPTER 2 that was also used in experiments about 

the effect of latency in immersive simulations described in 0. The small dimensions of 

the HMD displays make it hard to attach a photodiode on it. The refresh rate of both 

LCD and HMD displays is similar (60 Hz). Each monitor is configured to display the 

VE at 1024*1024 768 resolution matching the resolution of the HMD displays. The 
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photodiode output signal is amplified using an operational amplifier-based current-

to-voltage converter. The laboratory-built prototype comprising the tracker rotation 

mechanism with the shaft encoder attached and the signal-conditioning electronic 

circuits is depicted in a digital oscilloscope with waveform storage capability is used 

to measure and store parallel digital samples of the D/A converter and amplifier 

output signals, corresponding to the tracker position and the display brightness 

level, respectively. An example of these signals is illustrated in Figure 86. 

The oscilloscope used in the experimental setup is configured to acquire 10.000 

samples at a time frame of 1 second (i.e. one sample per 1/10 of a millisecond). 

 

Figure 85: Test scene for latency measurements 

The samples acquired by the oscilloscope are downloaded to a PC through a USB 

communication interface. Implemented software compares the individual values of 

the signals measured, in order to calculate the time-shift between the passing of the 

tracker through the threshold angle and the black-to-white transition of the 

polygons. This time-shift is equal to the end-to-end latency of the system. Estimates 

(mean ± standard deviation) of the VE latency were derived from averaging 

measurements of a hundred back-and-forth threshold crossings by our rotation 

mechanism; fifty of them when moving the tracker from right to left and fifty vice-

versa. The estimated latency of our system was measured to be 90ms ±10% before 

minimization processes were applied as described below, inclusive of the latency 

induced by the refresh rate of the screen (Figure 87). 
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Figure 86: An example of the signals measured using the oscilloscope, corresponding to the 

tracker position and the display brightness level, respectively 

4.12.1. Captured data 

The DSO1012A offers data capturing to a USB flash memory as CSV data. Each 

capture stores 10000 continuous samples at specified frame. A frame of 1 second was 

chosen 
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Figure 87: Raw captured data plot 

4.12.2. High frequency noise removal (moving average) 

Moving average is a type of finite impulse response filter used to analyze a set of 

data points by creating a series of averages of different subsets of the full data set. 

Given a series of numbers and a fixed subset size, the moving average can be 

obtained by first taking the average of the first subset. The fixed subset size is then 

shifted forward, creating a new subset of numbers, which is averaged. This process is 

repeated over the entire data series. The moving average is the plot line connecting 

all the averages. A moving average is a set of numbers, each of which is the average 

of the corresponding subset of a larger set of data points. A moving average may also 

use unequal weights for each data value in the subset to emphasize particular values 

in the subset. A moving average is a type of convolution and so it can be viewed as 

an example of a low-pass filter used in signal processing. When used with non-time 

series data, a moving average filters higher frequency components without any 
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specific connection to time, although typically some kind of ordering is implied. 

Viewed simplistically it can be regarded as smoothing the data. 

 

Figure 88: Moving average on a set of data. 

4.12.3. Linear interpolation 

Linear interpolation is a method of curve fitting using linear polynomials. It is 

heavily employed in mathematics (particularly numerical analysis), and numerous 

applications including computer graphics (Meijering 2002). It is a simple form of 

interpolation. 

The linear interpolant is the straight line between two given points, given by the 

coordinates (     ) and(     ). For a value   in the interval(     ), the value   along 

the straight line is given from the equation 

    

    
 

     

     
 

which can be derived geometrically from Figure 89: Given the two red points, the 

blue line is the linear interpolant between the points, and the value y at x may be 
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found by linear interpolation. It is a special case of polynomial interpolation with 

   . 

Solving this equation for  , which is the unknown value at  , gives 

     (    )
     

     
    

(    )   (    )  

     
 

which is the formula for linear interpolation in the interval (     ). Outside this 

interval, the formula is identical to linear extrapolation. 

This formula can also be interpreted as a weighted average. The weights are 

inversely related to the distance from the end points to the unknown point; the closer 

point has more influence than the farther point. Thus, the weights are 
    

     
 and 

    

     
, 

which are normalized distances between the unknown point and each of the end 

points. 

 

Figure 89: Given the two red points, the blue line is the linear interpolant between the points, 

and the value y at x may be found by linear interpolation 

Linear interpolation on a set of data points (     ), (     )… (     ) is defined as 

the concatenation of linear interpolants between each pair of data points. This results 

in a continuous curve, with a discontinuous derivative (in general), thus of 

differentiability class   . 
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    ( )   ( ) 

where   denotes the linear interpolation polynomial defined above 

 ( )   (  )  
 (  )   (  )

     

(    ) 

It can be proven using Rolle's theorem that if f has a continuous second 

derivative, the error is bounded by 

|  |  
(     )

 )

 
   

           

   |( )| 

The approximation between two points on a given function gets worse with the 

second derivative of the function that is approximated.  

 

Figure 90: Moving average (blue) and linear interpolation (black) 

 

 

4.12.4. Results 

The estimated latency of our system was measured to be 90ms ±10% before 

minimization processes were applied as described below, inclusive of the latency 

induced by the refresh rate of the screen. 
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After disabling added latency sources described in section 2.4.2, the end-to-end 

latency of our system was measured again using the same measurement technique 

described above. The new estimated latency of our VE was measured to be slightly 

below 50ms ±10%, a reduction of almost 50%, inclusive of the latency induced by the 

refresh rate of the screen. The estimated latency and the latency reduction is less or 

comparable to previous work (Hill, Adelstein and Ellis 2004), in this case using a 

more complex environment of high polygon count, accurate measurements via an 

oscilloscope and a custom-made, low-cost, portable system. 

4.13. Chapter Summary 

I this chapter we presented the hardware and software setup for the latency 

measurement mechanism presented in this thesis. We analyzed the digital circuit 

components and setup of the measurement mechanism and introduced the 

Intermediate DLL API used for interoperability between our head tracker hardware 

and the VE application. 

  



174 

 

CHAPTER 5. Latency Experiment 

5.1. The 3D Scene for Latency Experiments 

In order to explore whether the cognitive impact of latency is severe for spatial 

awareness or whether there is adaptation to latency occurring, we investigated the 

effect of latency on 3D spatial cognition, spatial awareness states and 3D mental 

models and imagery. 

A 3d scene depicting an apartment was created. The 3d apartment scene included 

3 sub-areas, the office sub-area, the kitchen sub-area and the lounge sub-area. The 3d 

scene contained objects both consistent and inconsistent to each sub-area. In order to 

define the type and the degree of consistency of objects which could be found in an 

apartment scene results from a previous study (Zotos, Mania and Mourkoussis 2009) 

were used. This study (Zotos, Mania and Mourkoussis 2009), in order to define 

which objects were consistent and which objects were inconsistent in relation to the 

context of the scene (type of consistency), a set of questionnaires were designed that 

contained a list of objects asking participants to “Rate each object for how likely the object 

would to be appear in a room like this.” The methodology was similar to the one 

described in the (Brewer and Treyens 1981) paper and pilot questionnaires were 

created containing a list of objects related to three sub-areas in the apartment of this 

(Zotos, Mania and Mourkoussis 2009) study: 

 An office area 

 A lounge area 

 A kitchen area 

5.1.1. Creating the Scene 

An eight by eight meters virtual house was chosen as the rendered displayed 

environment, divided in four zones according to the experiment’s specifications. The 

four zones designed was the lounge, office and kitchen area.  

3D models were created or downloaded from 3D models’ repositories and 

were placed in a scene with the help of an industry-standard 3D modeling software 
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(Autodesk 3ds Max 2011). The final result can be seen in Figure 95, which depicts the 

scene in lit mode (after calculating the lighting space of the scene). 

5.1.2. Radiosity Solution 

As described in a previous section radiosity calculates diffuse reflections in a 

scene and results in a finely divided geometrical mesh. Heat transfer theory describes 

radiation as the transfer of energy from a surface when that surface has been 

thermally excited. This encompasses both surfaces that are basic emitters of energy, 

as with light sources and surfaces that receive energy from other surfaces and thus 

have energy to transfer. 

The radiosity algorithm was utilized in order to simulate light propagation and 

render the scene. In order to apply the radiosity solution, the following parameters 

should be defined: 

 Number of iterations: 

The maximum number of radiosity iterations. The radiosity engine bounces 

rays around the scene and distributes energy on surfaces. Between the 

iterations, the engine measures the amount of variance (noise between 

surfaces) that was computed. As the number of algorithmic iterations of 

surface light propagation increases, it improves the radiosity shading 

accuracy and polygon count. For our solution we used 3 iterations. 

 Minimum and maximum mesh size: 

Defines the minimum mesh size that faces are not divided smaller than. 

Maximum mesh size is the size of the largest faces after adaptive subdivision. 

For our solution we used maximum mesh of 0.4m and minimum mesh of 

0.01m. 

 Initial quality (%): 

This parameter sets the quality percentage at which to stop the Initial Quality 

stage, up to 100%. For example, if the initially quality is set to 80%, the result 

is a radiosity solution that is 80% accurate in relation to total energy 
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distribution. A quality of 80 to 85% is usually sufficient for good results. For 

our solution we used 85%. 

 Global subdivision settings: 

This parameter turns on the radiosity mesh for the entire scene. 

 Regather indirect illumination: 

In addition to recalculating all the direct lighting, the algorithm recalculates 

the indirect lighting at each pixel by regathering illumination data from the 

existing radiosity solution. Using this option, the most accurate, artifact-free 

images can be produced, adding, however, a considerable amount of 

rendering time. 

 Photometric lights: 

Photometric lights use photometric (light energy) values that enable the user 

to more accurately define lights as they would be in the real world. The user 

can create lights with various distribution and color characteristics, or import 

specific photometric files available from lighting manufacturers. 

Radiosity algorithms display view-independent diffuse inter-reflections in a 

scene assuming the conservation of light energy in a closed environment. The 

surfaces of objects are divided into patches or elements. Despite transmitting energy 

to others, a patch will also reflect the energy from other meshes that arrives on its 

surface into the scene. These processes will be iterated until energy equilibrium in 

the closed space is achieved. Radiosity produces color-bleeding effects from one 

surface to another, shades inside the shadow area and creates soft-edge shadow with 

penumbrae along shadow boundaries. All of these results imitate the physical 

propagation of light in the real environment. The number of algorithmic iterations of 

surface light propagation as increases improves the radiosity shading accuracy and 

polygon count.  

Figure 92 (right) and Figure 95 show the scene after applying the radiosity 

solution compared to the initial geometry used as input (Figure 91 and Figure 93) 

and the direct illumination, flat shaded rendering of the scene in Figure 92 (left) and 

Figure 94. 
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Figure 91: Top view of the experimental scene, without shading 

 

Figure 92: Flat shaded version of the experimental scene (left) vs. the radiosity solution (right) 

(top view) 
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Figure 93: Rendering of experimental scene with no shading 

 

Figure 94: Flat shaded rendering of the experimental scene 
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Figure 95: Radiosity solution rendering of the experimental scene 

5.1.3. Exporting geometry for XVR 

XVR studio offers plugins for exporting the geometry from the 3d modeling 

applications to the AAM file format. 

AAM (once the acronym of Ascii Animated Mesh, now waiting for a better 

meaning) is the XVR native format for the description of triangular meshes. Its 

features are: 

 optimized for loading times in XVR 

 1:1 correspondent to XVR data structures 

 available in ASCII (to easily allow inspection and manual modifications) or 

binary (for faster loading) 

 support to multitexturing, animation, smoothing groups, user properties, 

shaders, skinning 

 exporter plugins for 3D Modeling Applications 

Scenes created with 3d modelers may be provided with a highly realistic 

precomputed lighting, as off-line rendering can make use of lighting models much 

more sophisticated of those suitable for real-time. It is anyway possible to export 
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AAM models preserving this rendering information, by “rendering on textures”. 

Basically some textures are created which may be: 

 Complete maps (material + diffuse map + lighting map, combined in one 

single texture layer) 

 Lighting maps (which result in two texture layers, the “traditional” diffuse 

map + lighting map) 

For our VE the following procedure was used: 

 The whole 3d scene was selected and selected and was “Rendered to Texture” 

item from the Rendering menu. 

 In the “Output” frame, a complete map on the diffuse channel texture map 

type was generated 

 Shadows, Direct Light  and Indirect Light were turned On 

 Map size of 256x256 was used for baked textures of most of the objects except 

from the walls the ceiling and the floor were maps size of 2048x2048 was used 

 The 3d application generated baked texture with the TIFF picture format. The 

TIFF textures were converted to JPEG textures in order to be used with the 

XVR application. 

 Geometry of the scene was exported to the AAM file format using the XVR 

AAM exporter plugin. 
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Figure 96: The AAM exporter plugin window 

5.2. Pilot studies 

In order to determine the appropriate number of objects contained in the VE and 

the memory task and the appropriate exposure time of the participants in the main 

experiment scene, a pilot study was conducted in October 2011. 20 participants 

belonging to the research population of the Technical University of Crete were 

recruited, with their age ranging from 18-28. 

Two versions of the same VE scene of an apartment consisting of 3 sub-areas 

(kitchen, office, lounge) described in 5.1 were used in the pilot studies. The first 

version contained 30 objects, 10 placed at each of the three sub-areas and the other 

contained 24 objects, 8 placed at each of the sub-areas. In both versions half of the 

objects placed at each of the sub-areas were consistent with the context of each sub-

area and the other half were inconsistent (see 5.1).  
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Participants were exposed to a Virtual Environment setup close to the setup of 

the main study to follow except of the 2 latency conditions (instead of 3). 

From the beginning of the pilot study it was clear that the participants were 

having difficulties in the memory placement task in the 30-objects version scene, 

therefore we gave up this version and continued the pilot studies with the 24-objects 

version. 

The remaining group of participants were exposed to the scene with the 24 

objects which was decided to be used to the subsequent main 

experiment.Preliminary analysis was conducted within the results of this group. 

5.2.1. Preliminary Results 

The accuracy of memory was measured by counting the number of correct 

positions of objects (out of a possible 24). Awareness state data was considered in 

terms of prior probabilities. Prior probabilities reflect on the following: “Given that 

the response of a participant is correct (correct placement of object), what is the 

probability that the participant has chosen a particular awareness state?” Prior 

probabilities were obtained by calculating the proportions of correct answers falling 

in each of the three memory awareness categories for each participant. 

Total Correct 

The total number of objects that were identified in the correct location was 

counted for each participant (Table 5).  

Table 5: Number of correct responses and standard deviations as a function of viewing condition 

(no latency, high latency) and schema consistency (consistent, inconsistent) 

 
No latency (n=4) High latency (n=4) 

 Consistent Inconsistent Consistent Inconsistent 

Total correct (out of 24) 

7.00 

(3.92) 

6.75 

(3.40) 

5.75 

(1.71) 

5.50 

(3.70) 
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Trends in the data indicate that, of these participants, more items were being 

correctly recalled in the correct location with no latency (M= 6.88) than with hi 

latency (M= 5.63). This seemingly does not depend upon whether the objects are 

consistent or inconsistent. These pilot data are based on a small number of 

participants (n=4) and are at this stage inappropriate for further parametric statistical 

analysis. The reliability of this trend will be verified using a 2x2 mixed analysis of 

variance (ANOVA) with viewing condition (no latency, hi latency) entered as a 

between subjects variable and the context consistency of the objects (consistent, 

inconsistent) entered as a within subjects variable in the main experiment. 

Confidence 

Confidence reports (No confidence, Low confidence, Moderate confidence, Confident, 

Certain) were converted to numerical values ranging from 1 assigned to ‘No 

confidence’ and 5 assigned to ‘Certain’. Mean values are presented in Table 6. 

 

Table 6: Mean confidence rating and standard deviation as a function of viewing condition (Hi 

latency, No latency) and context consistency (consistent, inconsistent) 

 
No latency (n=4) High latency (n=4) 

 Consistent Inconsistent Consistent Inconsistent 

Confidence (5-point scale) 

3.52 

(.58) 

3.56 

(.50) 

2.77 

(.46) 

3.35 

(.71) 

 

  

Trends in the data indicate that, of these participants, confidence ratings were 

slightly higher for responses to inconsistent objects (M=3.46) than consistent objects 

(M=2.90), and that confidence ratings were slightly higher in the no latency condition 

(M=3.54) than the hi-latency condition (M=2.81). Importantly, there are suggestions of 
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an interaction, with confidence ratings generally lower in the hi-latency condition for 

consistent objects (M=2.27) than any other.   

As per the above section, these pilot data are based on a small number of 

participants (n=4) and are at this stage inappropriate for further parametric statistical 

analysis.  

Awareness states 

The proportion of correct responses assigned to each awareness state is displayed 

in Table 3. 

Table 7: Proportion of correct responses and standard deviations as a function of viewing 

condition (Hi latency, No latency), context consistency (consistent, inconsistent) and reported 

awareness state (Type A, Type B, Guess) 

 
No latency (n=4) High latency (n=4) 

 Consistent Inconsistent Consistent Inconsistent 

TYPE A 0.55 (.46) .67 (.34) .24 (.17) .77 (.30) 

TYPE B 0.10 (.21) .33 (.34) .14 (.10) .19 (.32) 

Guess 0.34 (.45) .00 (.00) .63 (.38) .04 (.07) 

 

Trends in the data indicate that, of these participants, more inconsistent objects 

were associated with a remember response (M= 0.72) than consistent objects 

(M=0.39), and a similar pattern is found for ‘know’ responses (M=.26 vs. M=0.12). 

Naturally, consistent objects were therefore associated mainly with guess responses 

(M=0.48) compared to guess responses for inconsistent objects (M=0.02).   

In general there are no indications in this data set that the proportion of 

remember responses differ greatly between the no latency condition (M=0.55) and the 

hi latency condition (M=0.49), with similar indications with the proportion of know 

responses in the no latency condition (M=0.10) and the hi latency condition (M=0.12), 
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as well as the proportion of guess responses in the no latency condition (M=0.34) and 

the hi latency condition (M=0.38). 

However, there appears to be the first signs of an interaction between the latency 

condition (no latency, high latency) and the object consistency (consistent, 

inconsistent) across the three reported awareness states. In particular, there are a 

disproportionately large proportion of guess responses for consistent objects in the 

high latency condition (M=0.63), and correspondingly a disproportionately low 

proportion of remember responses for consistent objects in the same latency 

condition (M=0.24). 

These pilot data are based on a small number of participants (n=4) and are at this 

stage inappropriate for further parametric statistical analysis. The reliability of these 

trends will be verified with a series of     mixed analysis of variance (ANOVA) for 

each awareness state with viewing condition (no latency, high latency) entered as a 

between subjects variable and the context consistency of the objects (consistent, 

inconsistent) entered as a within subjects variable in the main experiment. 

Discussion of pilot data 

The preliminary analyses of the pilot data indicated that latency in the VE 

simulation may influence the accuracy of memory for objects in that environment. 

The correct objects and their locations may be remembered more accurately when 

there is no latency than when there is high latency. The pilot data also indicated that 

object consistency with the visual scene may have an influence too. Interestingly, the 

proportion of correct responses that had a vivid ‘remember’ experience was greater 

when the objects were inconsistent with the environment, than when they were 

consistent. This appears to potentially interact with latency, with a disproportionate 

number of correct responses to consistent objects in the high latency condition being 

associated with guesses. Confidence scores interacted with latency and object 

consistency in a similar way, with lower confidence scores for responses to consistent 

objects in the high latency condition. 
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It has been noted previously by some of these authors that pure accuracy 

measurements are an imperfect measure of the memorial experience in VE 

simulations. This has to some extent been predicated by consistently high 

performance on accuracy tasks that is underpinned by differential patterns in actual 

memorial experience (Mania, Troscianko, et al. 2003), (Mania, Badariah and Coxon 

2010), (Bennett et al. 2010). In this initial pilot exploration there are some suggestions 

that, unlike previous variations, variations in latency may impact upon overall 

accuracy. This can be explained simply as additional perceptual processing resources 

that may have been dedicated to interpreting and updating the internal mental scene 

as a result of the latency can instead be redistributed to processing the objects within 

it. That is to say, navigating a world in which there is no latency may minimize the 

perceptual resources needed to cope with this unnatural motion and instead allow 

these to be re-distributed to other perceptual tasks such as object recognition.  

In terms of the memorial experiences that underpin these recollections, past 

studies have indicated that low visual fidelity environments, or low interactivity, 

may be more attentionally demanding because of their novelty or variation from 

‘real’ resulting in more vivid remember responses (Mania, Badariah and Coxon 

2010). That is to say that deviation from ‘real’ may capture attention. This is typified 

in the current experiment in conditions where the objects are not ones you might 

expect in the environment (inconsistent objects) for which there are clear indications 

that this may lead to more vivid ‘remember’ experiences of seeing them in the VE 

simulation. Potentially of more interest are the measurements of memorial 

experiences associated with inconsistent objects when there is a high latency. This 

combination of conditions is potentially the least consistent with reality in that the 

interactivity, the latency, and the objects are inconsistent with reality. Interestingly 

this combination produced the highest proportion of ‘remember’ responses in this 

exploratory data set which is consistent with the attentional hypothesis that has been 

put forward based upon consistency with reality. More broadly, the suggestion is 

tentatively supported that vivid recollective experiences occur more frequently when 

there is a match between the novelty of the object being remembered and the novelty 
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of the environment it is in. That is, that objects and their environments are processed 

in an interactive way that is determined by consistency (Davenport and Potter 2004).  

Nevertheless, the present data also pose an interesting challenge for 

interpretation. There are initial indications that participants had particular difficulty 

with consistent objects in the hi-latency condition, with generally lower accuracy, 

lower confidence ratings and a disproportionate amount of guess responses. One 

possibility is that interacting with a high latency VE simulation is particularly 

demanding of perceptual processing resources, such that any remaining resources 

are devoted to processing and interpreting objects that ‘pop-out’ by varying from 

reality at the expense of interpreting those that are consistent. This would suggest at 

least two stages at which attentional demands may influence processing of objects in 

similar VE simulations. The first stage may be based upon additional processing 

demands that arise from the VE environment. If these demands are interactive (e.g. 

latency) then these make more demands of processing resources than those that are 

less interactive (e.g. radiosity). The second stage then makes use of the remaining 

processing resources. Where these are novel aspects of the environment that vary 

from ‘real’ may receive more attention than those that are consistent. If sufficient 

resources are available then both novel and non-novel items may be attended to for 

processing. This interpretation if of course tentative and rests on a number of 

assumptions that would require further testing if this result was found with a larger 

sample size.  A larger sample size, though, could eliminate such effects and showcase 

that perceptual adaptation is occurring in a manner that subjects adapt to added 

latency and communicate similar object recognition performance irrespectively of the 

presence of high latency levels. We describe the main complete formalized 

experiment in the following section. 

Our understanding of how such processes work within fully immersive 

environments, such as those that VEs provide, is only now beginning to be explored 

and it is possible, indeed likely, that there will be differences between real-world 

experiences and simulated scenes. In any case, the pilot study results presented here 

stimulate a number of considerations for further testing when the full-scale 
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experiments are conducted with the appropriate number of participants and 

parametric statistical manipulation of data is possible. There is some indication that a 

high saliency environment may have a profound effect upon memory for the objects 

and their locations within it.  

5.3. The Main Experiment 

5.3.1. Apparatus 

The VEs were presented in stereo XGA resolution (2 channels of XGA (1024*768) 

resolution) on a Kaiser Electro-Optics Pro-View 50 Head Mounted Display with a 

Field-of-View comprising 50 degrees diagonal. An Intersense Intertrax2, three degree 

of freedom tracker was utilized for rotation. The viewpoint was set in the middle of 

the virtual room and navigation was restricted only to freely circle around that 

viewpoint (yaw) and to 180 degrees vertical head rotation (pitch). Participants were 

sitting on a swivel chair during exposure. The application ran on a standard PC with 

an average cost graphics card. Participants weren’t allowed to move 

forward/backward and navigate through the scene. 

5.3.2. Participants 

60 participants (Figure 97) were recruited belonging to the research population of 

the Technical University of Crete, their age ranging from 18-28. The 60 participants 

formed 3 balanced for age and gender, groups of 20, corresponding to the three 

latency conditions. Participants in all conditions were naive as to the purpose of the 

experiment. All participants had normal or corrected to normal vision and no 

reported neuromotor or stereovision impairment. The experimental VE was set up in 

a dedicated experimental space on campus, which was darkened to remove any 

periphery disturbance during the exposure. 
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Figure 97: Photo of participant 

5.3.3. Visual Content 

The original scene was photorealistically illuminated using pre-computed 

radiosity textures and stereoscopically rendered, using XVR’s side-by-side 

stereoscopic rendering feature. The VE represented a room as shown in Figure 98. 

The radiosity-rendered space was divided in three zones including a kitchen/dining 

area, an office area and a lounge area. The space was populated by objects consistent 

as well as inconsistent with each zone’s context. Four consistent objects and four 

inconsistent objects populated each zone resulting in 24 objects located in the scene 

overall, 8 in each zone. The polygon count of the scene was ~180,000 polygons. 

The between-subjects factor was “minimized System Latency” vs. “standard 

latency” vs. “400ms added to minimum system latency” and the within-subjects factor 
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was “Context specific” vs. “Inconsistent objects”. According to the experimental group 

that they were assigned to, participants completed a memory recognition task 

including self-report of spatial awareness states and confidence rating for each 

recognition after exposure to one out of the three experimental conditions.  

 Minimized System Latency, referred as “Low Latency”: A stereo-rendered 

radiosity simulation of a scene displayed on a stereo head-tracked HMD 

including consistent as well as inconsistent objects in each zone. The tracking 

latency utilized was the minimum system latency of around 50ms. 

 Elevated Latency, A stereo-rendered radiosity simulation of a scene displayed 

on a stereo head-tracked HMD including consistent as well as inconsistent 

objects in each zone. The tracking latency utilized was around 90ms. 

 400ms latency added to Minimum System Latency, referred as “Hi Latency”: 

A stereo-rendered radiosity simulation of a scene displayed on a stereo head-

tracked HMD including consistent as well as inconsistent objects in each 

zone. The tracking latency utilized was the minimized system latency of 

around 50ms with added latency of approx. 400ms. 

The experimental scene in all latency conditions consisted of the so-called “Room 

frame” objects: walls, floor, ceiling and doors. It also included standard objects such 

as desks, dining table, chairs, shelves etc. According to (Brewer and Treyens 1981), 

“the room frame contains the information about rooms that one can be nearly certain 

about before encountering a particular room”. As mentioned the scene was 

populated by four consistent objects in each zone as well as four inconsistent objects 

for each zone. The list of objects was assembled based on an initial pilot study which 

explored which objects were expected to be found in each area and which were not 

(Zotos, Mania and Mourkoussis 2009). According to this study, 25 participants 

ranked the objects on the list. The consistency of each item was rated on a scale from 

1 to 6 according to whether each object was expected to be found in each area or not, 

with 6 being the most expected, and 1 being the least. Based on these ratings, 

consistent objects were selected from the high end of the scale, and the inconsistent 

ones from the low end.  
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The objects were distributed over locations indicated in a testing blueprint 

similar to the one presented in Figure 98. Participants were required to select from a 

recognition list provided which object was present in each location. All twenty-four 

objects positioned in the house scene as follow: 

Kitchen Area 

Consistent Mixer Saucepan Toaster Fruits 

Inconsistent Bike wheel Shovel Calculator Baseball bat 

 

Lounge Area 

Consistent Remote 

Control 

Flower vase Ashtray Magazine 

Inconsistent Tennis racket Hammer Warrior 

Helmet 

Basketball 

 

Office Area 

Consistent Pencils Laptop Books Printer 

Inconsistent Trumpet Tennis ball Cashier 

Machine 

Sword 
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Figure 98: The experimental VE scene 

5.3.4. Procedure 

The experiment was set to be completed in three stages by each participant. 

Initially, a preliminary training phase took place requiring participants to wear the 

HMD device. During this stage, all appropriate adjustments were conducted 

accordingly for each individual.   After participants familiarized themselves with the 

device and the stereoscopic VE then the second stage of the experiment was initiated 

which was the main phase of the experiment. The third stage took effect when 

participants finished the main experiment, requiring them to complete an online 

memory recognition questionnaire. 
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The experiments were conducted during May 2012. Participants were led to 

believe that the main experiment was just a practice phase before the actual main 

experiment took place, aiming to familiarize them with the HMD (see APPENDIX A 

for a detailed description). The reason for this was to prevent the participants from 

being aware of the experimental task prior to exposure and avoid the development of 

mnemonics. Participants were given identical instructions across conditions. The 

room where the experiment was taking place was kept dark during exposure. 

The Inter Pupillary Distance (IPD) of each participant was measured prior to 

exposure and the stereo application’s parallax was adjusted accordingly for each 

individual. All participants had time to feel comfortable with the apparatus and 3D 

environments during the practice phase. A practice scene was created which 

included 3D primitive shapes such as boxes and cylinders (Figure 99) and 

participants were let to look around the scene just like the main phase.  After the 

practice phase, the main scene of the experiment was loaded while participants were 

still led to believe that this was just a practice phase thus, they were not aware of the 

experimental task to follow. Participants were instructed to look around the room at 

their own pace and to examine it in all directions for 210 seconds of exposure either 

to the low, the elevated or the high latency condition. The time of exposure was 

defined after detailed pilot studies which ensured that there were no apparent floor 

(the task being too hard) or ceiling (the task being too easy) effects. 
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Figure 99: Simple 3d pattern scene used for calibration. 

After the exposure, participants were led to another room and asked to complete 

a memory recognition questionnaire (APPENDIX B). Participants were not informed 

that they would subsequently complete a memory task. The questionnaires were 

administered within 1 minute after VE exposure.  

 A top view of the bare environment was provided including 24 numbered 

vacant object positions, 8 positions for each of the three sub-areas,  in which an object 

had been present (Figure 100). In the memory recognition test administered,  

participants were required to select which object they considered they saw during 

exposure in each numbered position, selecting objects from an object recognition list 

as well as one out of 5 levels of confidence: No confidence, Low confidence, Moderate 

confidence, Confident, Certain, and two choices of awareness states: TYPE A, TYPE B 

(description below). A recognition list was devised including a list of objects per scene 

zone. Each zone included in alphabetical order the eight present objects as well as 
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eight absent objects (four inconsistent and four consistent) in each zone. The list 

included a total of 48 objects; 

 Twelve consistent objects that were present (4 at each sub-area) 

 Twelve consistent objects that were absent (4 at each sub-area) 

 Twelve inconsistent objects that were present (4 at each sub-area) 

 Twelve inconsistent objects that were absent (4 at each sub-area) 

Prior to the memory recognition task, awareness states were explained to the 

participants in the following terms: 

 TYPE A means that you can recall specific details. For example, you can 

visualize clearly the object in the room in your head, in that particular 

location. You virtually ‘see’ again elements of the room in your mind, or you 

recollect other specific information about when you saw it. 

 TYPE B means that you just ‘know’ the correct answer and the alternative you 

have selected just ‘stood out’ from the choices available. In this case you can’t 

visualize the specific image or information in your mind. 
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Figure 100: The bare environment top view 

The list of objects was assembled based on an initial pilot study which explored 

which objects were expected to be found in each area and which were not. 25 

participants ranked the objects on the list. The consistency of each item was rated on 

a scale from 1 to 6 according to whether they expected to find each object in each 

area, or not with 6 being the most expected and 1 being the least. Based on these 

ratings, consistent objects were selected from the high end of the scale and the 

inconsistent ones from the low end. 

5.3.5. Simulator Sickness 
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Simulator sickness which is a potential side effect of all HMDs in general, has 

been observed during the experiment presented here too. Participants reported 

several symptoms related to simulator sickness such as fatigue, headache, dizziness, 

visual discomfort, and nausea. There also exist other indirect effects of VEs on the 

visual system such as eyestrain, changes in binocular vision and visual acuity, 

balance, nausea, and motion sickness. Participants experienced the aforementioned 

symptoms to varying degrees. Various articles exist in related literature focusing on 

possible causes of simulator sickness such as system latency (DiZio, Lackner and 

Matin 1997), (Cobb, et al. 1999), limited Field-of-View (DiZio, Lackner and Matin 

1997), Image scale factor (Draper, et al. 20001), etc. Apart from the previous factors 

that provoke simulator sickness, other aspects of the HMD that contribute to 

participant discomfort exist. The HMD itself weighted 1 Kg making some 

participants uncomfortable during the experiment. Additionally, as a result of 

improper adjustment of the Interpupillary Distance (IPD) participants perceive 

dissimilar imagery from their eyes. Nevertheless, the experiments reported here were 

conducted without any participant interrupting the procedure because of simulator 

sickness. 

5.4. Statistical Analysis 

This section presents the basic statistical principles employed in order to analyze 

the acquired memory recognition self-report. 

5.4.1. Analysis of Variance 

In statistics, ANalysis Of VAriance (ANOVA) is a collection of statistical models, 

and their associated procedures. ANOVA procedures are powerful parametric 

methods for testing the significance of the differences between sample means where 

more than two conditions are used, or even when several independent variables are 

involved (Coolican 1999). ANOVA is used to compare the variance between the two 

groups with the variability within each of the groups. This comparison is in the form 

of a ratio known as the F-test. A high value for F indicates a strong effect, i.e. the 

variance between groups is higher than the variance within the groups. The strength 
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of the effect is given by the p value. The p value represents the probability that there 

is no between groups variance. This is called the null hypothesis and is disproved if a 

value of p below 0.05 is returned. 

 

5.5. Results and Discussion 

5.5.1. Total Correct (Hits) 

The total number of objects that were identified in the correct location were 

summed for each participant. 

Table 8 

The total number of objects identified in the correct location (displayed in Table 

8) was analyzed using a 2x3 mixed ANOVA. Latency (hi, mid, lo) was entered as a 

between subjects variable, with the context consistency of the objects (consistent, 

inconsistent) entered as a within subjects variable. A minimum alpha level of .05 was 

used throughout the analyses to judge a reliable difference. 

No reliable main effects of latency were found (F(2,58)=0.54, p>.05) and no  

interaction was found between latency and the context consistency of the objects 

(F(2,58)=0.04, p>.05). However, there was a main effect of the context consistency of 

the objects (F(1,58)=6.85, p<.05, partial eta-squared = 0.11). More objects were 

reported in the correct position when they were inconsistent with the context (Mean 

= 6.31, SD = 2.79) compared when to objects that were consistent with the context 

(Mean = 5.44, SD = 2.25).  

 Hi Latency (n= 20) Mid Latency (n=20) Low Latency (n=21) 

 Consistent Inconsistent Consistent Inconsistent Consistent Inconsistent 

Total 

correct 

(out of 

24) 

5.10 (2.29) 5.90 (2.38) 5.40 (2.68) 6.40 (2.98) 5.81 (1.78) 6.62 (3.04) 
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5.5.2. Total Misses – Present Objects 

The total number of objects that were incorrectly placed, but had been present in 

the room, were summed for each participant. 

Table 9 

The total number of misses for present objects (displayed in Table 9) was 

analyzed using a 2x3 mixed ANOVA. Latency (hi, mid, lo) was entered as a between 

subjects variable, with the context consistency of the objects (consistent, inconsistent) 

entered as a within subjects variable. A minimum alpha level of .05 was used 

throughout the analyses to judge a reliable difference. No reliable main effects of 

latency (F(2,58)=0.50, p>.05), context consistency of the objects (F(1,58)=0.87, p>.05),  

or an interaction between the two were found (F(2,58)=1.92 p>.05).  

  

5.5.3. Total Misses – Absent Objects 

The total number of objects that were selected which had not been in the room 

was summed for each participant.  

Table 10 

 Hi Latency (n= 20) Mid Latency (n=20) Lo Latency (n=21) 

 Consistent Inconsistent Consistent Inconsistent Consistent Inconsistent 

Total 

misses 

(presen

t) 

3.05 (1.57) 3.65 (2.43) 3.30 (2.54) 2.45 (1.90) 3.57 (1.54) 2.90 (2.00) 

 Hi Latency (n= 20) Mid Latency (n=20) Lo Latency (n=21) 
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The total number of misses for absent objects (displayed in Table 10) was 

analyzed using a 2x3 mixed ANOVA. Latency (hi, mid, lo) was entered as a between 

subjects variable, with the context consistency of the objects (consistent, inconsistent) 

entered as a within subjects variable. A minimum alpha level of .05 was used 

throughout the analyses to judge a reliable difference.  

No reliable main effects of latency were found (F(2,58)=0.22, p>.05) and no 

interaction was found between latency and the context consistency of the objects 

(F(2,58)=0.35, p>.05). However, there was a main effect of the context consistency of 

the objects (F(1,58)=41.19, p<.001, partial eta-squared = 0.42). Absent objects 

consistent with the context were incorrectly chosen more often (Mean = 2.97) than 

absent objects that were inconsistent with the context (Mean = 1.52).  

5.5.4. Confidence 

Confidence reports (No confidence, Low confidence, Moderate confidence, 

Confident, Certain) were converted to numerical values ranging from 1 assigned to 

‘No confidence’ and 5 assigned to ‘Certain’. Confidence for correct responses only 

was analyzed. One participant was removed from the dataset due to incomplete 

data. 

Table 11 

 Consistent Inconsistent Consistent Inconsistent Consistent Inconsistent 

Total 

misses 

(absent) 

3.00 (2.36) 1.71 (1.23) 2.80 (2.04) 1.55 (1.35) 3.09 (1.34) 1.30 (1.03) 

 Hi Latency (n= 20) Mid Latency (n=19) Lo Latency (n=21) 

 Consistent Inconsistent Consistent Inconsistent Consistent Inconsistent 
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The average confidence ratings for correct responses (displayed in Table 11) were 

analyzed using a 2x3 mixed ANOVA. Latency (hi, mid, lo) was entered as a between 

subjects variable, with the context consistency of the objects (consistent, inconsistent) 

entered as a within subjects variable. A minimum alpha level of .05 was used 

throughout the analyses to judge a reliable difference. 

No reliable main effects of latency were found (F(2,57)=1.11, p>.05) and no  

interaction was found between latency and the context consistency of the objects 

(F(2,57)=0.55, p>.05). However, there was a main effect of the context consistency of 

the objects (F(1,57)=11.01, p<.005, partial eta-squared = 0.16). Higher levels of 

confidence were reported when the correctly identified objects were inconsistent 

with the context (Mean = 3.80) compared to when objects that were consistent with 

the context were chosen (Mean = 3.39).   

5.5.5. Awareness States 

Table 12 

 

Total 

correct 

(out of 

xxx) 

3.11 (0.87) 3.70 (1.04) 3.56 (0.95) 3.85 (0.72) 3.49 (0.74) 3.86 (0.72) 

 Hi Latency Mid Latency Lo Latency 

 Consistent Inconsistent Consistent Inconsistent Consistent Inconsistent 

TYPE 

A 
0.29 (0.15) 0.43 (0.18) 0.33 (0.14) 0.39 (0.19) 0.31 (0.12) 0.41 (0.16) 

TYPE 

B 
0.17 (0.12) 0.12 (0.13) 0.15 (0.15) 0.13 (0.15) 0.17 (0.10) 0.10 (0.10) 
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The proportion of the total correct responses (displayed in Table 12) were 

analyzed with two separate 3x2 mixed ANOVAs for each awareness state (Type A, 

Type B). Latency (hi, mid, lo) was entered as a between subjects variable, with the 

context consistency of the objects (consistent, inconsistent) entered as a within 

subjects variable. A minimum alpha level of .05 was used throughout the analyses to 

judge a reliable difference. 

No reliable main effects of latency were found for either Memory A awareness 

states (F(2,58)=0.004, p>.05) or Memory B awareness states (F(2,58)=0.004, p>.05).  

Similarly, no interactions were found between latency and the context consistency of 

the objects for either Memory A awareness states (F(2,58)=1.42, p>.05) or Memory B 

awareness states (F(2,58)=0.54, p>.05). However, there was a main effect of context 

consistency on Memory A awareness states (F(1,57)=9.08, p<.005, partial eta-squared 

= 0.14) and a main effect of context consistency on Memory B awareness states 

(F(1,58)=4.44, p<.05, partial eta-squared = 0.07). When objects were correctly 

recognised in the correct location, a higher proportion of these correct responses 

were reported as Memory A awareness state (remember) with inconsistent objects 

(Mean = .41) compared to with consistent objects (Mean = .31). Conversely, 

participants reported a higher proportion of correct responses as Memory B 

awareness states (know) with consistent objects (Mean = .16) compared to with 

inconsistent objects (Mean = .12). 

The results of the experiment indicate the following 

 There is a statistical difference between the type of response people gave, 

participants tended to respond that they had a vivid memory when they 

correctly placed an object (Mem A, Mean = 4.42) rather than a feeling of 

knowing (Mem B, Mean = 1.46). 

 There is a statistical difference between the category of object also, 

participants tended to correctly place objects that were inconsistent (Mean 

= 3.15) compared to objects that were consistent (Mean = 2.72). 
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 There was also a significant interaction between the category of the object 

and the type of response. A higher number of vivid memories were 

reported with inconsistent objects (Mean = 5.06) than consistent objects 

(Mean = 3.77). 

The latency manipulation is not making any difference to any part of the analysis. 

Despite the indications in the pilot study, analyses of the full study haven't revealed 

any influence of the latency manipulation. This means, that there is adaptation 

occurring of users to latency which results in similar object memory recognition in 

both latency conditions. However, these data do demonstrate an interaction between 

the memorial experience people are having (Mem A/Mem B) and the type of object 

(consistent/inconsistent). 

It is also worth noting that the data for the 'awareness states' analysis were not 

normally distributed. If you more stringent criteria are applied to judge significance 

(e.g. at least p<0.01) won't change the results much but would remove any difference 

between consistent and inconsistent objects in terms of Memory B type responses. 

5.6. Chapter Summary 

This chapter presented an evaluation study of the effect of head tracking latency 

in spatial cognition in immersive simulations. The task utilized for this evaluation is 

memory recognition, drawn from formalized methodologies of memory psychology.  

In order to evaluate spatial awareness while exposed to a rendered scene with 3 

different levels of latency; minimized latency, medium latency and high-latency 

level. A scene was designed which included several areas and sub-areas and a 

memory recognition task was completed. The scene was designed so that it contains 

objects with differing levels of scene consistency based on the area they were placed. 

Furthermore, the results of the research project have been presented and 

discussed in this chapter. The following chapter draws conclusions from the 

findings, discusses limitations of the current research and makes recommendations 

for the future. 
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CHAPTER 6. Conclusion 

6.1. Main Contributions 

In this thesis we presented a custom-made mechanism of measuring and 

minimizing end-to-end head tracking latency in an immersive VE. Our mechanism 

builds on previous mechanisms by using an oscilloscope to compare two signals, 

assembled by low-cost, custom-made and portable equipment. One signal is 

generated by the head-tracker movement and reported by a shaft encoder attached 

on a servo motor moving the tracker. The other signal is generated by the visual 

consequences of this movement in the VE and reported by a photodiode attached to 

the computer monitor. The end-to-end head tracking latency of the VE is the 

measured time-shift between these two signals. The presented system calculates this 

time-shift by off-line processing the tracker position and display brightness 

measurements stored in a computer t derived from the oscilloscope using a USB 

connection. Thus, an accurate measuring mechanism is provided, utilizing 

equipment commonly found in an academic facility. Subsequent software 

reorganizations to the VE system result in the reduction of the overall system latency 

resulting to a VE with minimal end-to-end head-tracking latency.  

The utility of simulation environments for training, such as flight simulators, or 

collaborative 3D design, as well as remote tele-operation manipulations is predicated 

upon the accuracy of the 3D spatial representation formed mentally. Spatial 

awareness is essential for human performance efficiency of tasks requiring spatial 

knowledge of an environment (Mania, Badariah and Coxon 2010). A central research 

issue therefore for such simulations is how participants cognitively represent 3D 

spatial elements and how their memory and recognition of such worlds corresponds 

to real world conditions. 

The system presented in this thesis was used to investigate the effect of latency 

levels, ranging from the minimum system latency to added latency, on spatial 

awareness states. The main premise of future work is that accuracy of memory 

performance per se is an imperfect reflection of the cognitive activity that underlies 
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user performance. Memory, in the sense of ‘information’ for subsequent analysis, 

plays an important role in perceptual systems such as the visual, auditory, haptic and 

kinesthetic systems (Mania, Troscianko, et al. 2003), (Mania, Wooldridge, et al. 2006). 

Memory research has established that accurate memory recollections can be linked 

with the subjective awareness states “Remember”, which is a recollection based on a 

mental image or a prior experience, and “Know”, which is a general sense of 

knowing with no or little recollection of this sense (Mania, Badariah and Coxon 

2010). It has been shown that latency does not affect memory recognition and 

memory awareness states. This could mean that there are strong adaptation 

processes occurring and related ‘perceptual compensation’ results in similar spatial 

awareness while being immersed in an environment of minimum latency as well as 

in one of somehow higher latency. Therefore, latency could be crucial for tele-

operation tasks to be successful; however, generic spatial awareness can be achieved 

in latency-rich environments. Future work should confirm or contradict such 

findings also involving immersive environments of varied rendering quality. 
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APPENDIX A 

 

Σενάριο πειράματος 

Σας ευχαριστούμε που συμμετέχετε στη διαδικασία των πειραμάτων μας. Το πείραμα αποτελείται από 3 στάδια. 

Ακολουθούν οι λεπτομέρειες για κάθε στάδιο ξεχωριστά. Αφού διαβάσετε προσεκτικά τις λεπτομέρειες για κάθε στάδιο, είστε 

έτοιμοι να ξεκινήσετε. 

Συνοπτικά, το πρώτο στάδιο αποσκοπεί στην εξοικείωση σας με τον εξοπλισμό και τα τρισδιάστατα γραφικά. Το δεύτερο 

στάδιο είναι και το κύριο πείραμα. Το τελευταίο στάδιο αποτελείται από μία ενότητα ανασκόπησης. 

 

Στάδιο 1. Εξοικείωση με τον εξοπλισμό και τα τρισδιάστατα γραφικά 

Εξάσκηση σε ένα απλό περιβάλλον 

Είστε έτοιμοι να συμμετάσχετε στο πρώτο στάδιο. Σκοπός είναι να εξοικειωθείτε με τον εξοπλισμό (Head Mounted 

Display ή HMD) και τα τρισδιάστατα γραφικά. Έχετε όσο χρόνο επιθυμείτε για να περιηγηθείτε σε έναν ανοιχτό χώρο. 

Χρησιμοποιήστε τον εξοπλισμό για να στρέψετε την καρέκλα σας 360 μοίρες και να κοιτάξετε προς όλες τις γωνίες. Ρωτήστε 

ελεύθερα για οποιαδήποτε απορία ή διακόψτε την διαδικασία εάν αισθανθείτε αδιαθεσία. 

Εξάσκηση σε ένα πιο ρεαλιστικό περιβάλλον 

Αφού αισθανθείτε άνετα με τον εξοπλισμό και την περιήγηση στο πρώτο τρισδιάστατο χώρο ζητήστε από τον υπεύθυνο 

του πειράματος να “φορτώσει” μια καινούργια πιο ρεαλιστική σκηνή. Σκοπός είναι να εγκλιματιστείτε σε πιο ρεαλιστικές 

συνθήκες από τις προηγούμενες ώστε να είστε έτοιμοι για το επόμενο στάδιο που είναι και το βασικό. Η καινούρια σκηνή 

περιγράφει ένα δωμάτιο με αντικείμενα και περιοχή κουζίνας, γραφείου και σαλονιού και το απαιτούμενο είναι να 

παρατηρήσετε όλους τους χώρους και τα αντικείμενα των χώρων αυτών. 

Στάδιο 2. Το κύριο πείραμα. Περιήγηση σε μια τρισδιάστατη σκηνή.   

Αφού έχετε εξοικειωθεί πλήρως με τον εξοπλισμό, τη περιήγηση σε τρισδιάστατους ρεαλιστικούς χώρους αλλά και 

εξωτερικά ερεθίσματα όπως ήχοι, καλείστε να περιηγηθείτε σε μια πολυπλοκότερη σκηνή. Λεπτομέρειες για την πλοήγηση 

και το σενάριο του πειράματος θα δοθούν αμέσως πριν την πραγματοποίηση του. 

Στάδιο 3. Ανασκόπηση 

Σύμφωνα με την εμπειρία που αποκομίσατε από τη τελευταία σκηνή που είδατε (στάδιο 2), απαντήστε στη φόρμα 

ανασκόπησης που ακολουθεί. Έχετε όσο χρόνο επιθυμείτε για να διαβάσετε τις οδηγίες και να απαντήσετε σε όλες τις 

ερωτήσεις.  

Παρακαλώ μη συζητήσετε με τους υπόλοιπους συμμετέχοντες οτιδήποτε έχει σχέση με τις εντυπώσεις σας από την 

πλοήγηση ή το στάδιο ανασκόπησης. Παρόλα αυτά, μπορείτε να ρωτήσετε τους υπεύθυνους του πειράματος για οποιαδήποτε 

απορία έχετε. 

Αυτό είναι και το τελικό στάδιο. Ευχαριστούμε για τη συμμετοχή σας και ελπίζουμε να διασκεδάσατε τη διαδρομή!!   
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APPENDIX B 

ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΜΝΗΜΗΣ 

Για κάθε αριθμημένη θέση αντικειμένου στη λίστα, ανατρέξτε στην κάτοψη του περιβάλλοντος και διαλέξτε από τη λίστα 

αντικειμένων ανά περιοχή το αντικείμενο που νομίζετε ότι βρίσκεται σε αυτή τη θέση. Στη συνέχεια, σημειώστε πόσο βέβαιοι 

είσαστε για κάθε επιλογή σας. Τέλος, επιλέξτε τον τύπο που ακριβέστερα περιγράφει πώς σκεφτήκατε πριν κάνετε την επιλογή 

σας. Εάν οποιαδήποτε από αυτούς τους όρους είναι παράξενος για σας, ανατρέξτε στον οδηγό επιλογών: 

- ΤΥΠΟΣ Α σημαίνει ότι μπορείτε να θυμηθείτε με σαφήνεια κάθε αντικείμενο, σε αυτή τη 

συγκεκριμένη τοποθεσία μέσα στο μυαλό σας. Μπορείτε ουσιαστικά  να «δείτε» και πάλι τα 

αντικείμενα του δωματίου στο μυαλό σας ή θυμάστε συγκεκριμένη άλλη πληροφορία σε σχέση με 

όταν τα βλέπατε στο χώρο. 

- ΤΥΠΟΣ Β σημαίνει ότι απλά «ξέρετε» τη σωστή απάντηση που έχετε επιλέξει η οποία απλώς 

«ξεχώρισε» από τις διαθέσιμες επιλογές. Σε αυτή την περίπτωση δεν μπορείτε να απεικονίσετε την 

συγκεκριμένη εικόνα ή πληροφορία στο μυαλό σας. 
 

Για κάθε θέση αντικειμένου στη λίστα, ανατρέξτε στην κάτοψη του περιβάλλοντος και διαλέξτε από τη λίστα 

αντικειμένων το αντικείμενο που νομίζετε ότι βρίσκεται σε αυτή τη θέση. Στη συνέχεια, σημειώστε πόσο βέβαιοι είσαστε για 

κάθε επιλογή σας. Τέλος, επιλέξτε τον τύπο που ακριβέστερα περιγράφει πώς σκεφτήκατε πριν κάνετε την επιλογή σας. Εάν 

οποιαδήποτε από αυτούς τους όρους είναι παράξενος να σας, ανατρέξτε στον οδηγό επιλογών παραπάνω: 

Αντικείμενο Θέση 1:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

Αντικείμενο Θέση 2:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

Αντικείμενο Θέση 3:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

Αντικείμενο Θέση 4:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

Αντικείμενο Θέση 5:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

Αντικείμενο Θέση 6:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

Αντικείμενο Θέση 7:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 
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Αντικείμενο Θέση 8:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

Αντικείμενο Θέση 9:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

Αντικείμενο Θέση 10:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

Αντικείμενο Θέση 11:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

Αντικείμενο Θέση 12:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

Αντικείμενο Θέση 13:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

Αντικείμενο Θέση 14:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

Αντικείμενο Θέση 15:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

Αντικείμενο Θέση 16:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

Αντικείμενο Θέση 17:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

Αντικείμενο Θέση 18:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

Αντικείμενο Θέση 19:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

Αντικείμενο Θέση 20:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 
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Αντικείμενο Θέση 21:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

Αντικείμενο Θέση 22:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

Αντικείμενο Θέση 23:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

Αντικείμενο Θέση 24:    ............................................                                                                                                                                                                       

Βεβαιότητα:  ⃝ Καθόλου βέβαιος/η   ⃝ Χαμηλή βεβαιότητα   ⃝ Μεσαία Βεβαιότητα   ⃝ Βέβαιος/η   ⃝ Απόλυτα Βέβαιος/η                                                                                            

Επίγνωση:   ⃝  ΤΥΠΟΣ Α    ⃝  ΤΥΠΟΣ Β 

  



219 

 

APPENDIX C 
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APPENDIX D 
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APPENDIX E 
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APPENDIX F 
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