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Abstract

Querying spatio-temporal information in ontologies using query languages such as
SPARQL leads to complicated queries and requires that the users be familiar with
the underlying representation of spatio-temporal information. Adding spatial and
temporal operators that hide the underlying representation from the end user while
maintaining simplicity of expression in queries is an important issue to deal with.
We introduce SOWL QL, a high-level query language for querying spatio-temporal
information in OWL ontologies. SOWL QL extends SPARQL with a powerful set of
temporal and spatial operators, including Allen operators, and is capable of querying
both quantitative and qualitative temporal and spatial information (e.g., informa-
tion expressed using dates, times, temporal intervals or information expressed using
natural language terms such as “before” or “after”).
SOWL QL is part of SOWL, an approach for handling spatio-temporal information
comprising of an ontology in OWL, the SOWL QL query language and a reasoner.
Representation of dynamic concepts in SOWL is achieved using the “N-ary rela-
tions” or, alternatively, the “4D-fluents” mechanism. Both the 4D-fluents and N-
ary mechanisms are thoroughly explored and expanded for representing qualitative
(in addition to quantitative) spatio-temporal information in OWL. A spatial model
representation has also been implemented in SOWL supporting the representation
of both directional and topological relations. Moreover, SOWL offers reasoning
support with a reasoner integrated within the ontology. Temporal and spatial rea-
soning in SOWL is realized by introducing a set of SWRL rules operating on spatial
(topological or directional) relations as well as on temporal Allen relations.
As a proof of concept, SOWL QL is implemented in full along with a Graphical
User Interface (GUI) facilitating ontology loading and parsing, query formulation
and execution and, results viewing.
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Chapter 1

Introduction

The rapid growth of the World Wide Web (WWW) in recent years has generated
the need for intelligent tools and mechanisms, which automatically handle tasks
that are typically handled manually by users. For example, planning a trip requires
booking and purchasing tickets at specific dates and prices, according to user needs.
Buying a product requires careful selection among different products that satisfy
user needs, at the best available price. All these tasks are handled by searching the
Web (using a search engine). In recent years, there is an increasing need for Web ser-
vices that accomplish these tasks automatically without user intervention, besides
task description. These services must be capable of understanding the meaning of
the content of Web pages and reason over their content in a way similar to humans.
Semantic Web is a solution to this need by introducing formal, machine readable se-
mantics for representing knowledge combined with reasoning and querying support.
These form the basis of the Semantic Web initiative.

Formal definitions of concepts and of their properties form ontologies, which are
defined using the OWL language. OWL ontologies offer the means for representing
high level concepts, their properties and their interrelationships. For example med-
ical ontologies represent the anatomic features of the human body, diseases, their
symptoms and corresponding medical exams and treatments. Ontologies comprise
of definitions of concepts and their properties by means of binary relations (i.e.,
between two concepts, or a concept and a numerical domain). Query languages
such as SPARQL, are typically used for querying information in ontologies.

The syntactic restriction of OWL to binary relations complicates the represen-
tation of N-ary (e.g., ternary) relations. For example, an employment relation at a
specific temporal interval that involves an employee, an employer and a temporal
interval, is in fact a ternary relation. In general, properties of objects that change
in time (dynamic properties) are not binary relations, since they involve a tempo-
ral interval in addition to the object and the subject. Representing and querying
information evolving in time is the problem this work is dealing with.

1



2 1. INTRODUCTION

1.1 Problem Definition

Dynamic ontologies are not only suitable for describing static scenes with static
objects (e.g., objects in photographs) but also enable representation of events with
objects and properties that change over time and space (e.g., moving objects in
a video). Handling both static and dynamic information in the Semantic Web
is an important problem to deal with. Representation of dynamic features calls
for mechanisms that allow uniform representation of the notions of time (and of
properties varying in time) within a single ontology. Existing methods for achieving
this include, among others, temporal description logics [3], concrete domains [71],
property labelling [43], versioning [58], named graphs [109], reification1 and the
4D-fluents (perdurantist) approach [115].

Representing dynamic information in the Semantic Web is a complicated issue to
deal with and is not handled in full by any of the aforementioned approaches. The
syntactic restriction of OWL to binary relations complicates the representation of
temporal properties since a property holding for a specific time instant or interval
is a relation involving three objects (an object, a subject and a time instant or
interval). Some methods (e.g., [3], [71]) require extending OWL with additional
constructs and are not compliant with existing standards of the semantic Web for
crafting, reasoning and querying ontologies.

Reasoning over qualitative spatial and temporal information (i.e., information
defined using natural language expressions such as “before” or “left”) is also a a
requirement. For example, the description of a university campus using natural lan-
guage involves expressions such as “north of”, “into” instead of spatial coordinates.

In our previous work [17] we introduce SOWL, an approach for handling spatio-
temporal information in OWL. The representation of spatio-temporal information
in SOWL extends those of previous approaches for handling qualitative in addi-
tion to quantitative relations evolving in time and space while being compliant
with OWL, existing tools and semantic Web standards. Apart from 4D-fluents,
a representation of both forms of spatio-temporal information (i.e., quantitative,
qualitative) based on N-ary relations [109] is also proposed. The two representa-
tions (i.e., 4D-fluents, N-ary relations) are practically equivalent with 4D-fluents
being more suitable for the representation of symmetric, inverse and transitive re-
lations using fewer additional relations, while the N-ary approach requires fewer
additional objects. Reasoning in SOWL is implemented in SWRL and is capable
of inferring spatial and temporal relations and detecting inconsistent assertions.
Reasoning implements path consistency on tractable sets of spatial and temporal
relations [10]. The mechanism is (besides soundness, completeness and tractability)
compliant with existing W3C specifications, standards and tools. It is an integral

1http://www.w3.org/TR/swbp-n-aryRelations/
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part of the ontology and is handled by standard tools such as Pellet.
The focus of the proposed work is on querying over spatio-temporal information

in SOWL. Query support in SOWL is realized with the SOWL Query Language
(SOWL QL), a high-level query language, independent from the underlying SOWL
representation so that, the user need not be familiar with the peculiarities of the on-
tological spatio-temporal representation (i.e., the 4D-fluents or the N-ary approach).
SOWL QL handles dynamic (spatio-temporal) ontologies almost like static ones and
relies on the idea of extending SPARQL with spatio-temporal operators (i.e., SOWL
QL builds-upon SPARQL, the current standard of the Semantic Web) that apply
on the underlying SOWL representation.

1.2 Proposed Solution

The SOWL QL query language relies on the idea of extending SPARQL with spatio-
temporal operators following the example of [109]. Compared to the work referred
to above, SOWL QL has the following three advantages (a) supports both spa-
tial and temporal operators, (b) is capable of querying over both quantitative and
qualitative spatial and temporal information and (c) supports reasoning during the
querying process. SOWL QL syntax is independent of the underlying ontological
representation of spatio-temporal information. The working version of SOWL QL
is implemented on top an N-ary relations representation, although a representation
based on 4D-fluents has been implemented as well. Notice that, SOWL QL queries
are translated into equivalent SPARQL queries, thus SOWL Query Language can be
considered as a form of “syntactic sugar” over SPARQL for spatio-temporal queries.

SOWL QL uses the SOWL reasoner for answering queries specifying exact tem-
poral or spatial values such as temporal instants, intervals or locations. This is a
unique feature of SOWL QL not addressed by existing query languages. SOWL QL
is capable of handling such cases by inserting any temporal values specified by the
query into the knowledge base and by inferring all new relations (between the newly
added values and the existing ones) using the SOWL reasoner, prior to answering
the query.

1.3 Contributions of the Present Work

The contributions of the present work are summarized below:

• We introduce SOWL QL a language for querying over spatio-temporal infor-
mation in OWL. Building upon SPARQL, SOWL QL is independent of the
underlying spatio-temporal representation. An exhaustive set of spatial and
temporal operators are defined in SOWL QL including timepoint, interval and
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Allen temporal operators as well as topological and directional spatial oper-
ators. SOWL QL supports querying for both, quantitative and qualitative
spatio-temporal expressions (i.e., information defined using natural language
terms such as “before”). Queries specifying exact temporal or spatial values
call for reasoning support, a feature that is also implemented within SOWL
QL translation.

• For representing and reasoning over dynamic spatio and temporal information
SOWL QL resorts to our previous work for SOWL [17].

• Graphical User Interface (GUI) operating on top of the SOWL QL interpreter
for loading ontologies and executing queries SOWL QL is also implemented.

• The implementation of SOWL QL is available on the Web2.

1.4 Thesis Outline

In Chapter 2 we discuss related work in the field of knowledge representation and
Query languages. Earlier work related to representation, reasoning and querying
over temporal and spatial information is presented and discussed. In Chapter 3
we present the proposed SOWL ontology model for spatio-temporal information. In
this chapter we discuss two temporal models, the 4D-fluents and the N-ary relations
model, along with a model for representing spatial information. The combination
of spatial and temporal representations is also discussed here. In Chapter 4 we
present the corresponding reasoning mechanism over point-based and interval based
temporal representations as well as the spatial reasoning. Chapter 5 presents the
SOWL Query Language. In this chapter we discuss language syntax and semantics,
all spatial and temporal operators and examples of SOWL QL queries. Next, in
Chapter 6, we present the implementation looking in more detail at the different
parts of the system and finally, in Chapter 7 we discuss conclusions and issues for
future work.

2http://www.intelligence.tuc.gr



Chapter 2

Background and Related Work

Semantic Web standards such as ontologies, ontology construction languages, rea-
soning and rules are discussed in Section 2.1. Related work on the field of temporal
and spatial representation is presented in Section 2.2 followed by related work on
reasoning in Section 2.3. Existing work representing temporal and spatial informa-
tion in ontologies as well as on reasoning on temporal and spatial representation, are
discussed in Section 2.4 and 2.5 respectively. Besides representation and reasoning,
querying support for spatio-temporal informations is provided by means of spatio-
temporal query languages. Related work general Semantic Web query languages as
well as, query languages for spatio-temporal information are presented in Section
2.6.

2.1 Semantic Web

The rapid growth of available information in the World Wide Web (WWW) has
complicated the task of information retrieval and processing over the Web. Search
engines such as Google1, Bing2 and Ask3 facilitate retrieval tasks, however in most
cases, users still have to browse through the returned Web pages in order to fulfil
tasks such as on-line shopping, travel planning or ticket reservations. Advanced
search mechanisms may also be implemented based-upon machine learning or fo-
cused crawlers [25, 16] but still are incapable of fully automating tasks such as those
referred to above. Automating these tasks require that machine understandable se-
mantics become available and usable along with data existing already in HTML
pages that are readable by humans as well as by machines. The requirement of
machine interpreted Semantics is the core idea of the Semantic Web vision [19].

1http://www.google.com
2http://www.bing.com
3http://www.ask.com
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6 2. BACKGROUND AND RELATED WORK

Introducing machine readable semantics calls for a formal language for concep-
tualization of application domains, the related concepts, their properties and their
relationships. Based-upon existing work on knowledge representation, logic and on-
tologies along with more recent approaches such as frames [78], Description Logics
[4] form the basis for Semantic Web standards. Specifically OWL [77] and SWRL
[50] are the description and rule languages respectively of the Semantic Web and
are presented in following.

2.1.1 Description Logics

Description Logics (DLs) [5] is a fragment of First Order Logic (FOL) composing
the basis for the Semantic Web standards. They are related to existing formalisms
such as propositional and first order logic [34] and frames [78]. Compared to frames,
it adobpts formal semantics and is more expressive than propositional logic but, less
expressive (in order to increase performance) compared to First Order Login (FOL).

The basic components of a Description Logic formalism are the concepts or
classes, their properties or roles and the individuals or objects. The expressiveness of
a description logic formalism is defined by the allowable constructs and expressions.
The trade-off between expressive power and efficiency is the basic design decision
in every DL. Every DL supports a different set of allowable expressions for defining
concepts. These definitions are expressed as combinations of existing definitions and
atomic (simple) concepts and of their properties. The formal, logic-based semantics
of Description Logics allow for unary predicates (concepts) and binary predicates
(roles or properties).

Besides representation of concepts and of their properties, DL formal and unam-
biguous semantics allow for inference of implied facts from asserted knowledge. The
expressive power of DLs is complemented by inference procedures dealing with sub-
sumption (i.e., determining subclass-superclass relations), consistency (i.e., deter-
mining contradictions in concept definitions and individual assertions) and instance
(i.e., determining the class(es) that an individual belongs to). Decidability of infer-
ence is a highly desirable characteristic so that, in practice, expressiveness is often
sacrificed (i.e., restricted) in order to guarantee decidability. The OWL language is
based on DL and it is the basic component of the Semantic Web initiative.

A description logic, or language, is fully characterized by the allowable constructs
that are used for the definitions of concepts and properties, as expressions of basic
(atomic) concepts and properties. The set of such definitions for an application
domain forms the Terminological Box (TBox) of an ontology. Assertions involving
concepts and properties of individuals form the Assertional Box (ABox) of the
ontology. Reasoning is applied on both, TBox definitions and ABox assertions.

The basic description language is the ALC language which allows for concept
negation, intersection and union. Specifically, concepts forming a set, abbreviated
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as Nc, and properties (roles) forming the set Nr can be defined. Atomic concepts
and properties are part of Nc and Nr respectively. The negation of a concept C

(atomic concept or description) abbreviated as ¬C, the intersection and union of
concepts C andD (atomic concepts or descriptions), abbreviated as C⊓D and C⊔D
respectively are also defined. Finally, if C is a concept then ∃r.C (i.e., objects which
relate with property r with at least one individual belonging to class C) and ∀r.C
(i.e., class of individuals that property r relates them only with individuals of class
C), are also allowable ALC concept definitions. They are called existential and
value restrictions respectively.

Formally given a set ∆I , an interpretation I (∆I , .I) is a pair ∆I and function
.I that assigns to every concept AI the set AI ⊆ ∆I and to every property r the
set rI ⊆ ∆I ×∆I . The extension of interpretation I for ALC complex concepts is
defined as follows:

• (C ⊓D)I = CI ∩DI

• (C ⊔D)I = CI ∪DI

• (¬C)I = ∆I�CI

• (∃r.C)I = {x ∈ ∆I | exists y ∈ ∆I and (x, y) ∈ rI and y ∈ CI}

• (∀r.C)I = {x ∈ ∆I | ∀y ∈ ∆I , (x, y) ∈ rI ⇒ y ∈ CI}

Besides concept conjunction, disjunction and negation, ALC description lan-
guage includes the top concept ⊤ which is an abbreviation of the whole domain
and ⊥ bottom concept which represents the empty set. ABox assertions can be the
following:

• C(a) where a is an individual and C a concept

• r(a, b) where a, b are individuals and r a property

An important part of a Description Logic expressiveness are General Inclusion
Axioms that specify that a concept C is subsumed by another concept D (i.e., all
individuals of C also belong to D. Formally:

• C ⊑ D ⇐⇒ CI ⊆ DI

Equivalence axioms C ≡ D correspond to axioms: C ⊑ D and D ⊆ C. Ad-
ditional constructs not in ALC but parts of more expressive description logics are
qualified number restrictions : they can be either (≥ nr.C) (at least restriction) or
(≤ nr.C) (at most restriction) implying that individuals of a concept can be related
with property r with at least (or at most) n individuals of concept C with property
r:
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• (≥ nr.C)I = {d ∈ ∆I | cardinality({e|(d, e) ∈ rI ∧ e ∈ CI}) ≥ n}

• (≤ nr.C)I = {d ∈ ∆I | cardinality({e|(d, e) ∈ rI ∧ e ∈ CI}) ≤ n}

The unqualified number restrictions are defined as the qualified ones but concept
C in the corresponding definition is replaced by the top concept ⊤. The exact
cardinality restrictions are defined as the result of a combination of an at least n
and an at most n restriction. Exact value restrictions force a specific value for a
property of individuals of a concept and nominal concepts whose individuals can
be one of a restricted list of specific individuals. Inverse properties r, r− are also
defined so that when r holds between two individuals r− also holds but with the
object and subject of the property interchanged:

• (r−)I = {(b, a)|(a, r)ǫrI}

If a property r is the inverse of itself then r is symmetric. A functional prop-
erty represents at most one restriction over the property and inversefunctional a
property that its inverse is functional. A property r is transitive when:

• (r(a, b) ∧ r(b, c)⇒ r(a, c)

General role inclusion axioms are an important part of the expressiveness of a
description logic, given a set of properties (roles) r1, r2, ..., rn, r then:

• r1 ◦ r2... ◦ rn ⊑ r ⇔ r1(a1, a2) ∧ r2(a2, a3)...rn(an, an+1)⇒ r(a1, an+1)

where ◦ denotes composition. Limited forms of general role inclusion axioms are
subproperty axioms (i.e., property r1 is subproperty of property r2 when r1(a, b)⇒
r2(a, b)). Also reflexive properties (i.e., r is reflexive when r(a, b) ⇒ r(a, a)),
irreflexive properties (i.e., r is irreflexive when ∀a : r(a, a) ⊑ ¬rI) and disjoint

properties (i.e., properties r1, r2 are disjoint when rI1 ❁ ¬rI2 and rI2 ❁ ¬rIi ) are also
specific forms of role inclusion axioms. A description logic may also offer support of
specific datatypes such as integer numbers and strings. The notation characterizing
the expressiveness of a description logic can be summarized as follows:

• F : Functional properties

• ε:qualified existential restrictions

• U :Concept union

• C:Negation (including non atomic concepts)

• S: ALC with transitive properties

• H: Subproperty axioms
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• R: reflexive, irreflexive and disjoint properties

• O: nominals

• I:inverse properties

• N : Unqualified cardinality restrictions

• Q: Qualified cardinality restrictions

• (D):datatypes

• AL: concept negation, intersection, value restrictions and limited (unquali-
fied) existential restrictions.

• EL:intersection and full existential restrictions

• FLo:FL
− without existential qualification

The expressiveness of a description language complicates reasoning tasks, so that
description logic expressiveness and efficiency of reasoning tasks are always traded-
off. Also, the following reductions apply to reasoning tasks, and have polynomial
time complexity [5]:

• Subsumption is reduced to equivalence

• Equivalence can be reduced to subsumption

• Subsumption can be reduced to satisfiability

• Satisfiability can be reduced to subsumption

• Satisfiability can be reduced to consistency

• Instance problem can be reduced to consistency

• Consistency can be reduced to the instance problem

For terminological (TBox) reasoning, implementing an algorithm for satisfiabil-
ity is sufficient for all reasoning tasks (i.e., satisfiability, equivalence and subsump-
tion). Accordingly, implementing a consistency algorithm is sufficient for imple-
menting assertional (ABox) reasoning (i.e., consistency and instance). Description
logics are a fragment of First Order Logic and resolution based approaches (i.e.,
a reasoning method for first order logic) where initially employed for the required
reasoning tasks. Recently, a shift towards the so called “tableaux” based reasoning
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is observed [5]. Popular reasoners such as FaCT++4, Pellet5, Hermit6 and RACER7

are examples of tableaux based reasoners.
Description logics do not adopt the Unique Name Assumption and the Closed

World Assumption as the Entity Relationship Model [28] does. Two individuals
with different names are not considered distinct unless this is asserted or proved
by the asserted axioms. DLs adopt the so called Open World Assumption implying
that asserted knowledge is not considered to be complete, thus failing to prove a fact
does not mean that the fact does not hold true. Only proven facts can be asserted
into the knowledge base and lack of a proof does not imply proof of the negation of
the fact.

2.1.2 OWL

The objective of Semantic Web standards is to offer the means for formal machine
understandable semantics of application domains. This formal conceptualization, or
ontologies is based on the OWL language introduced initially in [51]. Building-upon
DAML [2] and OIL [35], OWL was compatible with the existing RDF [69] speci-
fication for describing concepts and properties of objects, while offering increased
expressiveness over the RDFS [76] vocabulary description language for RDF.

RDF and RDFS represent properties or relations between entities in the form
of triplets of the form object-predicate-subject (e.g., IBM employs John). Specific
individuals can belong to classes (e.g., John is-a Person, where John is an individual
and Person is a class). Properties such as employs can relate individuals of specific
classes, for example one can specify that the object of the property employs belongs
to class Company and the subject belongs to the class Employee. Classes of the ob-
ject and the subject of a property are abbreviated as domain ans range respectively.
Basic taxonomic relations between classes and properties can be also specified, for
example is can be stated that Employee is a subclass of Person (i.e., every employee
is also a person). OWL extends RDF/RDFS expressiveness and it will be described
in detail in the following. Three variants of OWL where introduced in the OWL
specification [18]:

• OWL-Full which is fully compliant with RDF,

• OWL-DL which is based on Description Logics and,

• OWL-Lite is a subset of OWL-DL, it is less expressive than OWL-DL allowing
for the definition of class hierarchies and simple constraint features.

4http://owl.man.ac.uk/factplusplus/
5http://clarkparsia.com/pellet/
6http://www.hermit-reasoner.com/
7http://www.sts.tu-harburg.de/ r.f.moeller/racer/
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OWL-Full is the most expressive variant but does not retain decidability and
it is not supported by existing OWL reasoners. OWL-DL is the most routinely
used version of OWL and it is based in the SHOIN (D) description logic [51].
Thus, OWL DLs available constructs are those of SHOIN (D): Concept negation,
union, intersection, value and existential restrictions and transitive properties (S),
subproperties (H), nominals (O), inverse properties (I), unqualified cardinality
restrictions (N ) and datatypes. Reasoning over SHOIN (D) is non deterministic
exponential in time (NExpTIME) although, in practice, optimised tableaux based
reasoners [5] offer tractable average case running times. OWL-Lite is based on
SHIF(D) description logic [77]. OWL-Lite (SHIF(D)) supports concept negation,
union, intersection, value and existential restrictions and transitive properties (S),
subproperties (H), and inverse properties (I), it doesn’t support nominals and
unqualified cardinality restrictions as OWL-DL does, but it supports functional
properties (F), a limited form of cardinality restrictions. Reasoning over OWL-Lite
is deterministic exponential in time although, average case complexity, as in the
case of OWL-DL, is much lower in practice [5].

The evolution of the OWL specification was based on the observation that ad-
ditional constructs can be added in OWL-DL without compromising decidability,
while increasing expressiveness. Extending OWL-DL with the additional constructs
leaded to the adoption of OWL 2 [39] as the current Semantic Web standard [82].
OWL 2 is based on SROIQ(D) description logic [49] (i.e., SROIQ(D) offers
all constructs of SHOIN (D) with the addition of qualified number restrictions
(Q) and complex role inclusion axioms (R)). The computational properties of
SHROIQ(D)-OWL 2.0 are analysed in [49], along with a description of the corre-
sponding tableaux algorithm for reasoning over OWL 2. In addition to constructs
offered by OWL-DL, OWL 2 offers support for qualified number restrictions (Q) in
addition to the unqualified ones and, complex role inclusion axioms (R) along with
disjoint, symmetric, asymmetric, reflexive, irreflexive properties and property nega-
tion in addition to subproperties offered by OWL-DL. SHROIQ(D) is decidable
thus offering additional expressiveness, while retaining the computational properties
of OWL-DL.

OWL 2 specification includes profiles8, namely OWL 2 EL,QL and RL. OWL
2 EL supports class conjunction and existential restrictions while disallowing nega-
tion, disjunction, cardinality and value restrictions, in order to optimize classifi-
cation tasks. OWL 2 EL offers tractable (i.e., polynomial time) reasoning per-
formance. OWL 2 QL is offering optimized performance for conjunctive query
answering by allowing class disjointness, domain, range of properties, existential
restrictions, disallows disjunctions and value restrictions. OWL 2 RL is optimized
for rule-based reasoning over individuals explicitly asserted into the ontology, thus

8http://www.w3.org/TR/owl2-profiles/
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disallowing constructs such as existential restrictions that introduce anonymous in-
dividuals.

OWL specification also includes the abstract syntax which is equivalent to the
Description Logic based syntax presented in section 2.1.1. Specifically, class names
(usually with a capital initial letter) represent concepts and keywords. For exam-
ple, owl : Thing and owl : Nothing represent the top ⊤ and bottom ⊥ concepts
respectively. intersectionOf(C1, C2...Cn) and unionOf(C1, C2...Cn) represent the
intersection and disjunction of classes C1, C2...Cn. The complement of a class C is
defined using keyword complementOf(C) while an enumerated class defined as a
set of individuals o1, o2...on is defined using the declaration oneOf(o1...on).

Restrictions (expressed using the restriction keyword followed by the property
P over which the restriction applies and the restriction keyword) can be one of
the following: someValuesFrom(C), allValuesFrom(C), hasValue(o), minCardinal-
ity(n) and maxCardinality(n) representing qualified existential restrictions, value
restrictions, exact value restriction, min and max cardinality restrictions respec-
tively, where C is a class name, o an individual (or datatype value), and n an
integer. An enumeration using the oneOf keyword can be used instead of a class
name C in the above definitions. TBox class definitions can be A partial C1..Cn

(i.e., class A is a subclass of the conjunction of C1...Cn), and A complete(C1...Cn)
(i.e., A equals the intersection of C1...Cn). Enumerated classes are defined using the
EnumeratedClass(A o1...on) keyword (where o1...on are individuals). SubClassOf(C1

C2) asserts that C1 is a subclass of C2, while the EquivalentClasses(C1...C2) and
DisjointClasses(C1...Cn) define class equivalence and disjointness for the list of
class names.

Keyword SubPropertyOf(p1 p2) defines the subproperty relation between prop-
erties p1 and p2, while property equivalence is defined using EquivalentProperties
keyword. Domains and ranges are defined using domain and range keywords with
class definitions as arguments, while keywords inverseOf, Symmetric, Asymmet-
ric, Functional, InverseFunctional, Transitive, DisjointProperties, Reflexive and
Irreflexive apply on properties having the obvious interpretations. Finally, SameIn-
dividual and DifferentIndividuals apply on lists of individuals specifying their equiv-
alence or difference respectively. Both, abstract syntax and Description Logic based
syntax will be used in this thesis.

2.1.3 SWRL

SWRL9 is the language for specifying rules applying on Semantic Web ontologies.
Horn Clauses (i.e., a disjunction of classes with at most one positive literal), can
be expressed using SWRL, since Horn clauses can be written as implications (i.e.,

9http://www.w3.org/Submission/SWRL/
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¬A∨¬B...∨C can be written as A∧B ∧ ...⇒ C). The efficiency of reasoning over
Horn clauses using forward chaining algorithms is a reason for choosing this form
of rules. The antecedent (body) of the rule is a conjunction of clauses. Notice that,
neither disjunction nor negation of clauses is supported in the body of rules. Also,
the consequence (head) of a rule is one positive clause. Again, neither negation nor
disjunction of clauses can appear as a consequence of a rule. Conjunction of clauses
into the consequence part of the rule can be expressed indirectly by a set of rules
with identical antecedents.

The clauses in the rule can be class names (e.g., C) with variables as arguments
(e.g., C(?x)), property names p (in the form p(?x, ?y) where x, y are variables) or the
OWL sameAs, differentThan keywords. Specific build ins can be also supported
for numerical operators supporting specific datatypes. Whenever the antecedent of
the rule holds for a given set of variable instantiations, the consequence is asserted
into the knowledge base. To guarantee decidability, the rules are restricted to be
DL-safe rules [81] that apply only on named individuals in the ontology ABox and
not on implied anonymous individuals. Even with the syntactic restrictions imposed
on SWRL rules, such as the lack of negation and disjunction and their applicability
only to ABox reasoning, SWRL still extends OWL expressiveness while retaining
decidability. For example, intersection of properties over named individuals can be
expressed using SWRL although, this is not part of OWL specification. Therefore,
SWRL is an important tool for embedding rules into an ontology, while retaining
decidability and OWL semantics. In this thesis, SWRL rules are presented using a
first order notation in place of its equivalent SWRL notation.

2.1.4 SPARQL

SPARQL [88] is the W3C recommendation query language for RDF. The basic
evaluation mechanism for SPARQL queries is based on graph matching. The query
criteria are given in the form of RDF triples possibly with variables in the place of
the subject, object, or predicate of a triple, called basic graph patterns. SPARQL
can be used to express queries across diverse data sources, whether the data is
stored natively as RDF or viewed as RDF via middle ware. SPARQL is capable of
querying required and optional graph patterns along with their conjunctions and
disjunctions. SPARQL also supports aggregation, nested queries, negation, creating
values by expressions, extensible value testing, and constraining queries by source
RDF graph. The results of SPARQL queries can be result sets or RDF graphs. The
SPARQL query language structure is illustrated in figure 2.1.
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Prologue (Optional)

Query Results Form (Required)

Query Dataset Sources (Optional)

Graph Pattern (Optional, Required for ASK)

Query Results Ordering (Optional)

Query Results Selection (Optional)

BASE <uri>
PREFIX prefix:<uri> (Repeatable)

FROM <uri>
FROM NAMED <uri>

WHERE { Graph pattern [Filter Expression] }

SELECT (DISTINCT)  ?Var1 ?Var2 .... ?VarN

SELECT (DISTINCT)  *

DESCRIBE  ?Var1 ?Var2 .... ?VarN or <uri>

DESCRIBE  *

CONSTRUCT { Graph Pattern }

ASK

ORDER BY

LIMIT n , OFFSET m

Figure 2.1: SPARQL query language structure

Looking in more detail at the structure of SPARQL:

• PREFIX: Here we declare short abbreviations for the namespaces used in a
query.

• SELECT: The SELECT clause defines a list of variables bound in a query
pattern. The syntax SELECT * is an abbreviation that selects all of the
variables in a query.

• FROM: Defines the data set to be queried. The FROM clause is optional.

• CONSTRUCT: It is used to return an RDF graph created by substituting
variables in the query pattern.

• DESCRIBE: It is used to return an RDF graph describing the resources that
were found.

• ASK: It returns a boolean value indicating whether the query pattern is
matched or not.
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• WHERE: This clause provides the basic graph pattern to match against the
data graph. Basic graph patterns are sets of triple patterns. A triple is a data
entity composed of subject-predicate-object, like “Bob is 35” or “Company
hasEmployee George”. The WHILE clause may include optional triples. If
the triple to be matched is optional, it is evaluated when it is present, but
the matching does not fail when it is not present. Also, it is possible to make
UNION of multiple matching graphs - if any of the graphs matches, the match
will be returned as a result.

• FILTER: In addition to specifying graphs to be matched in the WHILE clause,
constraints can be added for values using the FILTER construct. By using
this construct we can apply all kinds of value restrictions such as string value
restrictions (like FILTER regex(?name, “company”) meaning that the ?name
variable must contain the string “company” as a substring) or number value re-
strictions (like FILTER (?salary <300) meaning the ?salary must be less than
300) Also, a few special operators are defined for the FILTER construct. These
include the “isIRI” operator for testing whether a variable is an IRI/URI, the
“isLiteral” operator for testing whether a variable is a literal and “bound” to
test whether a variable is bound to other variables.

• DISTINCT: Used to distinguish the unique results.

• ORDER BY: The ORDER BY clause establishes the order of a solution se-
quence. Following the ORDER BY clause is a sequence of order compara-
tors, composed of an expression and an optional order modifier (either ASC()
or DESC()).Each ordering comparator is either ascending (indicated by the
ASC() modifier or by no modifier) or descending (indicated by the DESC()
modifier).

• LIMIT: The LIMIT clause puts an upper bound on the number of solutions
returned. If the number of actual solutions is greater than the limit, then at
most the limit number of solutions will be returned.

• OFFSET: OFFSET causes the solutions generated to start after the specified
number of solutions. An OFFSET of zero has no effect. Using LIMIT and
OFFSET to select different subsets of the query solutions will not be useful
unless the order is made predictable by using ORDER BY.

An example of a SPARQL query is illustrated in Figure 2.2.
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title

Data :

<http://example.org/book/book1> <http://purl.org/dc/elements/1.1/title> "SPARQL Tutorial" .

Query :

SELECT    ?title
WHERE

{
  <http://example.org/book/book1>   <http://purl.org/dc/elements/1.1/title>    ?title .
}

Result :

"SPARQL Tutorial"

sparql example query

Figure 2.2: SPARQL example

For spatio-temporal querying, SPARQL requires the user to be familiar with the
underlying ontology model implemented (e.g., the 4D-fluents or the N-ary relations
model in this work). Moreover, matching the spatio-temporal representation graph
using RDF triples may require very complicated queries. Figure 2.3 is an example
of a temporal query in SPARQL using the 4D-fluents model for the representation
of temporal informaiton in an ontology. This query would return all the employees
that work for a specific company at any time. Querying for temporal informa-
tion requires using constructs specific to the 4D-fluents model (e.g., tsTimeSliceOf,
tsTimeInterval) so that the user need to be familiar with this model for expressing
temporal queries. This is an inherent limitation to SPARQL (which is not originally
defined for expressing temporal queries, the same as spatial queries as we shall see
in the following) and this is exactly the problem this work is dealing with.
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SELECT  ?employee
WHERE {
?timeSlice_0 ex:hasEmployee  ex:Company1.
?timeSlice_0 4dfluents:tsTimeInterval  ?interval_0.
?timeSlice_0 ex:hasEmployee ?timeSlice_1.
?timeSlice_1 4dfluents:tsTimeSliceOf  ?employee.
?timeSlice_1 4dfluents:tsTimeInterval  ?interval_0 
}

Figure 2.3: SPARQL temporal query using the 4D-fluents model for temporal rep-
resentation

2.2 Representation of Time and Space

Space and time are fundamentals aspects of the conceptualization of the physical
world. The notions of time and space as well as the evolution of concepts and
individuals in space and time are important issues in almost all application domains.

Time can be regarded as discrete or continuous, linear or cyclical, absolute or rel-
ative, qualitative or quantitative. Also, time can be presented using time instances
or intervals. Temporal concepts as used by humans in every day life are represented
in the Semantic Web using (in many cases) the OWL-Time ontology [48]. OWL-
Time provides definitions of time instants (or points), intervals, definitions for their
relations and definitions of concepts such as days, weeks, months, years, dates, time
zones, durations and measuring units. OWL-Time is an ontology of the concepts of
time, but OWL-Time does not specify how these concepts can be used to represent
evolving properties of objects (i.e., properties that change in time) and it does not
specify how to reason over qualitative relations of temporal intervals and instants.
This is a problem this work is dealing with. Nevertheless, since OWL-Time is a
W3C recommendation (although other ontologies such as the SWRL Temporal On-
tology10 also exist), it is adopted by the current work for providing definitions of
the concepts of time. In addition, this work will show how these concepts can be
related to dynamic concepts evolving in time.

There is a fundamental philosophical controversy concerning the evolution of
concepts in time, namely the perdurantist and the endurantist approaches [101]
and this controversy also applies to the generalized spatio-temporal representation
[41]. A discussion on these issues from the philosophical standpoint can be found
in [47, 113]. This controversy is related to issues such as the identity of objects as
they evolve in time and whether objects endure in time although their properties
may change, implying a fundamental distinction between objects and events or they

10http://swrl.stanford.edu/ontologies/built-ins/3.3/temporal.owl
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perdure in time by relating properties in time and space in a form of a generalized
event (4D perdurantist approach).

According to the perdurantist approach, every object is in fact a generalized
event having specific spatial and temporal extensions. Even objects such as the
sun and the solar system can be regarded as temporal entities having a specific
duration, not different in their fundamental aspects from everyday events. In this
work, both approaches are taken into account and modelling approaches based on
4D objects and 3D objects participating into events are presented. In this work,
time is described using quantitative or qualitative terms using temporal instances
and intervals. The employed representations are based on absolute time specifying
an ordering of time points.

Choosing between a point or an interval-based representation is an important
issue [110]. Point-based representations assume linear ordering of time points with
three possible relations the “<”,“>”,“=” often referred to as before, after and
equals respectively. Based on these ordering relations, intervals can also be defined
as ordered pairs of points s, e with s < e, often referred to as start and end of
an interval respectively. Given two such ordered pairs of points (i.e., intervals) the
following relations can be defined between the two intervals i1, i2 in terms of their
endpoints s1, e1 and s2, e2 respectively:

i1 before i2 ≡ e1 < s2
i1 equals i2 ≡ s1 = s2 ∧ e1 = e2
i1 overlaps i2 ≡ s1 < s2 ∧ e1 < e2 ∧ e1 > s2
i1 meets i2 ≡ e1 = s2
i1 during i2 ≡ s1 > s2 ∧ e1 < e2
i1 starts i2 ≡ s1 = s2 ∧ e1 < e2
i1 finishes i2 ≡ s1 > s2 ∧ e1 = e2

The relations after, overlappedby, metby, contains, startedby and finishedby are the
inverse of before, overlaps, meets, during, starts and finishes and are defined accord-
ingly (by interchanging s1, s2 and e1, e2 in their respective definitions). A temporal
relation can be one of the 13 pairwise disjoint Allen’s relations [1] of Figure 2.4.

Using either a point or an interval-based representation, qualitative relations can
be asserted, even when the specific time points or the temporal extends of intervals
are unknown but their relative position is known; thus, the expressiveness of the
representation increases. Quantitative representations involve specific datatypes
such as xsd : date supported by OWL, and these datatypes support comparison of
dates, thus yielding the required ordering relation when specific dates of points are
known.

Space is an important aspect of knowledge representation. Space can be regarded
as two dimensional (2D) or three dimensional (3D) with most applications adopting
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ji

Meets(i,j)

Before(i,j)

Overlaps(i,j)

Starts(i,j)

During(i,j)

Finishes(i,j)

Equals(i,j)

Inverse RelationRelation

After(j,i)

MetBy(j,i)

OverlappedBy(j,i)

StartedBy(j,i)

Contains(j,i)

FinishedBy(j,i)

Figure 2.4: Allen’s Temporal Relations

a 2D space, which is the approach followed in this thesis. Cartesian coordinates
either 2D (x, y) or 3D (with z being the third axis) are employed.

Our approach is suitable for most applications, although there are limitations
when a 2D projection is not adequate, for example in applications that handle earth
in a global scale and not as a set of planes representing local areas. Each point is
represented using a pair (or a triple) of coordinates of a specific datatype related
to the coordinate system and the scale employed. Regions are represented using a
set of points representing their contour or using minimum bounding rectangles (i.e.,
the minimal rectangle with sides parallel to the axis that contain the space of the
region in question). Spatial information can be topological, directional and distance
[93].

Topological relations represent the relative position of regions in the plane. The
most widespread formalism for representing such relations is the so called Region
Connection Calculus (RCC) Formalism introduced in [90]. A form of this calculus
specifying 8 possible mutually exclusive relations between two regions, called RCC8
calculus is the most commonly used. The topological relations shown in Figure 2.5,
(DC, EC, EQ, NTPP, NTPPi, TTP, TPPi, PO), referred to as RCC8 relations are
supported in the SOWL model.

Directional relations are also defined based on cone-shaped areas [79]. As shown
in Figure 2.6, eight directional relations can be identified namely North (N), North
East (NE), East (E), South East (SE), South (S), South West (SW), West (W) and
North West (NW) following the cone-shaped regions approach of [79].

Alternative approaches based on 2D projections are discussed in [93, 103] and
are also supported as well. The projection-based approach handles the projections
of points (or regions) over the coordinate system axis, as shown in Figure 2.7. In
case of points, these projections are single point projections on two axes while, in
case of regions these projections form a two-point projection (or interval) on each
axis. These projections are in turn handled the same way as point and interval
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Figure 2.5: RCC8 topologic relations.

algebra handles time instants in the case of a temporal representation.
Finally, distance relations are defined and can be used in SOWL in conjunction

with the above relation types. Notice that, qualitative distance relations (e.g., “far”
and “near”) may be ambiguous especially in applications where a common scale for
measuring distances is not provided [93]. This problem is resolved when distance
relations are expressed quantitatively (e.g., 3Km away from city A) and stored in
the ontology as N-ary relations (i.e., by defining an object with attributes the two
related locations and a numerical attribute representing their distance). In SOWL,
we opt for the later (quantitative) approach for representing distance information.

2.3 Temporal and Spatial Reasoning

Inferring implied relations and detecting inconsistencies are handled by a reasoning
mechanism. In the case of a quantitative representation such a mechanism is not
required because spatial and temporal relations are extracted from the numerical
representations in polynomial time (e.g., using datatype comparisons in the case
of temporal relations and computational geometry algorithms in the case of spatial
relations).

In cases where relations are qualitative, assertions of relations holding between
spatial and temporal entities (e.g., intervals, points) restrict the possible assertions
holding between other temporal and spatial entities in the knowledge base. For
example, the assertion “point A is north of point B” impose a restriction on the
arrangement of points is space. Also, it imposes a restriction on future assertions
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Figure 2.6: Cone-based direction relations.

(e.g., a new assertion such as: “A is south of B” contradicts the existing one). Then,
reasoning on qualitative spatial or temporal qualitative relations can be transformed
into a constraint satisfaction problem, which is known to be an NP-hard problem
in the general case [93]. The worst case complexity appears in certain instances
that are neither over-constrained nor under-constrained [93]. Notice that, a large
number of constraints (i.e., assertion of relations) in comparison to the number of
entities involved, usually leads to an inconsistency and a small number of constraints
usually imply a small number of implied relations; both cases are are resolved in
polynomial time complexity in practice [93].

Reasoning over qualitative spatial and temporal relations is achieved using [93]:

• An exponential worst case algorithm that has better performance on the av-
erage case.

• Approximation algorithms that are neither complete nor sound but they have
polynomial worst case complexity.

• Polynomial time algorithms that are sound and complete by restricting the
allowable relations to specific tractable sets.

Inferring implied relations depends on existing relations in the knowledge base
and on their semantics. For example, directional relations may have different seman-
tics if they are interpreted using the cone-shaped approach [79] or the projection-
based approach [7, 103]. Although, the relations in both cases are the same, their
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Figure 2.7: Projection-based direction relations.

interpretations and semantics differ. Inferring implied relations is achieved by spec-
ifying the result of compositions of existing relations. Specifically, when a relation
(or a set of possible relations) R1 holds between entities A and B and a relation
(or a set of relations) R2 holds between entities B and C then, the composition

of relations R1, R2 (denoted as R1 ◦ R2) is the set (which may contain only one
relation) R3 of relations holding between A and C. Typically, compositions of pairs
of relations are stored in composition tables [93].

Qualitative relations under the intended semantics may not apply simultane-
ously between a pair of individuals. For example, given time instants p1 and p2, p1
can not be simultaneously before and after p2. Typically, in spatio-temporal rep-
resentations (e.g., using Allen and RCC8 relations) all basic relations (i.e., simple
relations and not disjunctions of relations) are pairwise disjoint. When disjunctions
of basic relations hold simultaneously then, their set intersection holds. For ex-
ample, if p1 is before or equals p2 and simultaneously p1 is after or equals p2 then
p1 equals p2. In case the intersection of two relations is empty these relations are
disjoint. Checking for consistency means checking if asserted and implied relations
are disjoint.

Reasoning over spatio-temporal relations is known to be an NP-hard problem
and identifying tractable cases of this problem has been in the center of many
research efforts over the last few years [93]. The notion of k-consistency is very
important in this research. Given a set of n entities with relations asserted between
them imposing certain restrictions, k-consistency means that every subset of the n

entities containing at most k entities does not contain an inconsistency. Obviously,
when n-consistency holds then, there is not an inconsistency, but checking for all
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subsets of n entities for consistency is exponential on the number n. Simpler forms of
consistency are 2-consistency or arc consistency, (i.e., checking for asserted relations
between all pairs of individuals for disjoint relations) and 3-way consistency or
path consistency (i.e., checking all triples of individuals for inconsistencies caused
by asserted relations and compositions of pairs of relations holding between the 3
entities).

There are cases where, k-consistency for a specific value of k implies strong n-
consistency so that, a polynomial algorithm that enforces k-consistency also solves
the n-consistency problem [93]. There also also cases where, although k-consistency
does not imply n-consistency, there are specific sets of relations Rt (which are sub-
sets of the set of all possible disjunctions of basic relations R), with the following
property: if asserted relations are restricting to this set then k-consistency implies
n-consistency and Rt is a tractable set of relations or a tractable subset of R [93].

Tractable subsets for point algebra have been identified in [110, 114, 112]. How-
ever, these results can be applied when point algebra is used for reasoning over
projections of points in the 2D (or 3D) space in addition to the temporal case which
involves only one dimension. In fact, point algebra is only applicable on point pro-
jections on each axis. Tractable sets of Allen interval algebra have been identified in
[83] and [68]. These results apply in cases where Allen relations are used for spatial
reasoning, since projections of 2D objects define 1D intervals on each axis, as in the
case of temporal Allen relations [6]. A survey is presented in [63].

Tractability of RCC8 subsets is analysed in [91] while, cone-shaped directional
relations are examined in [92]. Combining points and intervals for temporal reason-
ing is analysed in [55] while, combined reasoning over intervals and their durations is
discussed in [89]. Recent results for topological and temporal relations are presented
in [20]. A survey is presented in [93].

2.4 Temporal Representation and Reasoning in

the Semantic Web

The OWL-Time temporal ontology11 describes the temporal content of Web pages
and the temporal properties of Web services. Apart from language constructs for
the representation of time in ontologies, there is still a need for mechanisms for the
representation of the evolution of concepts (e.g., events) in time. This is related
to the problem of the representation of time in temporal (relational and object ori-
ented) databases. Existing methods are relying mostly on temporal Entity Relation
(ER) models [40] taking into account valid time (i.e., time interval during which a
relation holds), transaction time (i.e., time at which a database entry is updated)

11http://www.w3.org/TR/owl-time/
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or both. Also time is represented by time instants, intervals or finite sets of inter-
vals [62]. Related work for infinite and indefinite temporal information is presented
at [61, 33]. However, representation of time in OWL differs because (a) OWL seman-
tics are not equivalent to ER model semantics in Relational Databases (e.g., OWL
adopts the Open World Assumption while DBs typically adopt the Closed World
Assumption) and (b) relations in OWL syntax are restricted to binary ones in con-
trast to DBs. Representation of time in the Semantic Web can be achieved using
Temporal Description logics (TDLs) [3], Concrete domains [71], Reification, labeling
of properties [43, 24], Versioning [58], named graphs [109] and 4D-fluents [115].

Temporal Description Logics (TDLs) [3, 72] extend standard description logics
(DLs) that form the basis for semantic Web standards with additional constructs
such as “always in the past”, “sometime in the future”. TDLs offer additional
expressive capabilities over non temporal DLs and retain decidability (with an ap-
propriate selection of allowable constructs) but they require extending OWL syntax
and semantics with the additional temporal constructs (the same as property la-
belling introduced in [43]). Representing information concerning specific time points
requires support for concrete domains, resulting to the proliferation of objects [3].

Concrete Domains [71] introduce datatypes and operators based on an under-
lying domain (such as decimal numbers). The concrete domains approach requires
introducing additional datatypes and operators to OWL, while our work relies on
existing OWL constructs. This is a basic design decision in our work. TOWL
[37] is an approach combining 4D-fluents with concrete domains but did not sup-
port qualitative relations, path consistency checking (as this work does) and is not
compatible with existing OWL editing, querying and reasoning tools (e.g., Protege,
Pellet, SPARQL).

Temporal RDF [43] proposes extending RDF by labelling properties with the
time interval they hold. This approach also requires extending the syntax and se-
mantics of the standard RDF. Note that Temporal-RDF cannot express incomplete
information by means of qualitative relations. Although, in [53], Temporal-RDF
was enhanced with support for undefined intervals it does not provide the full ex-
pressiveness of SOWL. Temporal-RDF is combined with fuzzy logic in [107].

Temporal annotation of properties as proposed in [43] has been proposed for
OWL representation in [80], enhanced with support for undefined intervals. Query-
ing support for annotated properties is provided as well [70].

Versioning [58] suggests that the ontology has different versions (one per instance
of time). When a change takes place, a new version is created. Versioning suffers
from several disadvantages: (a) changes even on single attributes require that a new
version of the ontology be created leading to information redundancy (b) searching
for events occurred at time instances or during time intervals requires exhaustive
searches in multiple versions of the ontology, (c) it is not clear how the relation
between evolving classes is represented. Furthermore, ontology languages such as
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OWL are based on binary relations (relations connecting two instances) with no
time dimension regarding ontology versions.

Named Graphs [109] represent the temporal context of a property by inclusion of
a triple representing the property in a named graph (i.e., a subgraph into the RDF
graph of the ontology specified by a distinct name). The default (i.e., main) RDF
graph contains definitions of interval start and end points for each named graph, so
that a temporal property is represented by the start and end points corresponding
to the temporal interval that the property holds. Named graphs are not part of
the OWL specification12 (i.e., there are not OWL constructs translated into named
graphs) and they are not supported by OWL reasoners. In [109] a SPARQL based
temporal query language is also introduced applying only on quantitative defined
temporal intervals.

Reification is a general purpose technique for representing n-ary relations us-
ing a language such as OWL that permits only binary relations. Specifically, an
n-ary relation is represented as a new object that has all the arguments of the n-
ary relation as objects of properties. For example if the relation R holds between
objects A and B at time t, this is expressed as R(A,B,t). Furthermore, in OWL,
using reification this is expressed as a new object with R,A,B and t being objects
of properties. Figure 2.8 illustrates the relation WorksFor(Employee, Company,
TimeInterval) representing the fact that an employee works for a company during
a time interval. Using reification, the extra class “ReifiedRelation” is created hav-
ing all the attributes of the relation as objects of properties. Reification suffers
mainly from two disadvantages: (a) a new object is created whenever a temporal
relation has to be represented (this problem is common to all approaches based on
OWL) and (b) offers limited OWL reasoning capabilities [115] since relation R is
represented as the object of a property, thus OWL semantics over properties (e.g.,
inverse properties) are no longer applicable (i.e., the properties of a relation are
no longer associated directly with the relation itself). Examples of temporal rep-
resentation based on reification (the reified temporal relations are named Events

or Actions) are presented at [99, 26]. In [108] temporal representation is combined
with application specific SWRL rules for representing clinical narratives.

Using an improved form of reification, the N-ary relations approach suggests
representing an N-ary relation as two properties each related with a new object
(rather than as the object of a property, as reification does). This approach requires
only one additional object for every temporal relation, maintains property semantics
but (compared to the 4D-fluents approach below) suffers from data redundancy
in the case of inverse and symmetric properties (e.g., the inverse of a relation is
added explicitly twice instead of once as in 4D-fluents). This is illustrated in Figure
2.10. In the case of transitive properties additional triples are introduced as well.

12http://www.w3.org/TR/owl2-syntax/
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Furthermore, domains and ranges of properties have to be adjusted taking into
account the class of intermediate objects representing the relation (for example the
worksfor relation in no longer a relation having as object an individual of class
Company and subject of class Employee as they are now related to the new object
“TemporalEmployment”).

Similarly to our proposed approach (see Chapter 4), property restrictions (e.g.,
cardinality constraints) cannot be expressed directly on properties and, subsequently,
can’t be identified by a reasoner as it is common in OWL ontologies. Instead, re-
striction checking on properties have to be implemented separately (on top of the
ontology) with extra rules. Software in Java, instead of SWRL as in this work, han-
dling a subset of restrictions over only quantitative intervals has been also developed
in our laboratory [98].

A plug-in for the Protege editor supporting editing of N-ary based temporal
ontologies is presented at [94]. A similar tool has been developed in our laboratory
for the proposed representations, both for 4D-fluents [73] and N-ary relations [87].

Employee
Company

TimeInterval

ReifiedRelation

Subject

Interval
Object

Predicate
worksFor

Figure 2.8: Example of Reification

The 4D-fluent (perdurantist) approach [115] shows how temporal information and
the evolution of temporal concepts can be represented in OWL. Concepts in time
are represented as 4-dimensional objects with the 4th dimension being the time
(timeslices). Time instances and time intervals are represented as instances of a
TimeInterval class, which in turn is related with concepts varying in time as shown
in Figure 2.9. Changes occur on the properties of the temporal part of the ontology
keeping the entities of the static part unchanged. The 4D-fluent approach still
suffers from proliferation of objects since it introduces two additional objects for
each temporal relation (instead of one in the case of reification and N-ary relations).
The N-ary relations approach referred to above is considered to be an alternative
to the 4D-fluents approach considered into this work. Examples of representations
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worksFor

hasEmployee

tsTimeSliceOF tsTimeSliceOF
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Figure 2.9: Example of 4D-fluents
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hasEmployee
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atTime

worksFor

Figure 2.10: Example of N-ary Relations

based on 4D-fluents are presented at [14, 116, 9]. The MUSING system where both
a 4D-fluents based approach and an alternative approach based on extending RDF
with temporal annotation [67, 65, 66] used in conjunction with OWL-Time, but
without the qualitative reasoning support proposed in this thesis, is a related work.

2.5 Spatial Representation and Reasoning in the

Semantic Web

Formal spatial, and spatio-temporal representations have been studied extensively
in the Database [45, 97] and recently, in the Semantic Web literature [23]. Spatial
entities (e.g., objects, regions) in classic database systems are typically represented
using points, lines (polygonal lines) or Minimum Bounding Rectangles (MBRs)
enclosing objects or regions and their relationships [86]. Relations among spatial
entities can be topological, orientation or distance relations. Furthermore, spatial
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relations are distinguished into qualitative (i.e., relations described using lexical
terms such as “Into”, “South” etc.) and quantitative (i.e., relations described using
numerical values such as “10Km away”, “45 degrees North” etc.). Accordingly, spa-
tial ontologies are defined based upon a reference coordinate system in conjunction
with a set of qualitative topological and direction relations (e.g., RCC8 relations).
Reasoning rules for various relation sets have been proposed as well [32, 93].

Representing spatio-temporal knowledge has also motivated research within the
Semantic Web community. Katz et.al. [57] proposed representing RCC8 relations
as OWL-DL class axioms (instead of object properties as in [42]) but this approach
has limited scalability as shown in [106]. Chen et.al. [27] and Sotnykova et.al.
[105] proposed an integrated spatio-temporal representation which includes quali-
tative relations but without specialized spatio-temporal reasoning support. Perry
et.al. [100] proposed a representation based on quantitative spatio-temporal data
and Christodoulakis et.al. [29] proposed a quantitative representation for data from
GPS devices. Patkos et.al [85] proposed a representation combined with application
specific rules based on Event calculus similar to the work presented at [8]. A repre-
sentation for quantitative spatio-temporal information based on linear constraints
is presented in [64, 60].

Pellet Spatial [106] offers reasoning support for RCC8 topological relations. In
SOWL [11, 15, 13, 12] support for topological and directional (quantitative and
qualitative defined) spatial relations is provided in conjunction with the temporal
representation mechanism. Applications of the SOWL model for dynamic medical
information13, video content and spatial descriptions using qualitative terms are
presented at [74], [46] and [30] respectively.

2.6 Querying Spatio-Temporal Information in the

Semantic Web

Examples of temporal query languages for temporal databases include TQuel [104],
TSQL2 [59] and ATSQL [21]. Query languages for RDF and OWL ontological rep-
resentations are of particular interest as they form the basis for developing the new
type of temporal ontology query languages. SeRQL [22] and SPARQL are good
representatives of this category of query languages. SeRQL is a RDF/RDFS query
language combining features of other (query) languages (e.g., RQL [56], RDQL [96],
N-Triples, N3). Important features of SPARQL (and SeRQL) are: Graph trans-
formation, RDF and XML Schema data type support, expressive path expression
syntax and optional path matching. SPARQL (and SeRQL) supports comparison
between date times.

13Available at: http://www.intelligence.tuc.gr/HPV-4dcase/
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Query languages for RDF and OWL ontological representations such as SPARQL
and SeRQL [22] form the basis for developing languages for querying spatio-temporal
information in ontologies and the semantic Web. Querying spatio-temporal in-
formation over the semantic Web using languages such as SPARQL is a tedious
task. Recent work on query languages for temporal ontologies include TOQL [8], t-
SPARQL [109] and T-SPARQL [38] using 4D-fluents, named graphs and versioning
respectively for the representation of temporal information.

2.6.1 t-SPARQL

t-SPARQL [109] extends the syntax of SPARQL with additional operators for ex-
pressing temporal queries. The data model used in this work, called temporal RDF,
is based on named graphs and considers time as an additional dimension in data
preserving the semantics of time. For the representation of time, OWL-Time has
been extended with a new date format type called IntegerTime to express non-
calendar time representations such as version numbers.

The language has two major usage formats: time point queries and temporal
queries. Time point queries aim at retrieving information valid at a specified point in
time. The “FROM SNAPSHOT t” expression signals the query engine to evaluate
the querys graph pattern only on graph-elements valid at the time point “t”, where
“t” has to be a literal time value (the literal type is depending on the underlying
time format). t-SPARQL queries, similarly to SOWL QL, are translated to SPARQL
prior to execution. An example of a timepoint query is shown in figure 2.11

select ?person FROM SNAPSHOT 1995 
where {
  ?person a foaf:Person .
 }

Figure 2.11: t-SPARQL timepoint query example

Temporal queries allow the usage of wild card intervals and time points. These
wild cards can be used to bind a variable to the validity period of a triple or to
express temporal relationships between between intervals. t-SPARQL allows one
form of temporal wildcards [?s,?e] which binds the literal start and end values.

An example of a timepoint query is shown in figure 2.12
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select ?s ?person 
where {
    [?s ,?e]  ?person  a  foaf:Person .
   }

Figure 2.12: t-SPARQL temporal query example

SOWL QL currently supports all the features described above and, in addition,
supports:

• A wider arsenal of temporal operators (quantitative and qualitative) such as
the ALWAYS AT and SOMETIME AT temporal operators.

• A wide selection of spatial operators (quantitative and qualitative topological
and directional operators) which are not supported by t-SPARQL.

• Reasoning for both temporal and spatial queries (a feature that is not sup-
ported by t-SPARQL).

2.6.2 T-SPARQL

T-SPARQL [38] is a TSQL2-Like Temporal Query Language for RDF. In T-SPARQL
time is considered to be discrete, with a minimal system dependent representation
unit called “chronon”. A mono-temporal chronon corresponds to an elementary
interval on the time axis, whereas a multi-temporal chronon corresponds to a unit
hypercube in the N-dimensional time domain. Three base temporal types are de-
fined for TSQL2 at the conceptual level: datetime, period and interval. The first
one corresponds to an instantaneous event, without duration, which can be conven-
tionally represented via a single chronon. The second one corresponds to a set of
consecutive chronons along the time axis and is characterized by two datetime con-
stants representing its boundaries. The third temporal type corresponds to a pure
duration, non anchored on the time axis, and can be represented as a multiple of the
chronon. The language T-SPARQL is equipped with the basic temporal constructs
which have been designed for the TSQL2 relational query language and work with
an extended set of temporal datatypes, functions and operators already present in
the SPARQL specification.

T-SPARQL adds temporal selection capabilities to the SPARQL language by
extending the basic graph pattern in the WHERE clause of the SELECT statement.
As RDF triples are correspondingly augmented with the timestamp in the data
model, graph patterns to be used in the T-SPARQL WHERE clause are extended
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with an optional fourth position where matching with the triple timestamps can be
specified. For example, in the graph pattern :e ex:Dept “Toys” — ?t the variable ?t
binds to the timestamp of a temporal triple representing the fact that an employee
denoted by the blank node :e has been working in the Toys department. The
general syntax pattern is: (s, p, o — t). If the fourth position (along with the
“—” separator) in the pattern is not used, that is a standard SPARQL three-
position pattern is used, the matching with a temporal triple is made regardless of
its timestamp. Also, the FILTER clause can be used, as in TSQL2, with the same
semantics to specify constraints over timestamp variables.

Snapshot queries are used to extract a single temporal version from a multi
version RDF graph. For instance, if the temporal RDF database encodes the def-
inition of a multi-version ontology, the result of a snapshot query is a standard
(non-temporal) RDF graph, which can be interpreted as a consistent single ontol-
ogy version valid at a given time point.

SOWL QL currently supports all the features described above and, in addition,
supports:

• A wider arsenal of temporal operators (quantitative and qualitative) such as
the ALWAYS AT and SOMETIME AT temporal operators.

• A wide selection of spatial operators (quantitative and qualitative topological
and directional operators) which are not supported by T-SPARQL.

• Reasoning support for both temporal and spatial queries (a feature that is not
supported by T-SPARQL).

2.6.3 stSPARQL

stSPARQL extends SPARQL for querying stRDF. The model stRDF is a constraint
data model that extends RDF with the ability to represent temporal and spatial
data. This extension to RDF, follows the main ideas of constraint databases and
represents tempora and spatial objects as quantifier-free formulas in a first-order
logic of linear constraints. stSPARQL extends SPARQL with functions that take as
arguments temporal and spatial terms and can be used in the SELECT, FILTER,
and HAVING clause of a SPARQL query. A spatial term is a spatial literal (i.e., a
typed literal with datatype strdf:geometry), a query variable that can be bound to a
spatial literal, the result of a set operation on spatio-temporal literals (e.g., union),
or the result of a geometric operation on spatial terms (e.g., buffer). sTSPARQL
uses vectors of points to represent the different geometries and it does not support
querying using qualitative operators.

SOWL QL has two main advantages over stSPARQL:
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• Supports qualitative operators.

• Supports reasoning for both temporal and spatial queries (a feature that is
not supported by sTSPARQL).

2.6.4 TOQL

TOQL [8] (Temporal Ontology Query Language) is an SQL-like language for OWL,
supporting the basic structure of SQL (SELECT - FROM - WHERE) and treats
classes and properties of an ontology almost like tables and columns of a database.
TOQL supports queries over quantitative and qualitative spatio-temporal informa-
tion in 4D-fluent ontologies. Nevertheless, TOQL syntax is independent of the
underlying ontology representation mechanism.

TOQL not only uses SQL-like clauses and a similar syntax, but also treats on-
tologies almost like relational databases. Tables representing concepts correspond to
classes and tables representing relations correspond to object properties. Attributes
correspond to datatype properties. In addition, 1:1 and 1:N relations correspond to
object properties. Table 2.1 summarizes the mapping between database relations
and ontology concepts used by TOQL.

Relational Database Ontology

Table representing concept Class
Table representing N:N relation Object Property

1:N or 1:1 relation Object Property
Attribute Datatype Property

Table 2.1: Mapping between database relations and ontology concepts.

In TOQL, the implementation of ALLEN operators correspond to comparisons
between fluent properties. Fluent properties connect time slices and time slices are
associated with time intervals. Consequently, the implementation of Allen opera-
tors correspond to comparisons between time intervals. The following operators are
supported in TOQL: BEFORE, AFTER, MEETS, METBY, OVERLAPS, OVER-
LAPPEDBY, DURING, CONTAINS, STARTS, STARTEDBY, ENDS, ENDEDBY
and EQUALS, representing the corresponding relations holding between two time
intervals.

The following TOQL query retrieves the name of the company that hired em-
ployee “x” and then employee “y”:
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SELECT Company.companyName
FROM Company, Employee AS E1, Employee AS E2
WHERE Company.hasEmployee:E1 BEFORE Company.hasEmployee:E2
AND E1.employeeName like “x” AND E1.employeeName LIKE “y”

TOQL also introduces clause “AT” which compares a fluent property (i.e., the
time interval in which the property is true) with a time period (time interval) or
time point:

• AT(time point) operation returns true if the time interval holds true at the
time specified.

• AT(start time point, end time point) operation returns true if the time
interval holds true for all the time interval.

The following TOQL query retrieves the name of the company employee “x” was
working for, from time=3 to time=5:

SELECT Company.companyName
FROM Company, Employee
WHERE Company.hasEmployee:Employee AT(3,5)
AND Employee.employeeName LIKE “x”

Because TOQL is independent of the mechanism implementing time, there is no
way to directly access class TimeInterval (i.e., the class holding values of time).
In order for TOQL to return values of time, the keyword TIME is introduced. It
follows datatype or object properties and can be used only in SELECT. It returns
the start and end time point (if any) in which the property holds true (the time
interval in which the property is true). If no end point exists, it returns only its
start point. As an example, the following TOQL query retrieves the time for which
a company had employee “x”:

SELECT Company.hasEmployee.TIME
FROM Company, Employee
WHERE Company.hasEmployee:Employee AND
Employee.employeeName LIKE “x”

In addition to the existing set of temporal operators (i.e. the AT and Allen
operators) the language is enhanced with spatial operators for handling both, spatial
and temporal relations, thus the IN RANGE and all RCC8 and directional relations
are supported by corresponding operators.
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Spatial operators refer to topological or directional spatial relations represented
in the underlying ontology. The result of applying spatial operators are locations
qualifying the expressions specified by the query. Locations are assessed using their
names (although the user can issue queries addressing the underlying quantitative
representation using coordinates, but formulating such queries requires that the
user be familiar with the underlying spatio-temporal representation). The following
spatial operators are supported:

• NORTH OF

• NORTHEAST OF

• EAST OF

• SOUTH OF

• WEST OF

• SOUTHWEST OF

• SOUTHEAST OF

• INTO

• OUTSIDE OF

• SAME LOCATION AS

• BORDERING

• OVERLAPPING

• CONTAINS

• INTERNALLY BORDERING

• CONTAINS AND BORDERING

• IN RANGE.

They correspond to the eight directional relations in Fig. 2.6, the RCC8 relations in
Fig. 2.5 and one operator (range) involving distance information. Spatial operators
are issued in WHERE, followed by a string denoting the location name according
to the pattern <SPATIAL OPERATOR> <STRING>. For example the following
query retrieves the name of the company located north of a given location:
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SELECT Company.companyName
FROM Company
WHERE Company NORTH OF “Attica”

Queries involving the IN RANGE operator have the following syntax: IN RANGE
<Comparison operator> <Number> OFF <String> where the string denotes lo-
cation name. The following query retrieves the names of employees working for
companies located in distance greater than 100Km away from “Athens”:

SELECT Employee.employeeName
FROM Company, Employee
WHERE Company IN RANGE >100 OFF “Athens” AND
Company.hasEmployee:Employee

All spatial and temporal operators can be combined in TOQL in order to form
spatio-temporal queries. For example the following query retrieves the name of the
company located north of a given location at a specific instant of time:

SELECT Company.companyName
FROM Company
WHERE Company NORTH OF “Attica” AT(5)

Finaly, compared to SOWL QL, TOQL:

• Is not a semantic Web approach but is intended to be used by those familiar
with relational databases.

• Does not support queries with time points that do not exist in the ontology.
In TOQL, all time points used as arguments in temporal operators should be
explicitly declared in the knowledge base before querying. A query involving
time points that are not asserted into the ontology will return the empty set
as a result. SOWL QL can handle this case by inserting the data specified
by the query into the knowledge base and by invoking the reasoner prior to
query processing.

• Has only two quantitative operators: The AT(timepoint) and the AT(timepoint,timepoint)
operators. SOWL QL supports a more powerful set of quantitative tempo-
ral operators including all ALLEN operators used as quantitative(in TOQL
ALLEN operators are only used as qualitative).
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• Does not support any spatial quantitative operators like SOWLQL’s Point(x,y)
operator.



Chapter 3

The SOWL Model

SOWL is an ontology for representing and reasoning over spatio-temporal informa-
tion in OWL. Building-upon well established standards of the semantic web (OWL
2.0, SWRL) SOWL enables representation of static as well as of dynamic information
based on the 4D-fluents [115] (or, equivalently, on the N-ary [84]) approach. Both
RCC8 topological and cone-shaped directional relations are integrated in SOWL.
Representing both qualitative temporal and spatial information (i.e., information
whose temporal or spatial extents are unknown such as “north- of” for spatial and
“before” for temporal relations) in addition to quantitative information (i.e., where
temporal and spatial information is defined precisely) is a distinctive feature of
SOWL. Both, the 4D-fuents and the N-ary relations approaches are expanded to
accommodate this information. The SOWL reasoner implements path consistency
[93], and is capable of inferring new relations and checking their consistency, while
retaining soundness, completeness, and tractability over the supported sets of rela-
tions.

3.1 SOWL Model

Temporal representation in SOWL is based on the 4D-fluents approach enhanced
with Allen relations which are defined as object properties between intervals. Topo-
logical and directional spatial relations are represented as object properties defining
the relation between the spatial extends of objects (which can be static or moving).
In each case, the spatial representation is combined with the temporal representa-
tion with the location of objects being a static or fluent property respectively. An
alternative implementation based on the N-ary approach has been implemented as
well.

37
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Figure 3.1: Dynamic Enterprise Ontology

3.1.1 Temporal Representation using 4D-fluents

Following the approach by Welty and Fikes [115], to add time dimension to an
ontology, classes TimeSlice and TimeInterval with properties tsTimeSliceOf and
tsTimeInterval are introduced. Class TimeSlice is the domain class for entities
representing temporal parts (i.e., “time slices”) and class TimeInterval is the domain
class of time intervals. A time interval holds the temporal information of a time slice.
Property tsTimeSliceOf connects an instance of class TimeSlice with an entity, and
property tsTimeInterval connects an instance of class TimeSlice with an instance of
class TimeInterval. Properties having a time dimension are called fluent properties
and connect instances of class TimeSlice.

Figure 3.1 illustrates a temporal ontology with classes Company (with datatype
property companyName), Product (with datatype properties price and product-
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Name), and Location which represents spatial information (see Figure 3.2 and Fig-
ure 3.3). In this example, CompanyName is static property (its value does not
change in time), while properties produces, productName, locatedAt and price are
dynamic (fluent) properties whose values may change in time. Because they are flu-
ent properties, their domain (and range) is of class TimeSlice. CompanyTimeSlice,
LocationTimeslice and ProductTimeSlice are instances of class TimeSlice and are
provided to denote that the domain of properties produces, locatedAt, productName
and price are time slices restricted to be slices of a specific class. For example,
the domain of property productName is not class TimeSlice but it is restricted to
instances that are time slices of class Product. All fluent properties are defined as
subproperties of the property fluent.

In SOWL, the 4D-fluent representation is enhanced with qualitative temporal
relations holding between time intervals whose starting and ending points are not
specified. This is implemented by introducing temporal relationships as object
relations between time intervals. This can be one of the 13 pairwise disjoint Allen’s
relations [1] of Figure 2.4.

By allowing for qualitative relations the expressive power of the representation
increases. Typically, the 4D-fluents model (similarly to other approaches such as
Temporal RDF [43]), assume closed temporal intervals for the representation of
temporal information, while semi-closed and open intervals can not be represented
effectively in a formal way. In SOWL, this is handled by Allen relations: for example
if interval t1 is known and t2 is unknown but we know that t2 starts when t1 ends,
then we can assert that t2 is met by t1. Likewise, if t3 is an interval with unknown
endpoints and t3 is before t1 then, using compositions of Allen relations [1], we
infer that t3 is before t2 although both interval’s endpoints are unknown and their
relation is not represented explicitly in the ontology. Semi-closed intervals can be
handled in a similar way. For example, if t1 starts at time point 1, still holds at
time point 2, but it’s endpoint is unknown, we assert that t1 has started by interval
t2:[1,2].

SOWL demonstrates enhanced expressiveness compared to previous approaches
[109, 105, 23, 27, 43, 37, 100, 54] by combining 4D-fluents with Allen’s temporal
relations, their formal semantics and composition rules as defined in [1]. Notice
that, temporal instants still cannot be expressed; subsequently, relations between
time instants or between instants and intervals cannot be expressed explicitly.

In this work, an instant-based (or point-based) approach is adopted. Definitions
for temporal entities (e.g., instants and intervals) are provided by incorporating
OWL-Time into the same ontology. Each interval (which is an individual of the
ProperInterval class) is related with two temporal instants (individuals of the
Instant class) that specify it’s starting and ending points using the hasBegining

and hasEnd object properties respectively. In turn, each Instant can be related
with a specific date using the concrete dateT ime datatype.
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One of the before, after or equals relations may hold between any two temporal
instants with the obvious interpretation. In fact, only the relation before is needed
since relation after is defined as the inverse of before and relation equals can be
represented using the sameAs OWL keyword applied on temporal instants. In this
work, for readability we use all three relations. Notice also that, property before

may be also qualitative when holding between time instants or intervals whose values
or end points are not specified. This way, we can assert and infer facts beyond the
ones allowed when only instants or intervals with known values (e.g., dates) or end-
points are allowed. Quantitative defined instants are specified using the dateT ime

datatype and the supported operators can be applied between instants.
Relations between intervals are expressed as relations between their starting

and ending points, which, in turn are expressed as a function of the three possible
relations between points (time instants) namely equals, before and after denoted
by “=”, “<” and “>” respectively, forming the so called “point algebra” [111]. Let
i1 = [s1, e1] and i2 = [s2, e2] be two intervals with starting and ending points s1,
s2 and e1,e2 respectively; then, the 13 Allen relations of Fig. 2.4 are rewritten as
follows:

i1 before i2 ≡ e1 < s2
i1 equals i2 ≡ s1 = s2 ∧ e1 = e2
i1 overlaps i2 ≡ s1 < s2 ∧ e1 < e2 ∧ e1 > s2
i1 meets i2 ≡ e1 = s2
i1 during i2 ≡ s1 > s2 ∧ e1 < e2
i1 starts i2 ≡ s1 = s2 ∧ e1 < e2
i1 finishes i2 ≡ s1 > s2 ∧ e1 = e2

The relations after, overlappedby, metby, contains, startedby and finishedby are the
inverse of before, overlaps, meets, during, starts and finishes and are defined accord-
ingly (by interchanging s1, s2 and e1, e2 in their respective definitions). Notice that,
in the case of Allen relations additional relations (representing disjunctions of basic
relations) are introduced in order to implement path consistency, totalling a set of
29 supported relations (although, such relations are not required by a point alge-
bra). Example of such relations is the disjunction of relations during, overlaps and
starts. The full set of supported relations is presented in Appendix A. These tem-
poral relations and the corresponding reasoning mechanism are integrated within
the SOWL ontology.

In the original work by Welty and Fikes [115], the following restriction is imposed
on timeslices: whenever two timeslices are related by means of a fluent property,
their corresponding temporal intervals must be equal. However, no mechanism
for enforcing this restriction is provided. In this work, the following SWRL rule
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in conjunction with the reasoning mechanism of Chapter 4 imposes the required
restriction:

fluent(x, y) ∧ tsT imeInterval(y, z) ∧ tsT imeInterval(x, w)→ equals(w, z)

3.1.2 Temporal Representation using N-ary Relations

The N-ary version of the SOWL ontology introduces one additional object for rep-
resenting a temporal property. This object is an individual of class Event and this
name convention is also adopted by other approaches such as the LODE ontology
[99]. In SOWL, the temporal property remains a property relating the additional
object with both the objects (e.g., an Employee and a Company) involved in a
temporal relation. This is illustrated in Figure 2.10. The representation of qualita-
tive relations between temporal intervals or points (and the corresponding reasoning
mechanisms) remain identical to the 4D-fluents based version of the model.

The advantage of the N-ary approach over reification [99] is that property se-
mantics are retained. For example, when a property is the inverse of another, the
inverse property declaration is retained. As shown in Figure 2.10, if worksFor is
the inverse of hasEmployee and Employee1 is related with Company1 using the
worksFor relation and an intermediate EmploymentEvent1, OWL semantics in-
dicate that the relation hasEmployee holding between Company1 and Employee1
through the EmploymentEvent1 object can be inferred. This is not the case with
reification because, as shown in Figure 2.8, the worksFor relation is the object of
a property, and objects of properties do not have inverses as the properties them-
selves. The same hold for symmetric and reflexive properties. Transitive properties
are more involved since the equality of the related intervals must also hold when a
transitive property applies. This can be achieved using an SWRL rule such as in
the case of 4D-fluents.

N-ary relations (similarly to 4D-fluents) require modification of domains and
ranges of fluent properties. Specifically, when a property is temporal, if the domain
of property is ClassA and the range is ClassB (where domains and ranges can be
composite class definitions or atomic concepts), then using the N-ary representation
the domain becomes ClassA OR Event and the range ClassB OR Event. Compared
to 4D-fluents, the disjunction of concepts appearing both in domain and ranges of
properties limits specificity of references of the N-ary representation.

3.1.3 Spatial Representation

The 4D-fluent mechanism is also enhanced with several types of qualitative spatial
relations. These can be either topological or directional [93]. Figure 3.2 illustrates
a general ontology representation model for spatial information. Class Location has
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attribute name (of type string). Also a Location object can be optionally connected
with a Geometry class with subclasses: Point, Line, Polyline and MBR. Class
Point has two (or three in a three-dimensional representation) numerical attributes,
namely X,Y (also Z in a three-dimensional representation). For example, Point
will be the Geometry of entities such as cities in a large scale map. Class Line has
point1 and point2 as attributes representing the ending points of a line segment.
Class PolyLine represents the surrounding contour of an object (or region) as a set
of consecutive line segments.

An object (or region) may also be represented by its Minimum Bounding Rect-
angle (MBR) specified by the four numerical attributes Xmax, Ymax, Xmin and
Ymin. Both representations may co-exist in SOWL (using one of them or both is a
design decision).

Class

Datatype

Xmax

Xmin

Ymax

Ymin

Name

X Y

Location

Geometry

PolyLineLinePoint

MBR

IS-A

Property

Figure 3.2: Ontology representation of spatial objects.

The spatial relations between regions can be easily extracted from their sur-
rounding MBRs (or contours) by comparing their coordinates. In the case of MBR
or point-based representations, extraction of qualitative relations from the underly-
ing quantitative representations has been implemented with SWRL rules and em-
bedded into the ontology as part of the reasoning mechanism. In the case of poly-
gons, a separate software component is used for extracting qualitative relations [46].
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Location Location
spatialRelation

topologicRelation directionalRelation

property class

TPP

TPPi

NTPP

NTPPi

DC EC PO EQ

W

NW

N

NE

E

SW
S

SE

SubPropertyOf Property

Figure 3.3: Ontology schema with spatial relations.

In an ontology, each spatialRelation connects two locations and has two subprop-
erties namely: topologicRelation and directionalRelation. Figure 3.3 summarizes all
types of spatial relations within a common ontology schema. Omitting one or more
types of spatial relations is also a design decision.

The topologic relations shown in Figure 2.5, (DC, EC, EQ, NTTP, NTTPi,
TTP, TPPi, PO), referred to as RCC8 relations [90], are also defined in SOWL. In
order to implement a sound and complete reasoning mechanism additional relations
are are introduced totalling a minimal set of 49 relations (See Chapter 4). Direction
relations are defined based on cone-shaped areas [36]. Other alternative approaches
based on 2D-projections are presented at [93, 103]. As shown in Figure 2.6, eight
direction relations can be identified namely North (N), North East (NE), East (E),
South East (SE), South (S), South West (SW), West (W) and North West (NW)
following the cone-shaped areas approach of [36].

The cone shaped approach is suitable for objects represented by points (e.g., by
their centroid). It complements topological relations that apply on regions. Nev-
ertheless, for completeness, a projection-based approach has been implemented as
well. When applied to points, the projection based approach is equivalent to ap-
plying point algebra on a pair of orthogonal axes (instead of one in the temporal



44 3. THE SOWL MODEL

case), while representing regions corresponds to applying Allen’s interval algebra on
two axes (one to each dimension) instead of one as in the temporal case. The pro-
jections over the horizontal axis define relations East and West (equivalently left

and right relations) corresponding to the Before and After relations respectively
of the temporal representation. The projections over the vertical axis define the
relations North and South, (equivalently front and behind relations).

In contrast to the cone-shaped approach, each axis is independent and different
relations (thus and their conjunction) may hold as long as they are defined over a
different axis (e.g., North and South are disjoint properties). Thus, relations Noth,
West and consequently the relation North-West may hold simultaneously. This is
not the case in the cone-shaped approach where all basic properties are pairwise
disjoint. Notice also that, although the cone-shaped and the projection based di-
rectional relations result in the same relations set, they convey different semantics
and consequently call for different reasoning mechanism. Selecting one of the two
approaches referred to above (i.e, cone-shaped or project-based) is subject to user
preference or may depend on the application at hand. For example, one may opt
for the projection-based approach in the case of large objects or the cone-shaped
approach in the case of small objects or objects specified by their coordinates. Both
approaches are implemented in SOWL. If the cone-shaped approach is selected, a
set of additional disjunctive relations are required and they are part of the repre-
sentation as well. In case of the projection based approach the additional relations
are not required (See Chapter 4).

Finally, distance relations are defined and can be used in conjunction with the
above relation types. Notice that, qualitative distance relations (e.g., far and near)
may be ambiguous especially in applications where a common scale for measuring
distances is not provided. This is resolved when distance relations are expressed
quantitatively (e.g., 3Km away from city A) and stored in the ontology as N-ary
relations [84] (i.e., by defining an object with attributes the two related locations
and a numerical attribute representing their distance). In SOWL, we opt for the
later (quantitative) approach for representing distance information.

3.1.4 Combining Spatial and Temporal Representations

In the case of a moving object, its location is a property of a timeslice holding for
a specific time interval (Figure 3.5) while, in the case of a static object, its location
is a property of the object and not a property of a timeslice.

Notice that, even if the location of the object is static, some of its properties may
change in time so that, there can be timeslices associated with it (e.g., timeslices of a
building for different owners in time). In the N-ary based approach, the location of a
moving object is a property of the Event object that has specific temporal extends.
In the case of a static object, its location remains a property of the object. As in
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Object Location

Geometry Location

hasGeometry

hasLocation

spatialRelation

Figure 3.4: Ontology representation of static objects.

4D-fluents, the object can have temporal properties represented by Event objects
while its location is a static property. Notice that, in case of locations changing
continuously [44], trajectory parameters can be represented instead of locations.
Reasoning and querying support for such representation is a direction of future
work.

Figure 3.6 illustrates the dynamic ontology schema representing the scenario “T1
Radio was produced in Patras, a city west of Athens from May 2006 to May 2010,
since then it is produced at Athens”. In this example, we do not know whether
the product is still produced in Athens. Only the first temporal interval is defined.
The second interval and both locations are unknown and only qualitative relations
about them appear into the ontology.

The example of Fig. 3.6 illustrates the applicability of the model in the case of
missing or inaccurate information (as it is usually the case with natural language
descriptions). In these cases, models based on quantitative information only, are
insufficient.
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Object

TimeSlice

TimeInterval

Location

Location

Geometry

TimeSliceOf

hasLocation

hasGeometry

spatialRelation

Figure 3.5: Ontology representation of moving objects.

Figure 3.6: Instantiation example.



Chapter 4

Reasoning in SOWL

Temporal and spatial reasoning in SOWL is realized by introducing a set of SWRL1

rules operating on spatial (topological or directional) relations as well as, by a set
SWRL rules for asserting inferred temporal Allen relations. Reasoners that support
DL-safe rules (i.e., rules that apply only on named individuals in the knowledge
base) such as Pellet [102] can be used for inference and consistency checking over
spatio-temporal relations. Alternatively, OWL axioms on temporal properties can
be used instead of SWRL. However, this approach cannot guarantee decidability
and is therefore not compatible with W3C specifications. In addition to reasoning
applying on temporal and spatial relations presented in Section 4.1 and Section
4.2 respectively , the Pellet reasoner applies to the ontology schema for inferring
additional facts using OWL semantics (e.g., facts due to symmetric relationships
and class-subclass relationships). Checking for property restrictions on temporal
properties (fluent properties) is also implemented and discussed in Section 4.3.

4.1 Temporal Reasoning

Reasoning is applied either on temporal intervals directly [15] or by applying point-
based reasoning [17] operating on representations of intervals involving their starting
and ending points. Both approaches have been implemented and are discussed in
the following.

4.1.1 Temporal Reasoning over Interval-Based Representa-
tions

Reasoning is realized by introducing a set of SWRL rules operating on temporal
intervals. The temporal reasoning rules are based on the composition of pairs

1http://www.w3.org/Submission/SWRL/
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of the basic Allen’s relations of Figure 2.4 as defined in [1]. The composition
table of basic Allen’s relations is presented in Table 4.1. Relations BEFORE,
AFTER, MEETS, METBY, OVERLAPS, OVERLAPPEDBY, DURING, CON-
TAINS, STARTS, STARTEDBY, ENDS, ENDEDBY and EQUALS are represented
using symbols B, A, M, Mi, O, Oi, D, Di, S, Si, F, Fi and = respectively. Com-
positions with EQUALS are not presented since these compositions keep the initial
relations unchanged.

Table 4.1: Composition table for Allen’s temporal relations.

The composition table represents the result of the composition of two Allen
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relations. For example, if relation R1 holds between interval1 and interval2 and
relation R2 holds between interval2 and interval3 then, the entry of Table 4.1 corre-
sponding to row R1 and column R2 denotes the possible relation(s) holding between
interval1 and interval3. Not all compositions yield a unique relation as a result.
For example, the composition of relations During and Meets yields the relation
Before as a result while, the composition of relations Overlaps and During yields
three possible relations namely Starts, Overlaps and During. Rules corresponding
to compositions of relations R1, R2 yielding a unique relation R3 as a result can be
represented using SWRL as follows:

R1(x, y) ∧R2(y, z)→ R3(x, z) (4.1)

An example of temporal inference rule is the following:

DURING(x, y) ∧MEETS(y, z)→ BEFORE(x, z)

Rules yielding a set of possible relations cannot be represented in SWRL since,
disjunctions of atomic formulas are not permitted as a rule head. Instead, disjunc-
tions of relations are represented using new relations whose compositions must also
be defined and asserted into the knowledge base. For example, the composition
of relations Overlaps and During yields the disjunction of three possible relations
(During, Overlaps and Starts) as a result:

OV ERLAPS(x, y) ∧DURING(y, z)→

During ∨ Starts ∨Overlaps

If the relation DOS represents the disjunction of relations During, Overlaps
and Starts, then the composition of Overlaps and During can be represented using
SWRL as follows:

OV ERLAPS(x, y) ∧DURING(y, z)→ DOS(x, z)

The set of possible disjunctions over all basic Allen’s relations contains 213 rela-
tions, and reasoning over all temporal Allen relations has exponential time complex-
ity [63]. However, tractable subsets of this set that are closed under composition
(i.e., compositions of relation pairs from this subset yield also a relation in this sub-
set) are also known to exist [83, 112]. In addition, inverse axioms (relations AFTER,
METBY, OVERLAPPEDBY, STARTEDBY, CONTAINS and FINISHEDBY are
the inverse of BEFORE, MEETS, OVERLAPS, STARTS, DURING and FINISHES
respectively) and rules defining the relation holding between two intervals with
known starting and ending points (e.g., if the ending point of interval1 is before
the starting point of interval2 then, interval1 is before interval2) are also asserted
into the knowledge base.



50 4. REASONING IN SOWL

The starting and ending points of intervals are represented using concrete datatypes
such as xsd:date that support ordering relations. Axioms involving disjunctions of
basic relations are denoted using the corresponding axioms for these basic relations.
Specifically, compositions of disjunctions of basic relations are defined as the dis-
junction of the compositions of these basic relations. For example, the composition
of relation DOS (representing the disjunction of During, Overlaps and Starts), and
the relation During yields the relation DOS as a result as follows:

DOS ◦During → (During ∨Overlaps ∨ Starts) ◦During →

(During ◦During) ∨ (Overlaps ◦During) ∨ (Starts ◦During)

→ (During) ∨ (During ∨Overlaps ∨ Starts) ∨ (During)

→ During ∨ Starts ∨Overlaps→ DOS

The symbol ◦ denotes composition of relations. Compositions of basic (non-disjunctive)
relations are defined using Table 4.1. Similarly, the inverse of a disjunction of basic
relations is the disjunction of the inverses of these basic relations illustrated in Fig-
ure 2.4. For example, the inverse of the disjunction of relations Before and Meets

is the disjunction of their inverse relations, After and MetBy respectively.
By applying compositions of relations, the implied relations may be inconsistent

(i.e., yield the empty relation ⊥ as a result). Consistency checking is achieved
by applying path consistency [93, 83, 112]. Path consistency is implemented by
consecutive application of the formula:

∀x, y, k Rs(x, y)← Ri(x, y) ∩ (Rj(x, k) ◦Rk(k, y)) (4.2)

representing intersection of compositions of relations with existing relations. Symbol
∩ denotes intersection, symbol ◦ denotes composition and symbols Ri, Rj, Rk, Rs

denote Allen relations. The formula is applied until a fixed point is reached (i.e.,
application of rules does not yield new inferences) or until the empty set is reached,
implying that the ontology is inconsistent.

An additional set of rules defining the result of intersection of relations holding
between two intervals is also introduced. These rules are of the form:

R1(x, y) ∧R2(x, y)→ R3(x, y), (4.3)

where R3 can be the empty relation. For example, the intersection of relation DOS

(represents the disjunction of During, Overlaps and Starts) with relation During,
yields relation During as a result:

DOS(x, y) ∧During(x, y)→ During(x, y).
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The intersection of relations During and Starts yields the empty relation, and an
inconsistency is detected:

Starts(x, y) ∧During(x, y)→ ⊥.

The maximal tractable subset of Allen relations containing all basic relations
when applying path consistency comprises of 868 relations [83]. Tractable subsets
of Allen relations containing 83 or 188 relations [112] can be used instead, offering
reduced expressiveness but increased efficiency over the maximal subset of [83]. Fur-
thermore, since the proposed temporal reasoning mechanism affects only relations
of temporal intervals, it can be also applied to other temporal representation meth-
ods (besides 4D-fluents) such as N-ary relations. Reasoning operating on temporal
instants rather on intervals is also feasible [112]. Specifically, qualitative relations
involving instants form a tractable set if relation 6= (i.e., a temporal instant is before
or after another instant) is excluded. Reasoning involving relations between inter-
val and instants is achieved by translating relations between intervals to relations
between their endpoints [1].

Path consistency requires composition of properties, intersection of properties
and role complement. Notice that, disjointness of properties can be represented
in terms of complement of properties (i.e., two properties are disjoint when one
of them is subproperty of the complement of the second property). However, the
combination of property composition, intersection and complement has been proven
to be undecidable [95]. Instead of property complement, the disjointness of two
properties can be represented as an at most 0 cardinality constraint over their
intersection. However, the intersection and the composition of two properties is
a composite (i.e., not simple) property and applying cardinality constraints over
composite properties has been proven to be undecidable [52]. Therefore, reasoning
using SWRL, as proposed in this thesis, is the only solution complying with current
OWL specifications while retaining decidability.

Implementing path consistency over Allen relations (or topological and direc-
tional spatial relations) requires minimizing the required additional relations and
rules for implementing the mechanism. Existing work (e.g., [91]) emphasizes on de-
termining maximal tractable subsets of relations while, practical implementations
calls for minimizing of such relation sets (i.e., finding the minimal tractable set that
contain the required relations). For example, implementing path consistency over
the maximal tractable set of Allen relations [91], containing 868 relations is imprac-
tical, since defining all intersections and compositions of pairs of relations by means
of SWRL rules requires millions of such rules.

In this work, minimal relation sets containing a tractable set of basic relations
are detected by applying the closure method of Table 4.2 (i.e., starting with a set of
relations, intersections and compositions of relations are applied iteratively until no
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new relations are produced). Since compositions and intersections are constant-time
operations (i.e., a bounded number of table lookup operations at the corresponding
composition tables) the running time of closure method is linear to the total number
of relations of the identified tractable set. Applying the closure method over the set
of basic Allen relations yields a tractable set containing 29 relations.

Input: Set S of tractable relations
Table C of compositions
WHILE S size changes

BEGIN
Compute C:Set of compositions of relations in S
S=S ∪ C
Compute I:set of intersections of relations in S
S= S ∪ I

END
RETURN S

Table 4.2: Closure method

. Implementing path consistency over point algebra does not require introducing
additions relations besides the basic ones.

Notice that, implementing path consistency using rules of the form of Equation
4.2 over n relations requires O(n3) rules (i.e., rules for every possible selection of
three relations must be defined), while implementing path consistency using rules
according to Equation 4.1 and Equation 4.3 (as implemented in this work) requires
O(n2) rules, since rules for every pair of relations must be defined. Further im-
provements and reductions can be achieved by observing that the disjunction of all
basic Allen relations when composed with other relations yields the same relation,
while intersections yield the other relation. Specifically, given that All represents
the disjunction of all basic relations and, Rx is a relation in the supported set then
the following hold for every Rx:

All(x, y) ∧Rx(x, y)→ Rx(x, y)

All(x, y) ∧Rx(y, z)→ All(x, z)

Rx(x, y) ∧ All(y, z)→ All(x, z)

Since relation All always holds between two individuals, because it is the dis-
junction of all possible relations, all rules involving this relation, both compositions
and intersections, do not add new relations into the ontology and they can be safely
removed. Also, all rules yielding the relation All as a result of the composition of
two supported relations Rx1, Rx2:

Rx1(x, y) ∧Rx2(y, z)→ All(x, z)
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can be removed too. Thus, since intersections yield existing relations and the
fact that the disjunction over all basic relations must hold between two intervals,
all rules involving the disjunction of all basic relations and consequently all rules
yielding this relation can be safely removed from the knowledge base. After applying
this optimization the required number of axioms for implementing path consistency
over the minimal tractable set of Allen relations is reduced to 983.

4.1.2 Reasoning over Point-Based Representations

The possible relations between temporal instants are before, after and equals,
denoted as “<”,“>”,“=” respectively. Table 4.3 illustrates the set of reasoning
rules defined on the composition of existing relation pairs.

Relations < = >

< < < <,=, >

= < = >

> <,=, > > >

Table 4.3: Composition Table for point-based temporal relations.

The composition table represents the result of the composition of two temporal rela-
tions. For example, if relation R1 holds between instant1 and instant2 and relation
R2 holds between instant2 and instant3 then, the entry of Table 4.3 corresponding
to row R1 and column R2 denotes the possible relation(s) holding between instant1
and instant3. Also, the three temporal relations are declared as pairwise disjoint,
since they cannot simultaneously hold between two instants. Not all compositions
yield a unique relation as a result. For example, the composition of relations before
and after yields all possible relations as a result. Because such compositions do not
yield new information these rules are discarded. Rules corresponding to composi-
tions of relations R1 and R2 yielding a unique relation R3 as a result are retained
(7 out of the 9 entries of Table 4.3 are retained) and are expressed in SWRL using
rules of the form (Equation 4.1):

R1(x, y) ∧R2(y, z)→ R3(x, z)

The following is an example of such a temporal inference rule:

before(x, y) ∧ equals(y, z)→ before(x, z)

Therefore, 7 out of the 9 entries in Table 4.1 can be expressed using SWRL rules
while, the two remaining entries do not convey new information. A series of com-
positions of relations may imply relations which are inconsistent with existing ones.
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Consistency checking is achieved by imposing path consistency [112]. Path consis-
tency is implemented by iteratively applying formula of Equation 4.2:

∀x, y, k Rs(x, y)← Ri(x, y) ∩ (Rj(x, k) ◦Rk(k, y))

representing intersection of compositions of relations with existing relations (symbol
∩ denotes intersection, symbol ◦ denotes composition and Ri, Rj, Rk, Rs denote
temporal relations). The formula is applied until a fixed point is reached (i.e., the
consecutive application of the rules above does not yield new inferences) or until
the empty set is reached, implying that the ontology is inconsistent. In addition to
rules implementing compositions of temporal relations, a set of rules defining the
result of intersecting relations holding between two instances must also be defined
in order to implement path consistency. These rules are of the form of Equation
4.3:

R1(x, y) ∧R2(x, y)→ R3(x, y)

where R3 can be the empty relation. For example, the intersection of the relation
representing the disjunction of before, after and equals (abbreviated as ALL), and
the relation before yields the relation before as result:

ALL(x, y) ∧ before(x, y)→ before(x, y)

The intersection of relations before and after yields the empty relation, and an
inconsistency is detected:

before(x, y) ∧ after(x, y)→ ⊥

As shown in Table 4.3, compositions of relations may yield one of the following four
relations: before, after, equals and the disjunction of these three relations. Intersect-
ing the disjunction of all three relations with any of these leaves existing relations
unchanged. Intersecting any one of the tree basic (non disjunctive) relations with
itself also leaves existing relations unaffected. Only compositions of pairs of different
basic relations affect the ontology by yielding the empty relation as a result, thus de-
tecting an inconsistency. By declaring the three basic relations before, after, equals
as pairwise disjoint, all intersections that can affect the ontology are defined. Path
consistency is implemented by defining compositions of relations using SWRL rules
and by declaring the three basic relations as disjoint. Notice that, path consistency
is sound and complete when applied on the three basic relations [111].

Alternatively, we can define the composition of before with itself as a transi-
tivity axiom rather than by an SWRL rule. In this case, there would be no need
for SWRL rules applying only on named individuals into the ontology ABox. The
resulting representation will apply on the TBox as well. However, this is not com-
patible with OWL 2.0 thus imposing the use of SWRL rules: relation before must
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be declared as transitive in order to infer implied relations and disjoint with after,
its inverse relation, (also before is asymmetric and irreflexive) in order to detect
inconsistencies. However, OWL specifications2 disallow the combination of transi-
tivity and disjointness (or asymmetry) axioms on a property since they can lead to
undecidability [49]. This restriction is necessary in order to guarantee decidability
of the basic reasoning problems for OWL 2 DL.

In cases where temporal information is provided as dates, the qualitative rela-
tions are specified using SWRL rules that apply on the quantitative representation.
An example of such a rule is the following:

Instant(x) ∧ Instant(z) ∧ inXSDDateT ime(x, y)

∧inXSDDateT ime(z, w) ∧ lessThan(y, w)→ before(z, x)

Replacing the lessThan operator in the rule with greaterThan and equal yields
the corresponding rules for relations after and equals respectively. These qualita-
tive relations can be combined with asserted and inferred qualitative relations using
path consistency.

All interval relations can be represented by means of point relations between
their end-points. Rules implementing transformation of Allen relations to endpoint
relations and rules yielding Allen relations from endpoint relations have been im-
plemented as well. For example, the rule yielding the During Allen relation from
endpoint relations is the following:

ProperInterval(a) ∧ ProperInterval(x) ∧ before(b, y)

∧before(z, c) ∧ hasBeginning(a, b)

∧hasBeginning(x, y) ∧ hasEnd(a, c) ∧ hasEnd(x, z)→ intervalDuring(x, a)

Rules similar to the above, yielding all basic Allen relations are implemented.
Notice that, the inverse transformation cannot be expressed by a single SWRL
rule: one Allen relation corresponds to four end-point relations and conjunctions at
the rule head are not supported in SWRL. Conjunctions can be expressed as rules
with identical antecedent part and different head. For example, the following rules
represent the transformation of relation IntervalOverlaps:

hasBeginning(a, b) ∧ hasBeginning(x, y) ∧ hasEnd(a, c) ∧ hasEnd(x, z)

∧intervalOverlaps(x, a)→ before(z, c)

hasBeginning(a, b) ∧ hasBeginning(x, y) ∧ hasEnd(a, c) ∧ hasEnd(x, z)

2http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#The Restrictions on the Axiom Closure
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∧intervalOverlaps(x, a)→ before(b, z)

hasBeginning(a, b) ∧ hasBeginning(x, y) ∧ hasEnd(a, c) ∧ hasEnd(x, z)

∧intervalOverlaps(x, a)→ before(y, b)

hasBeginning(a, b) ∧ hasBeginning(x, y) ∧ hasEnd(a, c) ∧ hasEnd(x, z)

∧intervalOverlaps(x, a)→ before(y, c)

In fact, the last rule in the above example is implied by the previous rules and
the rules that specify that the start of an interval is before the end and it can be
omitted.

Notice that, if data consistency can be assured, then reasoning can be signifi-
cantly speeded-up. In cases where all relations are specified quantitatively (i.e., by
numerical values) reasoning with path consistency can be dropped. For example, for
intervals with known end-points, all possible relations between them can be com-
puted in quadratic time from their end-point dates. The computed set of relations
is guaranteed to be consistent and reasoning is not needed.

If consistency checking is not needed (in case instance assertions does not contain
conflicts -implied or direct) then, temporal properties need not be declared disjoint.
For example if sequences of events are recorded using sensors, then there is a valid
arrangement of the events on the axis of time (i.e., the sequence of their recording),
thus their temporal relations are consistent by definition. In this case, reasoning
can be achieved using OWL role inclusion axioms instead of SWRL rules that apply
on the ontology TBox as well. Such axioms are of the form:

before ◦ equals ❁ before

All relation compositions can be defined similarly. Intersections of relations are
not required in case of basic point algebra relations and if the consistency check-
ing requirement is dropped, only OWL axioms are sufficient for implementing the
reasoning mechanism. In this case, a great speed up is achieved, since in our exper-
iments for over 20,000 random instances, reasoning is achieved in about 18 seconds
(which is comparable to the time required for reasoning over 80 instances using
SWRL when consistency checking is required). This speed-up can be achieved only
in special cases where consistency of data is guaranteed (thus consistency checking
can be dropped), which is not the case for example in natural language text.
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4.2 Spatial Reasoning

In the following, reasoning over both, topological and directional relations is dis-
cussed. Choosing either representation is a design decision that depends mainly on
the application. However, both representations may co-exist in the SOWL model
(both are common in natural language expressions and may co-exist e.g., in text
descriptions over the Web). A third case, is reasoning over interval-based (or their
equivalent point-based representations) obtained as the projections of spatial entities
(i.e., points or regions in a two-dimensional or three-dimension space). Reasoning
over interval-based (or point-based) spatial projections is equivalent to reasoning
over temporal intervals (or points) discussed in Section 4.1.

Table 4.5 illustrates a composition table for RCC8 topological relations [15]. The
corresponding composition table for directional relations is illustrated in Table 4.4.
Spatial reasoning is then achieved by applying rules implementing the inferred re-
lations of the composition table at hand.

As shown in Table 4.5, only a limited set of table entries leads to an unambiguous
result. For example, the composition of the NTPP and DC topologic relations
(i.e., object A is into B and object B outside of C) yields the DC relation as a
result meaning that A is outside of C. However, the composition of NTPP and PO
relations does not yield a unique relation as a result. Only 27 out of the 64 (RCC-8)
entries of Table 4.5, and only 8 out of the 64 compositions of basic cone-shaped
directional relations [36] can be used to infer unique relations.

The SOWL spatial representation implements reasoning rules for RCC8 relations
and cone-shaped direction relations using SWRL and OWL 2.0 property axioms.
All basic relations are pairwise disjoint. Their inverse relations (e.g., North is the
inverse of South) are defined as well. Furthermore, the point identity relation (O)
is handled using the OWL SameAs keyword applied on points instead of explicitly
asserting the relation. Path consistency is implemented by introducing rules defining
compositions and intersections of supported relations until a fixed point is reached
or until an inconsistency is detected [31, 36, 92]. The supported directional relations
are the 9 basic relations and their disjunctions appearing in Table 4.4. Compositions
and intersections of disjunctive relations are defined using the compositions and
intersections of basic relations as in the case of temporal reasoning.

The directional relations in SOWL (under the assumption that the line separat-
ing two 2D cone-shaped areas e.g., North from North-West, is part of only one of
these areas, preserving the disjointness of basic relations) are a special case of the
revised Star Calculus [92] and is decided by path consistency when applied to basic
relations. Furthermore, given a tractable set of relations, by applying compositions,
intersections and inverse operations until a set of relations that is closed under these
operations is yielded, the resulting relations set is also tractable [93]. By applying
this closure method to the basic relations of Figure 2.6 a tractable set of relations
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Table 4.4: Composition table for cone-shaped directional relations.

containing the basic directional relations and all relations appearing in Table 4.4 is
yielded. This set of directional relations is used in this work for directional spatial
reasoning.

Reasoning on RCC8 relations also combines OWL property axioms along with a
set of composition rules (i.e., rules defining compositions of RCC8 relations) and in-
tersection rules. Specifically, relations DC, EC and PO are symmetric, and relations
NTPPi and TPPi are inverse of NTPP and TPP respectively. EQ corresponds to
the equality relation for Location objects. In SOWL, the spatial reasoner imple-
ments the RCC8 composition rules of Table 4.5. For example the rule defining the
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Table 4.5: Composition table for RCC8 topological relations.

composition of relations TPPi and NTPPi for locations x, y, z is the following:

TPPi(x, y) ∧NTPPi(y, z)→ NTPPi(x, z)

Extracting spatial relations from the raw spatial data depends on the application
and is not part of the reasoning mechanism, besides the specific case of MBRs where
rules for extracting both projection based directional relations and RCC8 relations
given the MBRs coordinates have been implemented. Extracting directional and
topologic applications from random polygons has been implemented in our labora-
tory as an external application [46].

Notice that, using the full set of relations (totalling 28 − 1 relations in case of
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RCC8) leads to intractability since this set is not decided by path consistency. How-
ever, tractable subsets of the full set are known to exist [93, 91]. Such subsets are
used in this work offering increased expressive power while retaining tractability.
Specifically applying the closure method of Table 4.2 over RCC8 topological and
cone-shaped directional relations yields two sets with 49 and 33 relations respec-
tively. Implementing path consistency over these sets as described in Section 4.1.1
requires a total of 1439 and 964 axioms respectively [15].

4.2.1 Reasoning over Point-Based Spatial Representations
using Point Algebra

The point based representation and reasoning method presented in Section 4.1.2
applies also to spatial data in 2 (or 3) dimensions with points represented by their
x, y (and z) coordinates. Then, relations East and West between regions or lo-
cations are defined using their point projections on X axis, relations South and
North are defined using projections on Y axis while, relations Bellow and Above

are defined using projections on Z axis. The reasoning mechanism for point based
temporal information applies in the case of spatial information as it is, by replacing
the temporal relations with the corresponding spatial relations on each axis (i.e.,
North and South, East and West, Bellow and Above replace relation before and
after on the X, Y and Z axis respectively). Rules defining relations representing
conjunctions of basic relations (e.g., NorthWest is the conjunction of North and
West)are also defined:

North(x, y) ∧West(x, y)→ NorthWest(x, y)

and the inverse:
NorthWest(x, y)→ North(x, y)

NorthWest(x, y)→ West(x, y)

Adding equivalent rules for relations NorthEast, SouthWest and SouthEast

along with rules extracting qualitative relations by comparing point coordinates, are
sufficient for realizing a projection based spatial reasoning mechanism for directional
relations. Notice that, the reasoning mechanisms referred to above is based on
projections and is not compatible with reasoning over cone-shaped relations. In the
later case relations such as NorthWest are not the conjunction of relations such as
North and West as in the case of projections. Reasoning for cone-shaped relations
is discussed in Section Section 4.2. Whether a projection based or a cone-shaped
approach is adopted is a design decision.
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In case of regions represented by their Minimum Bounding Rectangles (MBRs),
the point based approach still applies. Two SWRL rules (one for each axis) are
introduced for computing the coordinates of the centroid (i.e., as the average of
the maximum and minimum values over each axis). Then, the directional relations
between regions are defined as the directional relations between their centroids.
Finally, topological relations can be also extracted by comparing the coordinates of
an MBR representation.

4.3 Restriction Checking over Temporal Proper-

ties

Checking for restrictions holding on time dependent (fluent) properties requires
particular attention. If a fluent property holds between two objects (classes), then,
these objects are only indirectly associated through one or more artificial objects
(e.g., TimeSlice object in 4D-fluents). Notice that both, reification and the 4D-
fluents approach introduce additional objects for expressing fluent properties. A
fluent property is declared between the artificial object and an actual object (as in
Figure 2.10 and 2.8) or between two artificial objects (as in Figure 2.9). Check-
ing for property restrictions would require adjusting the domain and range of this
property from the artificial to the actual objects (e.g., to Company and Employee

objects in Figure 2.10). This, in turn, calls for extra rules or software, which is a
disadvantage pertaining to all methods considered in this work (i.e., 4D-fluents and
N-ary relations). For example, for the worksfor property in Figure 2.9, the domain
of the property is no longer class Employee but timeslice of Employee. Accordingly,
its range is timeslice of Company.

Similar adjustments must be made in the case of N-ary relations but, in this case,
combining transitivity of properties while retaining domain and range restrictions
becomes problematic: for example, the worksfor relation in Figure 2.10 must be
provided with two alternative domains and ranges. Other restrictions on properties
such as symmetric, asymmetric, reflexive, irreflexive and transitive can be applied
directly on the temporal property retaining the intended semantics.

Universal restrictions (e.g., “all Employees work for a company”) also require
adjusting domains and ranges (i.e., all timeslices of employees workfor timeslices
of companies). Existential restrictions are adjusted as well (if for example each
employee must work for some company then, timeslices of employees must work for
some timeslices of companies). Notice that, an existential restriction corresponds to
an at least one qualified cardinality restriction in OWL and the way it is handled
is discussed in the rest of this section.

Adjusting cardinality restrictions, functional and inverse functional properties is
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somewhat more complicated. Functional properties are a special case of cardinality
restrictions (i.e., if a property is functional, then each object must be connected
to at most one subject which is different for each object). Cardinality restrictions
are amenable to two different interpretations depending on the specific application
and the intended semantics: Cardinality restrictions may be interpreted, either as
restricting the total number of individuals of a class (e.g., Company) related with
each individual of another class (e.g., Employee) through a fluent property at all
times or, as restricting the number of individuals for each specific temporal interval
that the fluent property holds true. The first interpretation is handled simply by
counting on the number of individuals of a class related with this property and is
implemented in SWRL (because OWL cardinality restrictions cannot handle fluent
properties connecting objects through intermediate objects).

The following rule expresses the restriction that each employee can work for
at most n companies. If n + 1 company individuals are found to connect with an
employee individual, then the restriction is violated (the Alldifferent keyword is an
abbreviation for a series of axioms imposing that the n+1 individuals z1, z2...zn+1

are all different). By imposing a max cardinality restriction of 0 over property
error at the definition of class Employee the violation of the cardinality restriction
is detected by standard reasoners such as Pellet using the rule:

(At−most− rule1)Employee(x) ∧ (tsT imesliceOf(x1, x)

∧... ∧ tsT imesliceOf(xn+1, x)

∧worksfor(x1, y1) ∧ worksfor(xn+1, yn+1

∧tsT imesliceOf(y1, z1)... ∧ tsT imesliceOf(yn+1, zn+1)

∧Alldifferent(z1, z2, ..., zn+1)

∧Company(z1)...→ error(x, z1)

An at − least restriction is expressed similarly as follows: an at most n − 1
rule is applied (changing the asserted property to satisfies(x, n)) followed by an
at least one cardinality restriction on the satisfies property for class Employee.
An exact cardinality restriction can be expressed by combining an at least n with
an at most n restriction. All rules impose also a restriction on the type of objects
involved (e.g., they require that only company objects are involved by checking
only for objects connected with timeslices of companies). Dropping such a check
leads to an unqualified numeric restriction on the property. Notice that, the Open
World Assumption of OWL will cause a reasoner (e.g., Pellet) not to detect an
inconsistency of an at− least restriction as future assertions might cause invalidity
of this inconsistency detection. Instead, the the user can retrieve individuals that
are not yet proven to satisfy the restriction using the following SPARQL query:
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select distinct ?x
where {
?x rdf:type ex1:Employee.
OPTIONAL{
?x ex1:satisfies ?y.}
FILTER(!bound(?y))}

The second interpretation imposes restrictions on the number of individuals as-
sociated with an individual of a specific class through a fluent property for every
temporal interval that the property holds true. Checking for such restrictions re-
quires applying reasoning rules over the relations between the temporal intervals
associated with the fluent property as described in Section 4.1. The next step is to
detect overlapping and non-overlapping intervals. After the Allen relations holding
between intervals have been inferred, Allen properties during, contains, starts, start-
edby, finishes, finishedby, overlaps, overlapedby, equals are defined as subproperties
of property overlapping, thus detecting overlapping and non-overlapping intervals.
Also, properties before, after, meets, metby are defined as subproperties of property
non-overlapping.

Expressing an at most restriction for every time interval is based on the following
observation: the restriction is violated iff n + 1 distinct individuals are connected
with a given individual (through their timeslices) with the relation at hand, and
their corresponding intervals are all pairwise overlapping. Iff n + 1 intervals are
pairwise overlapping then, there exist an interval where n+1 intervals share a com-
mon sub-interval, and this can be proven by induction on n. The existence of such
an interval implies that for this interval the at least restriction is violated. The cor-
responding rule (used in combination with a cardinality restriction on property error
for inconsistency detection by reasoners) is expressed as (the pairwiseoverlapping

is an abbreviation for a set of overlapping relations between all pairs of intervals at
hand):

(At−most− rule2)Employee(x) ∧ (tsT imesliceOf(x1, x)

∧... ∧ tsT imesliceOf(xn+1, x) ∧ hasinterval(xn+1, wn+1)

∧worksfor(x1, y1) ∧ worksfor(xn+1, yn+1

∧tsT imesliceOf(y1, z1)... ∧ tsT imesliceOf(yn+1, zn+1)∧

Alldifferent(z1, ..., zn+1) ∧ pairwiseoverlapping(w1, ...wn+1)

∧Company(z1)...→ error(x, z1)

The case of an at least restriction applying for every interval that a fluent prop-
erty holds is handled as follows: every time instant related with an interval that
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the fluent property in question holds, is also related with the object of the cor-
responding class. For example if a worksFor property holds for each Employee

then all temporal instants that the property holds are detected by asserting an
OccuresAt relation between the Employee and the time instants. There are three
sub-properties of OccuresAt namely, duringAt, endsAt and startsAt indicating that
the time instant is during, at the start or at the end of an interval that the property
holds. For each such sub-property assertion, an SWRL rule is applied.

The second step is to check if for each time instant that the property occuresAt

for an individual, the restriction at hand is satisfied. For example, in the case of an
at least 2 restriction applied on individuals of a class, a time instant that the fluent
holds satisfies the restriction iff (a) the fluent startsAt this point and also another
point that equals the point in question startsAt this fluent (b) the fluent endsAt
the point and another point that equals the point in question endsAt this fluent (c)
the fluent holds duringAt the point in question and also this point is into a second
interval that the property holds or is equals both the end of such an interval and
the beginning of another. Each case is implemented as an SWRL rule.

Each instant indicating the end or the start of an interval is a distinct individual
from other points even if they represent the same time point (e.g., if a point is
the end of an interval and the beginning of another then two points declared as
equal must be asserted). Finally, as in the case of the at least restriction in the
first interpretation, since an inconsistency cannot be detected by OWL reasoners, a
SPARQL query is issued in order to detect individuals for which the restriction is
not satisfied yet.

All rules under both interpretations involve a time consuming selection of all
possible subsets of individuals and intervals. Therefore, expressing restrictions using
SWRL may become time consuming. Specifically, rules for imposing a cardinality of
at-least or at most n involves selection of all combinations of n among k timeslices
(or reified relations) (where k is the number of temporal individuals in the ontology)
it is not scalable for large values of n. In the case of reification or N-ary relations,
cardinality constraints are expressed accordingly, using appropriate adjustments on
classes and on properties of involved objects. To the best of our knowledge this
is the only known solution to the problem of cardinality restriction checking on
temporal representations.

Besides representation of cardinality and value restrictions and adjustments of
domains and ranges the following object property characteristics are redefined using
4D-fluents as follows:

• Functional : It is handled as an at most 1 unqualified cardinality restriction.

• Inverse Functional : The inverse property is handled as an at most one un-
qualified cardinality restriction.
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• Symmetric: The fluent property is symmetric too, thus the symmetry axioms
applies on the interval that the involved timeslices exist.

• Asymmetric: This is handled as a form of cardinality restriction where the
same property cannot hold for interchanged subjects and objects for timeslices
that share an overlapping interval.

• Equivalent : The fluent properties are equivalent too.

• Reflexive: The fluent property is reflexive too, thus when a timeslice has the
property for an interval it is also the subject of the property for this interval.

• Irreflexive: This is handled as an cardinality restriction; two timeslices of
an object can not be related with the property in question if their intervals
overlap.

• Subproperty : subproperty axioms apply for the fluent properties with the
intended semantics.

• Transitive: Fluent properties can be safely declared transitive since related
timeslices must have equal intervals (by the definition of the 4D-fluent model)
and for these intervals the transitivity is applied.

Datatype properties have fewer characteristics (i.e., subproperty, equivalence dis-
jointness, functional) and they are handled as is the case of object properties. In
case of the N-ary relations the above adjustments must take into account the dif-
ferent objects involved (i.e., Events instead of timeslices).
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Chapter 5

SOWL Query Language

Representing spatial and temporal information in OWL using mechanisms such as
4D-fluents or N-ary relations requires introducing additional objects that complicate
the ontology. Querying spatio-temporal information in OWL using query languages
such as SPARQL leads to complicated queries and requires that the users be fa-
miliar with the underlying representation mechanism. Adding spatial and temporal
operators that hide the underlying representation from the end user is an important
issue to deal with.

The main goal of spatio-temporal query languages is to maintain simplicity of ex-
pression. Desirable features of temporal query languages include, temporal upward
compatibility (i.e., conventional queries and modifications on temporal relations still
can be executed), point and interval-based views of data and ease of implementation.

In this chapter we present SOWL QL, a query language which extends SPARQL
with temporal and spatial operators following the examples of [109]. SOWL QL
is model independent and introduces a powerful set of spatio-temporal operators
which allow users to query spatio-temporal OWL ontologies without dealing with
the underlying model representation. Compared to the existing work, SOWL has
the following three advantages: (a) supports both spatial and temporal operators,
(b) it is capable of querying over both quantitative and qualitative spatio-temporal
information and (c) supports reasoning during the querying process. The working
version of SOWL QL1 is implemented on top N-ary relations representation, al-
though a representation based on 4D-fluents has been implemented as well. Notice
that, SOWL QL queries are translated into equivalent SPARQL queries, thus SOWL
Query Language can be considered as a form of “syntactic sugar” over SPARQL for
spatio-temporal queries.

1The working version of SOWL QL can be downloaded from http://www.intelligence.tuc.gr
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5.1 Language syntax and semantics

Being an extension of SPARQL, SOWL QL uses the same clauses SPARQL does
and fully supports all SPARQL features. The structure of a SOWL QL query is
the same as a SPARQL with the addition of SOWL QL operators. As we discussed
in 2.1.4 the basic evaluation mechanism for SPARQL queries is based on graph
matching where the query criteria are given in the form of subject - predicate -
object RDF triples refered to as basic graph patterns. Basic graph patterns are
used inside the body of the WHILE clause in a SPARQL query and this is where
SOWL QL operators are applied. The Generic syntax of the language is shown in
Figure 5.1. Below we show all available query patterns of SOWL QL explaining
how the language deals with time and space. First we discuss the temporal query
patterns and then the spatial. Finally, we show how these are combined to produce
spatio-temporal query patterns.

SELECT Variable(s)
WHERE { Triple(s)  spatial or temporal operators
AND Condition(s)
}

Figure 5.1: SOWL QL Generic systax

Pattern 1:
Subject Predicate Object.
An ontology consists of two parts: the static part (classes, properties, instances)

and the dynamic part consisting of additional temporal classes needed to represent
time and their evolution in time as well as properties and instances of the above
temporal classes (e.g., TimeSlice class and tsTimeSliceOf property for the 4D-fluents
model or Event class and atTime property for the N-ary relations model). SOWL
QL first determines if a property (object or datatype) in a query is a fluent property
(i.e., a property that connects Timeslices or Events) or not (a property that connects
“static” classes or a “static” class with a datatype). In the later case, the query is
a static one and is handled as an ordinary SPARQL query. In a subject - predicate
- object triple a temporal property is referred to as a “dynamic” predicate.
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Subject dynamicPredicate Object

pattern 1:

Figure 5.2: Triple with dynamic predicate

As shown in Figure 5.2, the triple involving a dynamic predicate resembles a
static one. task of the query translation is to determine if the predicate is dynamic
or not by checking the ontology for dynamic objects connected to that predicate.
More specifically, in cases where the predicate is a fluent, the predicate connects two
dynamic objects (Timeslices or Events) rather than connecting two static concepts
of the ontology (e.g a Company and an Employee).

Apart from retrieving dynamic objects when the property is a fluent one (and
equivalently static objects when the property is not a fluent property), the language
is also capable of handling the case where the property is a fluent one but is also con-
nected with static objects in the ontology. In this case the query will retrieve both
the dynamic and static objects it addresses. Summarizing, SOWL QL translation
involves the following steps:

• Retrieves all dynamic objects (TimeSlices or Events) associated with a class
in the static part of the ontology.

• Determines whether a property is fluent property or not.

• Works on the dynamic part of the ontology to answer to a query in cases
where the property addressed in a fluent one.

• Works on the static part of the ontology to answer to a query, in cases where
the property addressed is not a fluent (dynamic) one.

• Uses both the dynamic and static parts of the ontology to retrieve results
in cases where the property addressed by the query is a fluent but is also
connected with static objects.

In the example of Figure 5.3 the Company and Employee concepts are connected
with dynamic objects (i.e., Timeslices in the case of the 4D-fluents or Events in
the case of the N-ary model representation respectively). In order to retrieve the
Employees that work for Company1, the query will retrieve both dynamic and static
objects of class Employee (i.e., Employees working for Company1 even in cases where
class Employee and the hasEmployee relation are defined as static).



70 CHAPTER 5. SOWL QUERY LANGUAGE

select ?employee
where{
   ex:Company1 ex:hasEmployee ?employee
          }

Figure 5.3: Dynamic predicate triple example

Pattern 2:
Subject Predicate Object TemporalOperator(timepoint).
Operators in SOWLQL are distinguished into quantitative and qualitative. Quan-

titative operators have one or more timepoints as arguments. These can be further
distinguished into timepoint operators if they have one argument(time instant) and,
into time interval operators if the have two time points as arguments. When a tem-
poral operator is used, the predicate of the triple must always be dynamic otherwise
no results will be returned.

Subject dynamicPredicate Object TemporalOperator(timepoint)

pattern 2:

Figure 5.4: Triple pattern with timepoint quantitative temporal operator

The Timepoint operators are used to compare the intervals where the fluent
property holds true with the timepoint that is specified as argument. Figure 5.4
illustrates the syntax of such queries. There are five cases:

• The timepoint argument equals starting point of the time interval that the
fluent holds.

• The timepoint argument equals the the ending point of the time interval that
the fluent holds.

• The timepoint argument is somewhere during the interval that the fluent holds.

• The timepoint argument is before the interval that the fluent holds.

• The timepoint argument is after the interval that the fluent holds.
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Accordingly, SOWL QL implements the following five operators on time points:
AT, STARTSAT, ENDSAT, AFTER, BEFORE. Figure 5.5 illustrates an exam-
ple query that retrieves companies with employees before time point “2010-02-
08T00:00:00” whose name is “Smith”.

select ?company
where {
   ?company ex:hasEmployee ?employee BEFORE("2010-02-08T00:00:00").
   ?employee ex:employeeName “Smith”
          }

Figure 5.5: Example of query with time point operator

Pattern 3:
Subject Predicate Object TemporalOperator(timepoint,timepoint).
Time interval operators take as arguments two time points, denoting the starting

and the ending of a temporal interval. The interval composed by the two arguments
imposes a restriction over temporal intervals where the dynamic predicate specified
in the triplet holds true. SOWL QL implements the following quantitative operators
over temporal intervals: ALWAYS AT, SOMETIME AT and all Allen operators.
Each operator is a different restriction that is applied to the fluent property of the
triple. For example the Allen operator EQUALS can be true only if it matches both
the interval beginning and ending time instants of the temporal interval specified
in the argument. Figure 5.6 illustrates the generic syntax of such query patterns.

Subject dynamicPredicate Object TemporalOperator(timepoint1,timepoint2)

pattern 3:

Figure 5.6: Triple specifying a time interval quantitative temporal operator on a
temporal interval.

Figure 5.7 illustrates an example query that retrieves companies with employees
during the specified temporal interval whose name is “Smith”.



72 CHAPTER 5. SOWL QUERY LANGUAGE

select ?company
where {
   ?company ex:hasEmployee ?employee 
   SOMETIME_AT("2010-02-08T00:00:00","2012-02-08T00:00:00")
   ?employee ex:EmployeeName “Smith”
       }

Figure 5.7: Example query with operator on time on temporal interval.

Pattern 4:
Subject1 Predicate1 Object1 TemporalOperator Subject2 Predicate2 Ob-
ject2.
Qualitative temporal operators are used to constraint the relation between two

triples. Each such triple represents a relation that holds over a specific time interval.
All Allen operators can be used as qualitative operators in SOWL QL. Figure 5.8
illustrates the generic syntax pattern of qualitative temporal operators.

Subject1 dynamicPredicate1 Object1 
TemporalQualitativeOperator 
Subject2 dynamicPredicate2 Object2

pattern 4:

Figure 5.8: Qualitative temporal operator between two triples

Figure 5.9 illustrates an example query that retrieves companies with employees
whose name is “Smith” and who had been working for these companies before they
started to work for “Company1”.
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select ?company
where {
   ?company ex:hasEmployee ?employee 
   BEFORE
   ex:Company2 ex:hasEmployee ?employee2.
   ?employee2 ex:employeeName “Smith”
          }

Figure 5.9: Example query with qualitiative temporal operator.

Pattern 5:
Subject SpatialOperator Object.
The SOWL spatial representation introduced the “Location” and “Geometry”

classes (see Sec. 3.1.3). Static spatial objects are connected with Location objects
directly while dynamic spatial objects (moving objects) are connected with dynamic
temporal objects (TimeSlices or Events) which are in turn connected to Location
objects. Each Location has a geometry meaning that it is connected to a Geometry
object using the “hasGeometry” property. Spatial relations are properties that
connect Geometry objects.

Figure 5.10 illustrates a generic spatial query pattern involving a spatial operator
(as a predicate) imposing a constraint on the relation between the subject and the
object of a triple. This requires that the subject and the object are both connected
to Location objects. If the subject or the object in the triple are not connected to
Location objects it means that no spatial operator can be applied between them.

Subject spatialPredicate Object

pattern 5:

Figure 5.10: Triple with spatial operator

The spatial query of Figure 5.11 will retrieve countries in the north (Nof) of
Greece.
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select ?country
where {
   ?country spatial:Nof ex:Greece
          }

Figure 5.11: Example of spatial query.

Example of Figure 5.11 illustrates a static spatial operator (as countries aren’t
theoretically supposed to change location over time). However, spatial properties
can also be dynamic just like all other properties. In this case, being dynamic means
that, instead of connecting two Location objects, the spatial property connects two
dynamic objects (TimeSlices or Events) which are in turn connected to Location
objects. The query language is able to retrieve all those dynamic objects and com-
bine the results with the static results. In such a case, the triples are considered to
be (dynamic) spatio-temporal triples.

Pattern 6:
Subject SpatialOperator Point(x,y).
In this query pattern one spatial object of the triple is replaced by POINT(x,y).

Here, instead of comparing the Geometry objects of two spatial objects we compare
the geometry of the first spatial object with the Geometry of the Point specified.
Figure 5.12 illustrates the generic syntax of spatial query with a quantitative spatial
operator. The POINT(x,y) operator uses two arguments corresponding to the x and
y axes in the two-dimensional space. Both arguments are float numbers. If the Point
specified does not exist in the knowledge base, it is asserted by the query language
and the reasoner is invoked to produce its relations with the existing objects. This
is explained in detail in Section 5.4. The query of Figure 5.13 will retrieve countries
north of point x,y. If the point is not in the knowledge base, prior to answering the
query the reasoner has to be invoked to infer its relations with countries which are
instances of the ontology.

Subject spatialPredicate  POINT(x,y)

pattern 6:

Figure 5.12: Triple with spatial quantitative operator
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select ?country
where {
   ?country spatial:Nof POINT(332.2,122.4)
          }

Figure 5.13: Spatial query with quantitative spatial operator.

Pattern 7:
Subject spatialOperator Object temporalOperator.
Figure 5.14 illustrates a generic spatio-temporal query pattern. In all spatio-

temporal triples the spatial dynamic objects are first retrieved and then the temporal
operator’s restriction is applied to the time intervals they hold true. The temporal
operator in this pattern can be either a timepoint operator or a time interval. In
both cases the spatial dynamic objects (Timeslices or Events of Geometry objects)
are first retrieved and then the restriction is applied. In the example in figure 5.14
we seek to find which cars are north of “street1” at a specific timepoint.

Subject spatialPredicate Object temporalOperator

pattern 7:

Figure 5.14: Spatio-temporal pattern specifying the location of an object and also
temporal operator restricting the time this location location holds true.

select ?car
where {
   ?car spatial:Nof ex:Street1
   AT("2010-02-08T00:00:00")
          }

Figure 5.15: Spatio-temporal triple using the AT temporal operator for restricting
the location of an object.

Pattern 8:
Subject spatialOperator Point(x,y) temporalOperator.
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Figure 5.16 illustrates a pattern which is similar to pattern 7 with the difference
that a point is specified in the place of an instance. The example in figure 5.16
shows which cars are north a specific point in 2d-space at a specific timepoint.

Subject spatialPredicate  POINT(x,y) temporalOperator

pattern 8:

Figure 5.16: Spatio-temporal pattern specifying the location of an object by a point
and also temporal operator restricting the time this location location holds true.

select ?car
where {
   ?car spatial:Nof POINT(12.5,22.4) 
   AT("2010-02-08T00:00:00")
          }

Figure 5.17: Spatio-temporal triple example

Pattern 9:
Subject spatialOperator Object temporalOperator.
In the pattern of Figure 5.18 a temporal qualitative operator (Allen) is used to

connect two spatial triples. First, the dynamic spatial objects from both triples
will be retrieved. Then, the Allen operator will be applied on these to produce the
final results. In the example of Figure 5.18 we seek to find which cars are north of
“street1” before “person1” is south of “street2”.

Subject1 spatialPredicate1 Object1 
ALLEN
Subject2 spatialPredicate2 Object2 

pattern 9:

Figure 5.18: Spatio-temporal triple with qualitative Allen temporal operator re-
stricting the locations of two objects.
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select ?car
where {
   ?car spatial:Nof ex:Street1 BEFORE ex:Person1 spatial:Sof ex:Street2
}

Figure 5.19: Spatio-temporal triple restricting the locations of two spatial objects
using a temporal operator.

5.2 Temporal operators

Temporal operators in SOWL QL are distinguished into quantitative and qualita-
tive. Quantitative temporal operators are further distinguished by the number of
arguments they use (i.e., addressing time points or intervals respectively).

Time point quantitative operators:

• AT(timepoint): The fluent holds true during a time interval which contains
the timepoint.

• STARTSAT(timepoint): The fluent holds true during a time interval which
starts at timepoint.

• ENDSAT(timepoint): The fluent holds true during a time interval which ends
at timepoint

• BEFORE(timepoint): The fluent holds true during a time interval which ends
before timepoint.

• AFTER(timepoint): The fluent holds true in a time interval which starts after
timepoint

In the example of figure 5.20 the query retrieves the employees that work for
Company1 during any time interval starting at the time specified.
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select ?employee
where {
   ex:Company1 ex:hasEmployee ?employee 
   STARTS("2010-02-08T00:00:00")
          }

Figure 5.20: Query retrieving employees who started their work for Company1 at a
specific time.

Time interval quantitative operators:

• ALWAYS AT(intervalStarts,intervalEnds): Returns true for fluents holding
true during intervals which contain all points of the interval in question AL-
WAYS AT is defined as a combination of the following 4 Allen operators:
CONTAINS, EQUALS, STARTEDBY, ENDEDBY. If any of these is true
then ALWAYS AT is also true.

• SOMETIME AT(intervalStarts,intervalEnds): This is a combination of 9 Allen
operators and returns true for fluents holding for intervals that share common
time points with the interval in question. EQUALS, OVERLAPS, OVER-
LAPPEDBY, STARTS, STARTEDBY, ENDS, ENDEDBY, CONTAINS, DUR-
ING. If any of these is true then SOMETIMES AT is true.

• MEETS(intervalStarts,intervalEnds): Returns true if the first time interval
meets the second one.

• METBY(intervalStarts,intervalEnds): Returns true if the second time interval
meets the first one.

• OVERLAPS(intervalStarts,intervalEnds): Returns true if the first time inter-
val overlaps with the second one.

• OVERLAPEDBY(intervalStarts,intervalEnds): Returns true if the second
time interval overlaps with the first one.

• DURING(intervalStarts,intervalEnds): Returns true if the first time interval
is during the second one.

• CONTAINS(intervalStarts,intervalEnds): Returns true if the first time inter-
val is contains the second one.
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• STARTS(intervalStarts,intervalEnds): Returns true if the two time intervals
start together.

• STARTEDBY(intervalStarts,intervalEnds): Returns true if the two time in-
tervals start together.

• ENDS(intervalStarts,intervalEnds): Returns true if the two time intervals end
together.

• ENDEDBY(intervalStarts,intervalEnds): Returns true if the two time inter-
vals end together.

• EQUALS(intervalStarts,intervalEnds): Returns true if the first time interval
equals the second one.

In the following example of Figure 5.21 the query returns the employees that
work for Company1 for intervals that equal the one defined by the quantitative
arguments.

select ?employee
where {
   ex:Company1 ex:hasEmployee ?employee 
   EQUALS("2010-02-08T00:00:00","2012-02-08T00:00:00")
          }

Figure 5.21: Company has employee for a specific interval

Variables as timepoint arguments: In both cases of quantitative operators,
timepoints can be replaced with variables in order to retrieve the time instants or
intervals where the predicate (fluent property) holds true. As shown in Figure 5.22
the variables specified as arguments of the “SOMETIME AT” operator take values
to find out the starting and ending points of the time intervals during which the
employee “Johnson” was working for company “C1”.
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select ?x ?y
where {
             ?company ex:hasEmployee ?employee SOMETIME_AT(?x,?y).
             ?company ex:companyName “C1”
             ?employee ex:employeeName “Johnson”
          }

Figure 5.22: Find the intervals that Employee “Johnson” works for Company “C1”

Qualitative operators: All Allen operators can be also used as qualitative op-
erators. Qualitative operators are placed between two triples as stated in the query
patterns description previously. In this case the interval restricting the duration of
the predicate of the first triple is defined by the interval that the predicate of the
second triple holds true.

select ?employee
where {
   ex:Company1 ex:hasEmployee ?employee 
   DURING
   ex:Company2 ex:hasEmployee ex:Employee2
          }

select ?employee
where {
   ex:Company1 ex:hasEmployee ?employee 
   DURING("2010-02-08T00:00:00","2012-02-08T00:00:00")
          }

Figure 5.23: Quantitative and qualitative operator comparison

For example, the first query in Figure 5.23, the interval restricting the duration of
the hasEmployee relation is restricted by the arguments of the quantitative operator.
In the second query, the interval that the fluent holds will be compared to the
interval that the fluent of the second triple holds (the interval that Company2 has
Employee2).
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5.3 Spatial Operators

SOWL QL defines two types of spatial operators referred to as Directional (specify-
ing the directional relation of two objects in space) and Topological (specifying the
relative location of two objects).

• Directional: (Assume that we have two spatial objects A and B that are
connected with the following spatial operators)

– Nof: A is North of B

– Sof: A is South of B

– Eof: A is East of B

– Wof: A is West of B

– NWof: A is North and West of B

– NEof: A is North and East of B

– SEof: A is South East of B

– SWof: A is South West of B

– SameX: A and B have the same ’x’ coordinate (e.g A(2,3) , B(2,5))

– SameY: A and B have the same ’y’ coordinate (e.g A(2,3) , B(5,3))

– SameXY: A and B have the same center (e.g A(2,3) , B(2,3))

• The following topological operators are defined between any two objects A
and B:

– Contains (NTTPi): Object A contains object B (not touching).

– ContainsTouches (TTPi): Object A contains and touches object B.

– Disjoint (DC): Objects A and B are not one inside another and not
touching.

– Touches (EC): Objects A and B touch each other from outside.

– Equals(EQ): A and B are the same size and occupy the same location on
space.

– IntoTouches(TPP): Object A is contained and touched by object B.

– Whithin(NTTP): Object A is contained by object B

– Overlaps(PO): Objects overlap.
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5.4 Reasoning in SOWL QL

SOWL QL queries are translated into equivalent SPARQL queries. All quantitative
operators in a SOWL QL query, are translated using qualitative relations making
the translation more homogeneous, as both qualitative and quantitative operators
are treated as qualitative, avoiding numerical comparisons. When the ontology is
loaded into memory, the reasoner call computes all qualitative relations from the
quantitative ones by making value comparisons.

Moreover, when a quantitative operator is used, the language query mechanism
checks if the quantitative values specified as arguments exist in the knowledge base.
If a value does not exist, it is asserted into the knowledge base and the reasoner is
invoked so that the (qualitative) relations of the new temporal value with existing
ones are derived and used for answering the query. For example, the query of Figure
5.24 retrieves employees that worked for a company before the time point specified.
If time point “2010-02-08T00:00:00” is not in the ontology, the reasoner with insert
it (temporarily) into the knowledge base and compute its relations with existing
fluents prior to answering the query.

select ?x ?y 
where {
              ?x ex1:hasEmployee ?y BEFORE("2010-02-08T00:00:00")
          }

Figure 5.24: Temporal query using the reasoner.

The same thing applies for spatial quantitative operators. For example, the
query of Figure 5.25, retrieves objects which are “north of POINT(3.4,10.2)”. In
this case, similarly to our previous example, the point object specified will be as-
serted into the ontology (if not already there) and the reasoner will compute all
the qualitative relations between the new POINT and all geometric objects in the
ontology.

select ?x ?y 
where {
              ?x spatial:Nof ?y POINT(3.4 ,10.5)
          }

Figure 5.25: Spatial query using the reasoner.
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Finally the reasoning mechanism allows for retrieving results that implicitly sat-
isfy the conditions imposed by the query. For example, if company C1 has Employee
E1 for the interval interval1, that spans throughout year 2007, and Employee E2

for an unknown interval2 that contains interval1, then by using the point based
reasoning mechanism it can be inferred that both interval1 and interval2 contain
the time point in the previous query. Thus the results: C1,E1 and C1,E2 will be
returned.

5.5 Equivalence to SPARQL

Syntactically, SOWL QL expressions form a strict superset of SPARQL expressions
meaning that every valid SPARQL query is also a valid query in SOWL-QL. In
the following we show that every valid SOWL QL query can be translated into an
equivalent SPARQL query over the supported representations.

As we mentioned in the previous section, SPARQL queries are based on graph
matching where the query criteria are given in the form of subject - predicate - object
RDF triples (called basic graph patterns) inside the “WHILE” clause of SPARQL.
SOWL QL syntax, uses the same graph patterns with the addition of SOWL QL
operators at the end of each triple. In the following we show that these operators
are also translated to basic graph patterns and we will do this by enumerating all
the possible query patterns in SOWL QL by showing their translation to SPARQL
triples. First we will show all the possible temporal triples, then the spatial and
finally the spatio-temporal triples.

Translation of dynamic triples: Figure 5.26 illustrates a simple dynamic triple
where the predicate is a fluent. It’s translation for both the 4D-fluents and the
N-ary models is illustrated as well.

Subject Predicate event_0.
event_0 Predicate Object.
event_0 atTime interval_0

Triple : Subject dynamicPredicate Object  

timeSlice_0 tsTimeSliceOf  Subject.
timeSlice_0 tsTimeInterval  interval_0.
timeSlice_0 Predicate    timeSlice_1.
timeSlice_1 tsTimeSliceOf  Object.
timeSlice_1 tsTimeInterval  interval_0

4D-Fluents :N-ary relations :

Figure 5.26: Dynamic triple translation
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Translation of timepoint operators: Triples with timepoint operators are trans-
lated as shown in Figure 5.27. Notice that only part of the translation depends on
the model while the rest (shown in green span in Figure 5.26) is exactly the same
for both models. Figure 5.28 illustrates the translation for any temporal operator
specifying a time point. According to the operator used, one of those translations
will be used in the pattern of figure 5.27.

Subject Predicate event_0.
event_0 Predicate Object.
event_0 atTime interval_0

Triple : Subject Predicate Object OPERATOR("timePoint")   

timeSlice_0 predicate  Subject.
timeSlice_0 tsTimeInterval  interval_0.
timeSlice_0 Predicate  timeSlice_1.
timeSlice_1 tsTimeSliceOf  Object.
timeSlice_1 tsTimeInterval  interval_0

4D-Fluents :N-ary relations :

atTimeInstant time:inXSDDateTime "timePoint".
interval_0 time:hasBeginning instant_0.
interval_0 time:hasEnd instant_1.

Timepoint operator translation

Figure 5.27: Temporal timepoint triple translation
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{ instant_0 time:before atTimeInstant.
  instant_1 time:after atTimeInstant. }
UNION
{ instant_0 ex2:equals atTimeInstant.}
UNION
{?_instant_1 ex2:equals atTimeInstant.}

at :

instant_0 time:after atTimeInstant.after :

instant_1 time:before atTimeInstant.before :

instant_0 time:equals atTimeInstant.startsAT :

instant_1 time:equals atTimeInstant.endsAT :

timepoint operators translation

Figure 5.28: Timepoint operators translation

Translation of time interval operators: Similar to the previous case, trans-
lating time intervals (fluents) to SPARQL triples is shown in figure 5.29 and the
translation of each individual operator is shown in figures 5.30 and 5.31 (Allen).
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Subject Predicate event_0.
event_0 Predicate Object.
event_0 atTime interval_0

Triple : Subject Predicate Object OPERATOR("intervalStarts,intervalEnds")   

timeSlice_0 tsTimeSliceOf  Subject.
timeSlice_0 tsTimeInterval  interval_0.
timeSlice_0 Predicate    timeSlice_1.
timeSlice_1 tsTimeSliceOf  Object.
timeSlice_1 tsTimeInterval  interval_0

4D-Fluents :N-ary relations :

interval_0 time:hasBeginning interval_0_START.
interval_0 time:hasEnd interval_0_END.
interval_1 time:hasBeginning interval_1_START.
interval_1 time:hasEnd interval_1_END.
interval_1_START time:inXSDDateTime "intervalStarts".
interval_1_END time:inXSDDateTime "intervalEnds".

Interval operator translation

Figure 5.29: Temporal time interval triple translation
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{ interval_0_START ex2:equals interval_1_START.
interval_0_END ex2:equals interval_1_END. } 
UNION { interval_0_START time:before interval_1_START.
interval_0_END time:after interval_1_START.
interval_0_END time:before interval_1_END. } 
UNION { interval_0_START time:after interval_1_START.
interval_0_START time:before interval_1_END.
interval_0_END time:after interval_1_END. } 
UNION { interval_0_START ex2:equals interval_1_START.
interval_0_END time:before interval_1_END. } 
UNION { interval_0_START ex2:equals interval_1_START.
interval_0_END time:after interval_1_END. } 
UNION { interval_0_START time:after interval_1_START.
interval_0_END ex2:equals interval_1_END. } 
UNION { interval_0_START time:before interval_1_START.
interval_0_END ex2:equals interval_1_END. } 
UNION { interval_0_START time:before interval_1_START.
interval_0_END time:after interval_1_END. } 
UNION { interval_0_START time:after interval_1_START.
interval_0_END time:before interval_1_END. } 

{ interval_0_START ex2:equals  interval_1_START.
 interval_0_END ex2:equals  interval_1_END. } 
UNION { interval_0_START time:before  interval_1_START.
 interval_0_END time:after  interval_1_END. } 
UNION {  interval_0_START ex2:equals  interval_1_START.
 interval_0_END time:after  interval_1_END. } 
UNION {  interval_0_START time:before  interval_1_START.
 interval_0_END ex2:equals  interval_1_END. } 

sometime_at :

always_at :

alen operators

time interval operators translation

Figure 5.30: Time interval operators translation
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BEFORE : interval_0_END time:before interval_1_START.

AFTER : interval_0_START time:after interval_1_END.

MEETS : interval_0_END time:equals interval_1_START.

METBY : interval_0_START time:equals interval_1_END.

OVERLAPS : interval_0_START time:before interval_1_START.

OVERLAPPEDBY:

DURING : interval_0_START time:after interval_1_START.

interval_0_END time:after interval_1_START.

interval_0_END time:before interval_1_END.

interval_0_START time:after interval_1_START.

interval_0_START time:before interval_1_END.

interval_0_END time:after interval_1_END.

interval_0_END time:before interval_1_END.

interval_0_START time:before interval_1_START.

interval_0_END time:after interval_1_END.

CONTAINS :

STARTS : interval_0_START time:equals interval_1_START.

interval_0_END time:before interval_1_END.

interval_0_START time:equals interval_1_START.

interval_0_END time:after interval_1_END.

STARTEDBY :

ENDS : interval_0_START time:before interval_1_START.

interval_0_END time:equals interval_1_END.

interval_0_START time:after interval_1_START.

interval_0_END time:equals interval_1_END.

ENDEDBY :

EQUALS : interval_0_START time:equals interval_1_START.

interval_0_END time:equals interval_1_END.

Allen operators translation

Figure 5.31: Allen operators translation



5.5. EQUIVALENCE TO SPARQL 89

Translation of qualitative temporal operators: Qualitative operators are Al-
llen operators and their translation was shown in the previous paragraph in Figure
5.31.

Subject1 Predicate1 event_0.
event_0  Predicate1 Object1.
event_0  nary:atTime interval_0.
interval_0 time:hasBeginning interval_0_START.
interval_0 time:hasEnd interval_0_END.

Subject2 Predicate2 event_1.
event_1  Predicate2 Object2.
event_1 nary:atTime interval_1.
interval_1 time:hasBeginning interval_1_START.
interval_1 time:hasEnd interval_1_END.

allen operators translation

Triple : Subject1 Predicate1 Object1 ALLEN OPERATOR Subject2 Predicate2 Object2

timeSlice_0 tsTimeSliceOf  Subject1.
timeSlice_0 tsTimeInterval  interval_0.
timeSlice_0 Predicate1       timeSlice_1.
timeSlice_1 tsTimeSliceOf  Object1.
timeSlice_1 tsTimeInterval  interval_0
interval_0 time:hasBeginning interval_0_START.
interval_0 time:hasEnd interval_0_END.

timeSlice_2 tsTimeSliceOf  Subject2.
timeSlice_2 tsTimeInterval  interval_1.
timeSlice_2 Predicate2       timeSlice_3.
timeSlice_3 tsTimeSliceOf  Object2.
timeSlice_3 tsTimeInterval  interval_1
interval_1 time:hasBeginning interval_1_START.
interval_1 time:hasEnd interval_1_END.

4D-Fluents :N-ary relations :

Figure 5.32: Qualitative temporal triple translation

Translation of spatial qualitative operators: The translation of spatial quali-
tative triples where the predicate is replaced by a spatial operator is shown in Figure
5.33. Notice that this is actually a spatio-temporal query because the translation
along with the static results will retrieve dynamic (TimeSlices or Events) as well
static objects satisfying the query selection criteria. Spatial operators are translated
before temporal ones.
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Subject spatial:locatedAt location_0.
location_0 spatial:hasGeometry geometry_0.
Object spatial:locatedAt location_1. 
location_1 spatial:hasGeometry geometry_1. 

geometry_0.  SpatialOperator event_0.
event_0 SpatialOperator geometry_1.
event_0 atTime interval_0

Triple : Subject SpatialOperator Object  

Subject spatial:locatedAt location_0.
location_0 spatial:hasGeometry geometry_0.
Object spatial:locatedAt location_1. 
location_1 spatial:hasGeometry geometry_1. 
timeSlice_0 tsTimeSliceOf  geometry_0.
timeSlice_0 tsTimeInterval  interval_0.
timeSlice_0 SpatialOperator timeSlice_1.
timeSlice_1 tsTimeSliceOf  geometry_1.
timeSlice_1 tsTimeInterval interval_0.

4D-Fluents :N-ary relations :

Figure 5.33: Qualitative spatial triple translation

Translation of spatial quantitative operators: Translation of a spatial triple
using the Point(x,y) operator.

Subject spatial:locatedAt location_0.
location_0 spatial:hasGeometry geometry_0.
geometry_0 SpatialOperator spatial:dynamicPoint0

Triple : Subject SpatialOperator Point(X,Y)  

Subject spatial:locatedAt location_0.
location_0 spatial:hasGeometry geometry_0.
geometry_0 SpatialOperator spatial:dynamicPoint0

4D-Fluents :N-ary relations :

Figure 5.34: Quantitative spatial triple translation

Spatio-temporal queries translation Spatio-temporal queries are handled as
spatial queries in the first place, and after the spatial translation is completed the
temporal part of the query is translated as well. There is no specific pattern here
as this type of translation is a combination of patterns shown above. Figure 5.35
illustrates an example query combining spatial and temporal query patterns.
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Spatial translation

Temporal translation

Subject spatial:locatedAt location_0.
location_0 spatial:hasGeometry geometry_0.
Object spatial:locatedAt location_1. 
location_1 spatial:hasGeometry geometry_1. 

geometry_0.  SpatialOperator event_0.
event_0 SpatialOperator geometry_1.
event_0 atTime interval_0

OPERATOR translation

OPERATOR translation

Triple : Subject SpatialOperator Object OPERATOR("timePoint")    

Subject spatial:locatedAt location_0.
location_0 spatial:hasGeometry geometry_0.
Object spatial:locatedAt location_1. 
location_1 spatial:hasGeometry geometry_1.
 
timeSlice_0 tsTimeSliceOf  geometry_0.
timeSlice_0 tsTimeInterval  interval_0.
timeSlice_0 SpatialOperator timeSlice_1.
timeSlice_1 tsTimeSliceOf  geometry_1.
timeSlice_1 tsTimeInterval interval_0.

4D-Fluents :N-ary relations :

Figure 5.35: Spatio-temporal triple translation

Marked with red is the spatial translation (the triples needed to retrieve the
spatial static objects) and with green the temporal translation corresponding to the
models (4D-fluents or N-ary). The spatial part of the translation is exactly the same
as it is independent from the temporal model and translation.

5.6 Examples

In the following examples we demonstrate most of SOWL QL’s temporal and spatial
operators. Notably we are going to illustrate some extra features like using variables
instead of timepoint arguments or querying with timepoints or interval arguments
that do not exist in the knowledge base (reasoner call). First we are going to
give some temporal query examples, then some spatial and finally we are going to
show how spatial and temporal operators can be combined to form spatio-temporal
queries.

In the next four figures we show the data in our knowledge base. In Figure 5.36
we present the static objects, in Figures 5.37 and 5.38 we illustrate the temporal
data (objects connected with TimeSlices) and in Figure 5.39 we show the spatial
data. The model we are using for temporal representation is the 4D-fluents model
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but the same example queries can also be executed over an ontology using the N-ary
relations temporal model.

@prefix <http://www.semanticweb.org/ontologies/2008/4/sowl-ontology.owl>ex1:

ex1:Company1 ex1:companyName “C1”
ex1:Company2 ex1:companyName “C2”
ex1:CompanyStatic ex1:companyName “C_STATIC”

ex1:Employee1 ex1:employeeName “John”

ex1:Employee2 ex1:employeeName “Mark”

ex1:Employee3 ex1:employeeName “John”
ex1:EmployeeStatic ex1:employeeName “Jack”

ex1:Product2 ex1:price  15.0
ex1:Product3 ex1:price  20.0

Data (Turtle Format)  [ Static Data ]

Figure 5.36: Data in Turtle format
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ex1:Company1TimeSlice1 ex1:tsTimeSliceOf ex1:Company1 .

ex1:Company1TimeSlice1 ex1:hasEmployee ex1:Employee1TimeSlice1 .

ex1:Company1TimeSlice1 ex1:tsTimeInterval ex1:Interval1 .

ex1:Company1TimeSlice2 ex1:tsTimeSliceOf ex1:Company1 .

ex1:Company1TimeSlice2 ex1:hasEmployee ex1:Employee2TimeSlice1 .

ex1:Company1TimeSlice2 ex1:tsTimeInterval ex1:Interval2 .

ex1:Company2TimeSlice1 ex1:tsTimeSliceOf ex1:Company2

ex1:Company2TimeSlice1 ex1:produces ex1:Product3TimeSlice1

ex1:Company2TimeSlice1 ex1:hasEmployee ex1:Employee3TimeSlice1 .

ex1:Company2TimeSlice1 ex1:tsTimeInterval ex1:Interval3 .

ex1:CompanyStatic ex1:hasEmployee ex1:EmployeeStatic .

ex1:Employee1TimeSlice1 ex1:tsTimeSliceOf ex1:Employee1 .

ex1:Employee1TimeSlice1 ex1:tsTimeInterval ex1:Interval1 .

ex1:Employee2TimeSlice1 ex1:tsTimeSliceOf ex1:Employee2 .

ex1:Employee2TimeSlice1 ex1:tsTimeInterval ex1:Interval2 .

ex1:Employee3TimeSlice1 ex1:tsTimeSliceOf ex1:Employee3 .

ex1:Employee3TimeSlice1 ex1:tsTimeInterval ex1:Interval3 .

ex1:Product1TimeSlice1 ex:tsTimeSliceOf ex:Product1

ex1:Product1TimeSlice1 ex:tsTimeIntervalOf ex:Interval1

ex1:Product1TimeSlice1 ex:productName “P1”

ex1:Product1TimeSlice1 ex:price 11.0

ex1:Product2TimeSlice1 ex:tsTimeSliceOf ex:Product2

ex1:Product2TimeSlice1 ex:tsTimeIntervalOf ex:Interval2

ex1:Product2TimeSlice1 ex:productName “P2”

ex1:Product2TimeSlice1 ex:price 21.0

ex1:Product3TimeSlice1 ex:tsTimeSliceOf ex:Product3

ex1:Product3TimeSlice1 ex:tsTimeIntervalOf ex:Interval3

ex1:Product3TimeSlice1 ex:productName “P3”

ex1:Product3TimeSlice1 ex:price 31.0

ex1:Product3TimeSlice2 ex:tsTimeSliceOf ex:Product3

ex1:Product3TimeSlice2 ex:tsTimeIntervalOf ex:Interval4

ex1:Product3TimeSlice2 ex:productName “P3x”

ex1:Product3TimeSlice2 ex:price 32.0

Data (Turtle Format) [ Temporal Data ]

Figure 5.37: Data in Turtle format
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ex1:Instant1-2-7 xsd:inXSDDateTime “2007-02-01T00:00:00Z”.

ex1:Instant10-2-7 xsd:inXSDDateTime “2007-02-10T00:00:00”.

ex1:Instant13-2-07 xsd:inXSDDateTime “2007-02-13T00:00:00”.

ex1:Instant3-2-7 xsd:inXSDDateTime “2007-02-03T00:00:00”.

ex1:Instant5-2-7 xsd:inXSDDateTime “2007-02-05T00:00:00”.

ex1:Instant6-2-7 xsd:inXSDDateTime “2007-02-06T00:00:00”.

ex1:Instant7-2-7 xsd:inXSDDateTime “2007-02-07T00:00:00”.

ex1:Instant8-2-7 xsd:inXSDDateTime “2007-02-08T00:00:00”.

ex1:Interval1 ex1:hasBeginning ex1:Instant1-2-7
ex1:Interval1 ex1:hasEnd ex1:Instant5-2-7

ex1:Interval2 ex1:hasBeginning ex1:Instant6-2-7
ex1:Interval2 ex1:hasEnd ex1:Instant10-2-7

ex1:Interval3 ex1:hasBeginning ex1:Instant3-2-7
ex1:Interval3 ex1:hasEnd ex1:Instant7-2-7

ex1:Interval4 ex1:hasBeginning ex1:Instant8-2-7
ex1:Interval4 ex1:hasEnd ex1:Instant13-2-7

Data (Turtle Format) [ Temporal Data ]  (cont)

Figure 5.38: Data in Turtle format
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ex1:spatialObject1 ex1:locatedAt ex1:location1 .

ex1:spatialObject2 ex1:locatedAt ex1:location2 .

ex1:spatialObject3 ex1:locatedAt ex1:location3 .

ex1:spatialObject4 ex1:locatedAt ex1:location4 .

ex1:spatialObject5 ex1:locatedAt ex1:location5 .

ex1:spatialObject6 ex1:locatedAt ex1:location6 .

ex1:spatialObject7 ex1:locatedAt ex1:location7 .

ex1:location1 ex1:hasGeometry ex1:Envelope1 .

ex1:location2 ex1:hasGeometry ex1:Envelope2 .

ex1:location3 ex1:hasGeometry ex1:Polygon3 .

ex1:location4 ex1:hasGeometry ex1:Polygon4 .

ex1:location5 ex1:hasGeometry ex1:Polygon5 .

ex1:location6 ex1:hasGeometry ex1:Polygon1 .

ex1:location7 ex1:hasGeometry ex1:Point5 .

ex1:envelope1 spatial:NEpoint ex1:Point2 .

ex1:envelope1 spatial:SWpoint ex1:Point1 .

ex1:envelope2 spatial:SWpoint ex1:Point2 .

ex1:envelope2 spatial:NEpoint ex1:Point5 .

ex1:envelope3 spatial:Nof ex1:Envelope1 .

ex1:Polygon1 spatial:Nof ex1:Polygon2 .

ex1:Polygon3 spatial:Nof ex1:Polygon1 .

ex1:Polygon4Slice ex:tsTimeSliceOf ex1:Polygon4 .

ex1:Polygon4Slice ex:tsTimeIntervalOf ex1:Interval1 .

ex1:Polygon4Slice spatial:Nof ex1:Polygon5Slice .

ex1:Polygon5Slice ex:tsTimeSliceOf ex1:Polygon5 .

ex1:Polygon5Slice ex:tsTimeIntervalOf ex1:Interval1 .

ex1:Point1 spatial:x  25.4  .

ex1:Point1 spatial:y  36.45  .

ex1:Point2 spatial:x  26.2  .

ex1:Point2 spatial:y  38.5  .

ex1:Point3 spatial:Nof  ex1:Point2  .

ex1:Point3 spatial:Eof  ex1:Point2  .

ex1:Point4 spatial:Eof  ex1:Point3  .

ex1:Point4 spatial:y  45.2  .

ex1:Point5 spatial:x  21.7  .

ex1:Point5 spatial:y  32.5  .

ex1:Point6 spatial:x  20.0  .

ex1:Point6 spatial:y  30.0  .

Data (Turtle Format) [ Spatial Data ]

Figure 5.39: Data in Turtle format
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Example 1: In this example we seek the employees of a Company with name
“C1”. The hasEmployee predicate here is a dynamic predicate so the dynamic
objects will be retrieved (TimeSlices). Notice that the static result EmployeeStatic
is not retrieved because he works for a different company.

select distinct  ?y 
where{

          ?x ex1:hasEmployee ?y.

          ?x ex1:companyName "C1"  

}

Employee2

Employee1

Results :

Query 1

Figure 5.40: Example 1

Example 2: Here we seek to find all products which have a higher price than
10.0 and their prices. This query is very similar to the first with only deference that
here the dynamic predicate is a datatype property, not an object property. We can
see that the static objects (products) are retrieved as well as the dynamic objects
(Product TimeSlices).
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select distinct  ?x ?y 
where{

             ?x ex1:price ?y.
           Filter( ?x > 10.0 )   

}

Product2 15.0

Product3 22.0

Product3 20.0

Results :

Query 2

Figure 5.41: Example 2

Example 3: In this example we demonstrate the use of the AT(timepoint) op-
erator asking for the names of the companies that have employees at this specific
timepoint and the also the employee Names. The “C STATIC” company result is
retrieved because its a static result supposed to hold for all timepoints.

select distinct  ?x ?y 
where {

             ?t ex1:hasEmployee ?z  AT("2007-02-05T00:00:00").
           ?t ex1:companyName ?x
           ?z ex1:employeeName ?y  

   }

C2 John

C1 John

C_Static Jack

Results :

Query 3

Figure 5.42: Example 3
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Example 4: Here we use a time interval operator in this query to get the employee
names and the companies they work for an interval that contains all points of the
interval used as argument. Static results again are retrieved.

select distinct  ?x ?y 
where {

             ?t ex1:hasEmployee ?z  
           ALWAYS_AT("2007-02-01T00:00:00Z", "2007-02-05T00:00:00").
           ?t ex1:companyName ?x
           ?z ex1:employeeName ?y  

   }

C1 John

C_Static Jack

Results :

Query 4

Figure 5.43: Example 4

Example 5: This example demonstrates the use of a qualitative Allen operator.
Here the query asks for the price that “Product1” had before “Employee2” was
employed by “Company1”.
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select ?price 
where {

             ex1:Product1 ex1:price  ?price
          BEFORE
           ex1:Company1 ex1:hasEmployee ex1:Employee2  

   }

11.0

Results :

Query 5

Figure 5.44: Example 5

Example 6: In this query we use an Allen quantitative operator with a timepoint
as argument. What is interesting with this query is that the timepoint that is used
as argument does not exist in the knowledge base. In most query languages this
query would end up with no results but is SOWL QL the query language asserts
the timepoint and then calls the reasoner.

select distinct  ?x ?y 
where {

             ?t ex1:hasEmployee ?z  BEFORE("2007-02-07T00:00:00").
           ?t ex1:companyName ?x
           ?z ex1:employeeName ?y  

   }

C1 John

C_Static Jack

Results :

Query 6

Figure 5.45: Example 6
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Example 7: In example 7 we demonstrate the use of variables instead of timepoint
arguments in quantitative temporal operators. Here we ask for all the employees
that are working for “Company1” and the corresponding time intervals.

select distinct  ?e ?t1 ?t2 
where {

             ex1:Company1 ex1:hasEmployee ?e  ALWAYS_AT( ?t1 , ?t2 )
          }

Employee1 2007-02-01T00:00:00Z 2007-02-05T00:00:00

Employee2 2007-02-06T00:00:00 2007-02-10T00:00:00

Results :

Query 7

Figure 5.46: Example 7

Example 8: This is a qualitative spatial query. Here we ask what is north of
“spatialObject5”.

select distinct  ?x 
where {

            ?x spatial:Nof spatial:spatialObject5

          }

SpatialObject4

Results :

Query 8

Figure 5.47: Example 8

Example 9: This is a quantitative spatio-temporal query.
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select distinct  ?x 
where {

            ?x spatial:Nof POINT([9.2,10.3]) SOMETIME_AT

          }

SpatialObject4

Results :

Query 9

Figure 5.48: Example 9

Example 10: This is a qualitative spatio-temporal query where the before Allen
operator connects two dynamic spatial triples. Here the query is “what objects are
south of SpatialObject3 before spatialObject5 touches anything”.

select distinct   ?x ?z  

where{

       spatial:SpatialObject3 spatial:Nof  ?x  BEFORE  spatial:spatialObject5 spatial:EC ?z
}

spatialObject6 spatialObject5

spatialObject6 SpatialObject2

spatialObject6 SpatialObject4

spatialObject6 SpatialObject3

spatialObject6 SpatialObject1

spatialObject6 spatialObject6

Results :

Query 10

Figure 5.49: Example 10
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Chapter 6

Implementation

6.1 The SOWL QL system.

As a proof of concept, we implemented a Graphical User Interface (GUI) on top of
the SOWL QL query translator whose purpose is to facilitate expressing and exe-
cuting of queries SOWL QL1 Figure 6.1 illustrates the architecture of the SOWL QL
system. The system consists of a GUI and three main modules namely the ontology
Loader, the query parser and the interpreter. Each module performs specific tasks
and is connected with the GUI for input and output. More Specifically:

1. The ontology loader module is used to load an ontology into memory and
detect the underlying temporal or spatial model employed. It also plays a role
during the parsing and the translation phases. During parsing, the ontology
loader is used to determine if a predicate is a fluent and during translation the
interpreter uses the ontology loader to retrieve information about the existence
of a timepoint(which could be the start or end of an interval) or a spatial point
in the knowledge base in order to call the reasoner or not.

2. The query parser is used to detect SOWL QL spatio-temporal operators in
queries and use the corresponding interpreter (temporal, spatial or both).

3. The interpreter’s task is to translate a SOWL QL query to the equivalent
query in SPARQL and return the translated query.

The user uses the GUI to choose an OWL ontology to load. Then, the ontology
loader module loads the ontology into memory and determines if a dynamic (tem-
poral or spatial) model exists. If a dynamic model is recognized then, the ontology
loader enables the appropriate parser (temporal, spatial or both) and also activates

1The SOWL QL system can be downloaded from http://www.intelligence.tuc.gr

103
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info/data

SPARQL Query

Output :
SPARQL Query

Output :
Error Message

SOWL Query

SPARQL QUERY EXECUTION

ONTOLOGY LOADER

MODEL RECOGNITION

TEMPORAL
PARSER

SPATIAL
PARSER

QUERY PARSER

SOWL INTERPRETER

4D-FLUENTS
INTERPRETER

N-ARY RELATIONS
INTERPRETER

TEMPORAL INTERPRETER SPATIAL INTERPRETER

SOWL SPATIAL
INTERPRETER

ONTOLOGY
(Owl file)

 Output :
ResultSet

Input :

SOWL 
Query

Figure 6.1: The SOWL system.

the corresponding temporal or spatial interpreter for the recognized models. For
example, if the N-ary relations model is recognized then, the ontology loader will
enable the temporal parser and the N-ary relations interpreter.

After the ontology is loaded into memory the user is able to use the GUI to
write and execute queries. When a query is executed, the enabled parsers search
for existing SOWL QL operators or dynamic predicates in the query. If no SOWL
QL operators or dynamic predicates are found then, no translation takes place and
the query is executed as a regular SPARQL query. If spatio-temporal operators or
dynamic predicates are found then, the parser uses the appropriate interpreter to
translate the query to SPARQL. When the translation process is completed, the
translated SPARQL query is executed and the results are displayed by the GUI. In
the following, role and of each module is discussed in more detail.

6.2 Ontology Loader

The ontology loader module executes 4 tasks:
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1. Loads an OWL ontology into memory using the JENA API [75].

2. Identifies the underlying temporal or spatial model in the ontology, if one
exists. This task is accomplished by parsing the concepts of the ontology and
trying to identify one by one the URIs (Universal Resource Identifiers are
unique strings that describes a resources) of the specific classes and properties
that are required for each model representation. For example, in order to
identify the 4D-fluents model, the “TimeSlice” and “Interval” classes and
also the “tsTimeSlice” and “tsTimeInterval” properties should be identified.
Figure 6.2 illustrates all the dynamic models that can be identified by the
ontology loader module.

3. Informs the parser if the predicate in a subject - predicate - object triple is a
fluent that is connected with dynamic object (TimeSlices or Events).

4. Informs the interpreter about the existence or not of timepoints or spatial
points in the knowledge base.

http://www.w3.org/2006/time#Interval

http://purl.org/NET/c4dm/event.owl#atTime

TEMPORAL MODELS

http://www.semanticweb.org/ontologies/2008/4/Ontology1211440295085.owl#TimeSlice

CLASSES :

4D-FLUENTS MODEL

http://www.w3.org/2006/time#Interval

PROPERTIES :

http://www.semanticweb.org/ontologies/2008/4/Ontology1211440295085.owl#tsTimeInterval

http://www.semanticweb.org/ontologies/2008/4/Ontology1211440295085.owl#tsTimeSliceOf

N-ARY RELATIONS MODEL
CLASSES :

PROPERTIES :

http://linkedevents.org/ontology/Event

Figure 6.2: The URIs required to represent the 4D-fluents and the N-ary models.
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SPATIAL MODELS

http://www.semanticweb.org/ontologies/2008/4/Ontology1211440295085.owl#Geometry

CLASSES :

SOWL SPATIAL MODEL

http://www.semanticweb.org/ontologies/2008/4/Ontology1211440295085.owl#Location

PROPERTIES :

http://www.semanticweb.org/ontologies/2008/4/Ontology1211440295085.owl#hasGeometry

http://www.semanticweb.org/ontologies/2008/4/Ontology1211440295085.owl#locatedAt

Figure 6.3: The URIs required to represent the SOWL spatial model.

The model identification process is used so the system can enable the appropriate
parsers and interpreters in case a spatial or temporal model is identified. There are
4 cases:

1. No temporal or spatial model recognized: In this case no interpreters or parsers
will be enabled. All the queries will be treated as SPARQL queries and will
be executed as they are without any translation.

2. Temporal model recognized: In this case the temporal parser will be enabled
and also the, corresponding to the recognized model, temporal interpreter
(4D-fluents or N-ary relations interpreter).

3. Spatial model recognized: In this case only the spatial parser and the spatial
interpreter will be enabled.

4. Spatio-temporal model recognized: In this case both the spatial and temporal
parsers will be enabled and also the appropriate interpreters for both the
spatial and temporal models that have been recognized.

Currently the system is able to identify the 4D-fluents and the N-ary temporal
models and the SOWL spatial model.

6.3 Parser

The parser module is enabled only when a dynamic model is detected by the ontol-
ogy loader. It consists of a temporal and a spatial parser which can be separately
enabled or disabled. Each parser is capable of identifying a set of spatio-temporal
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operators (presented in chapter 5) in the query and enable the appropriate inter-
preters according to the recognized models in order to translate it to SPARQL. Note
that in spatio-temporal queries, where both the temporal and spatial parsers are
enabled, the spatial parser always precedes the temporal parser.

As discussed in Chapter 5, a SOWL operator in a query can be used only after a
triple pattern or between two triple patterns inside the WHILE clause. Moreover,
the predicate of each triple can be a fluent that holds over a specific interval (e.g
ex:Company ex:hasEmployee ex:Employee) or it can be a spatial operator (e.g ?x
spatial:Nof ?y). The implementation of the parser is based on these simple acknowl-
edgements. The parser scans the triples in the while clause sequentially and uses a
look-ahead to read the next token after a triple. The following actions of the parser
are determined by the look-ahead.

Temporal Parser: Subject Predicate object. In this case the look-ahead is
not a SOWL QL temporal operator so the parser will check the predicate of the
triple. If the predicate is dynamic (if it is a fluent that holds over a specific time
interval) then the the corresponding temporal interpreter will be used to translate
the triple into SPARQL. Otherwise, if the predicate is not dynamic, the parser
moves to the next triple. To determine if the predicate is dynamic the parser uses
data from the ontology loader to check if the predicate is connected with dynamic
objects (timeslices in the 4D-fluents model or events in the N-ary relations model).

select ?employee
where{
   ex:Company1 ex:hasEmployee ?employee
          }

Figure 6.4: Dynamic predicate triple example

Here the hasEmployee predicate is dynamic and the query will return all the
employees that had an employment relationship with Company during different
time intervals.

Temporal Parser: Subject Predicate object TimePointOperator. In this
case the operator has a single argument which is a timepoint. SOWL QL operators
that can take timepoints as arguments are: AT, STARTSAT, ENDSAT, BEFORE
and AFTER. The timepoint that is used as argument is in xsdDateTime format
(e.g “2010-10-5T10:10:20Z”).
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select ?employee
where {
    ex:Company1 ex:hasEmployee ?employee AT("2010-02-08T00:00:00").
          }

Figure 6.5: Timepoint operator example

The above query will return all the employees that were working for Company1
at the specified timepoint. If any Allen operators are used here as quantitative
(instead of qualitative) the parser will use the look-ahead to check and confirm that
quantitative timepoint arguments are used. If no quantitative arguments are found
then the Allen operator is supposed to be qualitative and, in this case, it is handled
differently. Operators AT, STARTSAT and ENDSAT are used only for quantitative
time point temporal queries so no confirmation is needed.

Temporal Parser: Subject Predicate object TimeIntervalOperator. In
this case the operator takes a time interval as argument consisting of two time-
points which are the starting and ending timepoints of an interval. SOWL QL op-
erators that can take an interval as arguments are: ALWAYS AT, SOMETIME AT
and all Allen operators. The timepoints that are used as arguments are again in
xsdDateTime format.

select ?company
where {
   ?company ex:hasEmployee ?employee 
   SOMETIME_AT("2010-02-08T00:00:00","2012-02-08T00:00:00")
   ?employee ex:EmployeeName “Smith”
       }

Figure 6.6: Time interval operator example

Again here in case Allen operators are used the parser will use the look-ahead
to determine if they are used as quantitative or qualitative.

Temporal Parser: Subject Predicate object Allen Subject2 Predicate2
Object2. This is the case where Allen operators are used as qualitative. In this
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case the parser identifies an Allen temporal operator with no quantitative argu-
ments. The look-ahead is used to assure that a second triple exists(3 more tokens)
in order to call the interpreter.

select ?company
where {
   ?company ex:hasEmployee ?employee 
   BEFORE
   ex:Company2 ex:hasEmployee ?employee2.
   ?employee2 ex:employeeName “Smith”
          }

Figure 6.7: Qualitative temporal operator example

Spatial Parser: Subject Predicate object. In case the look-ahead is not a
SOWL QL operator, the spatial parser will check if the predicate of the triple is
a spatial operator (e.g spatial:Nof, spatial:Sof etc.) Then, if a spatial operator is
recognized, the the corresponding spatial interpreter will be used to translate the
triple to SPARQL. Otherwise, the parser moves to the next triple.

select ?country
where {
   ?country spatial:Nof ex:Greece
          }

Figure 6.8: Spatial operator example

Spatial Parser: Subject Predicate object PointSpatialOperator. In this
case the look-ahead is a SOWL QL “Point(x,y)” operator with two arguments which
are two float numbers corresponding to the x and y axis in 2D-space. An example
of a spatial query of this type is illustrated in Figure 6.9
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select ?country
where {
   ?country spatial:Nof POINT(332.2,122.4)
          }

Figure 6.9: Example spatial quantitative operator

Spatio-temporal queries: In spatio-temporal queries, the spatial parser always
precedes the temporal. The spatial parser scans the query for spatial operators and
calls the interpreters (as explained above). After spatial triple are translated, the
temporal parser proceeds to scan the query and call the temporal interpreters to
fully translate the query. Below we see two examples of spatio-temporal queries.

select ?car
where {
   ?car spatial:Nof ex:Street1
   AT("2010-02-08T00:00:00")
          }

Figure 6.10: Spatio-temporal triple example

select ?car
where {
   ?car spatial:Nof POINT(12.5,22.4) 
   AT("2010-02-08T00:00:00")
          }

Figure 6.11: Spatio-temporal triple example

If no dynamic model is recognized then the parser module remains disabled
and the query is treated as a standard SPARQL query. Also, there is an option
through the GUI to disable all parsers and execute queries in SPARQL mode. This
can be done by using the “SPARQL mode” button. When we choose this option,
no matter if there is a dynamic model in the ontology, all queries are treated as
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standard SPARQL queries and the use of SOWL QL operators will cause syntactic
errors.

6.4 Interpreter

The interpreter module is the module that translates SOWL QL expressions into
equivalent SPARQL queries. The implementation of the SOWL QL interpreter is
illustrated in Figure 6.12. The main interpreter class is extended by two classes
implementing the temporal and the spatial interpreters. The temporal and spa-
tial interpreters are also extended by more specific interpreters according to the
recognized dynamic model of the ontology as it is defined by the ontology loader
module.

Output :
SPARQL Query

Input :
SOWL Query

SOWL INTERPRETER

4D-FLUENTS
INTERPRETER

N-ARY RELATIONS
INTERPRETER

TEMPORAL INTERPRETER

MORE
INTERPRETERS

SPATIAL INTERPRETER

SOWL SPATIAL
INTERPRETER

MORE
INTERPRETERS

Figure 6.12: Sowl Interpreter.

The interpreters that are available to be used in the translation process are
defined by the ontology loader module during the model recognition phase as we
described previously. If for example, the ontology loader module detects the 4D-
fluents model in the ontology then the 4D-fluents interpreter is enabled. All the
methods that are used to translate SOWL QL queries are defined in the main SOWL
Interpreter class and are the same for each specific interpreter implementation. As
the methods are abstract, while they use the same arguments, their implementation
varies according to the target model. Currently, the specific model interpreters that
have been implemented are the 4D-fluents and N-ary relations temporal interpreters
and and the SOWL QL spatial interpreter.
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The interpreter is invoked by the parser whenever a triple with a fluent predicate
or a SOWL QL operator is recognized. There are eight methods in total that the
parser can call according to the query pattern that has been recognized. Six of
those methods are used to translate temporal triples and two of them are used to
translate spatial triples. Below we show the functions that are used to translate
temporal and spatial triples.

translateDynamicTriple(String subject, String predicate, String object):
This method is used to translate dynamic triples. An example translation of such
a triple is illustrated in Figure 6.13

?Company ex:hasEmployee ?event_0.
?event_0 ex:hasEmployee ?Employee.
?event_0 nary:atTime ?interval_0

Triple : ?Company ex:hasEmployee ?Employee 

?timeSlice_0 ex:hasEmployee  ?Company.
?timeSlice_0 4dfluents:tsTimeInterval  ?interval_0.
?timeSlice_0 ex:hasEmployee ?timeSlice_1.
?timeSlice_1 4dfluents:tsTimeSliceOf  ?Employee.
?timeSlice_1 4dfluents:tsTimeInterval  ?interval_0

4D-Fluents :N-ary relations :

Figure 6.13: Dynamic triple translation example.

translateTimePointOperator(String subject, String predicate, String ob-
ject, String timePoint): This method is used to translate a triple with a tem-
poral timepoint operator. This method can handle the AT, BEFORE and AFTER
temporal operators. We show two examples of timepoint triple translation, one in
Figure 6.14 and one in Figure 6.15.
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?Company ex:hasEmployee ?event_0.
?event_0 ex:hasEmployee ?Employee.
?event_0 nary:atTime ?interval_0

?_atTimeInstant time:inXSDDateTime "2007-02-05T00:00:00"^^xsd:dateTime.
?_interval_0 time:hasBeginning ?_instant_1.
?_interval_0 time:hasEnd ?_instant_2.
{ ?_instant_1 time:before ?_atTimeInstant.
  ?_instant_2 time:after ?_atTimeInstant.}
UNION
{ ?_instant_1 ex2:equals ?_atTimeInstant.}
UNION
{?_instant_2 ex2:equals ?_atTimeInstant.}

Triple : ?Company ex:hasEmployee ?Employee AT("2007-02-05T00:00:00") 

?timeSlice_0 ex:hasEmployee  ?Company.
?timeSlice_0 4dfluents:tsTimeInterval  ?interval_0.
?timeSlice_0 ex:hasEmployee ?timeSlice_1.
?timeSlice_1 4dfluents:tsTimeSliceOf  ?Employee.
?timeSlice_1 4dfluents:tsTimeInterval  ?interval_0

4D-Fluents :N-ary relations :

Figure 6.14: Translation of a temporal triple using the AT(timepoint) temporal
operator.
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?Company ex:hasEmployee ?event_0.
?event_0 ex:hasEmployee ?Employee.
?event_0 nary:atTime ?interval_0

?_atTimeInstant time:inXSDDateTime "2007-02-05T00:00:00"^^xsd:dateTime.
?_interval_0 time:hasBeginning ?_instant_0.
?_interval_0 time:hasEnd ?_instant_1.
?_instant_0 time:after ?_atTimeInstant.

Triple : ?Company ex:hasEmployee ?Employee AFTER("2007-02-05T00:00:00") 

?timeSlice_0 ex:hasEmployee  ?Company.
?timeSlice_0 4dfluents:tsTimeInterval  ?interval_0.
?timeSlice_0 ex:hasEmployee ?timeSlice_1.
?timeSlice_1 4dfluents:tsTimeSliceOf  ?Employee.
?timeSlice_1 4dfluents:tsTimeInterval  ?interval_0

4D-Fluents :N-ary relations :

Figure 6.15: Translation of a temporal triple using the Allen operator AFTER.

translateDynamiTimeIntervalOperator(String subject, String predicate,
String object, String intervalStarts, String intervalEnds): This method is
used to translate triples concerning interval operators. Those are the ALWAYS AT,
SOMETIME AT and all Allen operators which take two timepoints as arguments
(the start and ending timepoints of an interval). An example translation is shown
in Figure 6.16



6.4. INTERPRETER 115

?Company ex1:hasEmployee ?_event_0.
?_event_0 ex1:hasEmployee ?y.
?_event_0 nary:atTime ?_interval_0.
 

?_interval_0 time:hasBeginning ?_interval_0_START.
?_interval_0 time:hasEnd ?_interval_0_END.
?_interval_1 time:hasBeginning ?_interval_1_START.
?_interval_1 time:hasEnd ?_interval_1_END.
?_interval_1_START time:inXSDDateTime "2007-02-01T00:00:00Z"^^xsd:dateTime.
?_interval_1_END time:inXSDDateTime "2007-02-05T00:00:00"^^xsd:dateTime.
{ ?_interval_0_START ex2:equals ?_interval_1_START.
?_interval_0_END ex2:equals ?_interval_1_END. } 
UNION { ?_interval_0_START time:before ?_interval_1_START.
?_interval_0_END time:after ?_interval_1_END. } 
UNION { ?_interval_0_START ex2:equals ?_interval_1_START.
?_interval_0_END time:after ?_interval_1_END. } 
UNION { ?_interval_0_START time:before ?_interval_1_START.
?_interval_0_END ex2:equals ?_interval_1_END. } 

Triple : ?Company ex:hasEmployee ?Employee ALWAYS_AT("2007-02-01T00:00:00Z","2007-02-05T00:00:00")

?timeSlice_0 ex:hasEmployee  ?Company.
?timeSlice_0 4dfluents:tsTimeInterval  ?interval_0.
?timeSlice_0 ex:hasEmployee ?timeSlice_1.
?timeSlice_1 4dfluents:tsTimeSliceOf  ?Employee.
?timeSlice_1 4dfluents:tsTimeInterval  ?interval_0

4D-Fluents :N-ary relations :

Figure 6.16: Translation of a temporal triple using the ALWAYS AT temporal op-
erator.

translateQualitativeOperator(String subject, String predicate, String ob-
ject, String subject2, String predicate2, String object2, String allenOp-
erator): This method is applied to translate qualitative temporal operators used
between two triples. Figure 6.17 shows an example translation of such a triple.



116 CHAPTER 6. IMPLEMENTATION

Triple : ex:Company1 ex:hasEmployee ?Employee  BEFORE   ex:Company2 ex:hasManager  ex:Employee2

ex:Company1 ex:hasEmployee ?event_0.
?event_0  ex:hasEmployee ?Employee.
?event_0  nary:atTime ?interval_0.
?interval_0 time:hasBeginning ?interval_0_START.
?interval_0 time:hasEnd ?interval_0_END.

ex:Company2 ex:hasManager ?event_1.
?event_1  ex:hasManager ex:Employee2.
?event_1 nary:atTime ?interval_1.
?interval_1 time:hasBeginning ?interval_1_START.
?interval_1 time:hasEnd ?interval_1_END.

?timeSlice_0 tsTimeSliceOf  ex:Company1.
?timeSlice_0 tsTimeInterval  interval_0.
?timeSlice_0 ex:hasEmployee       timeSlice_1.
?timeSlice_1 tsTimeSliceOf  ?Employee.
?timeSlice_1 tsTimeInterval  interval_0
?interval_0 time:hasBeginning interval_0_START.
?interval_0 time:hasEnd interval_0_END.

?timeSlice_2 tsTimeSliceOf  ex:Company2.
?timeSlice_2 tsTimeInterval  ?interval_1.
?timeSlice_2 ex:hasManager       ?timeSlice_3.
?timeSlice_3 tsTimeSliceOf  ex:Employee2.
?timeSlice_3 tsTimeInterval  ?interval_1
?interval_1 time:hasBeginning ?interval_1_START.
?interval_1 time:hasEnd ?interval_1_END.

4D-Fluents :N-ary relations :

?interval_0_END time:before ?interval_1_START.

Figure 6.17: Translation of a qualitative temporal operator connecting two triples.

translateSpatialQualitative(String subject,String spatialOperator,String
object): This method translates triples with a spatial operator as predicate (e.g
?x spatial:nof ?y). An example is shown in Figure 6.18.
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?Country spatial:locatedAt ?location_0.
?location_0 spatial:hasGeometry ?geometry_0.
ex:Greece spatial:locatedAt ?location_1. 
?location_1 spatial:hasGeometry ?geometry_1. 

?geometry_0.  spatial:Nof ?event_0.
?event_0 spatial:Nof ?geometry_1. 
?event_0 atTime ?interval_0

Triple : ?Country spatial:Nof  ex:Greece 

?Country spatial:locatedAt ?location_0.
?location_0 spatial:hasGeometry ?geometry_0.
ex:Greece spatial:locatedAt ?location_1. 
?location_1 spatial:hasGeometry ?geometry_1. 
?timeSlice_0 tsTimeSliceOf  ?geometry_0.
?timeSlice_0 tsTimeInterval  ?interval_0.
?timeSlice_0 spatial:Nof ?timeSlice_1.
?timeSlice_1 tsTimeSliceOf  ?geometry_1.
?timeSlice_1 tsTimeInterval ?interval_0.

4D-Fluents :N-ary relations :

Figure 6.18: Translation of a qualitative spatial operator.

translateSpatialQuantitative( String subject,String predicate,String ob-
ject,double pointX,double pointY): This method translates spatial quantita-
tive triples. The POINT(x,y) operator in the place of the object in a triple (e.g ?x
spatial:nof POINT(2.32,57.4)). An example is illustrated in Figure 6.19.

?Point spatial:locatedAt ?location_0.
?location_0 spatial:hasGeometry geometry_0.
?geometry_0 spatial:Sof spatial:dynamicPoint0

Triple : ?Point spatial:Sof Point(3.2,10.1)  

?Point spatial:locatedAt ?location_0.
?location_0 spatial:hasGeometry ?geometry_0.
?geometry_0 spatial:Sof spatial:dynamicPoint0

4D-Fluents :N-ary relations :

Figure 6.19: Translation of quantitative spatial operator.

6.5 GUI

The Graphical user interface provides the users with a more convenient way to place
and execute SOWL QL queries. It accepts user input and combines all the other
modules to produce the final output (the results of the query execution).
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Figure 6.20 illustrates a screenshot of the GUI as it is when the JAVA application
is executed. Figure 6.21 shows the GUI in full action (an ontology is loaded and a
query is executed) and enumerates its main parts.

1. Ontology Textfield: This textfield displays the full path name of the on-
tology that is loaded. If the user tries to load an invalid file or an inconsis-
tent ontology then the message “Ontology failed to load” is displayed at the
textfield.

2. Ontology loading flag: A green light is displayed if the ontology is success-
fully loaded, otherwise a red light is displayed.

3. Main menu buttons: The main menu of the application. It consists of three
buttons.

• Load Ontology: This button opens a dialogue showing the system files
so the user can browse and choose an OWL ontology file. By default it
is programmed to open a dialogue showing the files under the “ontology
files” directory which is inside the root folder of the application.

• Execute Query: Executes the query that is written in the query text
area.

• Exit Program: Closes the application.

4. Query Editing buttons: A set of buttons to help with query editing.

• New Query: Displays a dialogue asking the user to save the contents of
the query text area and the clears the area so a new query can be typed.

• Load Query: Opens a dialogue showing the files in the “query files”
directory (which is also inside the root folder of the application) so the
user can load a query. All SOWL QL queries have the .sowl extension.

• Save query: Saves the current query in the text area.

• Save as query: Prompts the user to save the query in the text area as
a file in the “query files” folder.

• Text editing buttons: Basic text manipulation. Cut, copy, paste,
select all, undo, redo.

5. Query text area: This is the area where queries are written. Syntax high-
lighting has been implemented so the user can distinguish variables, datatypes,
keywords etc.
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6. Results tab: The results tab is the first of the two tabs of the interface’s
lower panel. This is where the results of the query execution are shown in a
tabular form.

7. Messages tab: The second tab of the lower panel of the interface is used
to display messages regarding the query execution. If the query is incorrect
then error messages are displayed here. Otherwise, if the query is correct, the
translated query in SPARQL is displayed.

8. Interpreters panel: In this panel the system displays information about the
available interpreters. There are two smaller panels here. One for the temporal
interpreter that is used and one for the spatial one. If a temporal or spatial
model is recognized, by the ontology loader module, then the corresponding
interpreter is enabled and the current temporal or spatial model (e.g 4D-
fluents) is displayed. If no temporal or spatial model is displayer then both
interpreters are shown as disabled and a third panel pops up informing the
user that the system runs in “SPARQL mode”, meaning that all queries will
be treated as simple SPARQL queries because no dynamic models exist in the
ontology.

Figure 6.20: SOWL QL GUI: No ontology loaded.
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Figure 6.21: SOWL QL GUI: Query execution.

Figure 6.22: Interpreters Panel

The GUI is implemented using the JAVA Swing package.
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Conclusions and future work

In this work we introduced SOWL QL, a spatio-temporal query language which
extends SPARQL by enabling spatio-temporal data querying. The proposed query
language is fully compliant with the semantic web standards and extends SPARQL
with a powerful set of spatiotemporal operators enabling it to query dynamic data.
The query language is part of SOWL [10], an approach for handling temporal and
spatial knowledge in ontologies. SOWL handles both, time instants and temporal
intervals (and also semi-closed intervals) equally well using a sound and complete in-
ference procedure based on path consistency and also handles property restrictions
on fluent properties. SOWL applies on both, spatial and spatio-temporal infor-
mation, by offering support for representing and reasoning over topological and
directional spatial relations.

SOWL QL supports a powerful set of quantitative (interval and timepoint based)
and qualitative temporal operators and also supports a set of topological and di-
rectional spatial operators. Also, SOWL QL offers reasoning support through the
querying process.

Existing query languages such as t-SPARQL [109] and T-SPARQL [38], built-
upon representations such as named graphs and versioning respectively, do not
offer the expressive power of SOWL QL. Neither supports queries over qualitative
information, nor they are supported by reasoning over a rich in spatio-temporal
semantics ontological framework such as SOWL.

To show proof of concept, all language features are implemented in full and
supported by a software system for SOWL QL translation and processing consisting
of a query parser, an interpreter and a Graphical User Interface (GUI). The SOWL
QL system is available on the Web1

1http://www.intelligence.tuc.gr
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7.1 Conclusions

Summarizing, the contributions of this work are the following:

• SOWL QL is model independent so users don’t need to be familiar with the
underlying model representation. This is an advantage over languages like
SPARQL where knowing the model representation is required to be able to
write spatio-temporal queries.

• The language is capable of querying over both quantitative and qualitative
spatial and temporal information. SOWL QL currently offers a range of op-
erators wider than any other query language.

• SOWL QL supports quantitative temporal operators, all ALLEN operators
(as qualitative and quantitative) as well as, topological and directional spatial
operators.

• SOWL QL provides reasoning support to queries: If the quantitative argu-
ment of spatial or temporal operator is not explicitly defined, in the knowl-
edge base, then, prior to answering the query, the argument is first asserted
into the knowledge based and the reasoner is called for computing its rela-
tions with existing temporal or spatial information. Currently, all existing
query languages cannot handle such queries unless quantitative data given as
arguments are already in the knowledge base.

• SOWL is fully compliant with existing Semantic Web standards and speci-
fications. Being compatible with W3C specifications SOWL can be used in
conjunction with existing editors, reasoners and querying tools such as Protege
and Pellet without requiring specific software.

7.2 Future work

The following are important issues for future work:

• Extending our current spatial operators to work with arbitrary geometries
(e.g., polygons as stSPARQL [64] does) is an important issue for future work.
Right now the language is only capable of using points in spatial quantitative
queries.

• Query optimization is also an important issue for future work. Currently,
when executing spatio-temporal queries, in SOWL QL, the spatial parser is
always used before the temporal one during translation. A query optimizer
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may check on the size of partial answers produced by each query pattern or,
check on the number of spatial and temporal triples in a query and decide
which parser is better to use first.

• An almost orthogonal issue (to the above) is speed of search. Query response
time may be speeded-up significantly by incorporating into the query search
process an indexing mechanism on point and interval-based spatial and tem-
poral information. Currently when we are executing a temporal query all
intervals stored in the knowledge base are processed sequentially (i.e., all in-
tervals in the knowledge base are searched every time a new query is issued).
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