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Abstract

Computer Science nowadays is being associated with an increasing number of Scien-

tific fields, with one of them being Hydrology. One of the subjects of Hydrology widely

assisted by computers is fluid flow motion estimation. The fluid flow field contains in-

formation about the velocity of the flow as well as the flow characteristics, such as its

vorticity. The estimation of the flow field until now required the use of on-field mea-

surements with conventional equipment, such as accelerometers and allowed a narrow

time window for measuring certain hydrological natural phenomena, such as flash flood

streams. Computer Vision allows non-intrusive, precise and constant measurements of

the flow by using video data. Motion estimation approaches, however, must take into

account the dynamic nature of the fluid flow in order to provide accurate estimates of

the motion field. This thesis addresses the problem of motion estimation along with the

problem of motion pattern recognition for fluid flows. The proposed approach, which was

introduced by Chang et.al. [28] for the topic of fluid flow motion estimation, uses a statis-

tical estimation method combined with a differential framework to evaluate each possible

displacement. The outcome is a smooth global motion field representing satisfyingly the

major motions present in the flow.

The motion pattern recognition problem has long troubled Hydrologists since they

can not have an actual visualization of all the flow patterns present in the fluid flow

using existing conventional equipment. This leads to the loss of information related to

the flow characteristics. For this topic, this thesis presents two approaches which allow

the identification and characterization of flow patterns in the fluid motion field. The first

approach is based on the work of Prof. Einar Heiberg [30] and Andreas Andersson [44],

and allows the identification and classification of homogeneous plane wave and vortical

flow patterns using vector pattern matching and was implemented for the blood flow

characterizations in the human heart. The second is a novel correlation based approach

which uses the Mean Squared Error as means of vector pattern similarity measure. Both

approaches use the 2-Dimensional motion field of the fluid to identify and categorize

homogeneous and vortical flow patterns present in the flow.

In both Motion estimation and Characterization the thesis develops novel improve-

ments addressing either the efficiency or the computational complexity of estimation.

The proposed methods are applied and evaluated on actual video scenes of river flow

under different conditions.
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Περίληψη

Στις μέρες μας η Επιστήμη των Υπολογιστών σχετίζεται ολοένα και με περισσότερα άλλα

επιστημονικά πεδία με ένα από αυτά να είναι εκείνο της Υδρολογίας. ΄Ενα από τα θέματα στα

οποία η Υδρολογία έχει συσχετιστεί ευρέως με την επιστήμη των υπολογιστών, και συγκε-

κριμένα με τον κλάδο της Μηχανικής ΄Ορασης, είναι η εκτίμησή της κίνησης της ροής υγρών.

Το πεδίο ροής ενός υγρού περιέχει πληροφορίες σχετικά με την ταχύτητα της ροής, καθώς

και τα χαρακτηριστικά της, όπως ο στροβιλισμός. Η εκτίμηση του πεδίου ροής μέχρι τώρα

απαιτούσε επιτόπιες μετρήσεις με την χρήση συμβατικού εξοπλισμού, όπως επιτανχυσιόμε-

τρα, γεγονός που επέτρεπε μόνο ένα στενό χρονικό παράθυρο για τις επιτόπου μετρήσεις

συγκεκριμένων υδρολογικών φυσικών φαινομένων, όπως πλημμυρικά ρεύματα(χείμαρροι). Η

Μηχανική ΄Οραση επιτρέπει μη παρεμβατικές, ακριβείς και συνεχείς μετρήσεις της ροής με τη

χρήση βίντεο δεδομένων. Ωστόσο, οι διάφορες προσεγγίσεις για την εκτίμηση της κίνησης

πρέπει να λαμβάνουν υπόψη τη δυναμική φύση της ροής του υγρού, προκειμένου να παρέχουν

ακριβείς εκτιμήσεις για το πεδίο ροής. Η παρούσα διπλωματική εργασία ασχολείται με το

πρόβλημα της εκτίμησης της κίνησης καθώς και με το πρόβλημα της αναγνώρισης προτύπων

κίνησης που συμπληρώνουν την κύρια ροή του υγρού. Η προτεινόμενη προσέγγιση, η οποία

αρχικά αναπτύχθηκε από τον Chang et.al. [28] για το θέμα της εκτίμησης της κίνησης για

την ροή ενός υγρού, χρησιμοποιεί μια μέθοδο στατιστικής εκτίμησης σε συνδυασμό με ένα

διαφορικό πλαίσιο για την αξιολόγηση κάθε δυνατής μετατόπισης. Το αποτέλεσμα είναι ένα

ενιαίο ομοιογενές πεδίο κίνησης το οποίο αναπαριστά ικανοποιητικά τις κυρίαρχες κινήσεις

που υπάρχουν στη ροή.

Το πρόβλημα αναγνώρισης των προτύπων κίνησης έχει απασχολήσει σε μεγάλο βαθμό

τους Υδρολόγους, δεδομένου ότι δεν μπορούν να έχουν μια πραγματική απεικόνιση όλων των

μοντέλων κίνησης που υπάρχουν στη ροή του υγρού χρησιμοποιώντας τον υπάρχοντα συμ-

βατικό εξοπλισμό και, ως εκ τούτου, χάνοντας πληροφορίες σχετικά με τα χαρακτηριστικά

της ροής. Για το θέμα αυτό η παρούσα διπλωματική εργασία παρουσιάζει δύο προσεγγίσεις

που επιτρέπουν τον προσδιορισμό και τον χαρακτηρισμό των προτύπων ροής που υπάρχουν

στο πεδίο ροής του υγρού. Η πρώτη προσέγγιση βασίζεται στην δουλειά που παρουσίασαν οι

Καθ. Einar Heiberg [30] και Andreas Andersson [44] και η οποία επιτρέπει την αναγνώριση

και την ταξινόμηση ομοιογενών επίπεδων κυματοειδών και στροβιλοειδών κινήσεων, χρη-

σιμοποιώντας μια μέθοδο ταύτισης διανυσματικών μοτίβων και η οποία εφαρμόστηκε σε

περιπτώσεις ροής αίματος της ανθρώπινης καρδίας. Η δεύτερη είναι μια νέα προσέγγιση συ-

σχετισμού που χρησιμοποιεί το Μέσο Τετραγωνικό Σφάλμα(M.S.E.) ως μέτρο ομοιότητας

μεταξύ των διάφορων μοτίβων. Και οι δύο προσεγγίσεις χρησιμοποιούν το δυσδιάστατο

πεδίο κινήσεως του υγρού για τον εντοπισμό και την κατηγοριοποίηση των ομοιογενών και



στροβιλοειδών πρότυπων κίνησης που είναι παρόντα στη ροή.

Η παρούσα διπλωματική εργασία αναπτύσει νέες βελτιώσεις στοχεύοντας είτε στην βελτίωση

της απόδοσης είτε στην μείωση της υπολογιστικής πολυπλοκότητας τόσο στην εκτίμηση όσο

και στον χαρακτηρισμό της ροής. Οι προτεινόμενες μέθοδοι εφαρμόζονται και αξιολογούνται

πάνω σε πραγματικές σκηνές βίντεο ροών ποταμών κάτω απο διαφορετικές συνθήκες.
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Chapter 1

Introduction

Motion estimation is one of the key features in Computer Science in the fields of Image

Processing and Computer Vision. The extracted motion field is a source of information

used in numerous applications in computer science and robotics, such as video compres-

sion, motion compensation, visual odometry e.t.c., providing information about the 3-D

velocity field or even the scene formation allowing object or surface detection within the

viewed scene.

The motion information can be used by other scientific fields to export further infor-

mation. One of its applications is in Hydrology. The derived motion field from fluid flow

scenes such as rivers, oceans, contains information about the velocity field of the flow as

well as the flow types being present.

Motion field extraction in fluid flows can be especially difficult due to the dynamic

nature of fluid motion especially in natural phenomena such as rivers, streams and ocean

waves. Dynamic motion differs from the motion of rigid bodies as it is subjected to

forces, such as wind, which alter the motion. In order to detect this irregular and multi-

directional motion a number of optical flow models based on fluid dynamics have been

developed. Other techniques providing valuable results are based on statical estimation of

the intensity distributions along the image plane. Even block matching techniques yield

satisfying results of the perceived motion and are widely used in river flow extraction.

An essential aspect in Hydrology, despite the flow field motion, is the detection and

characterization of flow types. Flow types, such as vortices are of particular importance.

Their velocity fields provide additional information concerning the structural fatigue of

the surface with which the liquid interacts. Concerning this topic basic image processing
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pattern recognition techniques, such as moment invariants, show remarkable results and

are being widely used for this purpose.

Another difficulty, despite the dynamic nature of the fluid flows mentioned earlier,

is fluid flow data acquisition. Unfortunately, there are not many available image data

to be used, especially for natural phenomena, and even the ones used for the research

purposes are not widely accessible. Due to this fact, we had to use as much data as we

could harvest from field experiments as well as data found on the web. These factors

made the approach comparison essentially impossible, and thus, we had to rely on result

comparison between widely used and available methods we could lay our hands on.

1.1 Thesis Contribution

This thesis describes new approaches developed for the purpose of extraction and char-

acterization of the motion field for fluid flows, such as rivers, streams, waves e.t.c. We

present a new approach of a pre-existing motion estimation algorithm for fluid flows

based on the statistical estimation methodology, introduced by Chang et.al. [28] for 3-

Dimensional fluid flows, whose theoretical background is enhanced and altered in order

to be used for 2-Dimensional image data, which is presented in Chapter 4, section 4.1.

The presented algorithm shows satisfying results in identifying the main motions in the

fluid flow. We have also, added another aspect to this approach, the tracer identification

and visualization step, which allows the identification of tracers1 and their motion field

computation which can be associated with the motion field of the fluid, reducing the

computational cost.

Furthermore, we incorporate the extracted motion field into two motion pattern char-

acterization algorithms in order to identify and characterize the existing flow patterns.

The first algorithm is a variation of a pre-existing algorithm initially developed for 3-

Dimensional blood flow patterns in human heart, based on vector pattern matching. We

alter the theoretical background so that it can be used on 2-Dimensional fluid flow fields,

Chapter 4, section 4.2. The second algorithm presented is a simple vector matching al-

gorithm which uses the Mean Squared Error(M.S.E.), as the benchmark value for the

vector comparison, Chapter 4, section 4.3.

1The definition of tracers is presented in Chapter 3, in the Particle Tracing method class.
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1.2 Thesis Outline

Finally, we combine all the aforementioned methods as well as some pre-existing

known motion extraction methods, such as Lucas Kanade, Horn-Schunck, into an au-

tomated graphical tool, Fluid Flow Viewer (F.F.V.), suitable for extracting, identifying

and visualizing fluid flows.

1.2 Thesis Outline

In Chapter 2 we provide the background information needed for this thesis. We present

the motion extraction problem as well as the major motion estimation and optical flow

techniques developed for addressing this problem. Moreover, we present the pattern

recognition methods used in Computer Science and Computer Vision. In Chapter 3 we

state the motion extraction and characterization problem in fluid flows and we refer to dif-

ferent approaches that have been developed so far. In Chapter 4 we describe our approach

in the topics of motion field extraction and flow pattern characterization. In Chapter 5 we

evaluate the accuracy of the presented algorithms compared with pre-existing methods

and we also present a Graphical User Interface(GUI), developed for extracting, iden-

tifying and visualizing fluid flow motion, named Fluid Flow Viewer(F.F.V.). Finally,

Chapter 6 acts as an epilogue for this thesis, presenting our conclusions along with future

improvements. Reference is made to applications for which the presented GUI is intended

to. Also, some ideas for upgrading this graphical tool in the future are being mentioned.
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Chapter 2

Background

2.1 Motion Field and Motion Estimation

The Motion Field is the perspective projection of the velocity field of a viewer in a 3-

Dimensional scene onto the 2-Dimensional image plane. Motion Estimation is the process

of determining the motion field of a scene using adjacent frames in a video sequence. This

is an ill-posed problem as the data available are only spatial and temporal variations in

the image brightness pattern, from which we can only recover an estimate of the motion

field, known as optical flow.

2.2 Optical Flow

By the term of Optical flow, we refer to the apparent velocities estimated by the varia-

tions in the image brightness. The optical flow in the image plane and the motion field

of a moving object in a 3-Dimensional scene does not share an obvious relation. This

can be seen, for example, in the case of a uniform sphere, shown in the following fig-

ure(Figure 2.1). Under stationary light source, when the sphere is rotated the optical

flow is zero whereas the motion field follows the rotational motion. The reason the optical

flow is zero is due to the fact that the shading of the sphere, caused by the light source

illumination, is also stationary which combined with the uniformity of the sphere’s sur-

face, leads to no variations in the image brightness. Furthermore, in the case of a moving

light source and a stationary sphere, the optical flow seizes to be zero whereas the motion
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Figure 2.1: Uniform Sphere under a light source. Figure taken from B. Jahne [1].

field is zero.

As we can see, from the previous example, estimating the actual motion field in the

optical flow is difficult when we are facing cases where shading is present. To avoid the

brightness variations caused by shading effects we need to introduce some restrictions to

address the motion estimation problem.

2.2.1 Problem Restrictions

The first assumptions being made to address the shading effects are, that the surface

is flat and that the incident illumination is uniform across the surface. Using these

assumptions we can now express the brightness at a point in the image as proportional

to the reflectance of the surface at the corresponding point. Another assumption we

make, is that the reflectance varies smoothly and has no spatial discontinuities which

assures us that the image brightness is differentiable and also events such as occlusion

or transparencies which cause inconsistencies in the optical flow are not present in the

image sequences used during the implementation of the proposed algorithms. Given these

assumptions made, the only thing left to do is to derive an equation relating the variation

in the image brightness to the motion of the pattern.
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2.2.2 Brightness Constraint

The most basic assumption being made, in order to measure image motion, is that the

intensity structures of local time-varying image regions are approximately constant under

motion for at least a short duration as presented by Horn and Schunck [3]. Let I(x,y,t)

denote the image brightness at a point(x,y) in the image plane at time t. According to

the previous assumption the brightness at this point can be expressed as:

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t) (2.1)

where ∆x and ∆y is the displacement of the local image region at (x,y,t) after time ∆t.

Expanding the left side of this equation using Taylor series yields:

I(x, , y, t) = I(x, y, t) +
δI

δx
∆x+

δI

δy
∆y +

δI

δt
∆t+O2 (2.2)

where
δI

δx
,
δI

δy
,
δI

δt
are the partial derivatives of the image function in the x, y, and t

dimensions, and O2 the second and higher order terms which can be ignored. If we

combine the equations (2.1) and (2.2) the optical flow constraint equation is formed:

∇I · v + It = 0 (2.3)

where ∇I = (Ix, Iy) is the spatial intensity gradient and v = (u, v) is the optical flow

vector. Due to the fact that the time displacement is between two frames,∆t = 1 and

thus, it can be removed.

The optical flow constraint equation defines a single local constraint on image motion

(Figure 2.2). In the figure the normal velocity v⊥ is defined as the vector perpendicular

to the constraint line and is the velocity with the smallest magnitude which satisfies the

optical flow constraint equation.

2.2.3 The Aperture Problem

The constraint provided by the optical flow constraint line is not sufficient to compute

both components of v as the optical flow constraint equation allows as to estimate only

v⊥, which is the motion component in the direction of the local gradient of the image

intensity function. This is known as the aperture problem. At positions where there is
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Figure 2.2: The optical flow constraint line and the normal velocity component. Figure

taken from Beauchemin [2].

Figure 2.3: In the aperture position 2 the motion can be fully measured as there is

sufficient local structure whereas in aperture positions 1,3 only normal motions can be

estimated. Figure taken from Beauchemin [2]

a gradient in both directions, like a corner, there is sufficient intensity structure, which

allows the computation of the gradient in both directions. This can be seen in the

following figure(Figure 2.3) which illustrates how the component perpendicular to the

gradient is missing while in the case of corner-like structures there is sufficient information

to compute the optical flow vector, due to the high curvature the display.
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2.3 Optical Flow Computation Techniques

Various methods have been proposed for the computation of optical flow. Each of them

using a different approach to address the problem of calculating optical flow. In the

following sections we will present the major classes in which these approaches can be

classified, presenting their basic idea and some of their most known methods. Classes

such as differential methods, feature based methods and others will be presented.

2.3.1 Differential Methods

The Differential methods class uses the spatio-temporal derivatives of image intensities to

compute the image velocity field by assuming the image domain to be continuous in space

and time or in other words differentiable. Differential methods can be further categorized

into Global and Local methods using 1st and 2nd−order derivatives to compute the optical

flow.

• Global Methods

Global methods use (2.3) combined with a regularization term such as a smoothness

constraint to form a functional to be minimized over the image domain. Horn and

Schunck [3] was first to use a regularization by requiring a slowly varying optical

flow field. Ever since there have been many approaches made to this topic, such as

Bergen [4] and others.

Horn and Schunck: Horn and Schunk’s [3] method is one of the classic method

used for optical flow computation. The method uses the optical flow constraint

equation in conjunction with a smoothness constraint allowing the computation of

the optical flow to be done on the whole image, yielding a global flow field, which

would vary smoothly. To succeed this, a constraint is added in order to minimize

the square of the magnitude of the optical flow vector which combined with optical

flow constraint equation results in the estimation error to be minimized:

Etotal = Econst + w2Esmooth (2.4)

where Econst is the optical flow constraint equation deviation and Esmooth is the

smoothness constraint multiplied with a weighting factor w.
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The constraint equation and the smoothness constraint errors are expressed as

follows:

Econst = (∇I · v + It) (2.5)

Esmooth =

(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2

(2.6)

where
∂

∂x

∂

∂y
are spatial derivatives of the flow components along the x and y axis.

This estimation error can denote two characteristics for the optical flow field. The

first is the amount of deviation of the flow vector from the spatial and temporal

gradient and the second is the absence of smoothness in the flow vector field.

Horn and Schunk [3] by using a Laplacian estimation for the optical flow gradients,

end up with a system of two equations for every pixel point:(
w2 + I2

x + I2
y

)
(u− ū) = −Ix [Ixū+ Iyv̄ + It] (2.7)(

w2 + I2
x + I2

y

)
(v − v̄) = −Iy [Ixū+ Iyv̄ + It] (2.8)

in which ū, v̄: averages of the components of the flow vector which are calculated

from a spatial neighbourhood around the pixel of interest,Ix, Iy are the spatial

gradients and It is the temporal gradient, w is the weighting parameter.

This system of equations can be computed using an iterative method in which each

flow vector component is calculated using the previous iteration’s information:

un+1 = ūn − λ · Ix (2.9)

vn+1 = v̄n − λ · Iy (2.10)

where (un+1, vn+1) is the new optical flow velocity components and (ūn, v̄n) are

the average velocity components computed from the spatial neighbourhood at the

previous iteration and λ being expressed as follows:

λ =
[Ixū

n + Iyv̄
n + It]

w2 + I2
x + I2

y
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The use of Horn- Schunk’s method, results in the motion vectors being computed in

accordance with the neighbouring vectors which will result to homogeneous regions

in the image, and thus, producing a uniform flow field.

Ever since, various approaches have been introduced based on Horn and Schunk’s

method which aim to further improve the estimation of the motion field.

• Local Methods

Local methods use normal velocity information in local neighbourhoods to perform

a least squares minimization to find the best fit for v. One of the most popular

local method for optical flow computation is the one of Lucas and Kanade’s [5].

Lucas and Kanade: In Lucas and Kanade’s method the optical flow vector is

found by assuming that a spatial neighbourhood surrounding the pixel have similar

vectors. The flow at pixel(x,y) is approximated by using a weighted least squares

method:

Ev =
∑
~x∈Ω

W 2 (~x, t) [∇I (~x, t) · v + I (~x, t)] (2.11)

where W (~x, t) is the weight associated to each pixel ~x = (x, y) of the neighbourhood

Ω, ∇I are the spatial gradient and It is the temporal gradient.

The use of the weights is to decrease the importance of distant neighbours which will

produce higher error. Smaller weights will be associated to farther pixels reducing

the influence of the spatial and temporal gradients of the neighbouring pixels to the

computation of optical flow vector. Thus, we end up with a least squares problem

which solution will produce the optical flow vector v:

ATW 2Av = ATW 2b (2.12)

where A is a vector of the spatial gradients of the neighbourhood pixels, W is the

weight array for each neighbouring pixel and b is a vector of the temporal gradients

of these neighbouring pixels. The matrix ATW 2A is defined as follows:

ATW 2A =

[ ∑
W 2I2

x

∑
W 2IxIy∑

W 2IxIy
∑
W 2I2

y

]
If we solve for the optical flow v, we have:

v =
(
ATW 2A

)−1
ATW 2b (2.13)
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and can be found by summing the spatial derivatives of the neighbouring pixels

combined with the associated weights, as we have presented previously.

Both aforementioned methods rely on 1st-order intensity derivative to extract the

motion vectors. As we have seen these methods are susceptible to the aperture

problem, limitating the field of implementation as well the estimation results. This

problem may be resolved by differentiating the optical flow constraint equation to

obtain 2nd−order intensity derivatives, such as the one introduced by Nagel [12]

which shows that image points with high Gaussian curvature(which can be ex-

pressed as det (∇∇I)), such as grayscale corners, allow the estimate of full velocity

in closed form.

• Global versus Local Differential Methods

Local-based methods have numerous advantages compared to the Global ones. First

of all, the locality of the estimation region means that we do not have to rely

on the entire image, in order to extract good estimates for the motion vectors.

Furthermore, the local character of this method allows different regions to maintain

their vector information while global methods enforce a global uniform vector field.

This advantage makes this method ideal for estimating the optical flow in cases such

as the ones of occluding objects. In such cases, the objects have similar spatial

gradients but different orthogonal components. This aspect helps the discretion

between the flow field of the occluding objects, whereas the global based methods

would result in the mitigation of the flow field which will lead to the weakness of

these desired flow discontinuities.

On the other hand, local based methods are more sensitive to noise due to the

local nature of the estimation. This is something that does not happen in the

global methods due to the smoothness constraint and the global nature of the

estimation, which allows the motion information to spread over the image domain,

filling homogeneous regions and thus resulting in a dense optical flow field.

2.3.2 Correlation based Methods

Correlation-based approaches use the intensity conservation assumption of the optical

flow constraint. This allows the application of a similarity measure between the neigh-
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bourhood of the pixel in the initial image and a destination neighbourhood in the second

image. Maximization of the similarity measure means that we have found the best fitting

optical flow vector computed by the displacement from the initial to the final position

of the pixel between the frames. One disadvantage is that the optical flow vectors com-

puted are discrete, which may lead to information loss concerning the real motion. The

similarity measure can be expressed as:∑ ∑
x,y∈image domain

f (I (x, y, t) , I (x+ δx, y + δy, t+ δt)) (2.14)

which the summation of a function f applied to the spatial neighbourhood of the pixel(x,y)

given a displacement value between two adjacent frames, δt = 1. Most common similarity

measures used in correlation based methods are the product of the pixel values or the

sum of squared difference(SSD).

Correlation-based methods have a number of advantages. First of all, they are less

sensitive to noise than differential methods. The estimation will always be accurate as

long as the correct neighbourhood yields the highest similarity value compared to all the

other candidate neighbourhoods. Furthermore, they can be implemented to all image

structures, even to occluding structure cases and yield satisfying results.

However, despite the advantages, correlation methods display significant disadvan-

tages. One of the disadvantages is the computational cost due to the fact that we have

to calculate the similarity measure for a number of different displacements for each pixel

which in the case of large displacements they will lead to great computational cost. Fur-

thermore, if the displacement exceeds the area surrounding the pixel, then the optical

flow vectors computed are not accurate at all. Also, the size of the neighbourhood as

well as the search window used, affect the final result. The window has to be large

enough to contain enough information in order to find the correct result, and also has

to be proportional to the size of the search area for the displacement. Finally, in cases

of homogeneous areas correlation methods will result in ambiguous results due to the

similar intensity values present.

Block Matching:

Despite their disadvantages, correlation based block matching techniques are being

widely used. Most known methods presented in the block matching field are the Three
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Figure 2.4: Search Pattern of the Three Step Search algorithm. The figure was taken

from http://www.ece.cmu.edu/~ee899/project/deepak_mid.htm

Step Search Algorithm (TSS) introduced by Koga et al. [7], the Fourth Step Search

Algorithm (FSS) by L. M. Po and W. C. Ma [8], the Diamond Search Algorithm (DS)

by S. Zhu and K. K. Ma [9] and many others.

As expected, these algorithms use correlation- based methods with similarity mea-

sures such as the mean squared error (MSE), minimum absolute difference (MAD) and

sum absolute difference (SAD) for extracting the motion field. For eliminating the issue

of large and small displacements affecting the accuracy of the results the block match-

ing approaches use either varying window sizes instead of fixed window sizes for their

search(e.g. TSS algorithm) or different window shapes(e.g. Diamond Search algorithm,

Cross Search algorithm) or even both.

For example, the TSS, in the first step the search is based on 9 × 9 search window

at nine locations, in the second step the search is reduced in a 5 × 5 search window

surrounding the location determined by the first step and finally in the third step the

search window used has size 3× 3(Figure 2.4).
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Hybrid Correlation Based Methods:

Another approach used in correlation based methods is using correlation in conjunc-

tion with feature based methods. One good example, is the work of Barnard and Thomp-

son [6], which is a hybrid method using feature-based methodology in accordance with

correlation-based methods to determine similarity between points.

2.3.3 Feature based Methods

Feature based methods are based on the idea of focusing the estimation on the vector

which contain the most information which will give the best estimation for the motion.

The basic steps in this method are the detection of features and the determination of

correspondences between images. Furthermore, we need to find a way to match feature

points between images. The most often, methods used for this purpose are correlation-

based methods, such as squared correlation, absolute value difference, sum of squares

difference(SSD), yielding valuable results.

The only drawback of this method, is that features of interest must be selected care-

fully so that they are easy to identify and that they contain as much information as

possible in order to have accurate estimations. For examples, feature elements can be

considered corners whose curvature can provide accurate estimations for the optical flow

field.

2.3.4 Frequency based Methods

Frequency based methods use orientation sensitive filters, such as Gabor filters, in the

Fourier domain. Fourier- based methods allow the motion estimation in image struc-

tures, in which feature-based or correlation-based methods have a difficulty in estimating

their motion. This is due to the fact that the extraction of spatio-temporal energy, in

Fourier space, results in oriented energy patterns which may contain more useful/obvious

information for the motion estimation. This concept was first introduced by Adelson and

Bergen [10].
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Fourier space in signal processing is widely used since the functions describing a signal

can be expressed as a summation of cosine and sine functions allowing the analysis of the

function. Also, the computations in the frequency domain are done much easier which in

the case of image processing will reduce the computational cost for the motion estimation

process.

The Fourier transform, as presented in Beauchemin [2], of the brightness conservation

assumption, equation(2.1), can be expressed as follows:

Ī (k, ω) = Ī0 (k) δ
(
vTk + ω

)
(2.15)

where Ī0 (k) is the Fourier transform of the intensity Ī (x, t), δ is the Dirac delta func-

tion and k, ω denote spatio-temporal frequency. In this way, the optical flow constraint

equation can be expressed as:

vTk + ω = 0 (2.16)

This equation, according to Beauchemin [2]:”shows that the velocity of a translating 2-D

pattern is a function of its spatio-temporal frequency and forms a plane through the origin

of the Fourier space”.

2.3.5 Hierarchical Based Methods

Hierarchical Methods address the problem of displacements occurring over large areas of

the screen in cases where the frame rate can not capture accurately the rate of the motion,

due to its low speed. As mentioned before, in such cases correlation based methods do

not produce valid results, due to the fact that they are space limited with their search

window’s size.

The main idea behind the hierarchical approach is that images created from the initial

image with a decreasing resolution will allow us to compute initial motion estimations

which will be used as initial guesses of the motion vectors as we move to higher resolution

images of the initial image. This approach can be represented in a form of a pyramid

data structure such as a Gaussian or Laplacian pyramid(Figure 2.5).

Lower resolution levels of the pyramid will correspond to greater displacements. As

we proceed to higher resolution levels of the pyramid these motion vectors are further

constrained until the bottom of the pyramid or the input image is reached.
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Figure 2.5: Hierarchical Model for optical flow computation. This pyramid scheme was

taken from Beauchemin [2].

The hierarchical approach can be combined with almost all optical flow techniques,

for example as Beauchemin [2] mentions in his review, there have been approaches that

combine the hierarchical approach with correlation based methods, for motion vector

computation(Ananda [11]), or even with differential approaches, who use known differen-

tial techniques such as Horn- Schunck’s method, to compute the motion vectors at each

stage.

2.3.6 Method Comparison

All the aforementioned methods have their advantages and disadvantages, making them

ideal for specific flow cases but at the same time less effective on other.

Differential methods are computationally less effective compared to correlation and

hierarchical based methods but the local class tends to be more pruned to noise. Even

more the global differential class does not allow flow field discontinuities which in the case

of occluding objects can be essential but it is ideal when we are dealing with homogeneous

flow fields. The motion field propagation results in dense optical flow fields which are
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smoothed and spread uniformly in the image plane.

Although correlation based methods can be more computationally expensive they

are less sensitive to noise compared to the differential class. Furthermore, they will

result in the best estimation for the motion vectors as long as the correct destination

neighbourhood shows the highest similarity value. On the other hand, their accuracy is

directly related to the size of the search window. The size of the search window must

continuously calibrated according to the magnitude of the expected motion. Cases in

which large displacements occur and the size of the search window is small will result in

false estimations.

Frequency based methods, are fast due to the fact that the computation process is

performed in the Fourier domain. Also, image structures such as dot patterns which may

yield ambiguous results with correlation or feature based techniques, whereas Frequency

based methods will result in unique energy patterns and thus, resulting in more accu-

rate estimations. Even more the fact that every signal function can be expressed as a

combination of cosine and sine functions in the Fourier domain allows the analysis to be

easier.

Hierarchical methods can be combined with all the previous methods improving their

results with a cost in computational speed. The resolution discrimination allows the

estimated motion be more accurate and methods whose result is directly associated with

the volume of displacement such as correlation based or even differential, e.g. Lucas -

Kanade, to be more accurate. This due to the pyramid structure of hierarchical methods

which leads to the refinement of the estimated motion vectors as we move to higher

resolution stages. The fact that the estimation of the motion at each level is done based

on the previous estimated motion combined with the information of the current pyramid

level results in accurate motion vector field.

In conclusion, there is no best approach. Everyone has its weaknesses and everyone

thrives in specific cases. The choice must be done based on the expected motion vol-

ume(i.e. large or small displacements), on the noise present in the data, on the data

structure and nature and finally based on the importance of the computational cost.
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2.4 Pattern Recognition

Pattern recognition is a classification task. In image analysis, pattern recognition aims at

the detection and extraction of patterns from image data, as well as recognizing specified

classes of objects by features extracted from the image data. By the term pattern, we

refer to a subset of data that may be described by some well-defined set of rules. With the

process of detection, the aim is to find an unknown number of instances of a known kind

of patterns in the image, for example cars, whereas in the recognition process the task

is to recognise a detected object as one of a specific kind, e.g. sports cars. The pattern

detection class consists of methods concerning image segmentation, object matching and

object detection while the recognition class, consists of methodologies in the fields of fea-

ture computation/reduction, classification and clustering. Pattern recognition in image

analysis has numerous applications spanning to various fields of science, from automatic

analysis of satellite pictures (e.g., weather condition, water reserves, mineral prospects,...)

and analysis of medical images, to even identification of people from fingerprints, retinal

scans or handwriting.

2.4.1 Pattern Recognition as a Classification Task

Pattern Recognition as a Classification Task involves the task of classifying objects ac-

cording to feature values. Features are evaluated to separate objects into different classes.

The basic step of the classification process is feature detection. Prerequisite for feature

detection is the extraction of structures with common features using image segmenta-

tion. The step of segmentation is essential in the pattern recognition process because

often, features are not computed from single pixels but from pixel sets. Their compu-

tation is erroneous if feature values change over the set. From all the above, pattern

recognition as a process pipeline can be expressed as Image −→ Segmentation −→
FeatureComputation −→ Classification.

The classification process involves the grouping of patterns (samples) according to

their features into different classes. First of all the features to be used as a classification

measure must be decided so that they will be relevant to the problem. The next step

is to select the appropriate classification technique based on the type of the features.

There have been many techniques developed for pattern classification, which are being

categorized into supervised or unsupervised learning algorithms.
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Figure 2.6: Supervised learning work-flow diagram. At the first stage a model is defined

and trained using labelled data with known responses. After the model is trained it can

be used to predict response values using new unlabelled data.

2.4.2 Supervised Learning

Supervised learning algorithms use labelled data to train a function used for the classifi-

cation of unlabelled data. The variables under investigation can be split into two groups:

independent variables and dependent variables. The target of the analysis is to specify a

relationship between the independent variables and the dependent variable.

Supervised learning algorithms work as follows: Given a set of N training examples

of the form{(x1, y1) , · · · , (xN , yN)} such that xi is the feature vector of the i-th example

and yi is its label, a learning algorithm searches for an expression function h : X −→ Y

with X being the input and Y the output spaces accordingly, as displayed in (Figure 2.6).

The most widely used learning algorithms are Support Vector Machines, linear regres-

sion, logistic regression, naive Bayes, linear discriminant analysis, decision trees, k-nearest

neighbour algorithm, and Neural Networks (Multilayer perceptron).

2.4.3 Unsupervised Learning

In Unsupervised learning algorithms there are no labelled data to train a classification

function. The targeted variable is unknown or we have insufficient recorded cases of it.

In unsupervised learning the classification model inference and application both rely

on test data meaning that we cannot test our data and the only source of validation comes

from the resulted classification which may be used to further calibrate the classification

model(Figure 2.7). Approaches to unsupervised learning include methods such as clus-
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Figure 2.7: Unsupervised Learning model where the calibration of the classifier depends

on the resulted classification data.

tering (e.g., k-means, mixture models, hierarchical clustering), hidden Markov models,

blind signal separation using feature extraction techniques for dimensionality reduction.

2.4.4 Motion Pattern Recognition

One of the fields of computer vision in which pattern recognition has been widely used

is motion pattern recognition. In recent years there has been an increased interest in the

modelling and recognition of motion patterns. This motion information can be used in

numerous applications such as human activity recognition, modelling human activity in

robotics, blood flow types in the human heart, face recognition, fingerprint recognition

and many others.

Like all pattern recognition methods, the first stage of motion pattern recognition

methodologies, includes the most important motions to be segmented. In the second

stage, the optical flow is estimated on the basis of the motions detected in the previous

stage. To extract relevant motions, there have been many approaches spanning from

the most simple ones such as the use of simple correlation methods e.g.sum of squares

difference(SSD) along with clustering methods, e.g. k-means or EM, to more complex

methodologies based, for example, on a spatio-temporal filtering, or even probabilistic

and statistical methodologies.

Konstantinos Bacharidis 21 March 2014



2. BACKGROUND

Konstantinos Bacharidis 22 March 2014



Chapter 3

Problem Statement and Related

Work

3.1 Motion Estimation in Fluid Flows

Methods of detecting the apparent motion of fluid-like motion in a video of, for example,

clouds, ocean/river waves, and smoke have been one of the intensive research topics in

computer vision. Motion field extraction in fluid flows can be especially difficult due to

the dynamic nature of fluid motion. Dynamic motion differs from the motion of rigid

bodies as it is subjected to forces, such as wind, which alter the motion. Fluid motion

is the opposite of rigid body motion meaning that the positions among points in a fluid

change constantly and with an unknown scale. The motion analysis of fluids, requires the

consideration of the features present in fluid dynamics. According to Chang [28], a fluid

with constant density and temperature is described by a velocity field u and a pressure

field p, which depend on the space boundaries and change over time. The variation of

these features can be described using the Navier-Stokes equations [13]:

du

dt
=
∂u

∂t
+
(
u∇̇
)
u = −1

p
∇p+ v∇2u+ f (3.1)

∇ · u = 0 (3.2)

where v is the kinematic viscosity of the fluid, p is its density and f is an external force.

The first equation resembles equation(2.3) where in this case the unknown variable is
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the velocity vector. The presence of external forces such as gravity, the gradient field

of pressure and diffusion affect the way in which the velocity field varies over time.

Equation(3.2), as Chang mentions, denotes the incompressible nature of the fluid, whose

volume does not change over time. Based on the motion of fluids described by the Navier-

Stokes equations, we understand that fluids have non-rigid motion. Non rigid motion

means that methods based on affine translational models cannot describe accurately the

fluid motion.

There have been many approaches presented which try to estimated the fluid motion.

Some of them are based on fluid dynamics using a continuity equation describing a specific

feature of the fluid, such as the conservation of brightness or mass, or even differential

frameworks combined with a smoothness velocity constraint. Other methods, are based

on classical optical flow methods, such as differential methods e.g. weighted Lucas and

Kanade’s method, or even feature based methods along with correlation based methods.

The latter use natural or artificial particles, which are deposited into the fluid flow to

provide with more distinctive features which will improve the motion estimates. The

basic categories of these techniques, along with the most representative ones, will be

presented in the following section.

3.2 Related Work on Motion Estimation in Fluid

Flows

Optical flow algorithms are mainly based on the brightness constancy assumption, which

allows a mapping between adjacent frames based on intensity similarities. However, the

non-rigid nature of fluid flow requires the use of constraints with the form of either

clearly mathematical models or physically based feature constraint functions(i.e. con-

straint functions based on the physical properties and quantities of fluids)in order to

model the multi-directional nature of the fluid motion.

To address the problem of estimating the fluid flow motion there have been many

approaches which can be separated into the following categories:

• Methods based on Properties of Fluid Mechanics

• Methods based on Physical Properties of Waves
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• Particle based Methods

• Methods based on Statistical Estimation

3.2.1 Methods based on Properties of Fluid Mechanics

One of the approaches used in Fluid Flow motion estimation is incorporating known

optical flow techniques with the physical properties of fluid mechanics, such as the the

use of the conservation of brightness or mass.

Conservation of Mass Constraint: Conservation of mass can be a useful physical

constraint for the fluid motion, according to Wildes et al. [14]. If p(x, y, z, t) is con-

sidered as the density of a fluid then it is associated to a velocity field V (x, y, z, t) =

(U (x, y, z, t) , V (x, y, z, t) ,W (x, y, z, t)). If now we assume that this fluid respects the

conservation of mass law, then these two features can be connected as follows:

∇ · (pV) +
∂p

∂t
= 0 (3.3)

with ∇ the three-dimensional spatial gradient operator. For the case, where the

transaction along the image plane is modelled as yielding intensities proportional to an

object’s density we can express the image intensity values as:

I (x, y, t) =

∫ z2(x,y)

z1(x,y)

p(x, y, z, t)dz (3.4)

where z1(x, y) and z2(x, y) are the bounding surfaces of the specimen that is being imaged.

If we impose equation(3.3) to equation(3.4) we get:∫ z2(x,y)

z1(x,y)

∇ · (pV) dz +

∫ z2(x,y)

z1(x,y)

∂p

∂t
dz = 0 (3.5)

These equations, as it is presented by Wildes et al. [14], along with the work previously

done by Fitzpatrick [15], ends up in the following equation:

∇x,y · Iv +
∂

∂t
I = −

[
pn ·Vz2

z1

]
(3.6)
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where v is a new two-dimensional velocity field as the density-weighted average of the

original three-dimensional velocity field as:

v ≡
∫ z2
z1
pVx,ydz∫ z2
z1
pdz

(3.7)

For the case of null normal flow at the boundaries, the right-hand side of equation(3.6)

vanishes. Equation(3.6), allows us according to Wildes to derive that ”the two-dimensional

transmittance image of a three-dimensional fluid flow respecting the conservation of mass

in three dimensions is a two-dimensional flow that respects the conservation of mass in

two dimensions and it is known as the continuity equation”. The continuity equation,

based on the conservation of mass law, in fluid dynamics links the density and velocity

of a fluid.

Wildes et. al. [14] describes that the application of the conservation of mass flow

continuity equation to a temporally varying image yields:

Ixu+ Iyv + Iux + Ivy + It = 0 (3.8)

which can be also written as:

∇ · (Iv) + It = 0 (3.9)

where v = (u(x, y, t), v(x, y, t)) is the imaged flow, ∇ ≡
(
∂

∂x
,
∂

∂y

)
is the spatial gradient

operator, and subscripts denote partial differentiation. The previous equation, as we have

mentioned earlier, is the continuity equation and can be contrasted with the brightness

constancy constraint, equation(2.3).

The continuity equation constraint has been used by various researchers in fluid flow

motion estimation which incorporate it with additional constraints to further restrict the

velocity motion field and to ameliorate the effects of noise, such as Wildes et. al. [14] and

Nakajima et. al. [16], in which the continuity equation is used to follow a certain property

of the fluid, along with a smoothness velocity constraint based on the first derivative of

a velocity.

For example, Wildes et. al. [14] imposes a smoothness constraint cs and then follows

the methodology of Horn and Schunck. The measures of continuity and smoothness can

be combined and thus leading to a problem of the form:

min

∫ ∫
(λcc + cs)dxdy (3.10)
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with λ being a weighting parameter that trades off adherence to the continuity constraint

and smoothness of flow and the smoothness constraint is expressed as:

cs = u2
x + u2

y + v2
x + v2

y (3.11)

Minimization of the constraint equation with respect to flow parameters (u, v) variation

calculus problem and can be expressed using partial equations as follows:

∇2u = −λ (Itx + Ixxu+ Iyxv + 2Ixux + Iyvx + Ixvy + Ivyx + Iuxx) I (3.12)

∇2v = −λ (Ity + Ixyu+ Iyyv + Iyux + Ixuy + 2Iyvy + Iuxy + Ivyy) I (3.13)

The final optical flow field v is just the result of the numerical system of the matrices.

3.2.2 Methods based on the Physical Properties of Waves

Another approach, in the topic of fluid flow motion estimation, is based on the assumption

that many fluid-like motion changes are due to wave phenomena that lead to a brightness

change. This approach has been adopted by many researchers, such as Jahne et. al. [17]

which estimated the orientation of wave motion and Saikano [18] who applied a wave

generation equation along with a two-step optimization, and others.

From the aforementioned researchers, one of the most popular methods representing

this category is the one presented by Saikano [18]. He introduced a wave phenomenon-

based optical flow framework for fluid-like images in which a wave generation equation

from ocean engineering is used to model an image brightness change.

According to Saikano, if H(x, y, t) is the image intensity at pixel coordinates (x, y),

at time which is described according to the wave generation theory, the fluid motion is

described by a multi-directionality irregularity (MI) model as follows:

H (x, y, t) =
M∑
m=1

α∗mcos
(
kx
∗

m xcosϑ
∗
m + ky

∗

m ysinϑ
∗
m − 2πf ∗mt+ εm

)
(3.14)

where α∗m: amplitude, (kxm, k
y
m)∗: wave-number components, f ∗m: frequency, ϑ∗m: orienta-

tion, ε∗m: noise and M: the number of cosine functions used to describe the wave.

From this equation we can derive the following observations, first of all a wave motion

is multi-directional and also, that its motion is associated with features such as frequency,
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Figure 3.1: Example of a simulated irregular wave profile: Two-dimensional waves using

eq.(3.15) with M=150. Figure was taken from Saikano [18].

amplitude, wave-number, wavelength, height, and orientation. An irregular motion like

the wave motion can be represented by a number of cosine functions M(Figure 3.1).

The multi-directionality irregularity (MI) model used to express the image intensity

is associated to the optical flow model using Haussecker’s [19] model:

∇Iv + It =
d(physics)

dt
(3.15)

where

d(physics)

dt
=
d(H(x, y, t))

dt
(3.16)

where v(u, v) =

(
dx

dt
,
dy

dt

)
: optical flow, I: image intensity, ∇ =

∂

∂x
+

∂

∂y
, Inx =(

Ini+1,j − Ini,j
)

∆x
, Iny =

(
Ini+1,j − Ini,j

)
∆y

, Int =

(
Ini+1,j − Ini,j

)
∆t

, H: image intensity as express

by the MI model.

The previous equation means that the image brightness changes according to the

physical wave phenomena. Furthermore, Saikano imposes a constraint is in order to

ensure a more stable and estimation. If c =| v |= (u2 + v2) is the optical flow, then the

constraint introduced is:

c2 ∝| γ − f |1/2 (3.17)

where γ =
3g

16πh
, g: gravity acceleration and h: water depth.
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Figure 3.2: The two-step optimization algorithm used to minimize eq.(3.19) and com-

pute the optical flow components and the wave parameters. Figure was taken from

Saikano [18].

Saikano also, introduces an objective function in order to to estimate two optical flow

components along with five wave-related parameters which are the two wave-number

components, frequency, amplitude, and orientation:

E (u, v, kxm, k
y
m, fm, αm, ϑm) =

∑
Ω∈R2

ρimgvar(e0, σ) + λ1

∑
Ω∈R2

ρwaveconstraint(e1, σ)

+ λ2

∑
Ω∈R2

ρsmoothconstraint(e2, σ) (3.18)

where ρ(z, σ) = log
(
1 + 0.5 (z/σ)2) , ∂ρ/∂e = 2e/

(
2σ2+e2

)
, e0 =| It + Ixu+ Iyv −

∂H

∂t
|

, e1 =| u2 + v2 − α2 (γ − f 2
m)

1/2 |, e2 =| u2
x + u2

y + v2
x + v2

y |
Lastly, using a two-step optimization algorithm (Figure 3.2) they minimize the previ-

ous equation(3.19) in order to compute the optical flow components as well as the wave

related parameters. This is a recursive algorithm which minimizes the aforementioned

equation using as a means of comparison the deviation between the estimated frequency

and the one computed using the Bredtschneider energy spectrum:

B(f) = 0.25H2
1/3T1/3

(
T1/3f

)−5
exp−1.03

(
T1/3f

)−4
(3.19)

where H1/3: significant wave height, T1/3: significant frequency.

The advantage of this method is that the smooth and discontinuous motion in the

inhomogeneous image brightness of clouds, for example, as estimated by this method is
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estimated visually plausible, whereas the previous methods estimate only smooth and

uniform motion.

3.2.3 Particle based Methods

Another approach, on the topic of fluid flow motion estimation, is using Correlation

based methods along with Particle based methods. There have many methods developed

with the most representative ones being, the Particle Image Velocimetry method(PIV),

the Particle Tracking Velocimetry method(PTV) and the Space-Time Image Velocime-

try method(STIV). The aforementioned techniques are Particle based techniques using

optical flow methods such as Correlation based, feature based,e.t.c to estimate the fluid

flow motion.

Particle: By the particle, we define an element or a group of elements(pattern),

which can be used as a tracer, allowing its tracking along the frames. The displacement

of the tracer is later used for extracting the motion field.

Tracers can be grouped in two different classes:(1)natural tracers and (2)artificial

tracers. In the class of natural tracers we include elements such as leaves, water foam,

debris floating along the fluid flow. On the other hand, artificial tracers, are element

induced by humans in order to be used as tracers, such as balls and buoys.

Particle Image Velocimetry method(PIV):

In the Particle Image Velocimetry method the displacement of an image pattern in

the template window at a certain time point is estimated by searching the location of the

most similar image pattern in next time snap. Finally, the velocity is calculated from the

displacement of the image pattern from the first to second images divided by the time

interval between the first and second images.

There have been many approaches on the subject of the image pattern comparison in

the PIV method, such as simple correlation methods like the one presented by Bradley

et. al. [20], who used a linear correlation coefficient in a non-shifting window, or more

complex ones, such as the one introduced by Lecordier et.al. [21], who developed an

iterative evaluation program which allows the shifting and rotation of the interrogation

windows according to a previously estimated displacement field.
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Figure 3.3: The PIV technique implementation procedure in small scale flows such as

the measurement of fluid flows using laser beams as tracer pointers. Figure taken from

http://www.dantecdynamics.com/measurement-principles-of-piv.

PIV techniques have been successfully used various fields of Science such as in fluid

mechanics, in the measurement of fluid density or fluid flow , in aerodynamics measuring

the turbulence, or even in medicine for the measurement of blood flow. PIV techniques

are being used from the measurement of small scale flows (with the use of laser beams as

tracer pointers(Figure 3.3)), to the measurement of large scale flows such as rivers and

streams.

One of the most impressing works in the area of large scale flows are the those of

Fujita [23], Tsubaki et. al. [22] and Bradley et. al. [20]. All of them have developed

automated systems for the measurement of River and Stream flows using PIV techniques

and are now being used as surveillance systems for river flow monitoring(Figure 3.4).

For example, Bradley uses, as mentioned previously, a linear correlation coefficient R for
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Figure 3.4: Bradley’s System Layout and Study site at Clear Creek near Oxford, Iowa.

The selected area is video taped by a camera laid on top of a bridge. The video data are

used in the motion estimation step. The actual river flow velocity is computed using the

derived velocity field and some know ground points. Figure was taken from Bradley et.

al. [20].

similarity benchmark between the two sets of pixels:

R =

∑
l

∑
k (akl − ākl)

(
bkl − b̄kl

)√∑
l

∑
k (akl − ākl)2∑

l

∑
k

(
bkl − b̄kl

)2
(3.20)

where akl are the grey-scale values for pixels in the interrogation spot, and bkl are the

grey-scale values for the corresponding pixels in the search area and ākl, b̄kl the average

intensity values in the interrogation spot and the search area.

Particle Tracking Velocimetry method(PTV):

On the other hand, the technique of Particle Tracking Velocimetry (PTV), single

particle images taken from a sequence of frames are combined together in order to form

an image of the particle present in the sequence of frames(Figure 3.5) and it is known as

particle matching. PTV has been employed in many ways but essentially there are two

distinct types:(a) multiply-exposed single images and (b)singly-exposed multiple images.
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Figure 3.5: A comparison of the spatial resolution between PIV and PTV. Figure was

taken from Stitou and Riethmuller [25].

Multiply-exposed single image techniques,such as the one presented by Agui and

Jimenez [24], rely on relatively sparse seeding of the flow to avoid overlapping images.

A singly-exposed multiple image PTV technique is tracking a given particle through

sequential images which contain a relatively high density of particles.

Most of PTV implementations have relied on large search windows in the second

image of an image pair in order to track particles in the pair. This necessitates low

seeding densities to avoid pairing ambiguity. On the other hand, they tend to be more

accurate than correlation based PIV techniques since they are relatively unaffected by

the presence of displacement gradients.

There have been many approaches in the PTV class using various correlation based

techniques. Stitou and Riethmuller [25], for example, presented a PTV class algorithm in

which the particle extraction is based on an intensity level threshold. The threshold value

is determined using the local intensity distributions. The particle tracking is the hybrid of

a cross-correlation and a tracking method. Initially velocity distributions are computed

using the cross-correlation method at grid points and later, the particle matching is

carried out based on the velocity at the grid. To reduce the mismatching, the vector is

compared with the surroundings.

After comparison of PTV and PIV methods, in cases of high seeding density and

small particle flows, PIV methods appear to be the most accurate ones whereas, in cases
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of low seeding density and large particle flows, PTV methods exceed the PIV in accuracy.

Space-Time Image Velocimetry(STIV):

In the STIV method, the one-dimensional luminance distribution on the interrogation

line is combined with a two-dimensional space-time image (Fujita and Tsubaki [26], Fujita

et al. [27]). Then, the space-time image generated is analysed to obtain the velocity

component directed to the interrogation line direction. The gradient of the image pattern

indicates the speed in which the luminance distribution is propagated in the interrogation

line along the space- time image.

The calculation of the orientation angle of the interrogation pattern is useful because

it allows the rejection of non-coherent, to the appropriate motion vector, motion vectors.

From each frame, as shown by Fujita et al. [27], the orientation angle of the interrogation

line can be calculated and used to compute the coherence measure C:

C =

√
(Jxx − Jtt)2 + 4J2

xt

Jxx + Jt
(3.21)

where C is the Coherence measure, Jxx, Jtt, Jxt are structure tensors calculated as follows:

Jxx =

∫
A

∂g

∂x

∂g

∂x
dxdx (3.22)

Jtt =

∫
A

∂g

∂t

∂g

∂t
dtdt (3.23)

Jxt =

∫
A

∂g

∂x

∂g

∂t
dxdt (3.24)

where

∂g

∂x
=
gi+2 − 8gi+1 + 8gi−1 − gi−2

12∆x
(3.25)

where
∂g

∂x
is the 4th order central difference scheme and g(x, t) is the gray intensity level.

For example, as shown in Figure 3.6, the motion vectors belonging to the brick must

be excluded from the calculation of the mean velocity of the flow pattern. The exclusion

of the wrong motion vectors allows the computation of more accurate motion vectors for

the fluid flow.
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Figure 3.6: Laboratory flume flow visualized by tracer; (a) oblique-angled image and the

location of searching line (b) an example of STI for a thick searching line indicated in

(a). Figure taken from Fujita et al. [27].

The velocity components, according to Fujita’s and Tsubaki’s method, are calculated

using the orientation computed along the interrogation line as:

U =
Sx
St
tanφ (3.26)

where U is the average velocity, Sx is the length scale of the pattern in m/pixel, St is the

is the unit time scale of the time axis in sec/pixel and φ is the mean orientation of the

pattern along the interrogation line.

The main advantages of the STIV method against PIV techniques, are that (1)it is

faster in terms of calculation speed compared to PIV methods(Fujita mentions it can be

10 times faster), (2) it requires less memory because the computation is only carried out

using two adjacent frames whereas, PIV techniques require more than 2 adjacent frames.

On the other hand, the STIV method measures the mean velocity for downstream

flow cases whereas, LSPIV techniques measure two-dimensional instantaneous velocity.

Also, the STIV method cannot represent the detailed flow structure because it is an

one-dimensional measurement method.

3.2.4 Methods Based on Statistical Estimation

Another approach, is using statistical estimation methods to derive estimations about

the motion field. One of the most known approaches in this class is the one presented by
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Chang et.al. [28], whose method involves estimating a local flow probability distribution

function at each pixel using the STAR model and the data from a spatio-temporal neigh-

bourhood and then feeding the set of distribution functions into a global optimization

framework.

Statistical Estimation methods for determining flow vectors should be adopted since

the relative positions of neighbouring points change faster in a fluid than on a rigid body.

In order to estimate the dynamic fluid motion a stochastic fluid motion model based on the

characteristics of fluid motion, must be build. Chang et.al. [28], for example, considers the

flow vector at a pixel at a certain time as a random variable with a probability distribution

function, which indicates the probability of the pixel to be displaced in each position of

the destination neighbourhood. The flow vector at each pixel in the local spatio-temporal

region can be considered as a random sample from this distribution function. Once the

estimation of the probability distribution function is calculated, the flow vector of the

pixel is more likely to be consistent with a vector with a high probability and thus yielding

the flow vector.

The local distribution function, computed previously, defines the probability of every

potential velocity vector at a pixel. However, the motion field of a dynamic fluid actually

has a unique velocity vector everywhere, so Chang et.al. [28] proposed an optimization-

based method to extract a dense motion field with a unique velocity vector everywhere

from the set of local distribution functions. This leads to a smooth and dense motion

field, which describes the dynamic motion of fluids.

Our approach is based on Chang’s method, so we will present the theoretical back-

ground of this method in following Chapter, along with our diversifications on this method

and the impact they have in the performance of this method.

3.3 Pattern Recognition in Fluid Flows

Pattern Recognition in Fluid Flows addresses the need of analysing and visualizing the

fluid flow velocity data sets in order to extract important structures present in the flow,

such as shock waves, vortex cores, boundary layer separation and reattachment lines,

flow topology, and boundary layer characteristics.

Automatic extraction and visualization only of these important structures has many

applications in a wide variety of fields where there is a need to automatically select and
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visualize regions of interest. For example, one of the main applications is aerodynamics,

where vortices are typically considered as the most important structures in flow fields.

In fluid dynamics, such structures provide information about the fluid motion and

its nature, for example, vortices in turbulent flows helps to understand and explain the

inverse cascade phenomenon in which the energy of the flow concentrates itself in a few

large vortex-like structures. The vorticity of the fluid carries important information about

the nature of the flow measuring the swirl in a fluid.

3.4 Related Work on Pattern Recognition in Fluid

Flows

In this section, a number of feature extraction techniques will be discussed that have been

specifically designed for certain types of features. These techniques are often based on

physical or mathematical (topological) properties of the flow. Features that often occur

in fluid flows are vortices, parallel flow, converging and diverging flows. Those techniques

can be categorized into the following classes:

• Methods based on Image Processing

• Methods based on Vector Field Topology

• Methods based on Physical Characteristics

3.4.1 Methods based on Image Processing

Basic image processing techniques can be used for feature extraction from scientific data.

Edges or boundaries of objects are found by detecting sudden changes in the data values,

which are denoted by high gradient magnitudes, in these point of interest. Therefore,

basic image segmentation techniques, such as thresholding, region growing, and edge

detection can be used for feature detection.

However, in computational fluid dynamics, often grid types are used. Many techniques

from image processing cannot be easily adapted for use with grids. Furthermore, the fact

that motion pattern recognition deals with motion patterns, i.e. vector patterns, which
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are not characterized by a known range of vector values or intensity patterns, results in

the basic image processing techniques to be ineffective.

One way to convey image processing to vector fields is to define the convolution on

vector fields. In order to do so, a product of vectors has to be defined as the convolution

has to calculate the product of vectors. There have been several approaches using the

product of vectors, such as the one proposed by Heiberg [29], who defines scalar convo-

lution based on the scalar product of two vectors, or the one introduced by Ebling and

Scheuermann [31], used Clifford Algebra to express the product of vectors.

Vector Pattern Matching:

Heiberg [29],defines a scalar convolution on vector fields based on the scalar product

of two vectors:

sn(r) =

∫ ∫ ∫
Ω

U (ξ) ∗ Pn (r − ξ) dξ (3.27)

where sn is the filter response, U is the normalized vector field and Pn the filter mask

with direction n. This convolution is refereed as the scalar convolution.

Heiberg et. al. [30], uses this approach combined with different filter masks of known

patterns in order to identify blood flow patterns in the human heart, using 3-Dimensional

vector fields(Figure 3.7). The vector field is normalized and the filter mask weighted

with a rotational symmetric function. The filter mask is rotated in six directions evenly

distributed over a hemisphere and the convolutions of the six filters with the field of

interest are calculated. Finally, using a tensor of orientation created based on the squared

filter responses and the directions, they calculate the direction and similarity between the

filter patterns and the field (Figure 3.8). One of our approaches, in fluid flow pattern

recognition, presented in the following Chapter, is modification his approach, modified so

that it can be used for pattern recognition in 2-Dimensional fluid flow motion fields for

natural phenomenon, such as rivers and streams. Heiberg’s approach will be presented

in the next Chapter along with the proposed modifications.

Advantages and Disadvantages of this method : The advantages of Heiberg’s approach

are that it is a robust method insensitive to noise, due to the fact that is regional and

does not look only at local gradients. Also, this method is not limited in the choice of

only certain types of features to be examined. On the other hand, the disadvantage of
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Figure 3.7: Results of flow characterization of blood flow in the human heart and the

aorta as presented by Heiberg et.al. [30]. A complete vortex ring can be seen below the

mitral valve (the valve between the left atrium and the left ventricle) in a healthy normal

heart. The vortex core is shown as a white isosurface and streamlines are released from

the isosurface. The time in the heart cycle is the beginning of the atrial contraction,

when blood flows from the left atrium to the left ventricle. Streamlines were also released

in the valve orifice.

this method is that it only works on symmetric filter masks. Also, the accuracy of this

method has not yet been tested for 2-Dimensional field, leaving a window for research.

Clifford Convolution in Vector Pattern Matching:

Ebling and Scheuermann [31], used Clifford Algebra to express the product of vectors.

In Clifford Algebra [32], a multiplication of vectors supplies us with sinus and cosinus of

the angle between the two vectors and the plane in which the angle is measure. Therefore,

Clifford Convolution for pattern matching of the vector field and vector field masks gives

the direction of the structure.

Having found the direction of the structure then the vector filter masks can be rotated

in the appropriate direction. The scalar convolution of the rotated filter mask and the

vector field is computed as a similarity measure. In 2-D space three directions are enough
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Figure 3.8: Patterns used by Heiberg et. al. [30]

for extracting similarity measures for each filter mask, whereas in 3-D space there is a

need for six directions evenly distributed on the circle or the sphere. The similarity values

can be visualized using iso-surface algorithms like matching cubes.

Advantages and Disadvantages of this method : The advantages of this method are that

it is not limited to any filter masks and it is insensitive to noise and at least as precise

as the one of Heiberg. On the opposite this method has not yet tested for irregular grids

and the only accuracy tests were made for a gas furnace chambers(Figure 3.9).

3.4.2 Methods based on Vector Field Topology

Another approach to feature extraction is the topological analysis of 2D linear vector

fields, which is based on detection and classification of critical points. These are the

points where the vector magnitude is zero. The concept of critical points in feature

extraction was introduced by Helman and Hesselink [34], who presented a method in

which by computing the eigenvalue and eigenvectors of the velocity gradient tensor, the

critical points can be classified and tangent curves can be computed.

According to Post, Vrolijk et. al. [35], critical points can be clustered to attract-

ing/repelling nodes, saddle point, and spiral/saddle(Figure 3.10). Using this informa-

tion, a schematic visualisation of the vector field can be generated. Critical points are
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Figure 3.9: Parts of a gas furnace chamber as present by the method of . Pattern

matching of the vector field of the chamber and 3× 3× 3(red), a 5× 5× 5 (yellow) and

a 8 × 8 × 8(green) rotation mask was computed. The similarities are visualized using a

marching tetrahedra with an isovalue of 0.5. On the right, the main inflow of the gas is

shown. At the bottom, some streamlines are drawn additionally. Figure was taken from

Ebling and Scheuermann [31].

widely used in fluid flow vector field characterization due to the fact that their patters

can represent the flow features present in a fluid flow and can be expressed in the form

of a graph known as a topological skeleton(Figure 3.11).

One of the approaches, which combines image processing methods and critical point

methodology is the one presented by Schlemmer et. al. [33], in 2007. Their approach

for analysing 2-Dimensional flow field data is based on the idea of invariant moments.

Their approach supports the computation of moments at multiple scales, facilitating fast

pattern extraction and recognition. This can be done for critical point classification, but

also for patterns with greater complexity.

Moment Invariants in Vector Pattern Matching:

Moment Invariants, a technique known from image understanding, can be used for

pattern recognition in scalar data. Schlemmer et. al. [33] presented an approach for
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Figure 3.10: Vector field topology: critical points classified by the eigenvalues of the

Jacobian. R1 and R2 correspond to the real parts of the eigenvalues, whereas I1 and I2

correspond to the imaginary parts. Figure taken from Post, Vrolijk et. al. [35].

Figure 3.11: Vector field topology: a topological skeleton of a flow around a cylinder,

where at: attachment, ce: center, de: detachment and sp: saddle point. Figure taken

from Post, Vrolijk et. al. [35]

analysing 2-Dimensional flow field data using the concept of complex invariant moments

generalized to vector-valued functions:

c
′

pq =

∫ ∞
−∞

∫ ∞
−∞

(x+ iy)p (x− iy)q f(x, y)dxdy (3.28)
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where f : R2 −→ C w R2 be a map from R2 with f 6= 0, (p + q) is the order of f with

p, q ∈ N and i =
√
−1. By application of the binomial theorem complex moments of

arbitrary order can be represented as linear combinations of regular moments:

c
′

pq =

p∑
j=0

q∑
k

(
p

j

)(
q

k

)
(−1)q−kip+q−j−kmj+k,p+q−j−k (3.29)

with m being the regular moment:

mpq =

∫ ∞
−∞

∫ ∞
−∞

xpyq f(x, y)dxdy (3.30)

Schlemmer et. al., derived a a basis B of order two of invariant moments, incorporating

translation and scale invariance:

B = {c01, c00c02, c11c02, c10c
2
02, c20c

3
02} (3.31)

Using this basis they define abbreviations for their complex-valued basis elements which

will be used as a similarity measure between the filter mask and the field:

Ψ1 = c01,Ψ2 = c00c02,Ψ3 = c11c02,Ψ4 = c10c
2
02,Ψ5 = c20c

3
02 (3.32)

The function f is created by convolving, mirrored filter masks with the field enhanced

by a Fast Fourier Transform. This function is then inserted in moments presented in

eq.(3.41), whose computation result is used as similarity measure.

In order to describe all the vector patterns present in the field, a moment pyramid can

be constructed which contains the moment values for different scales of the filter masks.

Moments in Critical point Visualization: According to Schlemmer et. al. [33], the

method presented allows the observation of critical points which are considered to be a

special class of patterns. Invariant moments have certain properties for critical point fea-

tures , i.e., clockwise rotation, convergence, divergence, or saddles. Figure 3.12 presents

the invariant moment values for proto-typical flow features as computed using the afore-

mentioned equations.

Looking at the results, as Schlemmer mentions, we can see that only the first-order

invariant moment Ψ1 = c01 is non-zero for most of the observed features and that rotation
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Figure 3.12: Invariant moment values for proto-typical flow features. Figure taken from

Schlemmer et. al. [33].

patterns have a only imaginary value in c01. These facts can be used to form a simple

algorithmic approach for classifying these kind of features.

Advantages and Disadvantages of this method: One advantage of this method is that

is invariant to translation, scaling and rotation. Also, this method is able to recognize

structures that are reversed with respect to any axis. On the other hand, the need for

a moment pyramid as look up table adds computational cost to this method. Another

disadvantage is the need of using circular regions for our comparison in order to succeed

rotation invariance limits the range of the region to be recognized.

3.4.3 Methods based on Physical Characteristics

In this class of methods, can be categorized methods which use physical characteristics

of the features in order to detect them, for example the term of vorticity or the curvature

characteristic in order to detect vortical structures. This methods mainly focus on the

detection of vortical structures, such as vortices, and can be distinguished in two major

categories:

• Velocity-gradient based methods

• Curvature based methods

Velocity-gradient based methods:

One of the physical characteristics of vortices or vortical structures is their vorticity.

The magnitude of the vorticity vector ω can be used for detecting vortices and vortical

flow but this classification can be false in cases concerning wall bound flows. This is due
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Figure 3.13: Streamlines with centers of curvature. This figure was taken from Sadarjoen

et al. [38].

to the fact that |ω| does not allow the distinguish between rotation caused by shear due

to topological formations and the one caused by swirling motion.

Approaches belonging to this class of methods, use velocity gradients to estimate the

existence of vortices. For example, Chong et al. [37] defined a vortex core as a region

where the eigenvalues of ∇u are complex, where u is the velocity field. Other approaches,

make use of the second derivative for identifying the curvature of a vector field and thus,

the vortex, or use the vorticity combined with wavelet transforms to estimate position

and size of vortices in two-dimensional vector fields.

Drawbacks of this method : Most of the algorithms based on velocity gradients the are

noise sensitive, since they use local estimates of the derivative.

Curvature based methods:

Curvature-based methods estimate curvature in the flow field in order to detect vor-

tical flow or strongly curving flow.

One of the most known approaches using the concept of curvature to detect vortex

cores is the one introduced by Sadarjoen et al. [38]. In this approach the curvature at each

point of the input field is calculated and used for estimating the distance and direction

to a vortex center.
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Figure 3.14: Result of this method for an image taken in the Pacific Ocean with selective

streamlines, (blue)indicates the detected vortices, (yellow)other motions. This figure was

taken from Sadarjoen et al. [38]

The curvature is estimated from streamline points using the differential geometric

properties of streamlines. The CCD is estimated as follows: at a streamline they deter-

mine the center of curvature of its osculating circle. The curvature centers are used to

denote the presence or absence of a vortex according to Sadarjoen:” If the streamline is

(nearly) circular, the curvature centers will be concentrated in a region or even coincide,

which indicates the presence of a vortex(Figure 3.13a). If the streamline is not circular,

the curvature centers will be scattered in space, which indicates the absence of a vortex

(Figure 3.13b)”.

The detected vortex centers are then gathered to form a curvature center distribution

(CCD), which can be considered to be a vortex core likelihood. High value of curvature

centers, high likelihood, in this field may indicate a vortex(Figure 3.14).

Advantages of this method : This method compared to the velocity gradient-based

methods, has the advantage that is noise insensitive due to the fact that the characteri-
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zation is not local.

Drawbacks of this method : The drawback of this approach, as Heiberg et. al. [30]

presents in his review of these methods, is that in helical flow cases the curvature cannot

be estimated properly as well as the position of the vortex center in cases of abrupt flows

containing curved flows adjacent to vortexes.
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Chapter 4

Proposed Approach

In this chapter, we will present our approach for the topic of Motion Estimation in Fluid

Flows, by introducing a new version of the method presented by Chang et.al. [28], which

belongs to the Statistical Estimation based methods for fluid flow motion estimation.

Furthermore, we will be introducing two approaches for the subject of Motion Pattern

Recognition in Fluid Flows. The first is a new version for the method introduced by

Heiberg et. al. [30], and belongs to the Image Processing based methods for the Motion

Pattern Recognition in Fluid Flows. The other approach presented belongs also to the

Image Processing class and is a simple correlation based method based on the Mean

Squared Error(M.S.E.).

4.1 2-D Statistical Estimation of Fluid Flows

Our approach for the subject of Motion Estimation in Fluid Flows, is based on the Sta-

tistical Estimation approach introduced by Chang et.al. [28]. Chang’s approach is the

most representative method of the Statistical Estimation class and succeeds in estimating

the fluid flow motion field successfully surpassing algorithms such as Lucas and Kanade’s

multi-scale algorithm. The algorithm can be categorized in the class of Differential Meth-

ods for Optical Flow extraction and consists of 2 basic steps: (1)The displacement prob-

ability step, in which a local distribution indicating the probability of each displacement

in a local region is formulated and computed, and (2) the global optimization step, which

computes a global unique velocity field, and thus, yielding a smoothed flow field.
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Figure 4.1: Flow diagram presenting the the two basic steps/stages of the presented

approach. The first stage results in a motion field with discrete displacements whereas

the second stage in a smooth global motion field, which if implemented for every pixel

will result in a dense optical flow field.
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These two basic steps and their components as well as their affect on the estimated

motion field are represented in the form of flow diagram, in Figure 4.1. As we can see the

first stage, which is the no global optimization step, calculates the transaction coefficients

and thus, the local distribution functions and will result in a motion field whose motion

vectors will have discrete valued magnitudes. On the other hand, the second stage,

the global optimization step, uses the information of the first stage formulating a cost

function whose minimization will lead to a smooth global motion field, which if computed

for every pixel will result in a dense optical flow field.

What is the difference of our approach?

First of all, in the amount of data used for the motion estimation, Chang et. al. uses

the spatio-temporal neighbourhood(3-Dimensional) for the estimation step, whereas our

approaches uses only the spatial neighbourhood(2-Dimensional). This aspect decreases

the information used as well as the computational cost but affects the quality of the

estimation.

The second difference is in the global optimization step, in which a basis function is

used to convert the estimation into into a differentiable function, in order to impose a

global velocity field. Chang et. al. uses a tensor product of cosine functions as the basis

function, whereas in our approach, a Gaussian function is selected and compared with

the cosine version.

Furthermore, in order to succeed the best displacement estimation for the velocity

field in the global optimization, a conjugate gradient algorithm is preferred. However,

the authors unfortunately do not specify which of the existing conjugate gradient methods

is used, so we had to select which algorithm to use.

Moreover, we have provided with all the theoretical background needed for the least

squares process along with the connection between the coefficients and the brightness

constraint equation, which were absent from Chang’s approach.

Lastly, we have incorporated an additional aspect to the presented approach, the

tracer identification and visualization step. Our approach supports the identification of

artificial(e.g. floating balls) as well as natural(e.g. foam) tracers and the calculation of

their motion field. The motion field of the tracer elements, can be associated with the

motion field of the fluid flow and thus, resulting in the computation of the fluid flow

motion field average velocity magnitude.
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4.1.1 The Statistical Estimation Basis

The dynamic nature of the fluid flow, according to Chang, results in the relative positions

of neighbouring points to change faster in a fluid than on a rigid body. Therefore, a

stochastic fluid model can be used to determine the fluid motion field. The basis of this

stochastic model, is that the flow vector at a pixel at a certain time can be considered as

a random variable with a probability distribution function.

This probability distribution function at a pixel (xs, ys) at a certain time t can be

represented as, φxs,ys,t(xd, yd), with (xd, yd) ∈ Ds, where Ds is the set of destination pixels,

which is often a neighbourhood of the pixel (xs, ys). For this distribution function we can

apply that
∑

xd,yd∈Ds
φxs,ys,t(xd, yd) = 1.

Assuming that all the pixels belonging to the spatial region, centered at (xs, ys, t),

all share the same probability distribution function for their flow vectors, then the flow

vector at each pixel in the local spatial region can be considered as a random sample

from this distribution function1.

Therefore, as Chang mentions, the statistics of the flow vectors in the local region

can be used as an approximation to this distribution function. Then according to Chang:

”once we have the estimation of the probability distribution function, the flow vector

at the center pixel (xs, ys) is more likely to be associated to the vector with the highest

probability”.

4.1.2 Estimation of the Distribution function

The local distribution functions can be estimated using the Spatio-Temporal Autoregres-

sive Model(STAR), which is a version of the Autoregressive model(AR) generalized to

include the spacial neighbourhood:

s(x, y, t) =
m∑
i=1

Ais (x+ ∆xi, y + ∆yi, t+ ∆ti) + n(x, y, t) (4.1)

where s is a state or appearance variable at time t, Ai are r×r, (s ∈ Rr) matrix constants

which characterize the sequence, ∆xi,∆yi and ∆ti specify the neighbourhood structure

of the model and n is drawn from a zero-mean noise distribution. AR models are used for

11st Difference:Chang et. al use the spatio-temporal region.
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predicting the value of a state variable s at time t. The prediction is a linear combination

of m previous values.

For the case of images, and by using the brightness constancy assumption, the state

variables can be replaced with image pixel intensity. The coefficient Ai indicates the

degree of correlation between pixel(x, y) at time t and pixel(x+ ∆xi, y + ∆yi) at time

t+ ∆ti. By assuming a casual neighbourhood, then the coefficient Ai can be considered

as proportional to the probability of the event the fluid at pixel(x+ ∆xi, y + ∆yi) to

come from the pixel(x, y), after a time interval ∆ti > 0, considering the pixel(x, y) as the

source of the flow:

I(x, y, t) =
m∑
i=1

AiI (x+ ∆xi, y + ∆yi, t+ ∆ti) (4.2)

where I(xs, ys, t): image intensity at pixel(xs, ys). To estimate the probability distribution

function at a pixel(xs, ys), we have to estimate the probability the fluid pixel(xs, ys)

actually ending up at the pixel (xs + ∆xi, ys + ∆yi) in the next frame, so ∆ti = 1 and

therefore the local probability distribution at the pixel(xs, ys) becomes:

φxs,ys,t (xs + ∆xi, ys + ∆yi) ≈ Ai (4.3)

where (x+ ∆xi, y + ∆yi) ∈ Ds.

Connection between the STAR model and the gradient constraint equa-

tion:

According to the pre-mentioned information, the STAR model can express the inten-

sity of a pixel ~x = (xs, ys) based on the probability of displacement of the pixel to a

destination region in the next frame(eq. 4.2). The equation (4.2) describing this effect

can be expressed as follows:

I(x, y, t) =
∑
D

AiI (~x+ ~vi, t+ 1)

=
∑
D

Ai (I (~x, t) +∇I ~vi + It (~x, t))

=
∑
D

AiI (~x, t) +
∑
D

Ai∇I ~vi +
∑
D

AiIt (~x, t)

(4.4)
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Based on the fact that the coefficients Ai are actually transition probabilities for a casual

neighbourhood then we have
∑

D Ai = 1 and equation(4.4) can now be further analysed

as follows:

Equation(4.4) = I (~x, t) +
∑
D

Ai∇I ~vi + It (~x, t)

= I (~x, t) +∇I
∑
D

Ai~vi + It (~x, t)
(4.5)

where ~vi =

(
dxi
dt
,
dyi
dt

)
= (ui, vi).

From this equation we can derive that every possible flow vector is determined by its

coefficient Ai. If we assume that all the flow vectors are samples of a general family of

vectors denoted by ~v then eq.(4.5) becomes:

I(x, y, t) = I (~x, t) +∇I
∑
D

Ai~vi + It (~x, t)

= I (~x, t) +∇I~v + It (~x, t)

= ∇I~v + It (~x, t) = 0

(4.6)

We end up with the gradient constraint equation, which means that the coefficients Ai

form an extra constraint on the family of the allowed vectors denoted by the gradient

constraint equation.

4.1.3 Coefficient Estimation Process

As mentioned previously, all pixels in a spatial neighbourhood Ns, centered at (xs, ys, t),

all share the same distribution function, which means that for every pixel in Ns we get a

similar equation like equation(4.2). The distribution coefficients can be solved using the

system of normal equations for least-squares when the number of pixels in Ns is larger

than the number of pixels in Ds.

Least Squares Method for Coefficient Computation:

Let A = [A1, A2, . . . , AD]T be an D × 1 array of the transition probabilities of the

pixel(xs, ys) , to the possible displacement positions at the destination neighbourhood Ds

at the next frame, and ks = [ks1, ks2, . . . , ksD]T , ks be a D×1 array of the pixel intensities

at the possible displacement positions in the destination neighbourhood Ds for the pixel
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(xs, ys, t). For each pixel belonging to the spatial neighbourhood Ns, there are equivalent

arrays, such as the ones described. Our goal is to find the coefficients which will give us

the best estimation for the displacement probabilities.

The Least Squares criterion is expressed as follows:

J (A) =
N∑
s=1

(
ms − kTs A

)2
(4.7)

with ms = I(xs, ys, t) denoting the intensity of pixel(xs, ys) ∈ Ns and N being the number

of elements in the spatial neighbourhood Ns.

Minimizing the previous equation we get:

N∑
s=1

ks
(
ms − kTs A

)
= 0⇒

(
N∑
s=1

ksk
T
s

)
A =

N∑
s=1

(ksms) (4.8)

Furthermore, if we define K as the table with all the vectors with values the intensities for

all the possible positions of a transition in the destination neighbourhood Ds for each of

the spatial neighbourhood Ns, centered at (xs, ys), and M as the table with the intensities

of the pixels in the spatial neighbourhood Ns:

K =


kT1
kT2
...
kTN

 =


k1,1 k1,2 · · · k1,D−1 k1,D

k2,1 k2,2 · · · k2,D−1 k2,D

· · · · · · . . . · · · · · ·
kN−1,1 kN−1,2 · · · kN−1,D−1 kN−1,D

kN,1 kN2 · · · kN,D−1 kN,D

 M =


m1

m2
...
mN

 (4.9)

where ks,i = I (xs + ∆xi, ys + ∆yi, t+ 1) is the intensity at the destination pixel(xs + ∆xi, ys + ∆yi) ∈
Ds at the next frame, D is the number of elements in the destination neighbourhood Ds

and N is the number of elements at the spatial neighbourhood Ns.

Based on the above, equation(4.8) becomes:(
KTK

)
A = KTM ⇒ A =

(
KTK

)−1
KTM (4.10)

The solution of equation(4.10) yields the coefficients Ai, and thus, the transition proba-

bilities of the destination neighbourhood Ds for the pixel(xs, ys).

However, as Chang denotes, the least squares method does not guarantee that
∑D

i=1Ai =

1 then the local distribution function for a given pixel will be equal to the transition prob-

ability for the pixel in the next frame, to the sum of the transition probabilities for the
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destination neighbourhood:

φxs,ys,t (xs + ∆xi, ys + ∆yi) ≈
Ai∑D
j=1Aj

(4.11)

4.1.4 Coefficient Pruning

Due to the random and noisy nature of the motion of fluids we need to have a good

estimation set for the parameters of the local distribution function to get the best fitting

for the input data.

To improve the fitting data rates, Chang et. al. [28] suggest the application of a

pruning process to the coefficients setting the coefficients that are not needed to zero.

The pruning is based on Schwarz’s Bayesian Criterion (SBC) which is implemented along

with a binary search algorithm in order to find the number of non-zero coefficients.

The number of non-zero coefficients is constantly changing until the SBC criterion stops

minimizing:

SBC = |Ω|lnσ2
a + p ln|Ω| (4.12)

where |Ω| is the data set size, p is the number of coefficients and σ2
a is the estimated

innovation variance. Algorithm 1 describes the pruning process.

For the computation of the SBC the estimated innovation variance is expressed as

follows:

σ2
α =

1

|Ω|

|Ω|∑
i=1

(xi − x̄i)2 (4.13)

where xi is the intensity of the pixel, x̄i is the estimated intensity for the pixel computed

as follows:

x̄i =

∑D
j=1AjI (xi + ∆xj, yi + ∆yj, t+ 1)

D
(4.14)
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in which D is the number of the coefficients.

Data: Coefficient array A
Result: Pruned coefficient array Apr

Sort the array into descending form;
Calculate the SBC value, sbc0;
Set half of the coefficients with smallest magnitude to zero;
Execute least-squares again for the remaining coefficients to obtain a new SBC
value, sbc1;
if sbc0 > sbc1 then

while sbc0 > sbc1 do
Set sbc0 = sbc1 ;
Set half of the coefficients with smallest magnitude to zero;
Execute least-squares again for the remaining coefficients to obtain a new
SBC value, sbc1;

end
Restore the coefficients set previously to zero;
The non-zero coefficients are the output array Apr;

else
Restore all the coefficients set to zero;
Set half of the coefficients with biggest magnitude to zero;
Execute least-squares again for the remaining coefficients to obtain a new SBC
value, sbc1;
if sbc0 > sbc1 then

while sbc0 > sbc1 do
Set sbc0 = sbc1 ;
Set half of the coefficients with smallest magnitude to zero;
Execute least-squares again for the remaining coefficients to obtain a
new SBC value, sbc1;

end
Restore the coefficients set previously to zero;
The non-zero coefficients are the output array Apr;

else
The coefficients does not need to be pruned;

end

end
Algorithm 1: Pruning Coefficient Algorithm
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4.1.5 Individual Motion Vector

So far, we have computed the local distribution function which indicates the transi-

tion probability for each possible transition to a destination neighbourhood Ds for the

pixel(xs, ys) of the spatial neighbourhood Ns.

This information can be used, even at this point, to extract the motion vector of the

pixel. We can simply assume as the transition destination the position associated to the

highest probability(coefficient with the largest value). The motion vector is extracted by

simple taking the difference between the coordinates of the pixel’s position at the current

frame and the coordinates of the selected position in the destination neighbourhood.

4.1.6 Global Optimization

The motion field of a liquid actually shows a unique velocity vector everywhere, meaning

that each pixel should be characterized by a single velocity vector which can be extracted

using the information of distribution functions we found. Essentially, all we need is a

general optimization framework which finds simultaneously the velocity vectors for all

pixels (and thus, a global motion field), choosing one from all the conceivable ones, that

best describes the motion of the pixel.

According to Chang’s approach this can be accomplished by using a Bayesian frame-

work which allows the calculation of a posterior distribution for each pixel through which

we can choose the appropriate distribution that will give us the velocity vector best de-

scribing the pixel’s movement. This velocity vector shall be obtained by maximizing this

posterior distribution. The maximization of the posterior distribution is equivalent to

the minimization of the following cost function:

CostFunction = −
∑
s

log
(
φ̄xs,ys,t (xs + ∆xs, ys + ∆ys)

)
+λ
∑
s

(
‖ux(xs, ys)‖2 + ‖uy(xs, ys)‖2

)
(4.15)

where ux(xs, ys) = u(xs + 1, y)− u(xs, ys), uy(xs, ys) = u(xs, y + 1)− u(xs, ys), u is the

global velocity vector, λ is a smoothing coefficient and φ̄ is a a differentiable version of

the previously discrete distribution function described as follows:

φ̄xs,ys,t (xs + ∆xs, ys + ∆ys) =
∑
i

[φxs,ys,t (xs + ∆xi, ys + ∆yi) ∗ h (∆xs −∆xi,∆ys −∆yi)]

(4.16)
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in which (xs + ∆xi, ys + ∆yi) ∈ Ds and h (x, y) is a differential basis function which satis-

fies these conditions: i)h(0, 0) = 1, ii) h(x, y) = 0 when |x| ≥ 1 or |y| ≥ 1, iii)hx(0, 0) = 0

and hy(0, 0) = 0, iv)hx(x, y) = 0 if |x| = 1 or |y| = 1 and hy(x, y) = 0 if |x| = 1 or |y| = 1.

In order to avoid landing on a local minima for the cost function minimization process

we need to find the optimal solution. To achieve this, as Chang proposes and implements,

a heuristic optimization procedure can be used which combines a conjugate gradient

algorithm with a variable support region for the basis function h(x, y). The support

region for the basis function shirking at constant rate during the minimization process

until the support region reaches size 1.

As for the basis function h(x, y), in our approach we used a 2-Dimensional Gaussian

function instead of the tensor product of cosine functions used by Chang et. al. [28]1.

The Gaussian function and its partial derivatives used in this method are expressed as

follows:

2-D Gaussian distribution function :

h(x, y) = Acon · exp

(
−

(
(x− xo)2

2σ2
x

+
(y − yo)2

2σ2
y

))
(4.17)

which can also be expressed as:

h(x, y) = Aconexp
(
−
(
a · (x− xo)2 + 2 · b · (x− xo) · (y − yo) + c · (y − yo)2)) (4.18)

where xo, yo is the center of the distribution, σ2
x and σ2

y are variances computed from the

support region, Acon is a constant and

a =
cos2ϑ

2 · σ2
x

+
sin2ϑ

2 · σ2
y

, b = −sin
22ϑ

4 · σ2
x

+
sin2ϑ

4 · σ2
y

, c =
sin2ϑ

2 · σ2
x

+
cos2ϑ

2 · σ2
y

(4.19)

in which ϑ is the rotation angle, which is zero in our approach. The partial derivatives

of equation(4.18) are expressed as follows:

∂h

∂xdir
= Acon · exp

(
−
(
a · (xdir)2 + 2 · b · (xdir) · (ydir) + c · (ydir)2)) · (− (2 · a · xdir + 2 · b · ydir))

(4.20)

12nd Difference: Chang et. al use a tensor product of cosine functions, which when tested in our

approach did not yield as good results as the 2-D Gaussian function.

Konstantinos Bacharidis 59 March 2014



4. PROPOSED APPROACH

∂h

∂ydir
= Acon · exp

(
−
(
a · (xdir)2 + 2 · b · (xdir) · (ydir) + c · (ydir)2)) · (− (2 · c · ydir + 2 · b · xdir))

(4.21)

where xdir = x− xo and ydir = y − ydir.

The role of the support region Gaussian function:

The support region in the Gaussian function determines the dispersion function and

indirectly the range of displacements. Decreasing the support region and thus reducing

the dispersion values will result also on a limitation of the range of the displacement

values. This limitation will give a homogeneity in the motion vectors describing the flow

field.

4.1.7 Conjugate Gradient Method

The elements of interest, however, which are substantially the parameters distinguishing

the value of the cost function, are displacement values ∆xs and ∆ys. The goal is to find

the best estimates for these parameters. This will result in the minimization of the cost

function yielding the best estimated motion vectors describing the flow field.

The minimization of the cost function is achieved, as mentioned earlier, by using a

Conjugate Gradient algorithm, which at each iteration calculates the cost function and

updating, according to the result, the motion vector used to describe the pixel motion. In

our approach1, we have used the Standard Conjugate Gradient algorithm for Nonconvex

problems, as presented by R. Pytlak [39].

The purpose of the Conjugate Gradient method is the optimization problem of mini-

mizing a continuous differential equation:

min {f(x) : x ∈ Rn}

where f : Rn 7→ R is a differential function which in our case is the cost function. A

non-linear conjugate gradient method generates a sequence xk, k ≥ 1 starting from an

initial hypothesis x1 ∈ Rn using the recursion:

xk+1 = xk + αkdk

13rd Difference:Chang et. al use a fast conjugate gradient algorithm, but unfortunately they do

not provide information on which of the versions existed was used.
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with αk being a positive step value, found using line search and dk is the search direction

defined as:

dk+1 = −gk+1 + βkdk, d1 = −g1

where βk is the update parameter of the CG and gk = ∇f(xk)
T with ∇f(xk)

T being the

function derivative in xk. In this case, in the position xk of the sequence we can define

the displacement sequences ∆xk and ∆yk with update functions:

∆xk+1 = ∆xk + αkdxk

∆yk+1 = ∆yk + αkdyk

in which dxk , dyk are search directions derived by taking the partial derivative of the cost

function with respect to the directional components x, y:

dxk+1 = −gxk+1 + βkdxk

dyk+1 = −gyk+1 + βkdyk

Moreover, the update parameter of the CG, β, is derived from the first non-linear method

CG, suggested by Fletcher and Reeves:

βk =
‖gk+1‖2

‖gk‖2

The algorithm used incorporates the line search to update the value of α and is

presented in Algorithm 2.

When the algorithm finishes, we will have calculated the optimum αk and so we

would have found the optimal displacements which minimize the cost function. The

update process in the algorithm is repeated as long as the Cost Function Minimization
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Condition is satisfied.

Step 1: Choose an arbitrary x1 ∈ R and set d1 = −g1, k = 1 ;
Step 2: Find an αk satisfying the ”strong” Wolfe restrictions by setting an upper
limit for the value of αk, which cannot satisfy the Cost Function Minimization
condition:

Wolfe’s ”strong” restrictions :

f (xk + αkdk)− f (xk) ≤ µαkg
T
k dk (1)

|g (xk + αkdk) | ≤ η|gTk dk| (2)

Minization Condition:

f (xk + αkdk) ≤ f (xk)

If the Wolfe’s restrictions and minimization condition are satisfied then we
increase the ak and repeat Step 2. ;
Step 3: If ‖gk+1‖ = 0 then we stop and the current αk is the best estimate.
Otherwise, we compute the update parameter, βk, and we continue to the update
along the search direction, dxk+1 and dyk+1.;
Step 4: Increase k by 1 and go to Step 2;

Algorithm 2: The standard conjugate gradient algorithm for nonconvex problems

An additional Restriction in Algorithm 2:

Despite the restrictions used in the CG algorithm, we added an additional restriction

that the displacement values must be less or equal to the size of the neighbourhood

destination . This was done due to the fact that while the displacements of the pixels

had values within these limits, there were 1-3 pixels whose displacement values were

exceeding the destination neighbourhood limits. This is probably due to the rate of

increase of the coefficient, αk, which may have resulted in overcoming the convergence

point and so the minimization of the cost function was a result of a local minimum

position.
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4.1.8 Tracer Identification and Motion Visualization

The approach presented can be adapted to tracer identification and motion extraction.

Tracers, as mentioned in Chapter 3.2.3, are either artificial objects, such as balls, or

natural things, for example leaves, that are used to extract the motion field of the fluid

flow.

The advantages of tracers in fluid flows are several, such as the minimization of

the number of motion vectors of interest. The less data we have to examine the less

computational time is spent on the extraction of the motion field.

Also, due to the fact that fluids tend to have specific range of intensity values,

correlation-based techniques may be affected while comparing values of pixels belong-

ing to the fluid which will result in bad motion estimation results. Tracers are region

limited, with specific intensity values and with a specific pattern. These characteristics

result in more robust estimation of the motion field.

On the other hand, the tracers used must be selected carefully so that they can be

distinguished from the fluid flow. Also, their motion must resemble the motion of the

fluid in order to extract the motion field of the fluid flow.

Tracer identification

Tracers, as mentioned earlier, must be distinctive in order to be identified from the

flow field. In our method, we use the simple concept of intensity variation between a

tracer and a fluid flow. The only condition, in order to identify a tracer in the flow field,

is the tracer to have higher intensity values compared to the fluid. For example, white

foam can be used as a tracer pattern, its intensity values are greater compared to fluids,

such as water in rivers or streams. Foam has close to white, colour patterns while water

tends more to black(in grayscale images), in image processing this can be translated as

follows: white-like colour patterns correspond to higher intensity values whereas black-like

colour patterns correspond to lower intensity values.

We can use a simple thresholding approach to identify the pixels which potentially

consist the tracer, along with a condition which identifies a tracer pattern.

The threshold used is expressed as follows:

T =
Highest intensity value− Average intensity value

αnormal
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where T is the threshold value and αnormal is a normalization constant,αnormal ∈ [1,∞).

The condition the pixel to belong to the tracer pattern is expressed as

follows: If the number of pixels in the spatial neighbourhood in which the pixel belongs,

having an intensity greater or equal to the threshold value, is greater than the total

number of pixels belonging in the spatial neighbourhood divided by 2, then the pixel

neighbourhood corresponds to a tracer.

4.2 2-D Flow Characterization Using Vector Pattern

Matching

The first approach on the topic of Motion Pattern Recognition in Fluid Flows, is based

on the methodology presented by Heiberg et. al. [30]. Their method is based on Vector

Pattern Matching using a set of idealized patterns for each structure type to be classified.

Similarity to these patterns is defined as a scalar convolution on vector fields based on

the scalar product of vectors. Based on the convolution result an outer product tensor is

constructed whose eigenvectors and eigenvalues denote the degree of correlation between

the structures and the patterns.

What is the difference of our approach?

First of all, in the amount of information used for the pattern recognition step.

Heiberg et. al. use in their approach a 3-Dimensional vector field as well as 3-Dimensional

idealized patterns to classify the vector field. In our approach the input vector field is

2-Dimensional as well as the patterns used, which decreases the computational cost.

However, the use of the 2-Dimensional space along with Heiberg’s methodology has

not been tested thoroughly using field data, only the theoretical background exists. Our

goal was to examine whether the implementation of the theory on fluid flows, such as

rivers or stream, would yield satisfying results.

The second difference is that our approach is focused only on the identification of

vortical and plane wave homogeneous flows, whereas Heiberg’s method is able to identify

also swirling flow and diverging or converging flow. We chose to use only the most basic
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motions to simplify our search and make sure our approach is accurate enough. Other

flow types can be included in the future.

Finally, the most obvious difference is the field data used. Heiberg’s method is im-

plemented for identifying blood flow types in the human heart, whereas our approach

is implemented for fluid flows in natural phenomena, such as rivers and streams. This

shows that this method can be used in various fields of science.

Why to select this method?

As mentioned in Chapter 3.4.1, Heiberg’s approach has many advantages. The most

notable one is that it is robust in terms of noise sensitivity due to the fact that it is

regional. Also, it is independent of the orientation of the structure and can be adapted

to a variety of search patterns. Lastly, as mentioned earlier it can be used in various

scientific fields, such as medicine(as presented by Heiberg), aerodynamics and hydrology.

Method Formulation:

The method presented can be formulated into five basic steps which are summarized

as follows: (1)Normalize the vector field, (2)Create the set of filters for the structures we

want to look for, (3)Convolve with each filter, (4)Create tensor field and (5) Calculate

eigenvalues of each tensor in the tensor field and take largest eigenvalues as similarity

output.

4.2.1 Normalization of the vector field

The first step of the methodology, is to normalize the vector field, so that all the vectors

in a vector field have the same magnitude. The normalization step serves as we want to

look for topological similarities instead of similarity between velocity distributions. The

normalized input vector field, Ŵ (~x), is expressed as follows:

Ŵ (~x) =
W (~x)

|W (~x) |

where W (~x) is the original vector field and ~x = (x, y).
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4.2.2 Filter Creation

As mentioned previously, the aim of the algorithm is to find a topological similarity

between the reference pattern and the motion field. To accomplish this, the filters must

be sensitive to the direction and set in the patterns of interest, which in our case are

vortical flow patterns or homogeneous flow patterns. These, as Heiberg has observed, are

precisely the qualities found in Quadrature Filters.

Quadrature Filters: The Quadrature Filters are filters with a zero transfer function

in one half plane of the frequency domain. An important property of the Quadrature

filter is that both the filter and the filter output is complex valued where the real part

corresponds to a line/plane detector and the imaginary part to an edge detector. On

the non zero half plane of the filter, a suitable directional function needs to be chosen.

Quadrature filters can be expressed as follows:{
Fk(u) > 0 if u · nk > 0
Fk(u) = 0 otherwise.

where u is the frequency and nk is the unit orientation vector of the filter k.

The frequency response of the quadrature filter when u · nk > 0 is:

Fk(u) = g (‖u‖) · (u · nk)2 (4.22)

In cases where the input signal is related to neighbourhoods which are expressed in the

form:

ξ(s) = f(s · nξ)

with s being the spatial coordinates and nξ is the unit orientation vector, the Fourier

transform is non-zero only in the line defined by:

u ∝ nξ

And then for equation(4.22), according to the theory of filters, we will take as filter

output:

‖Fk‖ = d · (nξ · nk)2 (4.23)
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where d is a constant independent from the orientation of the filter, nξ is the unit ori-

entation vector of the input neighbourhood vector field and nk is the unit orientation

vector of the filter k.

We can observe from equation(4.23) that the output of the quadrature filter depends

on the orientation of the input and the orientation of the filter. This satisfies our need

for topological comparison in form of vector orientation between the reference pattern

and the comparison structure.

4.2.2.1 Vortical Flow Filters

The filters representing vortical and turbulent flow, based on the theory of Quadrature

filters, are expressed as follows:

Fk (~x) = γ ·G (~x) · ϕ (r) (4.24)

where G is a function describing the pattern, ϕ is a weight function which acts as a

spatial limitation function and γ is a normalization constant so that (Fi, Fi) = 1.

More specifically we have,

• Weight Function ϕ:

ϕ(r) =

{
1, |r| < R

e−σ(r−R)2 , |r| ≥ R.
(4.25)

where R and σ determine the size of the pattern and r =
√
~x · ~x, with ~x = (x, y).

• Pattern Function G :

G (~x) = nk × ~x (4.26)

with nk being the unit orientation vector of the filter, indicating the symmetry axis

of the filter.

Thus, equation(4.22) which describes the filter for vortical and turbulent flow can be

written as:

Fk (~x) = γ · ϕ(r) · nk × ~x (4.27)
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Figure 4.2: The reference filter patterns used for identifying vortical and turbulent flow,

(left) filter with orientation vector n1, (center) with orientation vector n2 and (right) with

orientation vector n3.

The filters used for the identification of vortical flows can be seen in the Figure 4.2.

The filters used have the following unit orientation vectors:

n1 =

(
1
0

)
, n2 =

 −1

2√
3

2

 , n3 =

 1

2
−
√

3

2


The reason these specific unit orientation vectors for the filters have been selected as

well as the number of filters used, is explained in the following subsection(4.2.3).

4.2.2.2 Plane Wave Homogeneous Flow Filters

The filter equation used to describe the plane wave homogeneous flow is similar to equa-

tion(4.27). The difference is in the role of the weight function and the spatial coordinates.

The role of the weight function is to form the motion pattern by giving appropriate

weights to the motion vector of each element and also limitating it spatially. In homo-

geneous flows all vectors are distributed evenly in space and in parallel directions. Each

element will move in a straight direction to the original position and the direction will

be parallel to that of the other elements that constitute the structure. Therefore, all the

elements should be associated with a weight according to its spatial coordinates so that

we can form a homogeneous flow pattern. The equation describing the filter, as Andreas

Andersson describes in his master thesis [44], can now be expressed as:

Fkhomogeneous
(~x) = ψ(~x) · nk (4.28)
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Figure 4.3: Example of a filter pattern describing a homogenous flow pattern with orien-

tation vector nhomog.

An example of a homogeneous filter pattern can be seen in Figure 4.3, whose unit

orientation vector is:

nhomog =


2√
3√
3

2


As will be presented in the following subsection, in order to identify a plane homoge-

neous flow we can only use the filter response in the case of vortical flow patterns.

4.2.3 Filter Convolution

The convolution between the normalized field motion Ŵ and the filter Fn describing the

reference pattern is defined as:

hn (x) =

∫
R2

Ŵ (x)Fn (x− ξ) dξ

where n is the symmetry axis of the filter.

Filter response:

Andreas Andersson [44], in his thesis, proved that the response of vortical filters for the

case of vortical flows will be proportional to the scalar product between the orientation

of the vortex core filter and the orientation of the vortical flow pattern, whereas for the
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case of plane flows will be zero. Based on his work we can denote the following filter

response equations:

For the case where the input is an ideal vortical flow field, the flow field Wâ is defined

as:

Wâ(x) = ψ(r)â× x

with â ∈ R2, â 6= 0 and ψ : R+ 7→ R+.

The filter equation for the case of vortical flow identification is expressed as:

Fn̂(x) = φ(r)n̂× x

with φ : R+ 7→ R+ is a radially symmetric decay function, as presented in equation(4.25).

The convolution between these two vector fields is defined as follows:

(Fn̂,Wâ) =

∫
R2

Fn̂(x)Wâ(x)dx

=

∫
R2

φ(r)ψ(r) (â× x) · (n̂× x) dx

(4.29)

The term (â× x) · (n̂× x) can be expressed as1 :

(â× x) · (n̂× x) = ((â× x)× n̂) · x

= ((â · n̂)x− (x · n̂) â) · x

= (â · n̂)x · x− (x · n̂) (â · x)

= |x|2 (â · n̂)− n̂TxxT â

Using the above, equation(4.29) is expressed as:

(Fn̂,Wâ) =

∫
R2

φ(r)ψ(r)|x|2dx(â · n̂)− n̂T
∫
R2

φ(r)ψ(r)xxTdxâ (4.30)

The second integral of the equation is actually 2-by-2 matrix M where :

xxT =

[
x
y

] [
x y

]
=

[
x2 xy
yx y2

]
(4.31)

1Gunnar Sparr [40], in Theorem 6 in Chapter 5 of ”Linjar Algebra”, proved that (a× b) × c =

(a× c) b− (b× c) a.
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Due to symmetry of the integrand(the patterns used must be axis symmetric) it follows

that: ∫
R2

φ(r)ψ(r)xydx =

∫
R2

φ(r)ψ(r)yxdx = 0

whereas, for the diagonal elements we have:∫
R2

φ(r)ψ(r)x2dx =

∫
R2

φ(r)ψ(r)y2dx =
1

2

∫
R2

φ(r)ψ(r)|x|2dx

And thus, equation(4.30) can be defined as:

(Fn̂,Wâ) =
1

2

∫
R2

φ(r)ψ(r)|x|2dx(â · n̂)

∝ n̂ · â
(4.32)

Thus, we find that the result of the convolution of the vortex core filter Fn̂ and

the idealised vortical flow field Wâ is proportional to the scalar product between the

orientation of the vortex core filter and the orientation of the idealised vortical flow

pattern.

The vortex core filter should yield a zero response for non vortical flow fields, such

as plane waves of homogeneous flow fields. As mentioned earlier, Andersson [44] has

presented that a plane wave homogeneous flow is described by equation(4.28):

Fkhomogeneous
(~x) = ψ(~x) · âk

In this case, the filter response will be zero:

(
Fkhomogeneous

,Wâ

)
=

∫
φ(r)ψ (x) (n̂× x) · âkdx

=

∫
φ(r)ψ (x) (n̂× âk) · xdx

= (n̂× âk)
∫
φ(r)ψ (x)xdx

= (n̂× âk) · 0 = 0

As we can see, only by using the vortical flow filters output we can detect, apart from

the vortical flow fields, the homogeneous plane wave fields.
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4.2.4 Outer Product Tensor

Instead of convolving with each vortical flow filter and examining their outputs, we can

generalize the detection process, according to Heiberg’s approach, by creating a tensor

of orientation whose eigenvalues and eigenvectors will denote the presence of a vortical

flow field or a homogeneous one.

What is a Tensor of orientation:

A tensor is a table representation of the vector space and is used to represent the

direction of a vector in the vector space. Every vector ~x is characterized by sub-vectors

with coordinates xi and their association with a vector space that can be expressed in

the form:

~x =
n∑
j=1

Tijxj

The association of a vector ~x to a tensor is:

T = r−1~x~xT

where r =
√
~x · ~x. The tensor matrix T contains the representation in the form of

directions for the coordinates in any coordinate system in vector space.

For the association of a vector in the 2-Dimensional space a symmetric tensor matrix

of second order is used. A second order symmetric tensor matrix is a 2× 2 matrix with

three unique elements x1,1, x1,2 and x2,2 (due to symmetry x1,2 = x2,1). The uniqueness

in a tensor translates into degrees of freedom in terms of direction.

H. Knutsson [41], proves that the minimum number of Quadrature filters for repre-

senting direction in the 2 - Dimensional space in the form of tensor matrix is 3 and,

according also to Knutsson [42] will have as orientation, the following unit orientation

vectors:

n1 =

(
1
0

)
, n2 =

 −1

2√
3

2

 , n3 =

 1

2
−
√

3

2


Knutsson [42], also shows that the tensor produced by the filter outputs is the follow-

ing:

T =
∑
k

Fk

(
nkn

T
k −

1

m− 1
I

)
(4.33)
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with m being the dimensionality of the tensor T, nk is the orientation of the filter k and

Fk is the output of the filter k.

From linear algebra it is known that the dimensionality of a n × n tensor matrix is
n(n+ 1)

2
, which means that in the case of 2 × 2 tensor the dimensionality is 3, and so

the tensor is formed as:

T =
∑
k

Fk

(
nkn

T
k −

1

2
I

)

This equation according to Knutsson [42], is a generalization of the following equation:

Tgen =
∑
k

Fk
(
nkn

T
k

)
(4.34)

This equation yielded better results when used in our implementation compared to the

previous one.

4.2.5 Eigenvector and Eigenvalue Computation

From linear algebra it is known that every table can be expressed as a combination of

products of the eigenvectors and their corresponding eigenvalues. This corresponds also

to a tensor:

T =
n∑
i

λiêi · êTi

The fact that the tensor used is symmetrical, ensures that the eigenvalues will be real

and thus, can be classified according to their width. For the case of our second class

tensor the number of eigenvalues extracted is 2.

The eigenvalues of the tensor can be used as a similarity measure between the filter

pattern and the input motion field. Even more, according to Heiberg et. al. [30] the

corresponding eigenvectors can provide us with information about the orientation of the

structure.

Based on this observation, we can define value intervals for the eigenvalues which

will be used as a means of classification specifying whether the input motion field, shows

similarity with the reference pattern or not.
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Figure 4.4: Field movement which shows no vortex form. The result of the eigenvalues

correctly classifies the given flow pattern as non-vortical motion.

Figure 4.5: Field movement which shows vortex form. The result of the eigenvalues

correctly classifies the given flow pattern as vortical motion pattern.

The classification according to the values of the eigenvalues, as defined in our method-

ology, is as follows:
vortex pattern, if λ1 ≥ 0 and λ2 > 0
homogeneous flow pattern, if λ1 = 0 and λ2 = 0
uncategorized flow patterns, otherwise.

The validity of the threshold used can be seen in the figures 4.4 and 4.5. The

classification was made using the vortical flow filters presented earlier.
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Finally, the algorithm used is summarized and presented in algorithm 3.

Data: Flow vector field
Result: Flow Classification
Normalize the input flow field;
Create the filters representing the reference patterns, i.e. the vortical flow filters;
Convolve the filter with the input motion field for each velocity component
separately;
Construct the Tensor of orientation using the convolution outputs;
Calculate the eigenvalues of the Tensor and their corresponding eigenvectors;
if λ1 ≥ 0 and λ2 > 0 then

Classify the flow field as vortex;
else

if λ1 == 0 and λ2 == 0 then
Classify the flow field as a homogeneous flow field;

end

end

Algorithm 3: The Flow Characterization algorithm using Vector Pattern Matching

4.3 2-D Flow Characterization based on Mean Squared

Error

The second approach presented for the topic of Flow Characterization is based on vector

pattern matching using the Mean Squared Error(M.S.E.) as a means of similarity between

the reference pattern and the structure.

Method Formulation:

The method introduced can be formulated into five steps also, which are summarized

as: (1)Normalize the vector field, (2)Construct the reference patterns, (3)Normalize the

pattern vector field, (4)Compute the M.S.E. and (5)Classify the structure based on the

M.S.E. value computed between the structure and each reference pattern.

What is the difference of this approach?

The difference of this method, compared to the previous one, is that the vector field
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Figure 4.6: The eight sub-directions of movement for homogeneous flow.

of the reference pattern is compared to the vector field of the structure using the Mean

Squared Error. The simplicity of this method allows us to look for a variety of flow pat-

terns such as subclasses of homogeneous flow, for example rightward, upward or downward

homogeneous flow.

4.3.1 Reference Pattern Creation

We can skip the presentation of the Normalization step, due to the fact that it is done

the same way as the one presented in the previous subsection.

The reference patterns used are, also created in the same way as the filter flow patterns

used in the previous methodology. The patterns created, consist of the vector field

for both velocity components. Therefore, if normalized also, can be correlated with a

structure.

For the case of vortical flow patterns, we use the patterns displayed in Figure 4.2(the

center pattern corresponding to a rightward vortex and the pattern on the right side which

corresponds to a leftward vortex). The patterns, as mentioned previously, are created

using equation( 4.27), for each velocity component, which yields the velocity vectors.

Homogeneous flow patterns are created using equation( 4.28) with ψ(x) = x. The

homogeneous flow can be divided into eight sub-directions displayed in Figure 4.6. The

factor that denotes each direction is the unit orientation vector used. The patterns

associated with these sub-classes of homogeneous flow are depicted in Figure 4.7 and

their corresponding unit orientation vectors are the following:
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Pattern Unit Orientation Vector

Upward motion n1 =

(
0
1

)
Downward motion n2 =

(
0
−1

)
Leftward motion n3 =

(
−1
0

)
Rightward motion n4 =

(
1
0

)

Upward and Rightward motion n5 =


2√
3√
3

2


Downward and Leftward motion n6 =

 −
2√
3

−
√

3

2


Downward and Rightward motion n7 =

 −
2√
3

−
√

3

2


Upward and Leftward motion n8 =


2√
3√
3

2



4.3.2 Normalization of the Reference Vector field

During the calculation of the mean square error we take into account the magnitude of

the vector. Furthermore, as mentioned previously, the vectors of the input motion field

have been normalized, i.e. the vector values∈ [−1, 0, 1]. To achieve the best comparison

result we need to normalize the vector field of the reference pattern in order the result of

the mean square error function to be unaffected by the velocity magnitude values.

Let Fk (~x) be the motion field of the reference pattern then the normalized field motion

F̂k (~x) is denoted as follows:

F̂k (~x) =
Fk (~x)

|Fk (~x) |
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Figure 4.7: The first six of the eight possible direction patterns of homogeneous flow with

normalization. The unit orientation vectors used(from up left to right order) are: (1)n1,

(2)n2, (3)n3, (4)n4, (5)n5 and (6)n6.

4.3.3 Mean Squared Error Calculation

The measure of similarity between the reference pattern and the motion field of the

structure used in the presented method is the Mean Squared Error (Mean Squared Error)

and is defined as follows:

MSEk =
1

n
·

n∑
i=1

(
F̂k,i − Ŵi

)2

(4.35)

where n is the number of vector to be compared, Ŵ is the normalized input vector field

and F̂k is the normalized vector filed of the reference pattern k.

4.3.4 Pattern Classification

The Mean Squared Error is computed for each reference pattern. The results are then

sorted in ascending form and then the structure is classified to the pattern associated

with the lowest M.S.E. value.

In order to make the method more accurate we use a threshold on the M.S.E. values

setting as an accepted classification result, the selected M.S.E. values being less than

equal to a user defined threshold value which is expressed as follows:
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Accepted Classification:

if M.S.E.value ≤ max (of all M.S.E.values)− apar ∗mean (of all M.S.E.values)

with apar ∈ [0,∞). The M.S.E. values used are the M.S.E. values of the patterns that

the structures have classified. Essentially, the threshold serves as an extra constraint on

the classification output insuring its validity.

In conclusion, all the aforementioned steps are formulated in algorithm 4. Even this

simple approach yields satisfying results in identifying and classifying an input structure.

Data: Flow vector field
Result: Flow Classification
Normalize the input flow field;
Create the reference patterns, i.e. the vortical flow filters;
Normalize the vector field of the reference pattern;
Calculate the Mean Squared Error between the normalized vector field of each
reference and the normalized vector field of the input structure;
Sort in ascending form the Mean Squared Error values ;
Select as classification pattern the one corresponding to the lowest M.S.E. value;
if M.S.E. value ≤ Threshold value then

Classify the flow field to the selected pattern;
else

Do not classify the structure;
end

Algorithm 4: The Flow Characterization algorithm using the Mean Squared Error.
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Chapter 5

Results

In this chapter we present the results of our work. First of all, on the topic of motion

estimation, the dynamic nature of fluid flows results in the presence of multiple types of

motions to be present within a fluid flow motion field. Even accurate and well tested al-

gorithms, such as Lucas and Kanade’s algorithm or Horn and Schunck’s result in different

motion fields when implemented to fluid flows.

Instead, they seem to coincide on the main motion types present in the flow. So we

will compare the results of our approach in comparison with those of other algorithms

based on the main motion types detected. Another way to test the accuracy is to allow a

user to define the basic motions observed and then test whether the algorithm succeeds

in identifying them within the flow.

Furthermore, for the subject of Flow Characterization, the best way to test the accu-

racy of the presented algorithms is to examine the classification results of each algorithm

and check whether the algorithm classifies the structure to the correct reference pattern

or not. By testing the validity of each algorithm through a series of image sequences,

representing different types of flows, we can check its accuracy.

Finally, we present information concerning the performance of each algorithm intro-

duced, although we focused our research more on the topic of implementing an accurate

algorithm and less on the optimization step. Even though the algorithms show satisfying

performance results.
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5.1 Algorithm Accuracy

In this section, the accuracy of each introduced algorithm is tested. We can consider an

algorithm as accurate when the output data correspond to an expected accurate value.

As mentioned previously, the accuracy of the algorithm presented on the topic of motion

estimation, will depend on how accurately represents the main motion types present in

the flow, compared to other algorithms and a user observations.

Also, the accuracy of the algorithms concerning the Flow Characterization field, is

tested based on the observation of the validity of their results.

5.1.1 2-D Statistical Estimation of Fluid Flow Fields

The algorithm presented, is tested using image sequences representing fluid flows in nat-

ural phenomena, such as rivers or streams. The resulted motion field is compared to the

ones of known accurate algorithms, such as Lucas and Kanade’s, as well as user observa-

tions. The results of the algorithm can be compared during both of the two basic stages of

implementation:(a) the local distribution function computation stage, and (b)the global

optimization stage.

The results of the first stage of the algorithm can be compared with the results

of correlation based algorithms such as Three Step Search algorithm. This is due to

the fact that the displacement vectors are computed locally using block neighbourhood

yielding discrete displacement vectors similar to the block matching approach used in

Block Matching algorithms.

On the other hand, the second stage imposes a differential framework combined with

the local estimation of the first stage resulting in a smoothed global motion field. Thus,

the extracted motion field can be combined with other differential approaches such as

Lucas Kanade’s algorithm.

5.1.1.1 First Stage Results

In this stage, as mentioned in Chapter 4.1, the local distribution functions are com-

puted, each displacement position in the destination neighbourhood is associated with a

coefficient, which is considered to be a sample of the local distribution function. These

coefficients correspond to displacement probabilities and so we can set as a destination
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Figure 5.1: Small Stream Flow, (left)Input frame and (right)Resulted motion field, Ns

size: 9× 9 and Ds size: 5× 5.

Figure 5.2: River Flowing covered with Ice, (left)Input frame and (right)Resulted motion

field, Ns size: 9× 9 and Ds size: 5× 5.

position the position associated to the coefficient with the highest probability value. Only

two adjacent frames are enough to extract the motion field information.

Figures 5.1 and 5.2 show the resulted motion field of our algorithm for the cases

of a small stream flow and and an river flow covered in ice. The resulted motion field

displayed contains the motion vectors of the central pixel of each block. As we can see

the algorithm, even at this early stage, succeeds in finding the main flow motion and

stationary regions in the scene such as river banks or rocks show no motion as they
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(a) Ns size: 9× 9 and Ds size: 5× 5.

(b) Ns size: 9× 9 and Ds size: 8× 8.

Figure 5.3: River Flowing covered with Ice, we can observe that as the size of the des-

tination neighbourhood rises so does the estimation error resulting to more erroneous

motion vectors.

should have.

The quality of the estimated flow is determined by the size of the destination neigh-

bourhood Ds as well as the noise present in the input image sequence. Due to the limited

range of intensity values associated to a fluid flow, neighbouring pixels tend to show

very close intensity values. In cases of large destination neighbourhoods the number of
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Figure 5.4: Small Stream flow, (left and up)Three Step Search algorithm,(right and

up)Presented algorithm, (left and down) New Three Step Search algorithm and (right

and down) Four Step Search algorithm, Ns size:9× 9 and Ds size: 5× 5, Similarity rates:

63.37% with TSS, 64.15% with NTSS and 63.14% with FSS.

coinciding intensity values rises and thus affecting the estimation. Figure 5.3 shows the

affect of changing the destination neighbourhood size. As the destination neighbour gets

wider the estimation error rises. So we have to select the window size of the destination

neighbourhood wisely.

First Stage Accuracy Comparison

As mentioned earlier, we can compare the motion field resulted from this stage to

Block Matching algorithms, due to the locality of the estimation and the discrete na-

ture of the displacement vectors. Our algorithm is compared to 3 of the most known

Block Matching algorithms:(a)Three Step Search algorithm(TSS), (b)Four Step Search

algorithm(FSS) and (c)New Three Step Search algorithm(NTSS).

Figures 5.4 and 5.5 show the comparison results, for the previous flow cases presented,

between these three algorithms and ours along with the velocity vector magnitude cor-

respondence between our approach and the others. The similarity rate is computed as

follows:

Similarity rate =
u velocity component comparison+ v velocity component comparison

2
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Figure 5.5: River Flowing covered with Ice, (left and up)Three Step Search algo-

rithm,(right and up)Presented algorithm, (left and down) New Three Step Search al-

gorithm and (right and down) Four Step Search algorithm, Ns size:12× 12 and Ds size:

7× 7, Similarity rates: 85.74% with TSS, 85.01% with NTSS and 82.59% with FSS.

where (u, v) are the x-axis and y-axis velocity components and for which the comparison

of the velocity vectors is done as:

velocity component comparison =
number of equal vectors

total number of vectors
∗ 100%

From the first look we can see that the main motion detected by our algorithm presents

great similarities to the ones detected by the other algorithms. The similarity between

the detected motion vectors ranges up to 64% for the case of a small stream flow with

various flow types due to the presence of obstacles. Whereas, for more ’clear’ flows such

as the one of a river(Figure 5.5) where the flow is not obstructed and shows homogeneous

direction our algorithm yields up to 85% resemblance with the other algorithms.

The following table displays the similarity rates between our approach and the three

other approaches, based on the variations of the size of the spatial neighbourhood Ns.

The comparison is based on the correspondence between the velocity vector magnitude

Konstantinos Bacharidis 86 March 2014



5.1 Algorithm Accuracy

between the approaches. Even between the three well tested and known for their accuracy

approach the similarity rates range at 91.52% for the case of the river flow image and

about 83.36% for the stream flow image.

Ns Ds TSS NTSS FSS Image Flow
9× 9 7× 7 79.98% 79.43% 77.71% River flowing

covered in ice.
12× 12 7× 7 85.74% 85.01% 82.59% River flowing

covered in ice.
14× 14 7× 7 87.73% 87.25% 85.02% River flowing

covered in ice.
9× 9 7× 7 64.02% 64.19% 60.10% Small Stream

flow.
12× 12 7× 7 70.63% 70.67% 63.51% Small Stream

flow.
14× 14 7× 7 74.76% 74.94% 67.17% Small Stream

flow.

Through a number of comparisons between the motion vector magnitudes estimated

by our algorithm and the ones estimated by the other approaches for various cases of flow

images, such as rough multi-directional flows or homogeneous flows, we have concluded

that our algorithm shows similarity ranging from 52% up to 96%.

The factors that determine the similarity rate are the neighbourhood block size as

well as the type of flow, for example, abrupt flows where the fluid flow meets obstacles

such as streams(Figure 5.4), result in abrupt multi-directional flow fields which lead

to the drop of similarity rate even between accurate and well tested algorithms. Bigger

neighbourhood sizes lead to fewer vectors to be estimated which results in fewer erroneous

estimations.

5.1.1.2 User defined accuracy control

Due to the fact that even the most accurate and well tested algorithms show inconsisten-

cies on the estimated flow, we used a user defined accuracy control where the user sets

the correct, by clicking in the image, direction of the main flow, as observed, and the

motion vectors corresponding the preferred direction as displayed with black points.

Figure 5.6 shows the result of this approach for the case of the river flowing covered

with ice. The correct motion of the river is downwards. When the user selects the down-

ward direction then the motion vectors corresponding to this selection(black colour) are
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Figure 5.6: River Flowing covered with Ice, (circle)starting point and (x-mark)destination

point (left)User selects the correct direction of motion, downward motion and (right)User

selects the wrong direction of motion, upward motion.

displayed forming the pattern of the river. This shows that our approach has accurately

estimated the main flow field. On the other hand, when the user selects the upward di-

rection as the correct flow(false observation) then our algorithm yields almost no motion

vectors.

5.1.1.3 Tracer Identification and Motion Association

As we mentioned in subsection 4.1.8 of Chapter 4, our approach supports tracer identi-

fication and motion visualization. Figures 5.7 and 5.8 show the results of our algorithm

for the cases of a real river flow(Acheloos River) and an artificial river flow respectively.

In the case of the real river flow, we use a natural tracer, the foam floating on the

surface of the water produced by the water motion. On the other hand, on the artificial

river flow, an artificial tracer is used. White balls were placed on the flow to be used

as tracer elements. Our approach successfully identifies the tracers in both cases, and

associates the corresponding motion vectors. The use of tracers dramatically reduces the

computational cost but we need to choose wisely the tracer element.

5.1.1.4 Second Stage Results

The second stage of our approach imposes a differential framework to the previous stage

combining the information of the distribution functions with a differential function and a

smoothing constraint in order to derive a smoothed global motion field. In our approach

the differential function used, as mentioned earlier, is a 2-D Gaussian function.

Figure 5.9 shows the difference in the resulted motion field between the first and

second stage, for the case of a small stream flow with abrupt motion. As we can observe
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Figure 5.7: Acheloos River Flowing, Tracers used: surface foam, Ns size: 12 × 12, Ds

size: 7× 7.

Figure 5.8: Artificial River Flowing, Tracers used: White balls, Ns size: 12× 12, Ds size:

7× 7.
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Figure 5.9: Small Stream flow, (left)Input frame, (center) Resulted motion field from the

First Stage, (right)Resulted motion field from the Second Stage, Ns size: 12 × 12, Ds

size: 7× 7.

the flow field is more smoothed compared to the previous one and the vectors seem to

have uniformly distributed values.

The addition of the differential framework leads to the classification of the algorithm

to the differential methods, such as Lucas and Kanade’s. We compared our approach

with two of the most known differential methods, Lucas - Kanade’s and Horn-Schunck’s

methods. Both of them have been well tested and used for many optical flow problems

including the problem of motion field extraction in fluid flows.

Figures 5.10 and 5.11, show the resulted motion fields of the three approaches for the

cases of a small stream flow and a river flowing covered in ice. Comparing the resulted

motion fields we can derive the following observations: (1) All the three algorithms

successfully display the main motion directions for both flow cases, the abrupt stream flow

and the homogeneous river flow, (2)All the three algorithms disagree on the subsequent

motion types, such as vortical flow and on the velocity vector magnitude range of values

and (3) Our algorithm seems to show less sensitivity to vortical motion compared to

the other ones. We can associate this drawback to two factors, the first is the loss of

information due to the transition from the 3-Dimensional space to the 2-Dimensional

and the second is the differential basis function used, Chang uses a product of cosine

functions whereas we use a 2-D Gaussian function, which along with the support region

used affects.

The fact that all three algorithms coincide on the main motion types present in the

flow, lead to the conclusion that our algorithm is accurate enough for identifying main
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Figure 5.10: Small Stream flow, (left and up) Horn- Schunck’s Method, (right and up)

Lucas- Kanade’s Method, (left and down)Our approach with basis function a 2-D Gaus-

sian function and Ns size: 12× 12, Ds size: 7× 7.

motion flow types in fluid flow.

Parameters affecting the accuracy of the algorithm :

The parameters affecting the accuracy of our approach are first of all the components

of the estimation function(eq. 4.15), such as the support region size or the value of the

smoothing coefficient λ which affect the output of the algorithm. Also, the size of the

destination neighbourhood must be selected wisely, due to the fact that it constraints

the range of the displacement. Thus, in abrupt and fast flows we must use a wide

destination neighbourhood so that we can include the fast transition, but with a cost on

the estimation error.

Konstantinos Bacharidis 91 March 2014



5. RESULTS

Figure 5.11: River Flowing covered in ice, (left and up) Horn- Schunck’s Method, (right

and up) Lucas- Kanade’s Method, (left and down)Our approach with basis function a

2-D Gaussian function and Ns size: 12× 12, Ds size: 7× 7.

Finally, the differential function used can also affect the accuracy. We must use

differential function which are affected by the local distribution functions uniformly and

they do not cloak the importance of the distribution functions.

5.1.2 2-D Fluid Flow Characterization Using Vector Pattern

Matching

To test this approach, we have used the resulted motion field images from Lucas and

Kanade’s algorithm since it has shown to be the most sensitive one on vortical flow as

well as on homogeneous flows. In order to identify a flow pattern we need to use the

motion field information of all the pixels of the image.
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Figure 5.12: Small Stream Flow, (left) initial image, (right) Resulted motion field from

Lucas- Kanade’s algorithm, with red marked vectors corresponding to detected vortical

flow patterns.

Figure 5.13: Small Stream Flow, (red)the detected vortical flow pattern, (blue) Other

flow patterns.

Our approach is able to identify homogeneous flows and vortical flows, with the latter

containing the cases of full shaped vortexes as well as structures displaying vorticity.

Figures 5.12 and 5.13 show the resulted classification of vortical flow for the case
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Figure 5.14: Small Stream Flow, (red mark) clockwise vortexes, (green mark)counter-

clockwise vortexes, (pink mark)uncategorised vortical flow patterns and (blue) other flow

types, Search window size: 10× 10 and Threshold values: Tleft = 6, Tright = 8.

of the abrupt stream flow. In abrupt flows we can expect the presence of vortices and

as we can observe in Figure 5.12, our approach succeeds on identifying a large number

of them. Figures 5.13 and show the accuracy of our approach as it has identified only

vortical flows. The figures are zoomed areas of the previous image.

If we introduce a threshold on gradient of each velocity vector component we can even

define whether the vortex has a clockwise or a counter clockwise rotation. The threshold

used is defined as follows:
CounterClockwise V ortex, if grad(y − axis) ≥ 0 and −Tleft ≤ grad(x− axis) ≤ Tleft
Clockwise V ortex, if grad(y − axis) ≤ 0 and −Tright ≤ grad(x− axis) ≤ Tright
Unidentified V ortical flow, Otherwise

The threshold values (Tleft, Tright) must be selected wisely and according to the size

of the the search area. Figure 5.14 displays the discrimination classification for the case

of the small stream flow. Figures 5.15, 5.16 and 5.17 show the classification results. Our

approach provides satisfying results but there is classification error as can be observed
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Figure 5.15: Small Stream Flow, (red mark)the clockwise vortex detected.

Figure 5.16: Small Stream Flow, (green mark)the counter-clockwise vortex detected.

in figure 5.17 which can be minimized by the appropriate selection of the search window

size and the threshold values.

Figures 5.18 and 5.19 show the resulted classification for homogeneous flows for the

stream image. As we can observe again our approach successfully identified homogeneous
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Figure 5.17: An example of the importance of correct thresholding, we can observe that

despite the fact that a vortex has been identified as a vortex the threshold value did not

allow the vortex(black mark) to be further classified(clockwise or counter clockwise).

Figure 5.18: The homogeneous flow structures, red mark, identified in the Small Stream

motion field, using the condition that the eigenvalues λ1, λ2 being zero.
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Figure 5.19: Enhanced display of the previous figure. The structures are correctly iden-

tified as homogeneous flow patterns. Search window size and filter pattern size: 10× 10.

motion fields. The rate of identified homogeneous structures can be increased by carefully

selecting the search window size.

For the case of the flowing river covered in ice we can expect the number of homoge-

neous flow structures detected to be large. As we can see in figures 5.20 and 5.21, our

algorithm succeeds in identifying the majority of the existing homogeneous flow struc-

tures.

For the case of the vortical flow patterns, figures 5.22 and 5.23 display the output of

our approach, the red marks correspond to the vortical flow structures detected. We can

observe that our approach yields satisfying results, identifying structures, which can be

further improved with further thresholding the resulted eigenvalues.

Parameters affecting the accuracy of the algorithm :

The only parameter affecting the accuracy of this approach is the size of the filter

pattern which is associated with the size of the search window(they have the same size).

The size of the search window should be selected with care in order to contain all the
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Figure 5.20: Classification output of our approach for the case of a River flowing covered

in Ice, displaying the homogeneous flow structures. Initial image displayed in figure 5.2.

Search window size and filter pattern size: 10× 10.

information relating the structure to the reference pattern. Small window sizes may lead

to less information which will result in the pattern not being identified. On the other

hand, large window sizes may lead to inclusion of false information, which may result

again to the false classification of the data structure.

5.1.3 2-D Fluid Flow Characterization Using M.S.E.

This approach requires also the use of all the image pixels, so that we can have the all the

information available for the classification process. As mentioned in subsection 4.3.1, of

Chapter 4, the simplicity of this method allows the use of a variety of patterns. Although

this method is more noise sensitive compared to the previous one, it succeeds in yielding

very satisfying results, with a good discretization between the two main flow types of

interest, vortical and homogeneous flows.

Figure 5.24 shows the output of this approach for the case of the river flow covered
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Figure 5.21: Enhanced display of figure 5.20. The structures are correctly identified as

homogeneous flow patterns. Search window size and filter pattern size: 10× 10.

in ice, representing the homogeneous flow patterns with all its subclasses(downward,

upward, left, right, upward & right, downward & right, downward & left and upward &

left)1, as well as the vortical flow patterns which are divided in clockwise and counter-

clockwise vortexes.

Figure 5.25 displays enhanced images of regions from the previous figure. As we can

observe in figures and this approach succeeds in identifying and classifying correctly the

majority of the flow structures. False classifications can be decreased by using smaller or

larger window sizes as well as window shapes.

Figure 5.26 presents the output for the case of the small stream flow, with figures 5.27

and 5.28 presenting enhanced regions of this figure. Again it can be observed that this

approach classifies satisfyingly the flow structures to the reference flow patterns but yet

again there can be misclassifications.

1The motions (upward or downward) and right, (upward or downward) and left are group(for the

case of result images) into diagonally and right, diagonally and left motions respectively.
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Figure 5.22: Classification output of our approach for the case of a River flowing cov-

ered in Ice, displaying the vortical flow structures detected. Initial image displayed in

figure 5.2. Search window size and filter pattern size: 10× 10.

We can select to display only the homogeneous flows or the vortical flows or even

both. Figures 5.29 and 5.30 show the case of selecting the vortical flows for the stream

flow image and shows the vortexes identified.

Parameters affecting the accuracy of the algorithm :

The parameters affecting the accuracy of this approach are first of all, the size of

the search window. The size of the search window should be selected wisely in order to

contain all the information relating the structure to the reference pattern. Small window

sizes may lead to less information which will result in the pattern not being identified.

On the other hand, large window sizes may lead to inclusion of false information, which

may result again to the false classification of the data structure.

Furthermore, the threshold value on the M.S.E. output of the selected reference pat-

tern should be chosen in such way that it allows the structures showing resemblance

to the selected pattern to be classified and structures whose rate of resemblance to the
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Figure 5.23: Enhanced display of figure 5.22. The structures are correctly identified as

vortical flow patterns. Search window size and filter pattern size: 10× 10.

available reference patterns is below the acceptable value no to be classified at all. Also,

an additional threshold on the curvature of each structure will improve the discretion

between the vortical flow and the homogeneous flow patterns.

Finally, as mentioned earlier, the shape of the search window can be considered as a

parameter affecting the classification outcome. Circle shaped windows may yield better

results when identifying vortical flows.

5.2 Algorithm Performance

5.2.1 2-D Statistical Estimation of Fluid Flows

The aim of this thesis was to provide an accurate motion estimation algorithm, and thus,

no optimization attempts were made. Our approach takes approximately 23 seconds for

the first stage and up to 17.1 minutes for the global optimization step. This performance

speed is the average computation speed for various image and neighbourhood sizes.
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Figure 5.24: River Flowing covered in Ice, initial image is shown in figure 5.2. Search

window size: 8× 8. All the possible motions are displayed.

Figure 5.25: Enhanced region of figure 5.24. Search window size: 8× 8. All the possible

motions are displayed. The majority of the structures are classified correctly.

The computational speed can be largely improved due to the fact that for the im-

plementation only the most basic components were used due to the lack of information

provided by the algorithm’s founders.
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Figure 5.26: Small Stream Flow, initial image is shown in figure 5.12. Search window

size: 8× 8. All the possible motions are displayed.

Figure 5.27: Enhanced region of figure 5.26. Search window size: 8× 8. All the possible

motions are displayed. The majority of the structures are classified correctly.

The most time consuming component is the Conjugate Gradient component, which

consumes approximately the 75% of the computational time. This is due to the fact that
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Figure 5.28: Enhanced region of figure 5.26. Search window size: 8× 8. All the possible

motions are displayed. The majority of the structures are classified correctly.

Figure 5.29: Resulted classification only for vortical flows(clockwise vortex(red) and

counter-clockwise vortex(green)), for the case of the small Stream flow.

we did not use a fast conjugate gradient algorithm but one of the most accurate ones to

improve the accuracy. Also, the update step α was given a small magnitude to insure
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Figure 5.30: Enhanced region of figure 5.29. Search window size: 8 × 8. Clockwise

vortex(red) and counter-clockwise vortex(green).

the global minimization position is found. This leads to further burden the computation

time.

5.2.2 2-D Fluid Flow Characterization Using Vector Pattern

Matching

As mentioned earlier, the aim of this thesis is to provide accurate approaches instead

of focusing to the computational speed. This also, applies for the case of the pattern

recognition algorithms. No optimization attempts were made, however this approach

proved to have satisfying computational speed results even at this early stage.

The average computational speed for a variety of image sizes and with a fixed filter

size as well as search window size(for both cases, a 10 × 10 size was used), was ap-

proximately 160,35 seconds. The computational speed is affected by the search window

size, larger windows will decrease the computational time but will affect the accuracy of

the classification. We have found that the window size which achieve a balance on the

computational speed affect as well as the accuracy is a 10× 10 search window size.

Also, as one can imagine the image size also affects the computational time, larger

images are more time consuming. For example, an image with dimensions 480×360 takes
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approximately 128.231 seconds, with search window size 10× 10 whereas an image with

dimensions 640× 360 takes approximately 195.245 seconds.

5.2.3 2-D Fluid Flow Characterization Using M.S.E.

Again, for the case 2-D Fluid Flow Characterization Using M.S.E. proposed approach no

optimization attempts were made, however even this approach, although clearly correla-

tion based, did not proved to be very time consuming.

The average computational speed for a variety of image sizes and with a fixed search

window size, 10 × 10, is about 3,5 minutes. For example, an image with dimensions

480× 360 takes approximately 140.01 seconds, with search window size 10× 10 whereas

an image with dimensions 640× 360 takes approximately 250.245 seconds.

Again, as mentioned previously, the computational speed is affected by the search

window size, larger windows will decrease the computational time but will affect the

accuracy of the classification. The window size which achieve a balance on the computa-

tional speed affect as well as the accuracy is a 10× 10 search window size.

5.3 Vector Pattern Matching Vs Mean Squared Er-

ror

Comparing the two presented approaches we can see that the Vector Pattern Matching

approach surpasses the M.S.E. approach both in accuracy and performance.

In terms of accuracy the Vector Pattern Matching approach gives more solid classifi-

cations compared to the M.S.E. but the M.S.E. approach is more flexible in the variety of

patterns to be displayed. In order to achieve this many pattern discretions in the Vector

Pattern Matching approach there has to be additional constraints.

On the topic of performance it is obvious that the Vector Pattern Matching approach

is about 24% faster than the M.S.E. approach. Both approaches however, have not been

optimized so the computational time can be further reduced and thus increasing the

performance.
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Figure 5.31: Initialization window of Fluid Flow Viewer.

Figure 5.32: The main process panel of F.F.V., in this figure the selected method is

Lucas- Kanade.
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Figure 5.33: Lucas- Kanade result with all the image pixels present for the case of the

small stream flow image. The whole output figure can be displayed when the user pushes

the figure display button. This allows a more detailed examination of motion field.

5.4 Fluid Flow Viewer

All the aforementioned approaches, can be combined into a graphical user interface which

will allow the extraction, visualization and processing of motion estimates for fluid flows.

In this section we introduce a first approach on this subject and present the Fluid Flow

Viewer(F.F.V.). Such tools, can be very useful to hydrologists studying the properties of

the flow and using the information derived for the extra extraction of flow characteristics.

This graphical tool presents the user with the following possibilities:

• Motion field extraction using one of the available methods(2-D Statistical Estima-

tion, Lucas-Kanade, Horn- Schunck).

• Computation of the average velocity of the motion field(pixel per frame).

• Identification and Classification of the flow types present in the flow field using one

of the available methods(2-D Flow Characterization using Vector Pattern Matching,

2-D Flow Characterization using Mean Squared Error).
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Figure 5.34: Lucas- Kanade result with all the image pixels present for the case of the

small stream flow image. Only the user defined region’s motion field is displayed. The

green mark denotes the desired region and the blue mark denotes the region’s back-

ground(undesired regions).

• Presentation of the flow type’s distribution in the form of histogram.

• Selective processing, with the user defining the region of interest and implementing

the aforementioned possibilities on this specific region.

First of all, the user must select the methodology of interest(Figure 5.31) and then

the main task panel is displayed(Figure 5.32). As mentioned earlier the user can either

work on the whole image(figure 5.33) or in a user defined region.

The region selection is done by selecting(drawing) the region of interest and then by

using the Maximal Similarity Region based Merging by J.Ning et.al. [43], the region is

isolated from the rest of the image(figure 5.34).

The user can use the motion extraction method with a choice of block implementa-

tion(figure 5.35) or all pixel implementation(figure 5.33). The first allows less execution

time and displays the main motion types, whereas the second although much slower yields

the full motion field with a detailed representation of the existing flow patterns.
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Figure 5.35: Lucas- Kanade result with a Macro-block pixel display for the case of the

small stream flow image. The whole output figure can be displayed when the user pushes

the figure display button. This allows a more detailed examination of motion field.

Another aspect of this tool, is the motion characterization the user can choose from

the two presented methodologies, the 2-D Flow Characterization using Vector Pattern

Matching approach(figures 5.36, 5.37) and the 2-D Flow Characterization using Mean

Squared Error(figures 5.38, 5.39). The size of the search window and the filter pattern

can be defined by the user. This allows the user to calibrate the result according to

the image size and the flow motion(more abrupt flows require the use of smaller search

windows, in order to identify all the small motion patterns present in the flow. The user

can also select the flow type to be identified, homogeneous flows or vortical or even both.

Also, an additional visualization tool is the flow type histogram which presents the

flow type analogy in the motion field(figure 5.40) as well as the average velocity vector

components for the motion field(figure 5.41).

Finally, the tool also allows the user to open the desirable image and also save the

working region for future use.1

1These capabilities along with the Maximal Similarity Region based Merging methodology were

based on a graphical tool presented by J. Ning and is available on http://www4.comp.polyu.edu.hk/

~cslzhang/MSRM/PR_MSRM_website.htm. The GUI presented by J.Ning was used as a the basic structure
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Figure 5.36: 2-D Flow Characterization using Vector Patter Matching result. The whole

output figure can be displayed when the user pushes the figure display button. The user

defined filter size is 10 × 10 and also all structures are to be classified to all the motion

types available(homogeneous(green mark) and vortical(red mark)) are selected by the

user.

Figure 5.37: 2-D Flow Characterization using Vector Patter Matching result for the user

defined region of examination. The same display parameters are present as in the previous

figure.

for the development of our graphical tool.
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Figure 5.38: 2-D Flow Characterization using M.S.E. result. The whole output figure

can be displayed when the user pushes the figure display button. The user defined filter

size is 10 × 10 and also all structures are to be classified to all the motion types avail-

able(homogeneous with its subclasses and vortical with its subclasses(clockwise, counter-

clockwise) are selected by the user.

Figure 5.39: 2-D Flow Characterization using M.S.E. result for the user defined region

of examination. The same display parameters are present as in the previous figure.
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Figure 5.40: Histogram displaying the motion distribution analogy in the motion field.

The current histogram displays the motion types analogy for the case of the small Stream

flow. The motion classification was made with the 2-D Flow Characterization using M.S.E

method. Similar motion distribution histogram can also be constructed with the 2-D Flow

Characterization using Vector Patter Matching.

Figure 5.41: Average velocity components values. The current average velocity mag-

nitude was calculated using the motion field information provide by Lucas- Kanade’s

result. Average velocity magnitudes can be computed also using the two other available

methods(2-D Statistical Estimation and Horn- Schunck’s methods).
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Chapter 6

Conclusion

6.1 Conclusion

This thesis presents one approach for the topic of Motion estimation in fluid flows, based

on a pre-existing method introduced by Chang et.al. [28]. Our approach follows Chang’s

framework but has major differences on the amount of data used and the parameters

of the estimation process. The input data are only two adjacent frames from an image

sequence and outputs the motion field of the flow.

The motion estimation is based on a statistical framework associating each destination

position to a transaction likelihood which is considered as a sample of a local distribution

function. The estimated local distribution function are combined with a differential

framework whose optimization will result in a smooth global motion field.

Furthermore, this thesis introduces two approaches for the subject of Motion Pattern

Recognition, with the first being a variation of a pre-existing method introduced by

Heiberg et. al. [30], based on vector pattern matching ,and the later being a simple

correlation approach based on Mean Squared Error(M.S.E.). Both approaches use as

input the motion field of a natural fluid flow phenomena, such as rivers and output the

identified pattern structures of vortical and homogeneous flows.

The proposed approaches, although, never been used before for fluid flow pattern

recognition, show satisfying results which can be further improved with additional con-

straints. Moreover, although they are in early implementation stages with no optimiza-

tion been done they seem to be computationally effective with performance speeds rang-
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ing from seconds up to seconds with the computational speed depending on the search

window size and the image size.

6.2 Future Work

6.2.1 2-D Statistical Estimation on Fluid Flows

There can be numerous improvements that can be done to this approach which can

ameliorate the estimation accuracy as well as the algorithm’s performance.

6.2.1.1 Increasing Accuracy

As mentioned in Chapter 5, the proposed approach estimates successfully the main mo-

tion flow types present in the fluid flow but is less sensitive on the identification of

vortical flows. In order to succeed better estimation accuracy, which will result in the

improvement of vortical flow estimation, we can proceed to the following additions:

• Spatio-temporal Neighbourhood:

This improvement used by Chang [28] uses the spatio-temporal neighbourhood

for the coefficient estimation process instead of the spatial neighbourhood that we

used. This addition improves the estimation accuracy, more data to work with

leads to better estimation. However, the increase in accuracy will also increase the

computational cost and thus, decreasing the speed performance of the algorithm.

We can cope with this negative by using further additions which will improve the

performance.

• Combine with a hierarchical approach:

Hierarchical approaches are known for their accuracy and also, for their ability to be

combined with almost every optical flow computation method. By combining our

approach with the hierarchical approach we will be able to improve the estimation

accuracy. The hierarchical approach stages combined with the spatio-temporal

neighbourhood will leads to even better estimations but with a further burden on

the computational speed.
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• Shifting destination neighbourhood:

Due to the fact that we use the spatial neighbourhood we are limited in spe-

cific range of translations defined by the size of the destination neighbourhood.

Thus, arises the estimation accuracy problem we mentioned in correlation based

approaches:”The destination neighbourhood size must be chosen carefully according

to the range of the expected displacement.”.

This problem can be addressed by either imposing a spatio-temporal neighbourhood

approach, as mentioned previously, or by using a shifting window for the destination

neighbourhood, when choosing the spatial approach. This idea is widely used in

correlation based approaches and has been proved to improve the accuracy. The

basic concept is that the estimation starts with an initial spatial neighbourhood and

after the estimation is done, the selected position is used as the basis position to

form a new destination neighbourhood around this pixel. If the estimation results

are better compared to the previous ones, then this destination neighbourhood is

selected as the final transaction destination.

• Basis Function:

The accuracy of the approach in the global optimization step is depends largely

on the basis function used. The function must be such to provide the differential

framework which will lead to a global flow field but also take account the information

provided by the local distribution functions and use it for the final estimation. In

other words the basis function must be used in accordance with the distribution

functions and not ”shade” their affect. Therefore, other differential functions may

yield better estimation results than the Gaussian used by us or the product of cosine

functions used by Chang.

• Weights on the destination neighbourhood:

The addition of weights on the destination neighbourhoods which will further in-

crease the estimation accuracy. The choice of weights however, must be done care-

fully taking in mind the nature of the fluid flow motion.
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6.2.1.2 Increasing Performance

As mentioned in the previous Chapter the aim of this thesis was to provide an accurate

motion estimation algorithm, and thus, no optimization attempts were made. The com-

putational speed can be largely improved because for the implementation only the most

basic information about the components was used. This opens a window for improve-

ments which can increase the performance of the algorithm:

• Conjugate Gradient Algorithm:

The algorithm used although accurate tends to be computationally expensive. This

fact combined with a small update step α, increases even more the computational

time. As mentioned in Chapter 5 in the performance section, the Conjugate gradient

component takes up around 74% of the total execution time.

We can reduce this percentage and thus, increase the performance by using fast

versions of the conjugate gradient algorithm(as Chang suggests and uses), along

with an appropriate selection for the update step. However, the conjugate gradient

version must be selected carefully so that the increase in the computational speed

has a small cost in the accuracy. Also, the update step value should be such

allowing as less computational time as possible but also succeeding in finding the

global minimization position.

• Fourier space domain:

We can reduce the computational speed, and thus, increasing the performance by

moving the computation of the elements to the Fourier domain. We know for fact

that the computation is done much faster and simpler in the Fourier spaced due to

the fact that even complicate function can be expressed as a summation of cosine

and sine functions which makes their computation easier.

• Computation Optimization:

Another aspect affecting the performance is the way the elements are accessed. Ap-

proaches, for example, containing for-loops in order to access the data increase the

computational complexity. By reducing their amount either immediately selecting

the element(when a position is known) or by using matrices to save regions of data
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and using them for computation we can decrease the computational speed leading

to the increase of performance.

6.2.2 2-D Flow Characterization using Vector Pattern Match-

ing

For the case of Vector Pattern Matching we can also, move to improvements that will

increase the estimation accuracy as well as the algorithm’s performance.

6.2.2.1 Increasing Accuracy

As mentioned the algorithm presented has shown very satisfying results on the identifica-

tion of flow motion types. However, due to the fact that a 2-D approach has never been

implemented before or tested in flow field data, there is space for further improvements

in its accuracy:

• Increase the number of reference Patterns:

We can increase the number of patterns identified increasing the accuracy of the

algorithm. However, the formulation as well as the discrimination characteristics

must be selected with care so that the classification can be done simply and in ac-

cordance with the methodology. For example, we have shown(Chapter 5, accuracy

section) that with a simple threshold in the gradient of the vortical flow pattern we

can further discrete the flow pattern into clockwise and counter-clockwise vortexes.

But, as mentioned the discretion elements must be selected carefully, even in our

case the threshold component must be adapted to the image characteristics.

For this purpose, we can also use existed information such as the eigenvectors which

according to the methodology founder Prof. Heiberg contain information about the

symmetry axis of the structure to be classified.

We can also create homogeneous plane filters and use their filter response as a

means of identification homogeneous flows, further increasing the number of flow

types identified.
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• Pyramid Data Structure on the filter pattern size:

We can create a pyramid structure containing the classification results for various

filter and search window sizes, similar to a hierarchical approach. Combining the

classification results we can have classification for patterns without being limited by

the size of the search window and thus, increasing the accuracy of our performance.

6.2.2.2 Increasing Performance

Although, the computational speed of this approach is very satisfying, approximately 2,5

minutes per image, can be further reduced by implementing one of these additions:

• Use the convolution result for the classification:

By using the convolution result as a similarity measure exclude the step of the

orientation tensor. This will result in two improvements: (1) reduce of the com-

putational speed and (2) the better discrimination between the patterns, as it has

been presented the tensor is constructed using a set of 3 orientation filters which for

the case of a vortical flow contain the two subcategories of a vortex, clockwise and

counter- clockwise. In order to further discriminate the classification in the case of

a tensor we need to use further constraints which result in computational burden.

However, the classification success of this approach is not guaranteed since it has

not been tested yet.

• Implement the convolution in the Fourier domain:

Implementing the convolution in the Fourier space using the Fourier Transform (FT)

convolution theorem,1 results in the increase of the computational speed which will

result in the increase of the algorithm’s performance.

• Computation Optimization:

As mentioned, in the previous method, by optimizing the way of the data are ac-

cessed and the way their associations are calculated(matrix calculation is easier and

less computation expensive) we will increase the computational speed, improving

the performance.

1The convolution in the Fourier space is equal to the product of the Fourier Transforms of the input

functions.
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6.2.3 2-D Flow Characterization using Mean Squared Error

This correlation based approach can be improved in various ways which will increase the

estimation accuracy as well as the algorithm’s performance.

6.2.3.1 Increasing Accuracy

The proposed algorithm although, having the ability of using a variety of reference pat-

terns is less accurate compared to the Vector Pattern Matching approach. Motions show-

ing potential vortical nature might be considered as homogeneous patterns based on the

M.S.E. result. We have restraint this misclassification cases by using further constraints,

i.e. the curvature constraint mentioned during the presentation of the approach. The

approach can become yet more accurate in the classification which can be accomplished

with the following additions:

• Shape of search window:

Changing the shape of the search window will help on the improvement of the

classification between the homogeneous and vortical flow patterns. Circle shape

windows will show better identification rates for the case of vortical flows due to

the circular formation of a vortex. By combining the classification results of a two

set of window shapes(rectangular and circular) and thresholding their results we

will achieve an increase on the accuracy.

• Changing the size of the search window:

By repeating the classification for using different search window sizes and comparing

the classification results along with the M.S.E. value for each classification result at

each size we might be able to stop being restricted by the size of the search window

and achieve better classification results, and thus improving the accuracy.

6.2.3.2 Increasing Performance

As we have mentioned this algorithm is about 25% slower compared to the previous one,

taking about 3,5 minutes per image. This is expected since it is a correlation based

approach who tend to lack on computational speed but are noise insensitive. In order to

increase the performance of this approach we proceed to the following improvements:
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• Computation Optimization:

Again as mentioned, by optimizing the way of the data are accessed and the way

their associations are calculated, matrix calculation is easier and less computation

expensive, and we will improve the performance.

• Additional Constraints: We can use additional constraints prior the M.S.E. com-

putation that will exclude structures that will fail to satisfy the acceptance thresh-

old value, as mentioned in Chapter 4. This constraints must be computationally

efficient, such as the number of -1,0 and 1 values present, and their implementation

should burden the total computational time less than if we had to compute the

M.S.E. for the structures we exclude.

6.2.4 Fluid Flow Viewer(F.F.V.)

In the previous Chapter we presented a Graphical tool which combines motion estimation

approaches with the motion pattern recognition methods. We have also, presented its

capabilities and its layout. This tool, as mentioned, can be a useful tool to hydrologists

providing the basic information for the flow motion field and its characteristics. It is

a promising tool which with more additions aiming the extraction of more scientific

hydrological data can become a scientific tool used by hydrologists for the processing of

hydrological data.

The characteristic of user defined flow processing or full flow processing allows the

hydrologists to focus on the region of interests leading to more detailed and accurate

processing. As a future work we aim at further improving the Segmentation algorithm

allowing more precise isolation of the region of interest and thus, improving the detail of

processing.
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