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ABSTRACT 
 
 Field-Programmable Gate Arrays (FPGAs) are integrated circuits which can be 

programmed to implement virtually any digital circuit. This programmability provides a 

low-risk, low-turnaround time option for implementing digital circuits. This 

programmability comes at a cost, however. Typically, circuits implemented on FPGAs 

are three times as slow and have only one tenth the density of circuits implemented using 

more conventional techniques. Much of this area and speed penalty is due to the 

programmable routing structures and the quantity of routing resources contained in the 

FPGA.  

 In this study, we focus on commercially available FPGAs examining their 

capability to handle designs, as far as speed is concerned, of various sizes and bus widths. 

For this purpose, a large number of experiments have been conducted. Great attention has 

been given to the varying factors of logic utilization and bus width and their relation with 

the results. 

 Many graphs developed from the results give an overall view of this delicate 

subject. Comments on and analysis of the results was also conducted and led to 

interesting conclusions. Some of these conclusions confirmed our expectations and 

beliefs on this subject. But some others posed questions worthy to draw our attention. 

Generally speaking, we believe we shed some light concerning this subject. More study 

however should be done.       
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1 Introduction 
 
1.1 Introduction to Field-Programmable Gate Arrays 
 

Since their inception in 1985, Field Programmable Gate Arrays (FPGAs) have 

emerged as a leading choice of technology for the implementation of many digital 

circuits and systems. New commercial architectures offer variety of features such as 

densities of up to 10 million system gates, on-chip single or dual port memories, digital 

phase lock loops for clock management, and system performance up to 311 MHz [1-3], 

making FPGAs ideal not only for glue logic but also for the implementation of entire 

systems.  

Field Programmable Gate Arrays (FPGAs), Complex Programmable Logic 

Devices (CPLDs), and Masked Programmable Gate Arrays (MPGAs) are part of a 

programmable logic family which provides an alternative way of designing and 

implementing digital circuits. The traditional approach consists of designing a chip to 

meet a set of specific requirements which cannot be changed once the design is complete. 

In contrast, a programmable logic device can be programmed “in the field”, leading to 

lower time to market, and lower non-recurring engineering (NRE) costs. In addition 

many programmable devices can be re-programmed many times, leading to a faster 

recovery from design errors, and the ability to change the design as requirements 

change, either late in the design cycle, or in subsequent generations of a product.  

Of all programmable devices, one of the most common is the Field Programmable 

Gate Array (FPGA). Compared to other programmable devices, an FPGA offers the 

highest logic density, a good speed-area trade-off, and a very general architecture suitable 

for a wide range of applications. FPGAs are being used in prototyping of designs, 
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communication encoding and filtering, random logic, video communication systems, real 

time image processing, device controllers, computer peripherals, pattern matching, high 

speed graphics, digital signal processing and the list goes on. PLD shipments from 

various vendors are expected to exceed $3 billion for 1999 [4]. The advantages of FPGAs 

come at a price, however. The nature of their architecture, and the abundance of user-

programmable switches makes them relatively slow compared to some other devices in 

the programmable logic family. Regardless, FPGAs have a significant impact on the 

way a digital circuit design is done today.  

Logic is implemented in FPGAs using many Basic Logic Elements (BLEs), 

known also as Logic Cells. Each BLE can implement a small amount of logic and 

optionally a flip-flop. These BLEs are grouped into Configurable Logic Blocks(CLBs). 

The exact number of BLEs in each CLB varies from vendor to vendor (4 to 32 BLEs per 

logic block is common).  

Within a logic block, the BLEs are connected using a programmable routing 

structure called an Interconnect Matrix, as shown in Figure 1. The Interconnect Matrix is 

a switch which connects:  

• BLE outputs to BLE inputs within the same logic block, and 

• Logic Block inputs to BLE inputs. 

There are two types of Interconnect Matrices: fully connected, in which every 

connection between BLE output and BLE input and between logic block input and BLE 

input is possible, and partially depopulated, in which only certain connections between 

BLEs and the logic block input pins are possible.  
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Connections between the Logic Blocks are made using fixed wires/tracks. These 

tracks are connected to each other, and to the logic block inputs and outputs using 

programmable switches. These programmable switches are usually implemented using a 

pass transistor controlled by the output of a static RAM cell. By turning on the 

appropriate programmable switches, appropriate connections can be made between the 

logic block inputs and outputs. 

Figure 1 shows an Island-Style FPGA architecture. In an island-style architecture 

the Logic Blocks are organized in an array separated by horizontal and vertical 

programmable routing channel. A Switch Block is used to make connections between the 

tracks in adjacent channels. Figure 1 shows only one switch block and four logic blocks, 

but real FPGAs consist of many switch blocks and logic blocks.  

The Interconnect Matrix within a logic block and the fixed tracks and 

programmable switches outside of the logic blocks are collectively known as FPGA 

routing structures (often referred to as FPGA “routing architecture”). In most 

commercially available FPGAs, these routing structures consume the majority of the chip 

area, and are responsible for most of the circuit delay. As FPGAs are migrated to even 

more advanced technologies, the routing fabric becomes even more important [5]. Thus 

the optimization of these structures is very important. An FPGA with poor routing 

structure may suffer either in terms of routability, speed, or density. The more flexible the 

routing architecture, the more routable the device will be (i.e the more likely it is that a 

given connection between BLEs can be implemented). On the other hand, a more flexible 

architecture generally requires more transistors, consuming more chip area than is 
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needed, and adding extra parasitic capacitance to the wires connecting BLEs, slowing 

down the circuit more than is necessary. 

 
Figure 1 – FPGA Architecture 

 
1.2. Organization of this study 
 

This study is organized as follows: Chapter 2 provides background information, 

including FPGA architectures, general approaches to routing problems, routing 

algorithms and the definitions of basic terminology. It also describes representative 

examples of commercially available FPGAs, including a brief description of the routing 

architecture contained in each chip.  

Chapter 3 gives a detailed overview of the experimental procedure and the 

experimental results and states comments and remarks over the results. 
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Chapter 4 presents conclusions and future work, and precisely states the 

contributions of this work. 

 Finally, Appendix presents the entirety of the graphs that were produced during  
 
this study. 
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2 Background Information 
 
Introduction 
 

This chapter provides some necessary background information that is assumed in 

various discussions. Section 2.2 provides an FPGA architecture overview. Section 2.3 

introduces the two main fields of research, FPGA routing algorithms and FPGA routing 

architecture. Section 2.4 describes several commercially available FPGA devices to 

provide a point of reference for the FPGA model that is used throughout this work. 

 
2.1 FPGA Architecture Overview 

There are many different FPGA architectures available from various vendors 

including Xilinx [1], Altera [2], Actel [3], Lucent [6], QuickLogic [7], and Cypress [8]. 

Although the exact structure of these FPGAs varies from vendor to vendor, all FPGAs 

consist of three fundamental components: Logic Blocks, I/O blocks, and the 

Programmable Routing. What comprises of a logic block, and how the programmable 

routing is organized defines a particular architecture. A logic block is used to implement 

a small portion of the circuit being implemented using an FPGA. The programmable 

routing is used to make all the required connections among various logic block and the 

required connections to the I/O (input/output) blocks. Many commercially available 

FPGAs use an Island-style architecture in which logic blocks are organized in an array 

separated by horizontal and vertical programmable routing channel, as shown in Figure 2. 

2.1.1 Logic Resources 
 

The typical FPGA has a Basic Logic Element(BLE) with one or more 4-input 

LUT(s), optional D flip-flops (DFF), and some form of fast carry logic (Figure 3). These 

BLEs are grouped in Configurable Logic Blocks (CLBs or just Logic Block). The LUTs 
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Figure 2 – Island Style FPGA Architecture 

 

allow any function to be implemented, providing generic logic. The flip-flop can 

be used for pipelining, registers, stateholding functions for finite state machines, or any 

other situation where clocking is required. Note that the flip-flops will typically include 

programmable set/reset lines and clock signals, which may come from global signals 

routed on special resources, or could be routed via the standard interconnect structures 

from some other input or logic block. The fast carry logic is a special resource provided 

in the cell to speed up carry-based computations, such as addition, parity, wide AND 

operations, and other functions. These resources will bypass the general routing structure, 

connecting instead directly between neighbors in the same column. Since there are very 
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few routing choices in the carry chain, and thus less delay on the computation, the 

inclusion of these resources can significantly speed up carrybased computations. 

Each Logic Block also contains an Interconnect Matrix. The Interconnect Matrix 

is a switch which connects BLE outputs to BLE inputs and Logic Block inputs to BLE 

inputs within each Logic Block, as shown in Figure 4. 

 
  Figure 3 – Basic Logic Element 

                         

 
                                                                                Figure 4 – Logic Block 
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2.1.2 Routing Resources 

The programmable routing in an FPGA consists of two categories: (1) routing 

within each Configurable Logic Block, and (2) routing between the Configurable Logic 

Blocks. Figure 5 shows a detailed view of the routing for a single tile. Normally, an 

FPGA is created by replication of such a tile (a tile consists of one Logic Block and it’s 

associated routing). 

 

Figure 5 – Detailed Routing Architecture 

The programmable routing within each Logic Block consists of the Interconnect 

Matrix. The programmable routing between the Logic Blocks consists of fixed metal 

tracks, Switch Blocks, Connection Blocks, and the programmable switches. The fixed 

metal tracks run horizontally and vertically, and are organized in channels; each channel 

contains the same number of tracks for the architecture that we investigated. A Switch 
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Block occurs at each intersection between horizontal and vertical routing channels, and 

defines all possible connections between these channels. The Connection Block (shown 

in Figure 5) defines all the possible connections from a horizontal or vertical channel to a 

neighboring logic block. The connections in the switch blocks and connection blocks are 

made by programmable switches. Part of the programmable routing also lies within each 

logic block, determining how different components are connected within the logic block. 

This Island-Style architecture is a very general version of most commercial architectures.  

A programmable switch (Figure 6) consists of a pass transistor controlled by a 

static random access memory cell (in which case, the device is called a SRAM-based 

FPGA), or an anti-fuse (such devices are referred to as anti-fuse FPGAs), or a non-

volatile memory cell (such devices are referred to as floating gate devices). Since SRAM-

based FPGAs employ static random access memory (SRAM) cells to control the 

programmable switches, they can be reprogrammed by the end user as many times as 

required and are volatile. Of the three categories, SRAM-based FPGAs are most widely 

used and hence we will limit our discussion and investigations to SRAM-based devices. 

 

 
Figure 6 – Programmable Routing Connection 

 

2.2 FPGA CAD Flow 

In this section we present an overview of the entire CAD process that is necessary 

to implement a circuit in an FPGA. A typical CAD system for FPGAs consists of several 
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interconnected programs as illustrated in Figure 7. The input to the CAD system is a 

functional description of a network, usually expressed in a standard format such as 

boolean equations. The equations are read by a logic optimization [9] [10] tool, which 

performs manipulations of the equations so as to optimize area, delay, or a combination 

of area and delay. This step usually performs the equivalent of an algebraic minimization 

of the boolean equations and is appropriate when implementing a circuit in any medium, 

not just FPGAs. To transform the boolean equations into a circuit of FPGA logic cells, 

the optimized network is fed to a technology mapping program [11] [12] [13]. This step 

maps the equations into logic cells, which also presents opportunity to optimize, either to 

minimize the total number of logic cells required (area optimization) or the number of 

logic cells in time-critical paths (delay optimization). The circuit of logic cells is then 

passed to a placement program [14] [15] [16], which selects a specific location in the 

FPGA for each logic cell. Typical placement algorithms usually attempt to minimize the 

total length of interconnect required for the resulting placement. 

 
Figure 7 – A typical FPGA CAD system 

 
The final step in the CAD system is performed by the routing software, which 

allocates the FPGA’s routing resources to interconnect the placed logic cells. The routing 
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tools must ensure that 100 percent of the required connections are formed, and may be 

required to maximize the speed performance of time-critical connections. Finally, the 

CAD system’s output is fed to a programming unit that is used to configure the FPGA. 

 

2.3 Routing Algorithms 

In current FPGAs, the most of the tile area is devoted to routing resources and 

most of the delay of circuits implemented on FPGAs is due to routing. Software that 

performs automatic routing has existed for many years, with the first algorithms designed 

to route printed circuit boards. Over the years there have been many publications 

concerning routing algorithms, so that the problem is well defined and understood. 

 

2.3.1 Routing Terminology 

The following list gives common routing terms, as they are defined for 

FPGA routing in this study: 

• Pin - a logic cell input or output. 

• Connection - a pair of logic cell pins that are to be electrically connected. 

• Net - a set of logic cell pins that are to be electrically connected. A net can be 

divided into one or more connections. 

•  Wiring segment - a straight section of wire that is used to form part of a 

connection. 

•  Routing switch - a device that is used to electrically connect two wiring 

segments. 

• Track - a straight section of wire that spans the entire width or length of a routing 
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channel. A track can be composed of a number of wiring segments of various lengths. 

• Routing channel - the rectangular area that lies between two rows or two columns 

of logic cells. A routing channel contains a number of tracks. 

 

2.3.2 General Approach to Routing - PATHFINDER Algorithm 
 

Routing is one of the most challenging problems of FPGAs. This problem of 

routing FPGAs can be stated simply as that of assigning signals to routing resources in 

order to successfully route all signals while achieving a given overall performance. The 

first goal, complete routing of all signals, is difficult to achieve in FPGAs because of the 

lack of routing resources. The usual approach to achieving this goal is to minimize the 

use of routing resources by constructing minimum routing trees for each signal. Although 

this reduces the demand for routing resources, signals will still compete for the same 

resources and the challenge is to find a way to allocate resources so that all signals can be 

routed. The second goal, minimizing delay, requires the use of minimum delay routes for 

signals, which in general are much more expensive in terms of routing resources than 

minimum routing trees. Thus the solution to the entire routing problem requires the 

simultaneous solution to two interacting and competing  subproblems. 

 Various algorithms, concerning the FPGA routing problem, have been presented  
 
so far. Most of them [17], [18], [19] targeted in a standard rip-up and retry approach by 
ordering  
 
the nets to be routed such that critical nets are routed most directly. The most efficient  
 
algorithm up to date is that presented by McMurchie and Ebeling [20], the Pathfinder 

algorithm.  
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PathFinder is an iterative algorithm that balances the competing goals of 

eliminating congestion and minimizing delay of critical paths in an iterative framework. 

In this framework, signals are allowed to share routing resources initially, but 

subsequently must negotiate with other signals to determine which signal needs the 

shared resource most. A timing analysis is performed every iteration to apply pressure 

continuously to routes that can potentially become critical if left unchecked. PathFinder is 

derived from an iterative scheme for the global routing of custom IC's developed by Nair 

[21]. This scheme differs in several aspects from most forms of rip-up and retry.  

PathFinder is composed of two parts: a signal router, which routes one signal at a 

time using a shortest-path algorithm, and a global router, which calls the signal router to 

route all signals, adjusting the resource costs in order to achieve a complete routing. The 

signal router uses a breadth-first search to find the shortest path given a congestion cost 

and delay for each routing resource. The global router dynamically adjusts the congestion 

penalty of each routing resource based on the demands signals place on that resource. 

During the first iteration of the global router there is no cost for sharing routing resources 

and individual routing resources may be used by more than one signal. However, during 

subsequent iterations the penalty is gradually increased so that signals in effect negotiate 

for resources. Signals may use shared resources that are in high demand if all alternative 

routes utilize resources in even higher demand; other signals will tend to spread out 

and use resources in lower demand. The global router reroutes signals using the signal 

router until no more resources are shared. The use of a cost function that gradually 

increases the penalty for sharing is a significant departure from Nair’s algorithm, which 

assigns a cost of infinity to resources whose capacity is exceeded. In addition to 
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minimizing congestion, the signal router ensures that the delays of all signal paths stay 

within the critical path delay. For multiple sinks, low congestion cost can be achieved by 

a minimum Steiner tree, but this can result in long delays. Low delay can be achieved by 

a minimum-delay tree, but this may mean competition by many signals for the same 

routing resources. To achieve a balance, the signal router uses the relative contribution of 

each connection in the circuit (i.e. source-sink pair) to the overall delay of the circuit to 

determine how to trade off congestion and delay. Thus, every connection on the longest 

path has a slack ratio of 1, while connections on the least critical paths have slack ratios 

close to 0. The inverse of the slack ratio gives the factor by which the delay of a path can 

be expanded before the circuit is slowed down. The key idea behind the signal router is 

that connections with a slack ratio close to 1 will be assigned greater weight in 

negotiating for resources and consequently will be routed directly (i.e. using a minimum-

delay route) from source to sink. Connections with a small slack ratio will have less 

weight and pay more attention to congestion-avoidance during routing. 

Since Pathfinder was presented, there have been many router implementations 

based on it. The VPR (versatile place and route) router [22], which is such an 

implementation of the PathFinder algorithm, is known to be the best routing tool for 

FPGAs to date. 

 
 
2.4 Commercially Available FPGAs 

This section provides a detailed description of two commercially available FPGA 
 
families, including those from Xilinx Co and Altera. These particular FPGAs have been  
 
chosen because they are representative examples of state-of-the-art devices and they are  
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in widespread use. Each device is described in terms of its general architecture, its choice  
 
of programmable cell, its routing architecture, and its CAD routing tools. Enough details  
 
are given, and in some cases specific comments are made, to show how the routing  
 
resources and architecture of each device relates to the research contained in this study.  
 
2.4.1 XILINX FPGAs 
 

The general architecture of Xilinx FPGAs is shown in Figure 8. It consists of a 
 
two-dimensional array of programmable cells, called Configurable Logic Blocks (CLBs), 
 
with horizontal routing channels between rows of cells and vertical routing channels 
 
between columns. Programmable resources are configured by Static RAM cells, and 
 
each routing switch is implemented as a specially designed transistor controlled by an 
 
SRAM bit. There are two families of Xilinx FPGAs described here, called the VIRTEX II  
 
and SPARTAN 3. Table 1 gives an indication of the logic capacities of each family by  
 
showing the number of CLBs and an equivalent gate count. The design details of the  
 
Xilinx CLB and routing architecture for each family will each be described in turn. 
 

          
                          Figure 8 - General Architecture of Xilinx FPGAs  
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                                   Table 1 - Xilinx FPGA Logic Capacities 
 
 
2.4.1.1 XILINX  VIRTEX II 
 

The Virtex-II family is a platform FPGA developed for high performance from  
 
low-density to high-density designs that are based on IP cores and customized modules.  
 
The family delivers complete solutions for telecommunication, wireless, networking,  
 
video, and DSP applications, including PCI, LVDS, and DDR interfaces. 

 
Virtex-II devices are user-programmable gate arrays with various configurable  

 
elements. The Virtex-II architecture is optimized for high-density and high-performance  
 
logic designs. As shown in Figure 9, the programmable device is comprised of  
 
input/output blocks (IOBs) and internal configurable logic. 

 
The internal configurable logic includes four major elements organized in a  

 
regular array. 
 
• Configurable Logic Blocks (CLBs) provide functional elements for combinatorial and  
 
synchronous logic, including basic storage elements. BUFTs (3-state buffers) associated  
 
with each CLB element drive dedicated segmentable horizontal routing resources. 
 
• Block SelectRAM memory modules provide large 18 Kbit storage elements of dual-port  
 
RAM. 
 
• Multiplier blocks are 18-bit x 18-bit dedicated multipliers. 
 
• DCM (Digital Clock Manager) blocks provide self-calibrating, fully digital solutions for  
 

Family Number of CLBs Number of Gates 
VIRTEX II      64 – 11,648       40K – 8M 
SPARTAN3     192 – 8,320       50K – 5M 
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clock distribution delay compensation, clock multiplication and division, coarse- and  
 
fine-grained clock phase shifting. 

 
                        Figure 9 -  Virtex-II Architecture Overview 
 

The Virtex-II configurable logic blocks (CLB) are organized in an array and are  
 
used to build combinatorial and synchronous logic designs. Each CLB element is tied to a  
 
switch matrix to access the general routing matrix, as shown in Figure 10. A CLB  
 
element comprises 4 similar slices, with fast local feedback within the CLB, and two  
 
3-state buffers. The four  slices are split in two columns of two slices with two  
 
independent carry logic chains and one common shift chain. 

 
Each slice includes two 4-input function generators, carry logic, arithmetic logic  

 
gates, wide function multiplexers and two storage elements. As shown in Figure 11, each  
 
4-input function generator is programmable as a 4-input LUT, 16 bits of distributed  
 
SelectRAM memory, or a 16-bit variable-tap shift register element. In addition, the two  
 
storage elements are either edge-triggered D-type flip-flops or level-sensitive latches. 
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                                      Figure 10 -  Virtex-II CLB Element 
 
 
 
 
 

 
 

Figure 11 -  Virtex-II Slice Configuration 
 
 
Interconnection Scheme – Routing Resources 
 

Local and global Virtex-II routing resources are optimized for speed and timing  
 
predictability, as well as to facilitate IP cores implementation. Virtex-II buffered  
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interconnects are relatively unaffected by net fanout and the interconnect layout is  
 
designed to minimize crosstalk.  Virtex-II Active Interconnect Technology is a fully  
 
buffered programmable routing matrix. All routing resources are segmented to offer the  
 
advantages of a hierarchical solution. Virtex-II logic features like CLBs, IOBs, block  
 
RAM, multipliers, and DCMs are all connected to an identical switch matrix for access to  
 
global routing resources, as shown in Figure 12.  
 

Most Virtex-II signals are routed using the global routing resources, which are  
 
located in horizontal and vertical routing channels between each switch matrix. As shown  
 
in Figure 13, Virtex-II has fully buffered programmable interconnections, with a number  
 
of resources counted between any two adjacent switch matrix rows or columns. Fanout  
has minimal impact on the performance of each net. 
 
• The long lines are bidirectional wires that distribute signals across the device. Vertical  
 
and horizontal long lines span the full height and width of the device. 
 
• The hex lines route signals to every third or sixth block away in all four directions.  
 
Organized in a staggered pattern, hex lines can only be driven from one end. Hex-line  
 
signals can be accessed either at the endpoints or at the midpoint (three blocks from the  
 
source). 
 
• The double lines route signals to every first or second block away in all four directions.  
 
Organized in a staggered pattern, double lines can be driven only at their endpoints.  
 
Double-line signals can be accessed either at the endpoints or at the midpoint (one block 
 
from the source). 
 
• The direct connect lines route signals to neighboring blocks: vertically, horizontally,  
 
and diagonally.  
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• The fast connect lines are the internal CLB local interconnections from LUT outputs to  
 
LUT inputs. 

 
In addition to the global and local routing resources, dedicated signals are  

 
available. 
 
• There are eight global clock nets per quadrant  
 
• Horizontal routing resources are provided for on-chip 3-state busses. Four partitionable  
 
bus lines are provided per CLB row, permitting multiple busses within a row.  
 
• Two dedicated carry-chain resources per slice column (two per CLB column) propagate  
 
carry-chain MUXCY output signals vertically to the adjacent slice.  
 
• One dedicated SOP chain per slice row (two per CLB row) propagate ORCY output  
 
logic signals horizontally to the adjacent slice.  
 
• One dedicated shift-chain per CLB connects the output of LUTs in shift-register mode  
 
to the input of the next LUT in shift-register mode (vertically) inside the CLB. 
 
 

 
 
 

Figure 12 -  Active Interconnect Technology 
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Figure 13 -  Hierarchical Routing Resources 
 
2.4.1.2 XILINX  SPARTAN 3 
 

The Spartan™-3 family of Field-Programmable Gate Arrays is specifically  
 
designed to meet the needs of high volume, cost-sensitive consumer electronic  
 
applications. The eight-member family offers densities ranging from 50,000 to five  
 
million system gates, as shown in Table 1. The Spartan-3 family builds on the success of  
 
the earlier Spartan-IIE family by increasing the amount of logic resources, the capacity of  
 
internal RAM, the total number of I/Os, and the overall level of performance as well as  
 
by improving clock management functions. Because of their exceptionally low cost,  
 
Spartan-3 FPGAs are ideally suited to a wide range of consumer electronics applications,  
 
including broadband access, home networking, display/projection and digital television  
 
equipment. 

 
The Spartan-3 family architecture consists of five fundamental programmable  
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functional elements: 
 
• Configurable Logic Blocks (CLBs) contain RAM-based Look-Up Tables (LUTs) to  
 
implement logic and storage elements that can be used as flip-flops or latches. CLBs can  
 
be programmed to perform a wide variety of logical functions as well as to store data. 
 
• Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the  
 
internal logic of the device. Each IOB supports bidirectional data flow plus 3-state  
 
operation. Twenty-four different signal standards, including seven high-performance 
 
differential standards, are available. Double Data-Rate (DDR) registers are included. The  
 
Digitally Controlled Impedance (DCI) feature provides automatic on-chip terminations,  
 
simplifying board designs. 
 
• Block RAM provides data storage in the form of 18-Kbit dual-port blocks. 
 
• Multiplier blocks accept two 18-bit binary numbers as inputs and calculate the product. 
 
• Digital Clock Manager (DCM) blocks provide self-calibrating, fully digital solutions for  
 
distributing, delaying, multiplying, dividing, and phase shifting clock signals. 

 
These elements are organized as shown in Figure 14. A ring of IOBs surrounds a  

 
regular array of CLBs. The columns of block RAM range from one to four, for the  
 
members of the family. Each column is made up of several 18K-bit RAM blocks; each  
 
block is associated with a dedicated multiplier. The DCMs are positioned at the ends of  
 
the outer block RAM columns. 
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Figure 14 -  Spartan-3 Family Architecture 
 

 
 
 
The Configurable Logic Blocks (CLBs) constitute the main logic resource for  

 
implementing synchronous as well as combinatorial circuits. Each CLB comprises four  
 
interconnected slices, as shown in Figure 15. These slices are grouped in pairs. Each pair 
 
 is organized as a column with an independent carry chain. 

 
All four slices have the following elements in common: two logic function  

 
generators, two storage elements, wide-function multiplexers, carry logic, and arithmetic  
 
gates, as shown in Figure 16. Both the left-hand and right-hand slice pairs use these  
 
elements to provide logic, arithmetic, and ROM functions. Besides these, the left-hand  
 
pair supports two additional functions: storing data using Distributed RAM and shifting  
 
data with 16-bit registers. 
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Figure 15 -  Arrangement of slices within the CLB 
 
 
 

Interconnection Scheme – Routing Resources 
 

The Spartan-3 family features a rich network of traces and switches that  
 
interconnect all five functional elements, transmitting signals among them. Each  
 
functional element has an associated switch matrix that permits multiple connections 
 
to the routing. 
 
 Interconnect (or routing) passes signals among the various functional elements of 

Spartan-3 devices. There are four kinds of interconnect: Long lines, Hex lines, Double  

lines, and Direct lines. 
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Figure 16 -  Simplified diagram of a Slice 
 
 
 
 
 
 



 31

 
Long lines connect to one out of every six CLBs (see Figure 17a). Because of their low 

capacitance, these lines are well-suited for carrying high-frequency signals with minimal 

loading effects (e.g. skew). If all eight Global Clock Inputs are already committed and 

there remain additional clock signals to be assigned, Long lines serve as a good 

alternative. 

 

Figure 17 -  Types of Interconnect 

Hex lines connect one out of every three CLBs (see Figure 17b). These lines fall between 

Long lines and Double lines in terms of capability: Hex lines approach the high-

frequency characteristics of Long lines at the same time, offering greater connectivity. 
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Double lines connect to every other CLB (see Figure 17c). Compared to the types of lines 

already discussed, Double lines provide a higher degree of flexibility when making 

connections. 

Direct lines afford any CLB direct access to neighboring CLBs (see Figure 17d). These 

lines are most often used to conduct a signal from a "source" CLB to a Double, Hex, or 

Long line and then from the longer interconnect back to a Direct line accessing a 

"destination" CLB. 

2.4.3 ALTERA  FPGAs 
 
Altera FPGAs [2] are considerably different from the others discussed above 

because they resemble large Programmable Logic Devices. Nonetheless, they are 

functionally equivalent to FPGAs because they employ a two-dimensional array of 

programmable cells and a programmable routing structure, they can implement multi-

level logic, and they are user-programmable. Altera’s general architecture, which is based 

on an EPROM programming technology, is illustrated in Figure 18. It consists of an array 

of programmable cells, called Logic Array Blocks (LABs), interconnected by a routing 

resource called the Programmable Interconnect Array (PIA).  

The Altera LAB is by far the most complex logic cell of any of the FPGA families 

describe. A LAB can be thought of as an efficient PLD, as will be explained in the 

following paragraphs. Each LAB, as seen in Figure 19, consists of two major blocks, 

called the Macrocell Array and the Expander Product Terms.  
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Figure 18 - General Architecture of Altera FPGAs 
 

The Macrocell Array is a one-dimensional array of elements called Macrocells, 

where the number of elements in the array varies with each Altera device. As illustrated 

in Figure 20, each Macrocell comprises three wide AND gates that feed an OR gate 

which connects to an XOR gate, and a flip-flop. The XOR gate generates the Macrocell 

output and can optionally be registered. In Figure 20, the inputs to the Macrocell are 

shown as single-input AND gates because each is generated as a wired-AND (called a 

pterm) of the signals drawn on the left-hand side of the figure. A p-term can include any 

signal in the PIA, any of the LAB Expander Product Terms (described below), or the 

output of any other Macrocell. With this arrangement the Macrocell Array functions 

much like a PLD, but with fewer product terms per register (there are usually at least 

eight product terms per register in a PLD). Altera claims [2] that this makes the LAB 
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more efficient because most logic functions do not require the large number of p-terms 

found in PLDs and the LAB supports wide functions by way of the Expander Product 

Terms. 

 

Figure 19 - Altera LAB 
 

As illustrated in Figure 20, each Expander Product Terms block consists of a 

number of p-terms (the number shown in the figure is only suggestive) that are inverted 

and fed back to the Macrocell Array, and to itself. This arrangement permits the 

implementation of very wide logic functions because any Macrocell has access to these 

extra p-terms. 

The Altera routing structure, the PIA, consists of a number of long wiring 

segments that pass adjacent to every LAB. The PIA provides complete connectivity 

because each LAB input can be programmably connected to the output of any LAB, 

without constraints. With this arrangement, routing an Altera FPGA is trivial, since there 

are no routing constraints. However, as mentioned previously for Actel FPGAs, this level 

of connectivity is excessive and could probably be reduced, given an appropriate routing 
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algorithm. 

 

 
Figure 20 - Altera Macrocell 
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3 Experimenting on Field-Programmable Gate Array Routing  
 
 In Chapter 2, we presented background information concerning FPGAs in 

general, and specially routing and commercially available FPGAs. In this chapter we give 

the objects of this study and present a detailed overview of the experimental procedure 

followed and of the experimental results acquired.    

3.1 General Approach and Problem Definition 

The problem of routing efficiently designs in FPGAs is very challenging, as 

mentioned in the previous chapter. There are various factors that affect this problem, like 

routing resources, routing algorithms and routing architectures. Our study concentrated 

most on the first factor. The object was to make a detailed examination of FPGA routing 

resources, based on many experimental results. The experiments focus on the relationship 

between the length of a connection and its delay. This kind of examination could lead to 

useful conclusions and could arise some important questions.  

 In order to complete such an experimental procedure, CAD system tools were 

necessary. We decided to use Xilinx CAD system tools and especially Xilinx ISE 6.1i 

version. This version provides all the necessary tools, a very good environment and 

efficient documentation, so it fitted perfectly to our study. 

 For the purpose of this study three commercially available FPGAs were chosen: 

xc2v1500-6bg575, xc2v3000-6bf957 and xc3s1500-4fg676. In figure 21, we give an 

ordering example of a VirtexII. VirtexII and Spartan3 are two well known FPGA device 

families used for a wide variety of designs. So these three devices suited exactly our 

needs. 
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Figure 21 – Virtex II Ordering Example 

 
 The experimental procedure consisted of two basic phases, in order to achieve 

better results: 

1. In the first phase, we experimented in almost empty FPGAs using a very simple 

design we created for our study. So, logic utilization was very close to 0%. 

2. In the second phase, similar experiments were made. But this time we used a 

second larger design[23] in addition. So changing this design gave us the 

opportunity to have various values of utilization for each device. 

 
The experimental procedure of each phase is presented in detail in the following  

 
section. 

 
3.2 Experimental Procedure – Experimental Results 
 
 Description of phase 1 
 
 The first step was to create a very simple design which would be used for the 

experiments. The purpose of this simplicity was our will to be able to manually place and 

route the logic elements of the design. The design is actually two inverters in a row, 

which means that the output is same as the input. We also have two  registers, one right 

after the input and one before the output. And, of course, DFFs. We used three bus widths 

for the input and output: 1, 8 and 32 bits. For the creation of the design we used Project 

Navigator which is the Xilinx CAD tool offered for this purpose. Using the Project 
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Navigator we also synthesized the design and completed it’s logic optimization. The 

exact design in VHDL is presented here.  

 
Our Design in VHDL       
 
entity our_design is 
    Port ( A : in std_logic; 
           Reset : in std_logic; 
           Clk : in std_logic; 
           B : out std_logic ); 
end our_design; 
 
architecture Structural of our_design is 
 
component reg_bit 
 Port ( X : in std_logic; 
          Reset : in std_logic; 
          Clk : in std_logic; 
          Y : out std_logic); 
end component ; 
 
component invert 
 Port ( X : in std_logic; 
          Reset : in std_logic ; 
    Clk : in std_logic ; 
    Y : out std_logic); 
end component ; 
 
signal temp_a, temp_b, temp_c : std_logic ; 
 
begin 
 
 rg_a : reg_bit port map (A, Reset, Clk, temp_a) ; 
 inv_a: invert port map ( temp_a, Reset, Clk, temp_b) ; 
 inv_b: invert port map ( temp_b, Reset, Clk, temp_c) ; 
 rg_b : reg_bit port map (temp_c, Reset, Clk, B) ; 
 
end Structural; 

 
 
After the logic optimization, the next step was to place and route the design. The 

Xilinx tool offered for this purpose is the FPGA Editor, a very versatile tool which gives 

you the choice either to auto-place and route or manually place and route a design. In 

figure 22, the basic window of FPGA Editor is presented, showing an already placed 

design. 

 
 



 39

 

 
 

Figure 22 – FPGA Editor (main window) 
 

 Our design needs only three logic cells in order to be fully placed after the logic 

optimization has taken place. The idea was to manually place and route the design many 

times, producing in this way many maps, which will differ in certain characteristics. The 

characteristic that we changed was the length between two of the logic cells. Because the 

logic cells are connected (form a connection), we will refer to this characteristic as 

Connection Length. 

 In the beginning, we placed the logic to nearby logic cells in one side of the 

FPGA. Then, keeping one slice in its place, we changed the placement (and so the 

routing) of the second increasing each time the connection length (in the same 

direction).The increment value was one CLB length. This process continued until we 

reached the other side of the FPGA. Figure 23 depicts this process, in order to be more  
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Figure 23 – Experimental Process 

 
 
 

 

Figure 24 – Timing Analyzer (main window) 
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understandable. This procedure was followed for both the vertical and horizontal 

dimension of the FPGA. We describe the procedure for bus width 1-bit. The same exact 

procedure was followed for bus width 8 and 32 bits. The difference is that we have 8 and 

32 pairs of logic cells for bus width 8 and 32 bit, respectively.  

 So for each of the three devices, we produced many maps following the idea 

mentioned above. In the next step, timing analysis of each map had to be performed in 

order to get the delay results of the connection we wanted. This step was accomplished 

using Timing Analyzer of Xilinx CAD tools. Figure 24 shows the main window of 

Timing Analyzer having performed a timing analysis.  

 Lastly, after performing the analysis we gathered the experimental results. These 

results are presented in Figures 25 - 30 below. There are two figures for each of the 

devices, one for each dimension. The results analysis and the charts are made in Matlab 

R12.  

 In this point, we are obligated to examine as an example a chart in detail, in order 

to become more understandable for anyone. The heading of each chart gives three data. 

The exact device which corresponds to each chart. The logic utilization value of the 

device for this chart. And the dimension of the device (horizontal or vertical) we refer.  

As far as axes are concerned: X-axis shows the connection length per Configurable Logic 

Block (as explained above) and Y-axis shows the equivalent connection delay in 

nanoseconds. In the bottom right corner the legend is presented. The legends gives a label 

for each single graph of the chart concerning the bus width (e.g. 1-bit) and shows the kind 

of line and spots for each graph, respectively. Finally the graphs appear. Each spot 

represent a result and the spots are connected with a line.  
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Figures 25 – 26  
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Figures 27 – 28  
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Figures 29 - 30 
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 We described above in detail the whole experimental procedure of the first phase 

of our study which led to the results presented in the figures above. Examining closely 

these figures, we came up with some interesting comments and remarks concerning our 

field of research that should be stated. 

1. Generally, the connection delay increases as the connection length increases. 

Specifically, we observe that there is an increment of about 200 to 300 % of the 

connection delay value between the lowest and the highest connection length value. This 

applies for all the devices, bus widths and dimensions with only one exception. In the 

horizontal results of device Virtex2-3000 (Figure 27) the increment approaches 400 %.  

2. Comparing the graphs of same device and dimension, but with the bus width varying, 

we observe that they are generally similar. 32-bit and 8-bit designs have slightly larger 

values, as expected, from the 1-bit design. There is an exception in Figure 26 (vertical 

results of device Virtex2-1500) where we see that as the connection length increases the 

delay difference between 1-bit design and the others, is also increasing (reaching 80% 

approximately). 

3. Something interesting comes up if we examine the 1-bit design graphs. We notice that 

for 4 or 5 consecutive connection lengths they have the same delay and after there is 

sharp increment. This is well understood in Figures 27 and 29.   
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Description of phase 2 

 The object of the second phase was to widen the experimental field in FPGAs that 

have a portion of their resources, both logic and routing, already utilized. In this way, 

experimenting on various values of utilization, we acquire an overall point of view. For 

this purpose we had to use a large design which could be easily modified. A design with 

versatile code. The design we chose is a pattern matching [23] one, that fulfilled the 

characteristics mentioned above. The design was modified many times according to our 

needs. Each time we synthesized it and made the logic optimization using the Project 

Navigator. These modifications gave utilization values for each device from 35% to 80% 

more or less. The exact values are presented in Table 2. 

 Similar to the first phase, placement and routing had to be done. Using the FPGA 

Editor we, firstly, auto-placed and routed the pattern matching design. Then, we manually 

placed and routed our own simple design. The experiments were taken place following 

the exact same procedure described in phase 1 for each value of utilization. 

Device Type Device Utilization Values 
xc2v1500-6bg575 41, 53, 62, 75, 85               (%) 
xc2v3000-6bf957 33, 40, 45, 51, 59, 66, 71   (%) 
xc3s1500-4fg676 36, 43, 49, 55, 64, 71, 77   (%) 

 
Table 2- Utilization Values for each Device  

 

 We did not interfere with the placement and routing of the large design at all 

during the experiments. The fact that a considerable part of the devices was utilized 

limited the number of maps that could be acquired. Not all connection lengths could 

produce a map because simply, we could not place the logic element of our design 
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there. This becomes even more obvious with the placement and routing of our 8-bit and 

32-bit design where we need to find more than one empty logic cells.     

 After having completed the placement and route step we had enough maps to be 

analyzed based on time. As in the previous phase Timing Analyzer was used to produce 

the connection delay results. We have to mention here that for the 8 and 32 bit design 

Timing Analyzer produces 8 and 32 values respectively as results. In these cases we 

made further analysis and acquired the median value as an overall result of the 

connection delay for each connection length, and this last result is the one depicted in the 

charts. Using MatlabR12 we completed the last step which was the creation of the charts.  

 These charts are presented in total in Appendix A (Figures 7-44). There are two 

charts for each device for each value of utilization, the chart presenting the horizontal 

dimension results and the one presenting the vertical dimension results. Each chart 

consists of three graphs (1, 8 and 32 bit). In this section only few examples are presented 

in Figures 31-36.  

 Following the same road as in the first phase, we present below some interesting 

remarks and comments that emerged through our result analysis. In this phase we have to 

take in mind the additional factor of logic utilization of the FPGA.  

1. Generally, as in phase one, the connection delay increases as the connection length 

increases. Specifically, we observe that there is an increment of about 250 to 350 % of 

the connection delay value between the lowest and the highest connection length value. 

This applies for all the devices, utilization values, bus widths and dimensions with few 

exceptions. 
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2. Comparing the graphs of designs with the bus width as varying factor we come up with 

the remark that they have similarities. But this time (high logic utilization), the delay 

results for the 32 and 8 bit designs are higher in a rate of 10% from these of the 1-bit 

design. This happens mostly for large connection lengths. This is the general case of 

course. In some results this rate is even greater and in some others it doesn’t exist. 

3. In a few figures we observe some “extraordinary” results. This means results that 

logically should not appear and were not expected. Typical examples are in Figure 18 and 

Figure 39 (see Appendix). These results are “damaged” due to noise. We note this fact 

when it appears by making a comment on the figure.  
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Figures 31 – 32 : Virtex2-1500 
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Figure 33 – 34 : Virtex2-3000 
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Figures 35 – 36 : Spartan3-1500 
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 The charts presented and examined so far focus on the comparison between 1, 8 

and 32 bit results. But the comparison between different values of utilization should also 

be studied. This comparison is presented through Figures 37-42 for the 1 bit design. The 

chart in these figures consists of one graph for each  utilization value. Two for each 

device (horizontal and vertical). In these figures the heading reveals the bus width of the 

design, while the legend label shows the logic utilization value of each graph. Below, we 

present a few remarks based on these figures. 

 We expected that as logic utilization increased the connection delay would show a 

plain tendency to increase too. But this does not happen. We cannot notice a rule or a 

clear overall conclusion. For example, in Figure 37 we see that the greater delay values 

occur for 53% utilization. None the less, we can say that the graphs corresponding to 0% 

utilization tend to have one of the lower delays. This is really clear in Figures 38, 40 and 

41.  

 Finally, we can mention that in general all graphs are close to each other. We 

mean that the range of the results is small, especially for small connection length values. 

Of course there is an increment of this range for bigger connection length values              

(e.g. Figure 40). 
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Figures 37 – 38 : Virtex2-1500 
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Figures 39 – 40 : Virtex2-3000 
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Figures 41 - 42 : Spartan3-1500 
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4 Conclusions 
 
  In the previous chapter we gave the objects of this study and presented a detailed 

overview of the experimental procedure followed and of the experimental results 

acquired. In this last chapter, we cite the conclusions we have worked out during this 

study. We, also, refer to the contributions of this study and make suggestions for future 

work. 

4.1 Summary - Contributions - Suggestions for Future Work 
 
 Throughout this study we have emphasized on the importance of routing 

architecture, routing algorithm and routing resources for FPGAs. So after having 

presented the necessary background for this field, we conducted a detailed experimental 

procedure, focusing on commercially available FPGAs, in order to reach useful overall 

conclusions. These conclusions are stated here. 

 As an overall conclusion we must mention that FPGA routing resources manage 

to meet up to our expectations. This happens both in terms of quantity and of quality. The 

fact that the delay did not increase radically in designs that utilized a percentage of        

70 – 80 % of the FPGA logic resources compared to designs that utilized only 1%, shows 

that a good tradeoff between the quantity of routing resources and logic resources has 

been achieved. Moreover, the reasonable increment in the delay we had as a result in 

empty FPGA compared to the connection length shows the ability of routing resources to 

handle various lengths satisfying. This is due mainly to routing architecture which uses 

different types of wires according to each case. These conclusions are reinforced from the 

fact that even the results for designs with 32-bit bus width (and high utilization) did not 

present great increment compared to designs with 1-bit bus width.  
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 But there is a point we can support that the results spotted a weakness. This point 

is the routing algorithm. This conclusion begins from the fact that some results were very 

satisfying compared to some others in the same graph. This difference of results cannot 

be attributed to the connection length, which means that the routing algorithm reaches a 

result but not the best in some cases. Generally, there is an uncertainty as far as the 

routing algorithm is concerned. 

 To summarize, today FPGAs are a leading choice of technology for the 

implementation of many digital circuits and systems. A key field of research for the 

FPGAs is routing resources. This study, following an experimental approach and 

focusing mainly on commercially available FPGAs, shed some light in this field and 

stated some interesting remarks and useful conclusions. There is still a lot of study 

needed, concerning routing,  in order to accomplish an even more satisfying level and 

manage to keep up to the fast development of technology. There is a great variety of 

designs of various characteristics that could be used in a similar experimental approach. 

This would expand the research and possibly reveal interesting conclusions. Finally, the 

subject of routing algorithm should be re-examined (but that is not new data).             
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APPENDIX: ALL GRAPHS PRODUCED 
 

 

Figures 01 – 02 : Virtex2-1500  
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Figures 03 – 04 : Virtex2-3000  
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Figures 05 – 06 : Spartan3-1500 
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Figures 07 – 08 : Virtex2-1500 
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Figures 09 – 10 : Virtex2-1500 
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Figures 11 – 12 : Virtex2-1500 
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Figures 13 – 14 : Virtex2-1500 
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Figures 15 – 16 : Virtex2-1500 
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Figure 17 – 18 : Virtex2-3000 
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Figure 19 – 20 : Virtex2-3000 
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Figure 21 – 22 : Virtex2-3000 
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Figure 23 – 24 : Virtex2-3000 
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Figure 25 – 26 : Virtex2-3000 
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Figure 27 – 28 : Virtex2-3000 
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Figure 29 – 30 : Virtex2-3000 
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Figures 31 – 32 : Spartan3-1500 
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Figures 33 – 34 : Spartan3-1500 
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Figures 35 – 36 : Spartan3-1500 
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Figures 37 – 38 : Spartan3-1500 
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Figures 39 – 40 : Spartan3-1500 
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Figures 41 – 42 : Spartan3-1500 
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Figures 43 – 44 : Spartan3-1500 
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Figures 45 – 46 : Virtex2-1500 
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Figures 47 – 48 : Virtex2-3000 
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Figures 49 - 50 : Spartan3-1500 
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