

An Experimental Study

on Field Programmable Gate Arrays
Routing Resources

by
Serafeim Radis

Department of Electronic Engineering
Technical University of Crete

Chania, Greece

 July 2005

 2

ABSTRACT

 Field-Programmable Gate Arrays (FPGAs) are integrated circuits which can be

programmed to implement virtually any digital circuit. This programmability provides a

low-risk, low-turnaround time option for implementing digital circuits. This

programmability comes at a cost, however. Typically, circuits implemented on FPGAs

are three times as slow and have only one tenth the density of circuits implemented using

more conventional techniques. Much of this area and speed penalty is due to the

programmable routing structures and the quantity of routing resources contained in the

FPGA.

 In this study, we focus on commercially available FPGAs examining their

capability to handle designs, as far as speed is concerned, of various sizes and bus widths.

For this purpose, a large number of experiments have been conducted. Great attention has

been given to the varying factors of logic utilization and bus width and their relation with

the results.

 Many graphs developed from the results give an overall view of this delicate

subject. Comments on and analysis of the results was also conducted and led to

interesting conclusions. Some of these conclusions confirmed our expectations and

beliefs on this subject. But some others posed questions worthy to draw our attention.

Generally speaking, we believe we shed some light concerning this subject. More study

however should be done.

 3

ACKNOWLEDGEMENTS

 I would like to take this opportunity to express my sincere thanks and

appreciation to my academic supervisor Professor Dionysis Pneymatikatos, who has

provided a continual source of guidance, advice, encouragement, and friendship

throughout the period of this study. It has been my privilege to work with him.

I would also like to thank John Sourdis for providing me some designs and giving helpful

tips.

 Very special, special, special thanks (with sugar on top) to each of my friends

personally for supplying me with poetry, laughter, strength and support through all of

these unforgettable years.

 My father and mother have always supported my studies and deserve much credit

for enabling me to reach this milestone.

 4

TABLE OF CONTENTS

Abstract………………………………………………………………………………2

Acknowledgements…………………………………………………………………..3

1 Introduction
 1.1 Introduction to Field-Programmable Gate Arrays..……………………………...5
 1.2 Organization of this study ………………………………………………………8

2 Background Information
 2.1 FPGA Architecture Overview …………………………………………………10
 2.1.1 Logic Resources ……………………………………………………………10
 2.1.2 Routing Resources …………………………………………………………13
 2.2 FPGA CAD Flow………………………………………………………………14
 2.3 Routing Algorithms ……………………………………………………………16
 2.3.1 Routing Terminology……………………………………………….……...16
 2.3.2 General Approach to Routing – Pathfinder Algorithm…………………….17
 2.4 Commercially Available FPGAs ………………………………………………19
 2.4.1 Xilinx FPGAs ……………………………………………………………...20
 2.4.1.1 Xilinx Virtex II ………………………………………………………...21
 2.4.1.2 Xilinx Spartan 3………………………………………………………...26
 2.4.2 Altera FPGAs ……………………………………………………………...32

3 Experimenting on Field-Programmable Gate Array Routing
 3.1 General Approach and Problem Definition ……………………………………36
 3.2 Experimental Procedure – Experimental Results – Comments ………………..37

4 Conclusions
 4.1 Summary - Contributions - Suggestions for Future Work …………………….56

Appendix A : All graphs produced ….……………………………………………58

References …………………………………………………………………………..83

 5

1 Introduction

1.1 Introduction to Field-Programmable Gate Arrays

Since their inception in 1985, Field Programmable Gate Arrays (FPGAs) have

emerged as a leading choice of technology for the implementation of many digital

circuits and systems. New commercial architectures offer variety of features such as

densities of up to 10 million system gates, on-chip single or dual port memories, digital

phase lock loops for clock management, and system performance up to 311 MHz [1-3],

making FPGAs ideal not only for glue logic but also for the implementation of entire

systems.

Field Programmable Gate Arrays (FPGAs), Complex Programmable Logic

Devices (CPLDs), and Masked Programmable Gate Arrays (MPGAs) are part of a

programmable logic family which provides an alternative way of designing and

implementing digital circuits. The traditional approach consists of designing a chip to

meet a set of specific requirements which cannot be changed once the design is complete.

In contrast, a programmable logic device can be programmed “in the field”, leading to

lower time to market, and lower non-recurring engineering (NRE) costs. In addition

many programmable devices can be re-programmed many times, leading to a faster

recovery from design errors, and the ability to change the design as requirements

change, either late in the design cycle, or in subsequent generations of a product.

Of all programmable devices, one of the most common is the Field Programmable

Gate Array (FPGA). Compared to other programmable devices, an FPGA offers the

highest logic density, a good speed-area trade-off, and a very general architecture suitable

for a wide range of applications. FPGAs are being used in prototyping of designs,

 6

communication encoding and filtering, random logic, video communication systems, real

time image processing, device controllers, computer peripherals, pattern matching, high

speed graphics, digital signal processing and the list goes on. PLD shipments from

various vendors are expected to exceed $3 billion for 1999 [4]. The advantages of FPGAs

come at a price, however. The nature of their architecture, and the abundance of user-

programmable switches makes them relatively slow compared to some other devices in

the programmable logic family. Regardless, FPGAs have a significant impact on the

way a digital circuit design is done today.

Logic is implemented in FPGAs using many Basic Logic Elements (BLEs),

known also as Logic Cells. Each BLE can implement a small amount of logic and

optionally a flip-flop. These BLEs are grouped into Configurable Logic Blocks(CLBs).

The exact number of BLEs in each CLB varies from vendor to vendor (4 to 32 BLEs per

logic block is common).

Within a logic block, the BLEs are connected using a programmable routing

structure called an Interconnect Matrix, as shown in Figure 1. The Interconnect Matrix is

a switch which connects:

• BLE outputs to BLE inputs within the same logic block, and

• Logic Block inputs to BLE inputs.

There are two types of Interconnect Matrices: fully connected, in which every

connection between BLE output and BLE input and between logic block input and BLE

input is possible, and partially depopulated, in which only certain connections between

BLEs and the logic block input pins are possible.

 7

Connections between the Logic Blocks are made using fixed wires/tracks. These

tracks are connected to each other, and to the logic block inputs and outputs using

programmable switches. These programmable switches are usually implemented using a

pass transistor controlled by the output of a static RAM cell. By turning on the

appropriate programmable switches, appropriate connections can be made between the

logic block inputs and outputs.

Figure 1 shows an Island-Style FPGA architecture. In an island-style architecture

the Logic Blocks are organized in an array separated by horizontal and vertical

programmable routing channel. A Switch Block is used to make connections between the

tracks in adjacent channels. Figure 1 shows only one switch block and four logic blocks,

but real FPGAs consist of many switch blocks and logic blocks.

The Interconnect Matrix within a logic block and the fixed tracks and

programmable switches outside of the logic blocks are collectively known as FPGA

routing structures (often referred to as FPGA “routing architecture”). In most

commercially available FPGAs, these routing structures consume the majority of the chip

area, and are responsible for most of the circuit delay. As FPGAs are migrated to even

more advanced technologies, the routing fabric becomes even more important [5]. Thus

the optimization of these structures is very important. An FPGA with poor routing

structure may suffer either in terms of routability, speed, or density. The more flexible the

routing architecture, the more routable the device will be (i.e the more likely it is that a

given connection between BLEs can be implemented). On the other hand, a more flexible

architecture generally requires more transistors, consuming more chip area than is

 8

needed, and adding extra parasitic capacitance to the wires connecting BLEs, slowing

down the circuit more than is necessary.

Figure 1 – FPGA Architecture

1.2. Organization of this study

This study is organized as follows: Chapter 2 provides background information,

including FPGA architectures, general approaches to routing problems, routing

algorithms and the definitions of basic terminology. It also describes representative

examples of commercially available FPGAs, including a brief description of the routing

architecture contained in each chip.

Chapter 3 gives a detailed overview of the experimental procedure and the

experimental results and states comments and remarks over the results.

 9

Chapter 4 presents conclusions and future work, and precisely states the

contributions of this work.

 Finally, Appendix presents the entirety of the graphs that were produced during

this study.

 10

2 Background Information

Introduction

This chapter provides some necessary background information that is assumed in

various discussions. Section 2.2 provides an FPGA architecture overview. Section 2.3

introduces the two main fields of research, FPGA routing algorithms and FPGA routing

architecture. Section 2.4 describes several commercially available FPGA devices to

provide a point of reference for the FPGA model that is used throughout this work.

2.1 FPGA Architecture Overview

There are many different FPGA architectures available from various vendors

including Xilinx [1], Altera [2], Actel [3], Lucent [6], QuickLogic [7], and Cypress [8].

Although the exact structure of these FPGAs varies from vendor to vendor, all FPGAs

consist of three fundamental components: Logic Blocks, I/O blocks, and the

Programmable Routing. What comprises of a logic block, and how the programmable

routing is organized defines a particular architecture. A logic block is used to implement

a small portion of the circuit being implemented using an FPGA. The programmable

routing is used to make all the required connections among various logic block and the

required connections to the I/O (input/output) blocks. Many commercially available

FPGAs use an Island-style architecture in which logic blocks are organized in an array

separated by horizontal and vertical programmable routing channel, as shown in Figure 2.

2.1.1 Logic Resources

The typical FPGA has a Basic Logic Element(BLE) with one or more 4-input

LUT(s), optional D flip-flops (DFF), and some form of fast carry logic (Figure 3). These

BLEs are grouped in Configurable Logic Blocks (CLBs or just Logic Block). The LUTs

 11

Figure 2 – Island Style FPGA Architecture

allow any function to be implemented, providing generic logic. The flip-flop can

be used for pipelining, registers, stateholding functions for finite state machines, or any

other situation where clocking is required. Note that the flip-flops will typically include

programmable set/reset lines and clock signals, which may come from global signals

routed on special resources, or could be routed via the standard interconnect structures

from some other input or logic block. The fast carry logic is a special resource provided

in the cell to speed up carry-based computations, such as addition, parity, wide AND

operations, and other functions. These resources will bypass the general routing structure,

connecting instead directly between neighbors in the same column. Since there are very

 12

few routing choices in the carry chain, and thus less delay on the computation, the

inclusion of these resources can significantly speed up carrybased computations.

Each Logic Block also contains an Interconnect Matrix. The Interconnect Matrix

is a switch which connects BLE outputs to BLE inputs and Logic Block inputs to BLE

inputs within each Logic Block, as shown in Figure 4.

 Figure 3 – Basic Logic Element

 Figure 4 – Logic Block

 13

2.1.2 Routing Resources

The programmable routing in an FPGA consists of two categories: (1) routing

within each Configurable Logic Block, and (2) routing between the Configurable Logic

Blocks. Figure 5 shows a detailed view of the routing for a single tile. Normally, an

FPGA is created by replication of such a tile (a tile consists of one Logic Block and it’s

associated routing).

Figure 5 – Detailed Routing Architecture

The programmable routing within each Logic Block consists of the Interconnect

Matrix. The programmable routing between the Logic Blocks consists of fixed metal

tracks, Switch Blocks, Connection Blocks, and the programmable switches. The fixed

metal tracks run horizontally and vertically, and are organized in channels; each channel

contains the same number of tracks for the architecture that we investigated. A Switch

 14

Block occurs at each intersection between horizontal and vertical routing channels, and

defines all possible connections between these channels. The Connection Block (shown

in Figure 5) defines all the possible connections from a horizontal or vertical channel to a

neighboring logic block. The connections in the switch blocks and connection blocks are

made by programmable switches. Part of the programmable routing also lies within each

logic block, determining how different components are connected within the logic block.

This Island-Style architecture is a very general version of most commercial architectures.

A programmable switch (Figure 6) consists of a pass transistor controlled by a

static random access memory cell (in which case, the device is called a SRAM-based

FPGA), or an anti-fuse (such devices are referred to as anti-fuse FPGAs), or a non-

volatile memory cell (such devices are referred to as floating gate devices). Since SRAM-

based FPGAs employ static random access memory (SRAM) cells to control the

programmable switches, they can be reprogrammed by the end user as many times as

required and are volatile. Of the three categories, SRAM-based FPGAs are most widely

used and hence we will limit our discussion and investigations to SRAM-based devices.

Figure 6 – Programmable Routing Connection

2.2 FPGA CAD Flow

In this section we present an overview of the entire CAD process that is necessary

to implement a circuit in an FPGA. A typical CAD system for FPGAs consists of several

 15

interconnected programs as illustrated in Figure 7. The input to the CAD system is a

functional description of a network, usually expressed in a standard format such as

boolean equations. The equations are read by a logic optimization [9] [10] tool, which

performs manipulations of the equations so as to optimize area, delay, or a combination

of area and delay. This step usually performs the equivalent of an algebraic minimization

of the boolean equations and is appropriate when implementing a circuit in any medium,

not just FPGAs. To transform the boolean equations into a circuit of FPGA logic cells,

the optimized network is fed to a technology mapping program [11] [12] [13]. This step

maps the equations into logic cells, which also presents opportunity to optimize, either to

minimize the total number of logic cells required (area optimization) or the number of

logic cells in time-critical paths (delay optimization). The circuit of logic cells is then

passed to a placement program [14] [15] [16], which selects a specific location in the

FPGA for each logic cell. Typical placement algorithms usually attempt to minimize the

total length of interconnect required for the resulting placement.

Figure 7 – A typical FPGA CAD system

The final step in the CAD system is performed by the routing software, which

allocates the FPGA’s routing resources to interconnect the placed logic cells. The routing

 16

tools must ensure that 100 percent of the required connections are formed, and may be

required to maximize the speed performance of time-critical connections. Finally, the

CAD system’s output is fed to a programming unit that is used to configure the FPGA.

2.3 Routing Algorithms

In current FPGAs, the most of the tile area is devoted to routing resources and

most of the delay of circuits implemented on FPGAs is due to routing. Software that

performs automatic routing has existed for many years, with the first algorithms designed

to route printed circuit boards. Over the years there have been many publications

concerning routing algorithms, so that the problem is well defined and understood.

2.3.1 Routing Terminology

The following list gives common routing terms, as they are defined for

FPGA routing in this study:

• Pin - a logic cell input or output.

• Connection - a pair of logic cell pins that are to be electrically connected.

• Net - a set of logic cell pins that are to be electrically connected. A net can be

divided into one or more connections.

• Wiring segment - a straight section of wire that is used to form part of a

connection.

• Routing switch - a device that is used to electrically connect two wiring

segments.

• Track - a straight section of wire that spans the entire width or length of a routing

 17

channel. A track can be composed of a number of wiring segments of various lengths.

• Routing channel - the rectangular area that lies between two rows or two columns

of logic cells. A routing channel contains a number of tracks.

2.3.2 General Approach to Routing - PATHFINDER Algorithm

Routing is one of the most challenging problems of FPGAs. This problem of

routing FPGAs can be stated simply as that of assigning signals to routing resources in

order to successfully route all signals while achieving a given overall performance. The

first goal, complete routing of all signals, is difficult to achieve in FPGAs because of the

lack of routing resources. The usual approach to achieving this goal is to minimize the

use of routing resources by constructing minimum routing trees for each signal. Although

this reduces the demand for routing resources, signals will still compete for the same

resources and the challenge is to find a way to allocate resources so that all signals can be

routed. The second goal, minimizing delay, requires the use of minimum delay routes for

signals, which in general are much more expensive in terms of routing resources than

minimum routing trees. Thus the solution to the entire routing problem requires the

simultaneous solution to two interacting and competing subproblems.

 Various algorithms, concerning the FPGA routing problem, have been presented

so far. Most of them [17], [18], [19] targeted in a standard rip-up and retry approach by
ordering

the nets to be routed such that critical nets are routed most directly. The most efficient

algorithm up to date is that presented by McMurchie and Ebeling [20], the Pathfinder

algorithm.

 18

PathFinder is an iterative algorithm that balances the competing goals of

eliminating congestion and minimizing delay of critical paths in an iterative framework.

In this framework, signals are allowed to share routing resources initially, but

subsequently must negotiate with other signals to determine which signal needs the

shared resource most. A timing analysis is performed every iteration to apply pressure

continuously to routes that can potentially become critical if left unchecked. PathFinder is

derived from an iterative scheme for the global routing of custom IC's developed by Nair

[21]. This scheme differs in several aspects from most forms of rip-up and retry.

PathFinder is composed of two parts: a signal router, which routes one signal at a

time using a shortest-path algorithm, and a global router, which calls the signal router to

route all signals, adjusting the resource costs in order to achieve a complete routing. The

signal router uses a breadth-first search to find the shortest path given a congestion cost

and delay for each routing resource. The global router dynamically adjusts the congestion

penalty of each routing resource based on the demands signals place on that resource.

During the first iteration of the global router there is no cost for sharing routing resources

and individual routing resources may be used by more than one signal. However, during

subsequent iterations the penalty is gradually increased so that signals in effect negotiate

for resources. Signals may use shared resources that are in high demand if all alternative

routes utilize resources in even higher demand; other signals will tend to spread out

and use resources in lower demand. The global router reroutes signals using the signal

router until no more resources are shared. The use of a cost function that gradually

increases the penalty for sharing is a significant departure from Nair’s algorithm, which

assigns a cost of infinity to resources whose capacity is exceeded. In addition to

 19

minimizing congestion, the signal router ensures that the delays of all signal paths stay

within the critical path delay. For multiple sinks, low congestion cost can be achieved by

a minimum Steiner tree, but this can result in long delays. Low delay can be achieved by

a minimum-delay tree, but this may mean competition by many signals for the same

routing resources. To achieve a balance, the signal router uses the relative contribution of

each connection in the circuit (i.e. source-sink pair) to the overall delay of the circuit to

determine how to trade off congestion and delay. Thus, every connection on the longest

path has a slack ratio of 1, while connections on the least critical paths have slack ratios

close to 0. The inverse of the slack ratio gives the factor by which the delay of a path can

be expanded before the circuit is slowed down. The key idea behind the signal router is

that connections with a slack ratio close to 1 will be assigned greater weight in

negotiating for resources and consequently will be routed directly (i.e. using a minimum-

delay route) from source to sink. Connections with a small slack ratio will have less

weight and pay more attention to congestion-avoidance during routing.

Since Pathfinder was presented, there have been many router implementations

based on it. The VPR (versatile place and route) router [22], which is such an

implementation of the PathFinder algorithm, is known to be the best routing tool for

FPGAs to date.

2.4 Commercially Available FPGAs

This section provides a detailed description of two commercially available FPGA

families, including those from Xilinx Co and Altera. These particular FPGAs have been

chosen because they are representative examples of state-of-the-art devices and they are

 20

in widespread use. Each device is described in terms of its general architecture, its choice

of programmable cell, its routing architecture, and its CAD routing tools. Enough details

are given, and in some cases specific comments are made, to show how the routing

resources and architecture of each device relates to the research contained in this study.

2.4.1 XILINX FPGAs

The general architecture of Xilinx FPGAs is shown in Figure 8. It consists of a

two-dimensional array of programmable cells, called Configurable Logic Blocks (CLBs),

with horizontal routing channels between rows of cells and vertical routing channels

between columns. Programmable resources are configured by Static RAM cells, and

each routing switch is implemented as a specially designed transistor controlled by an

SRAM bit. There are two families of Xilinx FPGAs described here, called the VIRTEX II

and SPARTAN 3. Table 1 gives an indication of the logic capacities of each family by

showing the number of CLBs and an equivalent gate count. The design details of the

Xilinx CLB and routing architecture for each family will each be described in turn.

 Figure 8 - General Architecture of Xilinx FPGAs

 21

 Table 1 - Xilinx FPGA Logic Capacities

2.4.1.1 XILINX VIRTEX II

The Virtex-II family is a platform FPGA developed for high performance from

low-density to high-density designs that are based on IP cores and customized modules.

The family delivers complete solutions for telecommunication, wireless, networking,

video, and DSP applications, including PCI, LVDS, and DDR interfaces.

Virtex-II devices are user-programmable gate arrays with various configurable

elements. The Virtex-II architecture is optimized for high-density and high-performance

logic designs. As shown in Figure 9, the programmable device is comprised of

input/output blocks (IOBs) and internal configurable logic.

The internal configurable logic includes four major elements organized in a

regular array.

• Configurable Logic Blocks (CLBs) provide functional elements for combinatorial and

synchronous logic, including basic storage elements. BUFTs (3-state buffers) associated

with each CLB element drive dedicated segmentable horizontal routing resources.

• Block SelectRAM memory modules provide large 18 Kbit storage elements of dual-port

RAM.

• Multiplier blocks are 18-bit x 18-bit dedicated multipliers.

• DCM (Digital Clock Manager) blocks provide self-calibrating, fully digital solutions for

Family Number of CLBs Number of Gates
VIRTEX II 64 – 11,648 40K – 8M
SPARTAN3 192 – 8,320 50K – 5M

 22

clock distribution delay compensation, clock multiplication and division, coarse- and

fine-grained clock phase shifting.

 Figure 9 - Virtex-II Architecture Overview

The Virtex-II configurable logic blocks (CLB) are organized in an array and are

used to build combinatorial and synchronous logic designs. Each CLB element is tied to a

switch matrix to access the general routing matrix, as shown in Figure 10. A CLB

element comprises 4 similar slices, with fast local feedback within the CLB, and two

3-state buffers. The four slices are split in two columns of two slices with two

independent carry logic chains and one common shift chain.

Each slice includes two 4-input function generators, carry logic, arithmetic logic

gates, wide function multiplexers and two storage elements. As shown in Figure 11, each

4-input function generator is programmable as a 4-input LUT, 16 bits of distributed

SelectRAM memory, or a 16-bit variable-tap shift register element. In addition, the two

storage elements are either edge-triggered D-type flip-flops or level-sensitive latches.

 23

 Figure 10 - Virtex-II CLB Element

Figure 11 - Virtex-II Slice Configuration

Interconnection Scheme – Routing Resources

Local and global Virtex-II routing resources are optimized for speed and timing

predictability, as well as to facilitate IP cores implementation. Virtex-II buffered

 24

interconnects are relatively unaffected by net fanout and the interconnect layout is

designed to minimize crosstalk. Virtex-II Active Interconnect Technology is a fully

buffered programmable routing matrix. All routing resources are segmented to offer the

advantages of a hierarchical solution. Virtex-II logic features like CLBs, IOBs, block

RAM, multipliers, and DCMs are all connected to an identical switch matrix for access to

global routing resources, as shown in Figure 12.

Most Virtex-II signals are routed using the global routing resources, which are

located in horizontal and vertical routing channels between each switch matrix. As shown

in Figure 13, Virtex-II has fully buffered programmable interconnections, with a number

of resources counted between any two adjacent switch matrix rows or columns. Fanout
has minimal impact on the performance of each net.

• The long lines are bidirectional wires that distribute signals across the device. Vertical

and horizontal long lines span the full height and width of the device.

• The hex lines route signals to every third or sixth block away in all four directions.

Organized in a staggered pattern, hex lines can only be driven from one end. Hex-line

signals can be accessed either at the endpoints or at the midpoint (three blocks from the

source).

• The double lines route signals to every first or second block away in all four directions.

Organized in a staggered pattern, double lines can be driven only at their endpoints.

Double-line signals can be accessed either at the endpoints or at the midpoint (one block

from the source).

• The direct connect lines route signals to neighboring blocks: vertically, horizontally,

and diagonally.

 25

• The fast connect lines are the internal CLB local interconnections from LUT outputs to

LUT inputs.

In addition to the global and local routing resources, dedicated signals are

available.

• There are eight global clock nets per quadrant

• Horizontal routing resources are provided for on-chip 3-state busses. Four partitionable

bus lines are provided per CLB row, permitting multiple busses within a row.

• Two dedicated carry-chain resources per slice column (two per CLB column) propagate

carry-chain MUXCY output signals vertically to the adjacent slice.

• One dedicated SOP chain per slice row (two per CLB row) propagate ORCY output

logic signals horizontally to the adjacent slice.

• One dedicated shift-chain per CLB connects the output of LUTs in shift-register mode

to the input of the next LUT in shift-register mode (vertically) inside the CLB.

Figure 12 - Active Interconnect Technology

 26

Figure 13 - Hierarchical Routing Resources

2.4.1.2 XILINX SPARTAN 3

The Spartan™-3 family of Field-Programmable Gate Arrays is specifically

designed to meet the needs of high volume, cost-sensitive consumer electronic

applications. The eight-member family offers densities ranging from 50,000 to five

million system gates, as shown in Table 1. The Spartan-3 family builds on the success of

the earlier Spartan-IIE family by increasing the amount of logic resources, the capacity of

internal RAM, the total number of I/Os, and the overall level of performance as well as

by improving clock management functions. Because of their exceptionally low cost,

Spartan-3 FPGAs are ideally suited to a wide range of consumer electronics applications,

including broadband access, home networking, display/projection and digital television

equipment.

The Spartan-3 family architecture consists of five fundamental programmable

 27

functional elements:

• Configurable Logic Blocks (CLBs) contain RAM-based Look-Up Tables (LUTs) to

implement logic and storage elements that can be used as flip-flops or latches. CLBs can

be programmed to perform a wide variety of logical functions as well as to store data.

• Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the

internal logic of the device. Each IOB supports bidirectional data flow plus 3-state

operation. Twenty-four different signal standards, including seven high-performance

differential standards, are available. Double Data-Rate (DDR) registers are included. The

Digitally Controlled Impedance (DCI) feature provides automatic on-chip terminations,

simplifying board designs.

• Block RAM provides data storage in the form of 18-Kbit dual-port blocks.

• Multiplier blocks accept two 18-bit binary numbers as inputs and calculate the product.

• Digital Clock Manager (DCM) blocks provide self-calibrating, fully digital solutions for

distributing, delaying, multiplying, dividing, and phase shifting clock signals.

These elements are organized as shown in Figure 14. A ring of IOBs surrounds a

regular array of CLBs. The columns of block RAM range from one to four, for the

members of the family. Each column is made up of several 18K-bit RAM blocks; each

block is associated with a dedicated multiplier. The DCMs are positioned at the ends of

the outer block RAM columns.

 28

Figure 14 - Spartan-3 Family Architecture

The Configurable Logic Blocks (CLBs) constitute the main logic resource for

implementing synchronous as well as combinatorial circuits. Each CLB comprises four

interconnected slices, as shown in Figure 15. These slices are grouped in pairs. Each pair

 is organized as a column with an independent carry chain.

All four slices have the following elements in common: two logic function

generators, two storage elements, wide-function multiplexers, carry logic, and arithmetic

gates, as shown in Figure 16. Both the left-hand and right-hand slice pairs use these

elements to provide logic, arithmetic, and ROM functions. Besides these, the left-hand

pair supports two additional functions: storing data using Distributed RAM and shifting

data with 16-bit registers.

 29

Figure 15 - Arrangement of slices within the CLB

Interconnection Scheme – Routing Resources

The Spartan-3 family features a rich network of traces and switches that

interconnect all five functional elements, transmitting signals among them. Each

functional element has an associated switch matrix that permits multiple connections

to the routing.

 Interconnect (or routing) passes signals among the various functional elements of

Spartan-3 devices. There are four kinds of interconnect: Long lines, Hex lines, Double

lines, and Direct lines.

 30

Figure 16 - Simplified diagram of a Slice

 31

Long lines connect to one out of every six CLBs (see Figure 17a). Because of their low

capacitance, these lines are well-suited for carrying high-frequency signals with minimal

loading effects (e.g. skew). If all eight Global Clock Inputs are already committed and

there remain additional clock signals to be assigned, Long lines serve as a good

alternative.

Figure 17 - Types of Interconnect

Hex lines connect one out of every three CLBs (see Figure 17b). These lines fall between

Long lines and Double lines in terms of capability: Hex lines approach the high-

frequency characteristics of Long lines at the same time, offering greater connectivity.

 32

Double lines connect to every other CLB (see Figure 17c). Compared to the types of lines

already discussed, Double lines provide a higher degree of flexibility when making

connections.

Direct lines afford any CLB direct access to neighboring CLBs (see Figure 17d). These

lines are most often used to conduct a signal from a "source" CLB to a Double, Hex, or

Long line and then from the longer interconnect back to a Direct line accessing a

"destination" CLB.

2.4.3 ALTERA FPGAs

Altera FPGAs [2] are considerably different from the others discussed above

because they resemble large Programmable Logic Devices. Nonetheless, they are

functionally equivalent to FPGAs because they employ a two-dimensional array of

programmable cells and a programmable routing structure, they can implement multi-

level logic, and they are user-programmable. Altera’s general architecture, which is based

on an EPROM programming technology, is illustrated in Figure 18. It consists of an array

of programmable cells, called Logic Array Blocks (LABs), interconnected by a routing

resource called the Programmable Interconnect Array (PIA).

The Altera LAB is by far the most complex logic cell of any of the FPGA families

describe. A LAB can be thought of as an efficient PLD, as will be explained in the

following paragraphs. Each LAB, as seen in Figure 19, consists of two major blocks,

called the Macrocell Array and the Expander Product Terms.

 33

Figure 18 - General Architecture of Altera FPGAs

The Macrocell Array is a one-dimensional array of elements called Macrocells,

where the number of elements in the array varies with each Altera device. As illustrated

in Figure 20, each Macrocell comprises three wide AND gates that feed an OR gate

which connects to an XOR gate, and a flip-flop. The XOR gate generates the Macrocell

output and can optionally be registered. In Figure 20, the inputs to the Macrocell are

shown as single-input AND gates because each is generated as a wired-AND (called a

pterm) of the signals drawn on the left-hand side of the figure. A p-term can include any

signal in the PIA, any of the LAB Expander Product Terms (described below), or the

output of any other Macrocell. With this arrangement the Macrocell Array functions

much like a PLD, but with fewer product terms per register (there are usually at least

eight product terms per register in a PLD). Altera claims [2] that this makes the LAB

 34

more efficient because most logic functions do not require the large number of p-terms

found in PLDs and the LAB supports wide functions by way of the Expander Product

Terms.

Figure 19 - Altera LAB

As illustrated in Figure 20, each Expander Product Terms block consists of a

number of p-terms (the number shown in the figure is only suggestive) that are inverted

and fed back to the Macrocell Array, and to itself. This arrangement permits the

implementation of very wide logic functions because any Macrocell has access to these

extra p-terms.

The Altera routing structure, the PIA, consists of a number of long wiring

segments that pass adjacent to every LAB. The PIA provides complete connectivity

because each LAB input can be programmably connected to the output of any LAB,

without constraints. With this arrangement, routing an Altera FPGA is trivial, since there

are no routing constraints. However, as mentioned previously for Actel FPGAs, this level

of connectivity is excessive and could probably be reduced, given an appropriate routing

 35

algorithm.

Figure 20 - Altera Macrocell

 36

3 Experimenting on Field-Programmable Gate Array Routing

 In Chapter 2, we presented background information concerning FPGAs in

general, and specially routing and commercially available FPGAs. In this chapter we give

the objects of this study and present a detailed overview of the experimental procedure

followed and of the experimental results acquired.

3.1 General Approach and Problem Definition

The problem of routing efficiently designs in FPGAs is very challenging, as

mentioned in the previous chapter. There are various factors that affect this problem, like

routing resources, routing algorithms and routing architectures. Our study concentrated

most on the first factor. The object was to make a detailed examination of FPGA routing

resources, based on many experimental results. The experiments focus on the relationship

between the length of a connection and its delay. This kind of examination could lead to

useful conclusions and could arise some important questions.

 In order to complete such an experimental procedure, CAD system tools were

necessary. We decided to use Xilinx CAD system tools and especially Xilinx ISE 6.1i

version. This version provides all the necessary tools, a very good environment and

efficient documentation, so it fitted perfectly to our study.

 For the purpose of this study three commercially available FPGAs were chosen:

xc2v1500-6bg575, xc2v3000-6bf957 and xc3s1500-4fg676. In figure 21, we give an

ordering example of a VirtexII. VirtexII and Spartan3 are two well known FPGA device

families used for a wide variety of designs. So these three devices suited exactly our

needs.

 37

Figure 21 – Virtex II Ordering Example

 The experimental procedure consisted of two basic phases, in order to achieve

better results:

1. In the first phase, we experimented in almost empty FPGAs using a very simple

design we created for our study. So, logic utilization was very close to 0%.

2. In the second phase, similar experiments were made. But this time we used a

second larger design[23] in addition. So changing this design gave us the

opportunity to have various values of utilization for each device.

The experimental procedure of each phase is presented in detail in the following

section.

3.2 Experimental Procedure – Experimental Results

 Description of phase 1

 The first step was to create a very simple design which would be used for the

experiments. The purpose of this simplicity was our will to be able to manually place and

route the logic elements of the design. The design is actually two inverters in a row,

which means that the output is same as the input. We also have two registers, one right

after the input and one before the output. And, of course, DFFs. We used three bus widths

for the input and output: 1, 8 and 32 bits. For the creation of the design we used Project

Navigator which is the Xilinx CAD tool offered for this purpose. Using the Project

 38

Navigator we also synthesized the design and completed it’s logic optimization. The

exact design in VHDL is presented here.

Our Design in VHDL

entity our_design is
 Port (A : in std_logic;
 Reset : in std_logic;
 Clk : in std_logic;
 B : out std_logic);
end our_design;

architecture Structural of our_design is

component reg_bit
 Port (X : in std_logic;
 Reset : in std_logic;
 Clk : in std_logic;
 Y : out std_logic);
end component ;

component invert
 Port (X : in std_logic;
 Reset : in std_logic ;
 Clk : in std_logic ;
 Y : out std_logic);
end component ;

signal temp_a, temp_b, temp_c : std_logic ;

begin

 rg_a : reg_bit port map (A, Reset, Clk, temp_a) ;
 inv_a: invert port map (temp_a, Reset, Clk, temp_b) ;
 inv_b: invert port map (temp_b, Reset, Clk, temp_c) ;
 rg_b : reg_bit port map (temp_c, Reset, Clk, B) ;

end Structural;

After the logic optimization, the next step was to place and route the design. The

Xilinx tool offered for this purpose is the FPGA Editor, a very versatile tool which gives

you the choice either to auto-place and route or manually place and route a design. In

figure 22, the basic window of FPGA Editor is presented, showing an already placed

design.

 39

Figure 22 – FPGA Editor (main window)

 Our design needs only three logic cells in order to be fully placed after the logic

optimization has taken place. The idea was to manually place and route the design many

times, producing in this way many maps, which will differ in certain characteristics. The

characteristic that we changed was the length between two of the logic cells. Because the

logic cells are connected (form a connection), we will refer to this characteristic as

Connection Length.

 In the beginning, we placed the logic to nearby logic cells in one side of the

FPGA. Then, keeping one slice in its place, we changed the placement (and so the

routing) of the second increasing each time the connection length (in the same

direction).The increment value was one CLB length. This process continued until we

reached the other side of the FPGA. Figure 23 depicts this process, in order to be more

 40

Figure 23 – Experimental Process

Figure 24 – Timing Analyzer (main window)

 41

understandable. This procedure was followed for both the vertical and horizontal

dimension of the FPGA. We describe the procedure for bus width 1-bit. The same exact

procedure was followed for bus width 8 and 32 bits. The difference is that we have 8 and

32 pairs of logic cells for bus width 8 and 32 bit, respectively.

 So for each of the three devices, we produced many maps following the idea

mentioned above. In the next step, timing analysis of each map had to be performed in

order to get the delay results of the connection we wanted. This step was accomplished

using Timing Analyzer of Xilinx CAD tools. Figure 24 shows the main window of

Timing Analyzer having performed a timing analysis.

 Lastly, after performing the analysis we gathered the experimental results. These

results are presented in Figures 25 - 30 below. There are two figures for each of the

devices, one for each dimension. The results analysis and the charts are made in Matlab

R12.

 In this point, we are obligated to examine as an example a chart in detail, in order

to become more understandable for anyone. The heading of each chart gives three data.

The exact device which corresponds to each chart. The logic utilization value of the

device for this chart. And the dimension of the device (horizontal or vertical) we refer.

As far as axes are concerned: X-axis shows the connection length per Configurable Logic

Block (as explained above) and Y-axis shows the equivalent connection delay in

nanoseconds. In the bottom right corner the legend is presented. The legends gives a label

for each single graph of the chart concerning the bus width (e.g. 1-bit) and shows the kind

of line and spots for each graph, respectively. Finally the graphs appear. Each spot

represent a result and the spots are connected with a line.

 42

Figures 25 – 26

 43

Figures 27 – 28

 44

Figures 29 - 30

 45

 We described above in detail the whole experimental procedure of the first phase

of our study which led to the results presented in the figures above. Examining closely

these figures, we came up with some interesting comments and remarks concerning our

field of research that should be stated.

1. Generally, the connection delay increases as the connection length increases.

Specifically, we observe that there is an increment of about 200 to 300 % of the

connection delay value between the lowest and the highest connection length value. This

applies for all the devices, bus widths and dimensions with only one exception. In the

horizontal results of device Virtex2-3000 (Figure 27) the increment approaches 400 %.

2. Comparing the graphs of same device and dimension, but with the bus width varying,

we observe that they are generally similar. 32-bit and 8-bit designs have slightly larger

values, as expected, from the 1-bit design. There is an exception in Figure 26 (vertical

results of device Virtex2-1500) where we see that as the connection length increases the

delay difference between 1-bit design and the others, is also increasing (reaching 80%

approximately).

3. Something interesting comes up if we examine the 1-bit design graphs. We notice that

for 4 or 5 consecutive connection lengths they have the same delay and after there is

sharp increment. This is well understood in Figures 27 and 29.

 46

Description of phase 2

 The object of the second phase was to widen the experimental field in FPGAs that

have a portion of their resources, both logic and routing, already utilized. In this way,

experimenting on various values of utilization, we acquire an overall point of view. For

this purpose we had to use a large design which could be easily modified. A design with

versatile code. The design we chose is a pattern matching [23] one, that fulfilled the

characteristics mentioned above. The design was modified many times according to our

needs. Each time we synthesized it and made the logic optimization using the Project

Navigator. These modifications gave utilization values for each device from 35% to 80%

more or less. The exact values are presented in Table 2.

 Similar to the first phase, placement and routing had to be done. Using the FPGA

Editor we, firstly, auto-placed and routed the pattern matching design. Then, we manually

placed and routed our own simple design. The experiments were taken place following

the exact same procedure described in phase 1 for each value of utilization.

Device Type Device Utilization Values
xc2v1500-6bg575 41, 53, 62, 75, 85 (%)
xc2v3000-6bf957 33, 40, 45, 51, 59, 66, 71 (%)
xc3s1500-4fg676 36, 43, 49, 55, 64, 71, 77 (%)

Table 2- Utilization Values for each Device

 We did not interfere with the placement and routing of the large design at all

during the experiments. The fact that a considerable part of the devices was utilized

limited the number of maps that could be acquired. Not all connection lengths could

produce a map because simply, we could not place the logic element of our design

 47

there. This becomes even more obvious with the placement and routing of our 8-bit and

32-bit design where we need to find more than one empty logic cells.

 After having completed the placement and route step we had enough maps to be

analyzed based on time. As in the previous phase Timing Analyzer was used to produce

the connection delay results. We have to mention here that for the 8 and 32 bit design

Timing Analyzer produces 8 and 32 values respectively as results. In these cases we

made further analysis and acquired the median value as an overall result of the

connection delay for each connection length, and this last result is the one depicted in the

charts. Using MatlabR12 we completed the last step which was the creation of the charts.

 These charts are presented in total in Appendix A (Figures 7-44). There are two

charts for each device for each value of utilization, the chart presenting the horizontal

dimension results and the one presenting the vertical dimension results. Each chart

consists of three graphs (1, 8 and 32 bit). In this section only few examples are presented

in Figures 31-36.

 Following the same road as in the first phase, we present below some interesting

remarks and comments that emerged through our result analysis. In this phase we have to

take in mind the additional factor of logic utilization of the FPGA.

1. Generally, as in phase one, the connection delay increases as the connection length

increases. Specifically, we observe that there is an increment of about 250 to 350 % of

the connection delay value between the lowest and the highest connection length value.

This applies for all the devices, utilization values, bus widths and dimensions with few

exceptions.

 48

2. Comparing the graphs of designs with the bus width as varying factor we come up with

the remark that they have similarities. But this time (high logic utilization), the delay

results for the 32 and 8 bit designs are higher in a rate of 10% from these of the 1-bit

design. This happens mostly for large connection lengths. This is the general case of

course. In some results this rate is even greater and in some others it doesn’t exist.

3. In a few figures we observe some “extraordinary” results. This means results that

logically should not appear and were not expected. Typical examples are in Figure 18 and

Figure 39 (see Appendix). These results are “damaged” due to noise. We note this fact

when it appears by making a comment on the figure.

 49

Figures 31 – 32 : Virtex2-1500

 50

Figure 33 – 34 : Virtex2-3000

 51

Figures 35 – 36 : Spartan3-1500

 52

 The charts presented and examined so far focus on the comparison between 1, 8

and 32 bit results. But the comparison between different values of utilization should also

be studied. This comparison is presented through Figures 37-42 for the 1 bit design. The

chart in these figures consists of one graph for each utilization value. Two for each

device (horizontal and vertical). In these figures the heading reveals the bus width of the

design, while the legend label shows the logic utilization value of each graph. Below, we

present a few remarks based on these figures.

 We expected that as logic utilization increased the connection delay would show a

plain tendency to increase too. But this does not happen. We cannot notice a rule or a

clear overall conclusion. For example, in Figure 37 we see that the greater delay values

occur for 53% utilization. None the less, we can say that the graphs corresponding to 0%

utilization tend to have one of the lower delays. This is really clear in Figures 38, 40 and

41.

 Finally, we can mention that in general all graphs are close to each other. We

mean that the range of the results is small, especially for small connection length values.

Of course there is an increment of this range for bigger connection length values

(e.g. Figure 40).

 53

Figures 37 – 38 : Virtex2-1500

 54

Figures 39 – 40 : Virtex2-3000

 55

Figures 41 - 42 : Spartan3-1500

 56

4 Conclusions

 In the previous chapter we gave the objects of this study and presented a detailed

overview of the experimental procedure followed and of the experimental results

acquired. In this last chapter, we cite the conclusions we have worked out during this

study. We, also, refer to the contributions of this study and make suggestions for future

work.

4.1 Summary - Contributions - Suggestions for Future Work

 Throughout this study we have emphasized on the importance of routing

architecture, routing algorithm and routing resources for FPGAs. So after having

presented the necessary background for this field, we conducted a detailed experimental

procedure, focusing on commercially available FPGAs, in order to reach useful overall

conclusions. These conclusions are stated here.

 As an overall conclusion we must mention that FPGA routing resources manage

to meet up to our expectations. This happens both in terms of quantity and of quality. The

fact that the delay did not increase radically in designs that utilized a percentage of

70 – 80 % of the FPGA logic resources compared to designs that utilized only 1%, shows

that a good tradeoff between the quantity of routing resources and logic resources has

been achieved. Moreover, the reasonable increment in the delay we had as a result in

empty FPGA compared to the connection length shows the ability of routing resources to

handle various lengths satisfying. This is due mainly to routing architecture which uses

different types of wires according to each case. These conclusions are reinforced from the

fact that even the results for designs with 32-bit bus width (and high utilization) did not

present great increment compared to designs with 1-bit bus width.

 57

 But there is a point we can support that the results spotted a weakness. This point

is the routing algorithm. This conclusion begins from the fact that some results were very

satisfying compared to some others in the same graph. This difference of results cannot

be attributed to the connection length, which means that the routing algorithm reaches a

result but not the best in some cases. Generally, there is an uncertainty as far as the

routing algorithm is concerned.

 To summarize, today FPGAs are a leading choice of technology for the

implementation of many digital circuits and systems. A key field of research for the

FPGAs is routing resources. This study, following an experimental approach and

focusing mainly on commercially available FPGAs, shed some light in this field and

stated some interesting remarks and useful conclusions. There is still a lot of study

needed, concerning routing, in order to accomplish an even more satisfying level and

manage to keep up to the fast development of technology. There is a great variety of

designs of various characteristics that could be used in a similar experimental approach.

This would expand the research and possibly reveal interesting conclusions. Finally, the

subject of routing algorithm should be re-examined (but that is not new data).

 58

APPENDIX: ALL GRAPHS PRODUCED

Figures 01 – 02 : Virtex2-1500

 59

Figures 03 – 04 : Virtex2-3000

 60

Figures 05 – 06 : Spartan3-1500

 61

Figures 07 – 08 : Virtex2-1500

 62

Figures 09 – 10 : Virtex2-1500

 63

Figures 11 – 12 : Virtex2-1500

 64

Figures 13 – 14 : Virtex2-1500

 65

Figures 15 – 16 : Virtex2-1500

 66

Figure 17 – 18 : Virtex2-3000

 67

Figure 19 – 20 : Virtex2-3000

 68

Figure 21 – 22 : Virtex2-3000

 69

Figure 23 – 24 : Virtex2-3000

 70

Figure 25 – 26 : Virtex2-3000

 71

Figure 27 – 28 : Virtex2-3000

 72

Figure 29 – 30 : Virtex2-3000

 73

Figures 31 – 32 : Spartan3-1500

 74

Figures 33 – 34 : Spartan3-1500

 75

Figures 35 – 36 : Spartan3-1500

 76

Figures 37 – 38 : Spartan3-1500

 77

Figures 39 – 40 : Spartan3-1500

 78

Figures 41 – 42 : Spartan3-1500

 79

Figures 43 – 44 : Spartan3-1500

 80

Figures 45 – 46 : Virtex2-1500

 81

Figures 47 – 48 : Virtex2-3000

 82

Figures 49 - 50 : Spartan3-1500

 83

REFERENCES

1. Xilinx Incorporation, Data Book, 2004.

2. Altera Incorporation, Data Book, 2004.

3. Actel Corporation, Data Book, 2004.

4. “Programmable Logic News and Views”, Volume VIII, Number 10, October 1999,
pages 3-4.

5. J. Rose and D. Hill, “Architectural and physical design challenges for one-million gate
FPGAs and beyond,” in Proceedings of ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Feb. 1997, pp. 129-132.

6. Lucent Technologies, FPGA Data Book, 1999.

7. QuickLogic, Data Book, 1999.

8. Cypress Semiconductor, The Programmable Logic Data Book, 1999.

9. R. Brayton, E. Detjens, S. Krishna, T. Ma, P. McGeer, L.Pei, N. Phillips, R. Rudell,
R. Segal, A. Wang, R. Yung and A. Sangiovanni-Vincentelli, "Multiple-Level
Logic Optimization System," Proc. IEEE International Conference on Computer
Aided Design, pp. 356-359, Nov. 1986.

10. D. Gregory, K. Bartlett, A. de Geus and G. Hachtel, "Socrates: a system for
automatically synthesizing and optimizing combinational logic," Proc. 23rd Design
Automation Conference, June 1986, pp. 79-85.

11. M. Kahrs, "Matching a parts library in a silicon compiler," Proc. IEEE International
Conference on Computer Aided Design, pp. 169-172, Nov. 1986.

12. K. Keutzer, "DAGON: Technology Binding and Local Optimization by DAG
Matching," Proc. 24th Design Automation Conference, June 1987, pp. 341-347.

13. R. J. Francis, J. Rose, and Z. Vranesic, "Chortle-crf: Fast Technology Mapping for
Lookup Table-Based FPGAs," Proc. 28th Design Automation Conference, June
1991, pp. .

14. M. Hanan and J.M. Kurtzberg, "Placement Techniques," Chapter 4 of Design
Automation of Digital Systems; Theory and Techniques, M.A. Breuer, Ed., NJ, Prentice-
Hall, 1972.

15. J. Rose, Z. Vranesic and W.M. Snelgrove, "ALTOR: An Automatic Standard Cell
Layout Program," Proc. Canadian Conference on VLSI, Nov. 1985, pp. 168-173.

 84

16. C. Sechen and K. Lee, "An Improved Simulated Annealing Algorithm for Row-
Based Placement," Proc. IEEE International Conference on Computer Aided
Design, Nov. 1987, pp. 478-481.

17. W. Dees and R. Smith, "Performance of Interconnection Rip-Up and Reroute
Strategies," in Proc. 18th Design Automation Conference, June 1981, pp. 382-390.

18. R. Linsker, "An Iterative-Improvement Penalty-Function-Driven Wire Routing
System," IBM Journal of Research and Development, vol. 28, Sept. 1984, pp. 613-624.

19. J. Cohn, D. Garrod, R. Rutenbar, and L. Carley, "KOAN/ANAGRAM II: New Tools
for Device-Level Analog Placement and Routing," IEEE Journal of Solid-State Circuits,
vol. 26, March 1991, pp. 330-342.

20. L. McMurchie and C. Ebeling, "Pathfinder: A Negotiation Based Performance Driven
Router for FPGAs, "

21. R. Nair, "A Simple Yet Effective Technique for Global Wiring," IEEE Transactions
on Computer-Aided Design, vol. CAD-6, no. 6, March 1987, pp. 165-172.

22. “Layout driven decomposition with congestion consideration,” in Proc. Design Test
Eur., Mar. 2002, pp. 672–676.

23. I. Sourdis, "Efficient and High-Speed FPGA-based String Matching for Packet
Inspection," Ms thesis, Technical University of Crete, 2004.

 85

