
I M P R O V I N G S P E E C H R E C O G N I T I O N I N

M U LT I P L E S P E A K E R E N V I R O N M E N T S

U S I N G A B S S A L G O R I T H M

by kostas athanasoglou

committee:

Professor Vasilios Digalakis (Supervisor)

Assistant Professor Alexandros Potamianos

Professor Nikolaos Sidiropoulos

Submitted to the Department of Electronic and Computer

Engineering in partial fulfillment of the requirements for

the degree of Diploma in Engineering

Technical University of Crete

July 2007

By Kostas Athanasoglou: Improving Speech Recognition in Multiple Speaker

Environments Using a BSS Algorithm, Submitted to the Department

of Electronic and Computer Engineering in partial fulfillment of the

requirements for the degree of Diploma in Engineering, © July 2007

A B S T R A C T

We constructed a system, which can be used to evaluate the speech

recognition performance of noise-removal algorithms, when the noise

is generated from interfering speakers. We chose the widely used

AURORA4 and TIMIT corpora as our data sets, so that the results obtained

are credible and easily compared to related work. The system uses

AURORA4 utterances as the clean signals, while noise can be selected

from either AURORA4 or TIMIT.

Additionally, we used this system to prove the suitability of a blind

source separation (BSS) algorithm in removing the noise of an interfer-

ing speaker, compared to the spectral subtraction (SS) method, which is

shown not to be effective in removing this type of noise. In fact, results

show that SS yields worse results than not applying any noise-removal

algorithm in the frontend of the recognizer.

By applying the BSS algorithm we managed to drop the word error

rate by 73.5% and after retraining the recognizer using similar accoustic

models for the training and the test sets, the word error rate dropped

by 78.44%.

iii

We have seen that computer programming is an art,

because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially

because it produces objects of beauty.

— Donald E. Knuth [6]

A C K N O W L E D G M E N T S

Above all, I would like to thank my parents for their lifelong support

and the useful advice not only in my years in the university, but in

my life in general. Without them, all these beautiful years learning and

studying the field of Electronics and Computer Engineering would not

be possible.

Special thanks to my supervisor Vasilis Digalakis for trusting me this

work, for his valuable recommendations regarding the progress of the

work and his useful guidance, whenever I had problems.

Big thanks to Kleanthis Mokios for our flawless cooperation and the

useful insight he gave me regarding the operation of the BSS algorithm

he developed during his Master Thesis.

Many thanks to all the professors of the Telecommunications Di-

vision for their support: Mr. Alexandros Potamianos for his help on

speech recognition topics and for reviewing this work, Mr. Nikolaos

Sidiropoulos for reviewing this work, Mr. Athanasios Liavas and Mr.

George Karystinos for their help on signal processing topics.

Lastly but not least, I would like to thank Vlasis, Kostas and Nikos

for their company, the enlightening conversations, the sharing of knowl-

edge and information, the successful (and the not so successful) projects

we attempted and above all, the fun we had all these years.

v

C O N T E N T S

1 introduction 1

2 background material 5

2.1 Speech Recognition Basics 5

2.2 The Blind Source Separation Method 8

2.2.1 Noise-Removal formulated as a BSS Problem 9

2.2.2 Description of the BSS Algorithm Used 10

2.3 The Spectral Subtraction Method 12

2.3.1 Noise-Removal formulated as a SS Problem 13

2.3.2 Description of the SS Algorithm Used 13

3 creating an environment to test the recognizer 19

3.1 Customizing the Speech Databases 20

3.2 Simulating a Room and Mixing the Speaker Signals 22

3.3 The Training Process 23

3.4 The Testing Process 26

4 results 29

4.1 Performance on Clean Data 29

4.2 Results after applying SS 30

4.3 Results after applying BSS 32

4.4 Retraining the Recognizer 33

4.4.1 Retraining Using BSS Data 34

4.5 Implementing a real recognizer 36

4.5.1 Choosing Recognizer Using Energy Difference of

Separated Signals 37

4.5.2 Choosing Recognizer Using Forced Alignments 38

4.5.3 Choosing Recognizer Using N-best Lists 39

5 discussion 43

5.1 Final Recognizer 43

vii

viii contents

5.2 Future Work 44

bibliography 45

L I S T O F F I G U R E S

Figure 1 Message Encoding/Decoding. 6

Figure 2 The Markov Generation Model. 7

Figure 3 Block diagram of our speech recognizer. 8

Figure 4 A model of the blind source separation prob-

lem. 9

Figure 5 The case with two speakers and two microphones. 9

Figure 6 A model of the spectral subtraction problem. 13

Figure 7 Block diagram of the spectral subtraction method. 14

Figure 8 How signal length affects the average output

SIR. 21

Figure 9 The simulated room, depicting the positions of

the speakers and the microphones. 23

Figure 10 Windows used for feature extraction. There is

an overlap between adjacent windows. Window

size is 25 ms and frame period (distance between

adjacent windows) is 10 ms. 25

Figure 11 A Recognition Network. 28

Figure 12 Results with and without applying spectral sub-

traction (SS) in the frontend. 31

Figure 13 Results with and without applying blind source

separation (BSS) in the frontend and comparing

it to spectral subtraction. 32

Figure 14 Results after retraining the recognizer using mixed

data. 34

Figure 15 Results after retraining the recognizer using BSS

data. 36

ix

Figure 16 The ideal recognizer (considering we know the

energies of the two signals). 37

Figure 17 Comparing the available options for our final rec-

ognizer. 38

Figure 18 Each recognizer (one trained with BSS separated

data and the other with mixed data) produce

a hypothesis for each sentence they take as in-

put. 40

Figure 19 Recognition results of our final recognizer (BSS

retraining for 10 dBs and lower and mixed retrain-

ing for 15 dBs and above). 42

L I S T O F TA B L E S

Table 1 Recognition results on clean data 30

Table 2 Recognition results in mixed data 31

Table 3 Recognition results after spectral subtraction 31

Table 4 Recognition results after blind source separation 33

Table 5 Recognition results after retraining at the same

dB levels 34

Table 6 Recognition results after retraining using various

dB levels 35

Table 7 Recognition results after BSS retraining at the

same dB levels 35

Table 8 Recognition results after BSS retraining using var-

ious dB levels 35

Table 9 Noise Levels before and after separation 39

x

List of Tables xi

Table 10 In what percent of the cases was the correct rec-

ognizer chosen for each noise level and for the

different number of active tokens per state. 41

Table 11 Recognition results of ideal and realistic recogniz-

ers. 41

1
I N T R O D U C T I O N

Speech recognition performance is greatly degraded when the con-

ditions of the training and the test set differ widely. For example, a

recognizer which is trained using sentences recorded in a noise-free

environment, does not exhibit satisfying recognition rates when used

in noisy environments. But even when the acoustics of the training and

the test environments are similar, if the speakers used in each set have

very different characteristics, the recognition rates will be poor.

To make things worse, systems trained with one speaker and tested

with the same speaker and with the same noise conditions may not

perform well when the speaker exhibits variabilities in his voice (e.g.

the speaker has a cold which has affected his vocal tract).

To counteract all these problems, several methods have been devised.

To make the acoustic model of the noisy test sets similar to the clean

training sets, we try to model the properties of the noise and create

systems that remove it optimally. Another approach is to create rec-

ognizers using data from many acoustic environments. To make the

recognizers speaker-independent, we use speakers with very differ-

ent characteristics in our training sets to create a speaker-independent

recognizer.

An important property of the noise source is whether it has static

or slow-varying statistical properties (e.g. white-noise, mumbles or

traffic noise from cars, trains and airplanes) or rapid-varying statistical

properties (e.g. human voice). We focus on cases where noise is of the

second type.

A broad category of algorithms used to remove that type of noise are

known as blind source separation algorithms. These algorithms require

1

2 introduction

no prior knowledge of the sources and try to separate them looking

only at their mixtures. The only requirement of these algorithms is that

they need as input at least as many mixtures as the number of sources

that produced them.

There are various ways to evaluate the performance of such algo-

rithms. According to [10] some are: speech recognition rates, plots

of separated signals, plots of cascaded mixing/unmixing impulse

responses and signal to noise ratios. As we’re interested in speech

recognition applications, we selected the speech recognition rates as a

performance indicator.

To successfully test such an algorithm, an appropriate system must

be setup which will contain the signal of each individual speaker, the

conditions under which these signals will be mixed and any other

interesting parameters, such as the modification of the relative energy

between the two speakers.

In this work, we constructed such a system that can be used to eval-

uate the performance of these algorithms and compare them under

various scenarios (e.g. using different positions for the speakers or the

receiving microphones). The system can be used to simulate scenarios

where several speakers talk simultaneously in a room, create the appro-

priate mixtures, as they would be recorded from actual microphones,

feed them to such an algorithm and present the results to the user.

We selected our speech signals from the widely used AURORA4[9]

and TIMIT[2] databases. AURORA4 was made by the DARPA1 Spoken

Language System (SRS) community. It was created by recording speak-

ers reading articles from the Wall Street Journal. It consists of several

test sets corresponding to different noise sources digitally added to

the clean speech recordings. TIMIT, on the other hand, was designed to

further acoustic-phonetic knowledge and automatic speech recognition

systems. It was commissioned by DARPA and worked on by many

1 Defense Advanced Research Projects Agency

3

sites, including Texas Instruments (TI) and Massachusetts Institute of

Technology (MIT), hence the corpus’ name.

Utterances from the AURORA4 database were selected as the training

set, while the test set contains utterances from the AURORA4 database,

contaminated with noise either from the TIMIT or the AURORA4 database,

according to the type of scenario we are using.

After creating this system, we used it to compare two different kinds

of algorithms: the blind source separation (BSS) algorithm presented

in [8] and the spectral subtraction (SS) method presented in [3]. The

two algorithms differ greatly to the way they model the noise. The

SS method assumes that noise has slow-varying statistical properties,

which is not the case when noise comes from an interfering speaker.

As it was expected, the results show the suitability of the BSS al-

gorithm for these types of environments. As an extension, we try to

further improve the performance of the recognizer with the BSS algo-

rithm, by retraining the recognizer to achieve similar acoustic models

for the training and the test sets.

In Chapter 2 we present the necessary background material the

reader must be familiar with to understand the concepts used later. An

overview of our speech recognition system is presented and the BSS

and SS methods are discussed briefly.

In Chapter 3 we discuss the implementation of our system and the

actual implementation conditions used to compare the BSS and the SS

methods.

In Chapter 4 we present analytic results containing word error rate

graphs, as well as tables showing substitution, deletion and insertions

errors.

In Chapter 5 we discuss the implications of the results, the suitability

of the BSS algorithm in real-world applications and propose future

work.

2
B A C K G R O U N D M AT E R I A L

This chapter presents all the theoretical background used throughout

the rest of the work. An overview of the system constructed is pre-

sented and the algorithms used (blind source separation and spectral

subtraction) are discussed. The algorithms are presented briefly, but

appropriate references have been placed, for the interested reader to

study them in detail.

Both blind source separation and spectral subtraction techniques

were used as noise removal algorithms and were implemented at the

front-end of our recognition system. The familiar reader may note

that an alternative technique for increasing recognition rates is using a

training data set with similar acoustic conditions with the test set (same

noise conditions). However, this technique requires either training by

individuals in different environments, which is generally considered

expensive or a variety of background sounds that could be added

artificially, which may not be available in all situations.

2.1 speech recognition basics

Speech recognition systems generally assume that the speech signal is

a realization of some message encoded as a sequence of one or more

symbols as shown in Figure 1 [11].

To effect the reverse operation of recognizing the underlying symbol

sequence given a spoken utterance, the continuous speech waveform

is first converted to a sequence of equally spaced discrete parameter

vectors. This sequence of parameter vectors is assumed to form an

5

6 background material

3
s

2
s

1

Speech
Waveform

Speech
Vectors

Recognize

Parameterize

s

Figure 1. Message Encoding/Decoding.

exact representation of the speech waveform on the basis that for the

duration covered by a single vector (typically 10ms or so), the speech

waveform can be regarded as being stationary. Although this is not

strictly true, it is a reasonable approximation. The role of the recognizer

is to effect a mapping between sequences of speech vectors and the

wanted underlying symbol sequences.

Let each spoken word be represented by a sequence of speech vectors

or observations O, defined as:

O = o1, o2, . . . , oT

where ot is the speech vector observed at time t. The word recognition

problem can then be regarded as that of computing

arg max
i

{P(wi|O)}

wherewi is the i’th vocabulary word. This probability is not computable

directly but using Bayes’ Rule gives

P(wi|O) =
P(O|wi)P(wi)

P(O)

Thus, for a given set of prior probabilities P(wi), the most proba-

ble spoken word depends only on the likelihood P(O|wi). Given the

dimensionality of the observation sequence O, the direct estimation

2.1 speech recognition basics 7

of the joint conditional probability P(o1, o2, . . . , |wi) from examples of

spoken words is not practicable. However, if a parametric model of

word production such as a Markov model is assumed, then estimation

from data is possible since the problem of estimating the class condi-

tional observation densities P(O|wi), is replaced by the much simpler

problem of estimating the Markov model parameters.

In HMM based speech recognition, it is assumed that the sequence

of observed speech vectors corresponding to each word is generated by

a Markov model as shown in Figure 2. A Markov model is a finite state

machine which changes state once every time unit and each time t that

a state j is entered, a speech vector ot is generated from the probability

density bj(ot). Furthermore, the transition from state i to state j is also

probabilistic and is governed by the discrete probability αij. In HTK,

the entry and exit states of a HMM are non-emitting. This is to facilitate

the construction of composite models. In practice, only the observation

sequence O is known and the underlying state sequence X is hidden.

This is why it is called a Hidden Markov Model.

5

a
22

a
33

a
44

a
12

a
23

a
34

a
45

1
o

2
o

3
o

4
o

5
o

b(o)
2 1

b(o)
2 2

b(o)
3 3 b(o)

3 4
b(o)

4 5

a
24

1 2 3 4

Figure 2. The Markov Generation Model.

In Figure 3 you can see a block diagram of the recognizer we are

using. In the feature analysis step, a spectral analysis of the signal

8 background material

using Mel Frequency Cepstral Coefficients (MFCCs) is performed and

the vectors obtained are used to train our HMMs (each phoneme is

modeled by one HMM). In the decoding phase, the recognized utterance

is selected considering the Speech Recognition Units (which phonemes

are allowed), the Word Dictionary (which words are allowed) and the

Grammar (which sequences of words are allowed).

Speech
Feature

Speech
Recognition

Units

Recognized
Utterance

Grammar

Word
Dictionary

DecodingAnalysis

Figure 3. Block diagram of our speech recognizer.

2.2 the blind source separation method

Imagine multiple speakers speaking simultaneously in a room and

several microphones, scattered in the room, recording them. Each micro-

phone will obtain a mixture of the signals (that is, a linear combination

of them). The blind source separation (BSS) method is a method that

tries to obtain the initial signals of the speakers, looking only at the

obtained mixtures, that is without having prior knowledge of each

signal’s properties (hence blind source).

2.2 the blind source separation method 9

yI

-

-

-

-

-

-

y1

......

s1

sI

x1

xJ

...H W

Figure 4. A model of the blind source separation problem.

2.2.1 Noise-Removal formulated as a BSS Problem

In Figure 4 you can see a model of the BSS problem. We assume I

mutually uncorrelated speaker signals1 si(t), i = 1, . . . , I and t =

1, . . . ,N. There are J microphones that record these speakers. As all

speakers talk simultaneously, each microphone is recording a mixture

of them. If αji(t) is the impulse response with length L, of the path

between the j-th microphone and the i-th speaker then each microphone

signal will be given by:

xj(t) =

I∑
i=1

αji(t) ? si(t), t = 1, . . . ,N (2.1)

The case with two speakers and four microphones is shown in Figure 5.

1
s

2s

11a

12a

31a

32a

21a

22a

41a

42a

1x

2x

3x

4x

Figure 5. The case with two speakers and four microphones.

1 all signals are discrete-time ones.

10 background material

Note that normally if we convolve two sequences with length L1 and

L2 respectively, the output will be of length L1 +L2 − 1, but we truncate

the output to N samples (same length as the input signals). We also

don’t consider added noise. When noise is not negligible, its power

can be estimated from silence periods and subtracted from correlation

matrix estimates.

Equation 2.1 can be written as:


x1(t)

...

xJ(t)

 =


α11 · · · αJ1

...
. . .

...

α1J · · · αJI

 ?


s1(t)

...

sI(t)


or in a more compact form:

x(t) = A ? s(t) (2.2)

where the ? operation is computed the same way as the matrix mul-

tiplication operator, but instead of multiplication we use convolution.

The above equation is called a multi-input, multi-output (MIMO) linear

model for the received signals.

Theoretically, if A is invertible, by left multiplying both sides of 2.2

with W = A−1 we can retrieve the original signals:

s(t) = W ? x(t) (2.3)

2.2.2 Description of the BSS Algorithm Used

Various approaches have been proposed to solve this problem, which

can be divided into time-domain and frequency-domain methods. The

algorithm we used [8], is a frequency-domain one. Frequency domain

methods have the advantage over the time-domain ones that they

are not too expensive to compute and the mixing channel order (L)

2.2 the blind source separation method 11

need not be known. The frequency-domain BSS methods decompose

the time-domain convolutive BSS problem into multiple independent

instantaneous BSS problems, one at each frequency bin. However, there

is an inherent frequency-dependent permutation and scaling ambiguity

problem in all frequency-domain BSS methods which does not exist in

time-domain ones.

The algorithm we used is composed of two separate stages. In the

first stage, parallel factor analysis (PARAFAC) [7] is employed in order

to separate the speech signals, while in the second stage the task

of matching the arbitrary permutations in the frequency domain is

performed, via a novel integer-least-squares-based method.

To transform Equation 2.2 into the frequency-domain, we use the

property of the DFT that allows us to express circular convolutions as

products. In 2.2, we assume linear convolution. But a linear convolution

can be approximated by a circular convolution if the size T of the DFT’s

frame is much larger than the length of the convolution sum. In such a

case we can write:

x(f, t) ≈ A(f)s(f, t) + n(f, t) for L� T

where:

x(f, t) =

T−1∑
τ=0

x(t+ τ)e
−2πjfτ

T

is the DFT of the frame of size T starting at t.2 The same holds for

s(f, t). And finally,

A(f) =

T−1∑
τ=0

A(τ)e
−2πjfτ

T =

L∑
τ=0

A(τ)e
−2πjfτ

T

because A(τ) = 0J×I for τ > L. The i-th column of A(f) represents now

the spatial signature of the i-th speaker in the frequency domain, at

frequency f.

2 For simplicity, we use the same symbol to denote time-domain and frequency-domain
representation of a signal or a filter, depending on its argument.

12 background material

The algorithm used, uses three assumptions:

1. The speaker signals s(t) are zero mean, second-order quasi-

stationary (their variances are slowly varying, such that over

short time intervals they can be assumed stationary). For speech

signals, that is a reasonable assumption.

2. The number of speakers is known.

3. The contribution of the noise therm n(t) is negligible compared

to the speaker signals.

Recall from 2.3 that we need the inverse matrix W(f) = A−1(f).

There are two ways one can tackle the BSS problem in the frequency

domain. One is to try to estimate the direct channel A(f) and then

invert it to solve the problem, and the other one is to try to estimate the

inverse channel W(f) directly. We used the direct estimation approach.

We can obtain estimates of A(f), from the autocorrelation of the

received signals from the microphones:

Rx(f, t) = E[x(f, t)xH(f, t)] ≈ A(f)E[s(f, t)sH(f, t)]AH(f) (2.4)

= A(f)Ds(f, t)AH(f) (2.5)

Since we assume mutually uncorrelated speaker signals we pos-

tulate diagonal autocorrelation matrix Ds(f, t). As discussed in [8],

proper processing of the autocorrelation data via PARAFAC analy-

sis, for all frequency bins and all intervals over which the measured

signals are assumed stationary, enables us to specify the matrices

A(f), f = 0, . . . , T − 1.

We use a modified version of the algorithm, which assumes that all

frequency ambiguity and scaling problems are solved perfectly.

2.3 the spectral subtraction method 13

2.3 the spectral subtraction method

Spectral subtraction is a method for removing noise from signals. The

method estimates the noise spectrum in regions of the signal that are

considered “noise-only” (eg. when the speaker has not started speaking

yet) and removes it from the entire signal. It follows, that for this

method to work properly, the noise must remain relatively constant

during the whole speech activity.

2.3.1 Noise-Removal formulated as a SS Problem

In Figure 6 you can see schematically how spectral subtraction formu-

lates the problem we need to solve. The algorithm takes as input the

noisy signal x(t) which is properly sampled and quantized. The noisy

signal is considered the sum of the valuable signal s(t) and the noise

n(t), so that:

x(t) = s(t) +n(t) (2.6)

The method tries to solve the problem in the frequency domain by

estimating the power spectral density of the noise and subtracting it

from the signal. Equation 2.6 in the frequency domain becomes:

X(e−2πjk) = S(e−2πjk) +N(e−2πjk) (2.7)

Thus, by estimating N(e−2πjk) we can subtract it from X(e−2πjk) to

get X(e−2πjk) and after inverse DFT the original signal x(t).

−

N(f)

X(f) = S(f) + N(f) S(f)+

Figure 6. A model of the spectral subtraction problem.

14 background material

2.3.2 Description of the SS Algorithm Used

The spectral subtraction implementation we used was the one in [3].

In Figure 7 you can see the steps of the algorithm in a block diagram

form. Each step is explained in more detail in each own paragraph:

Clean Signal

in Windows

Convert to
Frequency Domain

Compute Noise
Spectrum Magnitude

Frame Averaging and
Bias Subtraction

Residual Noise
Reduction

Attenuate during
Non−Speech Activity

Convert to Time
Domain

Signal
Reconstruction

Noisy Signal

Segment Data

Figure 7. Block diagram of the spectral subtraction method.

2.3 the spectral subtraction method 15

noisy signal This is the noisy signal as presented in Equation

2.6.

segment data in windows Before we process the signal and

take its Fourier transform, we must first segment it in small windows,

where the speech signal can be considered stationary. The specific

algorithm uses half-overlapped Hanning windows of 10 ms. With the

sampling frequency of 16000 Hz that we used, each windows contains

160 samples.

convert to frequency domain After segmentation, we trans-

form the signal into the frequency domain. For that, a 512-point Discrete

Fourier Transform (DFT) was used. Thus, from each window a 512-

point vector is obtained, which its two halfs are symmetrical because

the signal is real valued.

compute noise spectrum magnitude This is the step where

we estimate the spectrum of a “noise-only” area. We select the first 50

ms (corresponding to 5 windows) of the signal as the noise-only area3.

To compute the noise spectrum magnitude, we took the average of

the DFTs of the first 5 windows (we consider only the first 256 points

from here on, as the DFTs are symmetric). We denote this average noise

spectrum as µ(ej2πk).

frame averaging and bias subtraction The spectral sub-

traction estimator Ŝ(ej2πk) is:

Ŝ(ej2πk) = X(ej2πk) − µ(ej2πk) (2.8)

3 All AURORA4 sentences were verified not to contain any speech activity in the first 50ms,
so this assumption holds for our signals.

16 background material

The error that results from this estimator is given by:

ε(e2πjk) = Ŝ(ej2πk) − S(ej2πk) (2.9)

and if we combine Equations 2.7 and 2.8, it becomes:

ε(e2πjk) = N(ej2πk) − µ(ej2πk) (2.10)

A technique to reduce the error in Equation 2.10 is used, which

is called local averaging. Because ε(e2πjk) is the difference between

µ(ej2πk), which is an average of 5 windows andN(ej2πk) or |N(ej2πk)|ejθx

(we consider the phase of noise the same as the signal’s phase, as

these two signals have the same delay), it could be better if instead of

|N(ej2πk)| we used |N(ej2πk)|. We just replace |X(ej2πk)| with |X(ej2πk)|:

|X(ej2πk)| =
1

M

M−1∑
i=0

∣∣∣Xi(e
2jπk)

∣∣∣ (2.11)

where Xi(e
2jπk) is the i-th time-windowed transform of x(t). In our

implementation, we used M = 3, because according to [3], averaging

over more than three windows, will weaken intelligibility.

The new estimator will be:

ŜA(ej2πk) =
[
|X(ej2πk)| − µ(ej2πk)

]
ejθx

and the new spectral error:

ε(e2πjk) = |N(ej2πk)| − µ(ej2πk)

Thus, the sample mean of |N(ej2πk)| will converge to µ(ej2πk) as a

longer average is taken.

2.3 the spectral subtraction method 17

residual noise reduction When there is no speech present in

a given signal, the difference between N(ej2πk) and µ(ej2πk) is called

noise residual and will demonstrate itself as disorderly spaced narrow

bands of magnitude spikes. When we transform the signal back into the

time domain, these spikes will sound like the sum of tone generators

with random frequencies. This is a phenomenon known as the “musical

noise effect”.

Because the spikes fluctuate from frame to frame, we can reduce the

audible effects of the noise residual by replacing the current values

from each frame with the minimum values chosen from the adjacent

frames.

The motivation of the approach is threefold: If the amplitude of

Ŝ(ej2πk) lies below the maximum noise residual, and it varies radically

from frame to frame, there is a high probability that the spectrum

at that frequency is due to noise; therefore, suppress it by taking the

minimum value. Second, if Ŝ(ej2πk) lies below the maximum but has

a nearly constant value, there is a high probability that the spectrum

at that frequency is due to low energy speech, therefore taking the

minimum will retain the information. Third, if Ŝ(ej2πk) is greater than

the maximum, there is speech present at that frequency, therefore

removing the bias is sufficient.

attenuate during non-speech activity The energy of Ŝ(ej2πk)

compared to µ(ej2πk) is indicative of the presence of speech activity

contained in a given analysis frame:

T = 20log10

[
1

2N+ 1

N∑
k=0

∣∣∣∣∣ Ŝ(ej2πk)

µ(ej2πk)

∣∣∣∣∣
]

(2.12)

where N = 160 the size of each frame.

According to [4], if T < 12 dBs, we can classify this frame as without

speech and attenuate it by a reasonable factor of 30 dBs (according

18 background material

again to [4]). So, we must multiply each sample of the vector with a

constant c, such as 20log10c = −30 dB. That means c = 10−3/2.

convert to time domain After the above processing and opti-

mizations performed to each frame at the frequency domain, we can

apply the inverse Fourier transform to each frame, so we can take back

the original signal. The result will be a “clean” signal with the presence

of the noise suppressed.

3
C R E AT I N G A N E N V I R O N M E N T T O T E S T T H E

R E C O G N I Z E R

Before we could embed either spectral subtraction or blind source sepa-

ration methods in the front-end, we first had to properly setup a proper

environment for the recognizer. That is, decide on what utterances the

speakers will use (from which database), the room conditions where

the mixing of the signals was done, the relative energies of the speaker

signals, etc.

The two speech corpora we used was AURORA4 and TIMIT.

AURORA4 is a first general-purpose English, large vocabulary, natural

language, high perplexity, corpus containing significant quantities of

both speech data (400 hrs.) and text data (47M words), thereby pro-

viding a means to integrate speech recognition and natural language

processing in application domains with high potential practical value.

That is why we used it to train our recognizer and also the speakers we

want to recognize read passages from the AURORA4 corpus.

The DARPA TIMIT speech database was designed to provide acoustic

phonetic speech data for the development and evaluation of automatic

speech recognition systems. It consists of utterances of 630 speakers

that represent the major dialects of American English. Because TIMIT is

a general text, phonetically balanced corpus, we used it as the “noise”

database. That is, it was used for the interfering speakers that we can

safely ignore (after separating their signals from the main speaker’s,

we can discard them).

To differentiate the case where we are only interested in recognizing

the main speaker (discarding the rest of the speakers) from the case

where we want to recognize all the speakers simultaneously, we created

19

20 creating an environment to test the recognizer

two kinds of “scenarios”.

The first one, is the office scenario. This scenario involves a speaker

who dictates speech to his computer, while in the same environment

there are interfering speakers. We are interested in recognizing only

what the first speaker says. The other speakers are ignored; after their

signals have been separated from the main speaker’s, they are discarded.

The main speaker uses utterances from the AURORA4 database, while

the interfering speakers use utterances from the TIMIT corpus.

The second one, is the conference scenario. In this scenario several

people talk simultaneously in a conference room and a transcriber tries

to recognize them all at once. In this case, all speakers are considered

as valuable signals and use the AURORA4 database.

In our experiments we used the office scenario, only.

3.1 customizing the speech databases

The initial format of the databases (AURORA4 and TIMIT) we used to

obtain the utterances, were not in the appropriate format. The files

were saved in a big-endian format (Sun platforms) and the files did not

have the appropriate WAV headers, so they could only play in a very

limited number of players. Additionally, as our main work focuses on

the blind source separation algorithm, according to [8], the algorithm

shows better separability, when speech signals are of length greater

than 30 seconds (instead of 7 seconds, which is the average length of

an AURORA4 file).

As a measure indicator, we can use the Signal-to-Interference (SIR)

ratio. SIR indicated how louder is the signal we are interested to sepa-

rate, relative to all the other signals. If Py
j,i =

∑T−1
t=0 x

2
j (t), where T the

number of samples, represents the power of the recorded signal at the

j-th output of the algorithm when only source i is active, the SIR in dB

3.1 customizing the speech databases 21

is defined as:

SIRy(j) = 10 log
maxi P

y
j,i∑I

i=1 P
y
j,i − maxi P

y
j,i

When the speech signals have a length between 22 and 35 seconds,

the average SIR in output SIRy =

∑J
j=1 SIRy(j)

J is approximately 21.5

dBs, while speech signals of small length (between 5 and 15 seconds),

have an average SIR of 15.5 dBs. To exploit this difference of 6 dBs,

we concatenated sentences of the same speakers together to create

utterances with an average length greater than 30 seconds.

5 10 15 20 25 30 35
14

15

16

17

18

19

20

21

22

23

Signal Length (secs)

A
ve

ra
ge

 S
IR

 in
 O

ut
pu

t (
dB

s)

Figure 8. How signal length affects the average output SIR.

After concatenating the AURORA4 utterances, we had sentences with

an average length of 35-40 seconds. The same thing had to be done

in the TIMIT database. However, because the average length of a TIMIT

utterance is 3 seconds, in many cases even after concatenating all the

sentences of one speaker, the length was shorter than 35 seconds and

the two speakers would not overlap each other during the whole time.

22 creating an environment to test the recognizer

There were two options available. Either to let it happen (zero

padding the second sentence) or to replicate the smaller sentence from

samples from the beginning to make it overlap the main speaker for

the whole time. We selected the second option.

Each source had to be normalized to fit in the range [−1, 1], so it can

be processed by MATLAB. Then we created the relative difference of

our choice, between the energies of the two signals. Let’s say we want

the second source to be n (new ratio) dBs lower than the first one. We

first compute the power of the signals:

Px =
1

N

N∑
i=1

x2
i

where N the length of the signal. Accordingly, we compute Py. The

current ration in dBs between the two signals will be:

(
Y

X

)
dB

= 10 log10

Py

Px

We want to change signal y so the new ratio will be n:

10 log10

P ′y
Px

= n⇔
P ′y
Px

= 10n/10 ⇔ P ′y = 10n/10Px

So, we want to scale Py be a factor c2 =
P ′

y

Py
. So we must scale y with:

c =

√
10n/10Px

Py

After all the initial setup was done, we could finally mix the two

sources.

3.2 simulating a room and mixing the speaker signals

Because we were unable to perform the recordings ourselves in a real

room, we simulated a room using Douglas Campbell’s Roomsim [5]

3.3 the training process 23

program. In Figure 9 you can see a sketch of the room showing the

dimensions of the room and the positions of the speakers and the

microphones. The green-colored speaker is the primary speaker, while

the red-colored speaker is the interfering one. The mixed file we kept

was the one received by the first microphone (top left).

Figure 9. The simulated room, depicting the positions of the speakers and the
microphones.

3.3 the training process

The training process begins by parameterizing the raw speech wave-

forms into sequences of feature vectors. The sampling frequency of our

speech databases was 16 KHz (that is a sampling period of 6.25 µs).

We also removed the DC mean from the source waveform. This was

to ensure that any DC offset was removed from the signal. Note that

this method is applied to each window individually so that it can be

used both when reading from a file and when using direct audio input.

It is usually beneficial to taper the samples in each window so that

discontinuities at the window edges are attenuated. We used a Ham-

24 creating an environment to test the recognizer

ming windowing approach which applies the following transformation

to the samples {sn,n = 1, . . . ,N}:

s ′n =

{
0.54− 0.46 cos

(
2π(n− 1)

N− 1

)}
sn

To compensate for the signal attenuation in speech signals caused by

the lips, we amplified high frequencies by using a pre-emphasis filter:

s ′n = sn − ksn−1

with k = 0.97.

We used windows of 25 ms and a frame period between the windows

10 ms so there is a window overlap to extract the feature vectors. Figure

10 shows how the windows are deployed in time.

First filterbank analysis is done to the signal using 26 channels and

then 12 Mel Frequency Cepstral Coefficients are extracted (MFCCs)

from each window according to:

ci =

√
2

N

N∑
j=1

mj cos
(
πi

N
(j− 0.5)

)

where N = 26, the number of filterbank channels. To augment the

spectral parameters we appended the zeroth cepstral parameter C0.

We also added time derivatives of the basic static parameters, to

enhance the performance of the recognizer (see [11], pages 63-64). We

added first order regression coefficients (delta coefficients) and second

order regression coefficients (acceleration coefficients).

MFCCs are the parameterization of choice for many speech recogni-

tion applications. They give good discrimination and lend themselves

to a number of manipulations. In particular, the effect of inserting a

transmission channel on the input speech is to multiply the speech

spectrum by the channel transfer function. In the log cepstral domain,

this multiplication becomes a simple addition which can be removed

3.3 the training process 25

by subtracting the cepstral mean from all input vectors. In practice, of

course, the mean has to be estimated over a limited amount of speech

data so the subtraction will not be perfect. Nevertheless, this simple

technique is very effective in practice where it compensates for long-

term spectral effects such as those caused by different microphones

and audio channels. We used this so called Cepstral Mean Normalization

(CMN) (see [11], pages 61-62) in our experiments.

3rd window

time (ms)0 5 10 15 20 25 30 35 40 45

25 ms

25 ms

25 ms

10 ms

10 ms 10 ms

2nd window

1st window

Figure 10. Windows used for feature extraction. There is an overlap between
adjacent windows. Window size is 25 ms and frame period (distance
between adjacent windows) is 10 ms.

The Hidden Markov Model used for each phoneme was a left-right,

with three states. HTK also adds a non-emitting starting and end state,

so a model of an HMM was similar to the one found in Figure 2.

Because in our speech databases we did not have speech data avail-

able for which the location of the sub-word (i.e. phone) boundaries were

marked, we used a so-called flat start. In this case, all of the phone mod-

els are initialized to be identical and have state means and variances

equal to the global speech mean and variance.

Once the initial set of models had been computed, we performed

embedded training using the entire training set. For each training ut-

terance, the corresponding phone models are concatenated and then

the forward-backward algorithm is used to accumulate the statistics of

state occupation, means, variances, etc., for each HMM in the sequence.

When all of the training data has been processed, the accumulated

statistics are used to compute re-estimates of the HMM parameters.

We used the philosophy of system construction in HTK, which is that

26 creating an environment to test the recognizer

HMMs should be refined incrementally. We started with a simple set of

single Gaussian context-independent phone models and then iteratively

refined them by expanding them to include context-dependency and

use multiple component Gaussian-mixture distribution (we used 6).

The formula for computing the output distributions bj(ot) is:

bj(ot) =

6∑
m=1

cjmN(ot; µjm, Σjm)

where cjm the weight of the m’th component and N(·; µ, Σ) is a mul-

tivariate Gaussian with mean vector µ and covariance matrix Σ, that

is:

N(o; µ, Σ) =
1√

(2π)n|Σ|
e−

1
2 (o−µ) ′Σ−1(o−µ)

where n = 39 (13 coefficients along with their first and second deriva-

tives) is the dimensionality of o.

When building context-dependent HMM systems, there is always

a problem of data insufficiency. To overcome this problem, we tied

parameters together which allows data to be pooled so that the shared

parameters can be robustly estimated.

As the focus of this paper is on noise robustness, we consider only

a subset of the Aurora4 task. This subset corresponds to training and

testing on the recordings from the Sennheiser microphone at 16 kHz

and processed by a P.341 filter [1]. The use of the P.341 filter simulates

the transmission characteristics for wideband telephony. In particular,

7138 utterances from 83 speakers in the training clean sennh set are used

for training the acoustic model.

3.4 the testing process

In HTK an alternative formulation of the Viterbi algorithm is used

called the Token Passing Model. In brief, the token passing model makes

the concept of a state alignment path explicit. Imagine each state j of a

3.4 the testing process 27

HMM at time t holds a single movable token which contains, amongst

other information, the partial log probability:

ψj(t) = max
i

{
ψi(t− 1) + log(aij)

}
+ log(bj(ot))

This token then represents a partial match between the observation

sequence o1 to ot and the model subject to the constraint that the

model is in state j at time t. The key steps in the equivalent token

passing algorithm which is executed at each time frame t is:

1. Pass a copy of every token in state i to all connecting states j, incre-

menting the log probability of the copy by log[αij] + log[bj(ot)].

2. Examine the tokens in every state and discard all but the token

with the highest probability.

The point of using the Token Passing Model is that it extends very

simply to the continuous speech case. For example, Figure 11 shows

a simple network in which each word is defined as a sequence of

phoneme-based HMMs and all of the words are placed in a loop. In this

network, the oval boxed denote HMM instances and the square boxed

denote word-end nodes. This composite network is essentially just a

single large HMM and the above Token Passing algorithm applies. The

only difference now is that more information is needed beyond the log

probability of the best token. When the best token reaches the end of

the speech, the route it took through the network must be known in

order to recover the recognized sequence of models.

The history of a token’s route through the network may be recorded

efficiently as follows. Every token carries a pointer called a word end link.

When a token is propagated from the exit state of a word (indicated by

passing through a word-end node) to the entry state of another, that

transition represents a potential word boundary. Hence a record called

a Word Link Record is generated in which is stored the identity of the

word from which the token has just emerged and the current value of

28 creating an environment to test the recognizer

the token’s link. The token’s actual link is then replaced by a pointer to

the newly created WLR.

Once all of the unknown speech has been processed, the WLRs at-

tached to the link of the best matching token (i.e. the token with the

highest log probability) can be traced back to give the best matching se-

quence of words. At the same time the positions of the word boundaries

can also be extracted if required.

etc

been

ax

b

b iy

iy n

a

be

Figure 11. A Recognition Network.

There were two test sets available in the AURORA4 database. One with

160 and one with 330 utterances. We selected the larger test set for

greater credibility.

4
R E S U LT S

4.1 performance on clean data

Before we can apply any noise-removal algorithms in the test sets, we

first had to evaluate the performance of the speech recognizer when

both the training and the test sets contain clean data; that is data

not contaminated with any kind of noise. Then, by looking at these

baseline results we can evaluate the performance of either noise-removal

algorithm.

Decoding was performed on a test set containing 330 utterances of

the AURORA4 database. The data used were sampled at 16 KHz and

used 16 bits per sample.

In Table 1 you can see the recognition results on the clean test set.

The first column indicates the percentage of words correctly recognized,

columns 2-3 indicate false substitutions (SUB), false deletions (DEL) and

false insertions (INS) of the recognizer. The percent of correct words

recognized (CORR) does not consider the false insertions. That is why we

do not use it, as it is not indicative of the overall error of the recognizer.

Alternatively, we use the word error rate (ERR) which is simply the sum

of false insertions, deletions and substitutions. As you can see from

Table 1, the word error rate (WER) on clean data is 11.13%.

As expected, the results yield a very good recognition rate as the

conditions of the training and the test sets are similar.

29

30 results

corr sub del ins err

91.84 7.42 0.75 2.97 11.13

Table 1. Recognition results on clean data

4.2 results after applying ss

Before we could test the spectral subtraction algorithm, we first had

to artificially add noise to the test set from interfering speakers. The

process is the one explained in 3.2. We used several relative energies

between the two speakers. The second speaker (considered as the

noise) was initially at the same energy level as the main speaker (0 dBs

difference between them). Then, we were gradually lowering the energy

of the second speaker by 5 dBs each time.

In Figure 12 we illustrate the effects of applying spectral subtraction

in the front-end. In Table 2 you can see the recognition results on the

mixed data for the various dB levels, while in Table 3 you can see each

case after applying spectral subtraction in the front-end.

As you can see, spectral subtraction fails to separate the signals of

the two speakers due to its assumption that the noise emanating from

the second source has stationary statistical properties. Not only the

performance of the recognizer remains the same, compared to the mixed

signals case, but it is also degraded because of the spectral corruptions

the signal suffered. The word error rate increases from 1.55 and 3.34%

when the two speakers speak with relatively equal energy (0 and 5 dBs

difference respectively), to 18% when the unwanted speaker virtually

doesn’t exist (25 dBs lower than the first one).

4.2 results after applying ss 31

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25

%
 W

or
d

E
rr

or
 R

at
e

How much lower the energy of the 2nd speaker than the 1st one is (in dBs)

Mixed Signals
Signals after Spectral Subtraction

Figure 12. Results with and without applying spectral subtraction (SS) in the
frontend.

dbs corr sub del ins err

0 33.72 56.64 9.64 28.94 95.22

-5 53.37 39.47 7.15 30.60 77.23

-10 71.31 24.90 3.79 27.76 56.45

-15 80.96 16.50 2.54 24.25 43.28

-20 86.76 11.83 1.42 14.83 28.08

-25 89.15 9.77 1.08 7.88 18.74

Table 2. Recognition results in mixed data

dbs corr sub del ins err

0 26.51 61.11 12.39 23.28 96.77

-5 44.52 46.14 9.34 25.09 80.57

-10 60.55 33.31 6.15 24.02 63.48

-15 69.77 25.63 4.60 21.33 51.56

-20 75.85 20.44 3.72 16.76 40.91

-25 78.03 18.76 3.21 14.37 36.33

Table 3. Recognition results after spectral subtraction

32 results

4.3 results after applying bss

The same process was used to test the blind source separation algorithm.

In Figure 13, we illustrate the benefits of the blind source separation

method and we compare it to spectral subtraction. In Table 4 you can

see the results in more detail. Blind source separation reduces the

word error rate significantly by 73.5% when the two speakers speak

at the same energy level, compared to the mixed signals case. The

improvement of BSS starts to degrade, as we lower the energy of the

second speaker. But even when the unwanted speaker is 5 and 10

dBs lower than the primary one, BSS still improves the recognition by

49.71 and 14.14% respectively. When we further lower the energy of

the second speaker, the algorithm exhibits an adverse behavior and

degrades the performance of the recognizer.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25

%
 W

or
d

E
rr

or
 R

at
e

How much lower the energy of the 2nd speaker than the 1st one is (in dBs)

Mixed Signals
Signals after Spectral Subtraction

Signals After Blind Source Separation

Figure 13. Results with and without applying blind source separation (BSS) in
the frontend and comparing it to spectral subtraction.

4.4 retraining the recognizer 33

dbs corr sub del ins err

0 84.71 13.64 1.66 6.43 21.72

-5 80.95 16.70 2.35 8.46 27.52

-10 69.25 25.44 5.31 11.56 42.31

-15 54.36 35.01 10.63 11.84 57.48

-20 52.70 36.05 11.25 10.91 58.21

-25 61.26 29.76 8.99 7.98 46.72

Table 4. Recognition results after blind source separation

4.4 retraining the recognizer

To further improve the recognition rate, we can retrain the recognizer

using similar acoustic environment as the one used in the test set, that

is signals that have been separated using the blind source separation

algorithm.

As a baseline scenario, we can create a training and a test set that

contain convolutive mixtures of the two speakers. Then we can create

a training and a test set with convolutive mixtures that have been

separated using the BSS algorithm and compare the results to the

baseline scenario. That way, we’ll examine how the retraining procedure

affects the results and how the BSS algorithm improves them.

As explained in 3.1, when creating mixtures we can choose the

relative energy of the two speakers. So, one option is to use the same

energy difference in the training and the test set and another one is

to create a “general” training set, which contains mixtures where the

relative energy between the two speakers varies. In Figure 14 you can

see the results using either of the two options. Detailed results are given

in Tables 5 and 6 respectively.

34 results

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25

%
 W

or
d

E
rr

or
 R

at
e

How much lower the energy of the 2nd speaker than the 1st one is (in dBs)

Without retraining
Trained set at the same dB level with the test set

Train set using various dB levels

Figure 14. Results after retraining the recognizer using mixed data.

dbs corr sub del ins err

0 60.00 31.05 8.95 11.43 51.43

-5 76.44 19.37 4.18 10.33 33.89

-10 84.72 12.61 2.67 8.28 23.56

-15 88.32 9.51 2.17 5.19 16.87

-20 90.34 8.43 1.23 3.70 13.36

-25 90.96 7.92 1.12 3.14 12.18

Table 5. Recognition results after retraining at the same dB levels

4.4.1 Retraining Using BSS Data

Now a similar process can be done by separating the convolutive

mixtures using the BSS algorithm. Again, we have the two options

described in Section 4.4. In Figure 15 you can see the performance

of the recognizer when using the BSS algorithm. Detailed results are

presented in Tables 7 and 8.

4.4 retraining the recognizer 35

dbs corr sub del ins err

0 60.99 32.24 6.76 20.23 59.24

-5 76.11 19.24 4.65 13.62 37.51

-10 83.19 13.60 3.21 8.65 25.46

-15 87.13 10.45 2.41 4.55 17.41

-20 88.42 9.55 2.04 2.30 13.88

-25 88.92 9.23 1.85 2.02 13.10

Table 6. Recognition results after retraining using various dB levels

dbs corr sub del ins err

0 88.66 10.18 1.16 3.36 14.70

-5 86.79 11.40 1.81 3.53 16.74

-10 83.86 13.69 2.45 3.81 19.95

-15 79.25 16.87 3.89 6.65 27.41

-20 80.42 15.88 3.70 4.32 23.89

-25 84.20 13.08 2.73 3.51 19.32

Table 7. Recognition results after BSS retraining at the same dB levels

dbs corr sub del ins err

0 86.72 11.71 1.57 3.49 16.78

-5 85.50 12.67 1.83 4.04 18.53

-10 82.59 14.78 2.63 5.44 22.85

-15 78.63 17.15 4.22 6.84 28.21

-20 77.71 17.71 4.58 4.89 27.18

-25 80.76 15.26 3.98 3.19 22.44

Table 8. Recognition results after BSS retraining using various dB levels

36 results

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

%
 W

or
d

E
rr

or
 R

at
e

How much lower the energy of the 2nd speaker than the 1st one is (in dBs)

BSS train set at the same dB level with the test set
BSS train set using various dB levels

Mixed train set at the same dB level with the test set
Mixed train set using various dB levels

Figure 15. Results after retraining the recognizer using BSS data.

4.5 implementing a real recognizer

To successfully implement the BSS algorithm in a real recognizer, we

must choose these options that give the best recognition rates, and also

can be implemented in a real recognizer.

The recognizers that are trained at the same noise levels as the test

sets cannot be used, because we do not know the relative energies of

the two speakers in a real scenario. Looking at Figure 15, you can see

that when the energy of the second speaker is equal or lower than 10

dBs from the first, the recognizer trained using BSS data from various

dB levels is the best selection in a real scenario. In contrast, when the

difference of the two speakers is greater than 10 dBs, the recognizer

trained using mixed data at various levels is the best choice in a real

scenario.

Ideally, if we knew this difference we could select the appropriate

recognizer from the two and achieve the recognition results shown in

Figure 16.

4.5 implementing a real recognizer 37

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

%
 W

or
d

E
rr

or
 R

at
e

How much lower the energy of the 2nd speaker than the 1st one is (in dBs)

Figure 16. The ideal recognizer (considering we know the energies of the two
signals).

Because we do not know this difference in a real scenario, we tested

some methods that can be used to make the best decision between the

two recognizers and we present them below.

4.5.1 Choosing Recognizer Using Energy Difference of Separated Signals

One possible option is to get the mixture of the signals, separate each

source and then calculate the ratio between the separated sources to

decide. Unfortunately, the BSS algorithm amplifies the sources, so the

difference between them is reduced greatly. In Table 9, we present three

signals we created, from each noise level1 before and after separation.

We can see, that even when the second signal is 25 dBs lower than the

first one before separation, after the separation process this difference

drops to 3-4 dBs, which is the same difference when the initial noise

level was -5 dBs, so a separation of the cases by this method is not

1 We define noise level to be the difference in dBs between the energy of the first speech
signal, relative to the second.

38 results

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25

%
 W

or
d

E
rr

or
 R

at
e

How much lower the energy of the 2nd speaker than the 1st one is (in dBs)

Recognizer with BSS retraining, using various dB levels
Recognizer without retraining

Mixed Signals
Recognizer with mixed retraining (no BSS), using various dB levels

Figure 17. Comparing the available options for our final recognizer.

possible.

4.5.2 Choosing Recognizer Using Forced Alignments

An alternative option is to use both recognizers for each sentence and

get a hypothesis from each recognizer (see Figure 18), where hypothesis

is the most likely word string for a spoken utterance. Then we can force

align (see [11], pages 186-187) hypothesis 2 with the BSS recognizer and

hypothesis 1 with the mixed recognizer and see with what probability

each recognizer would give the output of the other recognizer. From

these, we can compute an estimate of confidence for each sentence from

each recognizer:

p(hyp1|BSS)

p(hyp2|BSS)
≶
p(hyp2|mixed)

p(hyp1|mixed)

The output of the recognizer with the greatest confidence will be used

as our final output.

4.5 implementing a real recognizer 39

before after

0 1.71

0 0.97

0 2.12

-5 -2.70

-5 -3.76

-5 -2.61

-10 -5.78

-10 -7.62

-10 -5.61

-15 -4.95

-15 -6.77

-15 -4.05

-20 -3.59

-20 -3.95

-20 -4.02

-25 -4.23

-25 -3.51

-25 -4.24

Table 9. Noise Levels before and after separation

This method was also found inadequate. We obtained confidence

scores for the sentences at 0 dBs (where the BSS recognizer should be

selected) and at -25 dBs (where the mixed recognizer is better), and the

selection based on this criterion was correct in 45%-50% of the cases

(which is the same as a random choice).

4.5.3 Choosing Recognizer Using N-best Lists

The final option we tested was to let each recognizer produce N-

best outputs instead of only one (the most probable). If we name

hyp1, hyp2,. . . , hypN the N-best outputs then p(hypi|MA) = p(o, wi|MA).

40 results

sentence

BSS

mixed

hyp1

hyp2

Figure 18. Each recognizer (one trained with BSS separated data and the other
with mixed data) produce a hypothesis for each sentence they take
as input.

We can calculate p(w1|o,MA) by:

p(w1|o,MA) =
p(o, w1|MA)

p(o|MA)

We can approximate p(o|MA) ≈
∑

i p(o, wi|MA), so:

p(w1|o,MA) =
p(o, w1|MA)∑
i p(o, wi|MA)

Using the á-posteriori products as confidences we can choose the

best recognizer based on this criterion:

p(wA|o,MA) ≶ p(wB|o,MB) (4.1)

We used N = 100 as the number of best hypotheses to use. HTK

also allows to change the number of active tokens in each state (cf

Section 3.4, page 26). Increasing the number of active tokens, increases

the accuracy of the results but also increases the computation time. In

Table 10 you can see the confidence scores for each noise levels for three

different number of active tokens.

In Figure 19 you can see the word error rates in an ideal case, where

we choose in each case the best recognizer (because we know the

energies of the two signals) and in the case where we choose which

recognizer to use from criterion 4.1. In Tables 11 you can see the results

in greater detail. As you can see, using the confidence scores obtained

from the N-Best List method, helps us choose a recognizer with a slight

4.5 implementing a real recognizer 41

Noise Level (dBs) Number of active tokens

n = 4 n = 8 n = 12

0 85.7% 85.2% 85.0%
-5 80.2% 81.2% 83.1%
-10 69.3% 82.1% 81.9%
-15 66.2% 83.4% 84.3%
-20 73.3% 78.2% 78.4%
-25 70.3% 75.0% 75.3%

Table 10. In what percent of the cases was the correct recognizer chosen for each
noise level and for the different number of active tokens per state.

dbs ideal wer (%) realistic wer (%)

0 16.78 22.02

-5 18.53 23.44

-10 22.85 21.53

-15 17.41 20.91

-20 13.88 16.40

-25 13.10 14.44

Table 11. Recognition results of ideal and realistic recognizers.

increase in WER of about 2%-5%.

In the ideal case, we choose which recognizer is best in each noise

level, comparing the performance of the two recognizers in all the 330

sentences for this noise level. Using the N-Best List criterion, we choose

the best recognizer for each sentence. This can sometimes give us better

results than the “ideal” case, as shown in the case where the second

speaker is 10 dBs lower than the first one!

42 results

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Noise Level (dBs)

W
E

R
 (

\%
)

Ideal Recognizer
Real Recognizer

Figure 19. Recognition results of our final recognizer (BSS retraining for 10 dBs
and lower and mixed retraining for 15 dBs and above).

5
D I S C U S S I O N

5.1 final recognizer

As the results show, spectral subtraction is not suitable for removing

the type of noise we are studying in this work. The method assumes

that the properties of the noise remain approximately static throughout

the whole speech activity, which does not hold true for speech signals.

So, the only viable option for removing this kind of noise is the blind

source separation method.

Retraining the recognizer using mixed data gives better results and

even better results can be obtained by training the recognizer using

mixed data that have been separated using the BSS algorithm.

In a realistic case, we do not know the relative energies of the speaker

signals, so we must use the recognizers trained using the “general”

training sets that were discussed in Section 4.4 and also use a criterion

that selects which recognizer to choose in each case. The criterion based

on N-Best Lists gives good indications as to which recognizer to choose

with an accuracy of above 70% in all cases and even as high as 85%

when the two signals have same energy levels.

The final results show that the BSS algorithm can be used in realistic

recognizers giving recognition results that range from 14.5% to 22%.

However one problem that needs to be solved, is the computation time

that is needed to separate each sentence (approximately 1 minute to

separate each sentence with an average length of 30 secs per sentence)

and to run the N-Best List criterion using 12 active tokens per state,

which yields the best results (approximately 10 minutes to produce

43

44 discussion

outputs for 1 sentence).

5.2 future work

As discussed in Section 2.2, we used a modified version of the algorithm

which assumes perfect solution of frequency ambiguity and scaling

problems. As a future work, we can study how each of these problems

affect the recognition rates specifically and which strategies can be used

to counteract the effects.

We can also use different recording setups (different room acous-

tics, different positions of microphones and speakers) to evaluate the

performance of the separation in various environments.

Finally, we could try to separate more than two speakers using the

BSS algorithm and investigate the performance in each case.

B I B L I O G R A P H Y

[1] ITU-T, “Recommendation P.341,” in Transmission characteristics

for wideband (150-7000 hz) digital handsfree telephony terminals.

The International Telecommunication Union, 2005. (Cited on

page 26.)

[2] The TIMIT database: http://www.mpi.nl/world/tg/corpora/timit/timit.html.

(Cited on page 2.)

[3] S. George Ayanah. Using Spectral Subtraction to Enhance Speech

and Improve Performance in Automatic Speech Recognition. Mas-

ter’s thesis, The Florida State University, Spring Semester 2006.

(Cited on pages 3, 13, and 16.)

[4] Steven F. Boll. Suppression of Acoustic Noise in Speech Using

Spectral Subtraction. Master’s thesis, University of Utah Salt Lake

City, April 1979. (Cited on page 17.)

[5] Douglas R. Campbell, Kalle J. Palomäki, and Guy J. Brown. Room-

sim, a MATLAB Simulation of “Shoebox” Room Acoustics for use

in Teaching and Research. (Cited on page 22.)

[6] Donald E. Knuth. Computer Programming as an Art. Commu-

nications of the ACM, 17(12):667–673, December 1974. (Cited on

page v.)

[7] Lieven De Lathauwer. Principal Component, Inde-

pendent Component and Parallel Factor Analysis:

http://homes.esat.kuleuven.be/ imarkovs/workshop/s7l3.pdf.

(Cited on page 11.)

45

46 bibliography

[8] Kleanthis N. Mokios, Nicholas D. Sidiropoulos, and Potamianos

Alexandros. Blind Separation of Multichannel Speech Mixtures

Using PARAFAC Analysis and Integer Least Squares in acoustics,

speech and signal processing, ICASSP 2006 proceedings. 2006 IEEE

international conference on publication date: 2006, volume: 5, on

page(s): V-V, location: Toulouse. (Cited on pages 3, 10, 12, and 20.)

[9] D. Paul and J. Baker. The Design of Wall Street Journal-Based CSR

Corpus. Proc. International Conference on Spoken Language Processing

’92, pages 899–902, 1992. (Cited on page 2.)

[10] D. Schobben, K. Torkkola, and P. Smaragdis. Evaluation of Blind

Signal Separation Methods, 1999. (Cited on page 2.)

[11] Steve Young, Gunnar Evermann, Mark Gales, Thomas Hain, Dan

Kershw, Gareth Moore, Julian Odell, Dave Ollason, Dan Povey,

Valtcho Valtchev, and Phil Woodland. The HTK Book (for HTK

Version 3.3. (Cited on pages 5, 24, 25, and 38.)

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Background Material
	2.1 Speech Recognition Basics
	2.2 The Blind Source Separation Method
	2.2.1 Noise-Removal formulated as a BSS Problem
	2.2.2 Description of the BSS Algorithm Used

	2.3 The Spectral Subtraction Method
	2.3.1 Noise-Removal formulated as a SS Problem
	2.3.2 Description of the SS Algorithm Used

	3 Creating an Environment to Test the Recognizer
	3.1 Customizing the Speech Databases
	3.2 Simulating a Room and Mixing the Speaker Signals
	3.3 The Training Process
	3.4 The Testing Process

	4 Results
	4.1 Performance on Clean Data
	4.2 Results after applying SS
	4.3 Results after applying BSS
	4.4 Retraining the Recognizer
	4.4.1 Retraining Using BSS Data

	4.5 Implementing a real recognizer
	4.5.1 Choosing Recognizer Using Energy Difference of Separated Signals
	4.5.2 Choosing Recognizer Using Forced Alignments
	4.5.3 Choosing Recognizer Using N-best Lists

	5 Discussion
	5.1 Final Recognizer
	5.2 Future Work

	Bibliography

