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A C K N O W L E D G M E N T S

Ας μου επιτραπεί το κομμάτι των ευχαριστιών, σε αντίθεση με την υπόλοιπη

διπλωματική, να γραφτεί στα Ελληνικά, στο πρώτο ενικό και σε πιο ‘χαλαρή’

(informal) γλώσσα.

Αρχικά λοιπόν, και όπως συνηθίζεται άλλωστε, θα ήθελα να ευχαριστήσω

τον κύριο Ποταμιάνο, τον επιβλέποντα καθηγητή μου, που με τις γνώσεις

αλλά πάνω από όλα με τη θέληση του βοήθησε ώστε να έχουμε μία άψογη

συνεργασία (ελπίζω και ο ίδιος να έχει την ίδια άποψη...) και η όλη δουλειά

να κυλίσει ομαλά και σε εύλογο χρονικό διάστημα. Κι όταν λέω εύλογο,

δεν εννοώ τον ενάμιση χρόνο που πέρασε από τότε που μου έδωσε το θέμα

μέχρι να έρθει η πολυπόθητη στιγμή της παρουσίασης του, αναφέρομαι

στους 7 μήνες πραγματικής δουλειάς που έγινε.

Το ότι το έσκασα στην Ιβηρική, για παράδειγμα, για πάνω από ένα μήνα

δεν πρέπει να το μετράμε, παρόλο που πήγα για να προετοιμαστώ για τη

διπλωματική και να δω την αντίστοιχη δουλειά που είχαν κάνει οι ισπανοί

φοιτητές. Να ευχαριστήσω εδώ το παρεάκι του ιβηρικού ταξιδιού, έλληνες

και ξένους, για τις μοναδικές εμπειρίες που μου χάρισαν, που σίγουρα θα

αποτελέσουν εφόδιο για την ζωή, καθώς και τις πανέμορφες αναμνήσεις

που θα με κρατάνε πάντα αισιόδοξο στις δύσκολες ώρες.

Ευχαριστώ επίσης την ομάδα του εργαστηρίου για την πολύτιμη βοήθεια

της, από τις μικρές μικρές συμβουλές σε διάφορα εργαλεία λογισμικού μέχρι

τους καφέδες που πάντα υπήρχαν όποτε χρειάστηκε, αλλά και τα ξενύχτια

που κάναμε στο εργαστήριο δουλεύοντας.

Δεν θα παρέλειπα να ευχαριστήσω τους φίλους μου, τις παλιοσειρές,

που μαζί τους πέρασα ως τώρα πολλές ωραίες στιγμές, αυτές που απλά

έδωσαν νόημα σε κάθε κόπο, κούραση, τσαντίλα που εμφανίστηκαν κατά

τη διάρκεια του δρόμου προς το πτυχείο.

Ευχαριστώ επίσης την BESTοπαρέα για τα όμορφα ταξίδια που κάναμε,
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για τις εκδηλώσεις που διοργανώσαμε μαζί, τις εποικοδομητικές κουβέντες

που είχαμε αλλά και για τα άτομα που γνώρισα μέσω αυτού του συλλόγου,

εντός και εκτός συνόρων.

Τέλος, και πάνω από όλα, θα ήθελα να ευχαριστήσω τους γονείς μου

για την συμπαράσταση όλα αυτά τα χρόνια, αλλά και τον αδερφό μου τον

Ευθύμη που με επισκεπτόταν συχνά πυκνά και ήταν εκεί σε ωραίες και

δύσκολες στιγμές.



A B S T R A C T

This Diploma Thesis has been developed in partial fulfillment of the

requirements for the Degree of Engineer at the Electronics and Com-

puter Engineering Department of the Technical University of Crete. In

the current thesis we deal with the problem of automatic transcription

of broadcast news in Greek, which is part of the Large Vocabulary

Continuous Speech Recognition (LVCSR) field.

In recent years there has been increasing interest in developing

Automatic Speech Recognition (ASR) systems for speech found in

real sources such as broadcast news or telephone conversations. Only

when the statistical pattern recognition and the Hidden Markov Model

(HMM) approach started to get into speech recognition aspects, major

progress allowed shifting the focus of research into these less restrictive

domains.

To support the research and development associated with this task,

it was necessary a representative audio as well as text corpus to be

collected. The former is needed for the training of the acoustic models

of the phonemes which were our basic acoustic units, while the latter is

used for creating the language model of the system. To implement and

evaluate our recogniser we used the HTK toolkit [13] which is primarily

designed for building HMM-based speech recognisers.

In the current research, one can have a detailed report of the methods

we followed to collect the corpora needed and build and train the

language and acoustic models. Taking a look at the presented evaluation

tests, we will come to the conclusion that speech recognition methods

are of great promise, however, further improvements are required in

order for robust systems with high successful recognition rates to be

constructed.

3



4

The motivation for working on this thesis was the fact that making

progress on such a challenging task, many difficulties in ASR must have

been understood and overcome up to a point. The purpose was to be-

come familiar with the principles of speech recognition and experiment

with real tools building and evaluating a recogniser from scratch.
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I N T R O D U C T I O N

Speech recognition aspects concern researchers from all over the world

for more than half a century. Systems implemented in 1950s could

recognise digits or only a few vowels from a specific user. Later on,

LVCSR speaker independent systems started to become the core activity

of the speech recognition community and in the mid-1980s statistical

modeling methods take the speech recognition area to higher levels re-

placing the deterministic, template-based approaches. Over the last few

years, speech recognition technology is being increasingly used within

telephone networks and intelligent systems to provide automatisation

with various applications including voice dialing (e.g., “Call home”), call

routing (e.g., “I would like to make a call”) and other command recogni-

tion, simple data entry (e.g., entering a credit card number), preparation

of structured documents (e.g., a radiology report) and content-based

spoken audio search (e.g. “find a broadcast where particular words were

spoken”).

Broadcast news, telephone conversations and other sources of “found”

speech under real conditions are of great scientific interest for build-

ing speech recognition applications that are not restricted to a small

grammar but they are based on large vocabulary.

Automatic transcription of broadcast news poses a number of chal-

lenges for LVCSR systems. The data in broadcast is characterised by

a variety of speaking styles, people, environmental conditions, not to

mention the channel and microphone influences. In particular, there are

utterances recorded under environmental noise, which is very common

in reportages from the street with a lot of people around or under bad

weather conditions, or studio noise such as cough or any paper riffling,

as well as background music (e.g. at the beginning of the broadcast,
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or before the sports and finance report). The speech can be planned

and read fluently or spontaneously, which introduces hesitations and

different duration among the same words. To make matters worse,

there are cases where speakers are non native which gives diversity on

the articulation of the words. Hardware quality, like telephones and

microphones used during the reportages and broadcast, plays also a

significant role in the level of noise and quality of speech that comes to

the receiver.

As one can easily understand, we have to create a system that is

capable to overcome these obstacles and be able to recognise low quality

speech. A detailed description of such a system and the principles based

on which it was developed are presented here. To have representative

evaluation of the recogniser, we used a number of different test sets

which cover a large variety of acoustic signals. After we created the

baseline system, we studied an approach of language model adaptation

the basic idea of which, is to feed the training corpus with speech that

is recorded during the same period as the evaluation data.

To give an idea of how we worked on this project, first we down-

loaded text from online newspaper, which constitutes the data for the

language model training. Perl scripts were used where it was necessary

for any text to be edited and come to the appropriate format. At the

same time, we recorded television broadcast news which later on we

manually transcribed in order to create the training data of the acoustic

models. Then we were ready to proceed with the language and acoustic

model1 training. All the acoustic training tools as well as the Viterbi

decoding tool we used to evaluate our models, were available at the

HTK toolkit and for the language modeling we used the SRILM toolkit.

1 Language model is the a-priori probability for words to be spoken, while acoustic model
is the likelihood to observe this data given the words that were spoken indeed. See
section 1.1 for details
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outline

The development and performance of our system as well as the the-

oretical background are presented in this thesis which is organised

throughout the next pages as follows:

chapter 1 Background - General Aspects. In the first chapter we present

a short review of the fundamentals of speech recognition, the

Hidden Markov Model approach and the main problems this

method is challenged to solve.

chapter 2 Data Preparations. Here we describe the data collection and

preparation for the text and audio corpus used for training the

system.

chapter 3 Acoustic Models. In this chapter we analyse all the stages

of the phoneme-based acoustic models training using the HTK

toolkit.

chapter 4 Language Models. Here we give a description of the con-

struction of the bigram language model as well as an adaptation

method we used to build a dynamic language model.

chapter 5 Experiments - Evaluation. All the evaluation tests made on

our system are presented and discussed in detail in this chapter.

chapter 6 Conclusion - Future Work. Finally, there is a short review of

the system developed for this thesis, and some ways to improve

its performance are proposed.

Many of the parts of this thesis were studied and developed in

cooperation with O. Tsergoulas, the diploma thesis of whom [12] was

quite similar and a lot of the materials presented here were useful to

his work as well.



1
B A C K G R O U N D - G E N E R A L A S P E C T S

1.1 speech recognition using hidden markov models

Until recently, LVCSR systems were not designed for multiple speakers

and words should be spoken separately, with a short pause between

them. Modern systems use statistical methods that have proved to be

much more efficient. The most widely used one is the Hidden Markov

Model (HMM) approach. The structure and the training algorithms

developed for HMMs lead to high performances even for speakers that

have not appeared in the training data.

In this chapter we present the basic rules of HMMs, based on which

the project of the thesis was designed. To have a more in depth study

of the method take a look at Rabiner and Juang’s book [1].

1.1.1 The main idea

Speaking for ASR applications, a word network is constructed which is

the grammar consist of all the acceptable sequence of words. Each of

these sequences corresponds to a number of HMMs. When new data

are about to get recognised, the system estimates the probability this

data to have been observed from each of these HMMs. The output of

the system is the sentence with the highest probability.

In statistical terms, when we want to recognise an utterance, we seek

the word sequence W, having observed the sequence X. In other words,

we look for the sequence W that maximizes the probability P(W|X).

11



1.1 speech recognition using hidden markov models 12

Figure 1. A first order Hidden Markov Model

Using the Bayes’ formula to calculate this value we have:

P(W|X) =
P(W)P(X|W)

P(X)
(1.1)

Bayes’ formula shows that the probability for W to have been spoken

having X as an evidence depends on both how probable is the exact W

to appear and the likelihood to observe data X caused from W. The first

term of the product, P(W), is called the language model of the system

and it is a probability distribution over strings that reflects how often

this sequence of words occurs, while the second term, P(X|W), is called

the acoustic model and it is the one that tells us how likely is to observe

each evidence from the given sequence of words1. In chapters 3 and 4

we will see in detail how we can find these values and train our system.

1.1.2 The three problems for HMMs

Most of the cases that the HMM method is used in real-world applica-

tions involve one or more of the following three problems:

1. What is the probability of a sequence X to be observed?

2. Which is the most probable sequence of states W that caused the

observation sequence X?

1 The value P(X) in eq. 1.1 does not determine the optimal W. It is just a scale factor
which reassures that P(W|X) will be between 0 and 1 since it is a probability.
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3. How can the model parameters be adjusted from the training

data?

Let us have a brief description of these questions and the solution

that the HMM approach propose.

Question 1: Calculation of P(X|λ)

For a given model λ, we would like to find the probability of one

sequence X to be observed by this model. The solution would be useful

for knowing how possible is to measure values X from model λ or, if

we have more than one models, which of these is more likely to have

produced the observation sequence X.

In order to find the solution, we have to check all the available paths

through the HMM states and compute how probable is X to have been

occurred from this path. If we sum up these probabilities, we will have

the solution we seek. The most famous algorithms that solve this first

problem are the Forward procedure and the Backward procedure. As it may

seem, the former processes the observations from the first one xt=1 to

the last one xt=T , while the latter acts conversely.

Both algorithms conclude to the same result, with the same computa-

tional complexity on the order of N2T , where N is the number of states

and T is the period or the number of observations.

Question 2: Which is the W that maximizes P(W|X, λ)?

This question is looking for the optimal state sequence W of the model

λ, meaning the most probable one, that might have produced a given

observation sequence X. Looking closer to this problem, one can find

a similarity with the previous one. In problem 1 we calculated the

probability of each state sequence to produce X, and then we summed

them up. If we just skip the last sum, the answer we seek for problem 2

is the state sequence that produced the maximum of these probabilities.
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Figure 2. Trellis Diagram for the Viterbi decoding

However, when it comes to implementation aspects, the problem is

not as easy as it may seem. If we used the Forward algorithm to solve

problem 2, we would need to make some changes. First of all, we do

not want the last sum, so we replace this step with the arg max function

that could find us the W that has the maximum P(W|X). We need also

to store this sequence of states for each path. This would lead to huge

space waste. Imagine that a 3-state HMM with three observations has

27 possible paths and for each one there should be stored the likelihood

of each path to have produce X as well as the state sequence itself.

Viterbi decoding has come to give a more proper solution to the

problem. This algorithm has the same computational complexity as

the Forward algorithm, N2T , but it stores only N paths (instead of

NT ). For each of the N states in time t, it keeps only the optimal path

W = {w1, . . . , wt} that leads to that state. In time T , the path that has

the highest probability holds the optimal state sequence. Finally, a

backtracking step is needed to retrieve this sequence W from the array

that it keeps all the N paths.

Question 3: Estimation of parameters αij, bi(xt), πi

The information we need in order to define an HMM is the αij, bi(xt)

and πi parameters. αij is the probability to have a transition from state

i to state j, bi(xt) is the probability to observe xt when being in state i,

and πi is the probability the initial state to be the ith one.
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The problem this question poses is how we can estimate the values of

the parameters λ = {A, B, π} from the training data. Forward-Backward al-

gorithm is the combination of the two, previously mentioned algorithms

that helps us to estimate the probability to be at time t on a particular

state. Baum-Welch algorithm is an iterative procedure that takes initial

values for the parameters, uses Forward-Backward over the training

data and a maximization step to compute new values for these parame-

ters. The procedure continues until a convergence criterion is satisfied.

Baum-Welch is actually the Expectation - Maximization algorithm (EM)

for HMMs.



2
D ATA P R E PA R AT I O N

In the current chapter we will see how the data for both the language

and the acoustic model were collected as well as got prepared in order

for the system to get trained. The whole procedure was held keeping

in mind that the better the data we feed the system, the more well

trained it will become. The corpora development analysed below was

held in cooperation with O. Tsergoulas since his thesis [12] was equally

interested on it.

2.1 language model data

In section 1.1 we tried to explain what the language model is from a

statistical point of view. In a speech recognition system we could say

that the language model is the one that gives prior information about

the context of a particular word, or how probable is for that word to

be found inside a specific context. Such information is very useful for

example in cases that two or three words are almost equally probable to

have been spoken, judging only from what the acoustic model “heard”,

and only by looking at the probability of these words to appear after

the previously recognised words we can make a decision.

In this thesis we create a recogniser for television broadcast news.

We need data in pure text, as much relevant with news as possible. The

best source for such a text was Greek electronic newspaper that was

found online. Although a newspaper article is written in a more formal

style than the way reporters speak, it is the closest to what we need

corpus we could create.

16



2.1 language model data 17

Table 1. Data collection for the Language Model.

Newspaper Text downloaded (MB) News period

Eleftherotypia 215 1997 - 1999

Ta Nea 170 2000 - 2006

To Vima 65 2000 - 2006

We downloaded text from three different newspapers, the most

popular Greek ones: “To Vima”, “Ta Nea”, “Eleftherotypia”. News of

political or social interest were selected as primary goals, but we also

collected a small amount of sports and financial news. In the first

two sources the news were written in the period 1st of January 2000

to 31st of March 2006. From “Ta Nea” we found text from all the

week apart from Sundays for which we downloaded news from “To

Vima”. “Eleftherotypia” fed us with text written during the period 1997

- 1999 and had been collected for the “Logotypographia” project [9]. In

total, we managed to create a corpus of 450 MB that now needs some

processing in order to become valuable and useful.

We wrote few Perl scripts with the rules that will bring our text in

the desirable format. These rules are:

• Make sure that only Greek letters are used, even for non-Greek

words.

• One sentence per line. Speech recognisers usually take simple

utterances as a unit for processing. After each sentence, a ‘\n’

character should be added. This is not as easy as it sounds. Every

dot is not necessarily a full stop, it can appear in words (e.g.

acronyms) or in numbers.

• Expand all acronyms. Substitute each one (etc., mr., . . . ) with what

it stands for. If it is the first letter of a name, write the whole one

or erase it if you do not know it.

• Write all numbers in full text, dates included. Of course, words
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like millions or point should be added if needed.

• Remove all punctuation marks. Only the stress mark is allowable.

• Make sure all text is written in lower case.

Data is now ready to train the language model. Each line of the LM

corpus file has one sentence. How often a word appears in this text

and close to what context, will determine the prior probabilities of the

model. The training procedure will be discussed in chapter 4.

2.2 acoustic model data

Acoustic model training contains information only about how the words

sound in different circumstances, spoken by different people. Therefore,

we need to feed the training procedure with labeled audio text.

2.2.1 News Recording

We chose the main broadcast news of the day (at 8.00 or 9.00 pm) from

“NET”, “ET1” and “SKAI” channels. These were the broadcasts with the

less multi-speaker parts because no more than two people appear at

the same conversation. Mainly, there is planned speech from the studio

and reportages, with the presence of background noise, from outside

the studio.

We collected in total 20 hours of audio data, excluding advertisements.

For this purpose we used the CRYPTO MPEG PC TV RADIO card of

the laboratory. We recorded 40 hours of broadcast news (both audio

and video) but we used only the 20 hours. The audio properties are

shown in Table 2.

Now we have to proceed with a correct labeling and then we will

split all the data to training and evaluation sets.
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Table 2. Audio settings.

Attribute Value

Audio format PCM
Sample rate 16 kHz
Sample size 16 bit

Bit rate 256 kbps
channels 1 mono

2.2.2 Manual Transcription - Labeling

There are many different conditions under which speech utterances

have been recorded. There can be clear speech or speech under back-

ground noise or music. Speaker may read, which will cause a more

fluent speech, or talk while thinking which can cause spontaneous

talking or even hesitations and mis-articulations. Although we chose

channels that their broadcast have no multi-speaker conversations, still

we cannot avoid few utterances that more than one person is speaking.

The Transcriber tool were used for segmentation, labeling and tran-

scription of the audio files. The rules that we put for the LM corpus

development (see section 2.1) are followed also here. Moreover, for

every sentence, the name and the gender of the speaker are noted,

also if he is Greek or not and the way he speaks (either planned of

spontaneously)1. As far as environmental conditions are concerned, we

have to define if there is background noise (BGN), or music (BGM),

or the speech is clean, if there are multiple speakers or if there is no

speech at all. If the speech is from a telephone conversation, it should be

noted as well. These characteristics are summed up on Table 3. Finally,

utterances should be segmented so that all the turns from sentence to

sentence and sections from one “environment” to the other are marked.

There are also few rules that we followed at the transcription part.

1 If the person is not known we give the name unk_s_n_num, where unk is for unknown
user, s denotes speaker’s sex (either m or f ), n is his nationality (Greek or non-Greek) and
num is the number we give to distinguish him from the others.

http://trans.sourceforge.net/
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Table 3. Conditions of the audio utterances.

Condition Possible values

speaker’s name name or unk_s_n_num
speaker’s gender m or f

speaker’s nationality g or n
speech planned or spontaneous

report, multispeakers,
environment no_transcriptions,

BGN or BGM
channel telephone or studio mic

Table 4. Sound events during the speech.

Event Symbol

breath [BREATH]
instant noise [NOISE]

hesitation @ε@
mis-articulation *correct articulation*

non-finished words [FRAGMENT]
bad reading [TAG_BAD_READING]

During the speech, even if this is clear, recorded from the studio, there

can be some events that disturb the homogeneity. Table 4 enumerates

these events and the way we mark them among the transcriptions.

Denoting these events of disturbance is as important as the rest of the

transcriptions, because, as we will examine later (chapter 3), a model

for each of these events will be also trained, in order for the system to

recognise them and ignore them.

2.2.3 Creating sets of data

After we have finished with the transcriptions, we use Transcriber to

split the wav files to separate ones, one for each utterance. Then we

create a database with all the information provided from the transcriber



2.2 acoustic model data 21

Table 5. The database after trs file is parsed.

wav directory name sex native or not

/speech/NET_001.wav Xoukli female native
/speech/NET_124.wav rep_m_g_01 male native
/speech/NET_138.wav Papoulias male native
/speech/NET_280.wav Xoukli female native

Table 6. The rest of the database.

condition planned studio transcription

BGN spontaneous studio Καλησπέρα σας, ένταση. . .
BGM planned telephone ΄Οπως σας είπα, εχτές. . .
clear planned studio Κατατέθηκε στη βουλή. . .
clear spontaneous studio Νομίζω όμως γιάννη ότι. . .

tool, that is, the wav file’s directory, the conditions we have noted and

the transcription itself. This database is the pool of our data from where

we created all the training and test sets separating them with conditions

criteria. The output of the Transcriber Tool is an “xml-like” file having

a lot of useless information, flags, time limits, comments. From this

file we need to keep only the useful material with all the conditions

mentioned above and of course the transcription of the speech itself.

Tables 5 and 6 can give an idea of the database format.

To create files with sets of data we will use this database. We will

create one set-file for each condition, that is, one set for planned speech,

one for spontaneous, one for speech under background noise (BGN) etc.

Again, few Perl scripts will easily do the job for us. In these set files

we will store only the wav file’s directory and the transcription, since

the rest information was useful only to make this separation. Table 7

shows which are the final categories and how many sentences each one

has. Note here that around 10% of the sentences were not transcribed

correctly or they did not have useful information (e.g. only noise), so

they did not match to any of the categories.
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Table 7. We divided all utterances into the following categories.

Category Number of utterances Total time

studio planned clear 1306 3h 51m
studio spontaneous clear 470 1h 23m

studio BGN 3366 9h 56m
BGM 417 1h 14m

telephone 712 2h 6m
telephone BGN 345 1h 1m

multispeaker 82 14m
non Greek speech 22 4m
non native speaker 52 9m

Training and test sets

It is important to be careful not to mix the utterances of the training

and test sets. If one sentence appears in the training set, it should be

excluded from the evaluation set, otherwise we would cheat and the

results would seem successful but not corresponding to the truth.

We will keep the proportion of 80% of data to be used to train

the acoustic models and 20% to evaluate the recogniser2, so for each

category we make two files.

Later we will need to build acoustic models based on three different

kinds of data, so we prepare these sets now. For each of the sets

numerated below we will make one set for training and one for testing

our models.

• Clear studio utterances will be the training set for the first model.

• Clear and BGN studio utterances for the second one. We just

concatenate the two files (clear studio sentences with BGN studio

ones) that we have already made.

• Every kind of data we have, apart from multi-speaker parts and

sentences from non-native speakers3.

2 In every 5 sentences we put the first 4 in the training set and the 5th in the test set.
3 from which we have anyway negligible amount
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Up to this point, we have finished with all the work needed to prepare

the data for learning and evaluation purposes. The sets we will use to

build and test our models are ready and at the following chapters we

will focus on the training procedure.



3
A C O U S T I C M O D E L S

In this chapter we discuss the learning procedure of the acoustic models

of our system. We will use the training sets with the recorded utterances

(ch. 2) as well as their transcriptions.

3.1 front-end analysis

Before proceeding with the training, we have to convert the audio

waveforms into a sequence of parameter vectors. We assume here that

the speech signal is locally stationary, that is, during a few msecs its

characteristics do not change. Then we can divide it into frames from

which we extract parameter blocks. The period between each parameter

vector is typically 10 msecs. The length of each segment of the speech

signal that determines a parameter vector, often called as window, is 25

msecs. As it may seem, successive windows overlap.

There are some useful signal processing techniques one could use to

have better results in the characteristic extraction. First, DC mean is re-

moved from each window of the source signal individually. In addition,

pre-emphasizing could be performed, in order for the attenuation caused

by the lips to be balanced. This is done by applying the first order

difference equation s ′n = sn − Ksn−1 to the samples {sn, n = 1, N} in

each window, where K is the pre-emphasis coefficient. Last, applying

Hamming windowing to the samples could cause discontinuities at the

24
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Figure 3. Mel frequency cepstral coefficients

window edges to be attenuated. This transformation is given by

s ′n =

{
0.54 − 0.46 cos

(
2π(n − 1)

N − 1

)}
sn (3.1)

According to psychological research, it has been proved that the

human ear resolves frequencies non-linearly across the audio spectrum.

Therefore, in order for the parameters to be extracted, the speech signal

processing is based on short time Fourier analysis which is computed

with a series of filterbanks. As can be seen in figure 4, the filters used

are triangular and they are equally spaced along the mel-scale which is

defined by

Mel(f) = 2595 log10(1 +
f

700
) (3.2)

These filters are correlated with the magnitude of the Fourier trans-

form of each speech window. The filterbank amplitudes mj are then
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Figure 4. Mel-Scale Filter Bank

Table 8. Signal Processing settings.

Variable Description

SOURCEFORMAT = WAV format of wav files

create MFCC:
TARGETKIND = MFCC_E_D_A_Z C0 + Deltas + acceleration +

Mean Normalization

TARGETRATE = 100000 frame period 10ms
(HTK uses 100ns unit)

WINDOWSIZE = 250000 windows size 25ms

ZMEANSOURCE = TRUE zero mean source waveform
(removes DC)

PREEMFCOEF = 0.97 pre-emfasis coefficient

USEHAMMING = TRUE use Hamming window

NUMCHANS = 26 number of
filterbank channels

CEPLIFTER = 22 cepstral liftering coefficient

NUMCEPS = 12 num of cepstral coefficients

SAVECOMPRESSED = TRUE compressed output

ENORMALIZE = TRUE energy normalization
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used to compute the Mel-Frequency Cepstral Coefficients (MFCC) from

the Discrete Cosine Transform

ci =

√
2

N

N∑
j=1

mj cos
(

πi

N
(j − 0.5)

)
(3.3)

We set up the signal processing parameters according to the Table

8. The final parameter vector that we extract consists of 12 cepstral

coefficients, plus the log of the signal energy which is normalised, plus

the delta and acceleration coefficients, that is, 39 MFCCs in total. Hence,

for every sec of speech, we store 100 vectors of 39 parameters.

3.2 training

The speech waveforms have been converted to MFCCs and they are

ready to be processed. In order to start building models, we have to

decide which unit to choose for training. One approach could be to

create an HMM for each word of the Greek language. For LVCSR sys-

tems, like the one we build, this method has two important drawbacks:

First, training data would never be enough, so that they contain lots of

appearances for each Greek word. Second, if one word does not appear

in the training corpus, then it will be eliminated from our system.

The approach of “phoneme-based” modeling overcomes these prob-

lems. The phonemes used in most of the european languages are no

more than 50, contrarily to words that are some hundreds of thousands.

Therefore, the training procedure would be more effective, since cer-

tainly there will be occurrences of all the phonemes in a reasonably

large training corpus. In addition, thanks to the fact that the system

recognises words phoneme by phoneme, new words that were not in

the training data can appear and recognised successfully1.

1 as long as they appear in the language model and the vocabulary of 60000 words (see
ch. 4)
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Table 9. The 28 phonemes that the Greek language consists of

A, v, i, s, o, g, E, l, G, m, J, r, n, t, u,
z, x, D, k, T, ly, f, p, d, C, b, N, c

Table 10. Our system was also trained to recognise the events listed below

Extra Phoneme Description

silence usually
sil appeared at the beginning

and the end of an utterance

hes speaker’s hesitation

bre speaker’s inhalation/exhalation

fra incomplete word

noi instant noise

tbr bad reading

sp speaker’s short pause

The model accuracy can be increased if instead of single phoneme

training, we also build biphones and triphones. Each phoneme is differ-

ently pronounced in each context and it is depended on its previous

and next phoneme. Although there are 283 = 21, 952 triphones, in

our broadcast news corpus around 3600 triphones appeared due to

language-phonetical constraints2.

The 35 phonemes for which we built models, are listed in Tables 9

and 10. The former Table is taken from the “Logotypographia” project

[9]. On the latter, we have put some extra phonemes so that the system

can recognise and ignore these events3.

The HMM we create for every phoneme looks like the one in figure

5. Every phoneme is divided to three states, the beginning state, where

the speaker attempts to pronounce it, the middle state which is the

phoneme itself and the exit state where the speech fades as finishing

with that phoneme. HTK adds two more states that are non-emitting.

2 Another reason could be the fact that a good percentage of broadcast news has constant
vocabulary with standard words and phrases

3 In Table 4 we analyse these events that appear in speech.
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Figure 5. The structure of a 3-state left-right HMM used for a phoneme. Note
that HTK adds 2 non-emitting states, the entry and the exit state.

Table 11. Transition matrix of a phoneme HMM

αij 1 2 3 4 5

1 0.00e + 00 1.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

2 0.00e + 00 8.69e − 01 1.31e − 01 0.00e + 00 0.00e + 00

3 0.00e + 00 0.00e + 00 8.93e − 01 1.07e − 01 0.00e + 00

4 0.00e + 00 0.00e + 00 0.00e + 00 8.51e − 01 1.49e − 01

5 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00

In the transition matrix (Table 11) we see that after each state we

can either stay at the same or transit to the right one. This is called

left-right HMM. All rows sum to 1 apart from the last one that has zeros

everywhere since no transitions are allowed out of the final state.

As described in section 1.1, the Baum-Welch algorithm is used to

estimate the parameters of the model λ = {A, B, π}. Too few iterations of

the algorithm would result to estimations far from the real probability

distributions. On the other hand, too many of them could cause over-

fiting. We made three iterations in each step of the training procedure

which proved to have good results.

In our approach we built continuous density models in which each

observation probability distribution is represented by a mixture Gaus-

sian density. The probability bj(ot) of generating observation ot is
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given by

bj(ot) =

M∑
m=1

cjmN(µjm, Σjm) (3.4)

where M is the number of mixture components, cjm is the weight of

the mth component and N is a multivariate Gaussian defined as

N(µjm, Σjm) =
1√

(2π)n|Σjm|
e− 1

2 (ot−µjm) ′ Σ
−1
jm(ot−µjm) (3.5)

where n is the dimensionality (in our case n = 39, since we have used

39 characteristics-MFCCs from the speech waveform). We will see in

chapter 5 that increasing the number of Gaussian mixtures up to 12− 14

will lead to better performance.



4
L A N G U A G E M O D E L S

4.1 theory overview

4.1.1 N-gram Language Models

As we saw earlier, in section 1.1, the language model (LM) is a probabi-

lity distribution over the states, giving us information of how frequently

a state sequence can appear. An LM describing spoken language has

a probability for every word, e.g. P(hi) = 0.01, since once every one

hundred words the word hi may appear.

The most widely used language models are n-gram models, were

value n is called the order of the LM. For n = 1, the LM is called

unigram, for n = 2 bigram, for n = 3 trigram and so on. Although n can

take any value, in practice, the largest, most popular order is 3.

Let us explain the n-gram method by considering the case of the

bigram model, since such a model were used in our project. Suppose

sentence s, composed from the words {w1, . . . , wk}, so we have:

p(s) = p(w1)p(w2|w1)p(w3|w1, w2) . . . p(wk|w1, . . . wk−1) (4.1)

Since our model is bigram, we make the assumption that every word

only depends on the immediately preceding word, often called as

31
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history. So (4.1) can be written as:

p(s) = p(w1)p(w2|w1)p(w3|w2) . . . p(wk|wk−1) ≈
k∏

i=1

p(wi|wi−1)

(4.2)

The ≈ symbol is because of the i = 1 case, since we have not defined

w0. We could introduce w0 as the beginning of the sentence, say BOS.

Therefore p(w1|w0) is the probability to have w1 as the first word of

the sentence. Similarly, there is need to introduce the end of the sentence,

say EOS in order for all the sentences to sum to 1. To understand this,

assume the following example: Take s1 = {Hello there} and s2 = {Hello

there my dear friend} as the only sentences of a given text. As we see, s1

is included in s2. The probability of p(s) is estimated by counting how

many times s appeared in the text, normalised over all the sentences.

According to these, from (4.2) we have p(s1) = 2/2 = 1 and p(s2) =

1/2 = 0.5. This leads us to
∑

s p(s) = 1.5. If we had introduced EOS,

this problem would not have occurred.

Back to our main problem, to estimate p(wi|wi−1) we need to count

how many times wi appeared in a given text after wi−1, let us say

c(wi−1, wi), and divide it with the number of times that wi−1 occurred,

say c(wi−1). We have:

p(wi|wi−1) =
c(wi−1, wi)

c(wi−1)
(4.3)

The available text based on which our model is trained, is called

training set. This method of estimating probability p(wi|wi−1) is called

maximum likelihood (ML) estimate.
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4.1.2 Smoothing

Consider a case where a sentence have not appeared in the training data.

This could happen when the available text is not big enough or it is not

relevant with the test set. Then, according to the ML estimation we have

p(s) = 0 which would lead to no transcription whatever the acoustic

signal is. To avoid this problem we use the technique of smoothing.

As it may seem from the term used, this technique describes ways

of adjusting the ML estimate of probabilities so that more accurate

numbers occur. In practice, not only do smoothing techniques prevent

zero probabilities, but they also improve the accuracy of the model.

One of the most famous and efficient methods is Kneser and Ney’s

(1995) technique [16]. According to this method, it is assumed that the

form of the bigram model is given by

pKN(wi|wi−1) =
max{c(wi−1, wi) − D, 0}

c(wi−1)
+

D

c(wi−1)
N1+(wi−1, ∗)pKN(wi)

(4.4)

where 0 < D 6 1 is a fixed discount and N1+(wi−1
i−n+1, ∗) denotes the

number of unique words that follow history wi−1
i−n+1. Symbol N1+ is

there to remind that we seek for the number of words that have one

or more counts. Note that wi−1 represents the history of the word

wi, therefore, for higher orders n of the model, wi−1 in (4.4) becomes

{w
wi−1
i−n+1} and the last term pKN(wi) becomes pKN(wi|w

wi−1
i−n+2).

For the language model we built in our project, we used the modified

Kneser-Ney technique, proposed by Chen and Goodman (1998) [17]. It

is proved [20] that this method leads to both smaller perplexities and

Out-of-Vocabulary (OOV) rates. In their approach, instead of having

one single discount value D, three different D1, D2, D3+ are used for

either one, two or three or more n-gram counts, respectively. Applying
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this change to (4.4)1, we get:

pmKN(wi|wi−1) =
c(wi|wi−1) − D(c(wi|wi−1))

c(wi−1)
+γ(wi−1)pmKN(wi)

(4.5)

where D(c) is

D(c) =



0 if c = 0

D1 if c = 1

D2 if c = 2

D3+ if c > 3

(4.6)

In order for the distribution pmKN to sum to 1, γ is given by

γ(wi−1) =
D1N1(wi−1, ∗) + D2N2(wi−1, ∗) + D3+N3+(wi−1, ∗)

c(wi−1)

(4.7)

They also suggested the following optimal values for D1, D2 and

D3+:

Y = n1
n1+2n2

D1 = 1 − 2Y
n2
n1

D2 = 2 − 3Y
n3
n2

D3+ = 3 − 4Y
n4
n3

(4.8)

where ni are the total number of n-grams with exactly i counts.

The smoothing schemes presented above as well as the n-gram mod-

1 always speaking for bigram models. For higher order n we make the changes mentioned
above.
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eling were implemented with the tools provided by SRI International.

In broadcast news and other large vocabulary applications, trigram or

even 4-gram are the most famous and most widely used LMs. However,

for our system we built a bigram LM because only this choice was

provided by the HTK Toolkit (version 3.3) [13] that we used. Our vocab-

ulary consists of the 60000 most frequent words found in the training

data2.

4.1.3 Perplexity

For the evaluation of the language model we built, we will use measures

from the field of information theory, entropy and perplexity. Let us

assume that a speaker is a source of information, generating words

{w1, w2, . . . , wn} from a vocabulary set V. Entropy is defined as:

H = − lim
n→∞ 1

n

∑
wi∈V

p(w1, w2, . . . , wn) log2 p(w1, w2, . . . , wn) (4.9)

where the sum is over all possible word sequences {w1, w2, . . . , wn}. If

the source is ergodic then for large vocabularies V, (4.9) becomes:

H = −
1

n
log2 p(w1, w2, . . . , wn) (4.10)

Perplexity is the measure that is in standard use for LM evaluation

and is given by:

PP = 2H = p(w1, w2, . . . , wn)−
1
n (4.11)

To understand this definition, think that if a language model has

2 60K is the typical size for LVCSR systems

http://www.speech.sri.com/projects/srilm/
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perplexity X, it means that every given word can be followed by X

words with equal probability. Therefore, the lower the perplexity, the

closer we are to the true model, which has the lowest possible perplexity.

Note that, if the vocabulary is smaller then perplexity also decreases

(less words in vocabulary means less words to follow each word as

well), which means that perplexities from different vocabularies should

not be compared. We can only compare perplexities of different models

all with respect to the same text and the same vocabulary. Finally, if

the models to be compared are trained with the same data, perplexity

correlates with speech recognition word error rate.

4.2 adaptation

4.2.1 Introduction

In section 2.1 we created a language model corpus with 450 MB of

Greek news found in newspapers that cover the period 1997-2006, as

we saw in Table 1. Since we attempt to build a speech recogniser for

broadcast news, this corpus comes from the same population as the

test data to which we want to apply our model.

However, political and social schemes are changing fast and different

persons are under public exposure day by day. Most probably the

recogniser will be used to transcribe the news of one specific day, say

Tuesday, the 27
th of June, 2006. It is likely that some of the news will

be the same as Monday’s news and some of the names mentioned then,

may be also mentioned on Tuesday. On the contrary, the names and

facts that were at the currency in 1997 would give little information

about the news after 9 years. Therefore, it makes sense to assume that

if we had much information about the news of the previous week, or

even the news of the following week, we could adapt this information

to our language model, so that the prior probabilities of the n-grams
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are re-estimated according to this information.

We go back to the LM corpus creation and we follow the next steps:

1. Get the LM corpus of the 450 MB previously constructed with

news from the period 1997-2006.

2. Download the news of the previous and the following weeks of

the day on which you want to apply the recogniser.

3. Clear the data from useless information (such as flags of web

pages etc.) and modify them according to the rules of section 2.1.

The utterances just created compose the “focused” text (F).

4. Multiply these utterances as many times as needed so that the

desirable percentage of general/focused data is achieved. For

example, if we want to create an LM with 80-20% proportion of

general and focused text respectively, then, given the previous

LM of 450 MB, the adapted one should be 562 MB, so multiply

the new text until it gets 112 MB long.

5. Finally, concatenate this text to the old language model corpus.

4.2.2 Statistical analysis of the problem

Let us study this technique from a statistical point of view. Assume the

new corpus that we have just designed, the main difference of which,

comparing to the baseline one, is that we have added a big amount of

data which are focused on the day we want to transcribe. Equations

(4.5-4.8) will give us the bigram probabilities for our LM. In order to

examine these equations and how they change with the new corpus,

we have to study five different cases separately:

1. Both wi and history wi−1 are not in the F text.

2. Word wi appears in F but history wi−1 does not.
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3. Word wi is not in F but history wi−1 is.

4. Both wi and history wi−1 appear in the text F but not in a

sequence.

5. Bigram {wi−1, wi} appears in the text F.

In order to proceed with the analysis of these cases, let us see the

behavior of (4.8) which is the same for all cases. ni is the number

of bigrams that appear i times in total. If a bigram of one of these

categories, say n1, does not appear in the F text, then its counts are the

same as in the previous corpus so it stays in this category. However, if

this bigram is found in text F, then it will be multiplied many times

with the rest of the F text, so its counts will be increased a lot, the

bigram will not belong to n1 category any more and n1 will decrease.

Therefore, ni either stay the same or decreases. However, this decrease,

comparing to the order of ni, is negligible, so we make the assumption

that ni and thus Di are the same as in the previous corpus.

Word wi and history wi−1 do not appear in the F text

It may happen that a bigram does not appear in the F text. In this case,

c(wi|wi−1), D(c(wi|wi−1)), c(wi−1) and γ(wi−1) will not change. The

only term that changes is the unigram pmKN(wi) because we have the

same number of occurrences of wi in more text. If the old text is, let us

say the 80% of the new one, we have:

pmKN(wi) =
c(wi)

#words in new text
=

c(wi)
#words in old text

0.8

= 0.8pold(wi)

(4.12)

where pold(wi) is the probability of wi in the old corpus. As it was

obvious, the probability of a bigram that does not appear in the F text

decreases.
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Word wi appears in F but history wi−1 does not

Again, c(wi|wi−1), D(c(wi|wi−1)), c(wi−1) and γ(wi−1) stay as they

were in the training with the previous text and the only thing that

pmKN(wi|wi−1) depends on is pmKN(wi). The occurrences of wi are

more in the larger text. This does not necessarily means that pmKN(wi)

increases. Actually, it depends on the frequency of that word in the F

text. If it is higher than the frequency of it in the rest of the text, then

its probability will increase, otherwise it will stay almost the same or

even decrease if in the F text it appears only a few times, comparing to

the rest of the text.

Word wi is not in F but history wi−1 is

This case is more interesting than the previous ones. c(wi|wi−1),

D(c(wi|wi−1)) do not change. c(wi−1) will increase since history

is multiplied with all the F text. pmKN(wi) will decrease (as in the

first case) because its occurrences are the same but we have larger

text. γ(wi−1) needs more discussion before we conclude. In (4.7),

N1(wi−1, ∗) and N2(wi−1, ∗) will decrease for the same reason that ni

also decreases. In particular,

N̂1(wi−1, ∗) = N1(wi−1, ∗) − N1(wi−1, ∗, F) (4.13)

where N̂1 is the N1 in the new LM, and N1(wi−1, ∗, F) is the number

of unique words that follow the history wi−1 in the F text, which we

do not want to count since their occurrences will be by far much more

than one, or two. On the other hand, N3+(wi−1, ∗) increases, because

the cases that were excluded from the previous categories will go to



4.2 adaptation 40

this one.

N̂3+(wi−1, ∗) = N3+(wi−1, ∗)+N1(wi−1, ∗, F)+N2(wi−1, ∗, F) (4.14)

Since the orders of D1, D2, D3+ are the same, and c(wi−1) increases,

we can assume that γ(wi−1) either stays as it is or decreases. Combining

it with the rest changes in (4.5), we come to the conclusion that the

probability of such a bigram decreases.

Both wi and history wi−1 appear in the text F but not in a sequence.

In this case, c(wi|wi−1) and D(c(wi|wi−1)) stay the same. c(wi−1)

increases while γ(wi−1) decreases. pmKN(wi) depends again on how

often wi appears in F comparing to its frequency in the rest of the text.

This means that the probability of the bigram decreases although this

is not a rule and there are cases (if wi appears much more times than

wi−1) that this probability increases.

Bigram {wi−1, wi} appears in the text F

The probability of the bigram, if this appears in the F text, is again not

so obvious. If the proportion between the occurrences of the bigram and

those of the history only, is high, comparing to the rest of the text, then

it is likely that the probability of the bigram will increase. However, it is

required that the product γ(wi−1)pmKN(wi) is also helpful, that is, the

frequency of wi in F should be more times higher than the occurrences

of the history wi−1.

From the previous analysis of the bigram probability distribution,

one comes to the conclusion that applying this adaptation method,

probabilities tend to approach those in the F text. We saw many times

that what matters more is the comparison of the frequencies of words

and bigrams between the whole text and the focused text. This is both

reasonable and desirable because we believe that the words that have



4.2 adaptation 41

higher frequencies in this text, are the ones that are more likely to

appear in the day the news of which we want to recognise.

In the current research, we investigated the presented method of

dynamic language modeling and the experimental results are shown

in chapter 5. We built a language model that is focused on a specific

day, that is, we created an adapted LM with the information from the

previous and the following weeks of that day. However, if one wants

to establish the method to a system so that its LM automatically gets

updated, only a script should be written putting the steps we followed

inside a loop.



5
E X P E R I M E N T S - E VA L U AT I O N

In this chapter we have a discussion about the performance of the

speech recognition system we created for the current thesis. We will

determine the training and test sets and we will analyse the evaluation

results. The recogniser run Viterbi decoding (ch. 1) to produce speech

transcriptions. The metric we used to estimate the accuracy of the

system is

Accuracy =
H − I

N
× 100% (5.1)

where H is the number of successfully recognised words, I is the

number of insertions and N is the total number of labels in the defining

transcription files.

5.1 three kinds of data sets

In Table 7 (chapter 2) all the data we have collected are summed up.

Here, we will create three different sets of data with which we will

train three acoustic models: model A, consisting of studio, planned and

spontaneous, clear utterances, model B consisting of the previous ones

plus background noise studio ones and model mix, consisting of the ones in

model B plus background music, non-native and telephone ones. We split

these categories to training and test sets with 80-20% proportion. The

sentences that occured for each set are shown in Table 12. Notice that

the amount of speech under background noise is big because broadcast

news contains a lot of outdoor reportages where people, vehicles etc.

42
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Table 12. Utterances used in training and test sets

set name training set (utts.) test set (utts.)

A 1421 355

B 4114 1028

mix 5060 1263

Figure 6. One-Gaussian models tested with the three test sets.

create a noisy environment1.

The acoustic models are trained with one Gaussian component per

model. Each of the models A, B and mix will work on all the three

test sets. The results are shown in figure 6. As one would expect,

A is the “easiest” test set since it contains only clear sentences. As

the environment of the speech gets worse, recogniser’s performance

decreases. Notice also that the more utterances the model is trained

with, the higher performance it gets, so, on the same test sets, model

mix has better results than model B, while the latter has better results

than model A.

1 The term studio does not necessarily implies speech recorded inside the studio. It is used
wherever there is use of microphone and not telephone.
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Figure 7. Model A: 1, 12 and 14 Gaussians per model.

5.2 increasing the number of gaussian mixtures

Now, let us examine the behavior of our system as we increase the

Gaussian components per model. As it is shown in figure 7, the perfor-

mance of model A gets worse which means that data are modeled better

with one Gaussian mixture. On the other hand, model B and model C

(figs. 8 and 9) have much better results. The most important fact is that

the performance of the model mix with 12 mixtures has an increase of

almost 8% on the mixed test, which is the one we care more2. Moreover,

we see that there is no need to have 14 mixtures per model, because not

only does the complexity increase, but also the performance does not

get higher, indeed there is a slight decrease.

The bottom line is that the best model is the one trained with mixed

utterances3 and consists of 12 Gaussian components. We will keep this

model to continue with the rest of the experiments.

2 since most of the utterances we will find will not be clear
3 because mixed utterances are the largest corpus used for acoustic model training
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Figure 8. Model B: 1, 12 and 14 Gaussians per model.

Figure 9. Model C: 1, 12 and 14 Gaussians per model.
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5.3 acoustic models adaptation

Figure 10. MAP adaptation on Model Mix.

As proposed in [12], if Maximum A-Posteriori (MAP) adaptation is

applied on the acoustic models of our system, a performance increase of

more than 5% can occur. This adaptation process is sometimes referred

to as Bayesian adaptation. MAP adaptation involves the use of prior

knowledge about the model parameter distribution. Hence, if we know

what the parameters of the model are likely to be (before observing any

adaptation data) using the prior knowledge, we might well be able to

make good use of the limited adaptation data, to obtain a decent MAP

estimate. The results are shown in figure 10.

5.4 language model adaptation

In section 4.2 we analysed a method of making the language model

dynamic or updated with the news of the period we are interested in.

Here we present the results of this method, applied in our system and

evaluated in various test sets.

First, we have to decide the weights of the two training sets, the
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Table 13. OOV rates and PPs for different weights of the LM training sets.

70-30% 80-20% 90-10% 95-5%
OOV 3.07% 3.07% 3.06% 3.47%

PP 203 200 202 204

Table 14. 1st experiment: OOV rates and PPs before and after LM adaptation.
LM represents the old LM, while LM2 represents the adapted one.

test A test B test mix

LM LM2 LM LM2 LM LM2
OOV 4.65% 3.34% 4.48% 3.24% 4.56% 3.06%

PP 221 208 229 217 236 202

450MB one, and the focused one. As Table 13 shows, there is no big

difference on the OOV rates and perplexities as long as we keep the

proportion under 90-10%. However, being only 5% of the training

corpus, the focused text do not improve the system as much as possible.

Therefore we keep the model created from 90-10% weights, since it has

a slightly lower OOV-rate. Let us see what is the improvement that this

model gives.

So far, we have reached an accuracy correct rate of 65.4%, which is

a result on the mixed test set of 1263 utterances (Table 12). In figure

11 we see the performance of the recogniser before and after applying

the LM adaptation method and on Table 14 we see the improvements

on the Out-of-Vocabulary (OOV) rates and perplexities (PP). As we

can see, a decrease of 1.5% on the OOV rate, combined with a slightly

lower perplexity, can lead to an accuracy improvement of 2-3%. In this

test, we compare the language model based on the three newspapers

(Table 1), which is the one we use for all the tests up to here, with the

language model built from the same corpus but with adapted data as

well. Note that the purpose of this test is to show a straight comparison

with the results presented in [12] and not to demonstrate our method’s

performance.
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Figure 11. Performance after LM adaptation.

Remember that this method is based on the period we are interested

in, for example, if we want to auto-transcribe speech from spring of 2006,

we have to update an old LM with data from this period. Therefore, to

see the improvement when we compare an old LM with an adapted LM,

we have to make sure that the old LM does not already contain data of

that period. In other words, the comparison just presented would be

more representative if we used as a test set a speech made on 2010, in

which case, the adapted LM would be updated with the current news,

whereas the old LM would not.

Hence, in order to show the performance of the adaptation method

we used, a different test must be held. We will use the corpus only from

the “Eleftherotypia” newspaper (enet), because this news was written

on 1997-1999. We create an adapted model by adding information from

the news of 2006. On Table 15 we can see the corresponding perplexities

and OOVs. The recognition results are shown in figure 12.
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Table 15. 2nd experiment: OOV rates and PPs before and after LM adaptation.
LM3 is the old LM trained only by enet, and LM4 is the adapted one
based also at enet text.

test A test B test mix

LM3 LM4 LM3 LM4 LM3 LM4
OOV 5.52% 3.51% 5.51% 3.37% 5.63% 3.19%

PP 236 231 239 246 245 226

Figure 12. LM adaptation results on the 2
nd test.
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C O N C L U S I O N - F U T U R E W O R K

In the current research, we deal with the problem of automatically

transcribing speech from reek broadcast news. We collected data from

online newspapers and TV broadcasts and we built an HMM-based

speech recognition system from scratch. The principles and theoretical

basis on which this project was elaborated were discussed. The baseline

system as well as improved versions were presented and analysed in

depth.

The final recogniser that has the best performance in terms of word

accuracy, reaches results almost as high as 70%, on every kind of speech,

either if this is recorded in the studio, or it is an outdoor reportage. This

system is based on acoustic models trained for phonemes, biphones

and triphones and every model has 12 Gaussian mixtures. Maximum

a-posteriory adaptation is used on the acoustic models to increase ac-

curacy. Our language model is bigram and it is trained with a corpus

of 65M words and a 60K vocabulary. We applied an LM adaptation

method according to which, we boost the unigram and bigram proba-

bilities of the training speech that is recorded on the same period as the

evaluation data. This method proved to improve the system, decreasing

the WER in most cases about 7% and in some specific ones, more than

30%.

what is next?

There is a number of actions one could take to improve the performance

of the system. First of all, what matters a lot is the quality of the data

50
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we collect and we use to train our models. Many of the OOV words

appeared in several tests, found to be mis-typed words. Hence, a more

accurate manual transcription could lead to a well trained acoustic

model set. The amount of this data plays also a significant role, and the

20 hours we used in this project are not enough. Since we attempt to

create an LVCSR system, no less than 50 hours in total should constitute

the training corpus.

As far as language modeling is concerned, a trigram or 4-gram

approach should be tried instead of a bigram LM that we constructed.

These approaches are the most common and widely used ones in

systems like ours and they seem to have promising results when applied

in other languages. Studies on the Greek language have also shown that

a 100K vocabulary could prove more efficient than the 60K we used.

If these techniques are applied and the recognition accuracy level

increases, we could pass to unsupervised training. Instead of manually

transcribing more hours to feed the training corpus, we could use the

Viterbi decoding for creating transcriptions automatically which could

then be added to the training corpus1.

Finally, segmentation methods can be studied and applied in order

for the system to recognise the kind of speech input. Different models

can be trained, adapted to several speech conditions (e.g. telephone

speech) or to any speakers that appear more frequently than others.

The system, judging from the conditions of the testing utterance, will

decide from which model it should be decoded.

1 as far as the system has a performance of about 80%
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