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Εισαγωγή 

Ο αριθμός των οχημάτων σε μια ράμπα αυτοκινητοδρόμου ή σε έναν αστικό 

σηματοδοτούμενο σύνδεσμο αποτελεί πολύτιμη πληροφορία για τον έλεγχο σε 

πραγματικό χρόνο. Η ποσότητα αυτή είναι στενά συνδεδεμένη με τις 

μεταβλητές χώρου και χρόνου της ράμπας ή του συνδέσμου. Μέχρι τώρα 

αρκετοί ερευνητές έχουν ασχοληθεί με τις σχέσεις που συνδέουν τις στιγμιαίες 

χωρικές μεταβλητές και τις (εύκολα μετρήσιμες) τοπικές χρονικές μεταβλητές 

σε, σχετικά, ομογενή και σταθερή κυκλοφοριακή ροή, όπως αυτή συναντάται 

συνήθως σε συνεχείς κυκλοφοριακές συνθήκες. Όμως πώς αλλάζουν αυτές οι 

σχέσεις κάτω από ανομοιογενείς και ασταθείς κυκλοφοριακές συνθήκες; Για να 

απαντηθεί αυτό το ερώτημα πραγματοποιήθηκε μια λεπτομερής ανάλυση και 

διεξήχθει μια μικροσκοπική προσομοίωση για σηματοδοτούμενα δίκτυα, όπου 

υπάρχουν έμφυτες και ισχυρές διακυμάνσεις της κυκλοφοριακής ροής, λόγω 

της εναλλαγής των ενδείξεων των φωτεινών σηματοδοτών. Ένας αριθμός 

παραγόντων που επηρεάζουν κατά την εκτίμηση των χωρικών μεταβλητών από 

τις μετρήσιμες τοπικές χρονικές μεταβλητές αναλύονται και παρουσιάζονται με 

λεπτομέρειες. Με βάση αυτούς, εφαρμόζεται ένα φίλτρο Kalman που βασίζεται 

σε πραγματικού χρόνου μετρήσεις της ροής και της κατάληψης, οι οποίες 

παρέχονται από τρεις φωρατές κλειστού βρόχου, για την παραγωγή αξιόπιστων 

εκτιμήσεων του αριθμού των οχημάτων. Ο τελικός εκτιμητής του αριθμού των 

οχημάτων δοκιμάζεται μέσω, της ίδιας με προηγουμένως, μικροσκοπικής 

προσομοίωσης για διάφορα σενάρια ραμπών και κυκλοφοριακών συνθηκών. Τα 

αποτελέσματα της προσομοίωσης υποδηλώνουν ότι πρόκειται για μια εύρωστη 

ΠΠΠΕΕΕΡΡΡΙΙΙΛΛΛΗΗΗΨΨΨΗΗΗ   
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ΠΕΡΙΛΗΨΗ 

απόδοση της εκτίμησης, γεγονός που επιτρέπει την εύκολη εφαρμογή της 

μεθόδου. 

Στη συνέχεια θα παρουσιαστεί μια εκτεταμένη περίληψη της εργασίας που 

πραγματοποιήθηκε δίνοντας ιδιαίτερη προσοχή στα βασικά στοιχεία που τη 

χαρακτηρίζουν. Στο τέλος θα αναφερθούν τα κυριότερα συμπεράσματα, τα 

οποία επιβεβαιώνουν τη σημασία της παρούσας και οριοθετούν την πρακτική 

εφαρμογή της προτεινόμενης μεθοδολογίας σε πραγματικές συνθήκες. 

Κεφάλαιο 1ο 

Στο 1ο κεφάλαιο ορίζονται και αναλύονται συνοπτικά ορισμένες βασικές έννοιες 

που αποτελούν τα θεμέλια ανάπτυξης ολόκληρης της εργασίας. Τέτοιες έννοιες 

είναι: 

• Η κυκλοφοριακή συμφόρηση (traffic congestion): Πρόκειται για πρόβλημα 

καθημερινό στα αστικά κέντρα με ποικίλλες επιπτώσεις στην ποιότητα ζωής 

των κατοίκων. Ο πλέον ενδεδειγμένος και πιο οικονομικός τρόπος 

αντιμετώπισής του επιβάλλει την πιο αποτελεσματική εκμετάλλευση των 

εγκαταστάσεων που ήδη υπάρχουν. 

• Ο έλεγχος της κυκλοφοριακής ροής (traffic flow control): Για τον 

ικανοποιητικό έλεγχο της κυκλοφοριακής ροής χρησιμοποιείται, συνήθως, 

η τεχνική του κλειστού βρόχου ελέγχου. Πρόκειται για μεθοδολογία 

ελέγχου ενός συστήματος και βελτιστοποίησης οποιουδήποτε στοιχείου του 

μέσω μετρήσεων που λαμβάνονται από διάφορους αισθητήρες και 

χρησιμοποιούνται κατάλληλα από μια στρατηγική ελέγχου. 

• Φωρατές κλειστού βρόχου (loop detectors): Αποτελούν το πιο διαδεδομένο 

όργανο συλλογής μετρήσεων που αφορούν την κυκλοφοριακή ροή, λόγω 

του χαμηλού κόστους σε σχέση, για παράδειγμα, με τις κάμερες 
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ΠΕΡΙΛΗΨΗ 

παρακολούθησης. Η λειτουργία τους βασίζεται στην επαγωγή ηλεκτρικού 

ρεύματος. 

• Έλεγχος ραμπών (ramp metering): Η σπουδαιότητα του ελέγχου της 

κυκλοφοριακής ροής σε ράμπες εισόδου/εξόδου αυτοκινητοδρόμων έχει 

προσελκύσει το ενδιαφέρον πολλών ερευνητών. Η ικανότητα ελέγχου της 

ροής των οχημάτων στα μικρά, σχετικά, αυτά τμήματα δρόμου παρέχει 

πολλαπλές βελτιώσεις στη ροή τόσο των αυτοκινητοδρόμων, όσο και των 

παρακείμενων αστικών οδικών δικτύων. 

• Φίλτρο Kalman (Kalman Filter): Πρόκειται για μια μαθηματική μέθοδο που 

ανέπτυξε ο Rudolf E. Kalman (1960) και χρησιμοποιείται για την 

πρόβλεψη/εκτίμηση ενός μεγέθους. Οι εφαρμογές του επεκτείνονται από 

την αεροδιαστημική έως τα δημογραφικά μοντέλα και μια σειρά μηχανικών 

εφαρμογών (για παράδειγμα τα ραντάρ). 

• Μικροσκοπικό μοντέλο προσομοίωσης (microscopic simulation model): 

Πρόκειται για μοντέλα που χρησιμοποιούνται ευρέως για την περιγραφή 

και ανάλυση της κυκλοφοριακής ροής. Η απεικόνιση μιας διαδικασίας 

μέσω προσομοίωσης αποτελεί βασικό εργαλείο ελέγχου αυτής πριν την 

εφαρμογή της σε πραγματικές συνθήκες. 

Το κεφάλαιο ολοκληρώνεται με την περιγραφή του προβλήματος εκτίμησης του 

αριθμού των οχημάτων σε σηματοδοτούμενα οδικά δίκτυα. Σύμφωνα και με το 

Γράφημα 5 (Figure 5), δύο φωτεινοί σηματοδότες είναι τοποθετημένοι ανάντι 

και κατάντι του εξεταζόμενου συνδέσμου. Ο ανάντι φωτεινός σηματοδότης (εάν 

υπάρχει) καθορίζει τη ζήτηση της ροής των οχημάτων που καταφτάνει στο 

σύνδεσμο, ενώ ο κατάντι φωτεινός σηματοδότης καθορίζει τη ροή εξόδου των 

οχημάτων από το σύνδεσμο. Είναι αυτονόητο ότι όταν η ροή εισόδου των 

οχημάτων είναι μεγαλύτερη της ροής εξόδου, τότε μέσα στο σύνδεσμο 
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δημιουργείται ουρά οχημάτων. Επιπλέον, στον εξεταζόμενο σύνδεσμο έχουν 

εγκατασταθεί τρεις φωρατές κλειστού βρόγχου: στα δύο άκρα του συνδέσμου 

και στο μέσον του. Οι δύο ακραίοι φωρατές παρέχουν μετρήσεις ροής 

οχημάτων, ενώ ο μεσαίος φωρατής παρέχει μετρήσεις χρονικής κατάληψης του 

συνδέσμου. Όπως φαίνεται και στο Γράφημα 5 (Figure 5), ο εκτιμητής που 

αναπτύχθηκε λειτουργεί σε πραγματικό χρόνο, τόσο για να ενημερώνεται με τις 

μετρήσεις ροής και χρονικής κατάληψης από τους τρεις φωρατές, όσο και για 

να παρέχει τον εκτιμώμενο αριθμός οχημάτων μέσα στο σηματοδοτούμενο 

δίκτυο (ανάμεσα στους δύο ακραίους φωρατές). 

Κεφάλαιο 2ο

Στο 2ο κεφάλαιο πραγματοποιείται μια ανασκόπηση των σχέσεων που συνδέουν 

τις στιγμιαίες χωρικές μεταβλητές με τις (εύκολα μετρήσιμες) τοπικές χρονικές 

μεταβλητές σε ομογενή και σταθερή κυκλοφοριακή ροή. Πιο συγκεκριμένα, 

αναλύεται ο τρόπος που λαμβάνονται οι μετρήσεις από τους φωρατές κλειστού 

βρόγχου και ο τρόπος που αυτές καθίστανται εκμεταλλεύσιμες, ενώ ορίζονται 

τα βασικά μεγέθη της κυκλοφοριακής ροής, δηλαδή η ροή οχημάτων q, η 

πυκνότητα ρ και η μέση ταχύτητα v, σύμφωνα με τους Wardrop (1952) και 

Edie (1965, 1974). Το κεφάλαιο ολοκληρώνεται με τον ορισμό της χωρικής 

κατάληψης  ενός δρόμου με βάση και το μέσο ενεργό μήκος  (mean 

effective length) και το φυσικό μήκος  (physical length) των οχημάτων. 

so L

PhL

Κεφάλαιο 3ο

Στο 3ο κεφάλαιο οι γνωστές σχέσεις του προηγούμενου κεφαλαίου 

τροποποιούνται, ώστε να ανταποκρίνονται στις ανομοιογενείς και ασταθείς 

κυκλοφοριακές συνθήκες που επικρατούν σε ένα σηματοδοτούμενο σύνδεσμο. 
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Στην προσπάθεια συσχέτισης της μετρούμενης χρονικής κατάληψης με την 

αντίστοιχη χωρική κατάληψη του συνδέσμου γίνονται οι εξής παραδοχές: 

• Ο χρόνος ενημέρωσης Τ των μετρήσεων χρονικής κατάληψης είναι αρκετά 

μικρός, ώστε αυτές να αντιστοιχούν σε στιγμιαίες μετρήσεις και να ισχύει 

 εάν ένας φωρατής είναι κατειλημμένος και =to 1 =to 0

M

j,

 διαφορετικά. 

• Υπάρχουν Μ στον αριθμό μετρήσεις χρονικής κατάληψης κατά μήκος του 

συνδέσμου σύμφωνα και με το Γράφημα 8 (Figure 8) με κενό  

μεταξύ τους, όπου Δ είναι το συνολικό μήκος του συνδέσμου. 

= Δd /

• Ισχύει  όπου Ph
j jL L= ∀ j 1,...,N=  ο αριθμός του οχήματος στο σύνδεσμο. 

Εφόσον ισχύουν αυτά, η χωρική κατάληψη i
so (x )  σε μια περιοχή μήκους d 

γύρω από μια θέση μέτρησης ix , =i 1,...,M, μπορεί να μετρηθεί προσεγγιστικά 

μέσω της μετρήσιμης χρονικής κατάληψης i
to (x )  από τη σχέση 

= =

≈ Δ =∑ ∑
M M

i
s s t

i 1 i 1

o o i(x )d/ o (x )/M.  Όπως φαίνεται, η στιγμιαία χωρική κατάληψη 

του συνδέσμου μπορεί να προσεγγιστεί από μια σειρά μετρήσεων χρονικής 

κατάληψης όταν =Ph
j jL L  και για πολύ μικρό χρόνο Τ. Ο βαθμός ακρίβειας της 

προσέγγισης εξαρτάται από το διάστημα d. 

Εν συνεχεία γίνεται προσπάθεια εύρεσης των καλύτερων θέσεων για τους 

φωρατές μέσα στο σύνδεσμο όταν αυτοί είναι λίγοι στον αριθμό ή ακόμα και 

όταν πρόκειται για έναν και μοναδικό φωρατή. Αποδεικνύεται ότι η τοποθέτηση 

των φωρατών σύμφωνα με το Γράφημα 8 (Figure 8) είναι ένας καλός τρόπος για 

την εκτίμηση της χωρικής κατάληψης, καθώς οδηγεί σε χαμηλό μέσο σφάλμα, 

παρόλο που η διακύμανσή του μπορεί να είναι υψηλή (όταν εγκαθίσταται ένας 

και μόνο φωρατής, η ενδεδειγμένη του θέση βρίσκεται στο μέσο, περίπου, του 

συνδέσμου). Μάλιστα, όσο μεγαλύτερος είναι ο αριθμός Μ των φωρατών στο 
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σύνδεσμο, τόσο καλύτερες είναι οι εκτιμήσεις χωρικής κατάληψης και σε όρους 

μέσου σφάλματος και σε όρους σφάλματος διακύμανσης. Προς απόδειξη 

αυτού, πραγματοποιείται μια λεπτομερής ανάλυση του απόλυτου και του 

σχετικού σφάλματος της εκτίμησης της χωρικής κατάληψης του συνδέσμου, η 

οποία ισχύει, τελικά, ακόμα και όταν = + εPh
j j jL L , όπου ε j  το μη μηδενικό 

ενεργό μήκος των φωρατών, με ε <j E  και το  να είναι αρκετά μικρό για 

να αποτρέπεται η ταυτόχρονη ενεργοποίησης ενός φωρατή από περισσότερα 

από ένα οχήματα. Σημαντικό είναι, επίσης, το φαινόμενο ZSZO (zero-speed 

zero-occupancy) που παρουσιάζεται, κατά το οποίο δύο οχήματα είναι 

σταματημένα (λόγω της ουράς) εκατέρωθεν ενός φωρατή με αποτέλεσμα να 

παρέχονται μηδενικές μετρήσεις από το φωρατή, ενώ υπάρχουν οχήματα εντός 

του συνδέσμου. Το συγκεκριμένο φαινόμενο μπορεί να οδηγήσει, ανάλογα με 

τη συχνότητα εμφάνισής του, σε, αντίστοιχα, μεγάλα σφάλματα της εκτίμησης 

της χωρικής κατάληψης του συνδέσμου. 

>E 0

Η ανάλυση του παρόντος κεφαλαίου οδηγεί σε ενδιαφέροντα αποτελέσματα. 

Από τη μια συμπεραίνεται ότι όταν ο χρόνος Τ αυξάνεται, αυξάνεται και η 

ποιότητα της εκτίμησης της χωρικής κατάληψης του συνδέσμου, καθώς η 

εκτιμώμενη χωρική κατάληψη  τείνει προς την αναμενόμενη μέση τιμή της 

 (για μη μηδενική ταχύτητα οχημάτων). Από την άλλη, στην περίπτωση 

του σηματοδοτούμενου συνδέσμου, όπου με την πάροδο του χρόνου Τ 

υπάρχουν πολλές αλλαγές στον αριθμό των οχημάτων στο σύνδεσμο, άρα και 

στη χωρική κατάληψη αυτού, η αύξηση της περιόδου Τ, με τις αντίστοιχες 

σημαντικές διαφοροποιήσεις στη χωρική κατάληψη, προκαλεί πτώση της 

ακρίβειας της εκτιμώμενης χωρικής κατάληψης του συνδέσμου. Επομένως, 

υπάρχει μια βέλτιστη χρονική περίοδος Τ, η οποία οδηγεί στη βέλτιστη 

sô

sˆE{o }
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εκτίμηση της χωρικής κατάληψης, άρα και του αριθμού των οχημάτων, του 

συνδέσμου. 

Το κεφάλαιο ολοκληρώνεται με την εύρεση του εκτιμητή  του αριθμού των 

οχημάτων μέσα στο σύνδεσμο που είναι 

N̂

= + ζN̂ N ,  όπου Ν ο πραγματικός 

αριθμός οχημάτων στο σύνδεσμο και  με Δ το μήκος του 

συνδέσμου και λ τον αριθμό λωρίδων στο σύνδεσμο. Ο θόρυβος 

ζ = ζ Δλ Ph
o /L ,

οζ  της 

μέτρησης της χρονικής κατάληψης περιλαμβάνει διάφορες πηγές, όπως: 

• Το θόρυβο των μετρήσεων των φωρατών. 

• Το σφάλμα στη μοντελοποίηση που προέρχεται από την προσεγγιστικότητα 

στη σχέση 
= =

≈ Δ =∑ ∑M Mi
s s ti 1 i 1

o o i(x )d/ o (x )/M, κυρίως για μικρό αριθμό 

εγκατεστημένων φωρατών Μ. Εδώ εμπεριέχεται και η όποια επιρροή του 

χρόνου ενημέρωσης Τ και του φαινομένου ZSZO. 

• Το σφάλμα εξαιτίας της διαφορετικότητας του ενεργού και του φυσικού 

μήκους των οχημάτων κατά τη μέτρηση της χρονικής κατάληψης. 

Κεφάλαιο 4ο

Το 4ο κεφάλαιο αναφέρεται στην ανάπτυξη του εκτιμητή του αριθμού των 

οχημάτων Ν μέσα στο σηματοδοτούμενο σύνδεσμο. Καταρχήν πραγματοποιείται 

μια σύντομη ανασκόπηση των μαθηματικών σχέσεων του φίλτρου Kalman και 

γίνεται αναφορά στις προϋποθέσεις που πρέπει να ισχύουν για τα μεγέθη που 

εμπλέκονται σε αυτές. Στη συνέχεια γίνεται προσπάθεια εξαγωγής των 

απαραίτητων για την εφαρμογή του φίλτρου μοντέλων κατάστασης και 

μέτρησης του προβλήματος. Ο τελικός εκτιμητής που εξάγεται είναι ο εξής: 

= − + − − − + − − −m m m
KF KF in out KF

ˆ ˆ ˆN (k) N (k 1) T[q (k 1) q (k 1)] K[N (k 1) N (k 1)]  
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όπου   η μέτρηση και η εκτίμηση, αντίστοιχα, του αριθμού οχημάτων 

στο σύνδεσμο, οι ροές εισόδου και εξόδου, αντίστοιχα, οχημάτων στο 

σύνδεσμο, Τ ο χρόνος ενημέρωσης και εκτίμησης του φίλτρου και Κ ο 

παράγοντας οφέλους (gain parameter) του φίλτρου. Η εκτίμηση 

περιορίζεται στο εύρος  όπου 

mN , KFN̂

m m
in outq , q

KFN̂  

′max[0,N ], ′maxN  ο μέγιστος αριθμός οχημάτων που 

μπορούν να βρεθούν μέσα στο σύνδεσμο ακίνητα, συμπεριλαμβανομένης και 

της συνηθισμένης απόστασης ασφαλείας μεταξύ τους D (όπου =D 1m).  Η 

μέτρηση  δίνεται από τη σχέση mN − = − + ζ −mN (k 1) N(k 1) (k 1),  όπου το ζ έχει 

οριστεί στο προηγούμενο κεφάλαιο. 

Όσον αφορά τον παράγοντα οφέλους Κ, από τη θεωρία ισχύουν = Π Π +K /( Z)  

και Π = − Π + Γ2(1 K) T ,  από όπου προκύπτει, τελικά, = −α + α + α2K 0.5 4( )με 

α = Γ2T /Z  και Γ, Ζ οι διακυμάνσεις των θορύβων του συστήματος και της 

μέτρησης, αντίστοιχα. Αποδεικνύεται, τέλος, ότι οποιοδήποτε τάση (bias) b 

χαρακτηρίζει το θόρυβο της μέτρησης ζ μεταφέρεται αυτούσια στην εκτίμηση 

του φίλτρου, καθώς αυτό δεν μπορεί να την αποβάλλει, ισχύει, δηλαδή, 

 = = +m
KF

ˆE{N } E{N } E{N} b.

Κεφάλαιο 5ο

Στο 5ο κεφάλαιο γίνεται μια απόπειρα ελέγχου της ποιότητας της εκτίμησης του 

αριθμού των οχημάτων στο σύνδεσμο με χρήση της μεθόδου της εκθετικής 

εξομάλυνσης. Χρησιμοποιώντας, πλέον, μόνο τις μετρήσεις χρονικής 

κατάληψης από το φωρατή που βρίσκεται στο μέσο του συνδέσμου (και όχι των 

δύο ακραίων φωρατών μέτρησης ροής) ο νέος εκτιμητής που αναπτύσσεται είναι 

= − + −m
SM SM SM SMN̂ −ˆ(k) K N (k 1) (1 K )N (k 1),  όπου  και   η μέτρηση και η 

εκθετικά εξομαλυμένη εκτίμηση, αντίστοιχα, του αριθμού οχημάτων στο 

mN SMN̂
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σύνδεσμο, ενώ  είναι η παράμετρος εξομάλυνσης. Τα αποτελέσματα των 

προσομοιώσεων που πραγματοποιήθηκαν με τη χρήση τόσο των μετρήσεων, όσο 

και του φίλτρου Kalman συγκρίνονται με αυτά που προέκυψαν από τη χρήση 

των εκθετικά εξομαλυμένων μετρήσεων. 

SMK

Κεφάλαιο 6ο

Στο 6ο κεφάλαιο παρουσιάζεται το μαθηματικό μοντέλο που χρησιμοποιήθηκε 

στη μικροσκοπική προσομοίωση και αναφέρονται τα διάφορα σενάρια που 

αναπτύχθηκαν, ώστε να ανταποκρίνονται σε διάφορες κυκλοφοριακές 

συνθήκες. 

Καταρχήν, ο εξεταζόμενος σύνδεσμος έχει μήκος 194 μέτρα και εμπεριέχει 

μόνο μία λωρίδα κυκλοφορίας. Το διακριτό (χρονικά) μαθηματικό μοντέλο που 

χρησιμοποιείται βασίζεται σε βήμα προσομοίωσης =simT 0.25s.  Σε κάθε 

χρονική περίοδο  υπολογίζεται για κάθε όχημα i η επιθυμητή του 

ταχύτητα 

=k 1,2,...,

d,iy  από τη σχέση = Λ δ −d,i iy [ (k) D],  όπου  και  

ενώ  ορίζεται η απόσταση (σε μέτρα) του πίσω μέρους ενός οχήματος με το 

μπροστινό μέρος του οχήματος που το ακολουθεί. Η μέγιστη δυνατή επιθυμητή 

ταχύτητα κάθε οχήματος ορίζεται ίση με 

−Λ = 10.7 s =D 1m,

δi (k)

=fy 16.5m/s.  

Η επιτάχυνση  κάθε οχήματος i υπολογίζεται από τη σχέση ia (k)

= −i d,ia i(k) sat{g[y (k) y (k)]},  όπου −= 1g 2 s  και η συνάρτηση  ορίζεται ως: ⋅sat{ }

η
η
≥⎧

⎪η = ≤⎨
⎪η⎩

max max

min min

a if a
sat{ } a if a

else
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με   και την ταχύτητα κάθε οχήματος = 2
maxa 1.5m/s , = − 2

mina 6m/s iy (k)  να 

ανανεώνεται σύμφωνα με τη σχέση + = +i i i simy (k 1) y (k) a (k)T . Τελικά, η θέση 

κάθε οχήματος καθορίζεται από τη σχέση 

+ = + + 2
i i sim i sim ix (k 1) x (k) T y (k) 0.5T a (k).  

Όσον αφορά τα 5, συνολικά, διαφορετικά σενάρια που δημιουργήθηκαν, ο 

συνολικός χρόνος προσομοίωσης είναι ίδιος για όλα και φτάνει τα 5000 

δευτερόλεπτα (περίπου 1,38 ώρες), ενώ ο χρονικός κύκλος του ανάντι φωτεινού 

σηματοδότη είναι πάντα 90 δευτερόλεπτα. Το μήκος των οχημάτων είναι μεταξύ 

[3m,5m],  άρα για την εκτίμηση του αριθμού των οχημάτων χρησιμοποιείται 

 ενώ ο χρόνος ενημέρωσης του φίλτρου είναι PhL 4m= , Τ = 20s. Στο βασικό 

σενάριο προσομοίωσης ο χρονικός κύκλος του κατάντι φωτεινού σηματοδότη 

είναι 2  στα υπόλοιπα τρία είναι   και  αντίστοιχα, ενώ σε ένα 

ειδικό σενάριο ο χρονικός κύκλος του κατάντι φωτεινού σηματοδότη αλλάζει 

στοχαστικά μεταξύ 10 και 90 δευτερολέπτων. Σε κάθε σενάριο οι διάρκειες των 

κόκκινων/πράσινων ενδείξεων των σηματοδοτών σε κάθε κύκλο αλλάζουν με 

στόχο την επίτευξη κάθε δυνατής κατανομής οχημάτων μέσα στο σύνδεσμο. 

0s, 40s, 60s 90s,

Τέλος, όσον αφορά το κριτήριο αξιολόγησης των αποτελεσμάτων της 

προτεινόμενης μεθοδολογίας χρησιμοποιείται το Σχετικό Μέσο Τετραγωνικό 

Σφάλμα (Relative Mean Square Error) 

= =

= Χ −∑ ∑
K K

2

k 1 k 1
RMSE 100% K [ N(k)] N(k)  

όπου N(k)  είναι ο πραγματικός αριθμός οχημάτων στο σύνδεσμο και Χ είναι ο 

εκτιμώμενος αριθμός οχημάτων, είτε μέσω των μετρήσεων, οπότε ˆX N(k),=  είτε 
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μέσω του φίλτρου, οπότε KF
ˆX N (k),=  είτε μέσω των εκθετικά εξομαλυμένων 

μετρήσεων, οπότε SM
ˆX N (k).=  

Κεφάλαιο 7ο

Στο 7ο κεφάλαιο παρουσιάζονται αναλυτικά τα αποτελέσματα όλων των 

διερευνήσεων και γίνεται προσπάθεια να δοθούν απαντήσεις σε μια σειρά 

κρίσιμων ερωτημάτων: 

• Πόσο βελτιώνεται η εκτίμηση των μετρήσεων (απλών ή εξομαλυμένων) με τη 

χρήση του φίλτρου Kalman; Πόσοι επιπλέον φωρατές απαιτούνται για να 

φτάσουμε την εκτίμηση του φίλτρου; 

• Ποιο είναι το εύρος των κατάλληλων τιμών του παράγοντα Κ του φίλτρου; 

Ποια είναι η ευαισθησία της ποιότητας της εκτίμησης γύρω από τις τιμές 

αυτές; 

• Πώς επηρεάζει την εκτίμηση ο χρόνος ενημέρωσης/εκτίμησης Τ και ποια 

τιμή είναι κατάλληλη για την πρακτική εφαρμογή της μεθόδου; 

• Πώς αποδίδει το φίλτρο κάτω από διαφορετικές συνθήκες που αφορούν το 

 τη ροή των οχημάτων και τη φωτεινή σηματοδότηση του συνδέσμου; maxN ,

• Πώς επηρεάζουν την εκτίμηση οι διάφοροι θόρυβοι των μετρήσεων; 

Για την απάντηση αυτών των ερωτημάτων παρουσιάζεται πληθώρα γραφημάτων 

και πινάκων που παρέχουν αξιόλογες πληροφορίες και οδηγούν σε σημαντικές 

παρατηρήσεις που αναδεικνύουν την ωφελιμότητα της χρήσης του φίλτρου 

Kalman. 
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Κεφάλαιο 8ο

Στο 8ο κεφάλαιο πραγματοποιείται μια σύνοψη ολόκληρης της εργασίας, 

τονίζονται τα σημαντικότερα στοιχεία της και προτείνονται κατάλληλες τιμές των 

μεγεθών που απαιτούνται για την πρακτική εφαρμογή της μεθόδου σε 

πραγματικό περιβάλλον. Σύμφωνα και με τα αποτελέσματα του προηγούμενου 

κεφαλαίου για την εφαρμογή της προτεινόμενης μεθοδολογίας σε πραγματικές 

συνθήκες πρέπει να γνωρίζουμε ότι: 

• Το σύνηθες εύρος τιμών του χρόνου Τ είναι [10s,30s].  

• Οι μετρήσεις χρονικής κατάληψης πρέπει να λαμβάνονται με ε ίσο με το 

μηδέν. Αν αυτό δεν είναι εφικτό, οι μετρήσεις πρέπει να πολλαπλασιαστούν 

με + εPh PhL /(L ) πριν χρησιμοποιηθούν περαιτέρω, όπου το μέσο φυσικό 

μήκος των οχημάτων  είναι περίπου 4 μέτρα. Τυπικές τιμές για το ε 

είναι από 1 έως 2 μέτρα, ανάλογα με τους εγκατεστημένους φωρατές. 

PhL

• Οι μετρήσεις  χρονικής κατάληψης  πρέπει να μετατρέπονται σε αριθμό 

οχημάτων  μέσω της σχέσης 

m
to

Νm = Δλm Ph
tN m( /L )o ,  όπου ο παράγων  

ισούται με, και μπορεί να αντικατασταθεί από, το μέγιστο αριθμό οχημάτων 

 που μπορούν να βρεθούν σταματημένα μέσα στο σύνδεσμο. Στην 

περίπτωση ύπαρξης και φορτηγών μέσα στο σύνδεσμο υπάρχουν δύο 

δυνατότητες: 

Δλ Ph/L

maxN

o Το μήκος των φορτηγών να μη λαμβάνεται υπόψη στο 

χρησιμοποιούμενο μέσο μήκος οχημάτων, το οποίο παραμένει στα 4 

μέτρα, οπότε το φίλτρο παρέχει εκτιμήσεις που αναφέρονται σε μονάδες 

επιβατικών οχημάτων (passenger car units), επιλογή η οποία και 

προτείνεται. 
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o Το μήκος των φορτηγών να λαμβάνεται υπόψη στον υπολογισμό του 

μέσου μήκους των οχημάτων, το οποίο γίνεται, φυσικά, μεγαλύτερο των 

4 μέτρων, οπότε και το φίλτρο παρέχει εκτιμήσεις που αναφέρονται σε 

οχήματα που μπορεί να είναι είτε επιβατικά, είτε φορτηγά με μια 

προκαθορισμένη αναλογία. 

• Οι προτεινόμενες τιμές του παράγοντα Κ βρίσκονται μεταξύ 0,05 και 0,3, 

αλλά εάν δεν είναι δυνατός ο λεπτομερής συντονισμός  του (fine-tuning), 

τότε η τιμή =K 0.1 θεωρείται αρκετά ικανοποιητική και εύρωστη. 

• Οι εκτιμήσει του φίλτρου KFN̂ (k)  βρίσκονται μεταξύ 0 και  όπου ′maxN ,

′ = Δλ +Ph
maxN /(L D)  είναι ο μέγιστος αριθμός ακίνητων οχημάτων που 

μπορεί να υπάρξουν μέσα στο σύνδεσμο, λαμβάνοντας υπόψη και την 

απόσταση ασφαλείας  D μεταξύ δύο διαδοχικών οχημάτων. 

Παραρτήματα 

Τέλος, στο Παράρτημα Α παρουσιάζεται το αρχείο εισόδου δεδομένων του 

προγράμματος προσομοίωσης που αναπτύχθηκε, ενώ στο Παράρτημα Β 

δίνονται αναλυτικά οι χρονικές διάρκειες των κόκκινων/πράσινων των φωτεινών 

σηματοδοτών καθ’ όλη τη διάρκεια των προσομοιώσεων και για κάθε σενάριο 

που εξετάστηκε. 
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The number of vehicles included in a metered motorway ramp or an urban signalized 

link at any time is valuable information for real-time control. This quantity is closely 

related to the space- and time-variables of the ramp or the link. Until now many people 

have been concerned with the relationships between instantaneous space-variables and 

(easily measurable) local time-variables in largely homogeneous and stationary traffic 

flow, as typically encountered in uninterrupted traffic conditions. But how do these 

relationships change under inhomogeneous and nonstationary traffic conditions? To 

answer this question a rather elaborate analysis and microscopic simulation investigation 

is conducted for signalized links with inherently strong traffic flow variations triggered 

by traffic signal switchings. A number of influencing factors when estimating space-

variables from measured local time-variables is analysed and illustrated in detail. 

Considering these, a Kalman Filter is employed to produce reliable estimates of the 

number of vehicles based on real-time measurements of flow and occupancy provided 

by three loop detectors. The resulting vehicle-count estimator is tested via the same as 

before microscopic simulation for a variety of metered ramp scenarios and traffic 

conditions. The simulation investigations indicate a robust estimation performance with 

little effort required, which facilitates easy applicability of the method. 

 

AAABBBSSSTTTRRRAAACCCTTT   
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1.1 Traffic Congestion 

Traffic congestion is a vexing problem felt by residents of most urban areas. Despite 

decades of effort and billions of euros worth of public spending to alleviate congestion, 

the problem appears to be getting worse. It seems that traffic congestion and cities go 

hand in hand. Everyone complains about being stuck in traffic; but no one seems to do 

anything about it. In particular, traffic engineers, transportation planners, and public 

officials responsible for metropolitan transportation systems are frequently criticized for 

failing to make a dent in congestion. Most importantly, while it is obvious that traffic 

congestion cost in time, what is less obvious, but still very real, is its cost in traffic deaths 

and injuries, poorer air quality, wasted fuel and lost productivity. Traffic congestion is 

not just a nuisance, lack of adequate capacity on the highways in these stress points 

actually causes traffic accidents, spews pollutants into the air in greater concentrations 

and requires the useless burning of fossil fuels. 

Congestion occurs when traffic demand exceeds available capacity, although it is much 

more complex than simply stating that “too many vehicles are trying to use the road at 

the same time”. Congestion results from the interaction of many different factors or 

sources of congestion. It has several root causes that can be broken down into two main 

categories: 
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1. Too much traffic for the available physical capacity to handle. 

2. Traffic influencing events like accidents, work zones, bad weather, special events 

and poorly timed traffic signals. 

The level of congestion on a road is determined by the interaction of physical capacity 

with events that are taking place at a given time. For example, the effect of a traffic 

incident depends on how much physical capacity is present. 

Nowadays, the effort in order to relieve congestion to metropolitan areas is permanent 

and a variety of strategies has been developed to deal with congestion. These strategies 

can be grouped as follows: 

1. Adding road capacity where appropriate and requested. Adding more lanes to 

existing highways and building new ones has been the traditional response to 

congestion. In some metropolitan areas, however, it has become difficult to 

undertake major highway expansions because of funding constraints, increased 

construction cost, social effects and environmental constraints and opposition from 

local and national groups. 

2. Operating existing capacity more efficiently. In recent years, new strategies that deal 

with the operation of existing highways have been adopted, rather than just building 

new infrastructure. Collectively referred to as Intelligent Transportation Systems 

(ITS), real-time control of transportation operations involves making changes from 

minute to minute, changing the operating methods or the policies that govern the 

use of the road and monitoring vehicles in real-time; there are numerous 

operations-based congestion mitigation strategies that are enhanced by the use of 

advanced technologies or ITS. 
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Although adding new physical capacity to highways is an important and effective strategy 

for alleviating congestion, it does not seem to ensure a long term solution and it causes 

manifold feedbacks. Having this in mind, the only measures that can be taken in order 

to control the traffic involve the application of operational improvements; a major area 

of great interest is the ramp metering. 

1.2 Traffic Flow Process Control 

Figure 1 illustrates the essential elements of a control loop which is the basis of any 

operational procedure in a traffic network. The traffic flow behavior in a freeway or an 

urban traffic network depends on some external quantities that are classified into two 

groups: 

• Control inputs that are directly related to corresponding control devices (actuators), 

such as traffic signals, variable message signs, etc.; the control inputs may be 

 
 

Figure 1: The control loop. 
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selected from an admissible control region subject to technical, physical, and 

operational constraints. 

• Disturbances, whose values cannot be manipulated, but may, possibly, be 

measurable (e.g., demand) or detectable (e.g. incident) or predictable over a future 

time horizon. 

The network’s output or performance is measured via suitable indices, such as the total 

time spent by all vehicles in the network over a time horizon. The task of the 

surveillance is to enhance and to extend the information provided by suitable sensors 

(e.g. inductive loop detectors) as required by the subsequent control strategy and the 

human operators. The kernel of the control loop is the control strategy, whose task is to 

specify in real time the control inputs, based on available measurements/ estimations/ 

predictions, so as to achieve the prespecified goals (e.g. minimization of total time 

spent) despite the influence of various disturbances. If human operator undertakes this 

task, we have a manually controlled system. In an automatic control system, this task is 

undertaken by an algorithm (the control strategy). The relevance and efficiency of the 

control strategy largely determines the efficiency of the overall control system. 

Therefore, whenever possible, control strategies should be designed with care and via 

application of powerful and systematic methods of optimization and automatic control. 

1.3 Loop Detectors 

One of the most well used methods for measuring the flow in a link is the installation of 

loop detectors. A traffic loop detects metal objects such as vehicles and bicycles based 

on the change in inductance that they induce in the loop. The loop is an inductor in an 

LC circuit that is tuned to resonate at a certain frequency. A metal plate over the loop 

(like a vehicle) causes the magnetic flux to be shorted, reducing the inductance of the 
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loop. This causes a change in resonant frequency, which is detected and sent to the 

signal controller (see Figure 2). 

Although advancements are under way that may make traffic loops obsolete some day, 

they still remain one of the most widespread measurement devices due to its low cost. 

Radar, infrared and sound detectors and systems based on video cameras are 

promising, but their construction and operation cost makes their implementation 

almost prohibitive. On the other hand, the employment of traditional loop detectors 

measuring time-occupancy has, also, some difficulties. In this case, a detector station 

(across all link lanes) positioned at a specific link location (e.g. at the signal stop line or 

in the middle or at the upstream end of the whole link) delivers (local) occupancy 

information that is not representative for the whole link. In other words, local time-

occupancy measurements collected by loop detectors need to be translated into space-

occupancy estimates that are directly related to the number of vehicles in the link. 

Over the last years, the significant technological advances in electronic technology, 

coupled with excellent wire insulation for inductive loops, make both high performance 

Figure 2: Operation of a loop-type detector. 
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and high reliability in vehicle detection possible. However, the facts of the locality of the 

time-occupancy measurements and their necessary modification in terms of number of 

vehicles may cause important inaccuracies at the final estimation of the number of 

vehicles in the link. That is why we first should examine more carefully some basic 

relationships between time-occupancy and space-occupancy. 

1.4 Ramp Metering 

Ramp metering is not a new freeway management technique. Various forms of ramp 

control were implemented during the late 1950’s and through the 1960’s in Chicago, 

Detroit and Los Angeles. By the early 1990’s, ramp metering systems existed in twenty 

metropolitan areas within the United States, along with numerous cities around the 

world (Europe, New Zealand, Japan). Like in other technological areas, there is a gap 

between methodological advancements and practical implementations of ramp 

metering; this gap tends to increase as the methods become more sophisticated, but 

also more efficient. Nowadays Europe has a leading role in terms of methodological 

advancements in the area of ramp metering, but the number of operational metered 

ramps (less than 100 in total) is far less than in USA (about 2.500 metered ramps, 

thereof some 800 in Los Angeles and some 400 in Minneapolis). 

Ramp metering can be defined as a method by which traffic seeking to gain access to a 

busy highway is controlled at the access point via traffic signals (local ramp metering-see 

Figure 3a). This control aims to maximize the capacity of the highway and prevent 

traffic flow breakdown and the onset of congestion. The operation of the traffic signals 

transmutes the predefined control strategy into action. Additionally, ramp metering can 

affect driver route choice and can be used to encourage alternative routes in corridor 

networks particularly where complimentary measures such as alternative rout signing 
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Figure 3: (a) Local and (b) coordinated ramp metering. 

can be and are applied. The problem gets even more difficult when we talk about a 

number of on-ramps to a highway (coordinated ramp metering-see Figure 3b) and the 

suitable co-operation of ramp metering with signal control in order to maximize synergy 

and minimize mutual interference (e.g. queue spillbacks) is of major concern. 

Generally, the benefits of ramp meters include the reduction of congestion on the 

freeway at the entrance ramps, the reduction of accidents as cars merge from the 

entrance ramps onto the freeway, the ability to easily merge with less disruption to 

interstate traffic, and the reduction of vehicle emissions. 

In practice, ramp metering systems have been extremely successful in reducing 

congestion and increasing safety. Although, ramp metering algorithms have some 

limitations, which researchers are working to eliminate. One problem is that existing 

algorithms react to rather than prevent bottlenecks. This causes oscillatory behavior, as 

a result of the time lag between detection and correction action. If an initial reaction to 

congestion leads to overly restrictive metering, excessive queue buildup may ensue. If 

the queue exceeds a certain length, it will interfere with the adjacent street traffic, 

otherwise, when a queue override is activated, freeway congestion will again increase, 
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and the process starts over. A proposed solution for the safeguard of the algorithmic 

prevention involves integrating traffic predictive capabilities into the metering logic; 

several such algorithms employ neural networks and Fuzzy Logic techniques, and can 

potentially delay or prevent bottleneck formation. The solution to the other problem, 

also known as the queue overflow problem, is two-fold: firstly, to estimate accurately the 

length of the queue on the ramp in order to accurately detect queue overflow problems 

and, secondly, in the case where there is a danger of queue overflow to efficiently 

control the ramp metering so that queue overflow is avoided. 

One possible way to address the first problem (queue length estimation) is by using 

video sensors, which calculate quite accurately the number of the vehicles within the 

ramp (or the link in case of an urban network); however, video sensors may be an 

expensive solution especially when there is a need for placing a large number of them 

(coordinated ramp metering, long ramps with curvature requiring more than one video 

sensor, etc.). A second approach is to use the detector flow measurements in the 

entrance and the exit of the ramp as well as the measurements coming from detectors 

within the ramp in order to come up with accurate estimates of the number of vehicles 

within the ramp. Kalman-filter estimation techniques can be used for this purpose. 

1.5 Kalman Filter 

The filter is named after its inventor, Rudolf E. Kalman (1960) and its first application 

was by NASA to the problem of trajectory estimation for the Apollo program. Since 

then a wide variety of Kalman filters have been developed, from Kalman’s original 

formulation, now called simple Kalman filter, to Schmidt’s extended filter (1970), the 

information filter and a variety of square-root filters developed by Bierman, Thornton 

(1980) and many others. Kalman Filter has been the subject of extensive research and 
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application, particularly in the area of autonomous or assisted navigation. This is likely 

due in large part to advances in digital computing that made the use of the filter 

practical, but also to the relative simplicity and robust nature of the filter itself. 

The Kalman Filter is essentially a set of mathematical equations that implement a 

predictor-corrector type estimator that is optimal in the sense that it minimizes the 

estimated error covariance when some presumed conditions are met. Rarely do the 

conditions necessary for optimality actually exist, and yet the filter apparently works well 

for many applications in spite of this situation. That is why Kalman Filter has also been 

applied in areas as diverse as aerospace, marine navigation, nuclear power plant 

instrumentation, demographic modeling, manufacturing and in a wide range of 

engineering applications from radar to computer vision. 

Kalman Filter is optimal with respect to virtually any criterion that makes sense. 

According to Maybeck (1979), there are two good reasons to choose a Kalman Filter 

over other approaches. The first aspect of its optimality is that the Kalman Filter 

incorporates all information that can be provided to it. It processes all available 

measurements, regardless of their precision, to estimate the current value of the 

variables of interest, with use of: 

1. knowledge of the system and measurement device dynamics, 

2. the statistical description of the system noises, measurements errors, and 

uncertainty in the dynamic models, and 

3. any available information about initial conditions of the variables of interest. 
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Rather than ignoring any of these outputs, a Kalman Filter could be built to combine all 

of this data and knowledge of the various systems’ dynamics to generate an overall best 

estimation. 

The other important reason is that Kalman Filter is a recursive filter which estimates the 

state of a dynamic system from a series of incomplete and noisy measurements. The 

term “recursive” means that only the estimated state from the previous time step and 

the current measurement are needed to compute the estimate for the current state. The 

filter does not require all previous data to be kept in storage and reprocessed every time 

a new measurement is taken. In contrast to batch estimation techniques, no history of 

observations and/or estimates is required and this is of vital importance to the 

practicality of filter implementation. 

A Kalman Filter combines all available measurement data, plus prior knowledge about 

the system and measuring devices, to produce an estimate of the desired variables in 

such a manner that the error is minimized statistically. In other words, if we were to run 

a number of candidate filters many times for the same application, then the average 

results of the Kalman Filter would be better than the average results of any other. 

Conceptually, what any type of filter tries to do is obtain an “optimal”, meaning that it 

minimizes errors in some respect. 

According to Maybeck (1979) there are three basic reasons why deterministic system 

and control theories do not provide a totally sufficient means of performing an analysis 

and design of any physical system. First of all, no mathematical system is perfect, as it 

depicts only those characteristics of direct interest. Secondly, the dynamic systems are 

driven not only by our own control inputs, but also by disturbances which we can 

neither control nor model deterministically, and thirdly, sensors do not provide perfect 
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and complete data about a system. As a result, assuming perfect knowledge of all 

quantities necessary to describe a system completely and assuming perfect control over 

the system is a naive approach. This encourages the following questions: 

− How do you develop system models that account for these uncertainties in a direct 

and proper way? 

− Equipped with such models and incomplete, noise-corrupted data from available 

sensors, how do you optimally estimate the quantities of interest to you? 

− In the face of uncertain system descriptions, incomplete and noise-corrupted data, 

and disturbances beyond your control, how do you optimally control a system to 

perform in a desirable manner? 

− How do you evaluate the performance capabilities of such estimation and control 

systems, both before and after they are actually built? 

The answer to all these is, actually, the Kalman-filtering approach. In Figure 4 is shown 

the general form of the filters’ application. According to this, for known data , 

disrupted with noise , a process is applied and considering various possible 

(k)u

(k)g

 
Figure 4: Kalman Filter application. 
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disturbances/noises  we end to a measurement (k)z (k)y . The use of this measurement 

and of the starting data give, through the application of the filter, the estimation (or 

prediction)  of the process state at the next time step. Notify that the filter is 

applied in discrete time. 

ˆ(k 1)+x

1.6 Microscopic Simulation Model 

Simulation is a method of imitation of operations in real-world processes and systems. 

It can be used to describe and analyse the behaviour of an existing and conceptual 

system especially in traffic and transportation. Hence this can also be a fruitful method 

for searching optimal solution by integrating with efficient algorithms and a part of a 

system supporting decision making. 

One of the most common simulation methods is the microscopic simulation, a 

technique which provides a realistic measure of (traffic) flow on a network as well as any 

other parameter of interest. In the past describing the traffic was possible using 

macroscopic approach which perceived the traffic as a fluid flowing along the 

carriageway. Microscopic approach allows studying the traffic flow by modelling the 

motion of a particular vehicle. The mathematical models used in it are called car 

following models. 

Every microscopic simulation model offers a set of advantages as it is possible to imitate 

with great accuracy the real conditions of a network. Since each vehicle can be 

autonomous, the realism of each vehicle’s behaviour can correspond to the geometry of 

the road network as well as each vehicle’s and its driver’s behaviour can be determined 

by individual set of mathematical rules according to its type. Car-following, overtaking, 

driver’s awareness and aggressiveness and every other parameter can be modelled in 
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this way. What must be noticed is that the more the accuracy of the model is, the higher 

the computational requirements and the time cost of the simulation. However, the 

crucial aspect of any microscopic simulation model is the calibration of parameters 

describing the vehicles and the environment. 

1.7 The Number of Vehicles Estimation Problem 

The vehicle-count estimation problem is illustrated in Figure 5. Figure 5a depicts the 

relevant signal and detector configuration on the signalized link. Two traffic signals are 

located, respectively, just upstream of the upper boundary of the link and at the 

downstream end of the link. The upstream signal (if it exists) determines the traffic 

demand approaching the link while the downstream signal controls the vehicle flow 

exiting the link. Obviously, whenever the link demand is larger than the link outflow, a 

queue is built. It is also shown in Figure 5a that three detectors are installed: at the 

 
Figure 5: Vehicle-count estimation: (a) the signal and detector configuration on the link; (b) the link 

vehicle-count estimation. 
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upstream end of the link, at the downstream end of the link, and in the middle of the 

link. Both boundary detectors provide flow measurements, while the middle detector 

provides time-occupancy measurements. The basic structure of the ramp queue 

estimation is shown in Figure 5b: 

• The estimator is fed in real time with the flow and time-occupancy measurements 

from the link detectors. 

• The estimator delivers in real time the estimated number of vehicles in the link 

(between the two boundary detectors). 
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2.1 Introduction 

Space-occupancy (portion of highway lane length covered by vehicles), traffic density 

(vehicles per kilometer) and vehicle-count in (urban or freeway) links are important 

quantities for both traffic flow modeling and traffic control. These quantities are usually 

needed for highway stretches or links of few hundred meters in length, while the vast 

majority of available measurement devices provide only local measurements at specific 

highway locations. Space measurements covering a few hundred meters may in 

principle be collected by video sensors, but this possibility is obscured due to visibility 

obstacles, geometrical highway conditions, image-processing algorithm accuracy and, 

last but not least, cost. On the other hand, emerging technologies (see, e.g. Cheung, et. 

al., 2005) may soon lead to cheaper, convenient (e.g. wireless) and reliable local 

measurement devices which could foster a space-denser deployment of sensors along 

links. In any case, the investigation and understanding of the relationships between 

locally measurable quantities, such as time-occupancy (portion of time a local sensor is 

covered by vehicles), and the aforementioned space-extended quantities has a high 

practical significance. 

CCCHHHAAAPPPTTTEEERRR   222   
TTTIIIMMMEEE---OOOCCCCCCUUUPPPAAANNNCCCYYY   AAANNNDDD   SSSPPPAAACCCEEE---OOOCCCCCCUUUPPPAAANNNCCCYYY   
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Despite some related efforts in the past (Wardrop, 1952; Edie, 1974; Bhouri, et al., 

1988; Banks, 1995; Cassidy and Coifman, 1997; Kim and Hall, 2004), that will be 

specifically addressed later, there are several issues regarding the relationships between 

local and space variables that are still unexplored, particularly in the case of signalized 

links (e.g. urban roads or freeway on-ramps) where the space-distribution of vehicles is 

strongly inhomogeneous due to the traffic signal switchings. After a brief review of 

available knowledge, the research focus is turned to signalized links to reveal some 

useful relationships between space-occupancy, vehicle-count and time-occupancy 

measurements. The derived findings are illustrated in a series of microscopic simulation 

experiments in CHAPTER 7. This research is a first step towards the development of a 

reliable low-cost estimator for the vehicle-count in signalized links by use of Kalman 

filtering which is reported in CHAPTER 4. 

2.2 Inductive Loop Measurements 

Although information on space-variables (such as density, space-occupancy, vehicle-

count in links) is of major importance for various uses (including real-time control), 

genuine space measurements are costly or little accurate. Consequently, local 

measurement devices (mostly inductive loop detectors) are used to deliver traffic flow 

measurements in form of time-variables (e.g. time-occupancy) at specific highway 

locations. In fact even video sensors are frequently used as virtually local (covering few 

meters of pavement) or loop-emulating, rather than extended-space (few hundred 

meters) measurement devices. 

When a vehicle j,  passes over o loop detector, an electric pulse (j 1,..., N,= Figure 6a) 

is produced, whose shape may depend on vehicle length, height and further 

characteristics. The produced pulse is digitized by setting all values higher (lower) than a 
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Figure 6: Time-occupancy measurements signals. 

threshold equal to one (zero), see Figure 6b, whereby the threshold may be adjustable 

by the user. The duration  of the digital pulse is obviously inversely proportional to 

the vehicle speed 

jt

jy  

 =j j j  (2.1) t L / y

,

where  is usually called the electrical or effective vehicle length which is closely 

related (but is not necessarily equal) to the physical vehicle length  The digital 

signal is transformed to a binary series of 1’s and 0’s (

jL

Ph
jL .

Figure 6c) based on a sufficiently 

short sampling period  e.g. sT , sT 10 ms=  for further processing. The related time-

measurements are produced with an update period T (e.g. sT 10s)=  and refer to the 

time period [  where kT,(k 1)T]+ k 0,1,...=  is the discrete time index. Let N  be the (k)
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number of 0-1 passages in the binary signal of Figure 6c during period k, in which case 

we obtain the flow measurement q(k) N(k) / T= ; while for the time-occupancy we have 

  (2.2) 
= =

= = ≈∑ ∑
N(k ) N(k )

t j j j
j 1 j 1

o (k) t (k) / T L /(y (k)T) n(k)T / Ts

where  is the number of 1’s counted during period k. n(k)

In traffic flow theory, the relevant traffic flow variables density, mean speed and flow (or 

traffic volume) are often defined as abstract mathematical quantities that are continuous 

in both space and time, i.e. , (x, t )ρ v(x, t )  and , respectively; where x and t are 

continuous space and time arguments, respectively. For more practical considerations, 

however, it is quite usual to consider density 

q(x, t )

(k)ρ  (number of vehicles included in a 

section of length Δ at time instant , divided by T) and mean speed kT v(k)  (of vehicles 

in the same section at the same time instant) as instantaneous space-variables; while the 

flow  is defined for a specific location over a time period T, as mentioned earlier. q(k)

2.3 Wardrop’s Approach 

In an attempt to span a bridge between local time-measurements and instantaneous 

space-measurements, Wardrop (1952) proposed the following idealized consideration. 

Assume that the traffic flow consists of (space-homogeneous and stationary) sub-streams 

 each with corresponding sub-flow  and equal vehicle speeds j 1,...,C,= jq jy ; the time-

headway in each sub-stream is then , hence the space-headway is jj1 / q jy / q

q / yρ =

 and the 

sub-stream density j  is the inverse of the space-headway. Taking this 

approach to the limit of one-vehicle sub-streams 

j j

j 1, ..., N=  (the discrete time argument 
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k is suppressed for brevity), we have jq 1 / T=  and ρ =j j1 /(y T)  and hence the global 

traffic variables 

  (2.3) 
N

j
j 1

q q N /
=

= =∑ T

j  (2.4) 
= =

ρ = ρ =∑ ∑
N N

j
j 1 j 1

1 /(y T)

where jy ,  are locally measured individual vehicle speeds. Thus the (space) 

mean speed 

j 1,..., N,=

 
= =

= ρ Δ ρΔ = ρ =∑
N N

j j
j 1 j 1

∑ jv y /( ) q / N / 1 / y  (2.5) 

turns out to be equal to the harmonic average of passing vehicle speeds jy  while the 

time mean speed is equal to the arithmetic average of jy .  Note that (2.4), (2.5) actually 

span a bridge between locally measured quantities (passage of N vehicles and vehicle 

speeds jy )  on one hand and space quantities ρ, v on the other hand; albeit under the 

mentioned, somewhat vague stationarity and homogeneity assumptions, see also Hall 

(2002). 

2.4 Edie’s Definition 

Edie (1965; 1974) proposed a generalized definition of traffic variables based on 

individual vehicle trajectories within a finite space-time window (Figure 7) whereby the 

traffic flow q equals the total vehicle mileage (in veh·km) within the window, divided by 

the window surface ΔΤ ; the density ρ equals the total time spent by all vehicles (in 

veh·h) within the window, divided by ΔΤ ; and v q /= ρ . Edie’s definitions reduce to 
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Figure 7: Illustration of Edie (1965; 1974) definition of traffic variables. 

the definitions of section 2.2 for the space-variables ρ and v, for  and for the 

time-variable q, for 

T dt;→

dx.Δ→  

Assume that a local measurement device is available at location 1 (Figure 7), measuring 

vehicle passage and speeds over period T. We introduce the following assumptions that 

may actually hold if Δ is made sufficiently small: 

• All vehicles crossing 1 also cross 2 within the same window and vice versa. 

• Vehicles maintain a constant speed between locations 1 and 2. 

Under these assumptions we obtain from Edie’s definitions 

 = Δ Δ =q N /( T) N / T   

   
= =

ρ = Δ Δ =∑ ∑
N N

j
j 1 j 1

( / y ) /( T) 1 /(y T)j

 
N

j
j 1

v q / N / 1 / y
=

= ρ = ∑   
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i.e. we re-gain (2.3)-(2.5), albeit under more clear (but also less general) assumptions 

than by use of Wardrop’s approach. 

Note that the above assumptions may only hold if dx,Δ→  in which case ρ and v 

resulting from (2.4) and (2.5), respectively, become local variables, defined over a finite 

period T and infinitesimal space. The validity of these values over a (more or less) 

extended space around the measurement location depends on the level of stationarity 

and homogeneity of traffic flow. Thus, (2.4) and (2.5) may be useful for freeway traffic 

flow, where departures from stationary and homogeneous conditions are usually 

moderate; but in signalized links, where traffic conditions are inherently nonstationary 

and inhomogeneous due to the traffic light switchings, densities (2.4) and space mean 

speeds (2.5) calculated from local measurements are not expected to be representative 

for the whole link. 

2.5 Mean Effective Vehicle Length 

Using (2.2) and (2.4), Papageorgiou (1987) and eventually Bhouri et al. (1988) derived 

the following relationship between time-occupancy and density on a highway lane 

 to L= ρ  (2.6) 

where L is the mean effective vehicle length that has to be defined in a somewhat 

peculiar way 

 j j j
j j

L (L / y ) (1 / y= ).∑ ∑  (2.7) 

Note that, if all vehicles have the same speed, (2.7) yields L equal to the arithmetic 

average of  while, if all vehicles have the same effective length jL ; L,  (2.7) yields L L=  
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independently of the vehicle speeds jy .  The formulas (2.6), (2.7) were also included in 

the notes by Papageorgiou and Ioannou (1993) of a Short Course that was taught in Los 

Angeles and the University of California at Berkeley in 1993. The same formulas were 

also derived by Cassidy and Coifman (1997) on the basis of the traffic variable 

definitions of Edie (1965). Equations (2.6), (2.7) indicate that the measured time-

occupancy is roughly proportional to traffic density, which was empirically verified by 

Cassidy and Coifman (1997) and, more recently, by Kim and Hall (2004) by use of 

freeway data. It is evident from (2.7) that, even under stationary and homogeneous 

conditions, departures from proportionality may be observed due to either variable 

traffic composition (in terms of effective vehicle lengths ) or inhomogeneous vehicle 

speeds 

jL

jy . 

2.6 Space-Occupancy 

Space-occupancy  may be defined as the portion of highway lane length 

covered by vehicles. This leads to the interesting question of possible equivalence or 

otherwise of space- and time-occupancies (recall that space and time mean speeds are 

structurally different from each other). Applying again Wardrop’s approach, we assume 

that all vehicles belonging to sub-stream j have equal physical vehicle length  and 

equal effective length . Thus the sub-space-occupancies  are given by 

so [0,1∈ ]

.

Ph
jL

jL s, jo

 Ph
s, j j jo L= ρ  (2.8) 

On the other hand, we obtain for the sub-time-occupancies  from t , jo (2.2) 

, and, because t , j j j j j jo q L / y L= = ρ , jot tj
o =∑  and s j

o o= s, j ,∑  time-occupancy  

equals the space-occupancy  if the effective vehicle lengths  equal the 

to

so jL
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corresponding physical vehicle lengths . Note that, if Ph
jL Ph

j jL L j,= ∀  then we deduce 

from (2.1) that the loop detector effectively shrinks to a line of zero length and the time-

occupancy signal is on for as long as that line is covered by a passing vehicle. In 

practical terms, if the threshold of Figure 6a is chosen such that  then the 

produced time-occupancy will approximate the space-occupancy (provided the traffic 

conditions do not change significantly in a space-time window around the measurement 

location and period). Using 

Ph
j jL L≈ ,

jy

(2.8) we have 

   Ph Ph
s s, j j j j j

j j j

o o L L q /= = ρ =∑ ∑ ∑

and taking the limit  we have jq 1 / T=

 Ph
s j

j

1o L /
T

= ∑ jy .

]ρ

 (2.9) 

From (2.4), (2.9) we obtain 

 Ph
s j j j

j j

o (L / y ) / (1 / y )[= ∑ ∑  (2.10) 

which suggests that (2.6) applies to the space-occupancy as well, under an analogous 

definition of the mean physical vehicle length as in (2.7); moreover, (2.6), (2.7) and 

(2.10) confirm that  equals  if so to Ph
j jL L j.= ∀  

Note that (2.10) may appear paradoxical because the space-occupancy on a road stretch 

of length Δ holding N vehicles, is by definition 

 Ph Ph
s j j

j j

o L / L /= Δ = ρ N∑ ∑  (2.11) 
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which looks different than (2.10). The resolution of this paradox is that the sum in 

(2.10) addresses vehicles passing a detector location over time while the sum in (2.11) 

addresses vehicles being included in a road stretch. Under the same token, the space 

mean speed equals the harmonic average of the speeds of vehicles passing a detector 

location over time but is also equal to the arithmetic average of the speeds of vehicles 

included in a road stretch. 
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3.1 Introduction 

All formulas derived in CHAPTER 2 to relate measurable time-variables with hardly 

measurable space-variables, hold approximately under reasonably homogeneous and 

stationary traffic conditions that are usually encountered in uninterrupted traffic flow, 

e.g. on freeways. These relationships, however, may break down if traffic is strongly 

nonstationary and inhomogeneous as, for example, in signalized links due to frequent 

traffic interruptions caused by the traffic signals. This section derives some relationships 

between space- and time-variables for this more general case. 

3.2 Space-Occupancy Relationships 

Consider a single-lane link of length Δ and define the instantaneous space-occupancy 

   s

1 if x is covered by a vehicle
o (x)

0 if not
⎧

= ⎨
⎩

where  is the space argument. On the other hand, let  be the instantaneous 

space-occupancy for the whole link, in which case 

0 x≤ ≤ Δ so

 s s

0

1
o o (x)

Δ

=
Δ ∫ dx  (3.1) 

CCCHHHAAAPPPTTTEEERRR   333   
SSSIIIGGGNNNAAALLLIIIZZZEEEDDD   LLLIIINNNKKKSSS   
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holds. For example, if there is exactly one vehicle of length L travelling on the link, then 

 and, indeed, the right-hand side of so L /= Δ, (3.1) also yields 

 
L

s
0

1 1
o (x)dx dx L /

χ+Δ

χ

= = Δ
Δ Δ∫ ∫   

where χ is the location of the vehicle’s rear end. 

According to section 2.6, the local space-occupancies  may be approximated by 

time-occupancy measurements in a sufficiently small space/time-window if  

More specifically, we assume that: 

so (x)

Ph
j jL L= .

1

• The update period T of the time-occupancy measurements is sufficiently small to 

approximate instantaneous values, such that to =  if a detector is activated by a 

vehicle or  otherwise. to 0=

• There are M time-occupancy measurements along the link according to Figure 8 

with spacing d / M= Δ  among them (space sampling). 

• We have  Ph
j jL L= .

Under these assumptions, the space-occupancy  in an area of length d around a 

measurement location  may be approximated by the corresponding 

measured time-occupancy  while 

i
so (x )

ix , i 1,...,M,=

i
to (x ) (3.1) may be approximated by 

 
Figure 8: Placement of M internal detectors for time-occupancy. 
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  (3.2) 
= =

≈ Δ =∑ ∑
M M

i
s s t

i 1 i 1

o o (x )d / o (x ) / M.i

j

Based on (3.2), the instantaneous space-occupancy on a link may be approximated by a 

series of time-occupancy measurements with  and very short update period T; 

the level of approximation accuracy depending on the corresponding spacing d. 

Ph
jL L=

3.3 Bias-free Estimates 

We will now turn our attention to the case where the number of utilized detectors M is 

small or even 1. Where should the detector(s) be best placed on the link? To elaborate 

on this question we denote  to be the average over a reference period (e.g. over 

a signal cycle or over a peak period or over a whole day) of the space-occupancy at 

location x; and we denote  the corresponding average of the space-occupancy for 

the whole link. From 

sE{o (x)}

sE{o }

(3.1) we have 

  (3.3) s

0

E{o (x)}dx E{o } .
Δ

= Δ∫ s

The value of  at a specific location  will tend to be higher (lower) if vehicles 

tend to spend relatively longer (shorter) times to pass location  as compared to other 

link locations. In fact, if each vehicle would travel on the link with constant speed, then 

all  would be equal among them 

i
sE{o (x )} ix

ix

sE{o (x)} x,∀  and, from (3.1), we would have 

 (which verifies s sE{o } E{o (x)} x= ∀

s

(3.3)). 

On signalized links, the average speed of vehicles is expected to be lower for increasing 

x due to queue forming in the downstream part of the link during the red signal; hence 

the ratio  is expected to be monotonically increasing with x. Note, sE{o (x)} / E{o }
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however, that we may have different ratio profiles for different reference periods, e.g. 

for a.m. peak or p.m. peak or off-peak etc., whereby each profile satisfies (3.3). Figure 9 

illustrates the above relationships for a certain reference period. The horizontal line 

reflects the average value  of the whole-link space-occupancy while the displayed 

curve corresponds to  

sE{o }

sE{o (x)}, 0 x .≤ ≤ Δ  Because the surfaces below the horizontal 

line and the curve are equal due to (3.3), there is at least one location x  at which 

s sE{o } E{o (x)}= . Thus a bias-free estimate of the whole-link space-occupancy may be 

obtained from one local so (x)  or, approximately, from one local to (x) -measurement 

of time-occupancy. Unfortunately the precise location x  may be unknown or may 

change for different reference periods. 

Figure 9 also illustrates that, in view of (3.3), the difference between  and 

 at specific locations will be smaller for flatter -profiles; and that one 

single measurement location x close to 

sE{o }

sE{o (x)} sE{o (x)}

/ 2Δ  (i.e., at the middle of the link) is likely to 

deliver reasonably low-biased estimates of  under various different practically-relevant 

-profiles. More generally, if M detectors are available (but the exact -

profile is unknown) they should be placed symmetrically around the middle of the link 

so

sE{o (x)} sE{o (x)}

 
Figure 9: sE{o }  and  for a signalized link. sE{o (x)}
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(according to Figure 8) so as to reduce the estimation bias resulting from (3.2). 

In conclusion, a number M of detectors (Figure 8) measuring time-occupancy (with 

 and T very small) may be used for estimating the instantaneous space-

occupancy on a signalized link according to 

Ph
jL L= j

(3.2). The higher M in (3.2), the better the 

resulting estimate in terms of both average value and error variance. If M is small or 

even 1, then the detector placement according to Figure 8 is likely to lead to reasonably 

low average error (bias), but the variance of the error may be high as it will be further 

illustrated in the following general example. 

3.4 A General Example 

Consider one single vehicle travelling (with any speed) on a link of length Δ. Assume 

that  loop detectors are installed along the link with equal distances d among 

them according to 

M / d= Δ

Figure 8, and are operated with very small T. Assume also that we 

have  for the vehicle, i.e. the effective lengths of the detectors are equal to zero. 

Let  where  

PhL = L

.

L / d n m= + n int(L / d).=

The link’s space-occupancy at any time is obviously so L /= Δ  We wish to estimate this 

space-occupancy (that is difficult to measure directly) by use of the detector time-

occupancies. More specifically, we produce the space-occupancy estimate  as the 

arithmetic average of all detector time-occupancies, according to 

sô

(3.2). If  the 

vehicle occupies at any time either n or 

m 0,>

n 1+  detectors; and the respective estimation 

 at any time is then equal to either sô nd /Δ  (underestimation) or (  

(overestimation). Assuming (for simplicity) that the vehicle has a constant speed, i.e. it 

may be present with the same probability at any location between two successive 

detectors, it is not difficult to deduce that it will activate at any time n detectors with 

n 1)d /+ Δ
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probability  and  detectors with probability m. Thus, while virtually all 

estimates  are subject to (negative or positive, respectively) error at any time, the 

expected value of  is 

1 m− n 1+

sô

sô

   Δ Δ Δs sˆE{o } [(1 - m)n + m(n + 1)]d/  = (n + m)d/  = L/  = o=

i.e., the estimate  is bias-free. On the other hand, the absolute error sô s sˆo o−  at any 

time is either L/ (nd / ) md /Δ − Δ = Δ  or L / [(n 1)d / ] (1 m)d / ,Δ − + Δ = − Δ  while the 

relative error s sˆo o / o− s  at any time is either  or (md / L 1 m)d / L,−  and the variance 

of the absolute error is  Note that 0 m2 2m(1 m)d / .− Δ 1≤ ≤  and hence the maximum 

relative estimation error cannot be larger than  From these we may conclude: d / L.

• The maximum absolute and relative estimation errors are proportional to the inter-

detector distance d; both errors tend to zero in the limit  d 0→ .

• The estimation error is equal to zero at any time if m 0,=  i.e., if the vehicle length 

L is an exact multiple of d; this is because in this special case the vehicle activates 

exactly n detectors at any time. 

• The derived results hold also for n 0,=  i.e.  Naturally, in this case the 

vehicle either activates one detector or does not activate any detector; in the first 

case the absolute and relative errors are (

d L> .

d L) /− Δ  and (d L) / L,−  respectively; 

while in the second case both errors are L /Δ  and 1, respectively. 

We will now extend the derived results for the case of N vehicles traveling on the link 

with respectively lengths  Ph
j jL L ,= j 1,..., ,= Ν  and corresponding    

defined as before. The space-occupancy in this case is 

jn , jm , j 1,..., ,= Ν

so NL /= Δ  where L is now the 

arithmetic average of   and with similar reasoning as for the case N 1 jL , j 1,..., ,= Ν =
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(and observing that no detector can be activated by more than one vehicle 

simultaneously) we have the following generalized results: 

• The produced estimates  are bias-free. sô

• The maximum absolute error is given by 
=

Δ −∑N

jj 1
(d / ) max{m ,1 m }.j

j

j j

 In the 

special case , this error is obviously N times higher than in the one-

vehicle case. The maximum relative error is given by 

 In the special case 

jL L= ∀

=
−∑N

jj 1
(d / NL) max{m ,1 m }. jL L= ∀ , this error is obviously 

the same as in the one-vehicle case. Finally, the absolute error variance is N times 

higher than in the single-vehicle case above if the errors relating to individual 

vehicles are mutually independent. 

The occurrence of the maximum (absolute or relative) errors in the N-vehicle case 

implies that all individual vehicle errors take simultaneously their maximum value; this 

is an event whose likelihood decreases strongly with increasing N. 

3.5 Relaxing Some Assumptions 

If the utilized detectors are operated with , we may assume Ph
jL L≠ j

 Ph
j j j jL L , E= + ε ε <  (3.4) 

where  is the (non-zero) effective detector length while the limit  is small 

enough to avoid simultaneous activation of one detector by more than one vehicles. 

jε E 0>

Assuming that the link holds N vehicles, the space-occupancy would be  

while an, otherwise perfect, estimation (e.g. as in the example of section 

Ph
so NL /= Δ,

3.4 based on 
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time-occupancies would deliver sô NL / ;= Δ  where  and L are arithmetic averages 

of  and  respectively. Thus, the additional average error (bias) due to  is 

readily calculated equal to  (where 

PhL

Ph
jL jL , Ph

jL L≠ j

N /ε Δ ε  is the arithmetic average of  j ).ε

On another issue, the analysis of sections 3.2-3.4  was conducted for instantaneous 

values of space- and time-occupancies. However, time-occupancy is practically 

measured for finite update periods  which gives rise to the following remarks that 

are explained on the basis of the example of section 

T 0>

3.4: 

• For finite T, each vehicle may activate both n and n 1+  detectors within a single 

measurement period. As a consequence, the estimation error attributed to each 

vehicle will be a correspondingly time-weighted average of errors resulting from 

activation of only n or only n 1+  detectors. The absolute value of this time-

weighted average is easily seen to be less-equal than the maximum error of the 

instantaneous case and, indeed, the estimated space-occupancy  will tend to its 

expected value  for sufficiently high T (and non-zero vehicle speed). This 

suggests that estimates tend to be more accurate with increasing period T. 

sô

sˆE{o }

• The above conclusion is only true if the number of vehicles in the link (and hence 

the space-occupancy) does not change during T. In the more realistic case of 

vehicles entries and departures, the space-occupancy  may be continuously 

changing; thus estimates  calculated as averages of measured time-occupancies 

may become increasingly outdated with increasing T. This suggests that estimates 

tend to be less accurate with increasing period T if the space-occupancy changes 

significantly. 

so

sô
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• Both remarks above suggest that there is an optimal value of T for which the 

estimates  produced via averaging of time-occupancy measurements are most 

accurate. Clearly, this value depends on prevailing conditions (link length, signal 

plans, arriving demand) and can hardly be determined analytically. An important 

factor in this context is also the number of utilized detectors; if M is very high, we 

have a good averaging (over space) even with very short T; if M is very low (or 1), 

the few available local measurements may not be representative for the real link 

occupancy, unless an averaging takes place over time due to a longer T. 

sô

A further situation that deserves some attention is when two link vehicles are standing 

still (due to a red traffic signal) just upstream resp. downstream of a detector, without 

activating the detector. In this randomly appearing case, the detector measures a zero 

value for time-occupancy while the real traffic situation is quite the opposite. As will be 

demonstrated in related simulation experiments in CHAPTER 7, this ZSZO (zero-

speed zero-occupancy) situation does not distort the expected value of the estimate 

 because the gaps between vehicles at standstill contribute to the whole-link space-

occupancy  hence they should also contribute to its estimate  On the other hand, 

this randomly appearing phenomenon may contribute to an increase of the estimation 

error variance due to accordingly high estimation errors at the times of its appearance. 

sˆE{o }

so , sô .

3.6 Vehicle-count in the Link 

Summarizing the findings of sections 3.2-3.5 we conclude that the estimated space-

occupancy  calculated as the average of M detector time-occupancies according to sô

(3.2) may be related to the link’s current space-occupancy  so

 s sô o o= + ζ  (3.5) 
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where the random variable oζ  incorporates several potential sources of error: 

• Detector measurement noise, which may be depending on the magnitude of the 

measured time-occupancies. 

• Modelling error due to the approximative character of (3.2), particularly for small 

M. Note that this error may include bias according to Figure 9. This error also 

includes the impact of the update period T and of the ZSZO-situation outlined in 

section 3.5. 

• Error due to the effective vehicle lengths being different than the physical vehicle 

lengths while measuring time-occupancy. If the non-zero effective detector length ε 

is known, one may convert the collected time-occupancy measurements into non-

biased representations of the space-occupancy by multiplying them with 

 according to section Ph PhL /(L )+ ε 3.5. This bias-rejection manipulation may have 

additional benefits (lower error variance in the ZSZO-case) as will be illustrated in 

section 7.5. 

In order to span a bridge linking the time-occupancy and the vehicle-count N in the 

link, we observe that, by definition, 

 = ΔλPh
so N L /( )  (3.6) 

where λ is the number of lanes in the link. From (3.6) we may define the estimated 

vehicle count 

 sPh
ˆ ˆN

L
o

Δλ
=  (3.7) 

and using (3.6), (3.7) in (3.5) we obtain 

REAL-TIME ESTIMATION OF VEHICLE-COUNT WITHIN SIGNALIZED LINKS 34 



CHAPTER THREE: SIGNALIZED LINKS 

 N̂ N= + ζ  (3.8) 

where Ph
o / L .ζ = ζ Δλ  Note that the transformation of the estimated space-occupancy 

measurement  into an estimated vehicle count  via sô N̂ (3.7) involves the (arithmetic) 

average physical vehicle length  which may not be accurately known; this introduces 

a further potential source of bias in equation 

PhL

(3.8). Note also that the term 

 appearing in Ph
maxN /= Δλ L (3.7) actually corresponds to the maximum number of 

vehicles that can be accommodated in the link in a bumper-to-bumper manner. 

Equations (3.5) or (3.8) may be used for direct estimation of the link’s space-occupancy 

 or vehicle-count N, respectively. The estimation accuracy depends on a number of 

factors, most of which have been identified in sections 

so

3.2-3.5. As the analytical pre-

calculation of all addressed error sources is rather difficult, several microscopic 

simulation scenarios in CHAPTER 7 will be examined in order to assess the estimation 

quality. 

The estimation error resulting from (3.5) or (3.8) may be reduced by additional 

application of a Kalman Filter presented later. In particular, the Kalman-filter 

approach, that uses (3.5) or (3.8) as its output equation, is valuable because it leads to 

acceptable estimation error even by use of only M 1=  detector measuring time-

occupancy in the middle of the link. This reduces the installation and maintenance cost 

by replacing detector hardware by algorithmic intelligence. 
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4.1 Introduction 

Traffic-responsive control systems require reliable real-time information on the 

prevailing traffic conditions to make sensible control decisions. More particularly, the 

number of vehicles included in signalized links (such as urban road links or metered 

motorway ramps) is valuable information for urban signal control and motorway ramp 

metering systems. Direct measurements of this quantity may in principle be collected by 

video sensors, but this possibility is obscured due to visibility obstacles, limited visible 

link length, image processing algorithm accuracy and, last not least, cost. 

As an alternative possibility, traditional low-cost loop detectors measuring time-

occupancy may be employed. The difficulty faced by this approach is due to the 

strongly inhomogeneous character of the traffic state in signalized links caused by the 

frequent switching of the upstream and, most importantly, downstream traffic lights. 

Thus, a detector station (across all link lanes) positioned at a specific link location (e.g. 

at the signal stop line or in the middle or at the upstream end of the link) delivers 

(local) occupancy information that is not representative for the whole link. In other 

words, local time-occupancy measurements collected by loop detectors need to be 

translated into space-occupancy or vehicle-count estimates that are directly related to 

the number of vehicles in the link. 

CCCHHHAAAPPPTTTEEERRR   444   
KKKAAALLLMMMAAANNN   FFFIIILLLTTTEEERRR   DDDEEEVVVEEELLLOOOPPPMMMEEENNNTTT   
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A relatively high-cost approach, that is, e.g., practiced in some ramp metering 

installations in the U.K., is to install a high number of loop detectors along the link (e.g. 

one detector every 50 m in the U.K. ramps). Yet another (theoretical) possibility would 

be to install two flow-measuring detectors at the respective extreme points of the link 

and deduce vehicle-counts in the link from the conservation equation; however, this 

approach would soon lead to unacceptably high estimation errors due to time-

accumulation of the inevitable measurement errors. 

The estimation method presented in this section employs Kalman filtering to deliver 

reliable real-time estimates of vehicle-count in signalized links based on measurements 

of three loop detector stations located at both extreme points and at the middle of the 

link, respectively. This Kalman Filter turns out to be similar to the one proposed in 

Bhouri, et al. (1988) for the estimation of traffic density in short non-signalized 

motorway links. 

An interesting question addressing the degree of hardware cost (for detectors, 

communications and maintenance) savings thanks to exploitation of low-cost 

algorithmic intelligence reads: How many (additional) loop detectors would be 

necessary to reach the estimation accuracy of the proposed method? This question as 

well as a thorough assessment of the proposed method under several different 

conditions are treated via microscopic simulation. 

Although the presented method can be applied equally well to urban signalized links, 

the reported simulation investigations were chosen to resemble to typical metered 

motorway ramps. Vehicle-count estimates for motorway ramps are required within 

ramp metering systems for: 
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• Efficient ramp queue control to avoid spillback in the adjacent street network 

(Smaragdis and Papageorgiou, 2003; Sun and Horowitz, 2005). 

• Efficient and equitable ramp metering coordination (Kotsialos and Papageorgiou, 

2005). 

A different approach to vehicle count estimation for motorway ramps using speed 

measurements and curve fitting to a high number of simulation data (that may be 

difficult to collect in the field) was proposed in Sun and Horowitz (2005). 

4.2 Introduction to Kalman Filter 

First of all it will be attempted to make an overview of the Kalman Filter’s general 

mathematical equations and necessary assumptions for its application to any process. 

Then, all filters’ equations will be transformed so as to develop the complete model for 

the estimation of the number of vehicles in a signalized link. 

The Kalman Filter addresses the general problem of trying to estimate the state  

of a discrete-time controlled process that is governed by the linear stochastic difference 

equation 

n∈ℜx

State equation:   (4.1) (k 1) (k) (k) (k) (k) (k) (k)+ = + +x A x B u D g

with a measurement  that is n∈ℜy

Measurement equation: (k) (k) (k) (k)= +y C x z   (4.2) 

Σ(x,u,y) 

The  matrix A in the difference equation n n× (4.1) relates the state at the current time 

step k to the state at the next step k 1+ , in the absence of either a driving function or 

process noise; in practice, A might change with each time step. The  matrix B ×n
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relates the optional control input ∈ℜu  to the state x and the n n×  matrix D enforces 

noise . The  matrix C in the measurement equation (k)g m n× (4.2) relates the state to 

the measurement y(k); in practice C might change with each time step or measurement. 

The random variables  and  represent the process and the measurement 

noise respectively. These variables and the initial state  of the process satisfy the 

following three conditions: 

(k)g (k)z

(0)x

1.  and  are zero-mean Gaussian white random processes. For any  

and : 

(k)g (k)z k 0≥

≥ 0

 =E[ (k)]g 0   

 =E[ (k)]z 0   

 
=⎧

⋅ = ⎨
⎩

T (k) if k ,
E[ (k) ( )]

otherwise

Q
g g

0
  

 
=⎧

⋅ = ⎨
⎩

T (k) if k ,
E[ (k) ( )]

otherwise

R
z z

0
  

 
=⎧

⋅ = ⎨
⎩

T (k) if k ,
E[ (k) ( )]

otherwise

M
g z

0
  

where Q and R are known symmetric positive semi-definite matrices, while 0 denotes 

zero vectors or zero matrices of appropriate dimensions. If  and  are 

correlated, then M is the correlation matrix, otherwise

(k)g (k)z

=M 0 . 

2.  is a Gaussian random vector with known mean and covariance matrix P: (0)x
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 0x̂ E[ (0)]= x   

 { }P x x T
0 0ˆ ˆE [ (0) x ] [ (0) x ] .= − ⋅ − 0  (4.3) 

3.  is uncorrelated to  and  at any k. (0)x (k)g (k)z

Lets consider Σ(x,u,y) under the assumptions 1-3. At each time step k, given (k)y  (and 

its available values at all previous time instants, i.e. (k 1), (k 2),...− −y y ), it is the goal of 

the Kalman Filter to deliver state estimate  so as to minimize the covariance of 

the estimation error 

ˆ(k+1/k)x

 { }x x x xTˆ ˆE [ (k+1) (k+1/k)] [ (k+1) (k+1/k)] Min− ⋅ − →   

where ˆ(k+1/k)x  denotes the mathematical expectation of (k+1)x  conditional on 

measurements available up to the k-th time step (actually ˆ(k+1/k)x  is the one-step 

prediction of x(k+1)).

The recursive equations of the filter are as follows: 

 { }= − + + ⋅ − −
Model Correction

ˆ ˆ ˆ(k+1/k) (k) (k / k 1) (k) (k) (k) (k) (k) (k / k 1)x A x B u K y C x  (4.4) 

with 

  (4.5) K A P C D M C P C RT T(k)=[ (k) (k/k-1) (k) + (k) (k)] [ (k) (k/k-1) (k) + (k)]⋅ -1

T T

x̂

P A K C P A D Q D K M DT T(k+1/k) [ (k) (k) (k)] (k/k-1) (k) (k) (k) (k) (k) (k) (k)= − + −  (4.6) 

   0ˆ(0/-1)x
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   0(0/-1)P P

As noticed in (4.4), the Kalman Filter consists of two terms: (1) model term delivering 

pure model-based state estimation at each time instant k and (2) correction term based 

on the real-time measurements collected by each k. Both terms are essential for the 

satisfactory performance of the filter; the use or not of the correction term in estimation 

is weighted by . The  is the gain (k)K (k)K n m×  matrix that minimizes the error 

covariance equation (4.3). A good way of thinking the weighting by K is that as the 

measurement error covariance R approaches zero, the actual measurement (k)y  is 

“trusted” more and more (then, from equation (4.5), ), while the 

predicted measurement  is trusted less and less. On the other hand, as the 

estimate error covariance  approaches zero (then, from equation 

1(k) (k) (k)−→K A C

ˆ(k) (k)C x

(k)P (4.5), ) 

the actual measurement 

(k) 0→K

(k)y  is trusted less and less, while the predicted measurement 

 is trusted more and more. (k) (k)C x

4.3 Modelling for Estimation 

An appropriate state-space model and a measurement model are needed for 

application of the Kalman Filter. The state-space model is the conservation-of-vehicles 

equation in the link while the measurement model is based on the insights gained in 

CHAPTER 3. 

The evolution of the number of vehicles in a link obeys the following conservation 

equation 

  (4.7) in outN(k) N(k 1) T[q (k 1) q (k 1)]= − + − − −
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Where  denotes the number of vehicles in the link at time  and T is the 

measurement and estimation update period (or sampling time);  and 

 are the flows entering and exiting, respectively, the link during the period 

. These flows are measured by the boundary detectors 

N(k) kT

inq (k 1)−

outq (k 1)−

[(k 1)T, kT]−

 m
in in inq (k 1) q (k 1) (k 1)− = − + γ −  (4.8) 

 m
out out outq (k 1) q (k 1) (k 1)− = − + γ −  (4.9) 

where   are the related measurements while ,  denote the corresponding 

measurements noise which are assumed to be zero-mean stochastic variables. The 

measurement noise may realistically be modeled in proportion to the related flow value 

rather than independent thereof; this, however, would render the resulting state 

equation nonlinear and would call for application of the more complex Extended 

Kalman Filter. Preliminary simulation investigations indicated that the higher level of 

modelling realism does not lead to substantially higher estimation accuracy; hence it was 

decided to consider  and  in 

m
inq , m

outq m
inγ

m
outγ

m
inγ

m
outγ (4.8) and (4.9) as random variables with constant 

variance that is independent of the value of the measured flows. Replacing (4.8), (4.9) in 

(4.7) yields 

  (4.10) m m
in outN(k) N(k 1) T[q (k 1) q (k 1)] T (k 1)= − + − − − + γ −

where  Although, in principle, the conservation equation with inflow and 

outflow measurements could be directly used for estimating the vehicle-count , eq. 

out in .γ = γ − γ

N(k)

(4.10) reveals that such a procedure would accumulate the unavoidable measurement 

noise γ leading to increasingly inaccurate estimates. Therefore, more information is 
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necessary to counter the accumulation of measurement noise in the state equation 

(4.10). 

The required additional information may be provided by the middle detector in Figure 

5a. According to CHAPTER 3, the time-occupancy m
to (k 1)−  collected by this detector 

during  may be related to the link’s space-occupancy  at time 

 

[(k 1)T, kT]− so (k 1)−

(k 1)T−

 m
t s oo (k 1) o (k 1) (k 1)− = − + ζ −  (4.11) 

where the random variable oζ  incorporates several potential sources of error: 

• Detector measurement noise: As for the flow measurement noise above, this noise 

will be considered independent of the measured occupancy value in order to obtain 

a simpler estimation algorithm. 

• Modelling error due to the approximative character of (3.2), particularly for small 

M. Note that this error may also include some (small) bias. Finally, this error also 

includes the impact of the update period T and of the ZSZO-phenomenon 

outlined in section 3.5. 

• Error due to the effective vehicle lengths being different than the physical vehicle 

lengths while measuring time-occupancy (see section 3.5). 

In order to span a bridge linking the time-occupancy and the vehicle-count N in the 

link, in the light of (3.6), (4.11) we may define the “measured” vehicle count 

 m
tPh

N
L

mo
Δλ

=  (4.12) 

and replacing (3.6), (4.12) in (4.11) we finally obtain 
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 mN (k 1) N(k 1) (k 1)− = − + ζ −  (4.13) 

where Ph
o / Lζ = ζ Δλ . Note that the transformation of the collected time-occupancy 

measurement  into a “measured” vehicle-count  via m
to mN (4.12) involves the 

(arithmetic) average physical vehicle length  which may not be accurately known; 

this introduces a further potential source of bias in the measurement equation 

PhL

(4.13). 

Note also that the term  appearing in Ph
maxN /= Δλ L (4.12) actually corresponds to the 

maximum number of vehicles that can be accommodated in the link in a bumper-to-

bumper manner. 

The state equation (4.10) and measurement equation (4.13) have the appropriate form 

for Kalman-filter application. To this end we should consider the system noise γ and 

measurement noise ζ to be zero-mean white gaussian random variables. These 

assumptions may not be verified fully in practice but the Kalman Filter may 

nevertheless deliver practically useful, suboptimal estimates. Of particular importance is 

the possible appearance of biased measurements (4.13) (i.e. non-zero-mean error) 

because biased measurements cannot be rejected by the Kalman Filter and will lead to 

accordingly biased estimates. 

Despite the various sources of (partly non-zero-mean) errors, it is expected that the 

measurement equation (4.13) contains a sufficient level of reliable information that may 

be exploited by the Kalman Filter in order to reduce the accumulated error that would 

result from the usage of the conservation equation (4.10) alone. 

The quality of the measurement equation may be improved if more internal detectors 

are used to produce an appropriate average measurement signal according to (3.2). 

Based on the general scheme of Figure 8, one may employ M (instead of one) internal 
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detectors (separated by equal distances d / M),= Δ  in which case  may be calculated 

at each period as the arithmetic average of time-occupancies collected by the individual 

internal detectors according to 

m
to

(3.2). 

4.4 Kalman-filter Estimator 

Based on the state equation (4.10) and measurement equation (4.13), a Kalman-filter 

estimator (Jazwinsky, 1970) for the number of vehicles in the link may be immediately 

derived 

  (4.14) m m m
KF KF in out KF

ˆ ˆ ˆN (k) N (k 1) T[q (k 1) q (k 1)] K[N (k 1) N (k 1)]= − + − − − + − − −

where  is the delivered estimate of vehicle-count and K is the (stationary) gain 

parameter of the filter. The produced estimate  is truncated if it exceeds the range 

 where 

KFN̂ (k)

KFN̂

max[0,N ]′ maxN′  is the maximum number of vehicles that can be accommodated 

in the link at standstill including the usual safety distance D among vehicles (e.g. 

  may be calculated, similarly to D 1m);= maxN′ (4.12), from Ph
maxN (L′ D)= Δλ + . The 

filter (4.14) consists of a system model (the conservation equation comprising the first 

two terms on the r.h.s. of (4.14)) and a correction term that attempts to reduce the 

estimation error resulting from the system noise γ in (4.10). 

The filter equation (4.14) may be re-arranged 

  (4.15) m m
KF KF in out

ˆ ˆN (k) K N (k 1) (1 K) N (k 1) T[q (k 1) q (k 1)]= ⋅ − + − ⋅ − + − − −m

in which case a further interpretation may be given. The produced estimate  

results from the combination of: 

KFN̂ (k)
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• An exponential smoothing (first two terms on the r.h.s. of (4.15)) based on the 

arriving measurements  mN .

• A prediction term that involves the most recent flow measurements. 

According to the Kalman-filter theory (Jazwinsky, 1970), the value of the gain K should 

be selected 

 K /( Z)= Π Π +   

where Π satisfies 

 2(1 K) T .Π = − Π + Γ   

From these equations we obtain 

 2K 0.5 4( )= −α + α + α  (4.16) 

where ; and Γ, Ζ are the variances of the system noise γ and measurement 

noise ζ, respectively. While the system noise variance Γ could be approximately 

determined based on the typical flow measurement errors, the value of the 

measurement noise variance Ζ is related to many different sub-processes and hence 

difficult to derive. However, 

2T / Zα = Γ

(4.16) suggests that the value of K depends only on the 

ratio α, not on the explicit values of Γ and Z. Hence, rather than attempting to derive 

appropriate values for Γ, Ζ, one may attempt to fine-tune the ratio α, or, even more 

directly, the value of K to be used in the filter (4.15). Note that for  (i.e. zero 

system noise or infinite measurement noise), 

0α→

(4.16) yields K 0=  which means that the 

estimation (4.14) makes no use of the measurements ; on the other hand, for 

 (i.e. zero measurement noise or infinite system noise) it may be shown from 

mN

α→∞
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the K, Π equations above that K 1= , i.e. the exponential smoothing in (4.15) is based 

on the latest measurements  only. Thus, potential K values are included in the 

range [  as K is indeed monotonically increasing with α. 

mN

0,1]

The aforementioned quantity Π represents the variance of the estimation error 

 and is calculated KFN̂ −N

 20.5 Z 4(Π = α + α + α ) (4.17) 

Thus, for  (and finite Z) we obtain 0α→ 0Π =  (due to perfect model) while for α→∞ 

we obtain  (i.e. the estimation error in 2TΠ = Γ (4.15) results only from the prediction 

term due to perfect measurement ). The variance Π may be easily shown to be a 

monotonically increasing function of both the measurement error variance Z and the 

system error variance . 

mN

2T Γ

If the measurement  would be sufficiently accurate, it might be better to use directly 

 (as in 

mN

m
KFN̂ N= CHAPTER 3) rather that the Kalman Filter (4.14). For this to be true, 

we should have the variance Z of the error  being smaller than the filter error 

variance Π, i.e. we should have 

m
KFN̂ N−

ZΠ ≥ . After some calculations we derive the 

equivalent inequality  which is quite unlikely to hold in practice as Z is 

usually much higher than Γ. 

2Z 2T≤ Γ

Equations (4.16), (4.17) also contain valuable information on the role of the update 

period T. As mentioned in section 3.5, the measurement variance Z obtains a 

minimum value for some value of T. Note that smaller Z can be easily shown to lead to 

smaller Π in (4.17). On the other hand, for higher T the system noise  increases, 2Τ Γ
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and consequently also α and the estimation error variance Π increase. In conclusion, 

the optimal update period T for best Kalman-filter estimates may not coincide with the 

optimal update period for least measurement error in (4.13). 

If the measurement noise ζ  contains a bias E{ } bζ = , i.e. from (4.13) 

; and if , i.e. there is no bias in the traffic volume 

measurement; then we obtain from 

mE{N } E{N} b= + m m
outE{q E{q }in } =

(4.14) 

 m
KF

ˆE{N } E{N } E{N} b= = +  (4.18) 

i.e. the measurement bias cannot be rejected by the Kalman Filter and is fully 

transmitted to the estimates . KFN̂
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5.1 Introduction 

The estimation of the number of vehicles in a link must be well managed in order to 

keep a balance between the high quality of the estimation and the cost of use of the 

available means. The Kalman Filter equation (4.14) that has been derived, demands the 

existence of three loop detectors in the link; one detector in the middle of the link 

providing time-occupancy measurements and two boundary detectors providing flow 

measurements. Moreover, it has been observed that the produced KF estimation, 

results from the combination of two terms: an exponential smoothing term and a 

prediction term (see section 4.4). 

It has already been stated in section 4.3 that the direct estimation of the vehicle-count 

through the conservation equation with inflow and outflow measurements results to the 

accumulation of the unavoidable flow measurement noise leading to increasingly 

inaccurate estimates; this reveals that the exponential smoothing term is necessary for 

the estimation. But does the prediction term have the same importance? 

In an attempt to reduce even further the cost of the vehicle-count estimation, it is quite 

interesting to examine the case where only the term of exponential smoothing is used 

for the estimation. In this way, the installation and maintenance cost of such a system is 

CCCHHHAAAPPPTTTEEERRR   555   
EEEXXXPPPOOONNNEEENNNTTTIIIAAALLL   SSSMMMOOOOOOTTTHHHIIINNNGGG   
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reduced as all the necessary information for the estimation is provided by a single 

detector in the middle of the link measuring time-occupancy consequently, the cost of 

two boundary detectors is saved. 

5.2 Exponential Smoothed Estimator 

By the fact that the use of a single detector is economical, we are summoned to answer 

the question that arises: does the filter estimation become inferiorly influenced by 

exclusively using the exponential smoothing term? To answer the question we will use 

the following new exponential smoothed estimation equation: 

  (5.1) m
SM SM SM SMN̂ (k) K N (k 1) (1 K )N (k 1)= − + − ˆ −

where  is the delivered estimate of vehicle-count and  is the smoothing 

parameter. Like in the Kalman Filter, the  is truncated if it exceeds the range 

 where 

SMN̂ (k) SMK

SMN̂

max[0,N ]′ maxN′  is the same as before (see section 4.3). 

Now the estimation is independent of the flow measurement noise, as this 

measurement is not used at all, and it is affected just by the time-occupancy 

measurement error oζ  that has been analyzed in section 4.3. 

The estimation  can be improved with the suitable value of the smoothing 

parameter  which, as the Kalman Filter gain K, is included in the range  Note 

that for  

SMN̂

SMK [0,1].

SMK → 0, (5.1) yields SM SM
ˆ ˆN (k) N (k 1)= −  which means that the estimation 

(5.1) makes no use of the measurement  and it depends on the unknown or biased, 

most of the times,  on the other hand, for  the exponential smoothing 

equation 

mN

SMN̂ (0); SMK →1

(5.1) is based on the latest measurements  only. mN
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It can be seen from (5.1) that the update period T does not have any direct impact on 

the estimation but only on the measurement error, while the estimation is almost equal 

with the average number of vehicles that have passed the middle of the link until then. 

This guides the estimation on following a “predetermined” trajectory, without being 

affected by the creation or not of queues in the link (at least until these reach the 

middle of the link). On the other hand, this approach smoothes the effect of the ZSZO-

phenomenon which does not influence the estimation any more. 

In conclusion, it can be said that this kind of analysis/estimation would be sufficiently 

satisfactory in the case of a small update period T where the average vehicle-count in 

the link is, almost, the same with the real number of vehicles in it. Contrariwise, for 

longer periods the exponential smoothing analysis is inappropriate because the average 

number of vehicles is quite different than the real number of vehicles that remain in the 

link. 

Some short results will be presented in CHAPTER 7 to compare the estimation by 

using the exponential smoothing with the simple use of measurements and the 

implementation of Kalman Filter. It is expected that the exponential smoothing will, of 

course, improve the results of the equation (3.8) and with the appropriate fine-tuned 

value of . Nevertheless, the smoothed estimation is not expected to exceed the 

quality of the Kalman Filter estimation 

SMK

(4.14) as the use of the flows measurements by 

the boundary detectors is important and justifies the extra cost of two additional 

detectors. Notice that  is displayed in the corresponding figures as “smoothing 

parameter K”. 

SMK
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6.1 Introduction 

In this chapter the microscopic simulation model that was developed for the testing and 

the confirmation of the realistic operation of the proposed estimation method will be 

analyzed. The model was developed in C programming language and has no special 

demands neither in computational time nor memory. 

The microscopic simulation model that has been developed imitates the traffic flow 

into a link or a motorway ramp. The fact that the link (or the ramp) has only one lane 

and, so, overtaking is not possible, makes the model simpler; although, several other 

parameters that influence, more or less, the flow can be determined. The constant 

values that were chosen for these parameters are shown in APPENDIX A, where 

actually the input data file of the simulation program is shown. 

As anyone may discern, the values presented there are necessary not only for the car 

following model, but for the general geometry of the link, the signalization, the 

application of the Kalman Filter etc. The simulation model gives the opportunity to 

examine the produced results regarding the optimization of any of its parameters. 

However, the purposes of the present research does not centre on the evaluation of the 

simulation model, even if it has been tried to resemble the real traffic phenomena. The 

CCCHHHAAAPPPTTTEEERRR   666   
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simulation model is just a tool to test the filter’s results. This is why we will not come 

over in depth to minor subroutines considering, for example, the entrance of a vehicle 

in the link, the signalization or the way that time-occupancy measurements are 

collected. What is the most important for the credibility of the flow process and will be 

analyzed extensively below is the car following model. All the equations of the applied 

car following model and the constant parameter values will be presented next. 

6.2 Simulation Description 

A self-developed microscopic simulator was used to describe the traffic phenomena on 

a single-lane, 194-m long link, with both downstream and upstream traffic signals. 

Vehicles are generated by the simulator far upstream of the upstream signals. The 

vehicles are moving on one lane according to the following Bando-type (Bando, et al., 

1995) discrete-time car-following equations based on a simulation time step 

 At each simulation time period simT 0.25= s. k 1,2,...,=  a desired speed d,iy  is 

calculated first for each vehicle i 

 d,i iy [ (k) D]= Λ δ −  (6.1) 

with  and D 1  where 10.7 s−Λ = m,= i (k)δ  is the distance (in m) of the front of vehicle 

i from the rear of the next downstream vehicle; if the desired speed calculated by (6.1) 

exceeds a free speed fy 16.5 m / s,=  then it is truncated to this value. 

The acceleration  of vehicle i is calculated next via ia (k)

 i d,ia (k) sat{g[y (k) y (k)]}i= −  (6.2) 

where  and the function s1g 2 s−= at{ }⋅  is defined as 
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  (6.3) 

η
η

max max

min min

a if a

sat{ } a if a

else

≥⎧
⎪η = ≤⎨
⎪ η⎩

with   and 2
maxa 1.5 m / s ,= 2

mina 6 m / s= − iy (k)  is the speed of vehicle i which is 

updated via 

 i i i simy (k 1) y (k) a (k)T .+ = +  (6.4) 

Finally the updated position of the vehicle is obtained from 

  (6.5) 2
i i sim i sim ix (k 1) x (k) T y (k) 0.5T a (k).+ = + +

In some rare cases where the updated positions of a couple of subsequent vehicles 

indicate that their distance would be less than D 1m,=  the acceleration of the following 

vehicle is re-calculated so that  i D.δ =

Different equations than the above are applied to the first vehicle upstream of a red 

traffic signal, provided its distance from the signal is less than 50 m. In this case, the 

vehicle acceleration is calculated so as to enable the vehicle to eventually stop in front of 

the signal. In case the necessary acceleration is less than  that vehicle is allowed to 

pass the signal (i.e. it is updated as the other ordinary vehicles) but the special signal-

treatment is applied to the next upstream vehicle. 

mina ,

When a vehicle passes a detector, a time-occupancy signal is produced according to 

section 2.2, whereby the duration of the detector occupancy depends on the vehicle 

physical length, the vehicle speed and the detector’s effective length. The flow and 
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occupancy measurements for each estimation period are calculated according to section 

2.2 and are eventually perturbed with random noise qΔ  and o,Δ  respectively, given by 

   q 0.2q , o 0.05oΔ = ψ Δ = ψ

where ψ is a white random variable with the unit normal distribution. Thus the 

magnitude of the measurement error depends on the current value of the measured 

quantity. 

A standard simulation scenario with a duration of 5.000s ( 1.38 h)≈  will be defined 

next to be used in the simulation investigations. Modifications of this scenario will be 

produced later as appropriate. For the standard scenario, the simulation starts with an 

empty link. The upstream traffic signals are operated with a cycle of 90  while for the 

downstream signals we have a cycle of 20 . The fixed green/red phases of both signals 

are chosen appropriately so as to create all possible values of vehicle-counts in the link 

(see 

s,

s

Figure 10). The detector effective lengths are zero for the standard scenario while 

the physical vehicle lengths are uniformly distributed in the range [3 , hence 

 is used in 

m,5 m]

PhL 4= m (3.7) to produce the estimated . One single internal detector is 

included for occupancy measurements in the middle of the link and the update period 

T equals 20  

Ν̂

s.

Three further basic traffic scenarios were created by changing the traffic light settings of 

the standard scenario. More specifically, the three additional scenarios have different 

cycles times of   and  respectively, at the downstream traffic signals while 

the upstream signals are still operated with a cycle of 90 . The green/red phases of 

both signals were again selected appropriately (see 

40s, 60s 90s,

s

APPENDIX B) so as to create all 
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possible values of vehicle-counts in the link (Figure 10). A fifth stochastic scenario was 

created with the downstream traffic signal cycle changing stochastically between 10  

and  during the simulation (and green/red phases changing accordingly). 

s

90s

The evaluation of all scenarios is based on the following Relative Mean Square Error 

criterion 

 
K K

2

k 1 k 1

ˆRMSE 100% K [N(k) N(k)] N(k)
= =

= −∑ ∑   

or 

 
K K

2
KF

k 1 k 1

ˆKF RMSE 100% K [N (k) N(k)] N(k)
= =

= −∑ ∑   

or 

 
K K

2
SM

k 1 k 1

ˆSM RMSE 100% K [N (k) N(k)] N(k)
= =

= −∑ ∑   

where is the real and  and  are the estimated vehicle-counts, 

the Kalman Filter (KF) and the exponential smoothed estimated vehicle-counts in the 

link, respectively, while  is the discrete time index. All results are produced 

without the detector noise mentioned in section 

N(k) KF
ˆ ˆN(k),N (k) SMN̂ (k)

k 0,1,2,...=

6.2 (i.e. with 0)ψ =  which was found to 

have a minor impact on the estimation accuracy compared to other sources of 

estimation error. 
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7.1 Introduction 

Although simulation of the traffic flow process may not reflect fully the real traffic 

phenomena, it may nevertheless provide valuable insights for a number of crucial 

questions that should be answered before actual field implementation: 

− Does the Kalman-filter estimator improve over the mere and smoothed use of 

measurements? How many more internal detectors would be required to reach the 

estimation quality of the Kalman Filter? 

− What is the range of suitable K values for the Kalman Filter? What is the sensitivity 

of the estimation quality around the optimal K value? 

− What is the quantitative impact of the estimation period T and what value is 

recommended for the field implementation? 

− How does the Kalman-filter estimator perform under different conditions regarding 

, traffic load, traffic light signaling? maxN

− What is the impact of various measurement bias? 

CCCHHHAAAPPPTTTEEERRR   777   
SSSIIIMMMUUULLLAAATTTIIIOOONNN   RRREEESSSUUULLLTTTSSS   
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7.2 Impact of the Sampling Time 

Figure 10 displays the actual and estimated vehicle-counts N and  respectively, while N̂,

Figure 11 displays the actual and Kalman-Filter (KF) estimated vehicle-counts N and 

 respectively, with appropriate K-values in KFN̂ , (4.14) that will be detailed later, for the 

four basic scenarios described in section 6.2. Note that the N-curve is displayed with a 

time-resolution of 1 s while the estimates   are updated every  In the 

same way, 

N̂, KFN̂ =T 20s.

Figure 12 displays the actual and the exponential smoothed estimated 

vehicle-counts N and  respectively, with appropriate -values in SMN̂ , SMK (5.1). It may 

be seen that the N-trajectory is subject to two kinds of time-variation; a high-frequency 

variation due to the periodical traffic signal switchings; and a low-frequency variation 

due to changing demand. 

 
 

Figure 10: Real and estimated vehicle-counts over time for four basic scenarios. 
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Figure 11: Real and KF estimated vehicle-counts over time for four basic scenarios. 
 
 

 
 

Figure 12: Real and smoothed estimated vehicle-counts over time for four basic scenarios. 
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Table 1, Table 2 and Table 3 ( ) display the corresponding RMSE, KF RMSE 

and SM RMSE values and average errors (bias)  and 

 respectively. It may be seen that: 

Ph
jL L= j

Ph
j jL L= Ph

j jL L 1m= +

ˆE{N N},− KF
ˆE{N N }−

SM
ˆE{N N }−

Table 1: RMSE values and  for five scenarios and various cases of effective vehicle lengthˆE{N N}− .

  corrected 
Scenario 

ˆE{N N}− ˆE{N N} ˆE{N N}−−RMSE RMSE  RMSE    cycle 
( % ) ( % ) ( % ) ( veh ) ( veh ) ( veh ) 

20 s 19.4 0.5 33.9 –5.13 16.0 0.3 
40 s 48.4 0.66 44.0 –5.04 25.7 0.005 
60 s 60.7 –0.49 57.1 –5.38 39.4 –0.37 
90 s 69.4 0.85 60.9 –4.34 40.7 0.02 

 

Table 2: KF RMSE values and  for five scenarios and various cases of effective vehicle 
length

KF
ˆE{N N }−

.
Ph

j jL L= Ph
j jL L 1m= +  corrected 

Scenario KF 
RMSE 

KF 
RMSE KF

ˆE{N N }− KF
ˆE{N N }−

KF 
RMSE KF

ˆE{N N }−   cycle 
( veh ) ( veh ) ( veh ) ( % ) ( % ) ( % ) 

20 s 9.8 0.59 16.8 –2.83 9.4 0.33 
40 s 17.6 –0.04 24.6 –4.07 10.7 –0.50 
60 s 14.8 –0.59 22.3 –3.5 10.9 –0.64 
90 s 27.5 1.25 24.4 –2.43 19.0 0.17 

stochastic 22.8 0.29 23.  3 –1.76 17.3 0.41  
 

Table 3: SM RMSE values and  for five scenarios and various cases of effective vehicle 
length.

SM
ˆE{N N }−

Ph
j jL L= Ph

j jL L 1m= +  corrected 
Scenario 

 

cycle 
SM 

RMSE 
( % ) 

SM
ˆE{N N }− SM

ˆE{N N }−
SM 

RMSE 
SM 

RMSE SM
ˆE{N N }−   

( veh ) ( veh ) ( veh ) ( % ) ( % ) 
20 s 15.8 0.5 29.0 –4.48 14.4 0.30 
40 s 27.2 0.7 34.0 –3.98 20.6 0.01 
60 s 28.6 –0.41 36.2 –4.37 23.9 –0.36 
90 s 28.2 0.82 35.6 –3.50 23.4 0.01 

stochastic 32.7 –0.11 40.8 –3.34 29.2 0.38  
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• Despite the availability of only one detector,  follows N reasonably well (N̂ Figure 

10) for all scenarios and for all ranges of link occupancy. 

• The strong negative estimation deviations observed occasionally in Figure 10 are 

due to the ZSZO-phenomenon mentioned in section 3.5. Note that this 

phenomenon occurs only when the link is relatively full, because only then queuing 

vehicles may stand still around the detector that is located in the middle of the link. 

Note also that the utilization of only one detector renders the estimates quite 

sensitive to the ZSZO-phenomenon, because, in absence of any averaging with 

other non-affected detector measurements, this phenomenon may strike fully on 

the produced estimates. Finally, the phenomenon appears more frequently for 

longer signal cycles because of accordingly longer red phases leading to longer 

queuing. 

• The RMSE is seen in Table 1 to increase with increasing downstream signal cycle; 

this is because of the ZSZO-phenomenon being more frequent for longer signal 

cycles; moreover a longer cycle is connected with longer green/red phases that 

produce stronger stop/start-waves on the link and affect the one single 

measurement in an accordingly stronger way. 

• The average error (bias)  is seen in ˆE{N N}− Table 1 to be close to zero (less than 

1 veh). Figure 13 displays the average space-occupancy curves analogous to Figure 

9, albeit with  replaced here by  where   are 

time-occupancy measurements with 

sE{o (x)} i
tE{o (x )} i

to (x ), i 1,...,150,=

T 20s,=  for the four basic scenarios. It is seen 

that a measurement detector in the middle of the link is indeed a good choice in 

the interest of a low estimation bias. The increasingly strong oscillations observed in 

Figure 13 towards the downstream end of the link are again due to stochastic effects 
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Figure 13:  and  for the four basic scenarios.sE{o } i
tE{o (x )}

related to the ZSZO-phenomenon which is more pronounced for higher x due to 

more frequent queuing. 

As it concerns the performance of the Kalman Filter, it may be seen that: 

• Despite the availability of only one link-internal detector,  follows N 

reasonably well (

KFN̂

Figure 11) for all scenarios and for all ranges of link occupancy. 

The displayed results are clearly better than the corresponding measurement-only 

estimates reported in Table 1, which justifies the introduction of the Kalman Filter. 

In particular the ZSZO-phenomenon that was clearly visible in Figure 10 does not 

appear here thanks to the KF-imposed smoothing. 

• The KF RMSE is seen in Table 2 to increase with increasing downstream signal 

cycle; this is due to the corresponding increase of the measurement error variance 
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that was attributed to the accordingly more frequent occurrence of the ZSZO-

phenomenon. 

• The average error (bias)  is seen in KF
ˆE{N N }− Table 2 to be close to zero (less 

than 1 veh) thanks to a similarly low bias of the measurement error. The initial 

estimation  is rapidly reduced in all cases thanks to the correction 

term of the Kalman-filter equation 

KFN̂ (0) 5 veh=

(4.14). 

The use of the exponential smoothing shows that: 

• Despite the availability of only one detector,  follows the average  

reasonably well (

SMN̂ N

Figure 12) for all scenarios and for all ranges of link occupancy. 

• The ZSZO-phenomenon does not appear in any scenario as mush as the signal 

cycle is, because the estimations are not influenced by the creation of queues in the 

link. 

• The displayed results shown in Table 3 are better than the corresponding 

measurement-only estimates reported in Table 1, because of the smoothing of the 

ZSZO-phenomenon, although the KF estimates reported in Table 2 remain better 

than whole. 

• The SM RMSE is seen in Table 3 to increase with increasing downstream signal 

cycle; this is due to the corresponding increase of the measurement error variance 

that was attributed to the accordingly more frequent occurrence of the ZSZO-

phenomenon. 

• The average error (bias)  is seen in SM
ˆE{N N }− Table 3 to be close to zero (less 

than 1 veh) thanks to a similarly low bias of the measurement error and the initial 

estimation  is rapidly reduced in all cases. SMN̂ (0) 5 veh=
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The various traffic scenarios may also be investigated in order to assess the robustness 

of the KF and the exponential smoothed estimators, the range of appropriate K- and 

-values in SMK (4.14) and (5.1), respectively, as well as the sensitivity of the KF and 

exponential smoothed estimates to different K- and -values, respectively. To this 

end, 

SMK

Figure 14 and Figure 15 display the KF RMSE and the SM RMSE for each 

scenario in dependence of different K- and -values, respectively, as well as the 

corresponding measurement RMSE (horizontal lines) with measurement noise ψ. Note 

that in the case K  the Kalman Filter 

SMK

0= (4.14) exploits the boundary flow 

measurement (conservation equation) only, i.e. the internal occupancy measurement is 

not used, while in the case  the exponential smoothing equation (4.19) exploits 

the latest measurements  

SMK =1

mN .

The results displayed in Figure 14 give rise to the following comments: 

• The optimal gains K for all scenarios are in the range [ . In particular, the 

optimal K-values of the various scenarios are smaller if the measurement error 

0.05,0.25]

 
Figure 14: Measurements and KF estimation RMSE in dependence of the KF gain K. 
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variance is bigger, according to (4.16). 

• The sensitivity of the KF RMSE within the mentioned range of K-values is rather 

low. This means that no elaborated fine-tuning of K is needed in practice; this is a 

quite significant property of the developed Kalman Filter because the exact fine-

tuning of K would require exact vehicle-counts N(k) that are quite cumbersome and 

costly to obtain in the field. 

• The KF estimates (for optimal K) are much better than the conservation equation 

by itself (  or the internal measurement by itself for all scenarios, which 

demonstrates the utility of the KF estimator 

K 0)=

The results displayed in Figure 15 give rise to the following comments: 

• The optimal parameter  for all scenarios are in the range [ . In 

particular, the optimal -values of the various scenarios are lower if the 

measurement error variance is bigger. 

SMK 0.1,0.3]

SMK

 
Figure 15: Measurements and smoothed estimation RMSE in dependence of the smoothing parameter 

. SMK
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• The sensitivity of the SM RMSE within the mentioned range of -values is 

insignificant. This means that no elaborated fine-tuning of  is needed in 

practice. 

SMK

SMK

• The exponential smoothed estimates (for optimal ) are much better than the 

estimates for  or the internal measurement by itself  for all 

scenarios, which demonstrates the utility of the exponential smoothing estimator. 

SMK

SMK = 0 SM(K 1)=

7.3 Impact of the Update Period T 

Figure 16 displays the RMSE in dependence of the update period T for the standard 

scenario for three cases of utilized detector numbers, namely M 1,=    

The following observations are made: 

M 4,= M 200.=

• For  the RMSE is very high for very small T as expected; it reaches a plateau 

around  due to better time-averaging; and then it increases slightly as T 

increases beyond 100  (

M 1,=

T 20s=

s Figure 17) due to increasingly outdated estimations 

 
Figure 16: Impact of T on RMSE for standard scenario with M = 1, 4, 200. 
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according to section 3.5. 

• For  the RMSE is much better than for M 4,= M 1=  at small T, but the higher 

number of detectors brings only a small improvement (compared to  on the 

estimation accuracy as T increases. 

M 1)=

• For  the RMSE is virtually zero at small T because the approximation M 200,=

(3.2) applies almost perfectly (excellent space-averaging); however, any increase of 

T is seen to deteriorate this excellent performance and, indeed, for high values of 

T, the amelioration over the cases M 4=  and even M 1=  becomes negligible. 

Figure 17 displays the RMSE in dependence of T for the five scenarios (  for all). 

The following two additional remarks are worth mentioning: 

M 1=

• The optimal update period T increases as the signal cycle increases. This is 

because the ZSZO-phenomenon and the longer-period oscillations (triggered by 

the green/red signal switching) that are stronger for longer signal cycles, are better 

smoothed for longer T. 

 
Figure 17: Impact of T on RMSE for five scenarios (M = 1). 

REAL-TIME ESTIMATION OF VEHICLE-COUNT WITHIN SIGNALIZED LINKS 67 



CHAPTER SEVEN: SIMULATION RESULTS 

• Some local minima are observed, e.g. most strikingly for the 90 s-cycle case at 

 and  This is because of the synchronization of T with the signal 

cycles that produces estimates always at the same time within the period of the 

corresponding N-oscillation, which leads to a smoother estimation curve over time. 

T 90s= T 180s.=

Figure 18 displays the KF RMSE of the standard and stochastic scenarios in 

dependence of the estimation/measurement period T for the following cases: 

•  (this means that KF RMSE equals RMSE) where  is produced 

according to 

m
KFN̂ N= mN

(4.12) from occupancy measurements  stemming from one single 

internal detector without measurement noise 

m
to

oΔ . 

•  produced from the KF estimator KFN̂ (4.14) based on perturbed (i.e. ) flow 

 and occupancy ( ) measurements, the latter from one single internal 

detector. The also displayed gain parameter K was roughly fined-tuned for each 

individual KF case. Note that the displayed measurement RMSE reflects the 

corresponding values of the variance Z of the measurement error in dependence of 

T, while the displayed KF RMSE reflects the corresponding values of the variance 

Π of the KF estimation error in dependence of T. 

0ψ ≠

m m
in out(q , q ) m

to

Figure 18 indicates that, as 

expected from section 3.5, the measurement RMSE (and hence Z) is quite high for 

very small T; it reaches a plateau around T 20s=  (Figure 18a) resp.  

(

T 80s=

Figure 18b); and then it increases slightly as T increases further. Clearly, the 

system error variance  increases quadratically with T since Γ is independent of 

T. Thus, the value of , appearing in 

2T Γ

2T / Zα = Γ (4.16), (4.17), depends on the 

update period T in a corresponding way. Indeed, the following observations are 

made from Figure 18: 
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Figure 18: Measurements and KF estimation RMSE in dependence of update period T for (a) the 

standard and (b) the stochastic scenarios.

• In accordance with (4.17) the KF RMSE is slightly increasing with increasing T, 

although for T 20s<  (Figure 18a) resp. T 40s<  (Figure 18b) the increase is partly 

compensated by the continuously improved measurement (which leads to lower Z 

values). 

• In accordance with (4.16), the optimal filter gain value is increasing with increasing 

T. More specifically, when T is small and the measurement noise variance Z is 
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large, the optimal gain is close to zero. As T increases and Z decreases, α and 

consequently the optimal gain K are increasing, the latter reaching a value around 

0.5 for . T 30s>

• For moderate T values, the KF produces better estimates than the measurements 

by themselves; but for  (T 50s> Figure 18a) resp.  (T 80s> Figure 18b) this 

situation is inversed due to increasing system error variance  while the 

measurement error variance Z is virtually constant. 

2T Γ

In accordance to Figure 18, Figure 19 displays the SM RMSE of the standard and 

stochastic scenarios in dependence of the estimation/measurement period T. The 

estimations of the cases where  and the  produced from the KF 

estimator have been hold on; there are also displayed the  produced from the 

exponential smoothed estimator and the smoothing parameter  which was roughly 

fine-tuned for each individual exponential smoothed case. The following observations 

are made from 

m
KFN̂ N= KFN̂

SMN̂

SMK

Figure 19: 

• The SM RMSE is quite low for small T and it is slightly decreasing until it reaches a 

plateau around  but it does not exceed the quality of the KF estimator; for 

the same period  (

T 20s,=

T 50s< Figure 19a) resp. T 80s<  (Figure 19b) the SM RMSE 

is better than the measurement RMSE; this situation is inversed for  

(

T 50s>

Figure 19a) resp.  (T 60s> Figure 19b) as the smoothed estimations tend to follow 

the non-smoothed measurements which are better than the KF estimations. 

• The optimal smoothing parameter value is increasing with increasing T. Even for 

small T, the -values are higher than the corresponding K-values and the more SMK
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the smoothed estimation is coincided with the non-smoothed, the higher the value 

of  is (the more use of the measurements). SMK

 

 
Figure 19: Measurements and smoothed estimation RMSE in dependence of update period T for (a) the 

standard and (b) the stochastic scenarios.
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7.4 Impact of the Number of Detectors 

Figure 20 displays the RMSE of the standard scenario in dependence of the number of 

detectors M with   and T 20s,= T 10s= T 0.5s.=  It may be seen again that, if T is 

very small, the RMSE increases strongly (compared to the case T 20s)=  if M is very 

small; but the RMSE decreases to become lower than in the case  as M 

increases; the reasons for this behaviour were already explained in section 

T 20s,=

7.3. Indeed, 

it is seen in Figure 20 that the curve for T 10s=  crosses the curve for  around 

 Both curves are crossed by the curve for 

T 20s=

M 9.= T 0.5s=  for some higher M; e.g. at 

 (not visible in M 200= Figure 20), the RMSE for T 0.5s,=   and  is 1  

 and 8.  respectively. 

10s, 20s .3%,

5.7% 4%,

Figure 21 displays the KF RMSE of the standard and stochastic scenarios in 

dependence of the number of internal detectors (measuring time-occupancy) with 

 for the following cases: T 20s=

 
Figure 20: Impact of M on RMSE for the standard scenario with T= 0.5 s, T = 10 s, T = 20 s.
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Figure 21: Measurements and estimation RMSE in dependence of the number of internal detectors for  

T = 20 s for (a) the standard and (b) the stochastic scenarios.

•  produced from all available occupancy measurements without 

measurement noise  

m
KFN̂ N=

o.Δ

•  as above but with occupancy measurements perturbed with 

measurement noise  

m
KFN̂ N=

o.Δ

•  produced from Kalman Filter KFN̂ (4.14) based on all available measurements 

(perturbed with noise) and roughly fine-tuned gains K. 
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The following observations are made from Figure 21: 

• The impact of the occupancy measurement noise is quite negligible compared to 

the other error sources in the measurement equation (4.13). 

• The measurement RMSE of  (20% Figure 21a) resp.  (50% Figure 21b) for one 

internal detector is reduced to around 1  (standard scenario) resp.  

(stochastic scenario) for a sufficient number of internal detectors. The inclusion of 

more than ten internal detectors does not improve the quality of the measurements 

further. 

0% 20%

• The KF RMSE is pretty stable around 9  (for the standard scenario) resp.  

(for the stochastic scenario) for any detector number. Note that the optimal gain K 

takes values around 0.5 for M  due to better measurement quality. 

% 18%

5>

• Since the RMSE of  resp. 1  is reached with measurements only, by use of 

ten or more internal detectors while the KF needs only three detectors to reach this 

quality (two boundary and one internal detector), it may be concluded that, based 

on these scenarios, the application of the Kalman Filter allows for the cost of 

roughly seven detectors to be saved. 

9% 8%

In accordance to Figure 21, Figure 22 displays the SM RMSE of the standard and 

stochastic scenarios in dependence of the number of internal detectors (measuring 

time-occupancy) with . The estimations of the cases where  

produced from occupancy measurements without measurement noise  and the 

 produced from the KF estimator have been hold; there are also displayed the 

 produced from the exponential smoothing and the roughly fine-tuned smoothing 

parameter  The following observation is made from 

T 20s= m
KFN̂ N=

oΔ

KFN̂

SMN̂

SMK . Figure 22: 
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Figure 22: Measurements and smoothed estimation RMSE in dependence of the number of internal 

detectors for T = 20 s for (a) the standard and (b) the stochastic scenarios.

• The SM RMSE is very quickly coincided with the non-smoothed measurement 

estimation. For  the two curves almost become one, which means that for a 

high number of detectors is better just to use the measurements for the estimation 

of the vehicle-count in the link; the slightly differences between the estimated values 

are because of the measurement noise that was accounted at the exponential 

M 4>
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smoothing estimation. Notice that the value of  does accordingly fast reach its’ 

maximum value. 

SMK

7.5 Non-Zero Effective Detector Length 

If the effective detector length is non-zero while measuring time-occupancy (or, 

equivalently, if the effective vehicle length is different than the physical vehicle length), 

then the measured time-occupancy is not a bias-free representation of the space-

occupancy (section 2.3) and hence the bias of the errors oζ  in (3.5), (4.11) and ζ  in 

(3.8), (4.13) increases accordingly. If the non-zero effective detector length  is known, 

one may convert the collected time-occupancy measurements  into virtually bias-free 

representations of the space-occupancy by multiplying them with  (section 

ε

m
to

Ph PhL /(L )+ ε

3.5), in which case one may partly recover the results presented earlier. On the other 

hand, if this transformation is not performed and the biased measurements are actually 

used, then the produced estimates will be accordingly biased, even if the measurements 

are used to feed the Kalman Filter, as the filter has no means to reject the measurement 

bias according to (4.18). 

Figure 23 displays the same information as Figure 13 for the standard scenario, now 

with two additional  - curves; in the “biased” curve, the measurements are 

collected with 

i
tE{o (x )}

Ph
j jL L 1= +  m which leads to an obvious bias in the whole curve; in the 

“corrected” curve, the biased measurements are multiplied with , in which 

case the original curve is recovered and the (additional) bias is virtually nullified. 

Ph PhL /(L )+ ε
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Figure 23: Average error (bias) for standard scenario with non-zero effective detector length.

Table 1 displays the RMSE and average error of the five scenarios for the cases without 

-bias, with -bias and for the corrected case. It is seen that the average error 

increases in the biased case but the additional bias virtually disappears in the corrected 

case. It is also interesting to notice that the RMSE of the corrected case (and, in some 

scenarios, even of the biased case) are lower than in the non-biased case; this is because 

simulated vehicles at standstill are separated by a gap of 1m  and hence any effective 

detector length higher than 0.  is sufficient to suppress the occurrence of the ZSZO-

phenomenon, thus reducing the estimation error variance. Clearly this RMSE 

improvement is more striking for the scenarios that are suffering more from the ZSZO-

phenomenon, i.e. the ones with longer cycle times (see also 

jL jL

,

5 m

Figure 9). These results 

suggest that it may be more beneficial for the estimation accuracy to employ detectors 

with non-zero (but approximately known) effective detector length ε and to proceed to a 

correction of the obtained measurements; than to adjust the detectors such that 

. Ph
j jL L=
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Figure 24 presents the measurements and KF estimation results for different K values 

for the unbiased (standard scenario), the biased (with 1m)ε =  and the corrected (as 

mentioned above) cases. It may be seen that: 

• The RMSE of the (biased) measurement of  is almost doubled compared to the 

RMSE of the measurement of the standard case as already known from section 

mN

3.5. 

• Due to the lower quality of the measurement variance (higher Z), the optimal KF 

gain K is smaller (around 0.05) than in the non-biased case. The KF RMSE of the 

resulting KF estimates when using biased measurements is more than doubled 

compared to the unbiased case. 

• In the corrected case (where measurements  are multiplied with  

the original KF performance is virtually recovered for a gain K value similar as in 

the unbiased case. Indeed, 

m
to Ph PhL /(L )),+ ε

Table 2 reveals (as already observed in Table 1) that, for 

some scenarios, the estimation RMSE of the corrected case may become lower 

than in the unbiased case, because a non-zero effective detector length suppresses 

 
Figure 24: KF estimation for the case of non-zero effective detector length for standard scenario. 
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the ZSZO-phenomenon thus reducing the measurement and eventually the 

estimation error variance. These results amplify the suggestion that it may be more 

beneficial for the estimation accuracy to employ detectors with non-zero (but 

approximately known) effective detector length ε and to proceed to a correction of 

the obtained measurements; than to adjust the detectors such that  Ph
j jL L= .

0

Figure 25 presents the same as before measurements, and the exponential smoothed 

estimation results for different  values for the unbiased (standard scenario), the 

biased (with ) and the corrected (as mentioned above) cases. It may be seen 

that: 

SMK

1mε =

• In any case, for  the SM RMSE has the same value (around 9  as it 

depends only on the  (see section 

SMK = 0%)

SMN̂ (0) 5.2). 

• Due to the lower quality of the measurement variance, the optimal smoothing 

parameter  is bigger (around 0.5) than in the non-biased case. The SM RMSE SMK

 
Figure 25: Smoothed estimation for the case of non-zero effective detector length for standard scenario. 
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of the resulting smoothed estimates when using biased measurements is almost 

doubled compared to the unbiased case. 

• In the corrected case the original exponential smoothed performance is virtually 

recovered for a smoothing parameter  value similar as in the unbiased case. 

Indeed, 

SMK

Table 3 reveals (as already observed in Table 1 and Table 2) that, for some 

scenarios, the estimation RMSE of the corrected case may become lower than in 

the unbiased case, because a non-zero effective detector length suppresses the 

ZSZO-phenomenon thus reducing the measurement and eventually the estimation 

error variance. 

7.6 Uncertain Physical Vehicle Length Average 

In all previous investigations we assumed that the average physical vehicle length 

used to transform the time-occupancy measurement  into a vehicle-count  in 

PhL  

m
to mN

(3.7), (4.12) is accurately known (equal to  If this value is not accurately 

known in practice, then an additional measurement bias will result whose effects are 

similar in nature as those of section 

PhL 4 m= ).

7.5. For example, the arriving traffic flow may 

contain varying percentages of trucks that change the average physical vehicle length 

accordingly. It should be emphasized, however, that the increased errors due to this 

bias will occur only if the results evaluation is based on real vehicle numbers N, 

whereby  If the real quantity N is measured in p.c.u. (passenger-car 

units), then the RMSE for the estimates will be similar to the one of the standard case. 

Note that estimates , or , in p.c.u. may be more useful for signal control or ramp 

metering applications where avoidance of queue spillback upstream of the link is a 

major concern. 

1truck 1vehicle.=

N̂ KFN̂
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To investigate this issue we have considered two variations of the standard scenario 

whereby the vehicles created in the microscopic simulation include 1  and 3  of 

trucks, respectively; trucks were assumed to have a length in the range [  with 

uniform distribution. Note that in these two cases we still use  in 

0% 0%

8 m,10 m]

PhL 4= m (4.12) (as in 

the standard case) thus creating biased measurements. Figure 26 displays the results for 

both cases, along with the standard case for comparison. It may be seen that: 

• The measurement RMSE of both cases increases with increasing percentage of 

trucks due to increasing bias. 

• Due to the lower quality of the measurement (higher variance Z), the optimal KF 

gain K is accordingly smaller than in the standard case. 

• The RMSE of the resulting KF estimates is increasingly higher for increasing bias, 

but the accuracy is still quite good for the 1 -trucks case. 0%

 
Figure 26: KF estimation for the cases of uncertain average physical vehicle length.
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It should be emphasized that the above increased errors occur only if the results 

evaluation is based on real vehicle numbers N, whereby 1truck 1vehicle.=  If the real 

quantity N is measured in p.c.u. (passenger car units) and we assume here 

, then the RMSE for the measurement and the estimates are similar 

to the standard case as 

1truck 2.25p.c.u.=

Figure 27 indicates. In fact, the measurements in this case may 

be deemed unbiased while the variance of the state error increases slightly because the 

flow measurements and hence the conservation equation address vehicles, not p.c.u.; 

since the state error variance increases while Z is virtually the same as in the standard 

scenario, the resulting optimal K are slightly greater than in the standard case, but the 

sensitivity of the results is rather low in a broad range of K-values. 

The same analysis has been done for the case of the exponential smoothing estimation. 

Figure 28 and Figure 29 show that: 

• Due to the lower quality of the measurement, the optimal smoothing parameter 

 is accordingly smaller than in the standard case. SMK

 
Figure 27: KF estimation for the cases of 10% and 30% trucks with N in p.c.u. and 1 truck = 2.25 p.c.u.

REAL-TIME ESTIMATION OF VEHICLE-COUNT WITHIN SIGNALIZED LINKS 82 



CHAPTER SEVEN: SIMULATION RESULTS 

• The SM RMSE of the resulting smoothed estimates is increasingly higher for 

increasing bias, but the accuracy is still quite good for the 1 -trucks case. 0%

• If the real quantity N is measured in p.c.u. (Figure 29), again the resulting optimal 

 are slightly greater than in the standard case, but the sensitivity of the results is 

almost zero in a broad range of -values. 

SMK

SMK

 
Figure 28: Smoothed estimation for the cases of uncertain average physical vehicle length.

 
Figure 29: Smoothed estimation for the cases of 10% and 30% trucks with N in p.c.u. and 1 truck = 2.25 

p.c.u.
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7.7 Longer Link 

To check the KF efficiency in the case of links with different geometry, the link length 

of the standard case was doubled to 394 m . Note that a larger link length Δ increases 

the variance Z of the measurement as evidenced by the definition of the measurement 

error ζ in (4.13) while the variance Γ of the system error remains unchanged. Hence, it 

is expected that the resulting optimal value of the KF gain K will be smaller than in the 

standard case and the results displayed in Figure 30 actually confirm this conclusion. 

Since RMSE is a relative error and the absolute values of the vehicle-count N are higher 

for a longer link, the relative estimation accuracy of both the measurement and the 

Kalman Filter in Figure 30 is slightly better than in the standard case. The same 

behaviour is appearing with the exponential smoothing analysis shown in Figure 31 

where still the KF estimation remains the best. Figure 32 displays the time trajectories 

of the real and KF-estimated vehicle-counts N and , respectively, while KFN̂ Figure 33 

displays the time trajectories of the real and exponential smoothed estimation of the 

vehicle-counts N and , respectively. The first confirms the excellent performance SMN̂

 
Figure 30: KF estimation results for a longer link. 
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Figure 31: Smoothed estimation results for a longer link. 

of the filter also for a longer link and the second shows the satisfactory performance of 

the exponential smoothing even for a longer link. 

 

 
Figure 32: Real and KF estimated vehicle-counts over time for longer-link scenario. 
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7.8 Large Initial Estimation Error 

In all previous investigations it was assumed that the initial estimate is  

while the real vehicle count is 

KFN̂ (0) 5 veh=

N(0) 0 veh= , i.e. an initial estimation error of  was 

imposed. The importance of the correction term in the filter equation 

5 veh

(4.14) may be 

appreciated in a last scenario where an even larger initial estimation error is assumed 

with . Without the correction term, this initial estimation error would 

not be reduced and, indeed, 

KFN̂ (0) 20 veh=

Figure 34 indicates that the KF RMSE for  is much 

higher for  than in the standard case. Moreover, the optimal KF gain 

K is seen to be slightly larger than in the standard case due to the larger initial state 

error. In contrast, 

K 0=

KFN̂ (0) 20 veh=

Figure 35 shows that the SM RMSE for SMK 0=  is much lower for 

 than in the standard case probably because the initial estimation is 

closer to the average number of vehicles in the link. 

SMN̂ (0) 20 veh=

Figure 36 shows that when the filter 

is used, thanks to the correction term, this large initial error is rapidly reduced within a 

 
Figure 33: Real and smoothed estimated vehicle-counts over time for longer-link scenario. 
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few estimation time-steps, while Figure 37 shows that the exponential smoothing is not 

influenced by the  besides for SMN̂ (0), SMK 0,=  as the estimation is similar to the one 

for  and always follows the average number of vehicles that have passed 

the middle of the link until the time examined. 

SMN̂ (0) 5 veh=

 
Figure 34: KF estimation for the case of larger initial estimation error =ˆ(N(0) 20 veh).

 
Figure 35: Smoothed estimation for the case of larger initial estimation error =ˆ(N(0) 20 veh).

REAL-TIME ESTIMATION OF VEHICLE-COUNT WITHIN SIGNALIZED LINKS 87 



CHAPTER SEVEN: SIMULATION RESULTS 

 

 

 
Figure 36: Real and KF estimated vehicle-count over time for the scenario with  N̂(0) 20 veh.=

 
Figure 37: Real and smoothed estimated vehicle-count over time for the scenario with  N̂(0) 20 veh.=
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8.1 Guidelines and Recommendations for Practical Application 

We will here summarize the necessary steps, equations and recommend parameter 

values required if the described estimation scheme for vehicle-counts in signalized links 

is to be adopted and implemented. 

To start with, a basic prerequisite is the availability of two boundary detectors measuring 

flows  and , respectively; and one internal detector (preferably located around 

the middle of the link) measuring time-occupancy  see 

m
inq m

outq

m
to , Figure 5. In case of 

availability of multiple internal detectors, they should be preferably placed as Figure 8 

indicates and the overall occupancy measurement  feeding the Kalman Filter should 

be the average of all available time-occupancies according to 

m
to

(3.2). All occupancies in 

this thesis are assumed to take values within the range [  0,1].

In real-time operation, the filter is fed with the latest available measurements , 

, 

m
inq (k 1)−

m
outq (k 1)− m

to (k 1)− , collected during the time period [(k 1)T, kT]− , where 

 is the discrete time index, to produce the estimated vehicle number  

valid for the time instant . The usually required range of values for T is [1  

k 1,2,...= KFN̂ (k)

kT 0s,30s].

CCCHHHAAAPPPTTTEEERRR   888   
GGGUUUIIIDDDEEELLLIIINNNEEESSS,,,   RRREEECCCOOOMMMMMMEEENNNDDDAAATTTIIIOOONNNSSS   AAANNNDDD   

CCCOOONNNCCCLLLUUUSSSIIIOOONNNSSS   
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The measured occupancy  should ideally be collected with an effective detector 

length ε equal to zero. If the corresponding adjustment of the detectors is not possible, 

the collected occupancy should be multiplied with 

m
to

Ph PhL /(L )+ ε  before further use (see 

section 7.5), where  is the average physical vehicle length (around 4 m  Typical PhL ). ε -

values are 1.  depending on the employed loop detectors. Note that, according to 

section 

..2 m

7.5, the case  with correction of the time-occupancies may lead to 

better results than the  case. 

Ph
jL L≠ j

j
Ph

jL L=

Subsequently, the  measurement must be converted into a corresponding 

measurement by use of 

m
to mN  

(4.12). Note that the term Ph/ LΔλ  appearing in (4.12) is equal 

to (and could be replaced by)  the maximum number of vehicles that could be 

accommodated in the link in a bumper-to-bumper manner. In case of a non-negligible 

percentage of trucks, there are two options: 

maxN ,

.

− Truck length is not considered in the utilised average physical length , which 

remains equal to around ; in this case, the Kalman-filter estimates  will be 

automatically delivered in p.c.u., where  (this option is 

recommended). 

PhL

4 m KFN̂

PhL 1 p.c.u

− Truck length is considered (according to their usual percentage) when selecting the 

value of  (which would then be naturally higher than 4 m  in this case, the 

Kalman-filter estimates  will be delivered in veh, that may be either passenger 

cars or trucks in the pre-specified proportion. 

PhL ),

KFN̂
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After these arrangements the Kalman-filter estimate  may be produced by use 

of 

KFN̂ (k)

(4.14) and subsequent possible truncation if the estimate exceeds the range 

. The recommended range of values for the filter gain K is [ , but if 

no fine-tuning is effectuated, a value of K

max[0 , N ]′ 0.05,0.3]

0.1=  is deemed quite appropriate and 

robust. Finally the  value needed to truncate the filter results, corresponds to the 

maximum number of vehicles that can be accommodated in the link at standstill, 

including the usual safety distance D, i.e. 

maxN′

Ph
maxN (L′ D)= Δλ + . 

8.2 Conclusions 

The relationships between instantaneous space-variables and (easily measurable) local 

time-variables in largely homogeneous and stationary traffic flow, as typically 

encountered in uninterrupted traffic conditions, were reviewed. A quite elaborated 

analysis and microscopic simulation investigation was conducted for signalized links 

with inherently strong traffic flow variations triggered by traffic signal switchings. A 

number of influencing factors when estimating space-variables from measured local 

time-variables was analysed and illustrated in detail. 

In subsequence a Kalman-filtering algorithm that may further reduce the estimation 

error was proposed based on the insights gained in this analysis. A rather simple 

Kalman-filter estimator was designed for the number of cars included in a signalized 

link. The estimator was found in manifold simulation investigations to be quite efficient 

and robust. The algorithmic intelligence of the estimator was shown to replace for 

several additional loop detectors that would be required in order to reach an equivalent 

accuracy without the estimator. Several issues and options were investigated in detail in 

order to come up with suitable conclusions and recommendations with respect to 

various aspects including: 
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− The appropriate measurement/estimation sampling time T. 

− The impact of multiple internal detectors for occupancy. 

− The proper values of the filter gain parameter K. 

− The impact (and countermeasures) of non-zero effective detector length in the 

occupancy measurements. 

− The impact of trucks. 

− The impact of various traffic conditions and the ramp geometry. 

Field testing is the next step in the development of this algorithm. 
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C         Input File 
C========================================================================================================================================================= 
C1 1.Duration of simulation(sec) 2.Simulation step(sec) 3.Distance of recycle(m) 
| 5000   0.25   0 
C2 4.Length of road(m) 5.Number of traffic lights 
| 1810   2 
C3 6.Distance observation of traffic light(m)  7.Cycle of each traffic light(sec) 
| 50     90 20 
C4 8.Green period of each traffic light(sec) 
| 50 13 
C5 9.Place of each traffic light(m) 
| 1600 1800 
C6 10.Number of vehicles in road 11.Mean lenght of a vehicle(m) 12.Mean lenght of a truck(m) 13.Initial distance of vehicles(m) 
| 0    4    9   10 
C7 14.Safety distance between vehicles,D(m) 15.Initial speed of vehicles(m/sec) 16.(Starting) Reaction time(simulation time steps - min=1) 
| 1     14    1 
C8 17.Maximum accelaration(m/sec^2) 18.Maximum deceleration(m/sec^2) 19.Maximum desirable speed of vehicles(m/sec) 
| 1.5    -6    16.5 
C9 20.Constant var g_acceleration(1/sec) 21.Constant var g_deceleration(1/sec) 22.Constant lambda,Λ(1/sec) 
| 2    2    0.7 
C10 23.Minimum time-distance of vehicles(sec) 24.Time entrance of 1st vehicle(sec) 
| 2     5 
C11 25.Number of Ot detectors 26.Length of Ot detector(m) 27.Detector upstream(1->Y/0->N) 28.Detector downstream(1->Yes/0->No)  
| 1   0   0    0 
C12 29.Number of flow detectors 30.Place of each flow detector(m) 31.Stochastic vehicle length(1->Y/0->N)32.Stochastic trucks(1->Y/0->N) 
| 2   1606 1800   1    0 
C13 33.Percentage of time occupancy noise(%)34.Percentage of flow noise(%) 35.Stochastic reaction time(1->Y/0->N)36.Stochastic stop before traffic light(1->Y/0->N) 
| 0.05    0.2    0    1 
C14 37.Period of simulation sampling(sec) 38.Update period T of KF(sec) 39.KF gain K 40.Estimated N(0) 
| 1     20   0  5 
E 

AA I

 

R

APPPPPPEEENNNDDDIIXXX   AAA   



 

In the tables below are shown the green phases (in sec) of both traffic signals during the 

corresponding simulation periods (also in sec): 

Table 4: Green phases of traffic signals for the standard scenario.
Standard scenario 

Update period (sec) 20 

 Cycle (sec) Simulation Periods (sec) & 
Corresponding  Green Phases (sec) 

0→700 →2000 →5000 Upstream 
Signal 90 

55 60 55 
 

0→700 →1500 →2000 →3000 →3500 →4000 →4500 →5000 Downstream 
Signal 20 

13 11 7 5 7 9 13 17 
 

Table 5: Green phases of traffic signals for the scenario with cycle of 40 s at the downstream traffic signal.
Basic scenario 1 

Update period (sec) 20 

 Cycle (sec) Simulation Periods (sec) & 
Corresponding  Green Phases (sec) 

0→1500 →2000 →5000 Upstream 
Signal 90 

50 55 50 
 

0→1000 →1500 →2000 →3000 →3500 →4000 →4500 →5000 Downstream 
Signal 40 

25 18 13 8 13 19 27 33 
 

Table 6: Green phases of traffic signals for the scenario with cycle of 60 s at the downstream traffic signal.
Basic scenario 2 

Update period (sec) 20 

 Cycle (sec) Simulation Periods (sec) & 
Corresponding  Green Phases (sec) 

0→5000 Upstream 
Signal 90 

50 
 

0→1000 →1500 →2000 →3000 →3500 →4000 →5000 Downstream 
Signal 

60 
36 28 18 10 18 30 43 

 

AAAPPPPPPEEENNNDDDIIIXXX   BBB   
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Table 7: Green phases of traffic signals for the scenario with cycle of 90 s at the downstream traffic signal. 
Basic scenario 3 

Update period (sec) 20 
Simulation Periods (sec) & Cycle (sec)  

Corresponding  Green Phases (sec) 
0→3500 →5000 Upstream 

90 Signal 55 50 
 

0→700 →1500 →2000 →2200 →3000 →3500 →4100 →5000 Downstream 
90 Signal 55 45 35 25 15 30 42 55 

 

Table 8: Green phases of traffic signals for the stochastic scenario with cycle of x sec at the downstream 
traffic signal (x is an integer between 10 s and 90 s). 

Stochastic scenario 
Update period (sec) 20 

Simulation Periods (sec) & Cycle (sec)  
Corresponding  Green Phases (sec) 

0→3700 →4500 →5000 Upstream 
90 

Signal 70 65 45 
 

0→14 →1900 →3000 →3500 →3700 →4500 →5000 Downstream x 
Signal (10-90) 13 0.35x 0.05x 0.2x 0.35x 0.4x 0.55x 
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