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Elcaywyn

O ap1Bpog 1V oXNPAIEV O Pld PAPIIA AUTOKIVITOdPOoU 1] Ot €vav aoTiKO
onpatobotoUpevo oUvOeopo arotedel MOAUTIHILN AN PO@POopPia yia Tov €AeyXo oe
paypatko xpovo. H moootnua autry eivat oteva ouvdedepévn pe 1g
BetaPAntég X@pou KAl XPOVOU tng pdaprag 1 tou ouvbéopou. Méxptl topa
APKETOL EPEUVNTEG EXOUV A0XO0ANDOel Pe TIg OXEOEIG TTOU CUVOEOUV TIG oTyplaieg
XOPIKEG PETAPANTEG KAl TIS (EUKOAAQ METPTIOIEG) TOTNKEG XPOVIKEG HETABANTEG
0€, OXETIKA, OPOYeVI] KAl otabepr] KUKAOQPOPLIAKL] POr)], OI®S aUlr] ouvavidatal
ouvnbwg oe ouvexeig KUuKAo@oplakeg ouvlrnkes. Opwg rnwog alAdfouv autég ot
OXE0€1G KAT® ATIO AVOHPOo10yevel§ Kal aotabeig kukAogpoplareg ouvOnkeg; Ma va
aravinBel autod 10 £pOTHUA MPAYHATONIOONKE Pia AEMTOPEPT)G AVAAUOT KAl
01e€rx0e1 pla PIKPOOKOITIKY TIpooopoimon ya onpatodotoupeva diktua, orou
UndpXouv £PPUIEG KAl 10XUPEG O1aKUNAVOELS TG KUKAOPOPIAKNG POTG, AOY®
mg evaddayng v evdeifewv v @atelveav onpatodotwv. 'Evag apiBpog
napayoviev Iou ernpedfouv KAtd IV EKTIPNON IOV XOPIKOV PetaBAntov arno
TIG PETPIIOPEG TOTTIKEG XPOVIKEG PETAPANTEG avaduovial Katl rapouvotadovial pe
Aerttopépetleg. Me Baon autoug, spappoletatl éva @idtpo Kalman mou Baoietat
0¢ TIPAYHATIKOU XPpOVOU HEIPI0ElS TG PONS KAl TG KATAAnyng, Ol oroieg
APEXOVIAL Ao TPES PRPATEG KAEIOTOU BpodXou, yla TV Iapaynyr] aSlormotov
EKTIPNOE®V TOU aplOPou 1oV oxXnpdtav. O 1eA1kdg eKUPNTS ToU aplOpou tev
oxnuatwv OSoxkpdletal péow, g i1dlag pe IMPONYOUHEVRS, HIKPOOKOIUKIG
MPOCON0IROoNG yla d1d@opa osvapla PAPIIOV KAl KUKAOPOP1aKav ouvOnkev. Ta

aroteAéopata g MPOooPoinong UTodNA®VoOUV OTl IPOKELTAl Yid Hld €UPKOTY)

X1l
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anodoorn G EKTIPNONG, YEYOVOG TTOU EIMITPEIEL TNV €UKOAN €QAPHOYN NG

pebobdou.

Zin ouvéxela Ba mapouolaotel pla ekterapevn neplAnyn tng epyaociag 1mou
nipaypatortor|Onke divoviag 18iaitepn mpoooxr) ota Paocikd oroxeia 1mou 1
xapaktpifouv. Zto tdog Oa avagpepBouv ta KUPOTEpA OUMPIEPAOUATA, TA
oroia emPeBaidvouv 1 onpaocia g rapovoag Katr oploBeToUv TV IMPAKIIKY)

eQAPPOYL) NG Ipotevopevng pebododoyiag o mpaypatikeég ouvorKeg.

Ke@alaiwo 1°

Zto 1o ke@dAato opifovial Kat avaAuovial CUVOITIIKA 0P1oPEVES BAOIKEG Evvoleg
mou artoteAouv ta BepeAla avarrtuéng oAOKANPNG g epyaociag. TEtoleg €vvoleg

sivat:

e H xuxdogoplakr) oup@opnon (traffic congestion): Ilpokettat yia nipofAnpa
KAONPEPIVO OTA AOTIKA KEVIPA HE TIOKIAAEG ETMUITIOOEIG OtV To1OTNTA (W1
1OV Katoikav. O r1Aéov evdedelypévog Kal IO OLKOVOPIKOG TPOTI0g
AVTIPETIOITONG TOU eIPAAAEL TNV IO ATTOTEAEOPATIKY] EKPETAAAEUOT] TRV
eykataotdoe®v 1mou 1dn Urapxouv.

e O ¢£Aeyxog g KukAogoplakrng porg (traffic flow control): T'a tov
1KAVOTTIONTIKO £€AEYX0 TG KUKAOQOPIAKIG POT|S Xprotporoteital, ouvr|0wg,
N TEXVIKI] TOU KAewotoUu Ppoxou edeyxou. Ilpokettat yia pebodoldoyia
€AEYXOU €VOG OUOTINATOG KAl BEATIOTONOINONG OTIO10USHTTIOTE OTOIXEIOU TOU
péow perprjoeev 10U Aapfavoviatr ano  didgopoug awoBnrrpeg  Kat
XP1OHOIT010UVTAl KATAAANAQ Ao pia oTpatnyiKy eAEyxou.

o  depatég kAelotoU Bpoxou (loop detectors): Amotedouv 1o 110 Sradedopévo
Oopyavo OUAAOYIG HETPIOEDV ITOU AQOPOUV TNV KUKAOQOPLAKI] POI], AOY®

TOU XAPnAoUu KOOTOUG O OXEorn, yia napadsiypa, HE TS KAPEPES

X1V
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napakodouBnong. H Asttoupyia toug Baocifetatl otnv enaywnyr] NAeKTpiKoU
peupartog.

EAeyxog papniwv (ramp metering): H omoudaidtnta tou eAéyxou g
KUKAO@OPLAKILG POr)g Ot papreg £100dou/e§odou autorivntodpopnv Exet
nipooeAkUoel To evila@épov ToAA®V epesuvnIov. H wkavomnta edéyxou tng
PONG TWV OXNUAT®V OTd HIKPA, OXETIKA, AUTA Tunpata 8popou rmapexet
moAAarAég BeAtiwoelg otn por] 1000 TV AUTOKIVNTOSPOH®V, 000 KAl T®V
TTAPAKEIPIEVOV ACTIKAOV 001KWV SIKTU®V.

didtpo Kalman (Kalman Filter): [Ipokettatl yia pia pabnpatkr pébodo rou
avérmtuée o Rudolf E. Kalman (1960) kat Xpnowporoleitat ywa v
npoPAeyn/exktipnon evog peyeboug. Ol e@appoyég Tou emeKteivoviat aro
VvV agpodlactnpikn £€mg ta dnpoypa@ikd poviéda Katl pfia og1pd PNXavik®v
epappoywv (ya rmapadetypa ta pavidp).

Mikpoororukd poviédo Ipooopoinong (microscopic simulation model):
[Tporertal yia poviéda Imou XprolPoItolouvIal €UPERS Yid TNV IEPYPAPT)
KAl avdaAuon tng KukKAo@oplakrg por|lg. H amewkdvion piag dadikaoiag
péow mpooopoinong artotedei Paoikd epyaldeio €Aéyxou autrg mpwv TV

EQAPHOYL) NG OF IMIPAYHATIKEG OUVOI|KEG.

To re@dAAalo oAoKANP®VETAL PE TNV IEPTYPAPT] TOU IPOPAN|NATOG EKTIPNONG TOU

ap1Bpou v oxXnNuatv ot onpatodotovpeva 0d1kd diktua. ZUPE@®va Kat Pe to

Fpapnpa S (Figure 5), 6Uo @wievoi onpatodoteg eival toroBetnpévol avavtt

Kal ratavil tou eetalopevou ouvdéopou. O avavil RTEVOG onpatodotng (eav

undpxetl) kabopilel ) {Inon g pPOorS IOV OXNUAT®V ITOU KATAPIAVEL OTO

oUVOEON0, VA 0 KATAVIL PXTEWVOG onpatodotng kabopilel ) por) £§odou eV

oxnuatwv artd 1o ouvdeopo. Eivatr autovonto ot étav 1 por] £10660uU 1oV

oxXnNuatwv eivatr peyadutepn g porg &§odou, TOTE P€oa oto ouvdeoo

XV
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dnpoupyeitat oupd oxnudtwv. ErutAéov, otov efetalopievo ouvdeopo €xouv
eyrkataotabel 1pelg popateg KAeotoUu Bpoyxou: ota HUo0 AKpa TOU OUVOECHOU
Kat oto péoov tou. O1 dUo akpaiol @QwPAtég MAPEXOUV HEIPIOEIS PO
OXNUATOV, EVA 0 PNECAI0G PRPATHG TIAPEXEL NETPI|OEIS XPOVIKIG KATAANYNG TOU
ouvdéopou. Onwg @aivetatr kat oo Fpdapnua S (Figure 5), o ekupnu)g mou
avartuxBbnke Aettoupyei o€ IPAYPATIKO XPOVO, TOOO Yld VA EVIIUEPWVETAL HE TIG
HETIPNOEIG POTG KAl XPOVIKIG KATAANYPNG ATtO TOUG TPEIG POPATEG, 000 KAl yid
va TIapEXel 1OV EKTIHWHEVO aplOpog oxnpudtev péoa oto onpatodotoupevo

diktuo (avapeoa otoug HUO akpaioug PRPATEG).

Kepalato 2°

Z10 20 Ke@AAalo Mpaypatonoleital pia avaokOoInor @V OXECEDV ITOU OUVOEOUV
TG otyplaieg Xop1keg PetaPAntég pe 1g (EUKoAa PETIPTOES) TOTIKEG XPOVIKEG
petaPAntég oe opoyevr) Kat otaBepr) KukAogoplakr por). [To ouykekpipéva,
avaAvetal o Tporog ou Aapfdvovial o1 PYEIPTOElg ATtd TOUS PRPATEG KAEIOTOU
Bpoyxou kat o tpodriog rou auteg kabiotavial ekpetaddevuolpeg, eve opifoviat
ta Baowkd peyebn g KukAogoplakrng por)g, dndadrn n por] oxXnuAtwv g, 1
MTUKVOTNTA P KAl 1] pE€on taxutnta v, oup@ova pe toug Wardrop (1952) kat
Edie (1965, 1974). To ke@dAdlo OAOKANP®VETAlL PE TOV OPIOPO NG XOPIKIG

KataAnyng o, evog d6popou pe Pdaon kat 1o peco evepyd pnkog L (mean

effective length) ka1 1o gpuowo prkog L™ (physical length) tov oxnudtev.

Kepalatlo 3°

Zto 3° xKe@dlalo Ol YVROTEG OXECEG TOU TIponyoupevou Ke@alaiou
TPOITOTIOI0UVIAL, ®GOTE VA AVIATIOKPIVOVIAl OTl§ avopoloyeveig kal aotaBeig

KUKAO@OPLaKEG OUVONKEG TMOU EIIKPATOUV Of £€va ONPATo80TOUPEVO OUVOECHO.
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Zinv mpoortdbela OUOXETIONG TS HETIPOUUEVNG XPOVIKLG KATAANWYNS HE TV

AVIIOTOIXT] X®P1KI] KATAANWH ToU 0UvOEoPoU yivovial ol £§r)g apadoxeg:

o O xpovog sevnuépnong T 1@V PEIPOE®V XPOVIKIG KATAANYNG £ival apKetd
HIKPOG, ®OTE AUTEG VA AVIIOTOIXOUV Of OTyHlaieg PETPTIOEIS KAl va 10XUEL
o =1 eav evag pwpatrg eivatr katelAnppévog kat o =0 dragpopetikd.

e  Yniapxouv M otov apiBpo PETProelg XPOVIKLG KATAANYNGS KATA PKOG TOU
ouvdéopou oupeeva kat pe 1o 'papnpa 8 (Figure 8) pe revd d=A/M
petadu toug, O10U A gival 1o OUVOAIKO PI)KOG TOU OUVOETIoU.

o Joxuet Lifh =L, Vj, onou j=1,...,N 0 apiBpog tou oxtjpatog oto ouvbeopo.

E@doov 10XU0UV autd, N X@PiKY KatdAnyn o,(x') o pia meploxr) prkoug d
YUpe amno pia Béon pérpnong x', i=1,...,M, umopsi va petpndet mpooeyylotika

Héom ING WEIPHOING  XPOVIKAG Katddnyng o,(x') amd 1 oxéon

M M
o, ~ Zos(xi)d/A = Zot(xi)/M. Onwg @aiverat, n otuyplaia X@PKr KatdAnyn
i=1

i=1
TOU OUVOEOoPOU propel va mpooeyylotel aro pia oelpd PETIPNOE®V XPOVIKNG

' ' Ph B ' ' ' '
KrataAnyng otav L" =L; rat yia moAu pikpo xpovo T. O Babpog akpifeiag mg

nipoogyylong e€aptatatl aro to diaotnua d.

Ev ouvexela yivetat mpooridBesia eUpeong 1tV Kalutepwv O£oemv yla toug
POPATEG PEoa OTo ouvdeopo otav autol eivat Alyotr otov apiOpo 1) aropa Kat
otav MPOKELTAl yid £vav Kal PHovadiko gopatr]. Artodsikvuetal Ot 1 ToroBetnon
TV PepaAtev oupeava pe to Fpagpnpa 8 (Figure 8) sivat évag kaAdg tportog yia
MV EKUPNO0N NS XWPIKLG KAatdAnyng, Kabwg odnyel oe Xapndo péco opdipa,
napoAo movu 1 dlakUpavor) tou Propet va sivatl uyndrn (6tav eykaBiotatatl €vag
Kal povo @opartng, n evdedetypévn tou O¢on Bpioketal oto pé€oo, mepirnou, tou

ouvdéopou). MdaAlota, 600 peyadutepog eivat o aplOpog M 1tov @opatwv oto

Xvil



IIEPINAHYH

oUVvdeoP0, TO00 KAAUTEPEG £lval 01 EKTIUTOEIG XDPIKLG KATAANYPNG KAl 08 OPOUG
péoou o@dApatog Kait oe Opoug opddpatog Siwarupavong. Ilpog arodeiln
auTtoUu, IIPAYHATOIIolEital HPila Aemtopepr)g avaluorn ToU artdoAutou Kat Tou
OXEUKOU O@PAAPATOG NG EKTIPNONG TNG XOPIKNG KATAANYNG Tou ouvdeopou, 1

' ' ' ' ' Ph ' '
oroia 10XUet, TeAkd, akopa xkat otav L, =L +g;, omou g; 10 pn pndeviko
EVEPYO HIKOG OV @epatev, pe ¢; <E katto E >0 va eivat apketa pikpo ya

VA ArtoTPEIETal 1 TAUTOXPOVE] EVEPYOITOINOoNG €vOg (POPATE] AI0 IEPLO0O0TEPA
anod éva oxnupatd. LNPaviko eivai, eriong, 1o @aiwvopevo ZSZO (zero-speed
Zero-occupancy) Iou Tapouctadetal, katd Tto oroio 6U0 oxrpata eivai
otapampeva (Adym g oupdg) ekaAtEPwOev €vOg @mpatr) pe arotédeopa va
APEXOVIAlL PNOEVIKEG PETPTOEIS ATIO TO POPATL], EVR) UTIAPXOUV OXIATA EVIOG
tou ouvdeopou. To ouykekpipévo @aivopevo propet va odnyrjoel, avaloya pe
1) OUXVOTNTA EP@AVIONS TOU, OF, AVIiotowxXa, peydAa opaApata g eKTipnong

NS XWPIKIG KATAANYPNG TOU GUVOEOHOU.

H avdAuon tou mapoviog ke@alaiou odnyei oe evdilagépovia aroteAsopara.
Ao ) pua ouprnepaiverat ot otav o xpovog T auddvetai, auddverat kat 1
mowtNIa g eKUPNONg IS XMPIKNG KAtdAnyng tou ouvdeéopou, Kabwg 1
EKTIHOHEVI] X@PIKL) KATAANPn O, Teivel IMPog TV AvapeVOHUEVI] PECH TIUn g
E{0,} (yia pn pndevikn taxuinta oxXnpatwv). And v aAdn, oty MEPUTIOON
tou onupatodotovpevou ouvdeopou, oOmou pe v mdpobdo Tou Xpovou T
Unapxouv 10AAEG addayég otov aplBpo TV OXNPAT®V OTo oUVOeopHo, apa Kt
Ol XEPIKIN KATtdAnyn autou, n augnon g nepodou T, pe ug avtiotoixeg
ONPAvtkEG O1a@pOoPOIooelg Ol XWPIKL KATAANWI), MPOKAAel ITwOon 1ng
akpifelag g EXKTPOUEVNS XWDPIKING KATAANYng tou ouvdeéopou. Enopeveg,

urnapxel pua Béduotn Xpovikr mepiodog T, 1n oroia odnyei ot PéAtion
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EKTIPNON NG XWPIKNG KatdAnyng, dpa Kat Tou aplOpou tev OoXNpAtev, Tou

ouvdéopou.

To re@dAAalo oAorAnpoveral pe v €upeon tou ekupnt] N tou aplBpou twv
oXNPAIEV péoa oto ouvdeopo mou etvat N=N+(, omou N o mpaypatikog
apBpdg oxnudtwv oto ouvdeopo Kat L= AL/L™, pe A 1o pnKog Tou

ouvbéopou kat A tov aplOpo Awpidwv oto ouvdéeopo. O Bo6puPfog . g

PETPNONG TNG XPOVIKNG KATAANYng repldapfavel d1apopeg rinyeg, onwg:

e To B0pufo TV PETIPIOE®V TOV PRPATOV.
e To opdApa ot povieAoroinon mou MPoEPXeTal Ao TV IIPOCEYYIOTIKOTTA
ot OXEon O, ~ Zzlos(xi)d/A = Zi\il 0,(x')/M, Kupieg yia HKpO aplOpo

eyrateonpévev gopatov M. Edw epmnepiéxetatl kat n orola €rmppor] tou
xXpovou evnpépwong T kat tou @aivopévou ZSZO.
e To opdaAdpa e§attiag g S1a@OPETIKOTNTAG TOU €VEPYOU KAl TOU (PUOIKOU

HINKOUG TRV OXNHATKOV KATA T PETIPNOT NS XPOVIKIG KATAANYNG.

Ke@alaio 4°

To 4° ke@ddalo avagépetat oty avartudn Tou eKTPNT) Tou aplOpou tev
oxnuatwv N péoa oto onuatodotoupevo cuvdeopo. Katapxrv paypatoroieitat
pia oUVIoUn avaoKOTon @V PHadnpuatikeov oxXeéoewv tou @idtpou Kalman kat
yivetat avagpopd otig npoUnobeoelg mou mPETMEL va 10XUoUV yid td Peyedn 1ou
EPNMAEKOVIAlL Of aUTEG. XTI ouvéxela yiverar 1mpooridBesia eaywyrg 1oV
anapaitni@v ywa v e@appoyr) Tou @iAtpou poviEA@v KaAtaotaong  Kat

pétpnong tou npoPArnpatog. O teAd1KOg ekTpntng rou eSayetat eivat o eCr|g:

Ny (k) = Ny (k = 1) + T[qh (k — 1) - i (k — 1))+ KN (k — 1) = Ny (k — 1)]
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orrou N™, N, 1n pé€rpnon Kat n ektipnorn, aviiotowxa, 1ou aplOpol oxXNpAT®V
oto ouvdeopo, qi, q.., Ol Ppoég £10060U Kat £§6dou, aviiotoxd, OXNUATEV OTO
ouvdeopo, T 0 XpoOvog evnNuEP®ONg Kat ekuipnong tou @iAtpou kat K o
rapayoviag o@eAoug (gain parameter) twou @iAtpou. H extipnon NKF
nieplopifetat oto eupog [O,N! ], érou N/ . 0 pEYoT0g aplOpog oXNUAT®Y IOU
priopouv va BpeBouv péoa oto ouvdeopo axkivrta, ouprniepAapfavopévng Kat
Mg ouvnOopévng anootaong ac@aleiag petasu toug D (ormou D=1m). H
pétpnon N™ &ivetat amno ) oxéon N™(k—-1)=N(k -1)+{(k—1), orou 1o { £xel

OP10TEL OTO TIPOTYOUHEVO KEPAAALO.

‘Oocov agopd tov mapdayovia o@edoug K, and i Bewpia 1oxvouv K =T1/(IT+ Z)
kat [T =(1-K)JII+TT, and o6mou mnpoxurel, tedikd, K = 0.5(—(1 ++a? +4a )ps

a=TT/Z wa1 I, Z ot Sakupavoelg 1oV BopUB®V TOU CUCTHHATOS KAl TNG

pérpnong, avtiotowxa. Anodeikvuetal, t€dog, Otl orotodrriote tdorn (bias) b
xapaktpifel 1o Bopufo tng pe€rpnong § petagépetal avtouola OtV eKTipnon
tou @iAtpou, kaBwg autd O6ev propei va v arofddldel, oxvel, dnAadn,

E{N,;} = E{N™} = E{N} + b.

Ke@alAalo 5°

210 S5° redldalo yiveral pia anomnelpa eAEyxou Ing rnolotnIag g EKTiPnong tou
aplOpol TV OXNUAT®V OT0 OUVOeopo pe Xpron g pebodou tng exkOeukng
eopdaAuvong. Xpnoworowwviag, TMMALov, HPOVO TG HEIPLOES XPOVIKLG
KATdAnyng armo 1o eepatn rou Bpioketal oto PEco ToU oUVOEoPOoU (KAl OX1 TV
6U0 arpainv PepATV PEIPNONG POIIG) O VEOG EKTIHNTIG ITOU AvVAITTUooETAl eivat

Ny (K) = KguN™(k —1) + (1 - K )Ngy (k — 1), émou N™ kat Ng, 1 pérpnon xat n

ekOetika efopadupevn eKTipnon, aviiotoxa, tou aplOpol OXNUAT®V  OTo
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ouvbeopo, eva K, eivatr n napaperpog eSopaduvong. Ta amotedeopata twv
MPOCOHNOINOE®V TTOU TIPAYHATOTION|ONKav He T XP1101] TO00 TV PETPIIOE®V, 000
Kat tou @idtpou Kalman ouykpivovial pe autd mou MpoEéKuyav aro T XPrjon

TV eKOeTIKA £COPAAUPEVOV PETPTIOEWV.

Kepalalo 6°

210 6° RedAalo rapouotaletal To PabnPATIKO POVIEAO TTOU XPNOIHOoTTo0nKe
Ol HP1IKPOOKOITIKY] ITPOCOHOI®on Kal avagepoviair ta Oiagopa oevdpla Iou
avartuxbnkav, ote va aviarokpivoviat oe  d1d@opeg KUKAOQPOPLAKES

ouVvOrKeg.

Katapxr)v, o e§etalopevog ouvbeopog €xel Urjkog 194 pérpa xkair epreplexet
povo pia Awpida kuxkAogopiag. To d1akpito (xpovikd) padbnpatnko poviedo mou
xpnoworoteitat Baoifetar oe Pripa npooopoiwong T, =0.25s. Xe Kabe
Xpovikr repiodo k =1,2,..., unodoyiletal ya kabe oxnpa i n embupnt) tou
axuma yu; ano wm oxéon y4; = A[S(k)-D], omou A=0.7 s xat D=1m,
eva §;(k) opiletatl n arootaon (oe PETPA) TOU IMO® PEPOUG EVOG OXIPATOG HE TO

HITPOOoTIVO PE€POG TOU OXIATOG TToU To akoAoubei. H péyiotn duvatn ermbupntr)

Taxutnta kabe oxrjpatog opifetat ion pe y, =16.5m/s.

H ermmutdxuvon a,(k) kdaBe oxnuatog i vumoldoyifetar amod 1 OxEon

a, (k) =sat{g[y4;(k) - y;(k)]}, orou g =2 s kat n ouvaptnon sat{} opiletat wg:

a,... if nza,,.

Sat{n} = amin lf T'| < a'min
n else
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pe a_, =1.5m/s’>, a_, =-6m/s’ kal v taxvmta Kabe oxrjuatog y;(k) va

min

avavewvetat ovpgova pe ) oxeon y;(k+1)=y,(k)+a;(k)T,,. Tedikd, n 6¢on

im ©

KABOe oxrjpatog kabopiletatl ano 1 oxeon

x,(k +1) =x,(k)+ T, y;(k)+ 0.5T_a,(k).

sim*"i

Ocov agopd ta S5, ouvoAlkd, dlapopetika oevdpla ou Snuioupyndnkav, o
OUVOAIKOG XPOVOoG Ipooopoiwong eivat i6og yia oAa kat @taver ta 5000
deutepoAernta (rmepinou 1,38 dpeg), eV 0 XPOVIKOG KUKAOG TOU aVAVTL PROTELVOU
onpatodotn etvat avia 90 deutepoAertta. To prKog 1@V oxXNpAteV eivatl petagu

[3m,5m], apa yla v ektipnon tou aplBpou TV oXNPAIV Xpnotporotsitat
L™ =4m, evd o Xpdvog evnuépwong tou @idtpou eivat T =20s. 1o Baciko

0EVAP10 TIPOCOHOIMONG 0 XPOVIKOG KUKAOG TOU KATAVIL QPROTIEWVOU Onpatodotn

eivatr 20s, ota unodowurta tpia sivar 40s, 60s kat 90s, aviiotoxa, eva oe &va

e181KO 0evAPlo 0 XPOVIKOG KUKAOG TOU KATAVIL PXTEIVOU onpatodotn aAdadet
otoxaotikd petadu 10 kat 90 deutepoAérnmmv. Te kKABe oevdplo ot dlapKreleg TV
KOKKIVOV/TIpdowvav evdeifewv tov onpatodotdv oe kabe KUKAO adAdlouv pe

OtOXO0 TNV ertiteudn Kabes duvatr)g KAtavourg OXNUAT®V P€0d OT0 oUVOeo|io.

Télog, oOoOv agopd T0 Kpurplo afloAdynong IOV anotedeopdi®v Ing
npotewvopevng pebodoldoyiag xpnowporoteitat 1o Zxetkod Méoo Terpaywviko

ZpdApa (Relative Mean Square Error)

RMSE =100% \/Ki[x -N(K)J ZK:N(k)

ormou N(k) eivatl o mpaypatkog apifpog oxnudatov oto ouvdeopo kat X eivatl o

EKTIPOHEVOS aplOI0g oXNUAT®V, eite 116060 TOV petprioeav, ormote X = N(k), eite
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péow tou @idtpou, omote X = Ni.(k), eite péow wwv exkBetka e§opaiuvpévav

HeTprioe®v, omnote X = NSM (k).

Ke@alalo 7°

Zto 7° repddalo mapouoctadovial AVAAUTIKA TA ATOTeEAéopatad OA®V TRV

Otepeuvrioewv katl yiverar mpoomaBseia va 6oBouv armavirjoslg oe pia ogpd

KPIo1QV EpOTNHIATOV:

[Tooo BeAtidveral n eKTIPNON TOV PEIPIOE®V (ATTAGOV 1] ESOPAAUPEVQOV) HIE T
xprjon tou @idtpou Kalman; ITocol ernutAéov @mpatég arnattouvial yia va

(PTACOUE TNV EKTIPN O TOU QIATPoU;

[Tolo eival 1o €Upog TV KATAAANAGV Tp®OV Tou mapdayovia K tou @iAtpou;
[Towa eivatl n evaloBnoia g nowdINTAg g EKIPNONG yupw aro Tig TIHES

AUTEG;
[Iog ernnpeddetl v eKTipnon o Xpovog evnuépwong/exktipnong T kat mowa
Tar) eivatl KatdAAnAn ya v NPaktiky eQappoyr) g pebodou;

[Mog arodidet 1o PiAtpo kKAT® anod dragopetikég ouvOrKeg ITOU APOPOUV 1O

N 1 PO TWV OXNUATAV KAl T POTIEWT] onpatodotnon tou ouvdeopnou;

max ?

[Mog ertnpealouv v eKUipnon ot 61a@opot BOpUPol TV PETPIOE®V;

[a v anavinon avtov oV epEIPATEV Iapouctddetal mMAndopa ypapnpatov

Kal MVAK®V TI0U TIApEX0UV aglodoyeg TAnpo@opieg rat odnyouv o ONPIAVIIKEG

MAPATNPI0EIS TTOU aAvadelKvUouV TV Q@EAPIOTNTA NG XProng tou @iAtpou

Kalman.
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Kepalalo 8°

Zto 8° Re@AAalo Ipaypartorioleitat pia ouvoyn OAOKAnEng ng epyaociag,

Tovifovtal ta onpavukotepa otoxeia g Kat rpoteivovial KAtaAAnAeg Tpeg 1OV

peyebov TIOU amnattouvidl yia IV NPAKUKI e@appoyn g pebodou oe

MPAYPATIKO TeP1BdAdov. ZUp@eva Kal e Ta aroteAéopata ToU IIPonyoUHEVOU

Re@aldaiou ya v epappoyr] g rnpotetvopevng pebodoAoyiag os mpaypatireg

ouVOnKeg TIPETEL va yvepi{oupe Ot

To ouvnBeg eUpog Tp®V Tou Xpovou T eivar [10s,30s].

O1 petpr|oelg XPOoVIKYG KatdAnyng nipérnetl va Aapfdavovrat pe € i0o pe 1o
pndev. Av autd dev eival e@1KTO, 01 PETPI0E1G TIPETEL va TTOAAATTIAQO1a0TOUV
pe L™ /(L™ +¢) mpwv xpnotpornonfouv Tepattépm, Orou 10 HECO QUOIKO

HNKOG TtV oxnuatov L™ eival mepinmou 4 pérpa. Turukég TRég yia 1o €

etvat anod 1 €¢ng 2 perpa, avaloya Pe ToUg EYKATECTHEVOUS (POPATES.

Ot PETProelg XPOVIKNAG KATAANWNG O] IIPETIEL VA PETATPETIOVIAL O€ aplOpo
oxnuatev N™ péoe tng oxéong N™ = (AL /L™)o", émou o mapdayev A /L™
ooutal pe, Kat propet va avukataotadei amnod, 1o péyioto apldpo oxnpdaiev
N_.. Tou propouv va Ppedouv otapatnpéva peca oto ouvdeopo. Zinv
MEPUTIOON Umapdng Kait @optnywv Heoad Oto ouvdeopo urdpxouv duo

duvartotnteg:

0 To wpnkog TtV @optnyev va pPn  AapPavetatr  undyn  oto
XP1O1HOITOI0UPEVO PECO HIKOG OXNUAT®V, To oroio mapapével ota 4
PETPA, omoOTE T0 PIATPO MMAPEXEL EKTIUTOELS TTIOU AVAPEPOVTAL O NOvVAdeg
emPatk®V oXNUAT®V (passenger car units), emAoyn n oroia Kat

npoteivetat.
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0 To pnkog Vv @optny®v va Aapfdverat umoyn OTOV UITOAOYIOPO TOU
HE00U PNKOUG T®V OXNIATKV, TO OTT0i0 YIVETAl, PUOIKA, PEYAAUTEPO TOV
4 petp®v, orote KAl 1o @IATPOo MAPEXEL EKTIPNOELG TTOU AVA@EPOVIAL OF
OXNuata Tou JIopel va eival eite ermPankd, eite @opinyd pe pua

niporkaBopilopévn avaloyia.

e Ot mpotewvopeveg Tpeg tou rapayovia K Bpiokoviar pertau 0,05 kat 0,3,
aAAd edv dev eivar duvatog o Aermtopepr)g ouvioviopodg tou (fine-tuning),

1ote n Tpr] K = 0.1 Bewpeital apKeTA 1KAVOTIOUTIKT] KAl EUPOOTL.

e Ot esxkuproel tou @iAtpou NKF(k) Bpiokovrat petagu O xatr N orou

N =AL/(L"+D) eivat o péyiotog aplOudg akivniov OXNUATOV IToU
priopet va uniap§ouv péoa oto ouvdeopo, AapPavoviag unoyn kKatr v

andotaon ac@aieiag D petay 6Uo 51adoX1KOV OXNPATOV.

INIapaptipata

Tédog, oto TMapdptnpa A napouctdletat 1o apxeio e€100dou Hedopévav tou
POYyPAPATOg TPOCOHROI®OoNG Iou avartuxOnke, esvew oto Ilapapipa B
divovtatl avadutikd ol XpovikeG S1APKEIEG TOV KOKKIVOV/TIPACIVROV TOV PROTEWVAOV
onpatodotav kKab’ 0An 1 S1dpKeElAd TOV IIPOCOHOIVOERV KAl ylia KABe ogvaplo

oU eCeTAOTNKE.
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ABSTRACT

The number of vehicles included in a metered motorway ramp or an urban signalized
link at any time 1s valuable information for real-ime control. This quantity 1s closely
related to the space- and time-variables of the ramp or the link. Until now many people
have been concerned with the relationships between mstantaneous space-variables and
(easily measurable) local time-variables in largely homogeneous and stationary traffic
flow, as typically encountered in uninterrupted traffic conditions. But how do these
relationships change under imhomogeneous and nonstationary traffic conditions? To
answer this question a rather elaborate analysis and microscopic simulation investigation
1s conducted for signalized links with inherently strong traffic flow variations triggered
by traffic signal switchings. A number of mfluencing factors when estimating space-
variables from measured local time-variables 1s analysed and illustrated in detail.
Considering these, a Kalman Filter 1s employed to produce reliable estimates of the
number of vehicles based on real-time measurements of flow and occupancy provided
by three loop detectors. The resulting vehicle-count estimator 1s tested via the same as
before microscopic simulation for a variety of metered ramp scenarios and traffic
conditions. The simulation investigations indicate a robust estimation performance with

little effort required, which facilitates easy applicability of the method.
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CHAPTER 1
GENERAL CONCEPTS

1.1 Traffic Congestion

Traffic congestion 1s a vexing problem felt by residents of most urban areas. Despite
decades of effort and billions of euros worth of public spending to alleviate congestion,
the problem appears to be getting worse. It seems that traffic congestion and cities go
hand in hand. Everyone complains about being stuck i traffic; but no one seems to do
anything about it. In particular, traffic engineers, transportation planners, and public
officials responsible for metropolitan transportation systems are frequently criticized for
failling to make a dent in congestion. Most importantly, while it 1s obvious that traffic
congestion cost in time, what 1s less obvious, but still very real, 1s its cost in traffic deaths
and 1njuries, poorer air quality, wasted fuel and lost productivity. Trafhic congestion 1s
not just a nuisance, lack of adequate capacity on the highways in these stress points
actually causes traffic accidents, spews pollutants into the air in greater concentrations

and requires the useless burning of fossil fuels.

Congestion occurs when traffic demand exceeds available capacity, although it 1s much
more complex than simply stating that “too many vehicles are trying to use the road at
the same time”. Congestion results from the mteraction of many different factors or
sources of congestion. It has several root causes that can be broken down into two main

categories:

REAL-TIME ESTIMATION OF VEHICLE-COUNT WITHIN SIGNALIZED LINKS 1
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1.

2.

Too much traffic for the available physical capacity to handle.
Traffic influencing events like accidents, work zones, bad weather, special events

and poorly timed traffic signals.

The level of congestion on a road 1s determined by the mteraction of physical capacity

with events that are taking place at a given time. For example, the effect of a traffic

mcident depends on how much physical capacity 1s present.

Nowadays, the effort in order to relieve congestion to metropolitan areas 1s permanent

and a variety of strategies has been developed to deal with congestion. These strategies

can be grouped as follows:

Adding road capacity where appropriate and requested. Adding more lanes to
existing highways and building new ones has been the traditional response to
congestion. In some metropolitan areas, however, it has become difficult to
undertake major highway expansions because of funding constraints, increased
construction cost, social effects and environmental constraints and opposition from
local and national groups.

Operating existing capacity more efficiently. In recent years, new strategies that deal
with the operation of existing highways have been adopted, rather than just building
new infrastructure. Collectively referred to as Intelligent Transportation Systems
(I'TS), real-time control of transportation operations involves making changes from
minute to minute, changing the operating methods or the policies that govern the
use of the road and monitoring vehicles in real-time; there are numerous
operations-based congestion mitigation strategies that are enhanced by the use of

advanced technologies or I'TS.
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CHAPTER ONE: GENERAL CONCEPTS

Although adding new physical capacity to highways 1s an important and effective strategy
for alleviating congestion, 1t does not seem to ensure a long term solution and it causes
manifold feedbacks. Having this in mind, the only measures that can be taken in order
to control the traffic involve the application of operational improvements; a major area

of great iterest 1s the ramp metering.

1.2 Traffic Flow Process Control

Figure 1 illustrates the essential elements of a control loop which is the basis of any
operational procedure in a traffic network. The traffic flow behavior in a freeway or an
urban traffic network depends on some external quantities that are classified mto two

groups:

e Control inputs that are directly related to corresponding control devices (actuators),

such as traffic signals, variable message signs, etc.; the control mmputs may be

disturbances

demand incidents

Control Traffic > total time spent
| Devices Network ! Sensors
control Measurements
inputs S ar sarE: T
_—— L At Dhaid s o
COMPUTER
Control .
+— Surveillance [¢——
Strategy
Y [

!

=
| Human-Machine l"

Interface

Figure 1: The control loop.
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selected from an admuissible control region subject to technical, physical, and
operational constraints.

e Disturbances, whose values cannot be manipulated, but may, possibly, be
measurable (e.g., demand) or detectable (e.g. incident) or predictable over a future

time horizon.

The network’s output or performance 1s measured via suitable indices, such as the total
time spent by all vehicles mn the network over a time horizon. The task of the
surveillance 1s to enhance and to extend the information provided by suitable sensors
(e.g. Inductive loop detectors) as required by the subsequent control strategy and the
human operators. The kernel of the control loop 1is the control strategy, whose task 1s to
specify in real time the control inputs, based on available measurements/ estimations/
predictions, so as to achieve the prespecified goals (e.g. minimization of total time
spent) despite the influence of various disturbances. If human operator undertakes this
task, we have a manually controlled system. In an automatic control system, this task is
undertaken by an algorithm (the control strategy). The relevance and efficiency of the
control strategy largely determines the efliciency of the overall control system.
Therefore, whenever possible, control strategies should be designed with care and via

application of powerful and systematic methods of optimization and automatic control.

1.3 Loop Detectors

One of the most well used methods for measuring the flow i a link 1s the mstallation of
loop detectors. A traffic loop detects metal objects such as vehicles and bicycles based
on the change i inductance that they induce in the loop. The loop 1s an inductor in an
LC circuit that 1s tuned to resonate at a certain frequency. A metal plate over the loop

(like a vehicle) causes the magnetic flux to be shorted, reducing the inductance of the
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loop. This causes a change in resonant frequency, which 1s detected and sent to the

signal controller (see Figure 2).

Although advancements are under way that may make traffic loops obsolete some day,
they still remain one of the most widespread measurement devices due to its low cost.
Radar, infrared and sound detectors and systems based on video cameras are
promising, but their construction and operation cost makes their implementation
almost prohibitive. On the other hand, the employment of traditional loop detectors
measuring time-occupancy has, also, some difficulties. In this case, a detector station
(across all link lanes) positioned at a specific link location (e.g. at the signal stop line or
i the middle or at the upstream end of the whole link) delivers (local) occupancy
mformation that 1s not representative for the whole link. In other words, local time-
occupancy measurements collected by loop detectors need to be translated to space-

occupancy estimates that are directly related to the number of vehicles in the link.

Over the last years, the significant technological advances in electronic technology,

coupled with excellent wire insulation for inductive loops, make both high performance

body of
loop-type

vehicle eddy current  magnetic flux _de'ecm'i

Figure 2: Operation of a loop-type detector.
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and high reliability in vehicle detection possible. However, the facts of the locality of the
time-occupancy measurements and their necessary modification in terms of number of
vehicles may cause important inaccuracies at the final esimation of the number of
vehicles 1n the link. That 1s why we first should examine more carefully some basic

relationships between time-occupancy and space-occupancy.

1.4 Ramp Metering

Ramp metering is not a new freeway management technique. Various forms of ramp
control were implemented during the late 1950’s and through the 1960’s in Chicago,
Detroit and Los Angeles. By the early 1990’s, ramp metering systems existed in twenty
metropolitan areas within the United States, along with numerous cities around the
world (Europe, New Zealand, Japan). Like in other technological areas, there 1s a gap
between methodological advancements and practical mmplementations of ramp
metering; this gap tends to increase as the methods become more sophisticated, but
also more efficient. Nowadays Europe has a leading role in terms of methodological
advancements in the area of ramp metering, but the number of operational metered
ramps (less than 100 i total) is far less than i USA (about 2.500 metered ramps,

thereof some 800 in Los Angeles and some 400 in Minneapolis).

Ramp metering can be defined as a method by which traffic seeking to gain access to a
busy highway 1s controlled at the access point via traffic signals (local ramp metering-see
Figure 3a). This control aims to maximize the capacity of the highway and prevent
traffic flow breakdown and the onset of congestion. The operation of the traffic signals
transmutes the predefined control strategy ito action. Additionally, ramp metering can
affect driver route choice and can be used to encourage alternative routes m corridor

networks particularly where complimentary measures such as alternative rout signing
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(a) Ramp metering

— (rafhic flow

queue

(b) Coordinated ramp metering

— trafhic flow

Figure 3: (a) Local and (b) coordinated ramp metering.

can be and are applied. The problem gets even more difficult when we talk about a
number of on-ramps to a highway (coordinated ramp metering-see Figure 3b) and the
suitable co-operation of ramp metering with signal control in order to maximize synergy
and minimize mutual mnterference (e.g. queue spillbacks) 1s of major concern.
Generally, the benefits of ramp meters include the reduction of congestion on the
freeway at the entrance ramps, the reduction of accidents as cars merge from the
entrance ramps onto the freeway, the ability to easily merge with less disruption to

interstate traffic, and the reduction of vehicle emissions.

In practice, ramp metering systems have been extremely successful n reducing
congestion and increasing safety. Although, ramp metering algorithms have some
limitations, which researchers are working to eliminate. One problem 1s that existing
algorithms react to rather than prevent bottlenecks. This causes oscillatory behavior, as
a result of the time lag between detection and correction action. If an nitial reaction to
congestion leads to overly restrictive metering, excessive queue builldup may ensue. If
the queue exceeds a certain length, it will interfere with the adjacent street traffic,

otherwise, when a queue override 1s activated, freeway congestion will again increase,
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and the process starts over. A proposed solution for the safeguard of the algorithmic
prevention involves integrating traffic predictive capabilities into the metering logic;
several such algorithms employ neural networks and Fuzzy Logic techniques, and can
potentially delay or prevent bottleneck formation. The solution to the other problem,
also known as the queue overflow problem, 1s two-fold: firstly, to estimate accurately the
length of the queue on the ramp 1n order to accurately detect queue overflow problems
and, secondly, in the case where there 1s a danger of queue overflow to efficiently

control the ramp metering so that queue overflow is avoided.

One possible way to address the first problem (queue length estimation) is by using
video sensors, which calculate quite accurately the number of the vehicles within the
ramp (or the link in case of an urban network); however, video sensors may be an
expensive solution especially when there 1s a need for placing a large number of them
(coordinated ramp metering, long ramps with curvature requiring more than one video
sensor, etc.). A second approach is to use the detector flow measurements in the
entrance and the exit of the ramp as well as the measurements coming from detectors
within the ramp in order to come up with accurate estimates of the number of vehicles

within the ramp. Kalman-filter estimation techniques can be used for this purpose.

1.5 Kalman Filter

The filter 1s named after its inventor, Rudolf E. Kalman (1960) and its first application
was by NASA to the problem of trajectory estimation for the Apollo program. Since
then a wide variety of Kalman filters have been developed, from Kalman’s original
formulation, now called simple Kalman filter, to Schmidt’s extended filter (1970), the
mformation filter and a variety of square-root filters developed by Bierman, Thornton

(1980) and many others. Kalman Filter has been the subject of extensive research and
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application, particularly in the area of autonomous or assisted navigation. This 1s likely
due in large part to advances in digital computing that made the use of the filter

practical, but also to the relative simplicity and robust nature of the filter itself.

The Kalman Filter 1s essentially a set of mathematical equations that implement a
predictor-corrector type estimator that is optimal in the sense that it mimmizes the
estimated error covariance when some presumed conditions are met. Rarely do the
conditions necessary for optimality actually exist, and vyet the filter apparently works well
for many applications in spite of this situation. That 1s why Kalman Filter has also been
applied in areas as diverse as aerospace, marine navigation, nuclear power plant
mstrumentation, demographic modeling, manufacturing and in a wide range of

engineering applications from radar to computer vision.

Kalman Filter 1s optimal with respect to virtually any criterion that makes sense.
According to Maybeck (1979), there are two good reasons to choose a Kalman Filter
over other approaches. The first aspect of its optimality is that the Kalman Filter
mcorporates all information that can be provided to it. It processes all available
measurements, regardless of their precision, to estimate the current value of the

variables of interest, with use of:

1. knowledge of the system and measurement device dynamics,
2. the statistical description of the system noises, measurements errors, and
uncertainty in the dynamic models, and

3. any available information about mitial conditions of the variables of mterest.
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Rather than ignoring any of these outputs, a Kalman Filter could be built to combine all
of this data and knowledge of the various systems’ dynamics to generate an overall best

estimation.

The other important reason 1is that Kalman Filter 1s a recursive filter which estimates the
state of a dynamic system from a series of incomplete and noisy measurements. The
term “recursive” means that only the estimated state from the previous time step and
the current measurement are needed to compute the estimate for the current state. The
filter does not require all previous data to be kept in storage and reprocessed every time
a new measurement 1s taken. In contrast to batch estimation techniques, no history of
observations and/or estimates is required and this is of vital importance to the

practicality of filter implementation.

A Kalman Filter combines all available measurement data, plus prior knowledge about
the system and measuring devices, to produce an estimate of the desired variables in
such a manner that the error is minimized statistically. In other words, if we were to run
a number of candidate filters many times for the same application, then the average
results of the Kalman Filter would be better than the average results of any other.
Conceptually, what any type of filter tries to do 1s obtain an “optimal”, meaning that 1t

minimizes errors in some respect.

According to Maybeck (1979) there are three basic reasons why deterministic system
and control theories do not provide a totally sufficient means of performing an analysis
and design of any physical system. First of all, no mathematical system 1s perfect, as it
depicts only those characteristics of direct interest. Secondly, the dynamic systems are
driven not only by our own control mputs, but also by disturbances which we can

neither control nor model deterministically, and thirdly, sensors do not provide perfect
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and complete data about a system. As a result, assuming perfect knowledge of all
quantities necessary to describe a system completely and assuming perfect control over

the system 1s a naive approach. This encourages the following questions:

— How do you develop system models that account for these uncertainties m a direct
and proper way?

—  Equpped with such models and incomplete, noise-corrupted data from available
sensors, how do you optimally estimate the quantities of interest to you?

— In the face of uncertain system descriptions, incomplete and noise-corrupted data,
and disturbances beyond your control, how do you optimally control a system to
perform in a desirable manner?

— How do you evaluate the performance capabilities of such estimation and control

systems, both before and after they are actually built?

The answer to all these 1s, actually, the Kalman-filtering approach. In Figure 4 1s shown
the general form of the filters’ application. According to this, for known data u(k),

disrupted with noise g(k), a process 1s applied and considering various possible

gk)
i z(k)
u(k) y(k)
—eo———» Process; x(k) >

» Kalman Filter [«

x (k+1)

Figure 4: Kalman Filter application.
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disturbances/noises z(k) we end to a measurement y(k) . The use of this measurement
and of the starting data give, through the application of the filter, the estimation (or
prediction) x(k+1) of the process state at the next time step. Notify that the filter 1s

applied in discrete time.

1.6 Microscopic Simulation Model

Simulation 1s a method of imitation of operations in real-world processes and systems.
It can be used to describe and analyse the behaviour of an existing and conceptual
system especially in traffic and transportation. Hence this can also be a fruitful method
for searching optimal solution by integrating with efficient algorithms and a part of a

system supporting decision making.

One of the most common simulation methods 1s the microscopic simulation, a
technique which provides a realistic measure of (traffic) flow on a network as well as any
other parameter of interest. In the past describing the traffic was possible using
macroscopic approach which perceived the traffic as a fluid flowing along the
carriageway. Microscopic approach allows studying the traffic flow by modelling the
motion of a particular vehicle. The mathematical models used 1n it are called car

following models.

Every microscopic simulation model offers a set of advantages as it 1s possible to imitate
with great accuracy the real conditions of a network. Since each vehicle can be
autonomous, the realism of each vehicle’s behaviour can correspond to the geometry of
the road network as well as each vehicle’s and its driver’s behaviour can be determined
by individual set of mathematical rules according to its type. Car-following, overtaking,

driver’s awareness and aggressiveness and every other parameter can be modelled n
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this way. What must be noticed 1s that the more the accuracy of the model 1s, the higher
the computational requirements and the time cost of the simulation. However, the
crucial aspect of any microscopic simulation model is the calibration of parameters

describing the vehicles and the environment.

1.7 The Number of Vehicles Estimation Problem

The vehicle-count estimation problem 1s illustrated in Figure 5. Figure 5a depicts the
relevant signal and detector configuration on the signalized link. Two traffic signals are
located, respectively, just upstream of the upper boundary of the link and at the
downstream end of the link. The upstream signal (f it exists) determines the traffic
demand approaching the link while the downstream signal controls the vehicle flow
exiting the link. Obviously, whenever the link demand 1s larger than the link outflow, a

queue 1s built. It 1s also shown in Figure ba that three detectors are installed: at the

(a)
link mflow time-occupancy link outflow
measurements ¢ (k —1) measurements o," (k 1) measurements ¢ (k =1)
N
(b) vehicle-count estimator based on
)

the Kalman filtering

N(k)

real-time estimation of the vehicle-count in link

Figure 5: Vehicle-count estimation: (a) the signal and detector configuration on the link; (b) the link
vehicle-count estimation.
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upstream end of the link, at the downstream end of the link, and in the middle of the
link. Both boundary detectors provide flow measurements, while the middle detector
provides time-occupancy measurements. The basic structure of the ramp queue

estimation 1s shown in Figure 5b:

e The estimator is fed in real time with the flow and time-occupancy measurements
from the link detectors.
e The estimator delivers in real time the estimated number of vehicles in the link

(between the two boundary detectors).

REAL-TIME ESTIMATION OF VEHICLE-COUNT WITHIN SIGNALIZED LINKS 14



CHAPTER 2
TIME-OCCUPANCY AND SPACE-OCCUPANCY

2.1 Introduction

Space-occupancy (portion of highway lane length covered by vehicles), traffic density
(vehicles per kilometer) and vehicle-count in (urban or freeway) links are important
quantities for both traffic flow modeling and traffic control. These quantities are usually
needed for highway stretches or links of few hundred meters in length, while the vast
majority of available measurement devices provide only local measurements at specific
highway locations. Space measurements covering a few hundred meters may in
principle be collected by video sensors, but this possibility 1s obscured due to visibility
obstacles, geometrical highway conditions, 1mage-processing algorithm accuracy and,
last but not least, cost. On the other hand, emerging technologies (see, e.g. Cheung, et.
al.,, 2005) may soon lead to cheaper, convenient (e.g. wireless) and reliable local
measurement devices which could foster a space-denser deployment of sensors along
links. In any case, the mvestigation and understanding of the relationships between
locally measurable quantities, such as time-occupancy (portion of time a local sensor 1s
covered by vehicles), and the aforementioned space-extended quantities has a high

practical significance.
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Despite some related efforts in the past (Wardrop, 1952; Edie, 1974; Bhouri, et al.,
1988; Banks, 1995; Cassidy and Coifman, 1997; Kim and Hall, 2004), that will be
specifically addressed later, there are several 1ssues regarding the relationships between
local and space variables that are still unexplored, particularly in the case of signalized
links (e.g. urban roads or freeway on-ramps) where the space-distribution of vehicles is
strongly inhomogeneous due to the traffic signal switchings. After a brief review of
available knowledge, the research focus is turned to signalized links to reveal some
useful relationships between space-occupancy, vehicle-count and time-occupancy
measurements. The derived findings are illustrated n a series of microscopic simulation
experiments in CHAPTER 7. This research 1s a first step towards the development of a

reliable low-cost estimator for the vehicle-count in signalized links by use of Kalman

filtering which 1s reported in CHAPTER 4.

2.2 Inductive Loop Measurements

Although mformation on space-variables (such as density, space-occupancy, vehicle-
count in links) 1s of major importance for various uses (including real-time control),
genuine space measurements are costly or little accurate. Consequently, local
measurement devices (mostly inductive loop detectors) are used to deliver traffic flow
measurements in form of time-variables (e.g. time-occupancy) at specific highway
locations. In fact even video sensors are frequently used as virtually local (covering few
meters of pavement) or loop-emulating, rather than extended-space (few hundred

meters) measurement devices.

When a vehicle j, j=1,...,N, passes over o loop detector, an electric pulse (Figure 6a)
1s produced, whose shape may depend on vehicle length, height and further

charactenistics. The produced pulse 1s digitized by setting all values higher (lower) than a
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A
/‘\ analog
pulse
(a) threshold
(adjustable)
P time
A : :
1 e - : digital
pulse
(b) - ¢ >
0 P time
A
Sampling T’
(¢)
binary digital signal, e.g. 000011111111000...

P time
Figure 6: Time-occupancy measurements signals.

threshold equal to one (zero), see Figure 6b, whereby the threshold may be adjustable

by the user. The duration t; of the digital pulse is obviously inversely proportional to

the vehicle speed y;,

t=L;/y, 2.1

where L; is usually called the electrical or effective vehicle length which is closely

related (but 1s not necessarily equal) to the physical vehicle length L};h. The digital

signal 1s transformed to a binary series of 1’s and 0’s (Figure 6¢) based on a sufficiently

short sampling period T, e.g. T, =10ms, for further processing. The related time-
measurements are produced with an update period T (e.g. T, =10s) and refer to the

time period [KT,(k +1)T] where k =0,1,... 1s the discrete time index. Let N(k) be the
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number of 0-1 passages in the binary signal of Figure 6¢ during period k, in which case

we obtain the flow measurement (k) = N(k) /T ; while for the ime-occupancy we have
0,()= Y t,(k)/T= Y L /ty,(T) ~ nfk)T, /T 2.9)

where n(k) is the number of 1’s counted during period k.

In traffic flow theory, the relevant traffic flow variables density, mean speed and flow (or
traffic volume) are often defined as abstract mathematical quantities that are continuous
in both space and time, 1.e. p(x,t), v(x,t) and q(x,t), respectively; where x and t are
continuous space and time arguments, respectively. For more practical considerations,
however, it 1s quite usual to consider density p(k) (number of vehicles included in a
section of length A at time mstant kT, divided by T) and mean speed v(k) (of vehicles
in the same section at the same time instant) as instantaneous space-variables; while the

flow q(k) 1s defined for a specific location over a time period T, as mentioned earlier.

2.3 Wardrop’s Approach

In an attempt to span a bridge between local time-measurements and instantaneous
space-measurements, Wardrop (1952) proposed the following idealized consideration.
Assume that the traffic flow consists of (space-homogeneous and stationary) sub-streams

j=1,...,C, each with corresponding sub-flow q; and equal vehicle speeds y;; the time-
headway in each sub-stream is then 1/q;, hence the space-headway is y,/q; and the
sub-stream density p;=q;/y; is the inverse of the space-headway. Taking this

approach to the limit of one-vehicle sub-streams j=1,...,N (the discrete ime argument

REAL-TIME ESTIMATION OF VEHICLE-COUNT WITHIN SIGNALIZED LINKS 18



CHAPTER TWO: TIME-OCCUPANCY AND SPACE-OCCUPANCY

k is suppressed for brevity), we have ¢; =1/T and p; =1/(y;/T) and hence the global

traffic variables

a=2,q;=N/T 2.9)
p=2.p=21/y/D (2.4)

where y;, j=1,...,N, are locally measured individual vehicle speeds. Thus the (space)

mean speed
N N
v=2"pAy /(pA)=q/p=N/D1/y, (2.5)
= 1

turns out to be equal to the harmonic average of passing vehicle speeds y; while the
time mean speed 1s equal to the arithmetic average of y;. Note that (2.4), (2.5) actually

span a bridge between locally measured quantities (passage of N vehicles and vehicle

speeds y;) on one hand and space quantities p, v on the other hand; albeit under the

mentioned, somewhat vague stationarity and homogeneity assumptions, see also Hall

(2002).

2.4 Edie’s Definiion

Edie (1965; 1974) proposed a generalized defimition of traffic variables based on
mdividual vehicle trajectories within a finite space-ime window (Figure 7) whereby the
traffic flow q equals the total vehicle mileage (in veh-km) within the window, divided by
the window surface AT; the density p equals the total time spent by all vehicles (in

veh-h) within the window, divided by AT; and v=q/p. Edie’s defimitions reduce to
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X —— vehicle

/ — trajectories
‘ 5 A «

=

T

Figure 7: Illustration of Edie (1965; 1974) definition of traffic variables.
the definitions of section 2.2 for the space-variables p and v, for T — dt; and for the

time-variable g, for A — dx.

Assume that a local measurement device 1s available at location 1 (Figure 7), measuring
vehicle passage and speeds over period T. We introduce the following assumptions that

may actually hold if A 1s made sufficiently small:

e All vehicles crossing 1 also cross 2 within the same window and vice versa.

e Vehicles maintain a constant speed between locations 1 and 2.
Under these assumptions we obtain from Edie’s definitions

q=NA/(AT)=N/T

p=( A/Y)AT) =Y 1/(v/T)

v=a/p=N/Y1/y,

J=1
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Le. we re-gain (2.3)-(2.5), albeit under more clear (but also less general) assumptions

than by use of Wardrop’s approach.

Note that the above assumptions may only hold if A — dx, in which case p and v
resulting from (2.4) and (2.5), respectively, become local variables, defined over a finite
period T and infinitesimal space. The validity of these values over a (more or less)
extended space around the measurement location depends on the level of stationarity
and homogeneity of traffic flow. Thus, (2.4) and (2.5) may be useful for freeway traffic
flow, where departures from stationary and homogeneous conditions are usually
moderate; but in signalized links, where traffic conditions are inherently nonstationary
and mmhomogeneous due to the traffic light switchings, densities (2.4) and space mean
speeds (2.5) calculated from local measurements are not expected to be representative

for the whole link.

2.5 Mean Effective Vehicle Length

Using (2.2) and (2.4), Papageorgiou (1987) and eventually Bhour et al. (1988) derived

the following relationship between time-occupancy and density on a highway lane
o, =Lp (2.6)

where L 1s the mean effective vehicle length that has to be defined m a somewhat

peculiar way
L= Z(L_i /Yj)/z 1/y,). (2.7)

Note that, if all vehicles have the same speed, (2.7) yields L equal to the arithmetic

average of L;; while, if all vehicles have the same effective length E, (2.7) yields L = L
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independently of the vehicle speeds y;. The formulas (2.6), (2.7) were also included in

the notes by Papageorgiou and Ioannou (1993) of a Short Course that was taught in Los
Angeles and the University of California at Berkeley in 1993. The same formulas were
also derived by Cassidy and Coifman (1997) on the basis of the traffic variable
definitions of Edie (1965). Equations (2.6), (2.7) indicate that the measured time-
occupancy 1s roughly proportional to traffic density, which was empirically verified by
Cassidy and Coifman (1997) and, more recently, by Kim and Hall (2004) by use of
freeway data. It 1s evident from (2.7) that, even under stationary and homogeneous
conditions, departures from proportionality may be observed due to either variable

traffic composition (in terms of effective vehicle lengths L;) or mhomogeneous vehicle

speeds y;.

2.6 Space-Occupancy

Space-occupancy o, €[0,1] may be defined as the portion of highway lane length
covered by vehicles. This leads to the interesting question of possible equivalence or
otherwise of space- and time-occupancies (recall that space and time mean speeds are
structurally different from each other). Applying again Wardrop’s approach, we assume
- - 7 o ~ 3 o 3 -Q ~ 3 - - ’yv' N 7 : ~ Pll -
that all vehicles belonging to sub-stream j have equal physical vehicle length L;" and

equal effective length L;. Thus the sub-space-occupancies o ; are given by
o, =Li'p;. (2.8)

On the other hand, we obtain for the sub-time-occupancies o, . from (2.2)

t,j

o =q,L;/y;=Lp;, and, because o, = zjoty_i and o, = Z.ios,j, time-occupancy o,

equals the space-occupancy o, 1f the effective vehicle lengths L, equal the
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corresponding physical vehicle lengths Ll;h. Note that, if LI_?' =L, V], then we deduce

from (2.1) that the loop detector effectively shrinks to a line of zero length and the time-
occupancy signal 1s on for as long as that line 1s covered by a passing vehicle. In
practical terms, if the threshold of Figure 6a 1s chosen such that Lj ~ L};h, then the
produced time-occupancy will approximate the space-occupancy (provided the traffic

conditions do not change significantly in a space-time window around the measurement

location and period). Using (2.8) we have

0, = Zos,j = ZL]?‘p.i = ZLI?‘q_]- /Y
]

and taking the limit q; =1/T we have
1
0, =¥ZL?‘ ly;. (2.9)
j

From (2.4), (2.9) we obtain

o =X /vy asyyle (2.10)

which suggests that (2.6) applies to the space-occupancy as well, under an analogous
definition of the mean physical vehicle length as i (2.7); moreover, (2.6), (2.7) and

(2.10) confirm that o, equals o, if LI_?' =L, V).

Note that (2.10) may appear paradoxical because the space-occupancy on a road stretch
of length A holding N vehicles, 1s by definition

J

o, =2 L"/A=pY L"/N (2.11)
J
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which looks different than (2.10). The resolution of this paradox is that the sum in
(2.10) addresses vehicles passing a detector location over time while the sum in (2.11)
addresses vehicles being included 1n a road stretch. Under the same token, the space
mean speed equals the harmonic average of the speeds of vehicles passing a detector
location over time but 1s also equal to the arithmetic average of the speeds of vehicles

mncluded n a road stretch.
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CHAPTER 3
SIGNALIZED LINKS

3.1 Introduction

All formulas derived in CHAPTER 2 to relate measurable time-variables with hardly
measurable space-variables, hold approximately under reasonably homogeneous and
stationary traffic conditions that are usually encountered in uninterrupted traffic flow,
e.g. on freeways. These relationships, however, may break down if traffic 1s strongly
nonstationary and inhomogeneous as, for example, i signalized links due to frequent
traffic interruptions caused by the traffic signals. This section derives some relationships

between space- and time-variables for this more general case.

3.2 Space-Occupancy Relationships

Consider a single-lane link of length A and define the instantaneous space-occupancy

{1 if x 1s covered by a vehicle
o.(x)=

* 0 if not

where 0 <x <A 1s the space argument. On the other hand, let o, be the instantaneous

space-occupancy for the whole link, in which case

o, =—| o, (x)dx 3.1
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holds. For example, if there 1s exactly one vehicle of length L travelling on the hink, then

o, =L/A, and, indeed, the right-hand side of (3.1) also yields

1 T 1 ’T
—|o(x)dx=— | dx=L/A
A A ’

0
where y 1s the location of the vehicle’s rear end.

According to section 2.6, the local space-occupancies o (x) may be approximated by
time-occupancy measurements in a sufficiently small space/time-window if LI;h =L..

J

More specifically, we assume that:

e The update period T of the time-occupancy measurements 1s sufficiently small to
approximate instantaneous values, such that o =1 if a detector 1s activated by a
vehicle or o, =0 otherwise.

e There are M time-occupancy measurements along the link according to Figure 8
with spacing d =A/M among them (space sampling).

e We have L};h = Lj.

Under these assumptions, the space-occupancy o (x') in an area of length d around a
measurement location x', 1=1,...,M, may be approximated by the corresponding

measured time-occupancy o, (x') while (3.1) may be approximated by

A

—0) o

N O A
20

Figure 8: Placement of M internal detectors for time-occupancy.
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o, Z()S(Xi)d/A = Z()t(xi)/M. (3.2)

1=1

Based on (3.2), the instantaneous space-occupancy on a link may be approximated by a

. - . Pt .
series of time-occupancy measurements with L, =L and very short update period T;

the level of approximation accuracy depending on the corresponding spacing d.

3.3 Bias-free Estimates

We will now turn our attention to the case where the number of utilized detectors M 1s
small or even 1. Where should the detector(s) be best placed on the link? To elaborate
on this question we denote Efo (x)} to be the average over a reference period (e.g. over
a signal cycle or over a peak period or over a whole day) of the space-occupancy at
location x; and we denote E{o_} the corresponding average of the space-occupancy for

the whole link. From (3.1) we have

[Efo,())dx = AEfo,). (3.3)
0

The value of E{os(xi)} at a specific location x' will tend to be higher (lower) if vehicles

tend to spend relatively longer (shorter) times to pass location x' as compared to other
link locations. In fact, if each vehicle would travel on the link with constant speed, then

all Efo,(x)} would be equal among them Vx, and, from (3.1), we would have

Efo,} = Efo, (x)} Vx (which verifies (3.3)).

On signalized links, the average speed of vehicles 1s expected to be lower for increasing
x due to queue forming in the downstream part of the link during the red signal; hence

the ratio Efo (x)}/Ef{o.} 1s expected to be monotonically increasing with x. Note,
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however, that we may have different ratio profiles for different reference periods, e.g.
for a.m. peak or p.m. peak or off-peak etc., whereby each profile satisfies (3.3). Figure 9
llustrates the above relationships for a certain reference period. The horizontal line

reflects the average value E{o } of the whole-link space-occupancy while the displayed
curve corresponds to Efo (x)}, 0<x<A. Because the surfaces below the horizontal

line and the curve are equal due to (3.3), there 1s at least one location X at which

Efo } = E{o,(X)}. Thus a bias-free estimate of the whole-link space-occupancy may be
obtained from one local o (X) or, approximately, from one local o, (X)-measurement

of time-occupancy. Unfortunately the precise location X may be unknown or may

change for different reference periods.

Figure 9 also illustrates that, in view of (3.3), the difference between L{o,} and
Efo (x)} at specific locations will be smaller for flatter E{o_(x)}-profiles; and that one
single measurement location x close to A/2 (i.e., at the middle of the link) 1s likely to
deliver reasonably low-biased estimates of o, under various different practically-relevant
Efo, (x)}-profiles. More generally, if M detectors are available (but the exact E{o (x)}-

S

profile 1s unknown) they should be placed symmetrically around the middle of the link

1 -
E{()s(x)}/l
|
E{Os} i
| |
| |
| |
! I P x
0 X A

©]

Figure 9: Efo,} and E{o (x)} for a signalized link.

s
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(according to Figure 8) so as to reduce the estimation bias resulting from (3.2).

In conclusion, a number M of detectors (Figure 8) measuring time-occupancy (with
L, ZL};h and T very small) may be used for estimating the instantaneous space-
occupancy on a signalized link according to (3.2). The higher M 1n (3.2), the better the
resulting estimate in terms of both average value and error variance. If M 1s small or
even 1, then the detector placement according to Figure 8 1s likely to lead to reasonably
low average error (bias), but the variance of the error may be high as it will be further

llustrated in the following general example.

3.4 A General Example

Consider one single vehicle travelling (with any speed) on a link of length A. Assume
that M =A/d loop detectors are installed along the link with equal distances d among
them according to Figure 8, and are operated with very small T. Assume also that we
have L™ =L for the vehicle, i.e. the effective lengths of the detectors are equal to zero.

Let L/d=n+m where n=1nt(L/d).

The link’s space-occupancy at any time 1s obviously o, = L./ A. We wish to estimate this
space-occupancy (that 1s difficult to measure directly) by use of the detector time-
occupancies. More specifically, we produce the space-occupancy estimate O, as the
arithmetic average of all detector time-occupancies, according to (3.2). If m >0, the
vehicle occupies at any time either n or n+1 detectors; and the respective estimation
0, at any time 1s then equal to either nd/A (underestimation) or (n+1)d/A
(overestimation). Assuming (for simplicity) that the vehicle has a constant speed, 1.e. it
may be present with the same probability at any location between two successive

detectors, 1t 1s not difficult to deduce that 1t will activate at any time n detectors with

REAL-TIME ESTIMATION OF VEHICLE-COUNT WITHIN SIGNALIZED LINKS 29



CHAPTER THREE: SIGNALIZED LINKS

probability 1-m and n+1 detectors with probability m. Thus, while virtually all
estimates O, are subject to (negative or positive, respectively) error at any time, the

expected value of o, 1s
E{o }=[(1 -m)n + mmn + D[d/A = (n + m)d/A = L/A = o,

Le., the estimate o, is bias-free. On the other hand, the absolute error |05 —6S| at any
time 1s either |L/A—(nd/A)| =md/A or |L/A—[(n+1)d/A]| =(1-m)d /A, while the
relative error |os —6S| /o, at any time 1s either md /L or (I1-m)d/L, and the variance

of the absolute error is m(l —m)d?* /A% Note that 0 <m <1 and hence the maximum

relative estimation error cannot be larger than d /L. From these we may conclude:

e The maximum absolute and relative estimation errors are proportional to the inter-
detector distance d; both errors tend to zero in the limitd — 0.

e The estimation error is equal to zero at any time if m =0, 1e., if the vehicle length
L 1s an exact multiple of d; this 1s because n this special case the vehicle activates
exactly n detectors at any time.

e The derived results hold also for n=0, 1.e. d>1. Naturally, in this case the
vehicle either activates one detector or does not activate any detector; in the first
case the absolute and relative errors are (d—L)/A and (d—L)/L, respectively;

while in the second case both errors are L./ A and 1, respectively.

We will now extend the derived results for the case of N vehicles traveling on the link
with respectively lengths Lj = LI_?', j=1,...,N, and corresponding n, m;, j=1,..,N,
defined as before. The space-occupancy in this case 1s o, = NLL/A where L 1s now the

arithmetic average of L;, j=1,...,N, and with similar reasoning as for the case N =1
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(and observing that no detector can be activated by more than one vehicle

simultaneously) we have the following generalized results:

e The produced estimates 6, are bias-free.

e The maximum absolute error is given by (d/ A)ZL max{m_i,l—m_i}. In the
special case L; =LV, this error is obviously N times higher than in the one-
vehicle case. The maximum relative error 1S given by
(d/ NL)Z:;1 max{mj,l - mj}. In the special case L, =L Vj, this error is obviously

the same as in the one-vehicle case. Finally, the absolute error variance 1s N times
higher than in the single-vehicle case above if the errors relating to individual

vehicles are mutually independent.

The occurrence of the maximum (absolute or relative) errors in the N-vehicle case
mmplies that all individual vehicle errors take simultaneously their maximum value; this

1s an event whose likelihood decreases strongly with increasing N.

3.5 Relaxing Some Assumptions

. - Pl
If the utilized detectors are operated with L; # L]-' , We may assume

L =L"+¢ ,¢e <E (3.4)

where ¢; 1s the (non-zero) effective detector length while the limit E >0 is small

enough to avoid simultaneous activation of one detector by more than one vehicles.

Assuming that the link holds N vehicles, the space-occupancy would be o, = NL™ /A,

while an, otherwise perfect, estimation (e.g. as in the example of section 3.4 based on
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time-occupancies would deliver 6, = NL./A; where L™ and L are arithmetic averages
of LI?' and L;, respectively. Thus, the additional average error (bias) due to L # LI?' 1S

readily calculated equal to Ne/A (where € is the arithmetic average of ¢;).

On another issue, the analysis of sections 3.2-3.4 was conducted for instantaneous
values of space- and time-occupancies. However, time-occupancy 1s practically
measured for finite update periods T > 0 which gives rise to the following remarks that

are explained on the basis of the example of section 3.4:

e For finite T, each vehicle may activate both n and n+1 detectors within a single
measurement period. As a consequence, the estimation error attributed to each
vehicle will be a correspondingly time-weighted average of errors resulting from
activation of only n or only n+1 detectors. The absolute value of this time-
weighted average 1s easily seen to be less-equal than the maximum error of the
instantaneous case and, indeed, the estimated space-occupancy 6, will tend to its
expected value E{6 .} for sufficiently high T (and non-zero vehicle speed). This
suggests that estimates tend to be more accurate with increasing period T

e The above conclusion is only true if the number of vehicles in the link (and hence
the space-occupancy) does not change during T. In the more realistic case of
vehicles entries and departures, the space-occupancy o, may be continuously
changing; thus estimates 6, calculated as averages of measured time-occupancies
may become increasingly outdated with mcreasing T. This suggests that estimates
tend to be less accurate with increasing period T if the space-occupancy changes

significantly.
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e Both remarks above suggest that there 1s an optimal value of T for which the

estimates O, produced via averaging of time-occupancy measurements are most

accurate. Clearly, this value depends on prevailing conditions (link length, signal
plans, arriving demand) and can hardly be determined analytically. An important
factor 1n this context 1s also the number of utilized detectors; if M 1s very high, we
have a good averaging (over space) even with very short T; if M 1s very low (or 1),
the few available local measurements may not be representative for the real link

occupancy, unless an averaging takes place over ime due to a longer T.

A further situation that deserves some attention is when two link vehicles are standing
still (due to a red traffic signal) just upstream resp. downstream of a detector, without
activating the detector. In this randomly appearing case, the detector measures a zero
value for time-occupancy while the real traffic situation 1s quite the opposite. As will be
demonstrated in related simulation experiments in CHAPTER 7, this ZSZ0O (zero-
speed zero-occupancy) situation does not distort the expected value of the estimate
E{o,} because the gaps between vehicles at standstill contribute to the whole-link space-
occupancy o_, hence they should also contribute to its estimate 6,. On the other hand,

this randomly appearing phenomenon may contribute to an increase of the estimation

error variance due to accordingly high estimation errors at the times of its appearance.

3.6 Vehicle-count in the Link

Summarizing the findings of sections 3.2-3.5 we conclude that the estimated space-
occupancy 0O, calculated as the average of M detector time-occupancies according to

(3.2) may be related to the link’s current space-occupancy o,

65 = OS + Q() (3'5)
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where the random variable C_ incorporates several potential sources of error:

(6]

e Detector measurement noise, which may be depending on the magnitude of the
measured time-occupancies.

e  Modelling error due to the approximative character of (3.2), particularly for small
M. Note that this error may include bias according to Figure 9. This error also
includes the impact of the update period T and of the ZSZO-situation outlined in
section 3.5.

e Error due to the effective vehicle lengths being different than the physical vehicle
lengths while measuring time-occupancy. If the non-zero effective detector length €
1s known, one may convert the collected time-occupancy measurements into non-
biased representations of the space-occupancy by multiplying them with
L™ /(L™ +¢) according to section 3.5. This bias-rejection manipulation may have
additional benefits (lower error variance in the ZSZO-case) as will be illustrated in

section 7.5.

In order to span a bridge linking the time-occupancy and the vehicle-count N in the

link, we observe that, by definition,

o, =NL™/(AL) (3.6)

where A 1s the number of lanes in the link. From (3.6) we may define the estimated

vehicle count

Ak (3.7)

Z>
Il

and using (3.6), (3.7) in (3.5) we obtain
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N=N+{ (3.8)

where ¢ =¢ AL/L™. Note that the transformation of the estimated space-occupancy
measurement O, into an estimated vehicle count N via (3.7) involves the (arithmetic)

average physical vehicle length L™ which may not be accurately known; this introduces

a further potential source of bias m equation (3.8). Note also that the term

N =AL/L™ appearing in (3.7) actually corresponds to the maximum number of

max

vehicles that can be accommodated in the link in a bumper-to-bumper manner.

Equations (3.5) or (3.8) may be used for direct estimation of the link’s space-occupancy
o, or vehicle-count N, respectively. The estimation accuracy depends on a number of
factors, most of which have been identified mn sections 3.2-3.5. As the analytical pre-
calculation of all addressed error sources 1s rather difficult, several microscopic
simulation scenarios in CHAPTER 7 will be examined in order to assess the estimation

quality.

The estimation error resulting from (3.5) or (3.8) may be reduced by additional
application of a Kalman Filter presented later. In particular, the Kalman-flter
approach, that uses (3.5) or (3.8) as its output equation, is valuable because it leads to
acceptable estimation error even by use of only M =1 detector measuring time-

occupancy in the middle of the link. This reduces the installation and maintenance cost

by replacing detector hardware by algorithmic intelligence.
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4.1 Introduction

Traffic-responsive control systems require reliable real-time information on the
prevailing traffic conditions to make sensible control decisions. More particularly, the
number of vehicles included in signalized links (such as urban road links or metered
motorway ramps) 1s valuable information for urban signal control and motorway ramp
metering systems. Direct measurements of this quantity may i principle be collected by
video sensors, but this possibility 1s obscured due to visibility obstacles, limited visible

link length, image processing algorithm accuracy and, last not least, cost.

As an alternative possibility, traditional low-cost loop detectors measuring time-
occupancy may be employed. The difficulty faced by this approach is due to the
strongly inhomogeneous character of the traffic state in signalized links caused by the
frequent switching of the upstream and, most importantly, downstream traffic lights.
Thus, a detector station (across all ink lanes) positioned at a specific ink location (e.g.
at the signal stop line or in the middle or at the upstream end of the link) delivers
(local) occupancy information that is not representative for the whole link. In other
words, local time-occupancy measurements collected by loop detectors need to be
translated into space-occupancy or vehicle-count estimates that are directly related to

the number of vehicles in the link.
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A relatively high-cost approach, that 1s, e.g.,, practiced mn some ramp metering
mstallations i the U.K., 1s to install a high number of loop detectors along the link (e.g.
one detector every 50 m in the U.K. ramps). Yet another (theoretical) possibility would
be to nstall two flow-measuring detectors at the respective extreme points of the link
and deduce vehicle-counts in the link from the conservation equation; however, this
approach would soon lead to unacceptably high estimation errors due to time-

accumulation of the mevitable measurement errors.

The estimation method presented in this section employs Kalman filtering to deliver
reliable real-time estimates of vehicle-count in signalized links based on measurements
of three loop detector stations located at both extreme points and at the middle of the
link, respectively. This Kalman Filter turns out to be similar to the one proposed in
Bhouri, et al. (1988) for the estimation of traffic density in short non-signalized

motorway links.

An mteresting question addressing the degree of hardware cost (for detectors,
communications and maintenance) savings thanks to exploitaion of low-cost
algorithmic 1ntelligence reads: How many (additional) loop detectors would be
necessary to reach the estimation accuracy of the proposed method? This question as
well as a thorough assessment of the proposed method under several different

conditions are treated via microscopic simulation.

Although the presented method can be applied equally well to urban signalized links,
the reported simulation investigations were chosen to resemble to typical metered
motorway ramps. Vehicle-count estimates for motorway ramps are required within

ramp metering systems for:
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e Lificient ramp queue control to avoid spillback in the adjacent street network
(Smaragdis and Papageorgiou, 2003; Sun and Horowitz, 2005).
o Efficient and equitable ramp metering coordination (Kotsialos and Papageorgiou,

2005).

A different approach to vehicle count estimation for motorway ramps using speed
measurements and curve fitting to a high number of simulation data (that may be

difficult to collect in the field) was proposed in Sun and Horowitz (2005).

4.2 Introduction to Kalman Filter

First of all it will be attempted to make an overview of the Kalman Filter’s general
mathematical equations and necessary assumptions for its application to any process.
Then, all filters” equations will be transformed so as to develop the complete model for

the estimation of the number of vehicles in a signalized link.

The Kalman Filter addresses the general problem of trying to estimate the state x € R"

of a discrete-time controlled process that 1s governed by the linear stochastic difference

equation

State equation: x(k+1) = AK)x(k)+ Bk)uk)+Dk)gk) (4.1 )

with a measurement y € R"” that is > ¥ (x,uy)
Measurement equation: y(k) = C(k)x(k)+ z(k) 4.2

J

The nxn matrix A in the difference equation (4.1) relates the state at the current time
step k to the state at the next step k+1, in the absence of either a driving function or

process noise; in practice, A might change with each time step. The nx/ matrix B
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relates the optional control input u € R’ to the state x and the nxn matrix D enforces

noise g(k). The mxn matrix C in the measurement equation (4.2) relates the state to

the measurement y(k); in practice C might change with each time step or measurement.

The random variables g(k) and z(k) represent the process and the measurement
noise respectively. These variables and the mitial state x(0) of the process satisty the

following three conditions:

I. g(k) and z(k) are zero-mean Gaussian white random processes. For any k >0

and £>0:

Qk) 1if k=2,

0 otherwise

R(k) if k=2,

0 otherwise

Mk) if k=1,

0 otherwise

where Q and R are known symmetric positive semi-definite matrices, while 0 denotes
zero vectors or zero matrices of appropriate dimensions. If g(k) and z(k) are

correlated, then M 1s the correlation matrix, otherwise M =0 .

2. x(0) 1s a Gaussian random vector with known mean and covariance matrix P:
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X, = Elx(0)]
P, = E{[x(0)—%,]-[x(0) - %,]"} . (4.3)
3. x(0) 1s uncorrelated to g(k) and z(k) at any k.

Lets consider Z(x,u,y) under the assumptions 1-3. At each time step k, given y(k) (and
its available values at all previous time instants, 1.e. y(k —1),y(k —2),...), it 1s the goal of
the Kalman Filter to deliver state estimate x(k+1/k) so as to minimize the covarlance of

the estimation error
E {[x(k+l) — % (k+1/R)]" - [x(k+1) — x(k+1/k) 1} — Min

where x(k+1/k) denotes the mathematical expectation of x(k+1) conditional on
measurements available up to the k-th time step (actually x(k+1/k) 1s the one-step

prediction of x(k+1)).
The recursive equations of the filter are as follows:

x(k+1/k) = A(k)x(k /k —1)+B(k)u(k) + K(K) - {y(k) - C(k)x(k / k —1)} (4.4)

Model Correction

with

K (K)=[ARPK/K-1)Ck) " +DE)M(K)]-[CK)PK/k-1)C(k) " +RK)] (4.5)

P(k+1/k) =[A(k) —-K(k) C(k)|P(k/k-DA" (k) + D) QK)D(K) " —K(KM(K) 'Dk)"  (4.6)

2(0/-) 2 %,
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P(0/-1) £ P,

As noticed in (4.4), the Kalman Filter consists of two terms: (1) model term delivering
pure model-based state estimation at each time instant k and (2) correction term based
on the real-time measurements collected by each k. Both terms are essential for the
satisfactory performance of the filter; the use or not of the correction term in estimation
1s weighted by K(k). The K(k) 1s the gain nxm matrix that minimizes the error
covariance equation (4.3). A good way of thinking the weighting by K 1s that as the

measurement error covariance R approaches zero, the actual measurement y(k) 1s
“trusted” more and more (then, from equation (4.5), K(k) > A(k)C(k)™"), while the
predicted measurement C(k)x(k) 1s trusted less and less. On the other hand, as the
estimate error covariance P(k) approaches zero (then, from equation (4.5), K(k) — 0)
the actual measurement y(k) 1s trusted less and less, while the predicted measurement

C(k)x(k) 1s trusted more and more.

4.3 Modelling for Estimation

An appropriate state-space model and a measurement model are needed for
application of the Kalman Filter. The state-space model 1s the conservation-of-vehicles
equation in the Iink while the measurement model 1s based on the msights gained in

CHAPTER 3.

The evolution of the number of vehicles in a link obeys the following conservation

equation

N(k) =Nk -1)+Tlq, (k-1)—q,, (k=1DI (4.7)
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Where N(k) denotes the number of vehicles in the link at time kT and T 1s the
measurement and estimation update period (or sampling time); q, (k—1) and
q,,(k=1) are the flows entering and exiting, respectively, the link during the period

[(k —=1)T,kT]. These flows are measured by the boundary detectors

k-1 =q, (k-D+y, (k1) (4.8)

in

q::n(k_l) :(1()llt(k_1)+y (k_l) (49)

out

where q;, q. are the related measurements while y.', vy denote the corresponding

measurements noise which are assumed to be zero-mean stochastic variables. The
measurement noise may realistically be modeled in proportion to the related flow value
rather than independent thereof; this, however, would render the resulting state
equation nonlinear and would call for application of the more complex Extended
Kalman Filter. Preliminary simulation mvestigations indicated that the higher level of

modelling realism does not lead to substantially higher estimation accuracy; hence it was

m

decided to consider v, and 7y, in (4.8) and (4.9) as random variables with constant

out
variance that is independent of the value of the measured flows. Replacing (4.8), (4.9) in

(4.7) yields

Nk)=Nk-D+Tlq; (k=1 —q’ (k=D]+Ty(k-1) (4.10)

in out

where y=vy, ., —7,- Although, in principle, the conservation equation with inflow and

out
outflow measurements could be directly used for estimating the vehicle-count N(k), eq.

(4.10) reveals that such a procedure would accumulate the unavoidable measurement

noise Y leading to increasingly maccurate estimates. Therefore, more mformation is
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necessary to counter the accumulation of measurement noise in the state equation

(4.10).

The required additional information may be provided by the middle detector in Figure
5a. According to CHAPTER 38, the time-occupancy o,"(k —1) collected by this detector
during [(k=1)T, KT] may be related to the link’s space-occupancy o (k—1) at time

(k—1)T
o"(k-1)=o (k=1)+&, (k—1) (4.11)

where the random variable _ incorporates several potential sources of error:

(0]

e Detector measurement noise: As for the flow measurement noise above, this noise
will be considered independent of the measured occupancy value i order to obtain
a simpler estimation algorithm.

e  Modelling error due to the approximative character of (3.2), particularly for small
M. Note that this error may also include some (small) bias. Finally, this error also
includes the 1mpact of the update pertod T and of the ZSZO-phenomenon
outlined in section 3.5.

e Lirror due to the effective vehicle lengths being different than the physical vehicle

lengths while measuring time-occupancy (see section 3.5).

In order to span a bridge linking the time-occupancy and the vehicle-count N in the

link, in the light of (8.6), (4.11) we may define the “measured” vehicle count

m

- IAJ_lf:O;H (1.12)

and replacing (3.6), (4.12) in (4.11) we finally obtain
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N"(k-1)=N(kk-1)+C(k-1) (4.13)

where = AL/L™. Note that the transformation of the collected time-occupancy
measurement 0" into a “measured” vehicle-count N™ wvia (4.12) involves the

(arithmetic) average physical vehicle length L™ which may not be accurately known;

this introduces a further potential source of bias in the measurement equation (4.13).

Note also that the term N =AL /L™ appearing in (4.12) actually corresponds to the

max

maximum number of vehicles that can be accommodated in the link in a bumper-to-

bumper manner.

The state equation (4.10) and measurement equation (4.13) have the appropriate form
for Kalman-filter application. To this end we should consider the system noise y and
measurement noise { to be zero-mean white gaussian random variables. These
assumptions may not be verified fully in practice but the Kalman Filter may
nevertheless deliver practically useful, suboptimal estimates. Of particular importance 1s
the possible appearance of biased measurements (4.13) (i.e. non-zero-mean error)
because biased measurements cannot be rejected by the Kalman Filter and will lead to

accordingly biased estimates.

Despite the various sources of (partly non-zero-mean) errors, it 1s expected that the
measurement equation (4.13) contains a sufficient level of reliable information that may
be exploited by the Kalman Filter in order to reduce the accumulated error that would

result from the usage of the conservation equation (4.10) alone.

The quality of the measurement equation may be improved if more internal detectors
are used to produce an appropriate average measurement signal according to (3.2).

Based on the general scheme of Figure 8, one may employ M (instead of one) internal
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detectors (separated by equal distances d =A /M), in which case o;" may be calculated
at each period as the arithmetic average of time-occupancies collected by the individual

mternal detectors according to (3.2).

4.4 Kalman-filter Estimator

Based on the state equation (4.10) and measurement equation (4.13), a Kalman-filter
estimator (Jazwinsky, 1970) for the number of vehicles in the link may be immediately

derived

~ ~

Ngp (k) =Ny (k=D +Tlq;, (k—=1)—q

o (k=D]+K[N"(k-1)- NKF (k—=1)] (4.14)

out

where NKF(k) 1s the delivered estimate of vehicle-count and K is the (stationary) gain

~

parameter of the filter. The produced estimate N 1s truncated if it exceeds the range

[0, N’

max

| where N’ is the maximum number of vehicles that can be accommodated

max

i the link at standstill including the usual safety distance D among vehicles (e.g.

D=1m); N’

max

may be calculated, similarly to (4.12), from N’ = AX/ (L™ +D). The

filter (4.14) consists of a system model (the conservation equation comprising the first
two terms on the r.h.s. of (4.14)) and a correction term that attempts to reduce the

estimation error resulting from the system noise v in (4.10).

The filter equation (4.14) may be re-arranged

» k-1 (4.1)5)

out

N (k) =K-N"(k=1)+(1-K)-N (k=1)+Tlq"(k—1)—q

in

~

in which case a further interpretation may be given. The produced estimate N (k)

results from the combimation of:
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e An exponential smoothing (first two terms on the r.h.s. of (4.15)) based on the
arriving measurements N™.

e A prediction term that involves the most recent flow measurements.

According to the Kalman-filter theory (Jazwinsky, 1970), the value of the gain K should

be selected
K=I1/01+7)
where IT satisfies

M=1-K)JII+TT.

From these equations we obtain

K =0.5(—0++o’ + 40 ) (4.16)

where ao=T*T/Z; and T, Z are the variances of the system noise Y and measurement
noise (, respectively. While the system noise variance I' could be approximately
determined based on the typical flow measurement errors, the value of the
measurement noise variance Z is related to many different sub-processes and hence
difficult to derive. However, (4.16) suggests that the value of K depends only on the
ratio o, not on the explicit values of I' and Z. Hence, rather than attempting to derive
appropriate values for I', Z, one may attempt to fine-tune the ratio a, or, even more
directly, the value of K to be used in the filter (4.15). Note that for oo =0 (i.e. zero
system noise or infinite measurement noise), (4.16) vields K =0 which means that the
estimation (4.14) makes no use of the measurements N™; on the other hand, for

o —> o (L.e. zero measurement noise or infinite system noise) it may be shown from
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the K, IT equations above that K =1, 1.e. the exponential smoothing in (4.15) 1s based

on the latest measurements N™ only. Thus, potential K values are included in the

range [0,1] as K is indeed monotonically increasing with a.

The aforementioned quantity IT represents the variance of the estimation error

A

Ny —N and 1s calculated

=057+ +4a) (4.17)

Thus, for oo — 0 (and finite Z) we obtain IT=0 (due to perfect model) while for a—
we obtain IT=T"T (.e. the estimation error in (4.15) results only from the prediction

term due to perfect measurement N™). The variance IT may be easily shown to be a

monotonically increasing function of both the measurement error variance 7 and the

: 2
system error variance T°T.

If the measurement N™ would be sufficiently accurate, it might be better to use directly

N « = N" (as in CHAPTER 3) rather that the Kalman Filter (4.14). For this to be true,

we should have the variance Z of the error N, —N™ being smaller than the filter error
variance II, 1.e. we should have TI>7. After some calculations we derive the
equivalent inequality Z <2T*T" which is quite unlikely to hold in practice as Z is

usually much higher than T".

Equations (4.16), (4.17) also contain valuable information on the role of the update
period T. As mentioned in section 3.5, the measurement variance 7. obtains a

minimum value for some value of T. Note that smaller Z can be easily shown to lead to

smaller IT in (4.17). On the other hand, for higher T the system noise T°T" increases,
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and consequently also o and the estimation error variance IT increase. In conclusion,
the optimal update period T for best Kalman-filter estimates may not coincide with the

optimal update period for least measurement error in (4.13).

If the measurement noise ¢ contains a bias E{}=Db, 1e. from (4.13)

E{N"}=E{N}+Db; and if E{q;}=E{q],}, 1.e. there 1s no bias in the traffic volume

in

measurement; then we obtain from (4.14)

E{N,,} =E(N"}=E{N}+b (4.18)

Le. the measurement bias cannot be rejected by the Kalman Filter and 1s fully

~

transmitted to the estimates N .
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CHAPTER 5
EXPONENTIAL SMOOTHING

5.1 Introduction

The estimation of the number of vehicles in a link must be well managed in order to
keep a balance between the high quality of the estimation and the cost of use of the
available means. The Kalman Filter equation (4.14) that has been derived, demands the
existence of three loop detectors in the link; one detector mn the middle of the link
providing time-occupancy measurements and two boundary detectors providing flow
measurements. Moreover, 1t has been observed that the produced KF estimation,
results from the combination of two terms: an exponential smoothing term and a

prediction term (see section 4.4).

It has already been stated in section 4.3 that the direct estimation of the vehicle-count
through the conservation equation with inflow and outflow measurements results to the
accumulation of the unavoidable flow measurement noise leading to increasingly
maccurate estimates; this reveals that the exponential smoothing term 1is necessary for

the estimation. But does the prediction term have the same importance?

In an attempt to reduce even further the cost of the vehicle-count estimation, it 1s quite
mteresting to examine the case where only the term of exponential smoothing 1s used

for the estimation. In this way, the installation and maintenance cost of such a system is
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reduced as all the necessary information for the estimation is provided by a single
detector i the middle of the link measuring ime-occupancy consequently, the cost of

two boundary detectors is saved.

5.2 Exponential Smoothed Estimator

By the fact that the use of a single detector 1s economical, we are summoned to answer
the question that arises: does the filter estimation become inferiorly influenced by
exclusively using the exponential smoothing term? To answer the question we will use

the following new exponential smoothed estimation equation:

A A

NSM (k) = KSNINm (k - l) + (1 - KSM )NSM (k - 1) (5 1)

~

where Ny, (k) 1is the delivered estimate of vehicle-count and Ky, is the smoothing

parameter. Like in the Kalman Filter, the Ny, 1s truncated if it exceeds the range

[0, N’

max

| where N/ 1s the same as before (see section 4.3).

Now the estimation 1s independent of the flow measurement noise, as this
measurement 1s not used at all, and 1t 1s affected just by the time-occupancy

measurement error ¢ that has been analyzed 1n section 4.3.

A

The estimation Ng,, can be improved with the suitable value of the smoothing
parameter Kg,, which, as the Kalman Filter gain K, 1s included in the range [0,1]. Note
that for Ky, =0, (5.1) yields N (k)= N o (k=1) which means that the estimation
(5.1) makes no use of the measurement N™ and it depends on the unknown or biased,
most of the times, NSM(O); on the other hand, for Ky, =1 the exponential smoothing

equation (5.1) 1s based on the latest measurements N™ only.
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It can be seen from (5.1) that the update period T does not have any direct impact on
the estimation but only on the measurement error, while the estimation 1s almost equal
with the average number of vehicles that have passed the middle of the link untl then.
This guides the estimation on following a “predetermined” trajectory, without being
affected by the creation or not of queues in the link (at least until these reach the
middle of the link). On the other hand, this approach smoothes the effect of the ZSZ.O-

phenomenon which does not influence the estimation any more.

In conclusion, it can be said that this kind of analysis/estimation would be sufficiently
satisfactory in the case of a small update period T where the average vehicle-count in
the link 1s, almost, the same with the real number of vehicles in it. Contrariwise, for
longer periods the exponential smoothing analysis 1s inappropriate because the average

number of vehicles 1s quite different than the real number of vehicles that remain in the

link.

Some short results will be presented in CHAPTER 7 to compare the estimation by
using the exponential smoothing with the simple use of measurements and the
mmplementation of Kalman Filter. It 1s expected that the exponential smoothing will, of
course, improve the results of the equation (3.8) and with the appropriate fine-tuned

value of Kg,,. Nevertheless, the smoothed estimation 1s not expected to exceed the

quality of the Kalman Filter estimation (4.14) as the use of the flows measurements by
the boundary detectors 1s mmportant and justifies the extra cost of two additional
detectors. Notice that Kg,, 1s displayed in the corresponding figures as “smoothing

parameter K”.
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MICROSCOPIC SIMULATION MODEL

6.1 Introduction

In this chapter the microscopic simulation model that was developed for the testing and
the confirmation of the realistic operation of the proposed estimation method will be
analyzed. The model was developed in C programming language and has no special

demands neither in computational time nor memory.

The microscopic simulation model that has been developed imitates the traftfic flow
mto a link or a motorway ramp. The fact that the link (or the ramp) has only one lane
and, so, overtaking is not possible, makes the model simpler; although, several other
parameters that influence, more or less, the flow can be determined. The constant
values that were chosen for these parameters are shown in APPENDIX A, where

actually the mput data file of the simulation program 1s shown.

As anyone may discern, the values presented there are necessary not only for the car
following model, but for the general geometry of the lnk, the signalization, the
application of the Kalman Filter etc. The simulation model gives the opportunity to
examine the produced results regarding the optimization of any of its parameters.
However, the purposes of the present research does not centre on the evaluation of the

simulation model, even 1f it has been tried to resemble the real traffic phenomena. The
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simulation model 1s just a tool to test the filter’s results. This 1s why we will not come
over in depth to minor subroutines considering, for example, the entrance of a vehicle
m the lnk, the signalization or the way that time-occupancy measurements are
collected. What 1s the most important for the credibility of the flow process and will be
analyzed extensively below 1s the car following model. All the equations of the applied

car following model and the constant parameter values will be presented next.

6.2 Simulation Description

A self-developed microscopic simulator was used to describe the traffic phenomena on
a single-lane, 194-m long link, with both downstream and upstream traffic signals.
Vehicles are generated by the simulator far upstream of the upstream signals. The
vehicles are moving on one lane according to the following Bando-type (Bando, et al.,
1995) discrete-ime  car-following equations based on a simulation time step
T, =0.25s. At each simulation time period k=1,2,..., a desired speed vy,; is

sim

calculated first for each vehicle 1

Yai = Alo,(k)—-D] (6.1)

with A =0.7 s and D =1m, where 8, (k) 1s the distance (in m) of the front of vehicle
1 from the rear of the next downstream vehicle; if the desired speed calculated by (6.1)

exceeds a free speed y, =16.5m/s, then itis truncated to this value.

The acceleration a,(k) of vehicle 11s calculated next via

a; (k) =satfgly, (k) =y, (K)]} (6.2)

1

where ¢ =2 s and the function sat{-} 1s defined as
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alll}lx ii‘ n 2 alll;l}(
Sat{n} = amin lf n < Zlmin (6'3)
n else
with a,_ =1.5m/ s, a,, =—-bm/ s and y;(k) 1s the speed of vehicle 1 which is
updated via
yvik+D)=y (k) +a, k)T, . (6.4)
Finally the updated position of the vehicle 1s obtained from
x,(k+1)=x(k)+T, v,(k)+0.5T; a.(k). (6.5)

In some rare cases where the updated positions of a couple of subsequent vehicles

indicate that their distance would be less than D =1m, the acceleration of the following

vehicle 1s re-calculated so that 6, = D.

Different equations than the above are applied to the first vehicle upstream of a red
traffic signal, provided its distance from the signal 1s less than 50 m. In this case, the
vehicle acceleration is calculated so as to enable the vehicle to eventually stop in front of

the signal. In case the necessary acceleration 1s less than a that vehicle 1s allowed to

min ?
pass the signal (i.e. it 1s updated as the other ordinary vehicles) but the special signal-

treatment 1s applied to the next upstream vehicle.

When a vehicle passes a detector, a time-occupancy signal 1s produced according to
section 2.2, whereby the duration of the detector occupancy depends on the vehicle

physical length, the vehicle speed and the detector’s effective length. The flow and
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occupancy measurements for each estimation period are calculated according to section

2.2 and are eventually perturbed with random noise Aq and Ao, respectively, given by

Aq=0.2qy , Ao=0.050y

where y 1s a white random variable with the unit normal distribution. Thus the
magnitude of the measurement error depends on the current value of the measured

quantity.

A standard simulation scenario with a duration of 5.000s (=1.38h) will be defined
next to be used in the simulation investigations. Modifications of this scenario will be
produced later as appropriate. For the standard scenario, the simulation starts with an
empty link. The upstream traffic signals are operated with a cycle of 90s, while for the
downstream signals we have a cycle of 20s. The fixed green/red phases of both signals
are chosen appropriately so as to create all possible values of vehicle-counts i the link
(see Figure 10). The detector effective lengths are zero for the standard scenario while
the physical vehicle lengths are uniformly distributed in the range [3m,5m], hence
L™ =4m is used in (3.7) to produce the estimated N. One single internal detector is

included for occupancy measurements in the middle of the link and the update period

T equals 20s.

Three further basic traffic scenarios were created by changing the traffic light settings of
the standard scenario. More specifically, the three additional scenarios have different
cycles times of 40s, 60s and 90s, respectively, at the downstream traffic signals while

the upstream signals are still operated with a cycle of 90s. The green/red phases of

both signals were again selected appropnately (see APPENDIX B) so as to create all

[
s
G
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possible values of vehicle-counts in the Iink (Figure 10). A fifth stochastic scenario was
created with the downstream traffic signal cycle changing stochastically between 10s

and 90s during the simulation (and green/red phases changing accordingly).

The evaluation of all scenarios 1s based on the following Relative Mean Square Error

criterion

K . K
RMSE:lOO%\/KZ[N(k)—N(k)V > N(k)

k=1 k=1

or
K . K

KF RMSE =IOO%\/KZ[NKF(k)—N(k)]2 D N(k)

k=1 k=1

or

K K
SM RMSE =100% \/KZ[NSM(k) - NK)J* / D N(k)
k=1 k=1
where N(k)is the real and N(k),NKF(k) and NSM(k) are the estimated vehicle-counts,
the Kalman Filter (KF) and the exponential smoothed estimated vehicle-counts in the
link, respectively, while k =0,1,2,... 1s the discrete time index. All results are produced
without the detector noise mentioned in section 6.2 (i.e. withy = 0) which was found to

have a minor impact on the estimation accuracy compared to other sources of

estimation error.
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SIMULATION RESULTS

7.1 Introduction

Although simulation of the traffic flow process may not reflect fully the real traffic
phenomena, it may nevertheless provide valuable insights for a number of crucial

questions that should be answered before actual field implementation:

—  Does the Kalman-filter estimator improve over the mere and smoothed use of
measurements? How many more mnternal detectors would be required to reach the
estimation quality of the Kalman Filter?

—  What is the range of suitable K values for the Kalman Filter? What is the sensitivity
of the estimation quality around the optimal K value?

—  What 1s the quantitative impact of the estimation period T and what value 1s
recommended for the field implementation?

—  How does the Kalman-filter estimator perform under different conditions regarding
N

traffic load, traffic light signaling?

max ?

—  What is the impact of various measurement bias?
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7.2 Impact of the Sampling Time

Figure 10 displays the actual and estimated vehicle-counts N and N, respectively, while

Figure 11 displays the actual and Kalman-Filter (KF) estimated vehicle-counts N and

Ny, respectively, with appropriate K-values in (4.14) that will be detailed later, for the

four basic scenarios described in section 6.2. Note that the N-curve 1s displayed with a

A ~

time-resolution of 1 s while the estimates N, N, are updated every T =20s. In the

same way, Figure 12 displays the actual and the exponential smoothed estimated

A

vehicle-counts N and Ny, respectively, with appropriate Ky, -values m (5.1). It may

be seen that the N-trajectory 1s subject to two kinds of time-variation; a high-frequency
variation due to the periodical traffic signal switchings; and a low-frequency variation

due to changing demand.
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Figure 10: Real and estimated vehicle-counts over time for four basic scenarios.
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Figure 11: Real and KF estimated vehicle-counts over time for four basic scenarios.
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Figure 12: Real and smoothed estimated vehicle-counts over time for four basic scenarios.
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Table 1, Table 2 and Table 3 (L, = Ll_;h) display the corresponding RMSE, KFF RMSE
and SM RMSE values and average errors (bias) E{N —N}, E{N —NKF} and

E{N —Ng,} respectively. It may be seen that:

Table 1: RMSE values and E{N — N} for five scenarios and various cases of effective vehicle length.

) L, = LI_;I’ L, = LI;]’ +1m corrected
Scenario ‘ . ‘ . .
cyele RMSE E{N - N} RMSE E{N - N} RMSE E{N - N}
(%) (veh) (%) (veh) (%) (veh)
20 s 19.4 0.5 33.9 -5.13 16.0 0.3
40's 48.4 0.66 44.0 -5.04 25.7 0.005
60 s 60.7 -0.49 57.1 -5.38 39.4 -0.37
90 s 69.4 0.85 60.9 -4.34 40.7 0.02

Table 2: KF RMSE values and E{N — NKF} for five scenarios and various cases of effective vehicle
length.

L = LI;" L= LI;" +1m corrected
Scenario KF ~ KF ~ KF R
ale | pmsg | FINNwh bRy | BIN=Nwd |opyge | BIN= N
(%) (veh) (%) (veh) (%) (veh)
20s 9.8 0.59 16.8 -2.83 9.4 0.33
40's 17.6 -0.04 24.6 -4.07 10.7 -0.50
60 s 14.8 -0.59 29.3 -3.5 10.9 -0.64
90 s 27.5 1.25 24.4 -2.43 19.0 0.17
stochastic 22.8 0.29 23.3 -1.76 17.3 0.41

Table 8: SM RMSE values and E{N — N SM} for five scenarios and various cases of effective vehicle

length.

L, = LI;l‘ L= LI_;I’ +1m corrected
Scenario . . .
Cycle Ri/ll\gE E{N - NSM } Ri/ll\gE E{N - NSM } Ri/ll\gE E{N - NSM }
(%) (veh) (%) (veh) (%) (veh)
20 s 15.8 0.5 29.0 -4.48 14.4 0.30
40 s 27.2 0.7 34.0 -3.98 20.6 0.01
60 s 28.6 -0.41 36.2 -4.37 23.9 -0.36
90 s 28.2 0.82 35.6 -3.50 23.4 0.01
stochastic 32.7 -0.11 40.8 -3.34 29.2 0.38
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e Despite the availability of only one detector, N follows N reasonably well (Figure
10) for all scenarios and for all ranges of link occupancy.

e The strong negative estimation deviations observed occasionally in Figure 10 are
due to the ZSZO-phenomenon mentioned i section 3.5. Note that this
phenomenon occurs only when the link 1s relatively full, because only then queuing
vehicles may stand still around the detector that 1s located in the middle of the link.
Note also that the utihzation of only one detector renders the estimates quite
sensitive to the ZSZO-phenomenon, because, in absence of any averaging with
other non-affected detector measurements, this phenomenon may strike fully on
the produced estimates. Finally, the phenomenon appears more frequently for
longer signal cycles because of accordingly longer red phases leading to longer
queuing.

e The RMSE is seen in Table 1 to increase with increasing downstream signal cycle;
this 1s because of the ZSZO-phenomenon being more frequent for longer signal
cycles; moreover a longer cycle 1s connected with longer green/red phases that
produce stronger stop/start-waves on the link and affect the one single

measurement in an accordingly stronger way.

e The average error (bias) E{N — N} 1s seen 1n Table 1 to be close to zero (less than
1 veh). Figure 13 displays the average space-occupancy curves analogous to Figure
9, albeit with E{o (x)} replaced here by E{ot(xi)} where ()t(xi), 1=1,...,150, are
time-occupancy measurements with T'=20s, for the four basic scenarios. It 1s seen

that a measurement detector i the middle of the Iink 1s indeed a good choice
the interest of a low estimation bias. The mcreasingly strong oscillations observed in

Figure 13 towards the downstream end of the link are again due to stochastic effects
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Figure 13: Efo } and E{ol(xi)} for the four basic scenarios.

related to the ZSZO-phenomenon which 1s more pronounced for higher x due to

more frequent queuing.

As 1t concerns the performance of the Kalman Filter, it may be seen that:

~

e Despite the avalability of only one link-internal detector, Ny, follows N
reasonably well (Figure 11) for all scenarios and for all ranges of link occupancy.
The displayed results are clearly better than the corresponding measurement-only
estimates reported in Table 1, which justifies the introduction of the Kalman Filter.
In particular the ZSZ.O-phenomenon that was clearly visible in Figure 10 does not
appear here thanks to the KF-imposed smoothing.

e The KF RMSE is seen in Table 2 to increase with increasing downstream signal

cycle; this 1s due to the corresponding increase of the measurement error variance
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that was attributed to the accordingly more frequent occurrence of the ZSZO-
phenomenon.

The average error (bias) E{N —NKF} 1s seen 1n Table 2 to be close to zero (less
than 1 veh) thanks to a similarly low bias of the measurement error. The nitial

estimation N (0) =5 veh is rapidly reduced in all cases thanks to the correction

term of the Kalman-flter equation (4.14).

The use of the exponential smoothing shows that:

A

Despite the availability of only one detector, Ng,, follows the average N
reasonably well (Figure 12) for all scenarios and for all ranges of link occupancy.
The ZS7Z.0O-phenomenon does not appear in any scenario as mush as the signal
cycle 1s, because the estimations are not influenced by the creation of queues in the
link.

The displayed results shown i Table 3 are better than the corresponding
measurement-only estimates reported i Table 1, because of the smoothing of the
7.57.0-phenomenon, although the KF estimates reported m Table 2 remain better
than whole.

The SM RMSE is seen in Table 3 to increase with increasing downstream signal
cycle; this 1s due to the corresponding increase of the measurement error variance
that was attributed to the accordingly more frequent occurrence of the ZSZ.O-

phenomenon.
The average error (bias) E{N—Ng,} 1s seen in Table 3 to be close to zero (less
than 1 veh) thanks to a similarly low bias of the measurement error and the nitial

estimation NSM(O) =) veh 1s rapidly reduced in all cases.
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The various traffic scenarios may also be investigated in order to assess the robustness
of the KF and the exponential smoothed estimators, the range of appropriate K- and
K, -values in (4.14) and (5.1), respectively, as well as the sensitivity of the KF and
exponential smoothed estimates to different K- and K, -values, respectively. To this
end, Figure 14 and Figure 15 display the KF RMSE and the SM RMSE for each
scenario in dependence of different K- and Kg,, -values, respectively, as well as the
corresponding measurement RMSE. (horizontal lines) with measurement noise y. Note
that in the case K=0 the Kalman Filter (4.14) exploits the boundary flow
measurement (conservation equation) only, L.e. the internal occupancy measurement is

not used, while in the case K, =1 the exponential smoothing equation (4.19) exploits

the latest measurements N™.

The results displayed i Figure 14 give rise to the following comments:

e The optimal gains K for all scenarios are in the range [0.05,0.25] . In particular, the

optimal K-values of the various scenarios are smaller if the measurement error
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Figure 14: Measurements and KF estimation RMSE in dependence of the KF gain K.
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variance 1s bigger, according to (4.16).

e The sensitivity of the KF RMSE within the mentioned range of K-values 1s rather
low. This means that no elaborated fine-tuning of K is needed in practice; this 1s a
quite significant property of the developed Kalman Filter because the exact fine-
tuning of K would require exact vehicle-counts N(k) that are quite cumbersome and
costly to obtain in the field.

e The KF estimates (for optimal K) are much better than the conservation equation
by itself (K=0) or the internal measurement by itself for all scenarios, which

demonstrates the utility of the KF estimator

The results displayed i Figure 15 give rise to the following comments:

e The optimal parameter K, for all scenarios are in the range [0.1,0.3]. In
particular, the optimal K, -values of the various scenarios are lower if the

measurement error variance 1s bigger.
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Figure 15: Measurements and smoothed estimation RMSE in dependence of the smoothing parameter
K,
SM
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e The sensitivity of the SM RMSE within the mentioned range of Ky, -values 1s
insignificant. This means that no elaborated fine-tuning of K, is needed in
practice.

e The exponential smoothed estimates (for optimal Kg,,) are much better than the
estimates for Kg; =0 or the internal measurement by itself (Kg =1) for all

scenarios, which demonstrates the utility of the exponential smoothing estimator.

7.3 Impact of the Update Period T

Figure 16 displays the RMSE in dependence of the update period T for the standard
scenario for three cases of utilized detector numbers, namely M =1, M =4, M =200.

The following observations are made:

e For M =1, the RMSE is very high for very small T as expected; it reaches a plateau
around T =20s due to better time-averaging; and then it increases shightly as T

mcreases beyond 100s (Figure 17) due to increasingly outdated estimations

100 ¢
90 f! M=4 -

:\ M =200 -
80 ||

70 F

of |
1N
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] P O

0 5 10 15 20 25 30 35 40 45 50 55 60
Update period T ( sec )

Figure 16: Impact of T on RMSE for standard scenario with M = 1, 4, 200.
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according to section 3.5.

e For M =4, the RMSE is much better than for M =1 at small T, but the higher
number of detectors brings only a small improvement (compared to M =1) on the
estimation accuracy as T increases.

e For M =200, the RMSE i1s virtually zero at small T because the approximation

(3.2) applies almost perfectly (excellent space-averaging); however, any increase of
T 1s seen to deteriorate this excellent performance and, indeed, for high values of

T, the amelioration over the cases M =4 and even M =1 becomes negligible.

Figure 17 displays the RMSE in dependence of T for the five scenarios (M =1 for all).

The following two additional remarks are worth mentioning:

e The optimal update period T increases as the signal cycle mcreases. This 1s
because the ZSZO-phenomenon and the longer-period oscillations (triggered by
the green/red signal switching) that are stronger for longer signal cycles, are better

smoothed for longer T.
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Figure 17: Impact of T on RMSE for five scenarios (M = 1).

REAL-TIME ESTIMATION OF VEHICLE-COUNT WITHIN SIGNALIZED LINKS 67



CHAPTER SEVEN: SIMULATION RESULTS

Some local minima are observed, e.g. most strikingly for the 90s-cycle case at
T =90s and T =180s. This is because of the synchronization of T with the signal
cycles that produces estimates always at the same time within the period of the

corresponding N-oscillation, which leads to a smoother estimation curve over time.

Figure 18 displays the KF RMSE of the standard and stochastic scenarios in

dependence of the estimation/measurement period T for the following cases:

A

Ny =N" (this means that KF RMSE equals RMSE) where N™ is produced

according to (4.12) from occupancy measurements o," stemming from one single

mternal detector without measurement noise Ao.

~

Ny produced from the KF estimator (4.14) based on perturbed (.e. y # 0) flow

m m

(qp, q,) and occupancy (o;") measurements, the latter from one single internal
detector. The also displayed gain parameter K was roughly fined-tuned for each
mdividual KF case. Note that the displayed measurement RMSE. reflects the
corresponding values of the variance Z of the measurement error in dependence of
T, while the displayed KF RMSE reflects the corresponding values of the variance
IT of the KF estimation error in dependence of T. Figure 18 indicates that, as
expected from section 3.5, the measurement RMSE (and hence 7) 1s quite high for
very small T; it reaches a plateau around T =20s (Figure 18a) resp. T =80s
(Figure 18b); and then it increases shghtly as T increases further. Clearly, the
system error variance T°T increases quadratically with T since T is independent of
T. Thus, the value of a=T°T'/Z, appearing in (4.16), (4.17), depends on the
update period T 1n a corresponding way. Indeed, the following observations are

made from Figure 18:
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e In accordance with (4.17) the KF RMSE is slightly increasing with increasing T,

although for T < 20s (Figure 18a) resp. T <40s (Figure 18b) the increase 1s partly

compensated by the continuously improved measurement (which leads to lower Z

values).

e In accordance with (4.16), the optimal filter gain value 1s increasing with increasing

T. More specifically, when T 1s small and the measurement noise variance 7. 1is
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large, the optimal gain 1s close to zero. As T increases and 7 decreases, o and
consequently the optimal gain K are increasing, the latter reaching a value around

0.5 for T > 30s.

For moderate T values, the KF produces better estimates than the measurements

by themselves; but for T >50s (Figure 18a) resp. T >80s (Figure 18b) this

. . . . . . . 2 .
situation 1s inversed due to increasing system error variance T°I" while the

measurement error variance 7 is virtually constant.

In accordance to Figure 18, Figure 19 displays the SM RMSE of the standard and

stochastic scenarios in dependence of the estimation/measurement period T. The

estimations of the cases where N, =N" and the N, produced from the KF

estimator have been hold on; there are also displayed the NSM produced from the

exponential smoothed estimator and the smoothing parameter K, which was roughly

fine-tuned for each individual exponential smoothed case. The following observations

are made from Figure 19:

The SM RMSE 1s quite low for small T and it 1s slightly decreasing until it reaches a

plateau around T =205, but it does not exceed the quality of the KF estimator; for
the same period T < 50s (Figure 19a) resp. T <80s (Figure 19b) the SM RMSE
1s better than the measurement RMSE; this situation is mnversed for T >50s
(Figure 19a) resp. T > 60s (Figure 19b) as the smoothed estimations tend to follow

the non-smoothed measurements which are better than the KF estimations.
The optimal smoothing parameter value is increasing with increasing T. Even for

small T, the K, -values are higher than the corresponding K-values and the more
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Figure 19: Measurements and smoothed estimation RMSE in dependence of update period T for (a) the
standard and (b) the stochastic scenarios.

the smoothed estimation 1s coincided with the non-smoothed, the higher the value

of Ky, 1s (the more use of the measurements).
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7.4 Impact of the Number of Detectors

Figure 20 displays the RMSE of the standard scenario in dependence of the number of
detectors M with T'=20s, T =10s and T =0.5s. It may be seen again that, if T 1s
very small, the RMSE increases strongly (compared to the case T =20s) if M is very
small; but the RMSE decreases to become lower than in the case T =20s, as M

mcreases; the reasons for this behaviour were already explained in section 7.3. Indeed,

it 1s seen 1n Figure 20 that the curve for T =10s crosses the curve for T =20s around
M =9. Both curves are crossed by the curve for T =0.5s for some higher M; e.g. at
M =200 (not visible in Figure 20), the RMSE for T =0.5s, 10s, and 20s 1s 1.3%,

5.7% and 8.4%, respectively.

Figure 21 displays the KF RMSE of the standard and stochastic scenarios in
dependence of the number of internal detectors (measuring time-occupancy) with

T =20s for the following cases:
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Figure 20: Impact of M on RMSE for the standard scenario with T=0.5s, T =105, T = 20 s.
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Figure 21: Measurements and estimation RMSE in dependence of the number of internal detectors for

T =20 s for (a) the standard and (b) the stochastic scenarios.

~

Ny =N" produced from all available occupancy measurements without

measurement noise Ao.

~

Ny =N" as above but with occupancy measurements perturbed with

measurement noise Ao.

A

Ny produced from Kalman Filter (4.14) based on all available measurements

(perturbed with noise) and roughly fine-tuned gains K.
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The following observations are made from Figure 21:

e The mmpact of the occupancy measurement noise is quite negligible compared to
the other error sources in the measurement equation (4.13).

e The measurement RMSE of 20% (Figure 21a) resp. 50% (Figure 21b) for one
mternal detector 1s reduced to around 109% (standard scenario) resp. 20%
(stochastic scenario) for a sufficient number of internal detectors. The inclusion of
more than ten internal detectors does not improve the quality of the measurements
further.

e The KF RMSE is pretty stable around 9% (for the standard scenario) resp. 18%
(for the stochastic scenario) for any detector number. Note that the optimal gain K
takes values around 0.5 for M > 5 due to better measurement quality.

e Since the RMSE of 9% resp. 18% 1s reached with measurements only, by use of
ten or more internal detectors while the KF needs only three detectors to reach this
quality (two boundary and one internal detector), it may be concluded that, based
on these scenarios, the application of the Kalman Filter allows for the cost of

roughly seven detectors to be saved.

In accordance to Figure 21, Figure 22 displays the SM RMSE of the standard and

stochastic scenarios in dependence of the number of iternal detectors (measuring
time-occupancy) with T=20s. The estimations of the cases where Ny . =N"

produced from occupancy measurements without measurement noise Ao and the

N «¢ produced from the KF estimator have been hold; there are also displayed the

~

Ny produced from the exponential smoothing and the roughly fine-tuned smoothing

parameter Kg,;. The following observation is made from Figure 22:
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Figure 22: Measurements and smoothed estimation RMSE in dependence of the number of internal
detectors for T = 20 s for (a) the standard and (b) the stochastic scenarios.

e The SM RMSE is very quickly comcided with the non-smoothed measurement

estimation. For M > 4 the two curves almost become one, which means that for a

high number of detectors is better just to use the measurements for the estimation

of the vehicle-count in the link; the shightly differences between the estimated values

are because of the measurement noise that was accounted at the exponential
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smoothing estimation. Notice that the value of Kg,, does accordingly fast reach its’

maximum value.

7.5 Non-Zero Effective Detector Length

If the effective detector length 1s non-zero while measuring time-occupancy (or,
equivalently, 1if the effective vehicle length 1s different than the physical vehicle length),
then the measured time-occupancy 1s not a bias-free representation of the space-

occupancy (section 2.3) and hence the bias of the errors £, in (3.5), (4.11) and £ in

(3.8), (4.13) increases accordingly. If the non-zero effective detector length € 1s known,

m

. into virtually bias-free

one may convert the collected time-occupancy measurements o

representations of the space-occupancy by multiplying them with L™ /(L™ +¢) (section
3.5), in which case one may partly recover the results presented earlier. On the other
hand, 1f this transformation 1s not performed and the biased measurements are actually
used, then the produced estimates will be accordingly biased, even if the measurements
are used to feed the Kalman Filter, as the filter has no means to reject the measurement

bias according to (4.18).

Figure 23 displays the same information as Figure 13 for the standard scenario, now

with two additional E{o (x')} - curves; in the “biased” curve, the measurements are
. Pt . . . . .

collected with L; = Lil +1 m which leads to an obvious bias in the whole curve; in the

“corrected” curve, the biased measurements are multiplied with L™ /(L™ +¢), in which

case the orniginal curve is recovered and the (additional) bias 1s virtually nullified.
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Figure 23: Average error (bias) for standard scenario with non-zero effective detector length.
Table 1 displays the RMSE and average error of the five scenarios for the cases without

L,-bias, with L;-bias and for the corrected case. It is seen that the average error

mcreases in the biased case but the additional bias virtually disappears in the corrected
case. It 1s also interesting to notice that the RMSE of the corrected case (and, in some
scenarios, even of the biased case) are lower than 1n the non-biased case; this 1s because
simulated vehicles at standstill are separated by a gap of 1m, and hence any effective
detector length higher than 0.5m 1s sufficient to suppress the occurrence of the ZSZ.0O-

phenomenon, thus reducing the estimation error variance. Clearly this RMSE
improvement is more striking for the scenarios that are suffering more from the ZSZ.0-
phenomenon, i.e. the ones with longer cycle times (see also Figure 9). These results
suggest that 1t may be more beneficial for the estimation accuracy to employ detectors
with non-zero (but approximately known) effective detector length € and to proceed to a

correction of the obtained measurements; than to adjust the detectors such that

Ph
L,=L;.
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Figure 24 presents the measurements and KF estimation results for different K values
for the unbiased (standard scenario), the biased (with € =1m) and the corrected (as

mentioned above) cases. It may be seen that:

e The RMSE of the (biased) measurement of N™ 1s almost doubled compared to the
RMSE of the measurement of the standard case as already known from section 3.5.

e Due to the lower quality of the measurement variance (higher Z), the optimal KF
gain K 1s smaller (around 0.05) than in the non-biased case. The KF RMSE of the
resulting KF estimates when using biased measurements 1s more than doubled
compared to the unbiased case.

e In the corrected case (where measurements o are multiplied with L™ /(L™ +¢)),
the oniginal KF performance 1s virtually recovered for a gain K value similar as in
the unbiased case. Indeed, Table 2 reveals (as already observed in Table 1) that, for
some scenarios, the estimation RMSE of the corrected case may become lower

than in the unbiased case, because a non-zero effective detector length suppresses
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Figure 24: KF estimation for the case of non-zero effective detector length for standard scenario.
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the 7ZS7Z.0O-phenomenon thus reducing the measurement and eventually the
estimation error variance. These results amplify the suggestion that it may be more
beneficial for the estimation accuracy to employ detectors with non-zero (but

approximately known) effective detector length € and to proceed to a correction of

the obtained measurements; than to adjust the detectors such that L; = L};h.

Figure 25 presents the same as before measurements, and the exponential smoothed
estimation results for different Kg,, values for the unbiased (standard scenario), the
biased (with e=1m) and the corrected (as mentioned above) cases. It may be seen
that:

e In any case, for Kg,, =0 the SM RMSE has the same value (around 90%) as it

depends only on the NSM (0) (see section 5.2).

Due to the lower quality of the measurement variance, the optimal smoothing

parameter Ky, 1s bigger (around 0.5) than in the non-biased case. The SM RMSL
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Figure 25: Smoothed estimation for the case of non-zero effective detector length for standard scenario.
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of the resulting smoothed estimates when using biased measurements 1s almost
doubled compared to the unbiased case.
e In the corrected case the orginal exponential smoothed performance 1s virtually

recovered for a smoothing parameter Ky, value similar as in the unbiased case.

Indeed, Table 3 reveals (as already observed in Table 1 and Table 2) that, for some
scenarios, the estimation RMSE of the corrected case may become lower than in
the unbiased case, because a non-zero effective detector length suppresses the
7S57.0O-phenomenon thus reducing the measurement and eventually the estimation

€rror varliance.

7.6 Uncertain Physical Vehicle Length Average

In all previous investigations we assumed that the average physical vehicle length L™
used to transform the time-occupancy measurement 0" into a vehicle-count N™ in
(8.7), (4.12) is accurately known (equal to '™ =4m). If this value is not accurately
known 1in practice, then an additional measurement bias will result whose effects are
similar in nature as those of section 7.5. For example, the arrving traffic flow may
contain varying percentages of trucks that change the average physical vehicle length
accordingly. It should be emphasized, however, that the increased errors due to this
bias will occur only if the results evaluation is based on real vehicle numbers N,

whereby 1truck =1vehicle. If the real quantity N is measured in p.c.u. (passenger-car

units), then the RMSE for the estimates will be similar to the one of the standard case.

A~

Note that estimates N, or N, in p.c.u. may be more useful for signal control or ramp
metering applications where avoidance of queue spillback upstream of the link 1s a

maj()r concern.
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To investigate this issue we have considered two variations of the standard scenario
whereby the vehicles created in the microscopic simulation include 109 and 30% of

trucks, respectively; trucks were assumed to have a length in the range [8 m,10m]| with

uniform distribution. Note that in these two cases we still use I'™ =4m in (4.12) (as in

the standard case) thus creating biased measurements. Figure 26 displays the results for

both cases, along with the standard case for comparison. It may be seen that:

e The measurement RMSE of both cases increases with increasing percentage of
trucks due to increasing bias.

e Due to the lower quality of the measurement (higher variance Z), the optimal KF
gain K 1s accordingly smaller than in the standard case.

e The RMSE of the resulting KF estimates 1s increasingly higher for increasing bias,

but the accuracy 1s still quite good for the 109 -trucks case.
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Figure 26: KF estimation for the cases of uncertain average physical vehicle length.
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It should be emphasized that the above increased errors occur only if the results

evaluation 1s based on real vehicle numbers N, whereby 1truck =1vehicle. If the real

quantity N 1s measured m p.c.u. (passenger car units) and we assume here

L truck = 2.25 p.c.u., then the RMSE for the measurement and the estimates are similar

to the standard case as Figure 27 indicates. In fact, the measurements in this case may

be deemed unbiased while the variance of the state error increases shightly because the

flow measurements and hence the conservation equation address vehicles, not p.c.u.;

since the state error variance increases while 7, 1s virtually the same as in the standard

scenario, the resulting optimal K are shightly greater than i the standard case, but the

sensitivity of the results 1s rather low in a broad range of K-values.

The same analysis has been done for the case of the exponential smoothing estimation.

Figure 28 and Figure 29 show that:

Due to the lower quality of the measurement, the optimal smoothing parameter

K, 1s accordingly smaller than in the standard case.
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Figure 27: KF estimation for the cases of 109 and 30% trucks with N in p.c.u. and 1 truck = 2.25 p.c.u.
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Figure 28: Smoothed estimation for the cases of uncertain average physical vehicle length.

The SM RMSE of the resulting smoothed estimates 1s increasingly higher for

mcreasing bias, but the accuracy 1s still quite good for the 109 -trucks case.

If the real quantity N is measured in p.c.u. (Figure 29), again the resulting optimal

K, are slightly greater than in the standard case, but the sensitivity of the results 1s

almost zero 1n a broad range of K, -values.
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Figure 29: Smoothed estimation for the cases of 109% and 30% trucks with N in p.c.u. and 1 truck = 2.25

p-c.u.
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7.7 Longer Link

To check the KF efficiency in the case of links with different geometry, the link length
of the standard case was doubled to 394 m. Note that a larger link length A increases
the variance Z of the measurement as evidenced by the definition of the measurement
error ¢ in (4.13) while the variance T" of the system error remains unchanged. Hence, 1t
1s expected that the resulting optimal value of the KF gain K will be smaller than in the
standard case and the results displayed m Figure 30 actually confirm this conclusion.
Since RMSE is a relative error and the absolute values of the vehicle-count N are higher
for a longer link, the relative estmation accuracy of both the measurement and the
Kalman Filter in Figure 30 1s shghtly better than in the standard case. The same
behaviour 1s appearing with the exponential smoothing analysis shown m Figure 31
where still the KF estimation remains the best. Figure 32 displays the time trajectories
of the real and KF-estimated vehicle-counts N and N, respectively, while Figure 33

displays the time trajectories of the real and exponential smoothed estimation of the

vehicle-counts N and Ny, respectively. The first confirms the excellent performance

40
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Figure 30: KF estimation results for a longer link.
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Figure 31: Smoothed estimation results for a longer link.

of the filter also for a longer link and the second shows the satistactory performance of

the exponential smoothing even for a longer link.
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Figure 32: Real and KF estimated vehicle-counts over time for longer-link scenario.
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Figure 33: Real and smoothed estimated vehicle-counts over time for longer-link scenario.

7.8 Large Imtial Estmation Error

In all previous vestigations it was assumed that the mitial estimate 1s N.(0) =5 veh
while the real vehicle count is N(0) =0 veh, i.e. an initial estimation error of 5 veh was

mmposed. The mmportance of the correction term in the filter equation (4.14) may be

appreciated mn a last scenario where an even larger initial estimation error 1s assumed
with N « (0) =20 veh . Without the correction term, this initial estimation error would
not be reduced and, indeed, Figure 34 indicates that the KF RMSE for K =0 1s much
higher for NKF(O) =20 veh than in the standard case. Moreover, the optimal KF gain
K 1s seen to be slightly larger than in the standard case due to the larger imitial state
error. In contrast, Figure 35 shows that the SM RMSE for Kg,, =0 is much lower for
N (0) =20 veh than in the standard case probably because the initial estimation is

closer to the average number of vehicles in the link. Figure 36 shows that when the filter

1s used, thanks to the correction term, this large nitial error 1s rapidly reduced within a
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Figure 34: KF estimation for the case of larger initial estimation error (N(0) = 20 veh).

few estimation time-steps, while Figure 37 shows that the exponential smoothing 1s not

influenced by the NSM (0), besides for Kg,, =0, as the estimation 1s similar to the one

for NSM(O) =5 veh and always follows the average number of vehicles that have passed

the middle of the link until the time examined.
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Figure 35: Smoothed estimation for the case of larger initial estimation error (N(O) =20 veh).
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Figure 36: Real and KF estimated vehicle-count over time for the scenario with N(0) = 20 veh.

Vehicle - count ( veh)

40

35

25

20

15

10

1

S L

nsl

Simulation gI_T =1sec) —
Smoothing ( T = 20 sec )

Lo o o o b o o o o L o o o o L o o o a a N u o 1 4 a1

500

1000 1500 2000 2500 3000 3500 4000 4500 5000

Simulation time ( sec )

Figure 37: Real and smoothed estimated vehicle-count over time for the scenario with N(0) = 20 veh.
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CHAPTER 8
GUIDELINES, RECOMMENDATIONS AND
CONCLUSIONS

8.1 Guidelines and Recommendations for Practical Application

We will here summarize the necessary steps, equations and recommend parameter
values required if the described estimation scheme for vehicle-counts in signalized links

1s to be adopted and implemented.

To start with, a basic prerequisite 1s the availability of two boundary detectors measuring

m
in

m
out ?

flows ' and q" , respectively; and one internal detector (preferably located around

the middle of the link) measuring time-occupancy o;", see Figure 5. In case of

availability of multiple internal detectors, they should be preferably placed as Figure 8

m

" feeding the Kalman Filter should

indicates and the overall occupancy measurement o
be the average of all available time-occupancies according to (3.2). All occupancies in

this thesis are assumed to take values within the range [0,1].

In real-time operation, the filter 1s fed with the latest available measurements ;" (k —1),

qr (k=1), o"(k—=1), collected during the time period [(k—1)T,kT], where
k =1,2,... 1s the discrete time index, to produce the estimated vehicle number N (k)

valid for the time mstant k'T". The usually required range of values for T is [10s,305].
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The measured occupancy o," should ideally be collected with an effective detector
length € equal to zero. If the corresponding adjustment of the detectors 1s not possible,
the collected occupancy should be multiplied with L™ /(L™ +€) before further use (see
section 7.5), where L™ is the average physical vehicle length (around 4m). Typical €-
values are 1...2m depending on the employed loop detectors. Note that, according to

. Pl . . . .
section 7.5, the case L ;«r&Li1 with correction of the time-occupancies may lead to

Pl
better results than the Li = L].l case.

Subsequently, the o" measurement must be converted into a corresponding N"

measurement by use of (4.12). Note that the term AL /L™ appearing in (4.12) is equal

to (and could be replaced by) N the maximum number of vehicles that could be

max ’
accommodated in the link in a bumper-to-bumper manner. In case of a non-neglgible

percentage of trucks, there are two options:

—  Truck length is not considered in the utilised average physical length L™, which
remains equal to around 4m; in this case, the Kalman-filter estimates NKF will be
automatically delivered in  p.cu., where L™ =1p.cu. (this option is
recommended).

—  Truck length 1s considered (according to their usual percentage) when selecting the
value of I'™ (which would then be naturally higher than 4m), in this case, the
Kalman-filter estimates NKF will be delivered in veh, that may be either passenger

cars or trucks i the pre-specified proportion.
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Atfter these arrangements the Kalman-filter estimate NKF(k) may be produced by use

of (4.14) and subsequent possible truncation if the estimate exceeds the range

[0, N

L) The recommended range of values for the filter gain K 1s [0.05,0.3], but if
no fine-tuning 1s effectuated, a value of K=0.1 1s deemed quite appropriate and

robust. Finally the N’

max

value needed to truncate the filter results, corresponds to the
maximum number of vehicles that can be accommodated in the link at standstill,

including the usual safety distance D, i.e. N’

max

=AL/(L" +D).

8.2 Conclusions

The relationships between instantaneous space-variables and (easily measurable) local
time-variables n largely homogenecous and stationary traffic flow, as typically
encountered m uninterrupted traffic conditions, were reviewed. A quite elaborated
analysis and microscopic simulation mvestigation was conducted for signalized links
with inherently strong traffic flow variations triggered by traffic signal switchings. A
number of mfluencing factors when estimating space-variables from measured local

time-variables was analysed and 1illustrated in detail.

In subsequence a Kalman-filtering algorithm that may further reduce the estimation
error was proposed based on the msights gained in this analysis. A rather simple
Kalman-filter estimator was designed for the number of cars included in a signalized
link. The estimator was found in manifold simulation mvestigations to be quite efficient
and robust. The algorithmic mtelligence of the estimator was shown to replace for
several additional loop detectors that would be required i order to reach an equivalent
accuracy without the estimator. Several 1ssues and options were mvestigated i detail in
order to come up with suitable conclusions and recommendations with respect to

various aspects including:
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—  The appropriate measurement/estimation sampling time T.
—  The mmpact of multiple internal detectors for occupancy.
— The proper values of the filter gain parameter K.

— The mmpact (and countermeasures) of non-zero effective detector length i the

occupancy measurements.
—  The impact of trucks.

— The mmpact of various traffic conditions and the ramp geometry.

Field testing 1s the next step in the development of this algorithm.
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C Input File

C

Cl 1.Duration of simulation(sec) 2.Simulation step(sec) 3.Distance of recycle(m)

| 5000 0.25 0

C2 4.Length of road(m) 5. Number of traffic lights

| 1810 2

C3 6.Distance observation of traffic light(m) 7.Cycle of each traffic light(sec)

| 50 90 20

C4 8.Green period of each traffic light(sec)

| 50 13

CH 9.Place of each traffic light(m)

| 1600 1800

Co 10.Number of vehicles in road 11.Mean lenght of a vehicle(m) 12.Mean lenght of a truck(m) 13.Initial distance of vehicles(m)
| 0 4 9 10

Cc7 14.Safety distance between vehicles,D(m) 15.Initial speed of vehicles(m/sec) 16.(Starting) Reaction time(simulation time steps - min=1)
| 1 14 1

C8 17.Maximum accelaration(m/sec”2) 18.Maximum deceleration(m/sec”2) 19.Maximum desirable speed of vehicles(m/sec)

| 1.5 -6 16.5

C9 20.Constant var g_acceleration(1/sec)  21.Constant var g_deceleration(1/sec)  22.Constant lambda,A(1/sec)

| 2 2 0.7

C10 23.Minimum time-distance of vehicles(sec) 24. Time entrance of Ist vehicle(sec)

| 2 5

Cl1 25.Number of Ot detectors  26.Length of Ot detector(m) 27.Detector upstream(1->Y/0->N) 28.Detector downstream(1->Yes/0->No)

| 1 0 0 0

Cl12 29 . Number of flow detectors 30.Place of each flow detector(m) 31.Stochastic vehicle length(1->Y/0->N)32.Stochastic trucks(1->Y/0->N)

| 2 1606 1800 1 0

Cl3 33.Percentage of time occupancy noise(9%)34.Percentage of flow noise(%) 35.Stochastic reaction time(1->Y/0->N)36.Stochastic stop before traffic light(1->Y/0->N)
| 0.05 0.2 0 1

Cl4 37.Period of simulation sampling(sec) ~ 38.Update period T of KF(sec) 39.KF gain K 40.Estimated N(0)

| 1 20 0 5
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In the tables below are shown the green phases (in sec) of both traffic signals during the

corresponding simulation periods (also n sec):

Table 4: Green phases of traffic signals for the standard scenario.

Standard scenario

Update period (sec)

20

Cycle (sec)

Simulation Periods (sec) &
Corresponding Green Phases (sec)

Upstream 90 0—700 —2000 —5000
Signal ) 5d 60 55
Downstream 92 0—=700 [ —=1500 | =2000 | =3000 | —=3500 | =4000 | —=4500 | —=5000
Signal 13 11 7 5 7 9 13 17

Table 5: Green phases of traffic signals for the scenario with cycle of 40 s at the downstream traffic signal.

Basic s

cenario 1

Update period (sec)

20

Cycle (sec)

Simulation Periods (sec) &
Corresponding Green Phases (sec)

Upstream 90 0—1500 —2000 —5000
Signal ) 50 55 50
Downstream 10 0—1000 | —=1500 | =2000 | —=3000 | —=3500 | —=4000 [ —=4500 | —=5000
Signal 25 18 13 8 13 19 27 33

Table 6: Green phases of traffic signals for the scenario with cycle of 60 s at the downstream traffic signal.

Basic s

cenarlo 2

Update period (sec)

20

Cycle (sec)

Simulation Periods (sec) &
Corresponding Green Phases (sec)

Upstream 90 0—5000
Signal 50
Downstream 60 0—1000 | —=1500 | —=2000 | —3000 | —=3500 | —4000 | —5000
Signal 36 28 18 10 18 30 43
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Table 7: Green phases of traffic signals for the scenario with cycle of 90 s at the downstream traffic signal.

Basic scenario 3

Update period (sec) 20

Cycle (sed) Simulaﬁ.on Perlods (sec) &
Corresponding Green Phases (sec)
Upstream 90 0—3500 —5000
Signal 55 50
Downstream 90 0—700 | —>1500 | —»2000 | —»2200 [ —3000 | —=3500 | —»4100 [ —5000
Signal ) bb 45 35 25 15 30 42 55

Table 8: Green phases of traffic signals for the stochastic scenario with cycle of x sec at the downstream
traffic signal (x 1s an integer between 10 s and 90 s).

Stochastic scenario
Update period (sec) 20

Cycle (sec) Simulau'.on Periods (sec) &
Corresponding Green Phases (sec)

Upstream 90 0—3700 —4500 | —5000
Signal 70 65 45
Downstream X 0—14 | —=1900 | —3000 | —3500 | —3700 | —4500 | —5000

Signal (10-90) 13 0.35x 0.05x 0.2x 0.35x 0.4x 0.55x
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