
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ

ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Μεταπτυχιακή ∆ιατριβή

«Υλοποίηση Aλγορίθµων σε Ενσωµατωµένες

Αρχιτεκτονικές µε Σταθερούς και Αναδιατασσόµενους

Πόρους»

ΧΡΥΣΟΣ ΕΜ. ΓΡΗΓΟΡΙΟΣ

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

∆όλλας Απόστολος, Καθηγητής Π.Κ.(Επιβλέπων)

Πνευµατικάτος ∆ιονύσιος, Αναπληρωτής Καθηγητής Π.Κ.

Παπαευσταθίου Ιωάννης, Επίκουρος Καθηγητής Π.Κ.

Χανιά –∆εκέµβριος 2007

Microprocessor Hardware Laboratory

 1

SUMMARY

 Audiovisual data remains the preferable way of communication among all types of

information and the most demanding one, concerning the communication channel and

memory requirements. Despite the progress in network technologies, channel throughput

increase, disk technology and memory speed and size increase, the compression of data is

still essential because of the enormous amount of data that is stored or transferred, especially

for video data. A separate problem for video transmission is that of encryption, which can

ensure security of the transmitted information. Several algorithms have been proposed for

image and video encryption. In general, the proposed algorithms are implemented mainly in

software, resulting in a high quality of encryption but low throughput. The SCAN encryption

algorithm belongs to the general category of iterated product cipher algorithms, which can be

used to encrypt images and compressed video. SCAN probably is the first method used for

combined image encryption and information hiding.

 Important domain on image processing is the target recognition. Technological

advances in artificial intelligence and especially in heuristic search using fractals, pattern

recognition and image understanding have provided the opportunity to develop autonomous

systems for Automatic Target Recognition (ATR) from still images.

 The contribution of this work is to present a specific, tightly integrated architecture of

an entire system for the SCAN compression, encryption and data hiding algorithm and the

reverse process implemented using the Stretch technology. In addition to this, this thesis

presents the implementation of the smoothing, edge detection and colour segmentation

algorithms of ATR using Stretch S5000 processors and compares them with the

implementation using software Matlab toolbox. This work is the first in literature, which

reports a complete, tightly integrated, low-cost embeddable system for information

compression, encryption and hiding and for images’ Automatic Target Recognition algorithm.

Finally, this thesis compares implementations with FPGAs for the SCAN

compression/encryption/data hiding and software implementations with Matlab Toolbox for

ATR algorithm towards software-reconfigurable designs.

Microprocessor Hardware Laboratory

 2

CONTENTS

Chapter 1 ...6

Introduction ..6
Chapter 2 ...10

Relevant Research..10
2.1 Previous implementations on compression, encryption and
data hiding algorithms...10

2.1.1 SCAN methodology ..10
2.1.2 The DES Algorithm ...11
2.1.3 Rijndael Advanced Encryption Standard11
2.1.4 Partial Encryption of Compressed Images and Videos....13

2.2 Previous implementations on image segmentation algorithms
 14
2.3 Stretch Technology ..17

Chapter 3 ...20
SCAN-Based Compression\Encryption\Data Hiding algorithms20
3.1 SCAN methodology ..20
3.2 SCAN Compression Algorithm..21
3.3 SCAN Encryption Algorithm ..22
3.4 SCAN Encryption Algorithm ..26

Chapter 4 ...29
Smoothing, Edge Detection and Colour Segmentation Algorithms in
Colour Images..29
4.1 Smoothing Algorithm...31
4.2 Edge Detection Algorithm ..35
4.3 Colour Segmentation Algorithm ...37

4.3.1 Find Big and Crisp Segments..39
4.3.2 Expand Segments based on the Homogeneity Criteria ...40
4.3.3 Expand segments based on Dichromatic Reflection
Model42
4.3.4 Expand segments based on Degree of Farness.................43
4.3.5 Iterative filtering ..44
4.3.6 Finish segmentation process ..44

Chapter 5 ...46
Architecture of Compression/Encryption/Data Hiding and
Decompression/Decryption/Data Unhiding Subsystems of SCAN
Algorithm...46
5.1 Architecture of Compression/Encryption/Data hiding system
 47

5.1.1 Architecture of Compression Subsystem47
5.1.2 Architecture of Encryption Subsystem................................48
5.1.3 Architecture of Data Hiding Subsystem50

5.2 Architecture of Decompression/Decryption/Data Unhiding
System ...52

5.2.1 Architecture of Data Unhiding Subsystem52
5.2.2 Architecture of Data Decryption Subsystem......................53
5.2.3 Architecture of Decompression Subsystem55

Microprocessor Hardware Laboratory

 3

Chapter 6 ...57
Architecture of Smoothing, Edge Detection and Color Segmentation
Algorithm...57
6.1 Image Smoothing Subsystem ...58
6.2 Edge Detection Subsystem ..61
6.3 Color Segmentation Subsystem ...63

Chapter 7 ...68
Performance and Comparisons ..68
7.1 Performance of the Compression/Encryption/Data hiding
system and comparison with reconfigurable designs............................68
7.2 Performance of the Smoothing, Edge detection and Colour
segmentation system and comparison with software implementation
 75

Chapter 8 ...80
Conclusions and future work ..80
8.1 Conclusions..80
8.2 Future work...82

References ..83
Internet ...83
Bibliography ...83

Microprocessor Hardware Laboratory

 4

Αφιερωµένη στην οικογένεια µου

Ο κόσµος του κάθε ανθρώπου

στηρίζεται σε δύο κολώνες :

ότι θυµόµαστε και ότι αγαπάµε...

Microprocessor Hardware Laboratory

 5

ΕΥΧΑΡΙΣΤΙΕΣ

Πρώτα απ’όλους θα ήθελα να ευχαριστήσω τον καθηγητή Απ. ∆όλλα, για

την υποστήριξη και την πολύτιµη βοήθεια του κατά τη διάρκεια υλοποίησης

αυτής της µεταπτυχιακής εργασίας.

Στην συνέχεια, θέλω να ευχαριστήσω :

Την επιτροπή της διπλωµατικής µου εργασίας, τους καθηγητές ∆.

Πνευµατικάτο και Ι. Παπαευσταθίου για την συµβολή τους στην εργασία αυτή.

Τον κ. Κιµιωνή Μαρκο, µέλος ΕΕ∆ΙΠ και υπεύθυνος του εργαστηρίου

Μικροεπεξεργαστών και Υλικού, για την υποστήριξη του και την αµέριστη

συµπαράσταση του.

Τους κ. Ευρυπίδη Σωτηριάδη, κ. Κυπριανό Παπαδηµητρίου και ∆ηµήτρη

Μειντάνη, διδακτορικοί φοιτητές, για τις συµβουλές και τις ιδέες τους σε

δύσκολα σηµεία της εργασίας.

Όλους τους προπτυχιακούς και µεταπτυχιακούς φοιτητές του

εργαστηρίου Μικροεπεξεργαστών και Υλικού για την βοήθεια και την στήριξη

τους.

Τους φίλους µου για όλες τις καλές στιγµές που περάσαµε µαζί και

ελπίζω στο µελλόν να υπάρξουν ακόµα καλύτερες.

Τις αδελφές µου, την µητέρα µου και τον πατέρα µου που παρόλο τις

δύσκολες καταστάσεις που αντιµετωπίσαµε παραµένουµε αγαπηµένοι.

Τέλος, ένα µεγάλο ευχαριστώ στην Φωτεινή, η οποία βρίσκεται στο πλαι

µου σε όλες τις καλές και κακές στιγµές της ζωής µου.

Microprocessor Hardware Laboratory

 6

Chapter 1

Introduction

Audiovisual data remains the preferable way of communication among

all types of information and the most demanding one, concerning the

communication channel and memory requirements. Despite the progress in

network technologies, channel throughput increase, disk technology and

memory speed and size increases, the compression of data is still essential

because of the enormous amount of data that is stored or transferred,

especially for video data. Although, there are enough available products for

video compression that are based on hardware and software

implementations, the design of efficient coding algorithms for video

compression remains a pertinent research problem. This happens because of

its computing requirements and need for higher quality of picture at lower data

rates. The degree of compression depends on the redundant information of

data. In each frame it is very likely that the values of neighbouring pixels are

close and in this case we speak about spatial redundancy. Also, most of the

information in one frame can also exist in the preceding frames and this is

temporal redundancy. Techniques which exploit only the spatial redundancies

are categorized as intraframe techniques of coding. Examples of intraframe

coding include differential pulse code modulation [1], transform coding using

discrete cosine transform [2], [3], subband coding [4], pyramid coding and

vector quantization [5]. It is important to mention that for better compression

both intraframe and interframe techniques can be used. The SCAN algorithm

for video compression is based on the differences of adjacent frames [6].

 A separate problem for video transmission is that of encryption, which

can ensure security of the transmitted information. Several algorithms have

been proposed for image and video encryption. In general, the proposed

algorithms are implemented mainly in software, resulting in a high quality of

encryption but low throughput. On the other hand, very few algorithms have

been proposed in order to encrypt data in hardware, and these algorithms are

in general stream oriented with respect to their input source. The SCAN

Microprocessor Hardware Laboratory

 7

encryption algorithm [6], [7] belongs to the general category of iterated

product cipher algorithms, which can be used to encrypt images and

compressed video. SCAN probably is the first method used for combined

image encryption and information hiding [8]. This algorithm is based on

permutations of the image pixels and replacement of the pixel values. The

encryption power of the SCAN method is based on the very large number of

private keys. In particular, for an image of 512x512 pixels the number of

available private keys is 10
76000

. This means that the most powerful parallel

computer today requires 10
75000

years to decrypt that image using a brute

force decryption approach. The penalty of the SCAN methodology is the non-

real-time performance in software due to its complexity of compressing-

encrypting-hiding of an image.

The combination of video encryption and compression consists of

finding the differences of each frame from the first frame of the video, the

compression of this and finally the encryption of the compressed frames of

differences[9]. In addition to compression and encryption it may be desirable

to embed within some type of information (e.g. video) additional information

which is meant to be decoded only through the use of some access key. E.g.

it may be desirable to hide a patient’s medical record inside the video of some

medical test, but the record (as it is personal, sensitive information) should be

accessible only by the appropriate doctors. The SCAN information hiding

method [10] can be extended to hide information in videos by applying the

image information hiding method to each video frame. Since hiding data into

similar adjacent frames might make detection possible, this approach is

suitable only in applications where security is not an issue. If security is

important then secret data can be embedded into a few frames in each scene

of the video. For a complete system the decompression/decryption/data

unhiding system is essential.

The compression algorithms are divided into two categories: lossy and

lossless algorithms. A lossy algorithm achieves greater compression ratio, but

during the process of decompression there is a loss of information and as a

result a reduction of the quality of the video frames. Generally, the

decompression/decryption and data unhiding procedure is the opposite

Microprocessor Hardware Laboratory

 8

process of the compression/encryption/data hiding algorithm. In order to have

as good video quality in the reverse process, as in the initial video sequence

the system needs some additional information such as the scanning keys that

were used for the compression algorithm or the size of compressed frame for

each video frame.

Another important domain on image processing is the target

recognition. Technological advances in artificial intelligence and especially in

heuristic search using fractals, pattern recognition and image understanding

have provided the opportunity to develop autonomous systems for Automatic

Target Recognition (ATR) from still images [11-16]. ATR in pattern recognition

and image understanding based method depends on resolution for a

successful classification. Fuzzy and semi-fuzzy clustering algorithms have

been presented for extracting and recognizing the target’s features.

In particular, the ATR algorithm consists of a combination of

algorithms, such as heuristic segmentation, edge detection, thinning, region

growing, fractals, etc., appropriately selected for recognizing targets under

various conditions, such as moving target - still camera, still camera - moving

target, moving target - moving camera.

The contribution of this work is in presenting a specific, tightly

integrated architecture of an entire system for the SCAN compression,

encryption and data hiding algorithm and the reverse process implemented

using the Stretch technology. In addition to this, this thesis presents the

implementations of the smoothing, edge detection and colour segmentation

algorithms using S5000 processors and compares them with the

implementations using software Matlab toolbox. This work is the first that we

know of in literature which reports a complete, tightly integrated, low-cost

embeddable system for information compression, encryption and hiding and

for images’ Automatic Target Recognition algorithm. Second, this work

attempts to compare the previous implementations with FPGAs for the SCAN

compression and encryption with the implementations with the new Stretch

technology and software implementations with Matlab Toolbox towards

software-reconfigurable designs. Third, the innovation of this work is the way

of fitting complex algorithms in Stretch technology with the usage of low level

design tools. Lastly, during this work one of the most difficult challenges was

Microprocessor Hardware Laboratory

 9

the sizing problem that appeared during the hardware/software co design.

This appeared because of the small size of the reconfigurable part of the

S5000 processor and the restricted communication channels between the

software design and the hardware platform. Preliminary results from this work

were published in [18].

The rest of this thesis is organized as follows: Chapter 2 briefly

describes previous implementations on compression/encryption and colour

segmentation and ATR algorithm. Chapter 3 describes the algorithm of SCAN

compression/encryption/data hiding and the reverse procedure. Chapter 4

outlines the smoothing, edge detection and colour segmentation algorithms of

ATR. Chapters 5 and 6 have the new architectures, its major subsystems,

their interconnection, and its mapping on the Stretch technology. Chapter 7

has performance results and a detailed comparison to the previous

implementations. Finally, Chapter 8 has some conclusions from this work.

Microprocessor Hardware Laboratory

 10

Chapter 2

Relevant Research

 This section presents previous implementations of

compression/encryption/data hiding algorithms and implementations of image

processing algorithms. There are several algorithms that have been proposed

for these two applications with various characteristics and they are described

below. Finally, the Stretch technology is a new idea of processors with an

embedded reconfigurable part and it is described in this part of the thesis. The

architecture and the characteristics of these new processors are described in

the next sections.

2.1 Previous implementations on compression, encryption
and data hiding algorithms

 There are many algorithms about the data compression and

encryption in the literature. Each of the algorithms mentioned below follow a

different approach on the compression and encryption issue. Some of these

algorithms have been implemented in hardware, like SCAN encryption [19,

20].

2.1.1 SCAN methodology

The SCAN methodology for information hiding-compression-encryption

has been studied in [6, 7, 8, 9] and specific reconfigurable architectures have

been developed for the encryption [19, 20, 22] and for the compression [23]

aspects of it. Prior to this work there was no implementation of the hiding

aspects of SCAN, and there has been no fully integrated system in

reconfigurable logic.

 The FPGA implementation of the SCAN method provides real-time

capabilities not only for image encryption but for video encryption as well. The

FPGA implementation of the SCAN encryption is a validated design. The main

Microprocessor Hardware Laboratory

 11

reason of using an FPGA implementation is the flexible way of creating a real-

time programmable solution. In the specific architecture the image was split

into blocks of 64x64 pixels each, because this gives sufficiently good

encryption and simultaneously offers parallelism using RAM-based methods

that are supported in hardware. The architecture for the video encryption,

shown in [19, 22], consists of two independent RAMs of 4 Kbytes each, an

Address Generator, an Address Counter, the Substitution Unit and the Control

Unit.

 In addition to the above implementation, an FPGA implementation of

the SCAN Compression Scheme was fully developed and validated. The

architecture, which is described in [23], consists of the SDRAM subsystem

(which consists of the SDRAM memory and the corresponding Address

Generator), a unit that splits each frame to 16x16 windows, four units for

frame comparison, four Address Generators, four SRAMs of 32K x 16 bits

each, four Dual Port RAMs of 4K x 9 bits each, four RAMS of 2500 x 32 bits

each and nine FIFOs of 16 x 8 bits each.

2.1.2 The DES Algorithm

 One of the wide known block cipher using private key is the DES

algorithm. It was proposed by IBM during the early 1970s and it was adopted

as a federal standard on November 23, 1976. There are many DES variants,

but the most possible successor is the triple DES which is much harder to

break using exhaustive search: 2112 attempts instead of 256 attempts. The

fastest implementation of the DES algorithm in hardware is reported in [29]

providing a throughput of 400Mbytes/sec. In [24] there is an application of the

DES algorithm in order to encrypt images, unfortunately without providing any

quality results. The block diagram of the DES algorithm is shown in Figure
2.1.

2.1.3 Rijndael Advanced Encryption Standard

 Rijndael is a private-key symmetric block encryption algorithm that

supports 128, 92, and 256-bit length keys and operates on 128, 192 and 256-

Microprocessor Hardware Laboratory

 12

bit blocks. All nine combinations of key length and block size are possible.

Recently, Rijndael was selected as the Advanced Encryption Standard (AES)

to replace DES. Karri has presented an FPGA implementation of this

algorithm. The Rijndael encryption algorithm is shown in Figure 2.2.

Figure 2.1: The block diagram of the DES algorithm

The round transformation data path shown, also, in Figure 2.2 implements

the byte substitution, shift row, mix column and key xor operations. The data

path consists of two 16x8 SRAMs (SRAM 0 and SRAM 1), one 256x8 ROM

(SBOX), two 32-bit registers (REG_A and REG_B) and three multiplexers.

The total design targets the Wildforce reconfigurable computing board and its

performance is 124 Mbits/s using 13.6 MHz clock frequency.

Microprocessor Hardware Laboratory

 13

2.1.4 Partial Encryption of Compressed Images and
Videos

 Another approach to encrypt images is to combine the compression

and the encryption in order to eliminate the demanding distinct processing.

Cheng [32, 33] propose a novel approach called partial encryption in order to

reduce encryption and decryption time in image and video communication and

processing. In this approach, only part of the compressed data is encrypted,

as shown in Figure 2.3. The proposed algorithm can be applied in schemes

of quad tree and wavelet image compression, as well as an extension for

video compression. Partial encryption allows

Figure 2.2: The block diagram and the architecture of the Advanced Encryption

Standard algorithm

the encryption and decryption time to be significantly reduced without

affecting the compression performance of the underlying compression

algorithm. It is also shown that although a large portion of the compressed

data is left unencrypted, it is difficult to recover the original data without

decrypting the encrypted part. In the case of quad tree image compression

the encrypted portion is 13%- 27% of the compressed output for typical

images. For wavelet compression based on zero trees, less than 2% of the

Microprocessor Hardware Laboratory

 14

compressed output is encrypted for 512x512 images. The results on video

compression are similar.

Figure 2.3: The block diagram of partial encryption

2.2 Previous implementations on image segmentation

algorithms

 The segmentation techniques are categorised into three classes [34]:

i) characteristic feature thresholding or clustering,

ii) edge detection

iii) region extracting and merging.

 In grey level images, only a few characteristic features are presented.

The grey level value specified for each pixel in the image is the most

significant. In colour images this is called clustering [35–37]. Thresholding the

characteristic features or clusters is a widely used approach for segmentation

[38]. Lee and Chung [38] showed that thresholding would usually produce

good results in only bimodal images, where the images consisted of only one

object and the background. Here, the threshold can be picked at a valley

location within the image’s greyscale histogram. However, when the object

area is small compared to the background area, or when both the object and

background assume some broad range of grey levels, selecting a good

threshold is difficult. Another weakness of this technique occurs when multiple

objects are present within the image. In such cases, finding sharp valleys

Microprocessor Hardware Laboratory

 15

within the histogram is further complicated, and segmentation results may be

very poor.

 Edge detection is another approach to image segmentation [39]. An

edge is defined as a location where a sharp change in grey level or colour is

detected. However, in this method it is difficult to maintain the continuity of

detected edges; a segment must always be enclosed by a continuous edge.

 Region growing or merging is a third approach for image segmentation

[35]. In this case, easily found, large continuous regions or segments are

detected first. Afterwards, small regions may be merged by using

homogeneity criteria [41, 42]. One disadvantage of region growing and

merging is the inherently sequential nature of this approach. Often, the

regions produced depend upon the order in which those regions grow or

merge.

 Klinker [37, 38] developed a creative dichromatic reflection model,

which described the colour of reflected light as a linear combination of the

colour of surface reflection (highlights) and body reflection (object colour).

Applying this model to region growing and merging method produced

impressive results. In this method, highlight areas were merged with the matte

areas of an object. Conversely, using it where contrast between neighbouring

objects is weak, it merged objects. However, using hard thresholds

throughout degraded the performance of this technique within its intermediate

stages.

 Some of these image segmentation processes were fused with edge

location method to produce better results [41,42,45,46]. Segmentation based

on the theory of approximate reasoning or fuzzy-like reasoning produced

promising results. More specifically, Huntsberger [41,42,47–51] defined colour

edges as the zero crossing of differences between the membership values of

each pixel. The fuzzy membershipvalues are generated by using an iterative

c-mean segmentation algorithm, but it is time consuming due to its iterative

nature. Lim [64z] presents an n automated coarse-to-fine segmentation

method. This approach is based on histogram thresholds for each colour and

the c-means algorithm. An interesting approach, proposed by Lambert and

Carron [65], combined the colour space (where hue was explicitly defined and

processed according to its relevancy to chroma) and symbolic representations

Microprocessor Hardware Laboratory

 16

and rule-based systems (using colour and luminance features to determine

homogeneity among pixels).

 Weeks and Hauge [66] proposed a new method for colour image

segmentation. Instead of segmenting the colour image in RGB colour space,

which did not closely model the psychological understanding of colour, they

chose HSI (hue, saturation and intensity) space.

 There are architectures of implemented segmentation algorithms in

hardware. Perez and Koch proposed the use of a simplified hue description

suitable for implementation in analogue VLSI. They designed and fabricated

for the first time an analog CMOS VLSI circuit with on-board phototransistor

input that computes normalized color and hue.

 Another architectural approach on colour segmentation and pattern

matching is a two level CMOS architecture on neuromorphic colour

processing. They designed a 128(H) Χ 64(V) Χ RGB CMOS imager, which is

integrated with analog and digital signal processing circuitry to realize focal

plane region-of-interest selection, RGB-to-HSI transformation, HSI-based

segmentation, 36-bin HSI histogramming, and sum-of-absolute-difference

(SAD) template matching for object recognition. The organisation of chip is

presented in Figure 2.4.
 This prototype demonstrated that a real-time color segmentation and

recognition system can be implemented in VLSI using a small silicon area and

small power budget. They also demonstrated that the HSI representation

used in this chip is robust under multiplicative and additive shift in the original

RGB components.

 Concluding, it is noteworthy that there are no implementations of using

processors or reconfigurable technology. The hardware architectures that are

presented in literature are a small number and use VLSI as they give very

good throughput and real-time results.

Microprocessor Hardware Laboratory

 17

Figure 2.4 : Computational and physical architecture of the chip

2.3 Stretch Technology

The Stretch technology is a new technology to design software

configurable processors. The Stretch Company has constructed the series of

S5000 software configurable processors, which is based on the Tensilica core

RISC processor with a small embedded reconfigurable part, as shown in

Figure 2.5. The design flow comprises of system development in C/C++,

Microprocessor Hardware Laboratory

 18

profiling of the code, and mapping its critical sections to the reconfigurable

fabric as special, hardware-implemented instructions.

S5000 processors incorporate the Tensilica Xtensa RISC processor

core and the Stretch Instruction Set Extension Fabric (ISEF). ISEF is an

embedded programmable logic unit where the compute intensive parts of the

implementation can

Figure 2.5 : Architecture of S5000 processors

be mapped. The S5 Engine family provides two independent Instruction Set

Extension Fabric (ISEF) units, ISEF A and ISEF B, which can be configured

and used independently. The C/C++ language is used to program the S5000

processors. Stretch C is a C-like language which includes some extensions

for hardware implementation. Stretch C is the programming language which is

used for mapping the critical parts of the design in reconfigurable parts of the

processor.

 The reconfigurable part of processor contains a built-in sum total of

computation resources. There are two disjoint sets of computation resources:

Microprocessor Hardware Laboratory

 19

one for arithmetic and logic computations, and one for multiply and shift

computations. The basic unit for the arithmetic and logic computation

resource is one Arithmetic Unit. (AU). The basic unit for the multiply and

variable shift computation resource is one Multiply Unit (MU). The number of

AU and MU for each reconfigurable part is 4096 and 8192 respectively. The

sum of the computation resources used by all the instructions associated with

each ISEF configuration must not exceed the total available computation

resources in an ISEF unit.

 Concluding, the S5000 family of processors is based on Stretch's

revolutionary S5 engine, and provides the following key benefits:

• Boosts system performance in compute-intensive applications

• Enables fast time-to-market performance

• Reduces development and system costs

• Provides high-performance I/O's at industry-leading speeds

Microprocessor Hardware Laboratory

 20

Chapter 3

SCAN-Based Compression\Encryption\Data Hiding
algorithms

 The SCAN algorithm [6, 7, 8] is a class of formal languages, which can

be applied to compression, encryption, data hiding, or combinations thereof.

This section describes the SCAN language in detail and provides a

presentation of the compression, encryption and data hiding algorithm. The

data flow of compression/encryption /data hiding algorithm is shown in Figure
3.1

Figure 3.1: Block diagram for the compression/encryption/data hiding

system

3.1 SCAN methodology

 A scanning of a two dimensional array Pm×n = {p(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤

n} is a bijective function from Pm×n to the set {1, 2, . . mn-1, mn}. In other

words, a scanning of a two dimensional array is an order in which each

element of the array is accessed exactly once, or a permutation of the array

elements. The terms scanning, scanning path, Scan pattern, and Scan word

are used interchangeably in this paper.

 The SCAN represents a family of formal languages based on two-

dimensional spatial accessing methodologies, which can represent and

generate a large number of scanning paths easily. The SCAN family of formal

languages includes several versions such as Simple SCAN, Extended SCAN,

Microprocessor Hardware Laboratory

 21

and Generalized SCAN, each of which can represent and generate a specific

set of scanning paths. Each SCAN language is defined by a grammar and

each language has a set of basic scan patterns, a set of transformations, and

a set of rules to compose simple scan patterns, which in turn are used to

obtain complex scan patterns. The rules for building complex scan patterns

from simple scan patterns are specified by the production rules of the

grammar of each specific language.

3.2 SCAN Compression Algorithm

The SCAN compression algorithm consists of two main steps. These

steps are (1) compression of frames and (2) encoding of the information. The

first step of the SCAN compression algorithm is the calculation of compare

frames and difference frames. The compare frame is a two dimensional matrix

with the same size as the frames of the video. The first compare frame is

computed with the comparison of the pixels between the two first frames of

video. The corresponding pixels of the two first frames are compared and if

their values differ more than the threshold that the user has defined, then in

the position of the comparison matrix the value of the first frame is placed,

otherwise the value of the second frame is used. This process continues

using each time the compare frame as the first frame of the comparison with

the other frames. At the same time the pixels of the difference frame are

calculated. The difference frame is, also, a two dimensional matrix, of the

same size as compare frame, whose values are either -1 or the value of the

corresponding pixel of the second frame depending on the difference of the

pixels between the comparing frames. The pseudocode for the SCAN

compression algorithm is shown in Figure 3.2.

 Subsequently to the computation of compare frame and difference

frame, the difference frame is broken to 4x4 windows (16 pixels) and it was

specified which of these windows should be put in the compressed difference

frame (the windows which contain only the value –1 in each pixel are omitted

from the procedure of encoding in the compressed difference frame). Finally,

Microprocessor Hardware Laboratory

 22

the result of the compression process is an array with only the encoded

information of the compressed frames.

The decompression method which takes place in the receiver is exactly

the opposite process vs. that of the transmitter. Apart from the data of

compressed frames the receiver must have the values of the pixels of the first

frame, the dimension of the

Figure 3.2: Pseudocode for the SCAN Compression

Algorithm

frames and the value of the threshold, which is sent separately and all this
information is necessary for the decompression system.

3.3 SCAN Encryption Algorithm

The basic idea of the SCAN encryption method is to rearrange the pixels of

the image and change the pixel values. The rearrangement is done by a set of

scanning patterns (encryption keys) generated by an encryption-specific

SCAN language, which is formally defined by the grammar G = (Γ, Σ, A, Π).

Grammar G comprises of non-terminal symbols Γ = {A, S, P, U, V, T}, of

Microprocessor Hardware Laboratory

 23

terminal symbols Σ = {c, d, o, s, r, a, e, m, y, w, b, z, x,B, Z, X, (,), space, 0, 1,

2, 3, 4, 5, 6, 7}, its start symbol is A, and its production rules Π are given in

Figure 3.3.

Figure 3.3: Grammar of SCAN language

where the scan patterns (from which the method gets its name) for r, c, d, o,

a, s, m, e, y, w, z, b, x are shown in Figure 3.4.

Figure 3.4: Scan patterns for the SCAN language

 The semantics of this encryption-specific SCAN language are

described as follows:

(a) A → S | P means process the region by scan S or partition P.

(b) S →UT means scan the region with scan pattern U and transformation T.

Microprocessor Hardware Laboratory

 24

(c) P → VT(A A A A) means partition the region with partition V and

transformation T, and process each of the four subregions in partition order

using As from left to right.

(d) U → c | d | o | s | r | a | e | m | y | w | b | z | x means scan with continuous

raster, or diagonal, or continuous orthogonal, or spiral out, or raster, or right

orthogonal, or diagonal parallel, or horizontal symmetry, or diagonal

symmetry, or diagonal secondary, or block, or zeta, or xi respectively. These

scan patterns are shown in Figure 3.4.

(e) V → B | Z | X means partition with letter B or letter Z or letter X

respectively.

(f) T → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 means use one of the eight transformation

with a scan or partition. For a partition, these transformations are shown in

Fig.3-2. For all scan patterns, 0 means the identity transformation as shown in

Fig.1, and 2 means 90° clockwise rotation. For scan patterns c, o, s, a, e, m,

y, w, b, and x, 4 means 180° clockwise rotation and 6 means 270° clockwise

rotation. For scan patterns r and z, 4 means vertical reflection and 6 means

vertical reflection followed by 90° clockwise rotation. For scan pattern d, 4

means 90° clockwise rotation followed by horizontal refection and 6 means

180° clockwise rotation followed by vertical refection. For all scan patterns, 1,

3, 5, and 7 are reverses of scanning paths specified by 0, 2, 4, and 6

respectively.

 As an example, consider the scan key B5(s2 Z0(c5 b0 o0 s5) c4 d1) for

a 16×16 image. The scanning path which corresponds to this scan key is

shown in Figure 3.5. The image is first partitioned into 4 sub regions using the

B5 partition order. These 4 sub regions are scanned using s2, Z0(c5 b0 o0

s5), c4, and d1. The second sub region is further partitioned into 4 sub

regions using the Z0 partition order and the resulting 4 sub regions are

scanned using c5, b0, o0, and s5 respectively.

The pixel values of the compressed frame are changed by a simple

substitution mechanism, which adds the confusion and diffusion properties to

the encryption method. The permutation and substitution operations are

applied in an intertwined and iterative manner. Therefore, significant portions

of this function are done with address generators to implement the scan

patterns.

Microprocessor Hardware Laboratory

 25

Figure 3.5: Example of SCAN pattern

B5(s2 Z0(c5 b0 o0 s5) c4 d1)

The encryption is done by the Encrypt() function which is described in

Figure 3.6. The encryption key actually consists of four components, namely,

the two scan keys k1 and k2, the random seed integer p, and the number of

encryption iterations m. These four encryption key components are known to

both the sender and the receiver before the communication of the encrypted

image. The random numbers can be obtained by a random number generator

with seed p. The keys k1 and k2 are specified by the user. The other two

keys, spiral s0 and diagonal d0, are fixed as part of the encryption algorithm

and they were chosen because they have opposite directions, as shown in

Figure 3.4.

There are two fundamental properties that every secure encryption

method must satisfy. The first is the confusion property, which requires that

cipher texts (encrypted data) have random appearance (uniformly distributed

pixel values). The second is the diffusion property that takes under

consideration the plaintexts (original data) and keys, which requires that

similar plain texts produce completely different cipher texts when encrypted

with the same key, and similar keys produce completely different cipher texts

when encrypting the same plaintext. The proposed encryption method

satisfies both the confusion and diffusion properties, as shown above with

pseudocode.

Microprocessor Hardware Laboratory

 26

Figure 3.5: The pseudocode for the encryption algorithm

The decryption method is done by reversing the operations of

encryption. Note that the decryption requires the encryption key which

consists of k1, k2, p and m. Decryption is done as follows: Read pixels of G

using key k2 and write into F. Then, transform F into E by E[1]=F[1], E[j]=(F[j]-

((F[j-1]+1)R[j])mod256)mod256 for 2≤j≤ N×N. Then, read pixels of E and write

into D using diagonal scan d0. Then, read pixels of D using the spiral scan s0

and write into C. Then, transform C into B by B[1]=C[1], B[j]=(C[j]-((C[j-

1]+1)R[j])mod256)mod256 for 2≤j≤N×N. Then, read pixels of B and write into

A using key k1. Repeat this process m times to get the decrypted image. Note

that the random array R is obtained with random seed p.

3.4 SCAN Encryption Algorithm

 The data hiding algorithm consists of two main steps. The first step of

the embedding data algorithm is the calculation of the complexity matrix. The

complexity matrix is a two dimensional matrix whose size is equal to the

frame. Its values are 0 except for specific positions where values 0, 1, 2, 3,

and 4 are placed depending on values for the corresponding pixels using

Microprocessor Hardware Laboratory

 27

thresholds. The second step of the algorithm is the bit embedding process.

The second step uses the complexity matrix, which was calculated in the

previous step and depending on the values of its pixels changes the bits of

the main frame, embedding bits from the secret data. The pseudocode for the

embedding data algorithm is shown in Figure 3.6.

 The algorithm in general works on hierarchical decomposition of the

image or video into NXN subframes, which in our implementations are of size

64x64 down to 2x2. To recover the video at the receiver, the receiver must

know exactly the values of parameters N, w, h, m, n and k, which are sent to

the receiver separately. These parameters effectively determine the SCAN

patterns (permutations) that will be applied to the image, and the further

decomposition of the image into smaller ones which recursively may be

rearranged by SCAN patterns as well.

Figure 3.6: The pseudocode of the embedding data algorithm

Microprocessor Hardware Laboratory

 28

 The procedure that is followed in the receiver is exactly the reverse

processes of those that take place in the transmitter. Also, it is important to

mention that the transmitter in order to extract the hidden information from the

video sequence needs the values of the complexity matrix, which is

compressed and sent separately.

Microprocessor Hardware Laboratory

 29

Chapter 4

Smoothing, Edge Detection and Colour Segmentation
Algorithms in Colour Images

 This chapter refers to the algorithms of smoothing, edge detection and

colour segmentation, which were implemented in the new Stretch technology,

and can be applied to colour images. These algorithms can be used in colour

images to extract the objects that the image consists of, as shown in Figure
4.1. Each one of them implements a specific procedure and the final result is

an image divided into its objects which are coloured with the same colour.

This information can be used by the algorithm of Automatic Target

Recognition which taking the information of the colour for each part of the

image can extract the size and the species of each object.

Figure 4.1: Smoothing/Edge Detection and

Color Segmentation process

Microprocessor Hardware Laboratory

 30

 Segmentation and edge detection in colour images have been

extensively investigated in literature [31-34]. There is a variety of methods

with different ways of analyzing colour images and resulting to a unique edge

image. Some of these methods [40] use the histogram approach to result to

the edge image. Some other methods which do not use histograms are very

computationally intensive. Another way for detecting edges at material

boundaries is the usage of the hue [35]. The disadvantage of the hue

parameter is that the edges between two objects of the same type and colour

(same hue value) are lost. Another meter for the edge detection is the colour

contrast measure in the RGB colour space. The problem of the edge

detection using the colour distance is that the shadows in a colour image

create false edges. In this algorithm both the colour contrast in RGB and hue

value are used for edge detection. The distance in the colour domain is

calculated using the Euclidean distance. Finally it is noteworthy the fact that in

this algorithm of edge detection a fuzzy-like thresholds are used instead of

hard ones.

 Segmentation is one of the pre-processing steps of image analysis and

also one of the oldest problems in image processing. It organises areas of an

image into segments that are homogeneous in respect of one or more

characteristics. A segment must be composed of a continuous collection of

touching pixels where the pieces are not separated from each other. When a

segmentation algorithm terminates, every pixel in the image must be assigned

to a particular segment. Within the field of image processing, the terms

clustering and segmentation may be seen quite frequently. When analysing

the colour information of an image and trying to separate regions or ranges of

colour components having the same characteristics, the process is called

clustering. There are different techniques for image segmentation. One of

them is edge detection with disadvantage of the discontinuity of edges in the

image [40]. Some others methods use the dichromatic reflection model which

describes the colour of reflected as linear combination of the colour of surface

[43, 44]. Another segmentation method is the segmentation of the image no in

RGB domain but in HSI (Hue, Saturation and Intensity) space. Each one of

the above segmentation methods have some disadvantages which are

described in Chapter 2 of this thesis.

Microprocessor Hardware Laboratory

 31

 In the next sections of this chapter the algorithms of smoothing, edge

detection and colour segmentation in colour images will be described.

4.1 Smoothing Algorithm

 The images contain noise which is introduced either by the camera or

because of the transmission of the image over a noisy medium. In either case,

these noises must be removed before any further image processing is

applied. The most common way of noise removal is the use of filters. For

example, a filter that uses a block size of 3x3 window averages the colour of

pixels within the block and the centre pixel is then replaced by the average

colour of the block.

 Before the actual smoothing algorithm is presented, the notion of a

degree of neighbourhood between two pixels is defined. This concept is about

the definition of how close must be two pixels in order to be considered as

neighbours. In this algorithm there is the idea of fuzzy degree of

neighbourhood, where for each neighbouring pixel there is the corresponding

degree of neighbourhood. The degree of neighbourhood is specified in the

table of Figure 4.2 and it is obvious that the closer two pixels, the higher the

degree of the neighbourhood is.

Figure 4.2: Table of degree of neighbourhood

 In
sqn

µ the subscript n indicates the neighbourhood membership

function and the s, q is the relative position of a pixel with respect to the

centre pixel. The specific values used in this neighbourhood matrix are static

priorities based on the pixels’ closeness to the centre window. The averaging

approach, as described above, would destroy all weak edges and would

Microprocessor Hardware Laboratory

 32

create “fake” edges due to edge dilation. In the smoothing algorithm described

in this section, each pixel’s colour is compared with the colour of each of its

neighbouring blocks, as shown in Figure 4.3. The size of blocks for our

implementation was 3x3 which results to a strong smoothing of the image.

Figure 4.3: Eight neighbouring blocks of size 3x3 and four edge directions.
Blocks are numbered 1-8 such that they may be referred to in equation of

Figure 4.4 (variable b)

 The average colour for each of the neighbouring blocks was calculated

taking into account the neighbourhood membership function as shown in

equation of Figure 4.4, where k, p points to the low left and k’, p’ to the top

right corner pixel in block b and Csq represents the colour vector of the pixel at

location sq. This equation evaluates the average colour vector of block b with

respect to the i, j centre pixel. For smoothing, the colour contrast between the

centre pixel and all of the surrounding blocks must be measured. The colour

contrast between the pixel (i, j) and the block of b is the Euclidean distance in

RGB domain as shown in Eq. (1).
2 2 2

, 2 1 2 1 2 1() () () (1)ij bContrast R R G G B B= − + − + −

Figure 4.4: Equation of average colour for the neighbouring blocks

 After the contrast calculation between each of the neighbouring blocks

and the central pixel the maximum and the minimum contrasts are found.

Considering these values, three cases are encountered:

Case 1: Both minimum and maximum contrasts are below a threshold τsm.

This case represents a situation in which there is little contrast around the

Microprocessor Hardware Laboratory

 33

centre pixel. Thus, the pixel most likely is not part of an edge and is probably

located in a contiguous region. By replacing this pixel’s value with the average

of surrounding pixels’ color values, any existing color contrast is smoothed.

Case 2: Only the minimum contrast is below the threshold τsm. This situation

occurs when the pixel’s color that is being processed is similar to one side of

the edge and different from the other side. Taking the average color between

the pixel’s color and the color of the block of pixels with the lowest contrast

results to enhance the edge contrast.

Case 3: The third case occurs when both the minimum and the maximum

contrasts are above τsm. This case is when the pixel is isolated and it is

considered as noise and therefore it must be removed. If the noisy pixel is

located in a contiguous region, there was no problem to be removed and

replace it with the average color of the neighboring pixels. On the other hand,

if this pixel is on an edge the averaging would increase the fuzziness of the

edge. In this case a contrast measure is evaluated for the four neighboring

blocks (north, south, east and west). The average color contrast between

each side and the other three sides is calculated and added to the color

contrast with the centre pixel. The side of the pixel that has the lowest

measure is chosen and the pixel’s color is replaced.

 Figure 4.5 shows the flow diagram of the smoothing algorithm applied

on a pixel at location i, j with a block size 3x3. Overall, results produced by the

algorithm are relatively insensitive to the specific threshold choice.

Conversely, the algorithm is time consuming as there is a fair amount of

computation for each pixel. After the algorithm is applied , noisy pixels are

effectively eliminated, spikes are smoothed and

edges are enhanced.

Microprocessor Hardware Laboratory

 34

Figure 4.5: The flow chart of smoothing algorithm for pixel i, j and a

block size of 3x3

Microprocessor Hardware Laboratory

 35

4.2 Edge Detection Algorithm

 Hue, Intensity and Saturation are one set of parameters that are used

to evaluate edge strength within images. These parameters are computed

using the RGB values by the equations shown in Figure 4.6, where i is the

intensity , s is the saturation and h is hue in the range of (-180, 180] degrees

and X0, Y0 and Z0 are the x, y, z values of the white color.

Figure 4.6: Equations for the calculation

 of hue, intensity and saturation

 In the first steps of the algorithm, the values of the h, s and i are

computed for all eight blocks around a pixel. An object has the same hue

through out, regardless of variances in shades, highlights and shadows. On

the other hand, hue is unstable at low saturations and intensities therefore the

needs to be normalized. Hue edges are present at locations at which hue

contrast is high while saturation and intensity are both not low. The idea not

low is a fuzzy one and is defined by the Figure 4.7 for saturation.

Microprocessor Hardware Laboratory

 36

Figure 4.7: Not low membership function

 In our implementation the threshold ts was chosen 20% (of the max

value that saturation can take) for the saturation and 40% (of the max value

that saturation can take) for the intensity, as shown in Eq. (2), (3). Hue

contrast is multiplied by these not low membership functions to take the

normalized hue contrast.

1 , i 46
 (2)i , i 46

46
1 , s 108

 (3)
 , s 108

46
* * (4)

i

S

norm i S

s

Hue h

µ

µ

µ µ

≥⎧
⎪= ⎨

<⎪⎩
≥⎧

⎪= ⎨
<⎪⎩

=

 The problem with the hue is in case where two objects of the same

type are touching each other. To correct this problem the square of the

Euclidean distance in the RGB color space is used. This distance is

calculated for each edge direction (there are four edge directions as shown in

Figure 4.3) and averaged with the normalized hue contrast of the same

direction. These values are the edge candidacies for the pixel in each one of

the four directions.

 After edge candidacies are calculated the maximum is found. If the

max candidacy value is bigger than a smoothing threshold (ts = 11) then the

pixel is considered as an edge. If this value is lower than a low threshold (tl =

7) then this pixel is not considered as an edge. Finally, if this value is between

the low and high threshold then the whole process is repeated with the

neighboring blocks one pixel away from the processing pixel, as shown in

Figure 4.8. This procedure is repeated once and it is calculated for the four

edge directions resulting to four edge strength images. The previous results

show maximum edge candidacies in the four directions.

Microprocessor Hardware Laboratory

 37

Figure 4.8: Blocks used to reevaluate color contrast for edges

 The presence of a local maximum depends on the ratio of the current

pixel edge strength with respect to the maximum of that of the two

neighbouring pixels in the edge direction. If this ratio is greater or equal to 0.6

the pixel is considered as an edge for the specified edge direction. The four

edge strength images are merged keeping for each pixel the highest edge

candidacy and its edge direction. In the next step, the local maximum edge

candidates are found, as in the previous step, and putting the white colour for

the edge pixels and black for the others results the final edge image. The flow

diagram of the edge detection algorithm is shown in Figure 4.9.

4.3 Colour Segmentation Algorithm

 The segmentation algorithm uses edge information and the smoothed

image to find segments. The processes involved in this segmentation

procedure are as follows:

1. Find big and crisp segments.

2. Expand segments based on homogeneity criteria.

3. Expand segments based on dichromatic reflection model.

4. Expand segments based on degree of farness measure.

5. Apply an iterative filter.

6. Find medium size segments.

7. Expand segments using homogeneity criteria and degree of farness.

8. Fill in blank regions.

9. Apply an iterative filter.

Microprocessor Hardware Laboratory

 38

Figure 4.9: The flow chart of edge detection algorithm

 It processes big regions first, and then expands them based on three

criteria: homogeneity, the dichromatic reflection model and degree of farness

measure. After that, it applies an iterative filter and processes the medium

size regions. Then it uses homogeneity and the degree of farness criteria to

Microprocessor Hardware Laboratory

 39

expand further. For medium size regions the same procedure is used, with the

exception that the dichromatic reflection model is not applied.

4.3.1 Find Big and Crisp Segments

 The first step of the colour segmentation algorithm is the process of

finding big and crisp segments. Once edge detection has been performed on

an image crisp

segments are surrounded by edge pixels or the image boundary. Specifically,

a crisp segment can be defined as a set of pixels completely surrounded by

edge pixels belonging to only one object. To find a crisp segment, the image

is first scanned for the first non-edge pixel. This pixel is used as a growing

seed. In the growing process, a pixel can grow recursively in four directions

(left, right, up and down), and merged with the seed if the growing condition is

met. The steps are shown below:

1. Scan line-by-line (left-to-right, top-to-bottom), find the first non-edge pixel,

and use the first point as seed point.

2. Grow from Pn along four directions: left, right, up and down.

(a) Find Pn’s next neighbour point Pi.

(b) Test if Pi satisfies merge condition.

• Pi is not an edge pixel.

• Pi doesn’t belong to any regions.

• the distance (RGB) between Pi and the region Ri is less than threshold

Td = 30. The average value of all region pixels is used to be the region

colour.

(c) If Pi satisfies the above conditions, merge it into the region Ri; otherwise,

test next neighbour points.

3. If none of Pn’s neighbour points satisfy the merge condition, go back one

step to the previous point.

4. If it returns to the seed point, stop current procedure, mark the current

region Ri. Go to step 1, start the procedure for a new region.

5. If it reaches the bottom-right corner, the whole procedure ends.

Microprocessor Hardware Laboratory

 40

 During the seed growing process, the growing region may leak into its

neighbouring region if there is even a single undetected edge pixel between

the two regions. To avoid this, a seed size of three pixels is chosen. In this

way, the growing condition must be true for a block of 3x3 pixels to grow in

the growing direction. Thus, a growing region does not leak into a

neighbouring region unless at least a 3-pixel wide connecting non-edge area

exists. Each merging pixel is marked and assigned to the growing segment.

 During the growing process the average colour of each segment is

computed, therefore at the end of this part of algorithm each segment is

painted with the colour that was computed. The areas of the image, which are

not painted with any colour, have not yet been assigned to any particular

segment.

4.3.2 Expand Segments based on the Homogeneity
Criteria

 The next step of the segmentation algorithm is the expansion of the

segments based on specific criteria of homogeny. In this step, the initial image

is scanned and using the information that resulted from the edge detection

step expands the existing segments adding pixels. The expansion procedure

is performed within three sub-phases. During these sub-phases, each

segment is expanded (surrounding pixels merged with the segment) only if

the resultant segment is homogeneous. The degree of homogeneity defined

as a fuzzy term. The degree is high if:

1. The absolute similarity, Eq. (5), (similarity between a pixel’s colour and

the segment’s colour) is high

1 , _ 2* _
_ 0 , _ 4* _ (5)

4* _ _ ,
2* _

abs contrast dev abs
similarity abs abs contrast dev abs

dev abs abs contrast ά
dev abs

διαϕορετικ

⎧
⎪ ≤
⎪⎪= ≥⎨
⎪ −⎪
⎪⎩

2. The local or relative similarity, Eq. (6), (similarity between the next and

the previous pixel’s colour in the growing direction) is high

Microprocessor Hardware Laboratory

 41

1 , _ 2* _
_ 0 , _ 4* _ (6)

4* _ _ ,
2* _

local contrast dev local
similarity local local contrast dev local

dev local local contrast ά
dev local

διαϕορετικ

⎧
⎪ ≤
⎪⎪= ≥⎨
⎪ −⎪
⎪⎩

where dev_abs is the standard deviation (computed during the first phase of

segmentation, after the big crisp segments in the image are delineated, using

the segments’ average colour) and the dev_local is the local standard

deviation as it is computed each time.

 Colour contrast can be measured by computing the difference between

two colour vectors and obtaining its magnitude. As shown in Eq. (7), the

square of the Euclidean distance is used to calculate the colour contrast

between two-colour vectors v and w in this approach:
2 2 2() () () (7)V W V W V WContrast R R G G B B= − + − + −

where R, G and B are the three-colour components (Red, Green and Blue).

 If the contrast between the colour vectors, v and w, is less than

threshold of colour deviation, the two pixels (or the pixel and the segment in

the case of absolute contrast) are considered to have the same colour. If it is

higher than another threshold value, they are considered as having different

colours. If the contrast is between the two thresholds, the similarity

membership function is assigned a value between 0 and 1.

The local similarity membership function is calculated between pixels at

location (in, jn), and 2 2(i , j)n n± ± as shown in Figure 4.10. Averaging is used as

an aggregate operator combining the two membership functions to obtain the

final homogeneity membership function. If the homogeneity membership

function is higher than the selected threshold value, the pixel is merged with

the expanding segment.

Figure 4.10: The position of local pixels with respect to each other for four

growing directions, which are shown with an arrow.

Microprocessor Hardware Laboratory

 42

4.3.3 Expand segments based on Dichromatic
Reflection Model

 This model assumes that linear hypotheses from large image areas

describe matte pixels on an object or region, or in other words, large linear

clusters are matte clusters. This heuristic depends upon their distance from

the camera.

 The big, crisp regions of the image correspond to the large matte areas

of objects. During the first step of the segmentation process, all big matte

segments are found by using edge information. The weighted average colour

of the segments and the standard deviation are also computed. All matte

segments expand to include most nearby matching matte pixels. The

shadowed and highlighted object areas are leavened out because they have a

very different colour compared to the matte segment. Given the colour vector

of the centroid and the illumination (usually white), the cluster plane can be

found. The normal of this plane is the result of the cross-product of the two

colour vectors.

 Using the dichromatic reflection model, some touching pixels may be

merged with the previously growing matte segment. Eq. (8) is used to

calculate a fuzzy measure, referred to as the customised distance dc,

between the merging pixel and the cluster plane k in the colour domain.

* _ *min 0.2, *min 1, (8)

k

c

ij

C
d d similarity local

C

τ

κ

σ
σ

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎜ ⎟= ⎜ ⎟
⎜ ⎟ ⎝ ⎠
⎜ ⎟
⎝ ⎠

where d is the Euclidean distance in pixels between the merging pixel and the

cluster plane in the colour domain, local_sim is the local similarity function as

mentioned in Eq. (6),

kC and

ijC are the magnitudes of the expanding

segments and the merging pixel’s colour vectors, σκ and στ are the cluster’s

and the local standard deviation, correspondingly, as they resulted by the first

and second steps of the segmentation algorithm. From the equation of the

Microprocessor Hardware Laboratory

 43

distance is clear that the distance depends on the segments’ standard

deviation, the distance in color domain and the magnitude of each pixel.

 The value of standard deviation is used to prevent dark pixels from

merging to expanding segments and to assure highlights pixels to be put with

the segment that they belong to as they may be scattered at further distances

from the plane. Using this factor, if the merging pixel is a highlight one, its

intensity would be higher than the cluster’s, and the factor would be less than

1. The distance between the pixel’s color and the segment’s color is used as a

normalized meter of the final distance between the pixel and the segment.

 Some of the detected segments refer to the dark background or

shadow, and are not a part of any object. Merging shadow areas of an object

with the previously found object segments is permissible. However, expanding

or growing an actual dark or shadow segment into other regions should not be

permitted. Since the shadow segments have low intensities and are very

close to the origin, the cross product of the illumination vector with the almost

black colour would most likely yield erroneous results. Therefore, the

dichromatic reflection model didn’t apply to shadow segments. Finally, a hard

threshold (th = 0.7) is used and if the distance between the pixel’s color and

the segment’s color is below the threshold then the pixel is put in the segment

otherwise the process continues with the next unsegmented pixel.

4.3.4 Expand segments based on Degree of Farness

 To further expand segments, the degree of farness measure is used.

An unassigned pixel can be close (not far) to a neighbouring segment in two

senses: close in the spatial domain (physically close); or close in the cluster

domain of the colour cube (almost of the same colour). The degree of farness

of a pixel to a neighbouring segment is defined as a product of these two

measures. Specifically, the degree of farness for any given pixel is the

absolute colour contrast multiplied by the geometric distance (in pixels)

between the given pixel and the segment border. The closest segment to the

pixel is the one having the lowest degree of farness. Specifically, when

expanding any segment, the pixel to be merged must touch the segment, or

the newly expanded area and the degree of farness to this segment are the

Microprocessor Hardware Laboratory

 44

lowest among others computed for that pixel. The algorithm for the degree of

farness is shown below:

1. Scan the pixels that lay around the processing pixel and find the

segments that these pixels belongs to.

2. Repeat the above procedure for the three rows and lines away around

the central pixel.

3. For each segment found, compute the distance in pixels from the

processing pixel

4. Find the closest segment and put the central pixel in that segment.

4.3.5 Iterative filtering

 After the segment expansion is complete, the resultant segments’

edges are smoothed using an iterative filter. This filter is used for three block

sizes of 3 × 3, 5 × 5 and 7 × 7, with the smallest one being applied first. The

steps for applying the filters in the image are shown below:

1. Find the number of pixels in the filter which belong to the same

segment as the central pixel

2. If this number is more than the half total number of pixels that are

found in the filter then the pixel remains untouched.

3. If this number is lower than the threshold then the central changes and

belongs to the segment with the maximum support in the filter.

4. This procedure is performed iteratively for the bigger filters.

 At the end of this process all the edges of the image appear smooth.

4.3.6 Finish segmentation process

 This is the final step of the segmentation process. The image is

scanned for a non-assigned pixel. For each of these pixels the distance in

RGB domain is computed. If this distance is below a threshold then the pixel

is put in that segment. Finally, if after the above process there are no-

segmented pixels then the image is scanned once again and all those pixels

Microprocessor Hardware Laboratory

 45

are put with the segment which is the nearest one physically. Eventually, the

whole image is scanned and the average color for each of the segments is

computed. Finally, each segment is painted with its color resulting to the final

segmented image.

Microprocessor Hardware Laboratory

 46

Chapter 5

Architecture of Compression/Encryption/Data Hiding
and Decompression/Decryption/Data Unhiding
Subsystems of SCAN Algorithm

 In this chapter, the architecture of the compression/encryption and data

hiding subsystems is described. These subsystems are combined in a total

system that implements the SCAN algorithm. Additionally, the reverse

process of the SCAN algorithm, decompression/decryption and data unhiding,

was designed and implemented in Stretch Technology and it is described in

this chapter. The general architecture of the two described systems is

presented in Figure 5.1.

Figure 5.1: Block diagrams of the Compression/Encryption/Data Hiding and the
Decompression/Decryption/Data Unhiding Systems

Microprocessor Hardware Laboratory

 47

5.1 Architecture of Compression/Encryption/Data hiding
system

 This section describes the architecture of the system in Stretch

technology that was designed to implement the SCAN algorithm is described.

5.1.1 Architecture of Compression Subsystem

 The compression subsystem implements the SCAN compression

algorithm, as shown in Figure 5.2.

 Initially, the two first two frames of the video are read and are stored in

the cache of the processor S5000 and in the on board SRAM memory (SRAM

256 KB and Data cache 32 KB). After that, two frames are calculated, one of

which contains the values of pixels that will be compared with the next frame

(compare frame) according to the compression algorithm and the second one

contains the differences between the two frames (difference frame). This

process is a computationally intensive one so it was implemented using

reconfigurable resources of the embedded FPGA of processor. The fact that

the embedded FPGA of the processor has 128-bit wide channels for the

communication with the processor lead us to process 16 pixels

simultaneously (16 pixels * 8 bits/pixel = 128 bits) (compare unit). As a result

of this, it was important to specify the way that frames were stored in the

memory, i.e we store the value of pixels in contiguous positions of memory in

row major order. Subsequently to the computation of compare frame and

difference frame, the difference frame is broken to 4x4 windows (16 pixels)

and it was specified which of these windows should be put in the compressed

difference frame (the windows which contain only the value –1 in each pixel

are omitted from the procedure of encoding in the compressed difference

frame). The process of this section of the algorithm was also intensive and as

a result it was implemented with reconfigurable logic. The problem with this

implementation was that the pixels that should be processed were not in

contiguous locations and for that reason we developed a reconfigurable logic

unit (encoding unit) to process four continuous pixels at a time.

Microprocessor Hardware Laboratory

 48

 There is a difference between the encoding section of the algorithm

and the implementation of the encoding unit in our architecture. The idea of

our architecture was that if a window of difference frames was to be encoded

each pixel of encoded window was put in 8 bits. In that way, the reverse

procedure of calculating the pixels of encoded windows from a compressed

difference frame was much easier. Another change in our implementation was

that in case of continuous zeros in a compressed difference frame, we use a

run length encoding. This procedure takes place in the software unit of run

length encoding unit, as described in Figure 5.2.

Figure 5.2: Block diagram of Compression Subsystem

5.1.2 Architecture of Encryption Subsystem

 The basic idea of the encryption subsystem is to rearrange the pixels of

the image and alter the pixel values so that the histogram of the resulting

image is flat. The pixel rearrangement is done by scan keys. The pixel values

are changed by a simple substitution mechanism, which adds the confusion

and diffusion properties to the encryption method. The permutation and

substitution operations are applied in an intertwined and iterative manner.

Therefore, significant portions of this function are done with address

generators to implement the scan patterns.

Microprocessor Hardware Laboratory

 49

 The final form of a compressed difference frame, as shown in Figure
5.2 was not in the right format to be processed by the next subsystem, the

encoding subsystem. The encoding subsystem takes as input the

compressed image in square form. For that reason, in our architecture the

compression subsystem was followed by a transformation unit to convert the

final compressed difference frame in a NxN frame, where N is a power of 2.

This transformation unit was embedded in encryption subsystem, as

described in Figure 5.3.

 The architecture of whole encryption unit is shown in Figure 5.3. The

keys are given to the system before the start of the execution and each key is

implemented as an algorithm. According to the algorithm the pixels are read

with key1 and create an array 1 x N2. The reading of pixels was implemented

with reconfigurable logic by taking advantage of the parallel copy of 16 pixels

from the two-dimensional array to the one-dimensional array. The process of

reading and putting the data in the right form takes place in Reading Key1

Unit, Figure 5.3. After the reading process follows the substitution unit, which

was also implemented in reconfigurable logic and which grouped pixels in

groups of 16 that were processed each cycle. The substitution unit

implements a multiplication between random numbers, with predefined seed,

and the values of the pixels, as the algorithm of encryption defines.

 The next two units were the reverse read of an array that creates a 2 –

dimensional array according to key s0 (spiral) and after that the read with key

d0 (diagonal). These two algorithms, as their implementations were control

intensive, gave worse results in reconfigurable logic vs. the software solution

and that was the reason why the software implementation was preferred. The

problem that these two units were not implemented in reconfigurable part of

the S5000 processors was that they do not use pixels in contiguous positions.

As a result they had to collect the values of pixels that would be processed

from different places of the memory which cycle consuming procedure. This

example also shows why a fixed processor with a tightly coupled

reconfigurable fabric and high throughput busses between the two units offers

the designer good opportunities to partition a design. After these units, the

next unit is again the substitution unit, which was described above, and after

that unit follows the reverse read with key 2 which lead to the final encrypted

Microprocessor Hardware Laboratory

 50

image. This process is repeated M times which is defined by the user.

According to the algorithm, five iterations of this process produce a highly

encrypted image.

 Generally, the number of keys of SCAN algorithm is large but in our

implementation we implemented the subset of the keys that were used in the

reconfigurable implementation of algorithm.

 Figure 5.3: Block diagram of Compression Subsystem

5.1.3 Architecture of Data Hiding Subsystem

 The main idea of the information hiding algorithm is to identify the

complex regions of the cover image and embed the secret data into those

regions. The bits from the secret data are embedded into complex regions in

random order, determined by the secret SCAN key chosen by the user. The

embedding subsystem consists of five main units: (1) the unit that reads the

data that are going to be hidden (Reading Hidden Data Unit), (2) the unit that

identifies the complexity of cover image (Complexity Unit), (3) the unit that

executes SCAN rearrangement of image and complexity matrix (SCAN

Rearrangement Unit), (4) the unit that executes the bit embedding of secret

data in cover image (Bit Embedding Unit) and (5) the reverse SCAN

rearrangement of rearranged image (Reverse SCAN Rearrangement Unit).

 In the first step, the image is broken in 3 x 3 windows and is decided

which pixels will embed hidden data and exactly the number of bits, which is

described in the complexity matrix. This process was implemented in

reconfigurable logic although there were tradeoffs: the pixels which were

Microprocessor Hardware Laboratory

 51

processed were not in contiguous locations. As a result we constructed an

array, where we put the useful pixels each time and in that way the

reconfigurable part of the processor had the right data each time. The second

unit, SCAN Rearrangement Unit, comprises of the same units as the

encryption algorithm with the difference that this unit does not contain the

substitution unit.

 Following this step is the bit embedding unit where in each pixel is

embedded the number of bits that are described in the complexity matrix. This

unit in order to be implemented on the reconfigurable fabric had a sizing

problem: the required data were wider than the communication channels and

the FPGA resources were not sufficient. In order to solve this problem, we

broke the Bit Embedding unit in smaller ones and that gave good enough

performance. Finally, the last unit of this subsystem is the SCAN

rearrangement which changes the order of the rearranged image. This unit

was implemented in the same way as the encryption subsystem with the only

differences that this unit does not contain the substitution unit and it follows

the reverse process from that in encryption subsystem.

 Figure 5.4: Block diagram of Data Hiding Subsystem

 It is noteworthy that the keys that are used in rearranging the image

are the same as the keys in the encryption algorithm. In general, due to the

nature of SCAN there is good reusability of designs, which may be replicated

for performance purposes or used serially if there is no overlap in their need.

In that respect, we have a similar design problem as that of pipeline

scheduling for CISC computers, albeit at a coarser granularity.

Microprocessor Hardware Laboratory

 52

5.2 Architecture of Decompression/Decryption/Data
Unhiding System

In this section, we will describe the architecture of

decompression/decryption/data unhiding system of the SCAN algorithm which

can be embedded as a “black box” in the receiver. Given the information of

the compressed data that comes out from the compression/encryption/data

hiding system, the system of decompression/decryption/data unhiding can

recover the initial frames of the video. Complementary to the forward process,

the architecture of this system consists of three subsystems the

decompression, the decryption and the unhiding subsystem, which are shown

in Figure 5.1. Generally, the process of each subsystem is the reverse

process of the corresponding subsystem of the compression/encryption/ data

hiding system. The architecture of each subsystem will be analyzed to the

next sections.

5.2.1 Architecture of Data Unhiding Subsystem

The data unhiding subsystem implements the reverse process of the

SCAN data hiding algorithm, as shown in Figure 5.5. This subsystem takes

as inputs the final frame and the complexity matrix which are produced by the

data hiding unit of the transmitter. As described above, the complexity matrix

describes the pixels of the frame that were embedded with hidden information

in addition with the exact number of bits that were embedded to each pixel. It

is noteworthy that the complexity matrix can be compressed in order to avoid

the large size of data transmission.

In the first step, the pixels of the final frame are rearranged using the

SCAN Rearrangement Unit of data hiding subsystem. It is important to report

that the keys that are used for the pixel rearrangement are the same subunits

that were used in the data hiding subsystem and that leads to the fact the unit

of SCAN rearrangement is a co design of hardware and software subunits, as

described in Section 5.3. In the next step, the rearranged frame is scanned

and using the information of the complexity matrix the hidden bits, which are

embedded in each pixel, are extracted. This process was implemented in the

Microprocessor Hardware Laboratory

 53

reconfigurable part of the S5000 processor taking advantage of that each

cycle we could process 16 pixels simultaneously. The final step of the

architecture of the data unhiding subsystem is the reverse rearrangement of

the pixels of the frame using the same keys as in the first step of the

subsystem. The output of the subsystem is an array of hidden data that was

embedded in the transmitter and the frame which will be processed by the

next subsystems in order to recover the initial sequence of video frames.

5.2.2 Architecture of Data Decryption Subsystem

The decryption subsystem is shown in Figure 5.6. The architecture of

this subsystem consists of the same units that were used by the Encryption

subsystem in the transmitter. The only difference between the Encryption

Subsystem of transmitter

Data Unhiding Subsystem

Encoded
Frame

Hidden
Data

SCAN
Rearrangement

Unit

Reverse Bit
Embedding

Unit

Reverse Scan
Rearrangement

Unit

Encrypted/
Compressed

Frame

Complexity
Matrix

Figure 5.5: Block diagram of Data Unhiding Subsystem

and Decryption Subsystem of the receiver is the sequence of the flow of data

in the subsystems.
During the first decryption step, the pixels of the frame which come from

the data unhiding subsystem are read using the second key of the encryption

algorithm. This unit was implemented in reconfigurable part and it is the same

unit that was used in the encryption subsystem of the transmitter. The second

step processes the substitution of the value of pixels using random numbers

that are created using a random number generator. The process of

substitution in this unit uses exactly the same random numbers as the

Encryption subsystem of the transmitter because both generators of these two

Microprocessor Hardware Laboratory

 54

subsystems use the same seed. The unit of substitution executes this

operation: output[i] = input[i] - ((input[i-1] + 1)*R[i])%256 + 256 , where R[i] is

the array of random numbers and input[i] is one pixel of the frame that results

from the previous unit. It is obvious that the process of substitution unit is time

consuming as there are multiplications and divisions for each one of the

pixels. For these reasons, this unit was implemented in hardware so as 16

pixels of the image could be processed in a few cycles of the processor. The

two next steps comprise the reading of pixels of the frame using the diagonal

key(d0) and the spiral key(s0), consecutively. It is noteworthy that the reading

with the previous control keys takes place in reverse sequence vs. the reading

of pixels in the encryption subsystem and because of their complexity they

were designed in software. The next step of the procedure is, again, the

substitution process and the last one is the unit which scans the frame using

the key1, which was also, as the reading with key2, implemented in the

reconfigurable part of the S5000 processor. This process will be repeated M

times, where M is determined in the Encryption unit and it is sent to the

receiver with the rest of the key information. The result is the compressed

frames of the initial video.

 It is important to mention that the units, which were used for the

Decryption Subsystem, were almost the same as the units of Encryption

Subsystem, which shows that SCAN algorithm offers substantial reusability of

some units. From a cost vs. performance point of view, the same hardware

can be configured, with minor modifications, to do the forward or the reverse

process.

Figure 5.6: Block diagram of Data Decryption Subsystem

Microprocessor Hardware Laboratory

 55

5.2.3 Architecture of Decompression Subsystem

In this section, we will describe the Decompression Subsystem of the

Decompression/Decryption/Data Unhiding system. The architecture of the

decompression subsystem is shown in Figure 5.7. This subsystem comprises

of two units which execute the reverse procedure of the Compression

Subsystem of transmitter.

In the first step of the process, the pixels of the frame are scanned and

decoded in sequence. The decoded unit results into an array of pixels which

comprises only of the windows of pixels (4x4) that were encoded. The

corresponding positions in the final frame of the pixels, which were omitted by

the process of encoding in Compression Subsystem, are replaced by the

values of pixels of the previous frame, each time. For the first frame of the

sequence, it is essential to know the pixel values. In our architecture, the

intensive processes of decoding and decompressing were placed in the

reconfigurable part of the processor, which led to an important reduction of

the execution time.

The main problem that we faced with the implementation of this

subsystem was in the non-contiguous pixels that we should process. This

problem was solved by putting the proper positions of the memory to the 128-

bit communication channels between reconfigurable part of processor and its

core.

Figure 5.7: Block diagram of Decompression Subsystem

Microprocessor Hardware Laboratory

 56

As mentioned above, the implementation of

Decompression/Decryption/Data Unhiding system used many of the subunits

of the Compression/Encryption/Data Hiding system, which is placed in

transmitter. The main idea of the implementation of the unit is that it follows

exactly the reverse process from that in Compression/Encryption/Data Hiding

system. It is noteworthy that for the execution of the

Decompression/Decryption and Data Unhiding process it is essential to use

some information that was used by the transmitter, such as the keys that were

used to scan the pixels of the frames, the number of the iterations that was

used for the encryption process and the value of threshold for the encoding

process. In a system that does the forward and the reverse process with the

same keys, these need to be held only once in the system regardless of the

operation that it performs.

Microprocessor Hardware Laboratory

 57

Chapter 6

Architecture of Smoothing, Edge Detection and Color
Segmentation Algorithm

 This chapter describes the architecture of smoothing/edge

detection/color segmentation system that was developed using Stretch

technology. The system, which implements the first three steps of ATR

algorithm described in Chapter 4, consists of three subsystems, the

smoothing, the edge detection and the color segmentation subsystem. The

system’s block diagram is presented in Figure 6.1, and the architecture of

each subsystem will be described to the next sections of this chapter.

 The total system consists of three main components and each of them

implements the algorithm for each of the three subsystems. The components,

which are implemented as C functions using Stretch technology,

communicate with each other through the internal memory of the S5000

processor. Initially, the values of color of the pictures’ pixels in RGB are stored

in internal memory of the processor. The smoothing component reads these

values which are processed and they are stored again to the memory of the

system. The process continues for the other two components of the system

which read the input data from the memory and stores the processed data.

Finally, the output of the system is the values of the pixels colour image where

the recognized segments of the picture are colored with the same colour in

RGB.

Figure 6.1: Block diagram of the Smoothing/Edge Detection/Colour
segmentation System (hachured boxes are the stored data in memory of the

processor)

Microprocessor Hardware Laboratory

 58

6.1 Image Smoothing Subsystem

 The smoothing subsystem takes as input the initial values of pixels in

RGB system and outputs the values of the smoothed image according to the

described algorithm of Chapter 4. The smoothing algorithm is divided into

seven small steps each of one was designed as a separate component, as

shown in block diagram of Figure 6.2. The dark components of block diagram

have been implemented in reconfigurable part of S5000 processors in order to

reduce the total execution time of the smoothing algorithm.

Figure 6.2: Image smoothing subsystem (dark boxes show
reconfigurable components, white boxes show software implementation

and hachured boxes are the stored data)

 Initially, according to the smoothing algorithm there are 8 neighboring

3x3 windows of each pixel, as shown in Figure 6.3. The values of these

windows are used to find the Cbs values between the processing pixel and the

surround windows. The value of Cb shows the notion of a degree of

neighborhood between the window and the processing pixel. The calculation

of the Cbs was implemented in reconfigurable part of the processor, as shown

in Figure 6.2. As it is known from Chapter 4 one of the restrictions of the

Microprocessor Hardware Laboratory

 59

reconfigurable part of S5000 processors is the small number of I/O registers

(128 bits * 3 = 384 bits at most) which are used for the communication

between the reconfigurable and the software part of the processor. The fact

that the restriction for the input information in reconfigurable part lead to the

calculation of Cbs for two neighboring sub windows each time, as 2

neighboring 3x3 windows contain 15 pixels which means 15 * 8 bits/pixel =

120 bits * 3 = 360 bits < 384 bits(as the color of the pixels is in RGB model).

The pairs of the sub windows that calculated the values of Cbs, as shown in

Figure 6.3, are 5-3, 8-2, 4-6 and 1-7.

Figure 6.3: Eight neighboring blocks of size 3 x 3. Blocks are numbered 1 – 8

 Another observation during the calculation of the Cbs is that the

direction between the pairs of the sub windows differs as a result to

implement another component for the calculation of the sub windows, one

with horizontal direction and another one for the vertical direction.

 The choice to design the two components for the calculation of the Cb

value in reconfigurable part was taken because of two facts: i) The calculation

of the Cb value contains multiplications, which is a “heavy” task for the

software and ii) with this implementation we managed only in 3 clock cycles
to calculate the Cbs for two 3x3 windows. Finally, it is important to mention

that as the reconfigurable part of the processor can not be loaded with floating

point numbers, the values of the weighted table were, initially, multiplied by

the value 1024, loaded to the reconfigurable logic and at the final stage the

result was shifted right for ten bits taking the correct value.

The next step of the smoothing algorithm was the calculation of the colour

contrast, Figure 6.4, between each of the neighbouring windows and the

processing pixel. In this stage, a new component of reconfigurable logic was

implemented, smoothing_second_third_step component. This component

takes as input the Cbs values of the 8 neighboring sub windows and the color

Microprocessor Hardware Laboratory

 60

of the processing pixel in RGB domain and calculates the contrast between

them. After the calculation, this component returns to the software two values:

the first one is a flag that shows which of the three cases of the next step of

the algorithm is true and the second one is the id of the sub window which will

be processed. This process takes 9 clock cycles per each calculation.

2 2 2
, () () ()i j j i j i j iContrast R R G G B B= − + − + −

Figure 6.4: Contrast value between two color vectors

 The previous step of the algorithm defines which of the next three

conditions is true. If the max and the minimum colour contrast between the

neighbouring window and the processing pixel are lower than the value of the

predefined threshold then the new colour value of the pixel is the weighted

average of the 7x7 window where the processing pixel is placed in the centre.

The process of calculation is a heavy computational problem as a result it was

put in the reconfigurable part of S5000. As there was problem with the big

number of values for the pixels that needed to pass to the reconfigurable (7 *

7 = 49 pixels * 3 RGB color = 147 values * 8 bits/value = 1176 bits) we took

advantage of the fact that the values of Cbs of the four corner windows were

already calculated by the first reconfigurable part of the smoothing algorithm.

In that case, we used the calculated values of the four 3x3 windows which

were placed in the corners and added the rest of pixels of the 7x7 window.

The sum of the values was divided by the sum of the weights of the 7x7

window and the result was the new colour value of the pixel. The clock cycles

for this reconfigurable unit of the implementation is about 3 clock cycles per

calculation.

 Finally, another computationally heavy part of the algorithm takes place

if the minimum and maximum contrasts have larger values than the

predefined threshold. In that case, a new hardware component was

implemented which took as input the values of the Cbs for the four windows in

four directions (North, East, South and West) (3 Cbs values of RGB * 4

windows = 12 values * 8 bits/values = 96 bits) which were previously

calculated. The output of this component is the direction of the sub window

Microprocessor Hardware Laboratory

 61

which has the least contrast between the processing pixel and the

neighboring sub window. The time that the final reconfigurable component

takes for the results is about 7 clock cycles.

 The last stage of the color smoothing component is the storage of the

new smoothed color values of the pixels in the main memory of the processor.

The next stage of the algorithm which is the edge detection, takes as input the

smoothed values from the internal memory of the processor.

6.2 Edge Detection Subsystem

 The second subsystem of the design takes the pixel smoothed values

as they resulted from the image smoothing unit and processes them in order

to find the edges of the images. The edge detection unit consists of three sub

units: local contrast calculation unit, hue calculation unit and edge candidacy

unit, as shown in Figure 6.5. In addition, as described in Chapter 4, in case a

pixel is not clear if it is an edge or not, the calculation of the edge candidacy is

repeated. In order to cover the previous situation it has been put a software

controller which checks if the edge candidacy is clear or not and in case it is

not clear,the sub units of the systems are repeated.

Figure 6.5: Edge detection subsystem (white objects are implemented in
software)

 The local contrast unit takes each time as input, the 7x7 pixels window

values which lay around the processing pixel and using the Cbs calculation

Microprocessor Hardware Laboratory

 62

components that were designed for the colour smoothing unit, calculates the

colour contrast between the processing pixel and the surrounding 3x3 sub

windows, as shown in Figure 6.6. The values of the colour contrast for the

four directions, Figure 6.3, are temporarily stored and used for the calculation

of the hue, saturation and intensity for each direction. The resulted values are

stored in tables which pass as input to the next unit of the design which is the

normalized hue contrast component.

 The normalized hue contrast unit takes as input the values of hue,

saturation and intensity for each of the four directions and calculates the

normalized hue contrast between the processing pixel and the neighbouring

sub windows. The normalized hue contrast consists of software multipliers

and dividers because the values of saturation and intensity belong to float

type and can not be represented in reconfigurable part of the S5000

processors.

Figure 6.6: Block diagram for the Local Contrast Calculation Unit

 The final value of the edge candidacy is calculated in the last unit of the

edge detection subunit, the edge candidacy unit. This unit was fully

implemented in reconfigurable part. Hardware adders and dividers for the

calculation of the average value of the hue contrast were implemented in the

candidacy unit. In addition to this, in this unit two hardware comparators were

implemented in order to find the max value of the edge candidacy among the

Microprocessor Hardware Laboratory

 63

four directions around the processing pixel. This unit takes 7 clock cycles

between the input of data and the output of the results.

 At the end of the edge detection subsystem, a new image has been

created with the definition of the edge pixels from the initial image. This

information is stored to the main memory of the S5000 processor and it is

used as the input of the next subsystem which implements the color

segmentation algorithm.

6.3 Color Segmentation Subsystem

 The subsystem, which is described in this section, implements the

colour segmentation algorithm as described in Chapter 4. The colour

segmentation algorithm can be divided into six smaller steps. The block

diagram of this subsystem is described in Figure 6.7. The colour

segmentation subsystem takes as input the values of the edge detected pixels

from the main memory of the S5000 processor and divides the objects of the

picture colouring them with the average colour of the object. The output of this

subsystem is the image with the colored objects which can be used for the

next processing steps of the Automatic Target Recognition algorithm.

 The first subunit of the system implements the segmentation of the

picture in its segments according to the information that comes from the Edge

Detection Subsystem. The Image Segmentation Unit, which is described in

Figure 6.8, consists of three smaller systems: the pixels edge check unit, the

grouping segmented pixels unit and the segment colour calculation unit. The

pixels edge check unit is fully implemented in reconfigurable part of the

Stretch processor and takes as input the value of the processing pixel and the

values of pixels which lay around on 3x3 windows and gives out the value of a

flag which shows if the pixel can be used as part of a segment. The input of

reconfigurable part utilizes only 264 bits of 384 bits as there 33 different pixels

which means 33 * 8 bits = 264 bits and it takes 3 cycles per run. The

Microprocessor Hardware Laboratory

 64

Figure 6.7: Block diagram of the Color Segmentation Subsystem

grouping segmented pixels unit is a software unit, which is implemented in

software, and groups the pixels which can be put in the same segment,

putting an id for each segment, according to the information that came from

the previous subunit. Finally, the calculation of the average colour for the

segments was implemented in software for one specific reason: there is no

information in advance about the number of pixels for each segment; as a

result the passing of the colour values of the segmented pixels should be

done dynamically something which would be very ‘heavy’ to be implemented

with Stretch technology.

Microprocessor Hardware Laboratory

 65

Figure 6.8: Block diagram for image Segmentation Unit

 The second subunit of the colour segmentation subsystem is the

Homogeny Expansion unit and its block diagram is presented in Figure 6.9.

This unit implements the algorithm of expansion according to the homogeny

criteria using the segmented image as it results from the image segmentation

unit. The homogeny expansion unit is divided into two components: the

contrast homogeny criteria unit and the calculation of local and absolutely

similarity unit. The contrast homogeny criteria unit runs only if one of the

neighbouring pixels of the processing pixel belongs to a segment. In that

Figure 6.9: Block diagram of the Homogeny Expansion Unit

case, the contrast between the colour of the processing pixel and the

neighbouring pixel is calculated and used for the calculation of the absolute

and local similarity between them. So the general architecture of this unit

consists of a software controller who checks if any of the four neighbouring

pixels of the processing pixel belongs to a segment. If any of the pixels

belongs to a segment, the control runs hardware unit for the calculation of the

colour contrast. Otherwise the processing pixels stay untouched. The next

Microprocessor Hardware Laboratory

 66

step of the contrast calculation is the calculation of the local and absolute

similarity for each of the four directions and the placement of the processing

pixel to the segment with the bigger values of similarities.

 The third step of the colour segmentation algorithm is the segments

expansion based on dichromatic reflection criteria, as referred in Chapter 4.

The calculation of the dichromatic reflection for a pixel needs the calculation

of the local similarity between the pixel and the neighbouring segment and the

calculation of the magnitude of pixel colour. The architecture of the

dichromatic reflection unit is presented in Figure 6.10. The part of the

algorithm which was implemented in hardware consists of two components:

the first hardware subunit is the Contrast Homogeny Criteria Unit, which was

used in Homogeny Expansion Unit and which calculates the local contrast

between the processing pixel and the neighbouring segments for the

calculation of the local similarity. The second component that was

implemented is the Magnitude Calculation Unit which computes the

magnitude for each segment or pixel taking colour RGB as shown in Figure
6.11. In addition, software multipliers and adders were designed for the

calculation of the dichromatic reflection value and the new colour of each

expanded segment.

Figure 6.10: Block diagram of the Dichromatic Reflection Expansion Unit

2 2 2 Color Magnitude R G B= + +
Figure 6.11: Color magnitude for the calculation

of the dichromatic reflection value

Microprocessor Hardware Laboratory

 67

 The final expansion of the algorithm takes place according to the

degree of farness of the unsegmented pixels from the neighbouring

segments. The Farness Expansion Unit takes as input the values of the

neighbouring pixels of the unsegmented pixels and checks which segment is

the nearest one to the processing pixel, expanding the segment with that

pixel. In the architecture of the Farness Expansion Unit that is presented in

Figure 6.12, it is clear that most of the implementation has be done in

software and only the calculation of the distance between the processing pixel

and the neighbouring pixels is calculated in reconfigurable part of the

processor. In addition to the calculation of distance, the reconfigurable part

finds the nearest value and returns to the software a flag which shows the

segment of the image that will be expanded with the new pixel.

 Finally, the next two steps of the algorithm, filtering and object

colouring, were fully implemented in software. The fact that there is no

knowledge a priori about the size of each segment so that can not be

managed the parallelism in computation for the image pixels drive us to

implement the two steps of the algorithm fully in software, as shown in Figure
6.12.

Figure 6.12: Block diagram for the last three steps of color segmentation
algorithm (degree of farness expansion, filtering and final object coloring)

 In this chapter, the architecture approach of the smoothing-edge

detection and color segmentation was presented. The important point of this

chapter analysis was the way of breaking of the three algorithms in smaller

steps and the implementation some of these smaller steps in reconfigurable

part of the S5000 processors. The whole procedure had as a result the

reduction of execution time through the parallel processing of pixels and the

implementation of computationally ‘heave’ processes in hardware.

Microprocessor Hardware Laboratory

 68

Chapter 7

Performance and Comparisons

 This chapter describes the performance of the systems that were

implemented in the new Stretch technology. In addition to this, in this chapter

of the thesis there is a comparison between the new implementations of

compression/encryption/data hiding and smoothing/edge detection/colour

segmentation systems and the hardware or software implementations.

 As mentioned in the previous sections, the SCAN algorithm for

compression and encryption was implemented in separate, reconfigurable-

only designs [19, 20, 26, 28]. These implementations are compared towards

to our software-reconfigurable design. On the other hand, there was no

hardware implementation for the smoothing, edge detection and colour

segmentation system and therefore a new software implementation was

designed using the toolbox of Matlab. Despite the software implementation

the comparison in processors’ cycles is a logical meter to reveal the difference

in throughput between our architecture with Stretch technology and our

implementation with Matlab.

7.1 Performance of the Compression/Encryption/Data hiding
system and comparison with reconfigurable designs

 The systems were tested with actual video sequences. The

Compression/Encryption/Data hiding system was verified with the same

videos that were used in the previous implementations. The videos that were

used are ‘Dogfight’, ‘Ducks’ and ‘News’. In Figure 7.1 one frame of each

video is presented. The first one, ‘Dogfight’, shows two F-16’s engaging over

the Aegean Sea. The resolution of the frames for this video sequence is

64x64. The second one, ‘Ducks’, shows two ducks in the lake. The resolution

of the frames for this video is 128x128. This video leads to lower compression

than the other ones due to the water ripples on the lake which destroy spatial

locality of information. The final video shows a man in an unvarying

background and its resolution is 512x512.

Microprocessor Hardware Laboratory

 69

 First, the above sequence of video was put as input to the

compression/encryption/data hiding system. The data that came out from that

system was put as input to the decompression/decryption/data unhiding

system. Figure 7.2 presents three of the original frames of the first video that

were used to test our implementation and the three corresponding frames that

were created by the process of the decompression/decryption and data

unhiding. As one can see, the quality of the final frames is almost the same as

the original frames. Some differences, which can be observed between the

initial frames and the processed ones, are caused by the embedding process

of the data hiding subsystem. More specifically, in that subsystem the process

of bit embedding leads to change the values of some pixels and as a result

when the reverse process takes place the bits of pixels that were lost because

of the embedding process can not be recovered. In general, the SCAN

methodology can be lossless, however, by definition, the process of hiding

information within an image or video frame alters this frame. In order to make

our results useful regardless of video resolution, most results are expressed in

terms of throughput.

Figure 7.1: Three frames from the videos with which we tested the system

Table 7.1 and Table 7.2 show the throughput of these two systems that

were designed and implemented. The conclusions that can be extracted by

the above tables are that the throughput of each subsystem is not tightly

connected to the resolution of the frames that are processed. In particular,

there is a tight association between the movement that takes place in the

frames of the video with the throughput of the compression, encryption, and

data hiding subsystems (as expected, because it destroys temporal locality).

Microprocessor Hardware Laboratory

 70

The intense movement in the video sequence provokes great changes to the

values of the corresponding pixels between the frames, resulting in an

Figure 7.2: Three frames from the video ‘Dogfight’ (in the first line appear the

original frames of the video and in the second line the processed frames)

increase of the number of pixels that should be processed (compressed and

rearranged), which leads to increase the time of execution and to reduce the

throughput of the system. E.g. the video ‘Ducks’ has lower resolution than the

video ‘News’, however, the intense movement of the water in the video

‘Ducks’ results in both subsystems having higher throughput for the video

‘News’ vs. the video ‘Ducks’. The throughput of the encryption depends on the

number of iterations for each data stream. Table 7.3 and Table 7.4 show the

relation between the throughputs of the systems with the number of the

iterations. On the contrary, in the case of the video it has been proven that

there is a uniform distribution for every

Microprocessor Hardware Laboratory

 71

Compression
Subsystem

Encryption
Subsystem

Data Hiding
Subsystem

Compression
Encryption
Data Hiding

System Frame
Resolution Throughput

w/ Virtex II
Technology

(MB/sec)

Throughput
w/ Stretch

Technology
(MB/sec)

Throughput
w/ Virtex II

Technology
(MB/sec)

Throughput
w/ Stretch

Technology
(MB/sec)

Throughput
w/ Stretch

Technology
(MB/sec)

Throughput
w/ Stretch

Technology
(MB/sec)

64 x 64
(Dogfight) 111 8.77 2.68 2.32 0.36 0.30
128 x 128
(Ducks) 111 7.10 2.68 1.74 0.27 0.22

256 x 256
(Ducks) 111 6.05 2.68 0.85 0.69 0.52

512 x 512
(News) 111 9.67 2.68 2.45 1.78 1.44

Table 7.1: Throughput for various frame resolutions for the
Compression/Encryption/Data hiding system

(Key1 = c0, Key2 = c0 and Number of iterations = 1)

Frame
Resolutio

n

Decompres
sion

Subsystem
(MB/sec)

Decrypti
on

Subsyste
m

(MB/sec)

Data
Unhiding
Subsyste

m
(MB/sec)

Decompression
Decryption

Data Unhiding
System

(MB/sec)
64 x 64

(Dogfight
)

9.34 1.48 1.71 0.73

128 x 128
(Ducks) 8.03 1.10 1.18 0.56

256 x 256
(Ducks) 7.15 0.76 0.95 0.45

512 x 512
(News) 10.24 1.25 1.52 0.75

Table 7.2: Throughput with Stretch Technology for various frame resolutions
for the Decompression/Decryption/Data Unhiding system

(Key1 = c0, Key2 = c0 and Number of iterations = 1)

byte value. This attribute can be exploited by reducing the number of

iterations for the encryption of compressed video in order to achieve higher

throughput without any compromise in the security of the encryption.

 The actual number of cycles to encrypt the images is mainly dependent

on the encryption key (key1 and key2). If the key is simple the number of

cycles is small. In case there are a lot of iterative scan patterns, the total

number of cycles increases. Table 7.5 and Table 7.6 contain the

corresponding throughput using different keys for our systems and for their

subsystems.

Microprocessor Hardware Laboratory

 72

Compression
Subsystem

Encryption
Subsystem

Data
Hiding

Subsyste
m

Compressi
on

Encryption
Data Hiding

System Number
of

Iterations
Throughp

ut
w/ Virtex

II
Technolo

gy
(MB/sec)

Throughp
ut w/

Stretch
Technolo

gy
(MB/sec)

Throughp
ut

w/ Virtex
II

Technolo
gy

(MB/sec)

Throughp
ut w/

Stretch
Technolog

y
(MB/sec)

Throughp
ut w/

Stretch
Technolo

gy
(MB/sec)

Throughpu
t w/ Stretch
Technolog

y
(MB/sec)

M = 1 111 8.77 5.53 2.32 0.36 0.30

M = 3 111 8.77 1.97 0.81 0.22 0.17

M = 5 111 8.77 1.82 0.41 0.16 0.12
Table 7.3: Throughput for the Compression, Encryption, Data Hiding system

towards to the number of iterations (Video resolution 64x64)

Number of
Iterations

Decompression
Subsystem

(MB/sec)

Decryption
Subsystem

(MB/sec)

Data
Unhiding

Subsystem
(MB/sec)

Decompression
Decryption

Data Unhiding
System

(MB/sec)

M = 1 9.34 1.48 1.71 0.73

M = 3 9.34 0.52 0.59 0.27

M = 5 9.34 0.31 0.36 0.17
Table 7.4: Throughput for the Decompression, Decryption, Data Unhiding

system towards to the number of iterations (Video resolution 64x64)

Table 7.7 shows the utilisation of the reconfigurable part of S5000

processor. The results show that each unit of the system is independent and

that because of the existence of two ISEF units the total number of Arithmetic

units is 8192 and Multiply units is 16384. The total utilization for the

implemented architecture is about 65 % for the Arithmetic units and 48% for

the Multiply units of the reconfigurable part.

Finally, for the case of the information hiding subsystem, there was no

previous implementation. The results, shown in Table 7.1 and Table 7.2,
reveal that an important factor for the throughput of the embedding subsystem

is the resolution of the main video frame.

Microprocessor Hardware Laboratory

 73

Compression
Subsystem

Encryption
Subsystem

Data Hiding
Subsystem

Compression
Encryption
Data Hiding

System Key1 Key2
Virtex II

Technology
(MB/sec)

Stretch
Technology

(MB/sec)

Virtex II
Technology

(MB/sec)

Stretch
Technology

(MB/sec)

Stretch
Technology

(MB/sec)

Stretch
Technology

(MB/sec)

C0 C0 111 8.77 2.68 0.49 0.36 0.12
B0(B0(
c0 c0
c0 c0)
c0 c0
c0)

z0 111 8.77 2.24 0.42 0.36 0.11

C0
B0(z0
z0 c0
c0)

111 8.77 2.68 0.47 0.36 0.12

C0 Z0 111 8.77 2.24 0.45 0.36 0.12

Z0
B0(z0
z0 c0
c0)

111 8.77 2.43 0.43 0.36 0.12

Z0 z0 111 8.77 1.82 0.41 0.36 0.11
Table 7.5: Throughput for the Compression/Encryption/Data Hiding system
using different keys (Number of iterations = 1 and video resolution 64x64)

Key1 Key2
Decompres

sion
Subsystem

(MB/sec)

Decryptio
n

Subsyste
m

(MB/sec)

Data
UnHiding
Subsyste

m
(MB/sec)

Decompres
sion

Decryption
Data

Unhiding
System

(MB/sec)

c0 C0 9.34 0.31 1.71 0.17
B0(B0(c0
c0 c0 c0)
c0 c0 c0)

Z0 9.34 0.29 1.71 0.11

c0
B0(z0
z0 c0
c0)

9.34 0.29 1.71 0.16

c0 z0 9.34 0.29 1.71 0.16

z0
B0(z0
z0 c0
c0)

9.34 0.28 1.71 0.15

z0 z0 9.34 0.28 1.71 0.15
Table 7.6: Throughput for the Decompression/Decryption/Data Unhiding

system using different keys (Number of iterations = 1 and video resolution
64x64)

Microprocessor Hardware Laboratory

 74

Concluding, the results from the above tables show that even though the

implementation with the Stretch Technology gives lower throughput for each

subsystem than the previous implementations with only reconfigurable logic,

the system-level throughput can be adequate for real applications. Apart from

that, this thesis’ architecture we achieved to embed the entire SCAN

Algorithm in a low-cost chip, Table 7.8, like that of S5000 processors of

Stretch Technology.

 The cost of the chips is shown in Table 7.8. Whereas, in previous

studies of ours, each of two major components required a Xilinx Virtex II, the

integrated design.

Reconfigurable
unit

Number of
used

Arithmetic
Units

(Total AUs:
8192)

Percentage
of utilization

of AUs

Number of
used Multiply

Units
(Total MUs:

16384)

Percentage
of

utilization
of MUs

Compare unit 929 11.4 % 0 0 %
Encoding unit 1941 23.7 % 1280 7.6 %

Transformation
unit 1126 13.7 % 0 0 %

Read Pixels
unit 161 2 % 0 0

Substitution
unit 858 10.5 % 6528 39.8 %

Complexity
unit 330 4 % 0 0 %

Table 7.7: The percentage of utilization of reconfigurable part of the S5000
Processor

Name of chip Cost ($)

FPGA Virtex II PRO
Xilinx Inc.

300

S5000 processor
Stretch Inc.

<100

Table 7.8: Cost of the chips that we
 used for our implementations

fits in a single Stretch S5000 integrated circuit. From a cost-performance point

of view, the numbers can vary, depending on what we consider. E.g. a Virtex

II for compression only delivers roughly ten times the performance of the

Microprocessor Hardware Laboratory

 75

S5000 at three times the cost, however, given that there is a bottleneck in the

next step of the process the compression alone is not a good metric. Taking

into account that information hiding was never implemented in Virtex II

technology it is sufficient to say that the contribution of this work is a different

solution in the design space rather than an unequivocal preferred approach.

7.2 Performance of the Smoothing, Edge detection and

Colour segmentation system and comparison with
software implementation

 In this section there is a description of the performance of the

embedded system that was designed as well as a description of the

components, which are the smoothing, the edge detection and the colour

segmentation algorithms of a colour image. In addition, there is a comparison

of the throughput between the architecture of the system that was designed,

the Stretch technology and an implementation of the algorithm with Matlab

toolbox.

 As mentioned above, there is no hardware implementation of these

three algorithms and therefore a new implementation of the algorithms was

designed using the toolbox of Matlab. First, the toolbox of Matlab was chosen

for the comparison with the hardware-software implementation as this tool is

used widely for image applications. Second, Matlab offers quick methods of

processing groups of numbers, pixels in our case, avoiding loops which in

software are time consuming. Third, although the toolbox of Matlab is

implemented with Java, which is a time consuming programming language, in

our comparisons, only the time that the processor (Pentium D 2.8 GHz)

processes the data and not the total execution time is taken into account.

Microprocessor Hardware Laboratory

 76

Figure 7.3: The initial colour image

 The system was tested with a medium resolution colour image (280 x

280), which is shown in Figure 7.3. This image was chosen because there

are objects of the same colour touching each other and as a result it is one of

the most difficult cases for the algorithm to separate the different objects in

image. Each step of the algorithm (smoothing, edge detection and colour

segmentation) resulted to images which are presented in this section. The

results from Matlab implementation have a small number of differences with

those from the hardware architecture due to the nature of the algorithms.

Some of the implemented algorithms compute floating point values which can

not easily be represented in hardware and as a result there was loss of

definitude in the final results of Stretch implementation.

 First, the image of Figure 7.3 was put as input both to the software and

to reconfigurable-software systems. These systems are separated into three

independent parts, smoothing, edge detection and colour segmentation part.

The results from each one of these parts are inputs to the next parts of the

system. The intercalary results of the independent parts are presented in

Figures 7.4, 7.5 and 7.6. In these figures there are also the results of the

Matlab implementation, where the small differences, as explained above, are

observable.

 Table 7.8 shows the comparison of the CPU time and the throughput

for each subsystem independently and for the whole system, between the

implementation with Matlab toolbox and the reconfigurable-software Stretch

Microprocessor Hardware Laboratory

 77

architecture. First, the results show that the most compute intensive part of

the three algorithms is the colour segmentation. Second, it is clear that the

architecture of the system implemented with reconfigurable-software

technology gives better throughput and lower execution CPU time for all the

subsystems and for the total system than a toolbox which is widely used for

these applications, as Matlab toolbox. Third, the heaviest computationally

algorithm of this system is the colour segmentation and it can be explained by

the fact that in that subsystem the image is scanned many times and it is

processed repeatedly until all the pixels to belong to an object.

MATLAB
Toolbox

Stretch
Technology

System
CPU
time
(sec)

Throughput
(KB/sec)

CPU
time
(sec)

Throughput
(KB/sec)

Comparison
Implementation

w/ Stretch
Vs.

Implementation
w/ Matlab

Smoothing
Subsystem 40.84 5.62 1.61 142.66 25x

Edge
Detection

Subsystem
47.63 4.82 11.68 19.67 4x

Color
Segmentation

Subsystem
109.23 2.10 19.82 11.58 5.5x

Total
Architecture 197.7 1.16 33.11 6.94 6x
Table 7.8: The CPU time (sec) and the throughput (MB/sec) for each one of the

subsystems for the two different implementations (Stretch vs. Matlab)

.
Reconfigurable

unit

Number of
used

Arithmetic
Units

(Total AUs:
8192)

Percentage
of utilization

of AUs

Number of
used Multiply

Units
(Total MUs:

16384)

Percentage
of utilization

of MUs

Smoothing
unit 6019 73.5 % 15168 92.6 %

Edge
Detection unit 5222 63.4 % 3264 19.9 %

Colour
Segmentation

unit
2227 27.2 % 10944 66.8 %

Table 7.9: The percentage of utilization of reconfigurable part of the S5000
processor for Smoothing, Edge detection and Colour segmentation of a colour

image

Microprocessor Hardware Laboratory

 78

Figure 7.4a: Smoothed colour image
using Matlab

Figure 7.5b: Smoothed colour image
using Stretch technology

 Table 7.9 shows the results of usage for the reconfigurable part of

S5000 processor. Remarkable is the fact that the utilisation of FPGA in the

S5000 processor is more than 100%, which reveals the fact that there is a

swap in configurations of the reconfigurable parts. It is important to mention

that this swap time is included in CPU time as described in the above tables.

Finally, another important observation is the high utilisation and use of the

reconfigurable part which leads to the reduction of execution time and as a

result to the increase of the throughput for the system.

Figure 7.5a: Edge detected image
using Matlab

Figure 7.5b: Edge detected image
using Stretch technology

Microprocessor Hardware Laboratory

 79

Figure 7.6a: Edge detected image
using Matlab

Figure 7.6b: Colour segmented image
using Stretch technology

 Concluding, the results from the above tables show that the

implementation with the Stretch Technology gives higher throughput for the

total system than the software implementation with Matlab toolbox. The

remarkable issue in this implementation is the implementation of the three

algorithms with a cheap S5000 processor and as a result the performance of

the system can be used in real time systems.

Microprocessor Hardware Laboratory

 80

Chapter 8

Conclusions and future work

 This chapter describes some points of this project that could be done

as future work in a possible extension of this work. Finally, in this section

there is a more profound comparison between the three different architectural

routes that were used or compared in this work.

8.1 Conclusions

 The main contribution of this work was the complete implementation of

a compress/encrypt/information hide system and smoothing, edge detection

and colour segmentation algorithms in a low cost core. The mapping of the

entire system on the Stretch technology is quite a departure from our previous

designs in terms of cost-performance, as well as, the level of complexity that

designs can have. The C-based design flow proved to be easy to master and

quite effective, although the lack of ability to intervene in the low-level FPGA

design was at times constraining. The system-level performance met our

expectations and the ability to put the entire design on the chip, was

somewhat of a surprise, given the hardware complexity of the previous

designs, with hand-optimized VHDL code no less.

 Another important contribution of this work is the comparison of three

different implementations of the same algorithms. This makes clear the

differences between the Stretch solution, the FPGA solution and the Matlab

solution. In addition to this, there is a comparison between the reconfigurable-

only designs, the software-reconfigurable designs and the software-only

designs. The differences as well as the comparison among the different

technologies are shown in Table 8.1

 As described in the table below, each of these three technologies has

both advantages and disadvantages. The new technology of Stretch offers

Microprocessor Hardware Laboratory

 81

Stretch
Technology

FPGA
Technology

Matlab
Toolbox

Design with
C/C++ language

Typical design
with

VHDL/Verilog
language

(higher flexibility
at higher design

time)

Design with
Matlab language

Low cost
(about $100)

Medium – high
cost

(>= $300)
Expensive tool

No explicit control
of Reconfigurable

part
of S5000

processors

Control of low
level
parts

No reconfigurable
part, only
software

Easy and quick
debugging

Time consuming
and difficult
debugging

Easy and quick
debugging

Easy development
and

quick time to
market

Not very easy
development
and time to

market
Easy development

Complete System
Visibility

Limited System
Visibility

Limited System
Visibility

Good
performance of

designs

Excellent
performance of

designs

Good
performance of

designs
Table 8.1: A table-comparison between three different technologies

easy implementation with C/C++ language, very easy and quick debugging as

the designer can run his code line-by-line and very quickly and as a result the

final implementation can be developed in a very small period of time. In

addition to these, through Stretch technology the designer can have a

complete system visibility, low cost of designs and generally a good

performance of his designs. On the other hand, the FPGA technology offers

the absolute control of the design, even in low levels like memories, FIFOs

etc., and better performance of every other software and DSP solution.

Concluding, the Matlab toolbox offers easy development and quick

implementation. However, it is an expensive tool and it does not have such

good performance as hardware implementations.

Microprocessor Hardware Laboratory

 82

8.2 Future work

 This project is almost a complete work whereas there are some points

that can be extended in order to achieve better results and more

comparisons. Below there are some ideas that can be proposed to extend the

subject of this work:

• In the previous chapters for the SCAN compression/encryption/data hiding

system there is a comparison between the architecture implemented with

S5000 Stretch processors towards the previous reconfigurable

implementations. A new extension on this part of the project could be the

implementation of the above algorithm with a typical microprocessor or

DSP and the performance comparison with the previous architectures.

• The Automatic Recognition Algorithm consists of many steps. The first

three of them are the smoothing, edge detection and colour segmentation

algorithm. The implementation of the rest steps of the algorithm and

embedding the whole system in a S5000 processor would provide a

complete chip which could be used as a black box in a bigger system.

• The ATR algorithms were implemented in software using Matlab because,

as explained in the previous sections, Matlab is a toolbox which is widely

used in image processing. A new implementation of the same algorithms

using another programming language, as C/C++, could give us not only a

comparison between these two different software implementations but

also would increase the number of comparisons between the

implementations.

• In the future, we need to further optimize the design of SCAN algorithm

and increase the number of SCAN keys that are supported in

reconfigurable-software design.

Microprocessor Hardware Laboratory

 83

References
Internet

[1] The official Stretch Inc site, http://www.stretchinc.com/

[2] The official Xilinx Company site, http://www.xilinx.com/

[3] The official Mathworks Company site, www.mathworks.com

Bibliography

[1] Cheng Chen, Video Compression: Standards and Applications, Journal of Visual

Communication and Image Representation, Vol. 4, No. 2, June, pp.103-111, 1993.

[2] N. Ahmed, T Natarajan, K. R. Rao, Discrete cosine transform, IEEE trans Computers,

23, pp. 90-93, Jan 1974

[3] A. H. Sadka, Compressed Video Communications, Wiley, pp. 14-72, 2002

[4] P.H. Westerink, J. Biemond, and G. Muller, Subband coding of image sequences at

low bit rates, Signal Process Image Commum 2, pp. 441-448, 1990.

[5] J. Max, Quantizing for minimum distortion, IEEE trans. on Information Theory, 6, No.

1, pp. 7-12, Mar. 1960

[6] S. Maniccam and N. Bourbakis, On compression and encryption for digital video, Int.

ISCA Conf. on Parallel and Distributed Systems, pp. 652-657, Aug. 2000, NV, USA

[7] N. Bourbakis, C. Alexopoulos, Picture data encryption using SCAN patterns, Pattern

Recognition Journal, vol. 25, no6, 1992, pp.576-581

[8] S. Maniccam, A Lossless compression, encryption and information hiding

methodology for images and video, PhD thesis, Dept. ECE, Binghamton University, 2000

[9] S. Maniccam, N. Bourbakis, Image and Video Encryption using SCAN patterns,

Pattern Recognition Journal, Vol. 37, 2004, pp. 725-737.

[10] S. S. Maniccam, N. Bourbakis, Lossless compression and information hiding in

images, Pattern Recognition Journal , Vol. 37, 2004, pp. 475-486

[11] S.Grossberg, H.Hawkins and A.Waxman “A special issue of ATR, Neural Network

Journal, vol.8,7-8,1995

[12] M.Brown and W.Swonger, “A prospectus for ATR”, IEEE-T-AES, 25,3,1989

[13] J.Novak and N.Bourbakis, “A survey on ATR detection and recognition”, TR-1993,

MV Lab BU-CIS, 21 pages.

[14] F.Sadjadi, F.Garber, et.al.,”Automatic Target Recognition, SPIE 1993

[15] L-C.Wang, et.al.”ATR using a feature decomposition and data decomposition

modular NN”, IEEE T-IP, 7,8,1998,1097-1112

[16] S.S.Young, et. al.,”Foveal ATR using a multiresolution NN”, IEEE T-IP, 7,8,1998,

1113-1121

Microprocessor Hardware Laboratory

 84

[17] J.Principe, et. al, “Target discrimination in synthetic aperture radar using ANN”, IEEE

T-IP, 7,8,1998, 1122-1135

[18] G. Chrysos, A. Dollas, N.Bourbakis, S. Mertoguno, An Integrated Video

Compression, Encryption and Information Hiding Architecture based on the SCAN Algorithm

and the STRETCH Technology, Proceedings of the IEEE International Symposium on Field-

Programmable Custom Computing Machines FCCM 2007 (Poster paper)

[19] A. Dollas, C. Kahris, N. Bourbakis, Performance Analysis of Fixed, Reconfigurable,

and Custom Architectures for the SCAN Image and Video Encryption Algorithm, Proceedings

of the FCCM 2003, pp. 19-28.

[20] C. Kahris, N. Bourbakis, A. Dollas, A Reconfigurable Logic-Based Processor for the

SCAN Image and Video Encryption Algorithm, International Journal of Parallel

Programming, Vol. 31, No. 6, December 2003.

[21] N. Bourbakis, A. Dollas, SCAN-Based Compression – Encryption – Hiding for video

on Demand, IEEE Multimedia Magazine, July – September 2003, pp. 79-87.

[22] C. Kachris, S. Maniccam, A. Dollas, N. Bourbakis, A Reconfigurable Logic-Based

Processor for the SCAN Image and Video Encryption Algorithm, International Workshop on

Application-Specific Processors, WASP 2002, Istanbul, Turkey.

[23] H. Sofikitis, K. Roumpou, A. Dollas, N. Bourbakis, An Architecture for Video

Compression Based on the SCAN Algorithm, Proceedings of the IEEE International

Symposium on Field-Programmable Custom Computing Machines FCCM 2005, pp. 295-296.

[24] J. Kaps and C. Paar, Fast DES Implementations for FPGAs and its Application to a

Universal Key-Search Machine, in 5th Annual Workshop on Selected Areas in Cryptography

(SAC '98) (S. Tavares and H. Meijer, eds.), vol. LNCS 1556, (Queen's University, Kingston,

Ontario, Canada), Springer-Verlag, August 1998.

[25] Y. K .Lee, L. H. Chen, An Adaptive Image Steganographic Model Based on Minimum-

Error LSB Replacement

[26] X. Li, Image compression and encryption using tree structures, Pattern Recognition

Letters, vol. 18, no11, 1997, pp 1253-1259

[27] H. Cheng, X. Li, Partial Encryption of Compressed Images and Videos, Presently at

Department of Computer Science, University of Waterloo

[28] Fu KS, Mu JK. A survey on image segmentation. Pattern Recognition 1981; 13:3–16

[29] Schettini R. Low-level segmentation of complex colour images. Signal processing VI:

Theories and Applications 1992: 535–538

[30] Celenk M. A colour clustering technique for image segmentation. Computer Vision,

Graphics, and Image Processing 1990; 52:145–170

[31] Bajcsy R, Lee SW, Leonardis A. Color image segmentation and color constancy.

SPIE, Perceiving, Measuring and Using Color 1990; 1250

[32] Huang C, Cheng T, Chen C. Color images’ segmentation using scale space filter and

Markov Random Field. Pattern Recognition 1992; 25(10): 1217–1229

Microprocessor Hardware Laboratory

 85

[33] Lee SU, Chung SY. A comparative performance study of several global thresholding

techniques for segmentation. Computer Vision, Graphics & Image Processing 1990; 52:171–

190

[34] Perez F, Koch C. Toward color image segmentation in analog VLSI: algorithm and

hardware. Int J Computer Vision 1994; 12(1):17–42

[35] Bourbakis NG. Calculating the pixels flow functions based on illumination sources

that produce highlights on color images. GMU-MVRL, TR-1987

[36] Moghaddamzadeh A, Bourbakis NG. A fuzzy region growing approach for

segmentation of color images. J Pattern Recognition 1997; 30(6)

[37] Klinker GJ, Shafer S, Kanade T. Image segmentation and reflection analysis through

color. Image Understanding Workshop, San Matteo, CA, 1988: 838–853

[38] Klinker GJ. A Physical Approach to Color Image Understanding. A. K. Peters,

Wellesley, MA, 1992

[39] Pal NR, Pal SK. A review on image segmentation techniques. Pattern Recognition

1993; 26(9):1277–1294

[40] Xiaohan Y, Yla-jaaski J. Image segmentation combining region growing and edge

detection. 11th International Conference on Pattern Recognition, The Netherlands, 1992; III

[41] Moghaddamzadeh A, Bourbakis NG. A fuzzy approach for smoothing and edge

detection in color images. IS&T/SPIE’s Symposium on Electronic Imaging: Science &

Technology, San Jose, CA., February 5–10 1995

[42] Pienkowski AEK. Artificial color perception using fuzzy techniques in digital image

processing. TUV Rheinland, Germany, 1989

[43] Moghaddamzadeh A, Goldman D, Bourbakis N. A fuzzy-like approach for smoothing

and edge detection in color images. JPattern Recognition and AI 1998; 12(6)

[44] Goldman D, Bourbakis N. A real-time tool for user’s driven adaptive segmentation of

sequences of color images. AFRL-TR-1997, Proc IEEE Conf on TAI-99, Evanston, IL, 1999;

131–139

[45] Huntsberger T, Descalzi M. Color edge detection. Pattern Recognition Letters 1985;

3:205–209

[46] Lim Y, Lee S. On the color image segmentation algorithm based on the thresholding

and fuzzy c-means techniques. Pattern Recognition Journal 1990; 23(9):935–952

[47] Lambert P, Carron T. Symbolic fusion of luminance-hue-chroma features for region

segmentation. Pattern Recognition Journal 1999; 32:1857–1872

[48] Weeks AR, Hague GE. Color segmentation in the HSI color space using the k-means

algorithm. Proceedings of the SPIE – The International Society for Optical Engineering 1995;

3026:143–54

[49] Etienne-Cummings R, Pouliquen P., Lewis M. A., A vision Chip for Color

segmentation and Pattern Matching, EURASIP Journal on Applied Signal Processing 2003:7,

pp. 703-712

Microprocessor Hardware Laboratory

 86

[50] C. Alexopoulos, SCAN: An efficient data processing-accessing formal methodology,

PhD thesis, Dept. of Computer Engineering and Informatics, University of Patras, 1989.

[51] X. Yuan, D. Goldman, A. Moghaddamzadeh, N. Bourbakis, Segmentation of Colour

Images with Highlights and Shadows using Fuzzy-like Reasoning, Pattern Analysis &

Applications, pp. 272-282, 2001

[52] W. E. Higgins and C. Hsu, Edge detection using two-dimensional local structure

information, Pattern Recognition 27,2 (1994) 277-294

[53] S. Ghosal and R. Mehrota, Detection of composite edges, IEEE Trans. Imag.

Process. 3, 1 (1994) 14-25.

