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SUMMARY 
 
 
 Audiovisual data remains the preferable way of communication among all types of 

information and the most demanding one, concerning the communication channel and 

memory requirements. Despite the progress in network technologies, channel throughput 

increase, disk technology and memory speed and size increase, the compression of data is 

still essential because of the enormous amount of data that is stored or transferred, especially 

for video data. A separate problem for video transmission is that of encryption, which can 

ensure security of the transmitted information. Several algorithms have been proposed for 

image and video encryption. In general, the proposed algorithms are implemented mainly in 

software, resulting in a high quality of encryption but low throughput. The SCAN encryption 

algorithm belongs to the general category of iterated product cipher algorithms, which can be 

used to encrypt images and compressed video. SCAN probably is the first method used for 

combined image encryption and information hiding.  

 Important domain on image processing is the target recognition. Technological 

advances in artificial intelligence and especially in heuristic search using fractals, pattern 

recognition and image understanding have provided the opportunity to develop autonomous 

systems for Automatic Target Recognition (ATR) from still images. 

 The contribution of this work is to present a specific, tightly integrated architecture of 

an entire system for the SCAN compression, encryption and data hiding algorithm and the 

reverse process implemented using the Stretch technology. In addition to this, this thesis 

presents the implementation of the smoothing, edge detection and colour segmentation 

algorithms of ATR using Stretch S5000 processors and compares them with the 

implementation using software Matlab toolbox.  This work is the first in literature, which 

reports a complete, tightly integrated, low-cost embeddable system for information 

compression, encryption and hiding and for images’ Automatic Target Recognition algorithm. 

Finally, this thesis compares implementations with FPGAs for the SCAN 

compression/encryption/data hiding and software implementations with Matlab Toolbox for 

ATR algorithm towards software-reconfigurable designs. 
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Chapter 1  
 
Introduction 
 

Audiovisual data remains the preferable way of communication among 

all types of information and the most demanding one, concerning the 

communication channel and memory requirements. Despite the progress in 

network technologies, channel throughput increase, disk technology and 

memory speed and size increases, the compression of data is still essential 

because of the enormous amount of data that is stored or transferred, 

especially for video data. Although, there are enough available products for 

video compression that are based on hardware and software 

implementations, the design of efficient coding algorithms for video 

compression remains a pertinent research problem. This happens because of 

its computing requirements and need for higher quality of picture at lower data 

rates. The degree of compression depends on the redundant information of 

data. In each frame it is very likely that the values of neighbouring pixels are 

close and in this case we speak about spatial redundancy. Also, most of the 

information in one frame can also exist in the preceding frames and this is 

temporal redundancy. Techniques which exploit only the spatial redundancies 

are categorized as intraframe techniques of coding. Examples of intraframe 

coding include differential pulse code modulation [1], transform coding using 

discrete cosine transform [2], [3], subband coding [4], pyramid coding and 

vector quantization [5]. It is important to mention that for better compression 

both intraframe and interframe techniques can be used. The SCAN algorithm 

for video compression is based on the differences of adjacent frames [6].  

 A separate problem for video transmission is that of encryption, which 

can ensure security of the transmitted information. Several algorithms have 

been proposed for image and video encryption. In general, the proposed 

algorithms are implemented mainly in software, resulting in a high quality of 

encryption but low throughput. On the other hand, very few algorithms have 

been proposed in order to encrypt data in hardware, and these algorithms are 

in general stream oriented with respect to their input source. The SCAN 
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encryption algorithm [6], [7] belongs to the general category of iterated 

product cipher algorithms, which can be used to encrypt images and 

compressed video. SCAN probably is the first method used for combined 

image encryption and information hiding [8]. This algorithm is based on 

permutations of the image pixels and replacement of the pixel values. The 

encryption power of the SCAN method is based on the very large number of 

private keys. In particular, for an image of 512x512 pixels the number of 

available private keys is 10
76000

. This means that the most powerful parallel 

computer today requires 10
75000 

years to decrypt that image using a brute 

force decryption approach. The penalty of the SCAN methodology is the non-

real-time performance in software due to its complexity of compressing-

encrypting-hiding of an image. 

The combination of video encryption and compression consists of 

finding the differences of each frame from the first frame of the video, the 

compression of this and finally the encryption of the compressed frames of 

differences[9]. In addition to compression and encryption it may be desirable 

to embed within some type of information (e.g. video) additional information 

which is meant to be decoded only through the use of some access key. E.g. 

it may be desirable to hide a patient’s medical record inside the video of some 

medical test, but the record (as it is personal, sensitive information) should be 

accessible only by the appropriate doctors. The SCAN information hiding 

method [10] can be extended to hide information in videos by applying the 

image information hiding method to each video frame. Since hiding data into 

similar adjacent frames might make detection possible, this approach is 

suitable only in applications where security is not an issue. If security is 

important then secret data can be embedded into a few frames in each scene 

of the video. For a complete system the decompression/decryption/data 

unhiding system is essential.  

The compression algorithms are divided into two categories: lossy and 

lossless algorithms. A lossy algorithm achieves greater compression ratio, but 

during the process of decompression there is a loss of information and as a 

result a reduction of the quality of the video frames. Generally, the 

decompression/decryption and data unhiding procedure is the opposite 
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process of the compression/encryption/data hiding algorithm. In order to have 

as good video quality in the reverse process, as in the initial video sequence 

the system needs some additional information such as the scanning keys that 

were used for the compression algorithm or the size of compressed frame for 

each video frame. 

Another important domain on image processing is the target 

recognition. Technological advances in artificial intelligence and especially in 

heuristic search using fractals, pattern recognition and image understanding 

have provided the opportunity to develop autonomous systems for Automatic 

Target Recognition (ATR) from still images [11-16]. ATR in pattern recognition 

and image understanding based method depends on resolution for a 

successful classification. Fuzzy and semi-fuzzy clustering algorithms have 

been presented for extracting and recognizing the target’s features. 

In particular, the ATR algorithm consists of a combination of 

algorithms, such as heuristic segmentation, edge detection, thinning, region 

growing, fractals, etc., appropriately selected for recognizing targets under 

various conditions, such as moving target - still camera, still camera - moving 

target, moving target - moving camera.  

The contribution of this work is in presenting a specific, tightly 

integrated architecture of an entire system for the SCAN compression, 

encryption and data hiding algorithm and the reverse process implemented 

using the Stretch technology. In addition to this, this thesis presents the 

implementations of the smoothing, edge detection and colour segmentation 

algorithms using S5000 processors and compares them with the 

implementations using software Matlab toolbox. This work is the first that we 

know of in literature which reports a complete, tightly integrated, low-cost 

embeddable system for information compression, encryption and hiding and 

for images’ Automatic Target Recognition algorithm. Second, this work 

attempts to compare the previous implementations with FPGAs for the SCAN 

compression and encryption with the implementations with the new Stretch 

technology and software implementations with Matlab Toolbox towards 

software-reconfigurable designs. Third, the innovation of this work is the way 

of fitting complex algorithms in Stretch technology with the usage of low level 

design tools.  Lastly, during this work one of the most difficult challenges was 
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the sizing problem that appeared during the hardware/software co design. 

This appeared because of the small size of the reconfigurable part of the 

S5000 processor and the restricted communication channels between the 

software design and the hardware platform. Preliminary results from this work 

were published in [18]. 

The rest of this thesis is organized as follows: Chapter 2 briefly 

describes previous implementations on compression/encryption and colour 

segmentation and ATR algorithm. Chapter 3 describes the algorithm of SCAN 

compression/encryption/data hiding and the reverse procedure. Chapter 4 

outlines the smoothing, edge detection and colour segmentation algorithms of 

ATR. Chapters 5 and 6 have the new architectures, its major subsystems, 

their interconnection, and its mapping on the Stretch technology. Chapter 7 

has performance results and a detailed comparison to the previous 

implementations. Finally, Chapter 8 has some conclusions from this work.  
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Chapter 2  
 
Relevant Research 
 

 This section presents previous implementations of 

compression/encryption/data hiding algorithms and implementations of image 

processing algorithms. There are several algorithms that have been proposed 

for these two applications with various characteristics and they are described 

below. Finally, the Stretch technology is a new idea of processors with an 

embedded reconfigurable part and it is described in this part of the thesis. The 

architecture and the characteristics of these new processors are described in 

the next sections. 

 

2.1 Previous implementations on compression, encryption 
and data hiding algorithms 

  

  There are many algorithms about the data compression and 

encryption in the literature. Each of the algorithms mentioned below follow a 

different approach on the compression and encryption issue. Some of these 

algorithms have been implemented in hardware, like SCAN encryption [19, 

20]. 

 

2.1.1 SCAN methodology 
 
The SCAN methodology for information hiding-compression-encryption 

has been studied in [6, 7, 8, 9] and specific reconfigurable architectures have 

been developed for the encryption [19, 20, 22] and for the compression [23] 

aspects of it. Prior to this work there was no implementation of the hiding 

aspects of SCAN, and there has been no fully integrated system in 

reconfigurable logic.  

 The FPGA implementation of the SCAN method provides real-time 

capabilities not only for image encryption but for video encryption as well. The 

FPGA implementation of the SCAN encryption is a validated design. The main 
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reason of using an FPGA implementation is the flexible way of creating a real-

time programmable solution. In the specific architecture the image was split 

into blocks of 64x64 pixels each, because this gives sufficiently good 

encryption and simultaneously offers parallelism using RAM-based methods 

that are supported in hardware. The architecture for the video encryption, 

shown in [19, 22], consists of two independent RAMs of 4 Kbytes each, an 

Address Generator, an Address Counter, the Substitution Unit and the Control 

Unit. 

 In addition to the above implementation, an FPGA implementation of 

the SCAN Compression Scheme was fully developed and validated. The 

architecture, which is described in [23], consists of the SDRAM subsystem 

(which consists of the SDRAM memory and the corresponding Address 

Generator), a unit that splits each frame to 16x16 windows, four units for 

frame comparison, four Address Generators, four SRAMs  of 32K x 16 bits 

each, four Dual Port RAMs of 4K x 9 bits each, four RAMS of 2500 x 32 bits 

each and nine FIFOs  of 16 x 8 bits each. 

 

2.1.2 The DES Algorithm 
  

 One of the wide known block cipher using private key is the DES 

algorithm. It was proposed by IBM during the early 1970s and it was adopted 

as a federal standard on November 23, 1976. There are many DES variants, 

but the most possible successor is the triple DES which is much harder to 

break using exhaustive search: 2112 attempts instead of 256 attempts. The 

fastest implementation of the DES algorithm in hardware is reported in [29] 

providing a throughput of 400Mbytes/sec. In [24] there is an application of the 

DES algorithm in order to encrypt images, unfortunately without providing any 

quality results. The block diagram of the DES algorithm is shown in Figure 
2.1.  

2.1.3 Rijndael Advanced Encryption Standard 
 

 Rijndael is a private-key symmetric block encryption algorithm that 

supports 128, 92, and 256-bit length keys and operates on 128, 192 and 256-
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bit blocks. All nine combinations of key length and block size are possible. 

Recently, Rijndael was selected as the Advanced Encryption Standard (AES) 

to replace DES. Karri has presented an FPGA implementation of this 

algorithm. The Rijndael encryption  algorithm is shown in Figure 2.2. 

 

 
Figure 2.1: The block diagram of the DES algorithm 

 

The round transformation data path shown, also, in Figure 2.2 implements 

the byte substitution, shift row, mix column and key xor operations. The data 

path consists of two 16x8 SRAMs (SRAM 0 and SRAM 1), one 256x8 ROM 

(SBOX), two 32-bit registers (REG_A and REG_B) and three multiplexers. 

The total design targets the Wildforce reconfigurable computing board and its 

performance is 124 Mbits/s using 13.6 MHz clock frequency. 
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2.1.4 Partial Encryption of Compressed Images and 
Videos 

 

 Another approach to encrypt images is to combine the compression 

and the encryption in order to eliminate the demanding distinct processing. 

Cheng [32, 33] propose a novel approach called partial encryption in order to 

reduce encryption and decryption time in image and video communication and 

processing. In this approach, only part of the compressed data is encrypted, 

as shown in Figure 2.3. The proposed algorithm can be applied in schemes 

of quad tree and wavelet image compression, as well as an extension for 

video compression. Partial encryption allows  

 

 
Figure 2.2: The block diagram and the architecture of the Advanced Encryption 

Standard algorithm 
 

the encryption and decryption time to be significantly reduced without 

affecting the compression performance of the underlying compression 

algorithm. It is also shown that although a large portion of the compressed 

data is left unencrypted, it is difficult to recover the original data without 

decrypting the encrypted part. In the case of quad tree image compression 

the encrypted portion is 13%- 27% of the compressed output for typical 

images. For wavelet compression based on zero trees, less than 2% of the 
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compressed output is encrypted for 512x512 images. The results on video 

compression are similar. 

 

 
Figure 2.3: The block diagram of partial encryption 

 
2.2 Previous implementations on image segmentation 

algorithms 
 

 The segmentation techniques are categorised into three classes [34]:  

i) characteristic feature thresholding or clustering, 

ii) edge detection 

iii) region extracting and merging. 

 In grey level images, only a few characteristic features are presented. 

The grey level value specified for each pixel in the image is the most 

significant. In colour images this is called clustering [35–37]. Thresholding the 

characteristic features or clusters is a widely used approach for segmentation 

[38]. Lee and Chung [38] showed that thresholding would usually produce 

good results in only bimodal images, where the images consisted of only one 

object and the background. Here, the threshold can be picked at a valley 

location within the image’s greyscale histogram. However, when the object 

area is small compared to the background area, or when both the object and 

background assume some broad range of grey levels, selecting a good 

threshold is difficult. Another weakness of this technique occurs when multiple 

objects are present within the image. In such cases, finding sharp valleys 
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within the histogram is further complicated, and segmentation results may be 

very poor. 

 Edge detection is another approach to image segmentation [39]. An 

edge is defined as a location where a sharp change in grey level or colour is 

detected. However, in this method it is difficult to maintain the continuity of 

detected edges; a segment must always be enclosed by a continuous edge. 

 Region growing or merging is a third approach for image segmentation 

[35]. In this case, easily found, large continuous regions or segments are 

detected first. Afterwards, small regions may be merged by using 

homogeneity criteria [41, 42]. One disadvantage of region growing and 

merging is the inherently sequential nature of this approach. Often, the 

regions produced depend upon the order in which those regions grow or 

merge. 

 Klinker [37, 38] developed a creative dichromatic reflection model, 

which described the colour of reflected light as a linear combination of the 

colour of surface reflection (highlights) and body reflection (object colour). 

Applying this model to region growing and merging method produced 

impressive results. In this method, highlight areas were merged with the matte 

areas of an object. Conversely, using it where contrast between neighbouring 

objects is weak, it merged objects. However, using hard thresholds 

throughout degraded the performance of this technique within its intermediate 

stages. 

 Some of these image segmentation processes were fused with edge 

location method to produce better results [41,42,45,46]. Segmentation based 

on the theory of approximate reasoning or fuzzy-like reasoning produced 

promising results. More specifically, Huntsberger [41,42,47–51] defined colour 

edges as the zero crossing of differences between the membership values of 

each pixel. The fuzzy membershipvalues are generated by using an iterative 

c-mean segmentation algorithm, but it is time consuming due to its iterative 

nature. Lim [64z] presents an n automated coarse-to-fine segmentation 

method. This approach is based on histogram thresholds for each colour and 

the c-means algorithm. An interesting approach, proposed by Lambert and 

Carron [65], combined the colour space (where hue was explicitly defined and 

processed according to its relevancy to chroma) and symbolic representations 
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and rule-based systems (using colour and luminance features to determine 

homogeneity among pixels). 

 Weeks and Hauge [66] proposed a new method for colour image 

segmentation. Instead of segmenting the colour image in RGB colour space, 

which did not closely model the psychological understanding of colour, they 

chose HSI (hue, saturation and intensity) space. 

 There are architectures of implemented segmentation algorithms in 

hardware. Perez and Koch proposed the use of a simplified hue description 

suitable for implementation in analogue VLSI.  They designed and fabricated 

for the first time an analog CMOS VLSI circuit with on-board phototransistor 

input that computes normalized color and hue. 

 Another architectural approach on colour segmentation and pattern 

matching is a two level CMOS architecture on neuromorphic colour 

processing. They designed a 128(H) Χ 64(V) Χ RGB CMOS imager, which is 

integrated with analog and digital signal processing circuitry to realize focal 

plane region-of-interest selection, RGB-to-HSI transformation, HSI-based 

segmentation, 36-bin HSI histogramming, and sum-of-absolute-difference 

(SAD) template matching for object recognition. The organisation of chip is 

presented in Figure 2.4. 
 This prototype demonstrated that a real-time color segmentation and 

recognition system can be implemented in VLSI using a small silicon area and 

small power budget. They also demonstrated that the HSI representation 

used in this chip is robust under multiplicative and additive shift in the original 

RGB components. 

 

 Concluding, it is noteworthy that there are no implementations of using 

processors or reconfigurable technology. The hardware architectures that are 

presented in literature are a small number and use VLSI as they give very 

good throughput and real-time results. 
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Figure 2.4 : Computational and physical architecture of the chip 

 

2.3 Stretch Technology 
 

The Stretch technology is a new technology to design software 

configurable processors. The Stretch Company has constructed the series of 

S5000 software configurable processors, which is based on the Tensilica core 

RISC processor with a small embedded reconfigurable part, as shown in 

Figure 2.5. The design flow comprises of system development in C/C++, 
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profiling of the code, and mapping its critical sections to the reconfigurable 

fabric as special, hardware-implemented instructions.  

S5000 processors incorporate the Tensilica Xtensa RISC processor 

core and the Stretch Instruction Set Extension Fabric (ISEF). ISEF is an 

embedded programmable logic unit where the compute intensive parts of the 

implementation can 

 

 
Figure 2.5 : Architecture of S5000 processors 

 
be mapped. The S5 Engine family provides two independent Instruction Set 

Extension Fabric (ISEF) units, ISEF A and ISEF B, which can be configured 

and used independently. The C/C++ language is used to program the S5000 

processors. Stretch C is a C-like language which includes some extensions 

for hardware implementation. Stretch C is the programming language which is 

used for mapping the critical parts of the design in reconfigurable parts of the 

processor. 

 The reconfigurable part of processor contains a built-in sum total of 

computation resources. There are two disjoint sets of computation resources: 
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one for arithmetic and logic computations, and one for multiply and shift 

computations. The basic unit for the arithmetic and logic computation 

resource is one Arithmetic Unit. (AU). The basic unit for the multiply and 

variable shift computation resource is one Multiply Unit (MU). The number of 

AU and MU for each reconfigurable part is 4096 and 8192 respectively. The 

sum of the computation resources used by all the instructions associated with 

each ISEF configuration must not exceed the total available computation 

resources in an ISEF unit. 

 Concluding, the S5000 family of processors is based on Stretch's 

revolutionary S5 engine, and provides the following key benefits:  

• Boosts system performance in compute-intensive applications  

• Enables fast time-to-market performance  

• Reduces development and system costs  

• Provides high-performance I/O's at industry-leading speeds  
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Chapter 3  
 
SCAN-Based Compression\Encryption\Data Hiding 
algorithms 
 
 The SCAN algorithm [6, 7, 8] is a class of formal languages, which can 

be applied to compression, encryption, data hiding, or combinations thereof. 

This section describes the SCAN language in detail and provides a 

presentation of the compression, encryption and data hiding algorithm. The 

data flow of compression/encryption /data hiding algorithm is shown in Figure 
3.1 
 

 
Figure 3.1: Block diagram for the compression/encryption/data hiding 

system 
 

3.1 SCAN methodology 
 
 A scanning of a two dimensional array Pm×n = {p(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ 

n} is a bijective function from Pm×n to the set {1, 2, . . mn-1, mn}. In other 

words, a scanning of a two dimensional array is an order in which each 

element of the array is accessed exactly once, or a permutation of the array 

elements. The terms scanning, scanning path, Scan pattern, and Scan word 

are used interchangeably in this paper. 

 The SCAN represents a family of formal languages based on two-

dimensional spatial accessing methodologies, which can represent and 

generate a large number of scanning paths easily. The SCAN family of formal 

languages includes several versions such as Simple SCAN, Extended SCAN, 



Microprocessor Hardware Laboratory  

 21

and Generalized SCAN, each of which can represent and generate a specific 

set of scanning paths. Each SCAN language is defined by a grammar and 

each language has a set of basic scan patterns, a set of transformations, and 

a set of rules to compose simple scan patterns, which in turn are used to 

obtain complex scan patterns. The rules for building complex scan patterns 

from simple scan patterns are specified by the production rules of the 

grammar of each specific language. 

 

3.2 SCAN Compression Algorithm 
 

The SCAN compression algorithm consists of two main steps. These 

steps are (1) compression of frames and (2) encoding of the information. The 

first step of the SCAN compression algorithm is the calculation of compare 

frames and difference frames. The compare frame is a two dimensional matrix 

with the same size as the frames of the video. The first compare frame is 

computed with the comparison of the pixels between the two first frames of 

video. The corresponding pixels of the two first frames are compared and if 

their values differ more than the threshold that the user has defined, then in 

the position of the comparison matrix the value of the first frame is placed, 

otherwise the value of the second frame is used. This process continues 

using each time the compare frame as the first frame of the comparison with 

the other frames. At the same time the pixels of the difference frame are 

calculated. The difference frame is, also, a two dimensional matrix, of the 

same size as compare frame, whose values are either -1 or the value of the 

corresponding pixel of the second frame depending on the difference of the 

pixels between the comparing frames. The pseudocode for the SCAN 

compression algorithm is shown in Figure 3.2. 

 Subsequently to the computation of compare frame and difference 

frame, the difference frame is broken to 4x4 windows (16 pixels) and it was 

specified which of these windows should be put in the compressed difference 

frame (the windows which contain only the value –1 in each pixel are omitted 

from the procedure of encoding in the compressed difference frame). Finally, 
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the result of the compression process is an array with only the encoded 

information of the compressed frames. 

The decompression method which takes place in the receiver is exactly 

the opposite process vs. that of the transmitter. Apart from the data of 

compressed frames the receiver must have the values of the pixels of the first 

frame, the dimension of the  

 

 
Figure 3.2: Pseudocode for the SCAN Compression 

Algorithm 
 
frames and the value of the threshold, which is sent separately and all this 
information is necessary for the decompression system.  
 
3.3 SCAN Encryption Algorithm 
 

The basic idea of the SCAN encryption method is to rearrange the pixels of 

the image and change the pixel values. The rearrangement is done by a set of 

scanning patterns (encryption keys) generated by an encryption-specific 

SCAN language, which is formally defined by the grammar G = ( Γ, Σ, A, Π). 

Grammar G comprises of non-terminal symbols Γ = {A, S, P, U, V, T}, of 
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terminal symbols Σ = {c, d, o, s, r, a, e, m, y, w, b, z, x,B, Z, X, (, ), space, 0, 1, 

2, 3, 4, 5, 6, 7}, its start symbol is A, and its production rules Π are given in 

Figure 3.3. 

 

 
Figure 3.3: Grammar of SCAN language 

 
where the scan patterns (from which the method gets its name) for r, c, d, o, 

a, s, m, e, y, w, z, b, x are shown in Figure 3.4. 

 

 
Figure 3.4: Scan patterns for the SCAN language 

 
 The semantics of this encryption-specific SCAN language are 

described as follows: 

(a) A → S | P means process the region by scan S or partition P. 

(b) S →UT means scan the region with scan pattern U and transformation T. 
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(c) P → VT(A A A A) means partition the region with partition V and 

transformation T, and process each of the four subregions in partition order 

using As from left to right. 

(d) U → c | d | o | s | r | a | e | m | y | w | b | z | x means scan with continuous 

raster, or diagonal, or continuous orthogonal, or spiral out, or raster, or right 

orthogonal, or diagonal parallel, or horizontal symmetry, or diagonal 

symmetry, or diagonal secondary, or block, or zeta, or xi respectively. These 

scan patterns are shown in Figure 3.4. 

(e) V → B | Z | X means partition with letter B or letter Z or letter X 

respectively. 

(f) T → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 means use one of the eight transformation 

with a scan or partition. For a partition, these transformations are shown in 

Fig.3-2. For all scan patterns, 0 means the identity transformation as shown in 

Fig.1, and 2 means 90° clockwise rotation. For scan patterns c, o, s, a, e, m, 

y, w, b, and x, 4 means 180° clockwise rotation and 6 means 270° clockwise 

rotation. For scan patterns r and z, 4 means vertical reflection and 6 means 

vertical reflection followed by 90° clockwise rotation. For scan pattern d, 4 

means 90° clockwise rotation followed by horizontal refection and 6 means 

180° clockwise rotation followed by vertical refection. For all scan patterns, 1, 

3, 5, and 7 are reverses of scanning paths specified by 0, 2, 4, and 6 

respectively. 

 As an example, consider the scan key B5(s2 Z0(c5 b0 o0 s5) c4 d1) for 

a 16×16 image. The scanning path which corresponds to this scan key is 

shown in Figure 3.5. The image is first partitioned into 4 sub regions using the 

B5 partition order. These 4 sub regions are scanned using s2, Z0(c5 b0 o0 

s5), c4, and d1. The second sub region is further partitioned into 4 sub 

regions using the Z0 partition order and the resulting 4 sub regions are 

scanned using c5, b0, o0, and s5 respectively. 

The pixel values of the compressed frame are changed by a simple 

substitution mechanism, which adds the confusion and diffusion properties to 

the encryption method. The permutation and substitution operations are 

applied in an intertwined and iterative manner. Therefore, significant portions 

of this function are done with address generators to implement the scan 

patterns. 
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Figure 3.5: Example of SCAN pattern  

B5(s2 Z0(c5 b0 o0 s5) c4 d1) 
 

The encryption is done by the Encrypt( ) function which is described in 

Figure 3.6. The encryption key actually consists of four components, namely, 

the two scan keys k1 and k2, the random seed integer p, and the number of 

encryption iterations m. These four encryption key components are known to 

both the sender and the receiver before the communication of the encrypted 

image. The random numbers can be obtained by a random number generator 

with seed p. The keys k1 and k2 are specified by the user. The other two 

keys, spiral s0 and diagonal d0, are fixed as part of the encryption algorithm 

and they were chosen because they have opposite directions, as shown in 

Figure 3.4. 

There are two fundamental properties that every secure encryption 

method must satisfy. The first is the confusion property, which requires that 

cipher texts (encrypted data) have random appearance (uniformly distributed 

pixel values). The second is the diffusion property that takes under 

consideration the plaintexts (original data) and keys, which requires that 

similar plain texts produce completely different cipher texts when encrypted 

with the same key, and similar keys produce completely different cipher texts 

when encrypting the same plaintext. The proposed encryption method 

satisfies both the confusion and diffusion properties, as shown above with 

pseudocode.  
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Figure 3.5: The pseudocode for the encryption algorithm 

 
The decryption method is done by reversing the operations of 

encryption. Note that the decryption requires the encryption key which 

consists of k1, k2, p and m. Decryption is done as follows: Read pixels of G 

using key k2 and write into F. Then, transform F into E by E[1]=F[1], E[j]=(F[j]-

((F[j-1]+1)R[j])mod256)mod256 for 2≤j≤ N×N. Then, read pixels of E and write 

into D using diagonal scan d0. Then, read pixels of D using the spiral scan s0 

and write into C. Then, transform C into B by B[1]=C[1], B[j]=(C[j]-((C[j-

1]+1)R[j])mod256)mod256 for 2≤j≤N×N. Then, read pixels of B and write into 

A using key k1. Repeat this process m times to get the decrypted image. Note 

that the random array R is obtained with random seed p. 

 

3.4 SCAN Encryption Algorithm 
 

 The data hiding algorithm consists of two main steps. The first step of 

the embedding data algorithm is the calculation of the complexity matrix. The 

complexity matrix is a two dimensional matrix whose size is equal to the 

frame. Its values are 0 except for specific positions where values 0, 1, 2, 3, 

and 4 are placed depending on values for the corresponding pixels using 
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thresholds. The second step of the algorithm is the bit embedding process. 

The second step uses the complexity matrix, which was calculated in the 

previous step and depending on the values of its pixels changes the bits of 

the main frame, embedding bits from the secret data. The pseudocode for the 

embedding data algorithm is shown in Figure 3.6. 

 The algorithm in general works on hierarchical decomposition of the 

image or video into NXN subframes, which in our implementations are of size 

64x64 down to 2x2. To recover the video at the receiver, the receiver must 

know exactly the values of parameters N, w, h, m, n and k, which are sent to 

the receiver separately. These parameters effectively determine the SCAN 

patterns (permutations) that will be applied to the image, and the further 

decomposition of the image into smaller ones which recursively may be 

rearranged by SCAN patterns as well.  

 

 
Figure 3.6: The pseudocode of the embedding data algorithm 
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 The procedure that is followed in the receiver is exactly the reverse 

processes of those that take place in the transmitter. Also, it is important to 

mention that the transmitter in order to extract the hidden information from the 

video sequence needs the values of the complexity matrix, which is 

compressed and sent separately. 
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Chapter 4  
 
Smoothing, Edge Detection and Colour Segmentation 
Algorithms in Colour Images 
 

 This chapter refers to the algorithms of smoothing, edge detection and 

colour segmentation, which were implemented in the new Stretch technology, 

and can be applied to colour images. These algorithms can be used in colour 

images to extract the objects that the image consists of, as shown in Figure 
4.1. Each one of them implements a specific procedure and the final result is 

an image divided into its objects which are coloured with the same colour. 

This information can be used by the algorithm of Automatic Target 

Recognition which taking the information of the colour for each part of the 

image can extract the size and the species of each object.  

 

 
Figure 4.1: Smoothing/Edge Detection and  

Color Segmentation process 
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 Segmentation and edge detection in colour images have been 

extensively investigated in literature [31-34]. There is a variety of methods 

with different ways of analyzing colour images and resulting to a unique edge 

image. Some of these methods [40] use the histogram approach to result to 

the edge image. Some other methods which do not use histograms are very 

computationally intensive. Another way for detecting edges at material 

boundaries is the usage of the hue [35]. The disadvantage of the hue 

parameter is that the edges between two objects of the same type and colour 

(same hue value) are lost. Another meter for the edge detection is the colour 

contrast measure in the RGB colour space. The problem of the edge 

detection using the colour distance is that the shadows in a colour image 

create false edges. In this algorithm both the colour contrast in RGB and hue 

value are used for edge detection. The distance in the colour domain is 

calculated using the Euclidean distance. Finally it is noteworthy the fact that in 

this algorithm of edge detection a fuzzy-like thresholds are used instead of 

hard ones. 

 Segmentation is one of the pre-processing steps of image analysis and 

also one of the oldest problems in image processing. It organises areas of an 

image into segments that are homogeneous in respect of one or more 

characteristics. A segment must be composed of a continuous collection of 

touching pixels where the pieces are not separated from each other. When a 

segmentation algorithm terminates, every pixel in the image must be assigned 

to a particular segment. Within the field of image processing, the terms 

clustering and segmentation may be seen quite frequently. When analysing 

the colour information of an image and trying to separate regions or ranges of 

colour components having the same characteristics, the process is called 

clustering. There are different techniques for image segmentation. One of 

them is edge detection with disadvantage of the discontinuity of edges in the 

image [40]. Some others methods use the dichromatic reflection model which 

describes the colour of reflected as linear combination of the colour of surface 

[43, 44]. Another segmentation method is the segmentation of the image no in 

RGB domain but in HSI (Hue, Saturation and Intensity) space. Each one of 

the above segmentation methods have some disadvantages which are 

described in Chapter 2 of this thesis.  
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 In the next sections of this chapter the algorithms of smoothing, edge 

detection and colour segmentation in colour images will be described. 

 

4.1 Smoothing Algorithm 
  

 The images contain noise which is introduced either by the camera or 

because of the transmission of the image over a noisy medium. In either case, 

these noises must be removed before any further image processing is 

applied. The most common way of noise removal is the use of filters. For 

example, a filter that uses a block size of 3x3 window averages the colour of 

pixels within the block and the centre pixel is then replaced by the average 

colour of the block.   

 Before the actual smoothing algorithm is presented, the notion of a 

degree of neighbourhood between two pixels is defined. This concept is about 

the definition of how close must be two pixels in order to be considered as 

neighbours. In this algorithm there is the idea of fuzzy degree of 

neighbourhood, where for each neighbouring pixel there is the corresponding 

degree of neighbourhood. The degree of neighbourhood is specified in the 

table of Figure 4.2 and it is obvious that the closer two pixels, the higher the 

degree of the neighbourhood is.  
 

 
Figure 4.2: Table of degree of neighbourhood 

 

 In 
sqn

µ  the subscript n indicates the neighbourhood membership 

function and the s, q is the relative position of a pixel with respect to the 

centre pixel. The specific values used in this neighbourhood matrix are static 

priorities based on the pixels’ closeness to the centre window. The averaging 

approach, as described above, would destroy all weak edges and would 
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create “fake” edges due to edge dilation. In the smoothing algorithm described 

in this section, each pixel’s colour is compared with the colour of each of its 

neighbouring blocks, as shown in Figure 4.3. The size of blocks for our 

implementation was 3x3 which results to a strong smoothing of the image.  

 

 
Figure 4.3: Eight neighbouring blocks of size 3x3 and four edge directions. 
Blocks are numbered 1-8 such that they may be referred to in equation of 

Figure 4.4 (variable b) 
 
 The average colour for each of the neighbouring blocks was calculated 

taking into account the neighbourhood membership function as shown in 

equation of Figure 4.4, where k, p points to the low left and k’, p’ to the top 

right corner pixel in block b and Csq represents the colour vector of the pixel at 

location sq. This equation evaluates the average colour vector of block b with 

respect to the i, j centre pixel. For smoothing, the colour contrast between the 

centre pixel and all of the surrounding blocks must be measured. The colour 

contrast between the pixel (i, j)  and the block of b is the Euclidean distance in 

RGB domain as shown in Eq. (1).  
2 2 2

, 2 1 2 1 2 1( ) ( ) ( )      (1)ij bContrast R R G G B B= − + − + −  

  

 
Figure 4.4: Equation of average colour for the neighbouring blocks 

 
 After the contrast calculation between each of the neighbouring blocks 

and the central pixel the maximum and the minimum contrasts are found. 

Considering these values, three cases are encountered: 

Case 1: Both minimum and maximum contrasts are below a threshold τsm. 

This case represents a situation in which there is little contrast around the 
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centre pixel. Thus, the pixel most likely is not part of an edge and is probably 

located in a contiguous region. By replacing this pixel’s value with the average 

of surrounding pixels’ color values, any existing color contrast is smoothed.  

Case 2: Only the minimum contrast is below the threshold τsm. This situation 

occurs when the pixel’s color that is being processed is similar to one side of 

the edge and different from the other side. Taking the average color between 

the pixel’s color and the color of the block of pixels with the lowest contrast 

results to enhance the edge contrast. 

Case 3: The third case occurs when both the minimum and the maximum 

contrasts are above τsm. This case is when the pixel is isolated and it is 

considered as noise and therefore it must be removed. If the noisy pixel is 

located in a contiguous region, there was no problem to be removed and 

replace it with the average color of the neighboring pixels. On the other hand, 

if this pixel is on an edge the averaging would increase the fuzziness of the 

edge. In this case a contrast measure is evaluated for the four neighboring 

blocks (north, south, east and west). The average color contrast between 

each side and the other three sides is calculated and added to the color 

contrast with the centre pixel. The side of the pixel that has the lowest 

measure is chosen and the pixel’s color is replaced. 

 Figure 4.5 shows the flow diagram of the smoothing algorithm applied 

on a pixel at location i, j with a block size 3x3. Overall, results produced by the 

algorithm are relatively insensitive to the specific threshold choice. 

Conversely, the algorithm is time consuming as there is a fair amount of 

computation for each pixel. After the algorithm is applied , noisy pixels are 

effectively eliminated, spikes are smoothed and 

edges are enhanced. 
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Figure 4.5: The flow chart of smoothing algorithm for pixel i, j and a 

block size of 3x3 
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4.2 Edge Detection Algorithm 
 

 Hue, Intensity and Saturation are one set of parameters that are used 

to evaluate edge strength within images. These parameters are computed 

using the RGB values by the equations shown in Figure 4.6, where i is the 

intensity , s is the saturation and h is hue in the range of  (-180, 180] degrees 

and X0, Y0 and Z0 are the x, y, z values of the white color.  

  

 
Figure 4.6: Equations for the calculation 

 of hue, intensity and saturation 
 

 In the first steps of the algorithm, the values of the h, s and i are 

computed for all eight blocks around a pixel. An object has the same hue 

through out, regardless of variances in shades, highlights and shadows. On 

the other hand, hue is unstable at low saturations and intensities therefore the 

needs to be normalized. Hue edges are present at locations at which hue 

contrast is high while saturation and intensity are both not low. The idea not 

low is a fuzzy one and is defined by the Figure 4.7 for saturation. 
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Figure 4.7: Not low membership function 

 In our implementation the threshold ts was chosen 20% (of the max 

value that saturation can take) for the saturation and 40% (of the max value 

that saturation can take) for the intensity, as shown in Eq. (2), (3). Hue 

contrast is multiplied by these not low membership functions to take the 

normalized hue contrast.  
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 The problem with the hue is in case where two objects of the same 

type are touching each other. To correct this problem the square of the 

Euclidean distance in the RGB color space is used. This distance is 

calculated for each edge direction (there are four edge directions as shown in 

Figure 4.3) and averaged with the normalized hue contrast of the same 

direction. These values are the edge candidacies for the pixel in each one of 

the four directions. 

 After edge candidacies are calculated the maximum is found. If the 

max candidacy value is bigger than a smoothing threshold (ts = 11) then the 

pixel is considered as an edge. If this value is lower than a low threshold (tl = 

7) then this pixel is not considered as an edge. Finally, if this value is between 

the low and high threshold then the whole process is repeated with the 

neighboring blocks one pixel away from the processing pixel, as shown in 

Figure 4.8. This procedure is repeated once and it is calculated for the four 

edge directions resulting to four edge strength images. The previous results 

show maximum edge candidacies in the four directions. 
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Figure 4.8: Blocks used to reevaluate color contrast for edges 

 

 The presence of a local maximum depends on the ratio of the current 

pixel edge strength with respect to the maximum of that of the two 

neighbouring pixels in the edge direction. If this ratio is greater or equal to 0.6 

the pixel is considered as an edge for the specified edge direction. The four 

edge strength images are merged keeping for each pixel the highest edge 

candidacy and its edge direction. In the next step, the local maximum edge 

candidates are found, as in the previous step, and putting the white colour for 

the edge pixels and black for the others results the final edge image. The flow 

diagram of the edge detection algorithm is shown in Figure 4.9.  

  

4.3 Colour Segmentation Algorithm 
 

 The segmentation algorithm uses edge information and the smoothed 

image to find segments. The processes involved in this segmentation 

procedure are as follows: 

1. Find big and crisp segments. 

2. Expand segments based on homogeneity criteria. 

3. Expand segments based on dichromatic reflection model. 

4. Expand segments based on degree of farness measure. 

5. Apply an iterative filter. 

6. Find medium size segments. 

7. Expand segments using homogeneity criteria and degree of farness. 

8. Fill in blank regions. 

9. Apply an iterative filter. 
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Figure 4.9: The flow chart of edge detection algorithm 

 

 It processes big regions first, and then expands them based on three 

criteria: homogeneity, the dichromatic reflection model and degree of farness 

measure. After that, it applies an iterative filter and processes the medium 

size regions. Then it uses homogeneity and the degree of farness criteria to 
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expand further. For medium size regions the same procedure is used, with the 

exception that the dichromatic reflection model is not applied.  

 

4.3.1 Find Big and Crisp Segments 
 
 The first step of the colour segmentation algorithm is the process of 

finding big and crisp segments. Once edge detection has been performed on 

an image crisp 

segments are surrounded by edge pixels or the image boundary. Specifically, 

a crisp segment can be defined as a set of pixels completely surrounded by 

edge pixels belonging to only one object. To find a crisp segment, the image 

is first scanned for the first non-edge pixel. This pixel is used as a growing 

seed. In the growing process, a pixel can grow recursively in four directions 

(left, right, up and down), and merged with the seed if the growing condition is 

met. The steps are shown below:  

 

1. Scan line-by-line (left-to-right, top-to-bottom), find the first non-edge pixel, 

and use the first point as seed point.  

2. Grow from Pn along four directions: left, right, up and down. 

(a) Find Pn’s next neighbour point Pi. 

(b) Test if Pi satisfies merge condition. 

• Pi is not an edge pixel. 

• Pi doesn’t belong to any regions. 

• the distance (RGB) between Pi and the region Ri is less than threshold 

Td = 30. The average value of all region pixels is used to be the region 

colour. 

(c) If Pi satisfies the above conditions, merge it into the region Ri; otherwise, 

test next neighbour points. 

3. If none of Pn’s neighbour points satisfy the merge condition, go back one 

step to the previous point. 

4. If it returns to the seed point, stop current procedure, mark the current 

region Ri. Go to step 1, start the procedure for a new region. 

5. If it reaches the bottom-right corner, the whole procedure ends.  
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 During the seed growing process, the growing region may leak into its 

neighbouring region if there is even a single undetected edge pixel between 

the two regions. To avoid this, a seed size of three pixels is chosen. In this 

way, the growing condition must be true for a block of 3x3 pixels to grow in 

the growing direction. Thus, a growing region does not leak into a 

neighbouring region unless at least a 3-pixel wide connecting non-edge area 

exists. Each merging pixel is marked and assigned to the growing segment.  

 During the growing process the average colour of each segment is 

computed, therefore at the end of this part of algorithm each segment is 

painted with the colour that was computed. The areas of the image, which are 

not painted with any colour, have not yet been assigned to any particular 

segment.  

 

4.3.2 Expand Segments based on the Homogeneity 
Criteria 

  

 The next step of the segmentation algorithm is the expansion of the 

segments based on specific criteria of homogeny. In this step, the initial image 

is scanned and using the information that resulted from the edge detection 

step expands the existing segments adding pixels. The expansion procedure 

is performed within three sub-phases. During these sub-phases, each 

segment is expanded (surrounding pixels merged with the segment) only if 

the resultant  segment is homogeneous. The degree of homogeneity defined 

as a fuzzy term. The degree is high if: 

1. The absolute similarity, Eq. (5), (similarity between a pixel’s colour and 

the segment’s colour) is high  

 

1        ,           _ 2* _
_ 0        ,           _ 4* _     (5)

4* _ _   ,       
2* _

abs contrast dev abs
similarity abs abs contrast dev abs

dev abs abs contrast ά
dev abs

διαϕορετικ

⎧
⎪ ≤
⎪⎪= ≥⎨
⎪ −⎪
⎪⎩

 

 
2. The local or relative similarity, Eq. (6), (similarity between the next and 

the previous pixel’s colour in the growing direction) is high 
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where dev_abs is the standard deviation (computed during the first phase of 

segmentation, after the big crisp segments in the image are delineated, using 

the segments’ average colour) and the dev_local is the local standard 

deviation as it is computed each time.  

 Colour contrast can be measured by computing the difference between 

two colour vectors and obtaining its magnitude. As shown in Eq. (7), the 

square of the Euclidean distance is used to calculate the colour contrast 

between two-colour vectors v and w in this approach: 
2 2 2( ) ( ) ( )       (7)V W V W V WContrast R R G G B B= − + − + −  

 
where R, G and B are the three-colour components (Red, Green and Blue). 

 If the contrast between the colour vectors, v and w, is less than 

threshold of colour deviation, the two pixels (or the pixel and the segment in 

the case of absolute contrast) are considered to have the same colour. If it is 

higher than another threshold value, they are considered as having different 

colours. If the contrast is between the two thresholds, the similarity 

membership function is assigned a value between 0 and 1. 

The local similarity membership function is calculated between pixels at 

location (in, jn), and 2 2(i ,  j )n n± ± as shown in Figure 4.10. Averaging is used as 

an aggregate operator combining the two membership functions to obtain the 

final homogeneity membership function. If the homogeneity membership 

function is higher than the selected threshold value, the pixel is merged with 

the expanding segment. 

 
Figure 4.10: The position of local pixels with respect to each other for four 

growing directions, which are shown with an arrow. 
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4.3.3 Expand segments based on Dichromatic 
Reflection Model 

  
 This model assumes that linear hypotheses from large image areas 

describe matte pixels on an object or region, or in other words, large linear 

clusters are matte clusters. This heuristic depends upon their distance from 

the camera.  

 The big, crisp regions of the image correspond to the large matte areas 

of objects. During the first step of the segmentation process, all big matte 

segments are found by using edge information. The weighted average colour 

of the segments and the standard deviation are also computed. All matte 

segments expand to include most nearby matching matte pixels. The 

shadowed and highlighted object areas are leavened out because they have a 

very different colour compared to the matte segment. Given the colour vector 

of the centroid and the illumination (usually white), the cluster plane can be 

found. The normal of this plane is the result of the cross-product of the two 

colour vectors. 

 Using the dichromatic reflection model, some touching pixels may be 

merged with the previously growing matte segment. Eq. (8) is used to 

calculate a fuzzy measure, referred to as the customised distance dc, 

between the merging pixel and the cluster plane k in the colour domain. 

___

___
* _ *min 0.2, *min 1,     (8)
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where d is the Euclidean distance in pixels between the merging pixel and the 

cluster plane in the colour domain, local_sim is the local similarity function as 

mentioned in Eq. (6),  
___

kC  and 
___

ijC  are the magnitudes of the expanding 

segments and the merging pixel’s colour vectors, σκ and στ are the cluster’s 

and the local standard deviation, correspondingly, as they resulted by the first 

and second steps of the segmentation algorithm. From the equation of the 
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distance is clear that the distance depends on the segments’ standard 

deviation, the distance in color domain and the magnitude of each pixel.  

 The value of standard deviation is used to prevent dark pixels from 

merging to expanding segments and to assure highlights pixels to be put with 

the segment that they belong to as they may be scattered at further distances 

from the plane. Using this factor, if the merging pixel is a highlight one, its 

intensity would be higher than the cluster’s, and the factor would be less than 

1. The distance between the pixel’s color and the segment’s color is used as a 

normalized meter of the final distance between the pixel and the segment.  

 Some of the detected segments refer to the dark background or 

shadow, and are not a part of any object. Merging shadow areas of an object 

with the previously found object segments is permissible. However, expanding 

or growing an actual dark or shadow segment into other regions should not be 

permitted. Since the shadow segments have low intensities and are very 

close to the origin, the cross product of the illumination vector with the almost 

black colour would most likely yield erroneous results. Therefore, the 

dichromatic reflection model didn’t apply to shadow segments. Finally, a hard 

threshold (th = 0.7) is used and if the distance between the pixel’s color and 

the segment’s color is below the threshold then the pixel is put in the segment 

otherwise the process continues with the next unsegmented pixel. 

 

4.3.4 Expand segments based on Degree of Farness 
  
 To further expand segments, the degree of farness measure is used. 

An unassigned pixel can be close (not far) to a neighbouring segment in two 

senses: close in the spatial domain (physically close); or close in the cluster 

domain of the colour cube (almost of the same colour). The degree of farness 

of a pixel to a neighbouring segment is defined as a product of these two 

measures. Specifically, the degree of farness for any given pixel is the 

absolute colour contrast multiplied by the geometric distance (in pixels) 

between the given pixel and the segment border. The closest segment to the 

pixel is the one having the lowest degree of farness. Specifically, when 

expanding any segment, the pixel to be merged must touch the segment, or 

the newly expanded area and the degree of farness to this segment are the 



Microprocessor Hardware Laboratory  

 44

lowest among others computed for that pixel. The algorithm for the degree of 

farness is shown below: 

 

1. Scan the pixels that lay around the processing pixel and find the 

segments that these pixels belongs to. 

2. Repeat the above procedure for the three rows and lines away around 

the central pixel. 

3. For each segment found, compute the distance in pixels from the 

processing pixel 

4. Find the closest segment and put the central pixel in that segment. 

 

4.3.5 Iterative filtering 
 

 After the segment expansion is complete, the resultant segments’ 

edges are smoothed using an iterative filter. This filter is used for three block 

sizes of 3 × 3, 5 × 5 and 7 × 7, with the smallest one being applied first. The 

steps for applying the filters in the image are shown below:  

1. Find the number of pixels in the filter which belong to the same 

segment as the central pixel 

2. If this number is more than the half total number of pixels that are 

found in the filter then the pixel remains untouched. 

3. If this number is lower than the threshold then the central changes and 

belongs to the segment with the maximum support in the filter. 

4. This procedure is performed iteratively for the bigger filters. 

 At the end of this process all the edges of the image appear smooth. 

 

4.3.6 Finish segmentation process 
 

 This is the final step of the segmentation process. The image is 

scanned for a non-assigned pixel. For each of these pixels the distance in 

RGB domain is computed. If this distance is below a threshold then the pixel 

is put in that segment. Finally, if after the above process there are no-

segmented pixels then the image is scanned once again and all those pixels 
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are put with the segment which is the nearest one physically.  Eventually, the 

whole image is scanned and the average color for each of the segments is 

computed. Finally, each segment is painted with its color resulting to the final 

segmented image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 
 

 
 
 
 

 

 
 
 
 
 
 
 



Microprocessor Hardware Laboratory  

 46

Chapter 5  
 
Architecture of Compression/Encryption/Data Hiding 
and Decompression/Decryption/Data Unhiding 
Subsystems of SCAN Algorithm 
 

 In this chapter, the architecture of the compression/encryption and data 

hiding subsystems is described. These subsystems are combined in a total 

system that implements the SCAN algorithm. Additionally, the reverse 

process of the SCAN algorithm, decompression/decryption and data unhiding, 

was designed and implemented in Stretch Technology and it is described in 

this chapter. The general architecture of the two described systems is 

presented in Figure 5.1.  

Figure 5.1: Block diagrams of the Compression/Encryption/Data Hiding and the 
Decompression/Decryption/Data Unhiding Systems 
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5.1 Architecture of Compression/Encryption/Data hiding 
system 

  

 This section describes the architecture of the system in Stretch 

technology that was designed to implement the SCAN algorithm is described. 

 

5.1.1 Architecture of  Compression Subsystem 
 

 The compression subsystem implements the SCAN compression 

algorithm, as shown in Figure 5.2.  

 Initially, the two first two frames of the video are read and are stored in 

the cache of the processor S5000 and in the on board SRAM memory (SRAM 

256 KB and Data cache 32 KB). After that, two frames are calculated, one of 

which contains the values of pixels that will be compared with the next frame 

(compare frame) according to the compression algorithm and the second one 

contains the differences between the two frames (difference frame). This 

process is a computationally intensive one so it was implemented using 

reconfigurable resources of the embedded FPGA of processor. The fact that 

the embedded FPGA of the processor has 128-bit wide channels for the 

communication with the processor lead us to process 16 pixels 

simultaneously (16 pixels * 8 bits/pixel = 128 bits) (compare unit). As a result 

of this, it was important to specify the way that frames were stored in the 

memory, i.e we store the value of pixels in contiguous positions of memory in 

row major order. Subsequently to the computation of compare frame and 

difference frame, the difference frame is broken to 4x4 windows (16 pixels) 

and it was specified which of these windows should be put in the compressed 

difference frame (the windows which contain only the value –1 in each pixel 

are omitted from the procedure of encoding in the compressed difference 

frame). The process of this section of the algorithm was also intensive and as 

a result it was implemented with reconfigurable logic. The problem with this 

implementation was that the pixels that should be processed were not in 

contiguous locations and for that reason we developed a reconfigurable logic 

unit (encoding unit) to process four continuous pixels at a time. 
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 There is a difference between the encoding section of the algorithm 

and the implementation of the encoding unit in our architecture. The idea of 

our architecture was that if a window of difference frames was to be encoded 

each pixel of encoded window was put in 8 bits. In that way, the reverse 

procedure of calculating the pixels of encoded windows from a compressed 

difference frame was much easier. Another change in our implementation was 

that in case of continuous zeros in a compressed difference frame, we use a 

run length encoding. This procedure takes place in the software unit of run 

length encoding unit, as described in Figure 5.2. 

  

Figure 5.2: Block diagram of Compression Subsystem 
 

5.1.2 Architecture of  Encryption Subsystem 
 

 The basic idea of the encryption subsystem is to rearrange the pixels of 

the image and alter the pixel values so that the histogram of the resulting 

image is flat. The pixel rearrangement is done by scan keys. The pixel values 

are changed by a simple substitution mechanism, which adds the confusion 

and diffusion properties to the encryption method. The permutation and 

substitution operations are applied in an intertwined and iterative manner. 

Therefore, significant portions of this function are done with address 

generators to implement the scan patterns. 
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 The final form of a compressed difference frame, as shown in Figure 
5.2 was not in the right format to be processed by the next subsystem, the 

encoding subsystem. The encoding subsystem takes as input the 

compressed image in square form. For that reason, in our architecture the 

compression subsystem was followed by a transformation unit to convert the 

final compressed difference frame in a NxN frame, where N is a power of 2. 

This transformation unit was embedded in encryption subsystem, as 

described in Figure 5.3. 

 The architecture of whole encryption unit is shown in Figure 5.3. The 

keys are given to the system before the start of the execution and each key is 

implemented as an algorithm. According to the algorithm the pixels are read 

with key1 and create an array 1 x N2. The reading of pixels was implemented 

with reconfigurable logic by taking advantage of the parallel copy of 16 pixels 

from the two-dimensional array to the one-dimensional array. The process of 

reading and putting the data in the right form takes place in Reading Key1 

Unit, Figure 5.3. After the reading process follows the substitution unit, which 

was also implemented in reconfigurable logic and which grouped pixels in 

groups of 16 that were processed each cycle. The substitution unit 

implements a multiplication between random numbers, with predefined seed, 

and the values of the pixels, as the algorithm of encryption defines.  

 The next two units were the reverse read of an array that creates a 2 – 

dimensional array according to key s0 (spiral) and after that the read with key 

d0 (diagonal). These two algorithms, as their implementations were control 

intensive, gave worse results in reconfigurable logic vs. the software solution 

and that was the reason why the software implementation was preferred. The 

problem that these two units were not implemented in reconfigurable part of 

the S5000 processors was that they do not use pixels in contiguous positions. 

As a result they had to collect the values of pixels that would be processed 

from different places of the memory which cycle consuming procedure. This 

example also shows why a fixed processor with a tightly coupled 

reconfigurable fabric and high throughput busses between the two units offers 

the designer good opportunities to partition a design. After these units, the 

next unit is again the substitution unit, which was described above, and after 

that unit follows the reverse read with key 2 which lead to the final encrypted 
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image. This process is repeated M times which is defined by the user. 

According to the algorithm, five iterations of this process produce a highly 

encrypted image. 

 Generally, the number of keys of SCAN algorithm is large but in our 

implementation we implemented the subset of the keys that were used in the 

reconfigurable implementation of algorithm.  

 

 Figure 5.3: Block diagram of Compression Subsystem 
 

5.1.3 Architecture of  Data Hiding Subsystem 
 

 The main idea of the information hiding algorithm is to identify the 

complex regions of the cover image and embed the secret data into those 

regions. The bits from the secret data are embedded into complex regions in 

random order, determined by the secret SCAN key chosen by the user. The 

embedding subsystem consists of five main units: (1) the unit that reads the 

data that are going to be hidden (Reading Hidden Data Unit), (2) the unit that 

identifies the complexity of cover image (Complexity Unit), (3) the unit that 

executes SCAN rearrangement of image and complexity matrix (SCAN 

Rearrangement Unit), (4) the unit that executes the bit embedding of secret 

data in cover image (Bit Embedding Unit) and (5) the reverse SCAN 

rearrangement of rearranged image (Reverse SCAN Rearrangement Unit).  

 In the first step, the image is broken in 3 x 3 windows and is decided 

which pixels will embed hidden data and exactly the number of bits, which is 

described in the complexity matrix. This process was implemented in 

reconfigurable logic although there were tradeoffs: the pixels which were 
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processed were not in contiguous locations. As a result we constructed an 

array, where we put the useful pixels each time and in that way the 

reconfigurable part of the processor had the right data each time. The second 

unit, SCAN Rearrangement Unit, comprises of the same units as the 

encryption algorithm with the difference that this unit does not contain the 

substitution unit.  

 Following this step is the bit embedding unit where in each pixel is 

embedded the number of bits that are described in the complexity matrix. This 

unit in order to be implemented on the reconfigurable fabric had a sizing 

problem: the required data were wider than the communication channels and 

the FPGA resources were not sufficient. In order to solve this problem, we 

broke the Bit Embedding unit in smaller ones and that gave good enough 

performance. Finally, the last unit of this subsystem is the SCAN 

rearrangement which changes the order of the rearranged image. This unit 

was implemented in the same way as the encryption subsystem with the only 

differences that this unit does not contain the substitution unit and it follows 

the reverse process from that in encryption subsystem. 

 

 Figure 5.4: Block diagram of Data Hiding Subsystem 

 

 It is noteworthy that the keys that are used in rearranging the image 

are the same as the keys in the encryption algorithm. In general, due to the 

nature of SCAN there is good reusability of designs, which may be replicated 

for performance purposes or used serially if there is no overlap in their need. 

In that respect, we have a similar design problem as that of pipeline 

scheduling for CISC computers, albeit at a coarser granularity. 
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5.2 Architecture of Decompression/Decryption/Data 
Unhiding System 

 
In this section, we will describe the architecture of     

decompression/decryption/data unhiding system of the SCAN algorithm which 

can be embedded as a “black box” in the receiver. Given the information of 

the compressed data that comes out from the compression/encryption/data 

hiding system, the system of decompression/decryption/data unhiding can 

recover the initial frames of the video. Complementary to the forward process, 

the architecture of this system consists of three subsystems the 

decompression, the decryption and the unhiding subsystem, which are shown 

in Figure 5.1. Generally, the process of each subsystem is the reverse 

process of the corresponding subsystem of the compression/encryption/ data 

hiding system. The architecture of each subsystem will be analyzed to the 

next sections. 

5.2.1 Architecture of  Data Unhiding Subsystem 
 

The data unhiding subsystem implements the reverse process of the 

SCAN data hiding algorithm, as shown in Figure 5.5. This subsystem takes 

as inputs the final frame and the complexity matrix which are produced by the 

data hiding unit of the transmitter. As described above, the complexity matrix 

describes the pixels of the frame that were embedded with hidden information 

in addition with the exact number of bits that were embedded to each pixel. It 

is noteworthy that the complexity matrix can be compressed in order to avoid 

the large size of data transmission.  

In the first step, the pixels of the final frame are rearranged using the 

SCAN Rearrangement Unit of data hiding subsystem. It is important to report 

that the keys that are used for the pixel rearrangement are the same subunits 

that were used in the data hiding subsystem and that leads to the fact the unit 

of SCAN rearrangement is a co design of hardware and software subunits, as 

described in Section 5.3. In the next step, the rearranged frame is scanned 

and using the information of the complexity matrix the hidden bits, which are 

embedded in each pixel, are extracted. This process was implemented in the 
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reconfigurable part of the S5000 processor taking advantage of that each 

cycle we could process 16 pixels simultaneously. The final step of the 

architecture of the data unhiding subsystem is the reverse rearrangement of 

the pixels of the frame using the same keys as in the first step of the 

subsystem. The output of the subsystem is an array of hidden data that was 

embedded in the transmitter and the frame which will be processed by the 

next subsystems in order to recover the initial sequence of video frames. 

 

5.2.2  Architecture of  Data Decryption Subsystem 
 

The decryption subsystem is shown in Figure 5.6. The architecture of 

this subsystem consists of the same units that were used by the Encryption 

subsystem in the transmitter. The only difference between the Encryption 

Subsystem of transmitter  
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Encoded
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Unit
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Figure 5.5: Block diagram of Data Unhiding Subsystem 
 

and Decryption Subsystem of the receiver is the sequence of the flow of data 

in the subsystems.  
During the first decryption step, the pixels of the frame which come from 

the data unhiding subsystem are read using the second key of the encryption 

algorithm. This unit was implemented in reconfigurable part and it is the same 

unit that was used in the encryption subsystem of the transmitter. The second 

step processes the substitution of the value of pixels using random numbers 

that are created using a random number generator. The process of 

substitution in this unit uses exactly the same random numbers as the 

Encryption subsystem of the transmitter because both generators of these two 
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subsystems use the same seed.  The unit of substitution executes this 

operation: output[i] = input[i] - ((input[i-1] + 1)*R[i])%256 + 256 , where R[i] is 

the array of random numbers and input[i] is one pixel of the frame that results 

from the previous unit. It is obvious that the process of substitution unit is time 

consuming as there are multiplications and divisions for each one of the 

pixels. For these reasons, this unit was implemented in hardware so as 16 

pixels of the image could be processed in a few cycles of the processor. The 

two next steps comprise the reading of pixels of the frame using the diagonal 

key(d0) and the spiral key(s0), consecutively. It is noteworthy that the reading 

with the previous control keys takes place in reverse sequence vs. the reading 

of pixels in the encryption subsystem and because of their complexity they 

were designed in software. The next step of the procedure is, again, the 

substitution process and the last one is the unit which scans the frame using 

the key1, which was also, as the reading with key2, implemented in the 

reconfigurable part of the S5000 processor. This process will be repeated M 

times, where M is determined in the Encryption unit and it is sent to the 

receiver with the rest of the key information. The result is the compressed 

frames of the initial video. 

 It is important to mention that the units, which were used for the 

Decryption Subsystem, were almost the same as the units of Encryption 

Subsystem, which shows that SCAN algorithm offers substantial reusability of 

some units. From a cost vs. performance point of view, the same hardware 

can be configured, with minor modifications, to do the forward or the reverse 

process. 

 

Figure 5.6: Block diagram of Data Decryption Subsystem 
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5.2.3 Architecture of Decompression Subsystem 
 

In this section, we will describe the Decompression Subsystem of the 

Decompression/Decryption/Data Unhiding system. The architecture of the 

decompression subsystem is shown in Figure 5.7. This subsystem comprises 

of two units which execute the reverse procedure of the Compression 

Subsystem of transmitter.  

In the first step of the process, the pixels of the frame are scanned and 

decoded in sequence. The decoded unit results into an array of pixels which 

comprises only of the windows of pixels (4x4) that were encoded. The 

corresponding positions in the final frame of the pixels, which were omitted by 

the process of encoding in Compression Subsystem, are replaced by the 

values of pixels of the previous frame, each time. For the first frame of the 

sequence, it is essential to know the pixel values. In our architecture, the 

intensive processes of decoding and decompressing were placed in the 

reconfigurable part of the processor, which led to an important reduction of 

the execution time. 

The main problem that we faced with the implementation of this 

subsystem was in the non-contiguous pixels that we should process. This 

problem was solved by putting the proper positions of the memory to the 128-

bit communication channels between reconfigurable part of processor and its 

core.  

 

Figure 5.7: Block diagram of Decompression Subsystem 
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As mentioned above, the implementation of 

Decompression/Decryption/Data Unhiding system used many of the subunits 

of the Compression/Encryption/Data Hiding system, which is placed in 

transmitter. The main idea of the implementation of the unit is that it follows 

exactly the reverse process from that in Compression/Encryption/Data Hiding 

system. It is noteworthy that for the execution of the 

Decompression/Decryption and Data Unhiding process it is essential to use 

some information that was used by the transmitter, such as the keys that were 

used to scan the pixels of the frames, the number of the iterations that was 

used for the encryption process and the value of threshold for the encoding 

process. In a system that does the forward and the reverse process with the 

same keys, these need to be held only once in the system regardless of the 

operation that it performs. 
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Chapter 6  
 
Architecture of Smoothing, Edge Detection and Color 
Segmentation Algorithm 
 
 This chapter describes the architecture of smoothing/edge 

detection/color segmentation system that was developed using Stretch 

technology. The system, which implements the first three steps of ATR 

algorithm described in Chapter 4, consists of three subsystems, the 

smoothing, the edge detection and the color segmentation subsystem. The 

system’s block diagram is presented in Figure 6.1, and the architecture of 

each subsystem will be described to the next sections of this chapter.   

 The total system consists of three main components and each of them 

implements the algorithm for each of the three subsystems. The components, 

which are implemented as C functions using Stretch technology, 

communicate with each other through the internal memory of the S5000 

processor. Initially, the values of color of the pictures’ pixels in RGB are stored 

in internal memory of the processor.  The smoothing component reads these 

values which are processed and they are stored again to the memory of the 

system. The process continues for the other two components of the system 

which read the input data from the memory and stores the processed data. 

Finally, the output of the system is the values of the pixels colour image where 

the recognized segments of the picture are colored with the same colour in 

RGB.  

Figure 6.1: Block diagram of the Smoothing/Edge Detection/Colour 
segmentation System (hachured boxes are the stored data in memory of the 

processor) 
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6.1 Image Smoothing Subsystem 
 

 The smoothing subsystem takes as input the initial values of pixels in 

RGB system and outputs the values of the smoothed image according to the 

described algorithm of Chapter 4. The smoothing algorithm is divided into 

seven small steps each of one was designed as a separate component, as 

shown in block diagram of Figure 6.2. The dark components of block diagram 

have been implemented in reconfigurable part of S5000 processors in order to 

reduce the total execution time of the smoothing algorithm.  

 

Figure 6.2: Image smoothing subsystem (dark boxes show 
reconfigurable components, white boxes show software implementation 

and hachured boxes are the stored data) 
 

 Initially, according to the smoothing algorithm there are 8 neighboring 

3x3 windows of each pixel, as shown in Figure 6.3. The values of these 

windows are used to find the Cbs values between the processing pixel and the 

surround windows. The value of Cb shows the notion of a degree of 

neighborhood between the window and the processing pixel. The calculation 

of the Cbs was implemented in reconfigurable part of the processor, as shown 

in Figure 6.2. As it is known from Chapter 4 one of the restrictions of the 
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reconfigurable part of S5000 processors is the small number of I/O registers 

(128 bits * 3 = 384 bits at most) which are used for the communication 

between the reconfigurable and the software part of the processor. The fact 

that the restriction for the input information in reconfigurable part lead to the 

calculation of Cbs for two neighboring sub windows each time, as 2 

neighboring 3x3 windows contain 15 pixels which means 15 * 8 bits/pixel = 

120 bits * 3 = 360 bits < 384 bits(as the color of the pixels is in RGB model). 

The pairs of the sub windows that calculated the values of Cbs, as shown in 

Figure 6.3, are 5-3, 8-2, 4-6 and 1-7. 

 

 
Figure 6.3: Eight neighboring blocks of size 3 x 3. Blocks are numbered 1 – 8 

  

 Another observation during the calculation of the Cbs is that the 

direction between the pairs of the sub windows differs as a result to 

implement another component for the calculation of the sub windows, one 

with horizontal direction and another one for the vertical direction.  

 The choice to design the two components for the calculation of the Cb 

value in reconfigurable part was taken because of two facts: i) The calculation 

of the Cb value contains multiplications, which is a “heavy” task for the 

software and ii) with this implementation we managed only in 3 clock cycles 
to calculate the Cbs for two 3x3 windows. Finally, it is important to mention 

that as the reconfigurable part of the processor can not be loaded with floating 

point numbers, the values of the weighted table were, initially, multiplied by 

the value 1024, loaded to the reconfigurable logic and at the final stage the 

result was shifted right for ten bits taking the correct value.  

The next step of the smoothing algorithm was the calculation of the colour 

contrast, Figure 6.4, between each of the neighbouring windows and the 

processing pixel. In this stage, a new component of reconfigurable logic was 

implemented, smoothing_second_third_step component. This component 

takes as input the Cbs values of the 8 neighboring sub windows and the color 
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of the processing pixel in RGB domain and calculates the contrast between 

them. After the calculation, this component returns to the software two values: 

the first one is a flag that shows which of the three cases of the next step of 

the algorithm is true and the second one is the id of the sub window which will 

be processed. This process takes 9 clock cycles per each calculation. 

 

2 2 2
, ( ) ( ) ( )i j j i j i j iContrast R R G G B B= − + − + −  

Figure 6.4: Contrast value between two color vectors 
 

 The previous step of the algorithm defines which of the next three 

conditions is true. If the max and the minimum colour contrast between the 

neighbouring window and the processing pixel are lower than the value of the 

predefined threshold then the new colour value of the pixel is the weighted 

average of the 7x7 window where the processing pixel is placed in the centre. 

The process of calculation is a heavy computational problem as a result it was 

put in the reconfigurable part of S5000. As there was problem with the big 

number of values for the pixels that needed to pass to the reconfigurable (7 * 

7 = 49 pixels * 3 RGB color = 147 values * 8 bits/value = 1176 bits) we took 

advantage of the fact that the values of Cbs of the four corner windows were 

already calculated by the first reconfigurable part of the smoothing algorithm. 

In that case, we used the calculated values of the four 3x3 windows which 

were placed in the corners and added the rest of pixels of the 7x7 window. 

The sum of the values was divided by the sum of the weights of the 7x7 

window and the result was the new colour value of the pixel. The clock cycles 

for this reconfigurable unit of the implementation is about 3 clock cycles per 

calculation. 

 Finally, another computationally heavy part of the algorithm takes place 

if the minimum and maximum contrasts have larger values than the 

predefined threshold. In that case, a new hardware component was 

implemented which took as input the values of the Cbs for the four windows in 

four directions (North, East, South and West) (3 Cbs values of RGB * 4 

windows = 12 values * 8 bits/values = 96 bits) which were previously 

calculated. The output of this component is the direction of the sub window 
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which has the least contrast between the processing pixel and the 

neighboring sub window. The time that the final reconfigurable component 

takes for the results is about 7 clock cycles. 

 The last stage of  the color smoothing component is the storage of the 

new smoothed color values of the pixels in the main memory of the processor. 

The next stage of the algorithm which is the edge detection, takes as input the 

smoothed values from the internal memory of the processor.  

 

6.2 Edge Detection Subsystem 
 
 The second subsystem of the design takes the pixel smoothed values 

as they resulted from the image smoothing unit and processes them in order 

to find the edges of the images. The edge detection unit consists of three sub 

units: local contrast calculation unit, hue calculation unit and edge candidacy 

unit, as shown in Figure 6.5. In addition, as described in Chapter 4, in case a 

pixel is not clear if it is an edge or not, the calculation of the edge candidacy is 

repeated. In order to cover the previous situation it has been put a software 

controller which checks if the edge candidacy is clear or not and in case it is 

not clear,the sub units of the systems are repeated. 

 

Figure 6.5: Edge detection subsystem (white objects are implemented in 
software) 

 
 The local contrast unit takes each time as input, the 7x7 pixels window  

values which lay around the processing pixel and using the Cbs calculation 
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components that were designed for the colour smoothing unit, calculates the 

colour contrast between the processing pixel and the surrounding 3x3 sub 

windows, as shown in Figure 6.6. The values of the colour contrast for the 

four directions, Figure 6.3, are temporarily stored and used for the calculation 

of the hue, saturation and intensity for each direction. The resulted values are 

stored in tables which pass as input to the next unit of the design which is the 

normalized hue contrast component.  

 The normalized hue contrast unit takes as input the values of hue, 

saturation and intensity for each of the four directions and calculates the 

normalized hue contrast between the processing pixel and the neighbouring 

sub windows. The normalized hue contrast consists of software multipliers 

and dividers because the values of saturation and intensity belong to float 

type and can not be represented in reconfigurable part of the S5000 

processors. 

 

Figure 6.6: Block diagram for the Local Contrast Calculation Unit 
 

 The final value of the edge candidacy is calculated in the last unit of the 

edge detection subunit, the edge candidacy unit. This unit was fully 

implemented in reconfigurable part. Hardware adders and dividers for the 

calculation of the average value of the hue contrast were implemented in the 

candidacy unit. In addition to this, in this unit two hardware comparators were 

implemented in order to find the max value of the edge candidacy among the 
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four directions around the processing pixel. This unit takes 7 clock cycles 

between the input of data and the output of the results.  

 At the end of the edge detection subsystem, a new image has been 

created with the definition of the edge pixels from the initial image. This 

information is stored to the main memory of the S5000 processor and it is 

used as the input of the next subsystem which implements the color 

segmentation algorithm. 

 

6.3 Color Segmentation Subsystem 
 

 The subsystem, which is described in this section, implements the 

colour segmentation algorithm as described in Chapter 4. The colour 

segmentation algorithm can be divided into six smaller steps. The block 

diagram of this subsystem is described in Figure 6.7. The colour 

segmentation subsystem takes as input the values of the edge detected pixels 

from the main memory of the S5000 processor and divides the objects of the 

picture colouring them with the average colour of the object. The output of this 

subsystem is the image with the colored objects which can be used for the 

next processing steps of the Automatic Target Recognition algorithm. 

 The first subunit of the system implements the segmentation of the 

picture in its segments according to the information that comes from the Edge 

Detection Subsystem. The Image Segmentation Unit, which is described in 

Figure 6.8, consists of three smaller systems: the pixels edge check unit, the 

grouping segmented pixels unit and the segment colour calculation unit. The 

pixels edge check unit is fully implemented in reconfigurable part of the 

Stretch processor and takes as input the value of the processing pixel and the 

values of pixels which lay around on 3x3 windows and gives out the value of a 

flag which shows if the pixel can be used as part of a segment. The input of 

reconfigurable part utilizes only 264 bits of 384 bits as there 33 different pixels 

which means 33 * 8 bits = 264 bits and it takes 3 cycles per run. The 
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Figure 6.7: Block diagram of the Color Segmentation Subsystem 

 

grouping segmented pixels unit is a software unit, which is implemented in 

software, and groups the pixels which can be put in the same segment, 

putting an id for each segment, according to the information that came from 

the previous subunit.  Finally, the calculation of the average colour for the 

segments was implemented in software for one specific reason: there is no 

information in advance about the number of pixels for each segment; as a 

result the passing of the colour values of the segmented pixels should be 

done dynamically something which would be very ‘heavy’ to be implemented 

with Stretch technology.  
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Figure 6.8: Block diagram for image Segmentation Unit 
 

  The second subunit of the colour segmentation subsystem is the 

Homogeny Expansion unit and its block diagram is presented in Figure 6.9. 

This unit implements the algorithm of expansion according to the homogeny 

criteria using the segmented image as it results from the image segmentation 

unit. The homogeny expansion unit is divided into two components: the 

contrast homogeny criteria unit and the calculation of local and absolutely 

similarity unit. The contrast homogeny criteria unit runs only if one of the 

neighbouring pixels of the processing pixel belongs to a segment. In that     

 

Figure 6.9: Block diagram of the Homogeny Expansion Unit 
 

case, the contrast between the colour of the processing pixel and the 

neighbouring pixel is calculated and used for the calculation of the absolute 

and local similarity between them. So the general architecture of this unit 

consists of a software controller who checks if any of the four neighbouring 

pixels of the processing pixel belongs to a segment. If any of the pixels 

belongs to a segment, the control runs hardware unit for the calculation of the 

colour contrast. Otherwise the processing pixels stay untouched. The next 
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step of the contrast calculation is the calculation of the local and absolute 

similarity for each of the four directions and the placement of the processing 

pixel to the segment with the bigger values of similarities. 

 The third step of the colour segmentation algorithm is the segments 

expansion based on dichromatic reflection criteria, as referred in Chapter 4. 

The calculation of the dichromatic reflection for a pixel needs the calculation 

of the local similarity between the pixel and the neighbouring segment and the 

calculation of the magnitude of pixel colour. The architecture of the 

dichromatic reflection unit is presented in Figure 6.10. The part of the 

algorithm which was implemented in hardware consists of two components: 

the first hardware subunit is the Contrast Homogeny Criteria Unit, which was 

used in Homogeny Expansion Unit and which calculates the local contrast 

between the processing pixel and the neighbouring segments for the 

calculation of the local similarity.  The second component that was 

implemented is the Magnitude Calculation Unit which computes the 

magnitude for each segment or pixel taking colour RGB as shown in Figure 
6.11. In addition, software multipliers and adders were designed for the 

calculation of the dichromatic reflection value and the new colour of each 

expanded segment.  

 

Figure 6.10: Block diagram of the Dichromatic Reflection Expansion Unit 
 

2 2 2 Color Magnitude R G B= + +  
Figure 6.11: Color magnitude for the calculation  

of the dichromatic reflection value 
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 The final expansion of the algorithm takes place according to the 

degree of farness of the unsegmented pixels from the neighbouring 

segments. The Farness Expansion Unit takes as input the values of the 

neighbouring pixels of the unsegmented pixels and checks which segment is 

the nearest one to the processing pixel, expanding the segment with that 

pixel. In the architecture of the Farness Expansion Unit that is presented in 

Figure 6.12, it is clear that most of the implementation has be done in 

software and only the calculation of the distance between the processing pixel 

and the neighbouring pixels is calculated in reconfigurable part of the 

processor. In addition to the calculation of distance, the reconfigurable part 

finds the nearest value and returns to the software a flag which shows the 

segment of the image that will be expanded with the new pixel.  

 Finally, the next two steps of the algorithm, filtering and object 

colouring, were fully implemented in software. The fact that there is no 

knowledge a priori about the size of each segment so that can not be 

managed the parallelism in computation for the image pixels drive us to 

implement the two steps of the algorithm fully in software, as shown in Figure 
6.12. 

  

Figure 6.12: Block diagram for the last three steps of color segmentation 
algorithm (degree of farness expansion, filtering and final object coloring) 

 

 In this chapter, the architecture approach of the smoothing-edge 

detection and color segmentation was presented. The important point of this 

chapter analysis was the way of breaking of the three algorithms in smaller 

steps and the implementation some of these smaller steps in reconfigurable 

part of the S5000 processors. The whole procedure had as a result the 

reduction of execution time through the parallel processing of pixels and the 

implementation of computationally ‘heave’ processes in hardware. 
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Chapter 7  
 
Performance and Comparisons 
 
 This chapter describes the performance of the systems that were 

implemented in the new Stretch technology. In addition to this, in this chapter 

of the thesis there is a comparison between the new implementations of 

compression/encryption/data hiding and smoothing/edge detection/colour 

segmentation systems and the hardware or software implementations.  

 As mentioned in the previous sections, the SCAN algorithm for 

compression and encryption was implemented in separate, reconfigurable-

only designs [19, 20, 26, 28]. These implementations are compared towards 

to our software-reconfigurable design.  On the other hand, there was no 

hardware implementation for the smoothing, edge detection and colour 

segmentation system and therefore a new software implementation was 

designed using the toolbox of Matlab. Despite the software implementation 

the comparison in processors’ cycles is a logical meter to reveal the difference 

in throughput between our architecture with Stretch technology and our 

implementation with Matlab. 

 

7.1 Performance of the Compression/Encryption/Data hiding 
system and comparison with reconfigurable designs 

 

 The systems were tested with actual video sequences. The 

Compression/Encryption/Data hiding system was verified with the same 

videos that were used in the previous implementations. The videos that were 

used are ‘Dogfight’, ‘Ducks’ and ‘News’. In Figure 7.1 one frame of each 

video is presented. The first one, ‘Dogfight’, shows two F-16’s engaging over 

the Aegean Sea. The resolution of the frames for this video sequence is 

64x64. The second one, ‘Ducks’, shows two ducks in the lake.  The resolution 

of the frames for this video is 128x128. This video leads to lower compression 

than the other ones due to the water ripples on the lake which destroy spatial 

locality of information. The final video shows a man in an unvarying 

background and its resolution is 512x512.  
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 First, the above sequence of video was put as input to the 

compression/encryption/data hiding system. The data that came out from that 

system was put as input to the decompression/decryption/data unhiding 

system. Figure 7.2 presents three of the original frames of the first video that 

were used to test our implementation and the three corresponding frames that 

were created by the process of the decompression/decryption and data 

unhiding. As one can see, the quality of the final frames is almost the same as 

the original frames. Some differences, which can be observed between the 

initial frames and the processed ones, are caused by the embedding process 

of the data hiding subsystem. More specifically, in that subsystem the process 

of bit embedding leads to change the values of some pixels and as a result 

when the reverse process takes place the bits of pixels that were lost because 

of the embedding process can not be recovered. In general, the SCAN 

methodology can be lossless, however, by definition, the process of hiding 

information within an image or video frame alters this frame. In order to make 

our results useful regardless of video resolution, most results are expressed in 

terms of throughput. 

 

 
Figure 7.1: Three frames from the videos with which we tested the system 

  
Table 7.1 and Table 7.2 show the throughput of these two systems that 

were designed and implemented. The conclusions that can be extracted by 

the above tables are that the throughput of each subsystem is not tightly 

connected to the resolution of the frames that are processed. In particular, 

there is a tight association between the movement that takes place in the 

frames of the video with the throughput of the compression, encryption, and 

data hiding subsystems (as expected, because it destroys temporal locality). 
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The intense movement in the video sequence provokes great changes to the 

values of the corresponding pixels between the frames, resulting in an 

 

 
Figure 7.2: Three frames from the video ‘Dogfight’ (in the first line appear the 

original frames of the video and in the second line the processed frames) 
 

increase of the number of pixels that should be processed (compressed and 

rearranged), which leads to increase the time of execution and to reduce the 

throughput of the system. E.g. the video ‘Ducks’ has lower resolution than the 

video ‘News’, however, the intense movement of the water in the video 

‘Ducks’ results in both subsystems having higher throughput for the video 

‘News’ vs. the video ‘Ducks’. The throughput of the encryption depends on the 

number of iterations for each data stream. Table 7.3 and Table 7.4 show the 

relation between the throughputs of the systems with the number of the 

iterations.  On the contrary, in the case of the video it has been proven that 

there is a uniform distribution for every 
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Compression 
Subsystem 

Encryption 
Subsystem 

Data Hiding 
Subsystem 

Compression 
Encryption 
Data Hiding 

System Frame 
Resolution Throughput

w/ Virtex II 
Technology

(MB/sec) 

Throughput 
w/ Stretch 

Technology
(MB/sec) 

Throughput
w/ Virtex II 

Technology
(MB/sec) 

Throughput 
w/ Stretch 

Technology
(MB/sec) 

Throughput 
w/ Stretch 

Technology 
(MB/sec) 

Throughput 
w/ Stretch 

Technology 
(MB/sec) 

64 x 64 
(Dogfight) 111 8.77 2.68 2.32 0.36 0.30 
128 x 128 
(Ducks) 111 7.10 2.68 1.74 0.27 0.22 

256 x 256 
(Ducks) 111 6.05 2.68 0.85 0.69 0.52 

512 x 512 
(News) 111 9.67 2.68 2.45 1.78 1.44 

Table 7.1: Throughput for various frame resolutions for the 
Compression/Encryption/Data hiding system 

(Key1 = c0, Key2 = c0 and Number of iterations = 1) 
 

Frame 
Resolutio

n 

Decompres
sion 

Subsystem 
(MB/sec) 

Decrypti
on 

Subsyste
m 

(MB/sec) 

Data 
Unhiding 
Subsyste

m 
(MB/sec) 

Decompression 
Decryption 

Data Unhiding 
System 

(MB/sec) 
64 x 64 

(Dogfight
) 

9.34 1.48 1.71 0.73 

128 x 128 
(Ducks) 8.03 1.10 1.18 0.56 

256 x 256 
(Ducks) 7.15 0.76 0.95 0.45 

512 x 512 
(News) 10.24 1.25 1.52 0.75 

Table 7.2: Throughput with Stretch Technology for various frame resolutions  
for the Decompression/Decryption/Data Unhiding system  

(Key1 = c0, Key2 = c0 and Number of iterations = 1) 
 

byte value. This attribute can be exploited by reducing the number of 

iterations for the encryption of compressed video in order to achieve higher 

throughput without any compromise in the security of the encryption. 

 The actual number of cycles to encrypt the images is mainly dependent 

on the encryption key (key1 and key2). If the key is simple the number of 

cycles is small. In case there are a lot of iterative scan patterns, the total 

number of cycles increases. Table 7.5 and Table 7.6 contain the 

corresponding throughput using different keys for our systems and for their 

subsystems. 



Microprocessor Hardware Laboratory  

 72

Compression 
Subsystem 

Encryption 
Subsystem 

Data 
Hiding 

Subsyste
m 

Compressi
on 

Encryption 
Data Hiding

System Number 
of 

Iterations 
Throughp

ut 
w/ Virtex 

II 
Technolo

gy 
(MB/sec) 

Throughp
ut w/ 

Stretch 
Technolo

gy 
(MB/sec) 

Throughp
ut 

w/ Virtex 
II 

Technolo
gy 

(MB/sec) 

Throughp
ut w/ 

Stretch 
Technolog

y 
(MB/sec) 

Throughp
ut w/ 

Stretch 
Technolo

gy 
(MB/sec) 

Throughpu
t w/ Stretch 
Technolog

y 
(MB/sec) 

M = 1 111  8.77  5.53  2.32  0.36  0.30  

M = 3 111  8.77  1.97  0.81  0.22  0.17  

M = 5 111  8.77  1.82  0.41  0.16  0.12  
Table 7.3: Throughput for the Compression, Encryption, Data Hiding system 

towards to the number of iterations (Video resolution 64x64) 
 

Number of 
Iterations 

Decompression 
Subsystem 

(MB/sec) 

Decryption 
Subsystem 

(MB/sec) 

Data 
Unhiding 

Subsystem 
(MB/sec) 

Decompression 
Decryption 

Data Unhiding 
System 

(MB/sec) 

M = 1 9.34  1.48  1.71  0.73  

M = 3 9.34  0.52  0.59  0.27  

M = 5 9.34  0.31  0.36  0.17  
Table 7.4: Throughput for the Decompression, Decryption, Data Unhiding 

system towards to the number of iterations (Video resolution 64x64) 
 

Table 7.7 shows the utilisation of the reconfigurable part of S5000 

processor. The results show that each unit of the system is independent and 

that because of the existence of two ISEF units the total number of Arithmetic 

units is 8192 and Multiply units is 16384. The total utilization for the 

implemented architecture is about 65 % for the Arithmetic units and 48% for 

the Multiply units of the reconfigurable part. 

Finally, for the case of the information hiding subsystem, there was no 

previous implementation. The results, shown in Table 7.1 and Table 7.2, 
reveal that an important factor for the throughput of the embedding subsystem 

is the resolution of the main video frame. 
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Compression 
Subsystem 

Encryption 
Subsystem 

Data Hiding 
Subsystem 

Compression 
Encryption 
Data Hiding 

System Key1 Key2 
Virtex II 

Technology 
(MB/sec) 

Stretch 
Technology

(MB/sec) 

Virtex II 
Technology

(MB/sec) 

Stretch 
Technology

(MB/sec) 

Stretch 
Technology 

(MB/sec) 

Stretch 
Technology 

(MB/sec) 

C0 C0 111  8.77  2.68  0.49  0.36 0.12 
B0(B0( 
c0 c0 
c0 c0) 
c0 c0 
c0) 

z0 111 8.77  2.24  0.42  0.36 0.11 

C0 
B0(z0 
z0 c0 
c0) 

111 8.77 2.68  0.47  0.36 0.12 

C0 Z0 111 8.77 2.24  0.45  0.36  0.12 

Z0 
B0(z0 
z0 c0 
c0) 

111 8.77 2.43  0.43  0.36 0.12 

Z0 z0 111 8.77 1.82  0.41  0.36 0.11 
Table 7.5: Throughput for the Compression/Encryption/Data Hiding system 
using different keys (Number of iterations = 1 and video resolution 64x64) 

 

Key1 Key2 
Decompres

sion 
Subsystem 

(MB/sec) 

Decryptio
n 

Subsyste
m 

(MB/sec) 

Data 
UnHiding 
Subsyste

m 
(MB/sec) 

Decompres
sion 

Decryption 
Data 

Unhiding 
System 

(MB/sec) 

c0 C0 9.34 0.31 1.71 0.17 
B0(B0(c0 
c0 c0 c0) 
c0 c0 c0) 

Z0 9.34 0.29 1.71 0.11 

c0 
B0(z0 
z0 c0 
c0) 

9.34 0.29 1.71 0.16 

c0 z0 9.34 0.29 1.71 0.16 

z0 
B0(z0 
z0 c0 
c0) 

9.34 0.28 1.71 0.15 

z0 z0 9.34 0.28 1.71 0.15 
Table 7.6: Throughput for the Decompression/Decryption/Data Unhiding 

system using different keys (Number of iterations = 1 and video resolution 
64x64) 
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Concluding, the results from the above tables show that even though the 

implementation with the Stretch Technology gives lower throughput for each 

subsystem than the previous implementations with only reconfigurable logic, 

the system-level throughput can be adequate for real applications. Apart from 

that, this thesis’ architecture we achieved to embed the entire SCAN 

Algorithm in a low-cost chip, Table 7.8, like that of S5000 processors of 

Stretch Technology. 

 The cost of the chips is shown in Table 7.8. Whereas, in previous 

studies of ours, each of two major components required a Xilinx Virtex II, the 

integrated design. 

 

Reconfigurable 
unit 

Number of 
used 

Arithmetic 
Units 

(Total AUs: 
8192) 

Percentage 
of utilization 

of AUs 

Number of 
used Multiply 

Units 
(Total MUs: 

16384) 

Percentage 
of 

utilization 
of MUs 

Compare unit 929 11.4 % 0 0 % 
Encoding unit 1941 23.7 % 1280 7.6 % 

Transformation 
unit 1126 13.7 % 0 0 % 

Read Pixels 
unit 161 2 % 0 0 

Substitution 
unit 858 10.5 % 6528 39.8 % 

Complexity 
unit 330 4 % 0 0 % 

Table 7.7: The percentage of utilization of reconfigurable part of the S5000 
Processor 

 

Name of chip Cost ( $ ) 

FPGA Virtex II PRO
Xilinx Inc. 

300 

S5000 processor 
Stretch Inc. 

<100 

Table 7.8: Cost of the chips that we 
 used for our implementations 

 
fits in a single Stretch S5000 integrated circuit. From a cost-performance point 

of view, the numbers can vary, depending on what we consider. E.g. a Virtex 

II for compression only delivers roughly ten times the performance of the 
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S5000 at three times the cost, however, given that there is a bottleneck in the 

next step of the process the compression alone is not a good metric. Taking 

into account that information hiding was never implemented in Virtex II 

technology it is sufficient to say that the contribution of this work is a different 

solution in the design space rather than an unequivocal preferred approach.  

 
7.2 Performance of the Smoothing, Edge detection and 

Colour segmentation system and comparison with 
software implementation 

 

 In this section there is a description of the performance of the 

embedded system that was designed as well as a description of the 

components, which are the smoothing, the edge detection and the colour 

segmentation algorithms of a colour image. In addition, there is a comparison 

of the throughput between the architecture of the system that was designed, 

the Stretch technology and an implementation of the algorithm with Matlab 

toolbox. 

 As mentioned above, there is no hardware implementation of these 

three algorithms and therefore a new implementation of the algorithms was 

designed using the toolbox of Matlab. First, the toolbox of Matlab was chosen 

for the comparison with the hardware-software implementation as this tool is 

used widely for image applications. Second, Matlab offers quick methods of 

processing groups of numbers, pixels in our case, avoiding loops which in 

software are time consuming.  Third, although the toolbox of Matlab is 

implemented with Java, which is a time consuming programming language, in  

our comparisons, only the time that the processor (Pentium D 2.8 GHz ) 

processes the data and not the total execution time is  taken  into account.  
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Figure 7.3: The initial colour image 

 

 The system was tested with a medium resolution colour image (280 x 

280), which is shown in Figure 7.3. This image was chosen because there 

are objects of the same colour touching each other and as a result it is one of 

the most difficult cases for the algorithm to separate the different objects in 

image. Each step of the algorithm (smoothing, edge detection and colour 

segmentation) resulted to images which are presented in this section. The 

results from Matlab implementation have a small number of differences with 

those from the hardware architecture due to the nature of the algorithms. 

Some of the implemented algorithms compute floating point values which can 

not easily be represented in hardware and as a result there was loss of 

definitude in the final results of Stretch implementation.  

 First, the image of Figure 7.3 was put as input both to the software and 

to reconfigurable-software systems. These systems are separated into three 

independent parts, smoothing, edge detection and colour segmentation part. 

The results from each one of these parts are inputs to the next parts of the 

system. The intercalary results of the independent parts are presented in 

Figures 7.4, 7.5 and 7.6. In these figures there are also the results of the 

Matlab implementation, where the small differences, as explained above, are 

observable.  

 Table 7.8 shows the comparison of the CPU time and the throughput 

for each subsystem independently and for the whole system, between the 

implementation with Matlab toolbox and the reconfigurable-software Stretch 
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architecture. First, the results show that the most compute intensive part of 

the three algorithms is the colour segmentation. Second, it is clear that the 

architecture of the system implemented with reconfigurable-software 

technology gives better throughput and lower execution CPU time for all the 

subsystems and for the total system than a toolbox which is widely used for 

these applications, as Matlab toolbox. Third, the heaviest computationally 

algorithm of this system is the colour segmentation and it can be explained by 

the fact that in that subsystem the  image is scanned many times and it is 

processed repeatedly until all the pixels to belong to an object.  

MATLAB 
Toolbox 

Stretch 
Technology 

System 
CPU 
time 
(sec) 

Throughput 
(KB/sec) 

CPU 
time 
(sec) 

Throughput 
(KB/sec) 

Comparison 
Implementation 

w/ Stretch 
Vs. 

Implementation 
w/ Matlab 

Smoothing 
Subsystem 40.84 5.62 1.61 142.66 25x 

Edge 
Detection 

Subsystem 
47.63 4.82 11.68 19.67 4x 

Color 
Segmentation 

Subsystem 
109.23 2.10 19.82 11.58 5.5x 

Total 
Architecture 197.7 1.16 33.11 6.94 6x 
Table 7.8: The CPU time (sec) and the throughput (MB/sec) for each one of the 

subsystems for the two different implementations (Stretch vs. Matlab) 
 

. 
Reconfigurable 

unit 

Number of 
used 

Arithmetic 
Units 

(Total AUs: 
8192) 

Percentage 
of utilization 

of AUs 

Number of 
used Multiply 

Units 
(Total MUs: 

16384) 

Percentage 
of utilization 

of MUs 

Smoothing 
unit 6019 73.5 % 15168 92.6 % 

Edge 
Detection unit 5222 63.4 % 3264 19.9 % 

Colour 
Segmentation 

unit 
2227 27.2 % 10944 66.8 % 

Table 7.9: The percentage of utilization of reconfigurable part of the S5000 
processor for Smoothing, Edge detection and Colour segmentation of a colour 

image 
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Figure 7.4a: Smoothed colour image 
using Matlab 

Figure 7.5b: Smoothed colour image 
using Stretch technology 

 
 Table 7.9 shows the results of usage for the reconfigurable part of 

S5000 processor. Remarkable is the fact that the utilisation of FPGA in the 

S5000 processor is more than 100%, which reveals the fact that there is a 

swap in configurations of the reconfigurable parts. It is important to mention 

that this swap time is included in CPU time as described in the above tables. 

Finally, another important observation is the high utilisation and use of the 

reconfigurable part which leads to the reduction of execution time and as a 

result to the increase of the throughput for the system. 

Figure 7.5a: Edge detected image 
using Matlab 

Figure 7.5b: Edge detected image 
using Stretch technology 
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Figure 7.6a: Edge detected image 
using Matlab 

Figure 7.6b: Colour segmented image 
using Stretch technology 

 

 Concluding, the results from the above tables show that the 

implementation with the Stretch Technology gives higher throughput for the 

total system than the software implementation with Matlab toolbox. The 

remarkable issue in this implementation is the implementation of the three 

algorithms with a cheap S5000 processor and as a result the performance of 

the system can be used in real time systems.  
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Chapter 8  
 
Conclusions and future work 
 

 This chapter describes some points of this project that could be done 

as future work in a possible extension of this work. Finally, in this section 

there is a more profound comparison between the three different architectural 

routes that were used or compared in this work.  

 

8.1 Conclusions 
 
 The main contribution of this work was the complete implementation of 

a compress/encrypt/information hide system and smoothing, edge detection 

and colour segmentation algorithms in a low cost core. The mapping of the 

entire system on the Stretch technology is quite a departure from our previous 

designs in terms of cost-performance, as well as, the level of complexity that 

designs can have. The C-based design flow proved to be easy to master and 

quite effective, although the lack of ability to intervene in the low-level FPGA 

design was at times constraining. The system-level performance met our 

expectations and the ability to put the entire design on the chip, was 

somewhat of a surprise, given the hardware complexity of the previous 

designs, with hand-optimized VHDL code no less. 

 Another important contribution of this work is the comparison of three 

different implementations of the same algorithms. This makes clear the 

differences between the Stretch solution, the FPGA solution and the Matlab 

solution. In addition to this, there is a comparison between the reconfigurable-

only designs, the software-reconfigurable designs and the software-only 

designs. The differences as well as the comparison among the different 

technologies are shown in Table 8.1 

 As described in the table below, each of these three technologies has 

both advantages and disadvantages. The new technology of Stretch offers  
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Stretch 
Technology 

FPGA 
Technology 

Matlab 
Toolbox 

Design with 
C/C++ language 

Typical design 
with 

VHDL/Verilog 
language 

(higher flexibility 
at higher design 

time) 

Design with 
Matlab language  

Low cost 
( about $100) 

Medium – high 
cost 

( >= $300) 
Expensive tool 

No explicit control 
of Reconfigurable 

part  
of S5000 

processors 

Control of low 
level  
parts 

No reconfigurable 
part, only 
software 

Easy and quick 
debugging 

Time consuming 
and difficult 
debugging  

Easy and quick 
debugging 

Easy development 
and  

quick time to 
market 

Not very easy 
development 
and time to 

market 
Easy development 

Complete System  
Visibility 

Limited System 
Visibility 

Limited System 
Visibility 

Good 
performance of  

designs 

Excellent 
performance of  

designs 

Good 
performance of 

designs 
Table 8.1: A table-comparison between three different technologies 

 

easy implementation with C/C++ language, very easy and quick debugging as 

the designer can run his code line-by-line and very quickly and as a result the 

final implementation can be developed in a very small period of time. In 

addition to these, through Stretch technology the designer can have a 

complete system visibility, low cost of designs and generally a good 

performance of his designs. On the other hand, the FPGA technology offers 

the absolute control of the design, even in low levels like memories, FIFOs 

etc., and better performance of every other software and DSP solution. 

Concluding, the Matlab toolbox offers easy development and quick 

implementation. However, it is an expensive tool and it does not have such 

good performance as hardware implementations.  
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8.2 Future work 
 

 This project is almost a complete work whereas there are some points 

that can be extended in order to achieve better results and more 

comparisons. Below there are some ideas that can be proposed to extend the 

subject of this work: 

 

• In the previous chapters for the SCAN compression/encryption/data hiding 

system there is a comparison between the architecture implemented with 

S5000 Stretch processors towards the previous reconfigurable 

implementations. A new extension on this part of the project could be the 

implementation of the above algorithm with a typical microprocessor or 

DSP and the performance comparison with the previous architectures.  

• The Automatic Recognition Algorithm consists of many steps. The first 

three of them are the smoothing, edge detection and colour segmentation 

algorithm. The implementation of the rest steps of the algorithm and 

embedding the whole system in a S5000 processor would provide a 

complete chip which could be used as a black box in a bigger system. 

• The ATR algorithms were implemented in software using Matlab because, 

as explained in the previous sections, Matlab is a toolbox which is widely 

used in image processing. A new implementation of the same algorithms 

using another programming language, as C/C++, could give us not only a 

comparison between these two different software implementations but  

also would increase the number of  comparisons between the 

implementations. 

• In the future, we need to further optimize the design of SCAN algorithm 

and increase the number of SCAN keys that are supported in 

reconfigurable-software design. 
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