
Design and Implementation of the OpenMP 4.0

Task Dataflow Model for Cache-Coherent

Shared-Memory Parallel Systems in the Runtime

of the OMPi OpenMP/C Compiler

Technical University of Crete

School of Electronic and Computer Engineering

Anastasios Souris

September 13, 2015

2

Contents

1 Introduction 11

1.1 Fork-Join Parallelism in OpenMP 11

1.2 Task Parallelism in OpenMP . 16

1.2.1 Task Synchronization . 17

1.2.2 Motivation for Dataflow 18

1.3 Thesis Contribution and Organization 19

2 Architectural Background 21

2.1 Components of a Cache-Coherent Shared-Memory Parallel System 21

2.2 Shared Memory Correctness . 23

2.2.1 Cache Coherency . 23

2.2.2 Memory Consistency . 25

2.2.3 Examples of Memory Consistency Models 28

2.3 Architectural Primitives for Concurrency 30

2.3.1 Blocking Concurrent Algorithms 31

2.3.2 Non-Blocking Concurrent Algorithms 32

2.4 Concurrent Programming in the C Programming Language . . . 36

2.4.1 Synchronization Operations and Memory Orders 38

2.5 Notes . 43

3 The OpenMP 4.0 Task Dataflow Model 45

3.1 The Task Graph . 45

3.2 Algorithms for Maintaining Dependencies at Runtime 52

3.2.1 The Tickets Scheme . 53

3.2.2 The List Scheme . 54

3.3 Notes . 62

4 A Lock-Free List Scheme 63

4.1 Internal Representation of the task graph 63

4.2 The algorithm implementing the top-level issue operation 67

4.3 The algorithm implementing the issue operation 68

4.4 The algorithm implementing the release operation for a writer task 71

4.5 The algorithm implementing the release operation for a reader-
only task . 74

4.6 Notes . 75

3

4 CONTENTS

5 Performance Evaluation 77
5.1 Micro Benchmarks . 77

5.1.1 Single-Tag Case . 78
5.1.2 Oldest-Only . 81
5.1.3 Top Level Issue . 81

5.2 Application Studies . 82
5.2.1 Recurrence . 83
5.2.2 Strassen Multiplication 90
5.2.3 LU Factorization . 93
5.2.4 Comparison to Other OpenMP 4.0 Task Dependencies

Runtimes . 98

6 Conclusion 101
6.0.5 Future Work . 101

List of Figures

1.1 The master thread first forks a parallel team of 5 threads A,B,...,E.
Then, it forks another parallel team of 2 threads A,B. In each of
the two parallel teams, the threads perform independent units of
work. 12

1.2 OpenMP parallel-construct example 14
1.3 The parallel loop construct, which has semantics equivalent to a

parallel directive immediately followed by a loop construct, dis-
tributes the iterations of the loop 1 to n-1 to the members of the
parallel team. 15

1.4 The parallel sections construct, which has semantics equivalent to
a parallel directive immediately followed by a sections construct
in the same way as the parallel loop construct, distributes the
function invocations A(), B() and C() to the members of the
parallel team. 15

1.5 The printf() statement associated with the single construct will
be executed exactly once and, thus, the program will output the
string Hello World! once. 15

1.6 Due to the single construct some member of the parallel team will
traverse the list generating an explicit task that calls the function
process() for all nodes of the list. The tasks shall be executed by
the members of the parallel team.The implicit barrier at the end
of the single construct guarantees that all task will be executed
and thus the function process() applied to all nodes of the list
before the function returns. 17

1.7 A call to fib(n) generates two tasks: the first task computes fib(n-
1) and the second task computes fib(n-2). The parent task has to
wait for those two tasks to complete using the taskwait construct
before it can sum the partial results and return the final answer. 18

1.8 Each rectangle represents a task and an arrow from task A to task
B means that task A must execute before task B. A task-based
implementation of this task graph using the taskwait construct
would first execute the red task, then the green tasks and, at last,
the blue tasks, thereby loosing parallelism because each blue task
can be executed after the two green tasks on the same row and
column have terminated. 19

2.1 A Uniform Memory Access machine consisting of k memory mod-
ules and n processor nodes . 22

5

6 LIST OF FIGURES

2.2 A Non-Uniform Memory Access machine consisting of n NUMA
nodes. 22

2.3 Specialized hardware primitives to support non-blocking synchro-
nization for n ≥ 2 processes. 34

2.4 A construction of a consensus object for n = 2 processes (pi and
pj) using a fetch&add() object X. The first fetch&add() operation
returns 0 and assigns 1 to X, whereas the second fetch&add()
operation returns 1 and assigns 2 to X. The process that receives
a return value of 0 knows that it is the first process to arrive.
The value that is returned by the propose() operation is the value
proposed by the process that arrived first. 35

2.5 A construction of a consensus object for n processes using a
compre&swap object X. The object X together with the com-
pare&swap operation is used to determine which process arrives
first. That process assigns its identity in X (the compare&swap()
operations for the rest of the processes fail because the value of
the variable X is no longer -1). 35

2.6 Sequential Consistent Memory Ordering Example in C 40
2.7 A producer/consumer example in C 42
2.8 A single-producer/multiple-consumer example in C showing a re-

lease sequence . 43

3.1 In this example, there exists a true dependence between the two
generated tasks. Hence, the first task is executed before the sec-
ond and the printf() statement is guaranteed to output the value
2 for x. 47

3.2 In this example, there exists a anti dependence between the two
generated tasks. Hence, the first task is executed before the sec-
ond and the printf() statement is guaranteed to output the value
1 for x. 48

3.3 In this example, there exists an output dependence between the
two generated tasks. Hence, the first task executes before the
second task. For this reason, the second task is the last task that
writes to x and the printf statement is guaranteed to output the
value 2 for x. 48

3.4 On the left, an example task sequence with memory usage an-
notations on tag A. On the middle the task graph that results
from that task sequence illustrating the dependencies. An arrow
from a source task to a destination task means that the source
task must execute before the destination task. On the right, the
generations for that task graph. 51

3.5 The list representation of the task graph for the List Scheme. . . 55
3.6 The data structures for the List Scheme. 56
3.7 The issue operation for the List Scheme 59
3.8 The release operation for the List Scheme 60
3.9 The problem with the dependency counter of a task in the general

case of multiple tags. 62

4.1 The list representation of the task graph for the Lock-Free List
Scheme. 64

LIST OF FIGURES 7

4.2 Data structures used for the lock-free list scheme 65

4.3 The algorithm implementing the top-level issue operation with a
sequential consistent memory model 67

4.4 The algorithm implementing the issue operation with a sequential
consistent memory model . 70

4.5 The algorithm implementing the release operation for a writer
task with a sequential consistent memory model 73

4.6 The algorithm implementing the release operation for a reader-
only task with a sequential consistent memory model 75

5.1 Latency results for the Single-Tag Microbenchmark with (W,R)
= (2,8) . 78

5.2 Latency results for the Single-Tag Microbenchmark with (W,R)
= (8,2) . 79

5.3 Latency results for the Single-Tag Microbenchmark with (W,R)
= (5,5) . 79

5.4 Latency results for the Single-Tag Microbenchmark with three
corner cases . 79

5.5 Latency results for the Single-Tag Microbenchmark with Writer-
Prob = 0.2 . 80

5.6 Latency results for the Single-Tag Microbenchmark with Writer-
Prob = 0.5 . 80

5.7 Latency results for the Single-Tag Microbenchmark with Writer-
Prob = 0.8 . 80

5.8 Latency results for the Top Level Issue Microbenchmark 81

5.9 Data dependencies for the Recurrence application for a matrix
with N = 8 . 83

5.10 Straighforward sequential implementation for the recurrence ap-
plication. The parameter array is a pointer to a 2-dimensional
matrix with row size and column size equal to size. The matrix
is stored in row-major order and, thus, element (i,j) is accessed
as array[i*size + j]. 84

5.11 Parallelization strategy for the Recurrence application for a ma-
trix with N = 8 . 84

5.12 OpenMP task implementation for the Recurrence application us-
ing the taskwait construct for synchronization. 86

5.13 OpenMP task dataflow annotations for the Recurrence applica-
tion with a traversal in row order. 88

5.14 Latency results for OMPi (task versus task-dep implementation)
for the recurrence application . 89

5.15 Latency results for OMPi (task versus task-dep implementation)
for the recurrence application . 89

5.16 Latency results for OMPi (task versus task-dep implementation)
for the strassen application . 90

5.17 Latency results for OMPi (task versus task-dep implementation)
for the strassen application . 91

5.18 Latency results for OMPi (task versus task-dep implementation)
for the strassen application . 91

8 LIST OF FIGURES

5.19 Parallelization patterns for the task and task-dataflow implemen-
tation of the Strassen Multiplication benchmark. Each node de-
notes a computation on the input matrices. The task-dataflow
implementation generates the graph and performs one taskwait
statement at the end. The task implementation generates the
graph level by level as shown by the horizontal lines (that is,
each horizontal line is a taskwait statement). 92

5.20 Parallelization strategy for the LU application 93
5.21 Task Implementation for the LU kernel 94
5.22 Task Dataflow Implementation for the LU kernel 95
5.23 Latency results for OMPi (task versus task-dep implementation)

for the LU application . 96
5.24 Latency results for OMPi (task versus task-dep implementation)

for the LU application . 96
5.25 Latency results for OMPi (task versus task-dep implementation)

for the LU application . 97
5.26 Latency results for OMPi (task versus task-dep implementation)

for the LU application . 97
5.27 Latency results for Recurrence application for various OpenMP

runtimes . 98
5.28 Latency results for Strassen application for various OpenMP run-

times . 99
5.29 Latency results for Strassen application for various OpenMP run-

times . 99
5.30 Latency results for Strassen application for various OpenMP run-

times . 99
5.31 Latency results for LU application for various OpenMP runtimes 100
5.32 Latency results for LU application for various OpenMP runtimes 100
5.33 Latency results for LU application for various OpenMP runtimes 100

List of Tables

2.1 A procuder/consumer idiom. Core A first populates some data
using a store operation (S1) and then publishes the data by set-
ting a global flag to true with a second store operation (S2). Core
B, awaits Core A to publish the data by continuously reading the
value of the shared flag (L1) until it becomes true (B1). Then,
Core B proceeds to read the shared data (L2). The question is
whether the data read by Core B (L2) contains the value 1 or 0. 25

2.2 Core A first writes variable x and then reads variable y, whereas
Core B first writes variable y and then reads variable x. On the
absence of memory reorderings, one would expect that at the end
at least one of the local y and local x variables is 1, because if,
for example, local y would be 0, that would mean that Core B
hasn’t yet executed S2 and, as a result, when Core B arrives and
executes S2 and then L2, Core A would have already executed
S1 and this means that Core B would read 1 from x. On the
other hand, if the hardware reorders the operations S1-L1 and
S2-L2, then both cores could first load the initial values of x and
y and then write the new values to them. As a result, store-
load reordering in this example permits an outcome of (local y,
local x) = (0,0). Such a reordering is possible for Total Store
Order because the store operations S1 and S2 could reside in the
store buffer when the load operations L1 and L2 are performed. . 26

2.3 Modified version of the producer/consumer idiom. 29
2.4 The consensus hierarchy . 34

3.1 Dependencies between two sibling tasks. 47
3.2 Dependencies between two sibling tasks when renaming is applied

to out annotations. 49
3.3 Dependencies between two sibling tasks when renaming is applied

to both out and inout annotations. 49

9

10 LIST OF TABLES

Chapter 1

Introduction

OpenMP provides an application programming interface (API) for shared-memory
parallel programming. It extends the C/C++ and Fortran programming lan-
guages with directives that the programmer can use to express fork-join and
task parallelism inherent in the algorithm to the OpenMP compiler. In C, the
programming language used for this thesis, OpenMP directives are specified
with the #pragma preprocessor directive mechanism that is used to access
compiler-specific preprocessor extensions for the C compiler. The syntax of an
OpenMP directive informally is as follows:

#pragma omp directive-name [clause[[,] clause ...] new-line

Each OpenMP directive has specific clauses that can be specified in order to
adjust the behaviour of the directive. In addition, OpenMP provides a collec-
tion of library routines collectively knows as the OpenMP API runtime library,
as well as environment variables that affect the execution environment of an
OpenMP program.

1.1 Fork-Join Parallelism in OpenMP

In the fork-join model of parallel computing, a master thread creates a parallel
team comprised of itself and zero or more other threads at a fork-point to
collectively execute independent units of work. After the completion of the
parallel computation, the members of the parallel team rendezvous at a join-
point. Thereafter, the master thread continues execution, whereas the rest are
destroyed. Figure 1.1 illustrates the concept of fork-join parallelism.

11

12 CHAPTER 1. INTRODUCTION

Figure 1.1: The master thread first forks a parallel team of 5 threads A,B,...,E.
Then, it forks another parallel team of 2 threads A,B. In each of the two parallel
teams, the threads perform independent units of work.

A OpenMP program starts execution with a single OpenMP thread called the
initial thread. A OpenMP thread is an execution entity with a stack and as-
sociated static memory called threadprivate memory that is managed by the
OpenMP runtime system. A fork-point is expressed with the parallel con-
struct. There is an implied barrier at the end of the parallel construct which
serves as the join-point.

1.1. FORK-JOIN PARALLELISM IN OPENMP 13

The syntax of the parallel construct is as follows:

#pragma omp parallel [clause[[,] clause ...] new-line
structured-block

where clause is one of the following:

• if(scalar-expression)

• num threads(integer-expression)

• default(shared—none)

• private(list)

• firstprivate(list)

• shared(list)

• proc bind(master—close—spread)

Whenever a OpenMP thread encounters a parallel construct, it creates a par-
allel team, whose size is determined by the num threads clause and if clauses,
and becomes the master of the new team. The threads comprising the parallel
team execute the structured-block and are assigned consecutive identifiers rang-
ing from 0 for the master thread up to one less than the number of threads in the
parallel team for the rest. The runtime library routine omp get num threads()
returns the number of threads in a parallel team and the runtime library routine
omp get thread num() returns the identifier within the current parallel team of
the calling thread.

All code encountered during execution of the structured-block is referred to
as a parallel region. The data-sharing attributes of variables referenced in the
parallel region are determined with the default, private, firstprivate and shared
clauses. Briefly, a variable referenced in the parallel region is either shared or
private to the members of the parallel team. If a variable is listed in a shared
clause it is shared, whereas if it is listed in a private or firstprivate clause it is
private. The value of the variable when the parallel construct is encountered is
irrelevant in the case of the private clause, but when the firstprivate clause is
used the current value of the variable is used to initialize the private copies of
the variable for the members of the parallel team. The default clause may be
used to specify all variables referenced in the parallel region and not listed in a
private, firstprivate or shared clause to be shared. The purpose of the proc bind
clause is to control the binding of the OpenMP threads comprising the parallel
team to the available hardware processing units. Figure 1.2 shows an example
of the parallel construct. Function sub creates a parallel team that share the
variables x and npoints, and have private copies of the variables iam, nt, ipoints
and istart. The members of the parallel team execute the same structured-block.
Each member of the parallel team, depending on its identifier iam, selects a sub-
set of the array pointed to by x starting at index istart with length ipoints to
process with the subdomain function.

14 CHAPTER 1. INTRODUCTION

1 #include <omp.h>

2
3 void subdomain(float *x, int istart, int ipoints)

4 {
5 int i;

6
7 for (i = 0; i < ipoints; i++)

8 x[istart+i] = 123.456;

9 }
10
11 void sub(float *x, int npoints)

12 {
13 int iam, nt, ipoints, istart;

14
15 #pragma omp parallel default(shared) private(iam, nt, ipoints, istart)

16 {
17 iam = omp get thread num();

18 nt = omp get num threads();

19 ipoints = npoints/nt; /* size of partition */

20 istart = iam*ipoints; /* starting array index */

21 if (iam == nt − 1) /* last thread may do more */

22 ipoints = npoints − istart;

23 subdomain(x, istart, ipoints);

24 }
25 }
26
27 int main()

28 {
29 float array[10000];

30
31 sub(array, 10000);

32
33 return (0);

34 }

Figure 1.2: OpenMP parallel-construct example

In order to support work-sharing between the members of the parallel team,
OpenMP provides work-sharing constructs (refer to figures 1.3, 1.4 and 1.5 for
examples):

Loop Construct The loop construct specifies that the iterations of one or
more associated loops may be distributed to the members of the parallel
team for parallel execution.

Sections Construct The sections construct allows for the distribution of a
set of structured-blocks for parallel execution among the members of the
parallel team.

Single Construct The single construct specifies that the associated structured-
block must be executed exactly once by some member of the parallel team.

1.1. FORK-JOIN PARALLELISM IN OPENMP 15

1 void parallel loop example(int n, float *a, float *b)

2 {
3 int i;

4
5 #pragma omp parallel for

6 for (i = 1; i < n; ++i)

7 {
8 b[i] = (a[i] + a[i−1])/2.0;

9 }
10 }

Figure 1.3: The parallel loop construct, which has semantics equivalent to a
parallel directive immediately followed by a loop construct, distributes the iter-
ations of the loop 1 to n-1 to the members of the parallel team.

1 void parallel sections example()

2 {
3 #pragma omp parallel sections

4 {
5 #pragma omp section

6 A();

7
8 #pragma omp section

9 B();

10
11 #pragma omp section

12 C();

13 }
14 }

Figure 1.4: The parallel sections construct, which has semantics equivalent to a
parallel directive immediately followed by a sections construct in the same way
as the parallel loop construct, distributes the function invocations A(), B() and
C() to the members of the parallel team.

1 void single example()

2 {
3 #pragma omp parallel

4 {
5 #pragma omp single

6 {
7 printf("Hello World!“n");

8 }
9 }

10 }

Figure 1.5: The printf() statement associated with the single construct will
be executed exactly once and, thus, the program will output the string Hello
World! once.

16 CHAPTER 1. INTRODUCTION

1.2 Task Parallelism in OpenMP

The task parallel programming model is well-suited for irregular, dynamic and
unstructured parallelism. To enhance programmer productivity, task paral-
lelism requires the programmer only to identify independent units of work called
tasks that are dynamically generated and can be executed asynchronously, and
not to concern themselves with scheduling those tasks. OpenMP provides sup-
port for task parallelism through the usage of the task construct that defines an
explicit task which essentially is a unit of parallel work that may be executed by
any member of the parallel team. The syntax of the task construct for OpenMP
3.1 is:

#pragma omp task [clause[[,] clause ...] new-line
structured-block

where clause is one of the following:

• final(scalar-expression)

• untied

• default(shared—none)

• mergeable

• private(list)

• firstprivate(list)

• shared(list)

The structured-block associated with the task construct defines the unit of par-
allel work that is generated. The OpenMP tasking model allows the execution
of the generated task to be suspended in task scheduling points, in which case
by default the suspended task can only be resumed by the thread that started
its execution, unless the untied clause is specified that allows any thread in the
parallel team to resume the task after its suspension. The data-environment
of the task can be controlled with the default, private, firstprivate and shared
clauses similarly to the parallel construct. When an if clause is present and
its associated scalar-expression evaluate to true, then the task is immediately
executed. The final clause with a true scalar-expression indicates that all tasks
generated by the newly created task must be executed sequentially. The merge-
able clause indicates that the generated task may share its data-environment
with its parent task (the task that generated the new task). Tasks that are
children of the same task are called sibling tasks.

1.2. TASK PARALLELISM IN OPENMP 17

1.2.1 Task Synchronization

The OpenMP 3.1 version of the OpenMP standard provides the following means
for task synchronization:

Explicit and Implicit Barriers There exists an implicit barrier at the end of
the parallel, for, single and sections construct unless a nowait clause is
specified for that construct. An explicit barrier is specified by the barrier
directive which is a stand-alone OpenMP directive with no associated
structured-block. The syntax of the barrier construct is: #pragma omp
barrier new-line

The taskwait construct The taskwait construct suspends the execution of
the task until all tasks that it has generated up to the point where the
taskwait construct is placed are completed. The syntax of the taskwait
construct is: #pragma omp taskwait new-line

Figure 1.6 shows an example of a C function that generates explicit tasks using
the OpenMP task construct to perform some operation on all elements of a
list and relying on implicit barriers for task synchronization Figure 1.7 shows a
simple implementation of a function that computes the n-th fibonacci number
using tasks and the taskwait construct for task synchronization.

1 typedef struct node node;

2
3 struct node

4 {
5 int data;

6 node *next;

7 };
8
9 void process(node *p)

10 {
11 /* do work here */

12 }
13
14 void increment list items(node *head)

15 {
16 #pragma omp parallel

17 {
18 #pragma omp single

19 {
20 node *p = head;

21
22 while (p)

23 {
24 #pragma omp task

25 process(p);

26
27 p = p−>next;

28 }
29 }
30 }
31 }

Figure 1.6: Due to the single construct some member of the parallel team will
traverse the list generating an explicit task that calls the function process() for
all nodes of the list. The tasks shall be executed by the members of the parallel
team.The implicit barrier at the end of the single construct guarantees that all
task will be executed and thus the function process() applied to all nodes of the
list before the function returns.

18 CHAPTER 1. INTRODUCTION

1 int fib(int n)

2 {
3 int i, j;

4
5 if (n<2)

6 return n;

7 else

8 {
9 #pragma omp task shared(i)

10 i = fib(n−1);

11
12 #pragma omp task shared(j)

13 j = fib(n−2);

14
15 #pragma omp taskwait

16 return i+j;

17 }
18 }

Figure 1.7: A call to fib(n) generates two tasks: the first task computes fib(n-1)
and the second task computes fib(n-2). The parent task has to wait for those
two tasks to complete using the taskwait construct before it can sum the partial
results and return the final answer.

1.2.2 Motivation for Dataflow

OpenMP 3.1 lacks the ability to specify point-to-point synchronization, that is
synchronization between specific tasks that constraints the order of execution
of those tasks. The advantages of point-to-point synchronization over global
synchronization that is currently available by means of implicit and explicit
barriers, as well as the taskwait construct, are:

Parallelism Global synchronization often inhibits the parallelism inherent
in the algorithm because even though a task may have a dependency on
only some of the previously generated tasks, the OpenMP programmer is
enforced to insert either a barrier or a taskwait prior to the generation of
that task which has the effect of waiting on the completion of all previously
generated tasks. Figure 1.8 shows the dependencies between the tasks of a
realistic application that we shall revisit later. Each rectangle represents
a task and an arrow from task A to task B represents a dependency of B
on A, that is that B cannot start execution before A terminates. A task-
based implementation using the taskwait construct for synchronization
would first execute the upper left task (shown in red). Then, all the tasks
on the first row and on the first column can execute (shown in green).
Before any of the blue tasks can be generated the programmer is enforced
to insert a taskwait thereby waiting on the completion of all greek tasks
before it can generate the blue tasks. This solution doesn’t exploit all the
parallelism in this task graph, though, because observe that any blue task
is ready to execute when the green tasks on the same row and column
have terminated and not after the completion of all green tasks.

Synchronization Cost Especially compared to barrier synchronization us-
ing either implicit or explicit barriers, point-to-point synchronization in-
curs significantly less synchronization costs, due to the fact that the for-
mer requires synchronization between all members comprising the parallel
team, whereas the latter only between the participant tasks.

1.3. THESIS CONTRIBUTION AND ORGANIZATION 19

The OpenMP 4.0 standard provides support for point-to-point synchroniza-
tion by means of the task dataflow parallel programming model which will be
explained thoroughly in chapter 3.

Figure 1.8: Each rectangle represents a task and an arrow from task A to task
B means that task A must execute before task B. A task-based implementation
of this task graph using the taskwait construct would first execute the red task,
then the green tasks and, at last, the blue tasks, thereby loosing parallelism
because each blue task can be executed after the two green tasks on the same
row and column have terminated.

1.3 Thesis Contribution and Organization

The purpose of this thesis is the implementation of the OpenMP 4.0 task
dataflow model for shared-memory parallel systems in the runtime of the open
source OMPi OpenMP/C compiler. This thesis is organized as follows:

Chapter 2 : Architectural Background This chapter provides necessary back-
ground on shared-memory parallel systems that is needed for the design
and implementation of the task dataflow model in the runtime of the OMPi
OpenMP/C Compiler.

Chapter 3 : The OpenMP 4.0 Task Dataflow Model This chapter explains in
detail how the OpenMP 4.0 standard supports point-to-point synchroniza-
tion by means of the task dataflow programming model.

Chapter 4 : A Lock-Free List Scheme In this chapter i describe a variant of
the scheme that is presented in Chapter 3 which is lock-free.

Chapter 5 : Performance Evaluation The aim of this chapter is to evaluate
the effectiveness of the implementation through experiments on both micro
benchmarks and realistic applications (lu factorization, strassen multipli-
cation and a 2D recurrence application).

Chapter 6 : Conclusion This final chapter concludes this thesis.

20 CHAPTER 1. INTRODUCTION

Chapter 2

Architectural Background

This chapter provides the necessary background on cache-coherent shared-memory
parallel systems.

2.1 Components of a Cache-Coherent Shared-
Memory Parallel System

A generic cache-coherent shared-memory multiprocessor architecture consists of
processor nodes that are connected through an interconnection network. Each
processor node has a processor (P) and a cache hierarchy (C). The processor
(P) is equipped with one or more cores which may be multi- or single- threaded
and are either homogeneous or heterogeneous in their capabilities. A multi-core
processor is one with multiple cores on the same chip and is often referred to
as a Chip Multiprocessor (CMP). The cores on a CMP are connected through
on-die interconnects. The processors share the same global address space and
can load and store to any memory location via the interconnection network.
In a Uniform Memory Architecture (UMA) (see 2.1) all memory modules are
equally distant from every processor node. On the other hand, in a Non-Uniform
Memory Architecture (NUMA) (see 2.2), each processor node contains a local
memory module which it can access faster than the memory modules local to
other processor nodes. Consequently, memory access time in a NUMA machine
depends on the location of the memory relative to the processor node issuing
the memory access. Typically, the topology of the interconnection network in a
UMA machine is a broadcast-based interconnection medium such as a bus. On
the contrary, NUMA machines often comprise of a large number of processor
nodes that need to be connected to the interconnection network and a bus is ill-
suited for this scenario. To increase memory bandwidth and decrease memory
latency NUMA machines employ a scalable interconnection network that ideally
provides bandwidth that scales linearly with the number of processor nodes and
memory access latency that grows sub-linearly with the number of processor
nodes.

21

22 CHAPTER 2. ARCHITECTURAL BACKGROUND

Figure 2.1: A Uniform Memory Access machine consisting of k memory modules
and n processor nodes

Figure 2.2: A Non-Uniform Memory Access machine consisting of n NUMA
nodes.

2.2. SHARED MEMORY CORRECTNESS 23

2.2 Shared Memory Correctness

In a shared memory architecture all cores have access to the same single shared
address space. Correctness in a shared memory architecture is defined by two
properties, namely coherence and consistency.

2.2.1 Cache Coherency

A cache is a fast local memory storage used by the processor to reduce mem-
ory access times, by storing copies of the recently and most frequently used
instructions and data from main memory. The processor cache is based on the
principles of spatial and temporal locality. Spatial locality means that if the
algorithm accesses memory location A, most probably it will access a location
nearby shortly after. Temporal locality is a property of algorithms that tend to
access the same working set repeatedly in a short period of time.

By storing the recently accessed data from main memory into the cache, the pro-
cessor takes advantage of the temporal locality of the algorithm. To provision
for spatial locality, the processor increases the granularity of data accessed from
main memory. Instead of fetching only the requested data from main memory,
the processor rather fetches a cache-line consisting typically of 64 bytes into the
cache. Moreover, the processor contains sophisticated prefetching mechanisms
that fetch memory locations from main memory to local cache before they are
requested thus minimizing memory access latency.

Every memory access to a memory location by the processor first consults the
cache and if that memory location resided in the cache then we have a cache-
hit. Otherwise, the processor incurs a cache-miss and must reach out to main
memory to fetch that memory location into the cache.

Coherency and Correctness Cache coherency deals with the issue of mul-
tiple copies of the same memory location in the local caches of different cores.
The problem is that if two different cores A and B load a memory location into
their local caches and one of them updates its own local copy, the local copy of
the other core is invalid, a undoubtedly undesirable situation.
To begin with, one should define precisely the requirements for coherency. In
order to define coherence, the lifetime of a memory location is divided into
epochs. In each epoch, either a single core may read and write to that memory
location or any core may read that memory location. Formally, coherence may
be defined by the following two invariants:

Single-Writer, Multipler-Reader (SWMR) Invariant For any memory location
A, at any given (logical) time, there exists only a single core that may write
to A (and can also read it) or some number of cores that may only read
A.

Data-Value Invariant The value of the memory location at the start of an
epoch is the same as the value of the memory location at the end of its
last read-write epoch.

24 CHAPTER 2. ARCHITECTURAL BACKGROUND

Intuitively, the coherence invariants state that a read from a memory location
obtains the value of the immediately preceding write to that memory location
in logical time, and that writes are performed sequenced as they are issued in
logical time.

To maintain the coherence invariants, the system implements coherence proto-
cols that are based on the idea of invalidation. In an invalidation-based cache-
coherence protocol, a store to a memory location A by some core causes the local
copies of that memory location in the other cores to be invalidated. Any access
to memory location A by a core is a cache-miss if either that memory location
is not cached in the core’s local cache or the local copy has been invalidated.
Otherwise, the access is a cache-hit. A non-scalable implementation of the in-
validation protocol is the snooping protocol for bus interconnection networks,
whereby each core monitors the bus for any request and takes proper action to
either invalidate or update the local cache if necessary. For non-bus intercon-
nection networks, a directory-based scheme is often employed for scalability. In
a directory-based scheme, there is a logical directory that contains information
on the local copies of each memory location. Typically, the logical directory
is partitioned in the memory modules and the state of a memory location is
located in the directory belonging to the same memory module as the memory
location. The directory keeps track, for each memory location, the core that
maintains the most recent copy of that memory location, called the owner core.
A read request consults the directory to find the owner core and then fetches
the value of the memory location from the owner core in case of a cache-miss.
A write request has to also update the directory to reflect the new owner of the
memory location.

Performance Implications of Cache Coherency To efficiently utilize the
cache hierarchy of the architecture, the algorithm must contain high degrees of
spatial and temporal locality. As fas as concurrency is concerned, the following
can be observed:

True Sharing True sharing occurs when different cores access the same
data. Performance, then, degrades for an algorithm performing lots of
store operations because these operations lead to cache invalidations and
cache-misses for later accesses by other cores. If true sharing cannot be
avoided it should be constrained within processor nodes since communi-
cation between cores inside a processor node is fast due to the shared last-
level cache, whereas communication between cores from different processor
nodes involves the interconnection network thus increasing the latency of
the access.

False Sharing The granularity of the cache coherency protocol is typically
the cache line size and not each individual memory location. As a result, if
core A accesses memory location X and core B accesses a different memory
location Y, but X and Y happen to coexist in the same cache-line, any
update from core A to X invalidates the local copy of Y for core B (and
vice-versa), thereby causing a cache-miss on the accesses of core B to Y
even though those cores do not access the same data. To avoid false-
sharing the data accessed by a core can be padded to fit a cahce-line.

2.2. SHARED MEMORY CORRECTNESS 25

2.2.2 Memory Consistency

A memory consistency model is a contract between the shared memory archi-
tecture and the programmer that defines how load and store operations relate
to each other.

The Need for a Memory Consistency Model. In order to understand
why a memory consistency model is necessary, we look at table 2.1 which is a
classic example of the popular producer/consumer idiom. The purpose of the
producer/consumer idiom is for one core, in this case core A, to pass some
data to another core, Core B in this example. This is done, by having the
producer core B first writing the data (S1) and then publishing the data by
setting a shared flag to true (S2). On the other hand, the consumer core B
waits until the shared flag becomes true (L1 and B1) and then reads the data
(L2). Normally, a programmer would expect that core B reads the value 1 from
data, because S1 precedes S2 and L2 is executed only after core B reads true
from flag at L1, meaning that at that time S1 precedes L1 which precedes L2
and, thus, S1 precedes L2 and, consequently, core B must read the value stored
to variable data by S1. However, the shared memory hardware may reorder
memory accesses, thus violating the aforementioned reasoning. As an example,
if the hardware reorders the store operations by core A, S1 and S2, it would no
longer be the case that S1 precedes S2 and core B could indeed read the old
value of the variable data.

Core A Core B
//Initially data = 0 and flag = false L1: local flag = flag;
S1: data = 1; B1: if (!local flag){ goto L1; }
S2: flag = true; L2: local data = data;

Table 2.1: A procuder/consumer idiom. Core A first populates some data using
a store operation (S1) and then publishes the data by setting a global flag to
true with a second store operation (S2). Core B, awaits Core A to publish the
data by continuously reading the value of the shared flag (L1) until it becomes
true (B1). Then, Core B proceeds to read the shared data (L2). The question
is whether the data read by Core B (L2) contains the value 1 or 0.

26 CHAPTER 2. ARCHITECTURAL BACKGROUND

Sources of Inconsistency First of all, accesses by some core to the same
memory location are required to be executed by the hardware in a manner that
coincides with the order they are issued by the program to preserve sequential
execution. Hence, reordering may occur only between memory accesses by the
same core to different memory locations. Considering only load and store op-
erations as memory accesses by some core, the possible ways that the hardware
may reorder these memory accesses are the following:

Store-Store Reordering Two store operations to separate memory locations
may be reordered if the core uses a non-FIFO write buffer and, as a conse-
quence, write operations depart from the write buffer in a order different
from the order in which they arrived in the first place. The write buffer,
which is also named store buffer, is explained later.

Load-Load Reordering An out-of-order core may execute two load opera-
tions on separate memory locations in a different order from the one they
were issued by the program, since from the core’s perspective there is no
data dependency between these two instructions. In the producer/con-
sumer example of table 2.1, reordering the load operations from core B,
L1 and L2, as in the example execution of L2, S1, S2 and L1, would result
again in core B loading the old value of data.

Load-Store and Store-Load Reordering These reorderings could arise due to
an out-of-order execution. Table 2.2 illustrates the effect of a store-load
reordering.

Last but not least, compiler optimizations can also result in memory opera-
tions being reordered.

Core A Core B
//Initially x = 0 //Initially y = 0
S1: x = 1 S2: y = 1
L1: local y = y; L2: local x = x;

Table 2.2: Core A first writes variable x and then reads variable y, whereas Core
B first writes variable y and then reads variable x. On the absence of memory
reorderings, one would expect that at the end at least one of the local y and
local x variables is 1, because if, for example, local y would be 0, that would
mean that Core B hasn’t yet executed S2 and, as a result, when Core B arrives
and executes S2 and then L2, Core A would have already executed S1 and this
means that Core B would read 1 from x. On the other hand, if the hardware
reorders the operations S1-L1 and S2-L2, then both cores could first load the
initial values of x and y and then write the new values to them. As a result,
store-load reordering in this example permits an outcome of (local y, local x)
= (0,0). Such a reordering is possible for Total Store Order because the store
operations S1 and S2 could reside in the store buffer when the load operations
L1 and L2 are performed.

2.2. SHARED MEMORY CORRECTNESS 27

Specification of Memory Consistency Models To reason about memory
consistency models we define the following orders on the memory accesses per-
formed by a single core. We use L(a) and S(a) to denote a load operation and
a store operation, respectively, on memory location a.

Program Order A total order on the memory operations issued by some
core that reflects the order in which that core issues these memory oper-
ations. Program order is denoted by <p: L(a) <p L(b) means that some
core issued a load operation on memory location a, prior to issuing a load
operation on memory location b.

Global Memory Order A total order on the memory operations of all cores
as executed by the hardware. Global memory order is denoted by <m:
L(a) <m L(b) means that the load operation on memory location a by
some core is executed before the load operation on memory location b by
the same core.

Then, to define a memory consistency model it suffices to specify whether the
program order is respected by the global memory order for each pair of memory
operations possible (load-load, load-store, store-load, store-store).

Memory Fences Considering the possibility of memory reorderings, the ar-
chitecture must provide the programmer with primitives that restrict the amount
of memory reordering performed by the hardware, so that the programmer can
correctly implement programs like the producer/consumer idiom we illustrated
before. These primitives are called memory fences and, in principle, they enforce
ordering between a memory operation and that memory fence that is respected
by the global memory order. Henceforth, we assume that the architecture pro-
vides a memory fence operation named FENCE that preserves program order
for the following set of pairs of operations:

• Load→ FENCE

• Store→ FENCE

• FENCE → FENCE

• FENCE → Load

• FENCE → Store

28 CHAPTER 2. ARCHITECTURAL BACKGROUND

2.2.3 Examples of Memory Consistency Models

In this section we take a closer look to three popular memory consistency models:
sequential consistency, total store order and relaxed memory consistency.

Sequential Consistency Sequentially consistency allows no memory reorder-
ings and is the most intuitive model that is assumed by most programmers.
Informally, a shared memory system is sequentially consistent if the results of
any execution is the same as if the operations of all cores were executed in
some sequential order, and the operations of each individual core appear in this
sequence in the order specified by its program. However, despite its ease of
understanding and programming, no architecture implements sequential con-
sistency because it precludes various architecture optimizations, such as store
buffers.

Total Store Order Total Store Order is the memody model used by the x86
and SPARC architectures and, hence, is of practical interest. Total Store Order
exists solely as a result of FIFO store buffers in processor architectures. A
store buffer is used to hide the latency of store operations by temporary keeping
them inside the store buffer before they are ready to be applied to the memory
subsystem. Since the store buffer is FIFO, it follows that the only possible
reordering is a store-load reordering, and, thus, the program orders respected
by Total Store Order are:

• Load→ Load

• Load→ Store

• Load→ FENCE

• Store→ Store

• Store→ FEnce

• FENCE → Load

• FENCE → Store

• FENCE → FENCE

Table 2.2 illustrates an example where a store-load reordering due to the pres-
ence of a store buffer results in a non-sequentially consistent execution under
a Total Store Order memory consistency model. To prevent the store-load or-
dering a FENCE instruction must be placed between instructions S1 and L1,
as well as between instructions S2 and L2. Note that the producer/consumer
example of table 2.1 always produces sequentially consistent executions under
a total store order memory model because no store-load reordering is possible.

2.2. SHARED MEMORY CORRECTNESS 29

Relaxed Memory Consistency The relaxed memory consistency model is
a weak memory model, in the sense that it permits all memory reorderings so
that more hardware and software (compiler and runtime system) optimizations
are possible (non-FIFO, coalescing write buffer, core speculation). Thus, this
model allows for maximum hardware performance but poor programmability
because a FENCE instruction is needed whenever ordering is required by the
program. The program orders respected by relaxed memory consistency are:

• Load→ FENCE

• Store→ FENCE

• FENCE → Load

• FENCE → Store

• FENCE → FENCE

From the programmer’s perspective, the performance advantages of a relaxed
memory consistency model can be understood by the example shown in table
2.3. The requirements is that the following three conditions in order for the
local x, local y and local z local variables to contain the correct values.

• S1→ S4→ L1→ L2, establishes that local x = 1

• S2→ S4→ L1→ L3, establishes that local y = 1

• S3→ S4→ L1→ L4, establishes that local z = 1

Note that the FENCE instructions F1 and F2 ensure that the aforementioned
three conditions hold. In particular, due to F1, S1 → S4, since S1 → F1 and
F1 → S4, and, similarly, S2 → S4 and S3 → S4. Morevoer, the F2 FENCE
ensures that L1 → L2, since L1 → F2 and F2 → L2 and, similarly, L1 → L3
and L1→ L4.

However, it is not necessary for S1 → S2 → S3 to be true as required by
the Total Store Order memory model, nor for L2 → L3 → L4 to hold. Put
another way, the store operations by Core A S1, S2 and S3 may be performed
in any order prior to the memory fence instruction F1. In addition, the load
operations by Core B L2, L3 and L4 may also be performed in any order.

Core A Core B
S1: x = 1; L1: local flag = flag;
S2: y = 1; B1: if (!local flag) goto L1;
S3 : z = 1; F2: FENCE
F1: FENCE L2: local x = x;
S4: flag = true; L3: local y = y;

L4: local z = z;

Table 2.3: Modified version of the producer/consumer idiom.

30 CHAPTER 2. ARCHITECTURAL BACKGROUND

Performance Implications of Memory Fences A FENCE instruction is
required to preserve program order with respect to a preceding load or store
operation. Typically, this is accomplished by architectures by providing three
kinds of memory fences: A write fence that guarantees that all store operations
that are issued in program order prior to the write fence are committed to the
memory subsystem, a read fence that does the same for load operations and,
finally, a full fence that essentially is a write fence and a read fence simultane-
ously. For example, in the Total Store Order memory model only a write fence
is needed to prevent a store-load reordering, because before performing the load
operation we must ensure that all prior store operations have been committed
and a write fence does just that. Since a shared memory architecture adhering
to the Total Store Order memory model utilizes store buffers, a write fence in
essence involves flushing the core’s store buffer, that is waiting for all store op-
erations currently in the store buffer to complete. As a consequence, the cost of
a write fence can be equivalent to thousands of machine instructions thus reduc-
ing the performance of the program. The same can be said also for read and full
fences. The programmer must, thus, write a program with the least number of
memory fences required to avoid the extra cost incurred by each memory fence.

2.3 Architectural Primitives for Concurrency

Concurrent Algorithm A concurrent algorithm is an algorithm that is ex-
ecuted by a set of sequential processes. A sequential process represents a single
thread of control. These sequential processes execute on the available processing
units (cores in a cache-coherent shared-memory architecture) and may or may
not be active at the same time depending on the scheduling of those sequential
processes onto the available processing units.

Synchronization For any concurrent algorithm, the participating sequential
processes require some form of synchronization. Synchronization means that
the actions of one sequential process depends on the actions of the other par-
ticipating sequential process. One can identify two types of synchronization:

Competition This form of synchronization occurs when the participating
sequential processes compete to execute in isolation a block of statements
which is called a critical section.

Cooperation In this form of synchronization the participating processes
coordinate their actions in order to achieve a common goal. Cooperation
occurs, for example, in the producer/consumer idiom since the producer
and the consumer must coordinate so that they ensure that the consumer
consumes only the data produced by the producer exactly once and in
the correct order. Another popular form of cooperation is barrier syn-
chronization, whereby the processes wait for each other before they can
proceed.

2.3. ARCHITECTURAL PRIMITIVES FOR CONCURRENCY 31

The design process of a concurrent algorithm involves two important properties:
(1) safety and (2) liveness. Safety properties state that nothing bad happens.
This property alone, however, is not sufficient for the correctness of a concurrent
algorithm because any concurrent algorithm that does nothing trivially satisfies
the safety property but, indisputably, such a concurrent algorithm would be of
negligible significance. That being the case, concurrent algorithms need to sat-
isfy some liveness property that characterizes the progress of each participating
sequential process.

To begin with, though, we classify any concurrent algorithm into two major
classes:

Blocking Concurrent Algorithms If the process of some participating se-
quential process depends on the presence of another participating sequen-
tial process, then the concurrent algorithm is called blocking because that
process would have to block waiting on the arrival of some other process.

Non-Blocking Concurrent Algorithms On the other hand, if any participat-
ing sequential process executes independently of the rest of the processes
then the concurrent algorithm is called non-blocking because that process
never has to block waiting on the arrival of some other process.

2.3.1 Blocking Concurrent Algorithms

A blocking concurrent algorithm is typically based on mutual exclusion. Mu-
tual exclusion states that a block of statements called the critical section can be
executed by at most one process at a time. The convention for critical sections
is to provide two operations named acquire mutex and release mutex. The op-
eration acquire mutex provides access to the critical section and the operation
release mutex makes the critical section available for execution by some other
process. The properties of blocking concurrent algorithms are:

Safety Property The mutual exclusion property is the safety property for
any blocking concurrent algorithm.

Liveness Properties Depending on the number of steps some participating
sequential process has to take in order to execute the critical section two
common liveness properties are defined:

Starvation-Freedom Any invocation to the acquire mutex operation
eventually terminates

Deadlock-Freedom If any number of processes concurrently invoke
the acquire mutex operation then that operation succeeds for at least
one of those processes.

The difference between starvation-freedom and deadlock-freedom is that the
acquire mutex operation always terminates if it is starvation-free but may not
terminate if it is deadlock-free because it could happen that some process p
issues a acquire mutex operation and at the same time another process q re-
peatedly issues acquire mutex operations with process q always succeeding in
its operations and, as a result, process p failing to terminate its own operation.

32 CHAPTER 2. ARCHITECTURAL BACKGROUND

The acquire mutex and release mutex operations are often provided by a object
in programming environments that is called a lock. Moreover, programming
environments typically provide higher level abstractions for the implementation
of blocking concurrent algorithms which, among others, include semaphores,
monitors, readers-writers locks, barriers and condition variables.

2.3.2 Non-Blocking Concurrent Algorithms

Since a non-blocking concurrent algorithm cannot use lock objects it has to rely
on other forms of architectural primitives to implement synchronization. To
start with, we are concerned with the safety property of non-blocking concurrent
algorithms, for which we use the notion of atomicity.

Computation Model A non-blocking concurrent algorithm is executed by a
finite set of n sequential processes, denoted p1, . . . , pn. Those processes invoke
operations on shared concurrent objects. Each object is defined by a sequen-
tial specification that specifies for each operation exposed by that object, its
behaviour when invoked in isolation, that is when the object is accessed only
sequentially. We model an invocation of some operation op() with arguments
arg on an object X by process pi by two events, the first being the invocation
event that occurs when process pi invokes the operation op() on the object
X and is denoted as inv[X.op(arg by pi)], and the second being the response
event that occurs when the operation terminates with a result value res and
is denoted as resp[X.op(res) by pi]. We call an event a invocation event or a
response event. An execution of a non-blocking concurrent algorithm involves
the collection of invocation and response events related to the operation invo-
cations on concurrent objects by the processes. A sequence of events is a history.

To specify the outcome of a history, the events in that history must be or-
dered in a way that the order respects the real-time order in which the events
actually occur, is sequential and that order respects the sequential specification
of each object involved in that history. If such a total order on the events exist
then the history is said to be linearizable and the execution is atomic. This
definition suggests that each operation executes at some indivisible instant be-
tween its invocation and response events which is called a linearization point.

Atomicity is the safety property for non-blocking concurrent algorithms. Live-
ness properties, also called progress conditions, for non-blocking concurrent al-
gorithms include:

2.3. ARCHITECTURAL PRIMITIVES FOR CONCURRENCY 33

Obstruction-Freedom Obstruction-Freedom relates with each operation op()
on some concurrent object X. An implementation of the operation op() is
obstruction-free if it is guaranteed to terminate whenever it is executed in
isolation.

Non-Blocking Non-blocking is similar to the deadlock-freedom property for
blocking concurrent algorithms. A non-blocking implementation relates
with the concurrent object X and not with its operations individually. An
implementation of a concurrent object X is non-blocking if at least one
operation invocation terminates whenever there are concurrent operation
invocations pending on X. It follows that some operation invocation may
fail to terminate if it always looses from other operation invocations that
occur concurrently.

Wait-Freedom This is the strongest progress condition for non-blocking
concurrent algorithms similarly with the starvation-freedom liveness prop-
erty for blocking concurrent algorithms.Wait-freedom relates with each
operation op() on some concurrent object X. An implementation of the
operation op() is wait-free if it always terminates. An implementation
of a concurrent object X is wait-free if the implementation of each of its
operations is wait-free.

Architectural Support for Non-Blocking Synchronization

The basic building blocks for the implementation of non-blocking synchroniza-
tion are atomic variables. An atomic variable can be accessed concurrently by
multiple processes with load and store operations. All load and store operations
on some atomic variable are totally ordered in such a way that (1) each oper-
ation appears to execute instantaneously between its invocation and response
events, and (2) any read invocation returns the value written by the closest pre-
ceding write invocation. Nevertheless, atomic variables alone are not sufficient
to implement any form of non-blocking synchronization possible.

The Computability Power of Concurrent Objects The synchronization
power of concurrent objects is based on the notion of a universal construction.
A concurrent object is a universal object if it can be used together with any
number of atomic registers to wait-free implement any other concurrent object.
Any wait-free algorithm implementing such a construction is called a universal
construction. It has been shown that a consensus object is a universal object. A
consensus object is a concurrent object that provides the operation propose(v).
A participating sequential process can invoke the propose(v) operation at most
once. The processes invoke the operation propose(v) for the purpose of deciding
a single value that has been proposed by one of the participating processes. More
formally, a consensus object is defined by the following properties:

Validity A decided value is a proposed value

Integity A process decides at most once

Agreement No two processes decide different values

Termination An invocation of propose() by a correct process terminates.

34 CHAPTER 2. ARCHITECTURAL BACKGROUND

In consequence, it suffices to question whether a concurrent object can wait-
free implement a consensus object. To that end, with each concurrent object a
consensus number is associated that gives the largest n such that, that concur-
rent object together with atomic variables can wait-free implement a consensus
object for n processes. If there is no largest n then the consensus number is
infinite. The consensus numbers for concurrent objects are used to compare the
synchronization power of concurrent objects and a concurrent object X with a
consensus number m is said to be less powerful than a concurrent object Y with
a consensus number n with m < n in the sense that concurrent objects of type
X cannot be used together with atomic variables to wait-free implement a con-
current object of type Y but the opposite is trivially true. Using the consensus
numbers a consensus hierarchy is defined with some concurrent atomic objects
as shown in table 2.4.

Consensus number Concurrent atomic objects
1 atomic variables, snapshot objects, . . .
2 test&set, swap, fetch&add, FIFO queue, stack, . . .
.
2m-2 m-register assignment (m>1)
.
∞ compare&swap, LL/SC, . . .

Table 2.4: The consensus hierarchy

Providing that atomic variables have a consensus number equal to 1 and, hence,
cannot be used to implement all non-blocking concurrent objects, the architec-
ture must provide hardware primitives with a consensus number ≥ 2 and almost
certainly a primitive with an infinite consensus number so that any number of
processes can be supported. The most common such hardware primitives avail-
able in modern architectures are: test&set, swap, compare&swap and LL/SC.
The sequential specification of these hardware primitives for a object X is spec-
ified in figure 2.3.

Figure 2.3: Specialized hardware primitives to support non-blocking synchro-
nization for n ≥ 2 processes.

2.3. ARCHITECTURAL PRIMITIVES FOR CONCURRENCY 35

In this thesis the fetch&add() and compare&swap() specialized hardware prim-
itives are used. Hence, to illustrate the usage of the primitives figure 2.4 shows
how to use the fetch&add() primitive to implement a consensus object for n =
2 processes and figure 2.5 shows how to use the compare&swap() primitive to
implement a consensus object for any number of processes n. Note that the
code is not formal C code. Also, the examples assume a sequential consistent
memory model.

1 int REG[0. . .1];

2 int X = 0;

3
4 // Process pi has index 0 and process pj has index 1.

5 int propose(int i, int v)

6 {
7 REG[i] = v;

8 int prev = fetch&add(X, 1);

9 if (prev == 0)

10 {
11 // first to arrive

12 return REG[i]

13 }
14 else

15 {
16 // second to arrive

17 return REG[1−i]

18 }
19 }

Figure 2.4: A construction of a consensus object for n = 2 processes (pi and pj)
using a fetch&add() object X. The first fetch&add() operation returns 0 and
assigns 1 to X, whereas the second fetch&add() operation returns 1 and assigns
2 to X. The process that receives a return value of 0 knows that it is the first
process to arrive. The value that is returned by the propose() operation is the
value proposed by the process that arrived first.

1 int REG[1. . .n];

2 int X = −1;

3
4 // Processes have indices in the range [1. . .n]

5 int propose(int i, int v)

6 {
7 REG[i] = v;

8 bool succ = X.compare&swap(−1, i);

9
10 if (succ)

11 {
12 // first to arrive

13 return REG[i];

14 }
15 else

16 {
17 // X is the identity of the process that arrived first

18 return REG[X];

19 }
20 }

Figure 2.5: A construction of a consensus object for n processes using a com-
pre&swap object X. The object X together with the compare&swap operation is
used to determine which process arrives first. That process assigns its identity
in X (the compare&swap() operations for the rest of the processes fail because
the value of the variable X is no longer -1).

36 CHAPTER 2. ARCHITECTURAL BACKGROUND

The ABA Problem A problem that is associated with the usage of the
compare&swap() primitive is the so called ABA problem and any non-blocking
concurrent algorithm must be designed with care so that the ABA problem is
avoided whenever the compare&swap() primitive is used. The compare&swap()
operation is often used in the following manner: first the process reads the value
of the variable X (assume that it is A) , then it performs some operations updat-
ing some state and, lastly, publishes that new state by changing the value of X
to some new value if X still equals A by performing a compare&swap operation.
The intention of the process however is to publish the new state it has updated
only if the state as existed when it first read the variable X remains unchanged.
The problem, then, is that if the compare&swap() operation succeeds for the
process it is not sufficient to conclude that the state of X hasn’t changed be-
cause X could have been updated first to some other value B and then back to
A before the process applies the compare&swap() operation. To solve the ABA
problem a general solution is to append a sequence number to the variable X
that is incremented with each update operation. X is now composed of two
fields: (value, sequence-number) In the example above, the compare&swap()
operation of the process would have failed because even if the value is the same
the sequence-number has been changed by the sequence of update operations
performed in between.

Performance implications of Specialized Hardware Instructions As
far as performance is concerned, typically concurrent objects with smaller con-
sensus number are faster in the hardware. That is, atomic variables are the
fastest form of synchronization in hardware, and the test&set, swap and fetch&add
hardware primitives are likely to be more efficient than the compare&swap prim-
itive.

2.4 Concurrent Programming in the C Program-
ming Language

The C programming language as of the C11 standard adds support for multi-
threaded programming. It does so by providing a threading library with a
well-defined memory model.

An execution of a multi-threaded program in C consists of multiple threads
that perform memory actions on memory locations. A memory location is de-
fined either as an object of scalar type or as a sequence of adjacent bit fields.
The types of memory actions that a thread may perform are:

Data Operations Ordinary load and store operations on non-atomic vari-
ables

Synchronization Operations These include atomic stores, atomic loads and
atomic read-modify-write operations that are performed on atomic vari-
ables. Other synchronization operations include lock and unlock opera-
tions as well as standalone memory fence operations.

2.4. CONCURRENT PROGRAMMING IN THE C PROGRAMMING LANGUAGE37

A well-defined program must avoid data races. A data race occurs whenever
two or more threads access the same memory location, at least one of those
accesses is a store operation and that memory location is a non-atomic variable.
To avoid data races, an ordering must be enforced between these accesses, which
can be accomplished with synchronization operations.

The memory model specifies constraints on the relationships between memory
actions in a execution. Intuitively, the programmer must manipulate appro-
priately these relationships between the memory actions so that a load opera-
tion reads the desired value. Consequently, the most important relation is the
happens-before relation that constraints loads. To be more precise, a load oper-
ation has to read from a write to the same location that immediately precedes it
in happens-before order. The reads-from relation maps a store operation to the
load operations that read the value written by that store operation. Another
important relation is the modification order that totally order all store oper-
ations to some memory location. The modification order must be consistent
among threads. On the condition that the memory location is a atomic vari-
able this is the default behaviour. On the other hand, for non-atomic variables
the programmer is responsible for ensuring that all threads agree on the same
modification order using synchronization operations.

In a single thread, the happens-before order is equivalent with the sequenced-
before order that is a partial order on the memory operations performed by that
thread in program order. This order is partial due to statements in C that have
an undefined argument evaluation order. The rest of the memory model is con-
cerned with how a pair of threads can relate to each other with happens-before
relation so that one thread can obtain memory visibility of the other thread,
meaning that it can load the values written by the other thread. To that end,
the memory model offers various synchronization operations that are annotated
with a memory order parameter that controls the amount of memory visibility
obtained by some thread. The memory visibility is determined by how much
synchronization and ordering is specified by a given memory order.

In brief, a suitable memory order annotation between two synchronization oper-
ations from different threads results in a synchronizes-with relation that extends
to happens-before and, hence, memory visibility from the thread performing the
first operation to the thread performing the second operation. The first opera-
tion must be a atomic store operation and the second operation a atomic load
operation. The synchronizes-with relation is a transitive relation which means
that it can be used to pass memory visibility between a chain of threads using
pairwise synchronization operations.

38 CHAPTER 2. ARCHITECTURAL BACKGROUND

The memory model places the following constraints to satisfy some coherence
properties.

Coherent Load-Load Two reads ordered by happens-before may not read
two writes that are modification ordered in the other direction

Coherent Store-Load It is forbidden to read from a write that is not the
immediately preceding write in happens-before relation

Coherent Store-Store Happens-before and modification-order may not dis-
agree

Coherent Load-Store The union of the reads-from map, happens-before and
modification-order must be acyclic.

2.4.1 Synchronization Operations and Memory Orders

The synchronization operations are provided by the stdatomic and threads header
files. These operations are performed on atomic variables and mutex (lock) ob-
jects. For the rest of this discussion, we are concerned only with atomic vari-
ables.

For a standard type T the stdatomic header file provides a corresponding atomic
type that has the same name with a atomic prefix. As an example, atomic types
include atomic bool, atomic int, atomic uintptr t and atomic uintmax t.

There are three types of operations can be be performed on atomic types: store,
load and read-modify-write operations. Each operation receives an optional
memory order argument from three memory models: sequentially consistent,
acquire-release and relaxed memory model.

The memory orders for the available memory models are:

Sequential Consistency memory order seq cst

Acquire-Release memory order consume, memory order acquire, memory order release,
memory order acq rel

Relaxed memory order relaxed

The memory orders some operation can receive depending on its type are:

Store Operations memory order relaxed, memory order release, memory order seq cst

Load Operations memory order relaxed, memory order consume, memory order acquire,
memory order seq cst

Read-Modify-Write memory order relaxed, memory order consume, mem-
ory order acquire, memory order release, memory order acq rel, memory order seq cst

2.4. CONCURRENT PROGRAMMING IN THE C PROGRAMMING LANGUAGE39

Each operation op supports an implicit form named op and an explicit form
with name op explicit. The difference between these two forms is that the first
form implicitly assumes a sequentially consistent memory order whereas the
second form requires the memory order as a parameter.

Load Operation A atomic load operation on some atomic variable is per-
formed with the atomic load and atomic load explicit functions. Let v be an
atomic variable of type atomic int. Then, atomic load explicit(&v, mo) returns
the value of v as a plain integer type with the specified memory order parameter.

Store Operation A atomic store operation on some atomic variable is per-
formed with the atomic store and atomic store explicit functions. Let v be
an atomic variable of type atomic int. Then, atomic store explicit(&v, 1, mo)
writes 1 to v with the specified memory order parameter.

Read-Modify-Write Operations These operations correspond to the spe-
cialized hardware primitives offered by the architecture. The read-modify-
write operations that will be used in the implementation of this work are:
atomic fetch add explicit and atomic compare exchange explicit.

Let v be an atomic variable of type atomic int. Then, atomic fetch add explicit(&v,
1, mo) atomically adds the value 1 to v and returns the previous value of v with
the specified memory order parameter. There is a corresponding atomic fetch sub explicit
function that instead subtracts the parameter from the atomic variable. Let u be
a plain integer variable. Then, the atomic compare exchange explicit(&v, &u, 1,
mo success, mo failure) atomically compares the value contained in v with the
value contained in u and if they are equal it updates v to 1 using mo success
as a memory order and returns true. Otherwise, it loads the value of v into
u using mo failure as a memory order and returns false. To be precise, the
atomic compare exchange explicit is not directly provided. Rather a weak and
a strong version is offered with names atomic compare exchange weak explicit
and atomic compare exchange strong explicit. Both support the functionality
described earlier with the difference that the weak version is allowed to fail
spuriously, that is to return false even if the two values are equal.

40 CHAPTER 2. ARCHITECTURAL BACKGROUND

Sequential Consistent Ordering A sequentially consistent store synchronizes-
with a sequentially consistent load of the same atomic variable that reads the
value stored. In addition, any sequentially consistent atomic operations that
are performed after that load must also appear after the store to other threads
in the system using sequentially consistent atomic operations. Intuitively, this
mean that the execution is a sequential consistent execution. Figure 2.6 shows
an example in C using sequential consistent ordering. The assertion in thread B
can never fire because the store by thread A to flag synchronizes-with the load
from flag by thread B that reads the value written by that store, and, thus, that
store happens-before that load. Then, since the store to variable x by thread
A happens-before the store to variable flag, it follows that the store to variable
x happens-before the load from flag by thread B that reads true. That load
operation, in turn, happens-before the load of variable x inside the assertion,
and, hence, the store to variable x from thread A happens-before the load from
x by thread B and that last load is required to read the value from 1 because
that store is the immediately preceding store in the happens-before relation.

Figure 2.6: Sequential Consistent Memory Ordering Example in C

Relaxed Ordering Operations on atomic types performed with relaxed or-
dering don’t participate in synchronizes-with relationships. This means that
relaxed operations cannot be used to ensure memory visibility from one thread
to another. In the previous example if the two atomic operations were anno-
tated with a memory order relaxed memory order, then the assertion could fire
because the happens-before relationship between the store to flag by thread A
and the load from flag from thread A that reads the value true does no longer
exist.

Acquire-Release The acquire-release memory model allows to selectively in-
sert necessary synchronization , that is synchronizes-with edges, between pairs of
operations to ensure memory visibility. In this model, atomic load operations are
acquire operations, atomic store operations are release operations, and atomic
read-modify-write operations can be either acquire, release or both. In the sim-
ple form, a release operation tagged with memory order release synchronizes-

2.4. CONCURRENT PROGRAMMING IN THE C PROGRAMMING LANGUAGE41

with a acquire operation tagged with memory order acquire. Hence, in the ex-
ample of figure 2.6 if the store to variable flag by thread A is tagged as a release
operation and the load from variable flag by thread B is tagged as an acquire
operation then the assertion is guaranteed not to fire since the synchronizes-
with edge exists. A operation tagged with memory order seq cst participates in
acquire-release synchronization as well.

The acquire-release model permits two more kinds of synchronization. The first
is the so called release sequence synchronization and the second is the consume
ordering.

Consume Ordering Consider the example of figure 2.7. Assume that
the producer() function is executed by thread A and the consumer() func-
tion is executed by a different thread B. Assume, that acquire-release syn-
chronization is applied. That is, mo p2 is memory order release and mo c1 is
memory order acquire. Then, since all store operation by the producer thread
happens-before the store to the variable p, and that store happens-before the
load of p by the consumer thread that reads the value stored by the producer
thread because the acquire-release synchronization introduces a synchronizes-
with edge, then the stores by the producer thread happens-before the loads of
the consumer threads and, hence, the assertions are guaranteed not to fire. This
is even if the operations on the variable a are tagged with memory order relaxed.
The consume model allows to selectively pass visibility of store operations before
a release store depending on the data dependencies of that store operation. If,
for example, mo c1 is tagged as memory order consume then the store release
by thread A is said to be dependency-ordered-before the load consume by thread
B. In this way, thread B gains memory visibility of prior stored from thread A
that have a dependency on the value loaded, which, in this case, is the variable
data from thread A. Thus, the consumer thread is guaranteed to see the stores
to member variables x, y and z at lines 13-15 and the assertions 27-29 will not
fire. On the other hand, since the variable a is not dependent on the variable
data the consumer thread doesn’t see the store to variable a at line 18 and, for
this reason, the assertion at line 30 may fire.

Release Sequence A synchronizes-with edge may be added between a
release operation and a acquire operation even if more operation occur be-
tween them, if those operations either either store operations by the thread
that performed the initial release operation or read-modify-write operations by
any thread. The operations that are performed in between can have any memory
ordering even memory order relaxed. The rationale behind the release sequence
is to support the single-producer/multiple-consumer idiom without having to
synchronize the consumers, but only the producer with each consumer individ-
ually. This is done as shown in figure 2.8. The producer() function is executed
by a single producer thread A. The consumer() function is executed by multiple
consumer threads. The purpose is for the producer thread first to populate a
queue with integers and then publish the data inside the queue with a release
operation on the count variable that holds the number of integers inserted.
Now consider the first consumer thread that performs the fetch sub operation
on variable count. Since that operation is a acquire operation (it is tagged
with memory order acquire then that consumer gains memory visibility of the

42 CHAPTER 2. ARCHITECTURAL BACKGROUND

queue items. Now consider a second consumer. The second consumer per-
forms a fetch sub operation on count that loads the value stored by the first
consumer. With pairwise synchronization in mind, one could change the mem-
ory order acquire of the fetch sub operation to memory order acq rel. In this
way, the second consumer would gain memory visibility of the first consumer
and since that first consumer has gained memory visibility of the producer, it
follows that the second consumer also gains memory visibility of the producer.
However, the second consumer doesn’t need to gain memory visibility from the
first consumer but only from the producer. The release sequence guarantees
that this happens. The store performed by the producer is a store release and,
hence, the head of the release sequence. The second consumer now that performs
the acquire operation synchronizes-with the store release because the operation
performed in between is a read-modify-write operation and, thus, part of the
release sequence.

1 struct Data

2 {
3 int x, y, z;

4 };
5
6 atomic uintptr t p; // A pointer to a Data object initially NULL

7 atomic int a;

8
9 void producer()

10 {
11 struct Data *data = (struct Data*)malloc(sizeof(struct Data));

12
13 data−>x = 1;

14 data−>y = 2;

15 data−>z = 3;

16
17 atomic store explicit(&a, 99, memory order relaxed);

18 atomic store explicit(&p, (uintptr t)data, mo p2);

19 }
20
21 void consumer()

22 {
23 struct Data *data;

24
25 while (!(data = (struct Data*)atomic load explicit(&p, mo c1))){}
26
27 assert(data−>x == 1);

28 assert(data−>y == 1);

29 assert(data−>z == 3);

30 assert(atomic load explicit(&a, memory order relaxed) == 99);

31 }
32

Figure 2.7: A producer/consumer example in C

2.5. NOTES 43

1 let queue data be a queue of integers

2 atomic int count;

3
4 void producer()

5 {
6 . . . popule the queue of integers with num integers. . .

7
8 atomic store explicit(&count, num, memory order release);

9 }
10
11 void consumer()

12 {
13 while (true)

14 {
15 int item index = fetch sub explicit(&count, 1, memory order acquire);

16
17 if (item index <= 0){ continue; }
18
19 . . process element at index item index − 1. . .

20 }
21 }

Figure 2.8: A single-producer/multiple-consumer example in C showing a release
sequence

Standalone Memory Fences The same synchronization functionality pro-
vided by the memory order annotation of load, store and read-modify-write op-
erations can be performed with standalone memory fences. A memory fence is
added to the program using the atomic thread fence(mo). For example, all non-
atomic and relaxed atomic stores that happen before a memory order release
fence in thread A will be synchronized with non-atomic and relaxed atomic
loads from the same locations made in thread B after an memory order acquire
fence.

2.5 Notes

The material for shared memory correctness (cache coherence and memory con-
sistency) is heavily based on Sorin et al. [2011]. The section for the specialized
hardware primitives is based on Raynal [2015]. The discussion of concurrent
programming in the C programming language is based primarily on the book
Williams [2012] which targets the C++ language. A discussion of the memory
model for the C and C++ languages can be found in Batty et al. [2011] and
Boehm and Adve [2008].

44 CHAPTER 2. ARCHITECTURAL BACKGROUND

Chapter 3

The OpenMP 4.0 Task
Dataflow Model

OpenMP 4.0 Task Dataflow Programming Model In the OpenMP 4.0
task dataflow programming model, the programmer can constraint the order of
execution between sibling tasks, using the depend clause on the task directive.
The purpose of the depend clause is to specify the memory footprint of a task by
listing the memory objects that the task accesses, along with a memory usage
annotation per memory object, that indicates whether that task reads-only,
writes and reads but always writing before reading, or both reads and writes
in any order, represented respectively by an in, out or inout annotation, that
memory object. The memory objects listed in a depend clause are hereinafter
referred to as tags. The syntax of the depend clause is depend(dependence-
type : list), where dependence-type is one of the memory usage annotations
(in,out,inout) and list contains the tags. List items used in depend clauses of
the same task or sibling tasks must indicate identical storage or disjoint storage.

3.1 The Task Graph

The child tasks generated by a parent task together with their memory usage
annotations form a directed acyclic graph (DAG) named the task graph, where
the child tasks constitute the nodes of this task graph and the edges represent
the dependencies between tasks as derived from the memory usage annotations.
The dependencies are formed as follows: A child task with an in memory usage
annotation on some tag A, depends on all previously generated sibling tasks
that reference that same tag A with an out or inout memory usage annotation.
In other words, a task that reads A must be executed after preceding sibling
tasks that are writing A have terminated. Furthermore, a child task with an out
or inout memory usage annotation on some tag A, depends on all previously
generated sibling tasks that reference that same tag A with an in, out or inout
memory usage annotation. Put another way, a task that writes tag A may be-
gin execution after any preceding sibling tasks that are reading or writing tag
A terminate.

45

46 CHAPTER 3. THE OPENMP 4.0 TASK DATAFLOW MODEL

Overall, from the aforementioned discussion evidently one concludes that the
following two rules are sufficient:

• A task with an in memory usage annotation on A, depends on the immedi-
ately preceding sibling task with an out or inout memory usage annotation
on A.

• A task with an out or inout memory usage annotation on A, depends on
the immediately preceding sibling task in case that task has an out or
inout memory usage annotation on A. Otherwise, it depends on the set
of sibling tasks with an in memory usage annotation on A immediately
preceding it.

In view of the fact that a child task has dependencies only on preceding sibling
tasks the task graph is acyclic meaning that a child task cannot depend on a
sibling task that succeeds it in program order. This property suggests that the
execution of a task graph cannot deadlock.

The roots of the task graph consist of tasks that are either executing or are
ready to execute since they have no dependencies on preceding sibling tasks.
The ready list provides access to the latter. Once a task is placed in the ready
list it may be executed by any thread participating in the execution of the en-
closing parallel region.

As a final point, notice that during the execution of an OpenMP program there
may be multiple task graphs active at any point in time. Each task belongs to
exactly one task graph, that generated by its parent task, and may also create
its own task graph by generating child tasks.

Dependencies expressed in the task dataflow model Assume that a
parent task T generates a sequence of m child tasks T1, T2, . . . , Tm, each of
which accesses the same tag A. The different types of dependencies that can be
expressed between two sibling tasks Ti and Tj with 1 ≤ i < j ≤ m, with respect
to the tag A, are:

True Dependence Task Ti writes A and task Tj reads A. Ti provides the
value needed by Tj and, thus, it has to be executed before Tj.

Anti Dependence Task Ti reads A and task Tj writes A. Ti must be exe-
cuted before Tj because, otherwise, Ti would read the value of A after the
update of Tj violating the sequential execution of those tasks.

Output Dependence Both tasks write A. The order of execution between
Ti and Tj affects the final value of A. The sequential semantics suggest
that Ti must execute prior to Tj.

3.1. THE TASK GRAPH 47

Table 3.1 shows the types of dependencies between tasks Ti and Tj on tag
A using the available memory usage annotations. A true dependence arises
whenever the first task writes A (out, inout) and the second task reads A (in,
inout). In addition, an anti dependence occurs when the first task reads A
(in) and the second task writes A (out, inout). Lastly, an output dependence
requires the first task writing A (out, inout) and the second task also writing
A (out). Observe that this last case does not result in a true dependence, even
though the out annotation permits the second task to read A, because the initial
value of A is irrelevant for the second task.

HH
HHHTj

Ti in out inout

in none true true
out anti output output

inout anti true true

Table 3.1: Dependencies between two sibling tasks.

Figures 3.1, 3.2 and 3.3 show examples of true, anti and output dependencies,
respectively, expressed in OpenMP.

1 #include <stdio.h>

2
3 int main()

4 {
5 int x = 1;

6
7 #pragma omp parallel

8 #pragma omp single

9 {
10 #pragma omp task shared(x) depend(out:x)

11 x = 2;

12
13 #pragma omp task shared(x) depend(in:x)

14 printf("x = %d“n". x);

15 }
16
17 return 0;

18 }

Figure 3.1: In this example, there exists a true dependence between the two
generated tasks. Hence, the first task is executed before the second and the
printf() statement is guaranteed to output the value 2 for x.

48 CHAPTER 3. THE OPENMP 4.0 TASK DATAFLOW MODEL

1 #include <stdio.h>

2
3 int main()

4 {
5 int x = 1;

6
7 #pragma omp parallel

8 #pragma omp single

9 {
10 #pragma omp task shared(x) depend(in:x)

11 printf("x = %d“n", x);

12
13 #pragma omp task shared(x) depend(out:x)

14 x = 2;

15 }
16
17 return 0;

18 }

Figure 3.2: In this example, there exists a anti dependence between the two
generated tasks. Hence, the first task is executed before the second and the
printf() statement is guaranteed to output the value 1 for x.

1 #include <stdio.h>

2
3 int main()

4 {
5 int x;

6
7 #pragma omp parallel

8 #pragma omp single

9 {
10 #pragma omp task shared(x) depend(out:x)

11 x = 1;

12
13 #pragma omp task shared(x) depend(out:x)

14 x = 2;

15
16 #pragma omp taskwait

17 printf("x = %d“n", x);

18 }
19
20 return 0;

21 }

Figure 3.3: In this example, there exists an output dependence between the two
generated tasks. Hence, the first task executes before the second task. For this
reason, the second task is the last task that writes to x and the printf statement
is guaranteed to output the value 2 for x.

3.1. THE TASK GRAPH 49

Renaming Anti and output dependencies can be trivially resolved, thus in-
creasing parallelism, using a technique named renaming. Renaming works by
introducing a new version, that is a copy, of the object whenever it is written
to by a task and there exists some preceding task still referencing the object. If
that preceding task reads the object an anti dependence is resolved, whereas if
that preceding task writes the object an output dependence is resolved. Each
new version is recorded as the current version of the tag for succeeding refer-
ences. Table 3.2 repeats table 3.1 with renaming applied to the out memory
usage annotation. Notice how the dependencies in the second row have all been
resolved. Table 3.3 repeats table 3.1 when renaming is applied to both out and
inout memory usage annotations. This last table contains only true dependen-
cies.

Despite its potential as a technique especially for increasing parallelism, renam-
ing cannot be generally implemented for OpenMP. More precisely, the specifi-
cation explicitly states that a task with an out memory usage annotation on
some tag A has to wait for all preceding sibling tasks with a reference to that
same tag A.

Renaming is not implemented in this work. As a consequence, any out memory
usage annotation can be replaced with an inout memory usage annotation.

H
HHHHTj

Ti in out inout

in none true true
out none none none

inout anti true true

Table 3.2: Dependencies between two sibling tasks when renaming is applied to
out annotations.

HH
HHHTj

Ti in out inout

in none true true
out none none none

inout none true true

Table 3.3: Dependencies between two sibling tasks when renaming is applied to
both out and inout annotations.

50 CHAPTER 3. THE OPENMP 4.0 TASK DATAFLOW MODEL

Operations on the Task Graph The task graph is managed using the fol-
lowing two operations:

Issue Operation The issue operation is called whenever a task is generated
and has the effect of inserting the task in the task graph of its parent task
linking it with all tasks it directly depends. If the task becomes a root of
the corresponding task graph, it is placed directly in the ready list.

Release Operation The release operation is called by a task when it finishes
execution. At first, the task removes itself from the task graph it belongs
to. Then, it traverses the tasks that directly depended on it, and inserts
each task that has now become a root of the task graph in the ready list
of that task graph.

On the Parallel Nature of the Task Graph To express parallelism be-
tween the tasks in a task graph, we use the notion of a generation. A generation
is a set of tasks that belong to the same task graph and may execute in paral-
lel.The execution of a task graph is confined by the properties of generations:

Serialization between generations Generations must execute in program or-
der.

Parallelism between generations The tasks inside a generation may execute
in parallel.

Figure 3.4 illustrates the task graph for an example task sequence with the
generations explicitly shown. The task sequence utilizes a single tag A for the
memory usage annotations. Notice that the generations are numbered sequen-
tially, starting with the oldest generation with number 0 and ending with the
youngest generation that contains the task(s) most recently inserted in the task
graph. To be precise, the oldest generation is not the generation with number
0 but the generation that is currently ready, meaning that it consists of tasks
that are either in the ready list or are ready to execute with respect to that tag.
For the example shown in the figure the generation with number 0 could be the
oldest generation if task T1 hasn’t terminated yet.

How are generations formed? The conditions under which a new generation
is created when a task is added to the task graph stem from table 3.1: the only
case where there is no dependency between tasks is when those tasks have an
in memory usage annotation on the tag. As a result, if the youngest generation
consists of tasks with an in memory usage annotation on the tag and the new
task also has a in memory usage annotation, then the new task can be executed
in parallel with the tasks currently in the youngest generation and, that being
the case, the new task is inserted in the currently youngest generation. Other-
wise, the new task has a dependency on the tasks inside the youngest generation
and, as a consequence, a new generation is created for the new task.

The above condition indicates that a generation consists either of a single task
that may write to the tag (with a out or inout memory usage annotation), or of
one or more tasks that may only read the tag (with a in memory usage anno-
tation). In the example task sequence of figure 3.4, the generations are formed

3.1. THE TASK GRAPH 51

with the following reasoning: The first task T1 is a writer task and thus is alone
in its generation which is also the first generation with number 0. Then:

• When task T2 is issued to the task graph, the current youngest generation
is generation 0. Because the current generation doesn’t consist of tasks
with in memory usage annotation, task T2 is added to a new generation
with number 1.

• When task T3 is issued to the task graph, the current youngest gener-
ation, which is generation 1, consists of a task with a in memory usage
annotation. In addition, task T3 also has a in memory usage annotation
and, as a result, it is added to the current youngest generation.

• When task T4 is issued to the task graph, the current youngest generation
is generation 1. Even though this generation consists of tasks with in
memory usage annotation on the tag, task T4 has a inout memory usage
annotation and, hence, cannot be executed in parallel with tasks T2 and
T3. Consequently, task T4 is inserted into a new generation with number
2.

The same reasoning applies to the rest of the tasks.

Figure 3.4: On the left, an example task sequence with memory usage anno-
tations on tag A. On the middle the task graph that results from that task
sequence illustrating the dependencies. An arrow from a source task to a des-
tination task means that the source task must execute before the destination
task. On the right, the generations for that task graph.

52 CHAPTER 3. THE OPENMP 4.0 TASK DATAFLOW MODEL

On the Concurrent Nature of the Issue and Release Operations Be-
cause a task graph exists per task, or, put another way, a parent task generates
the task graph, it means that the issue operation on a task graph is executed
sequentially by the parent task and, therefore, there are no concurrent issue
operations on the same task graph. In contrast, a release operation may be
concurrent with another release operation on the same task graph. As an illus-
tration, consider a generation consisting of multiple tasks with in memory usage
annotation on the same tag. Moreover, assume that these tasks access only this
tag. The parallelism between generations property indicates that these tasks
may execute in parallel, in which case they could terminate their execution
simultaneously and, consequently, execute the release operation concurrently.
Last but not least, an issue operation may be concurrent with multiple release
operations for the simple reason that, when the issue operation is called for a
task, preceding sibling tasks could finish execution.

3.2 Algorithms for Maintaining Dependencies at
Runtime

In this section, i present two major classes of algorithms used for managing
dependencies at runtime for cache-coherent shared-memory parallel systems.
The two classes are:

The List Scheme The List Scheme is an edge-centric scheme. The charac-
teristic of this edge-centric scheme is that it builds some form of the task
graph at runtime, hence explicitly representing some of the edges resulting
from the dependencies.

The Tickets Scheme The Tickets Scheme is an edgeless scheme. Contrary
to the edge-centric scheme, the Tickets Scheme maintains conditions under
which a task is ready to execute instead of building the task graph at
runtime.

The algorithms require that the parent task maintains a dictionary from tags
to metadata structures that are used for the purpose of dependence tracking.
Henceforth, it is assumed that one tag can be used to express dependencies.
Then i discuss how they can be extended to the general case where multiple
tags can be listed in the depend clauses of the tasks.

3.2. ALGORITHMS FORMAINTAINING DEPENDENCIES AT RUNTIME53

3.2.1 The Tickets Scheme

In this work the Tickets Scheme has not been implemented and, for this reason,
it is briefly described here.

Under the Tickets Scheme, all tasks belonging to a task graph are placed in
the same list. The threads scan this list and perform a ready-check operation
on each task. This operation consults the task’s internal state as well as the
metadata of the tag and indicates whether the task is ready for execution or
not.

Internal representation of the metadata object To support this rea-
soning, the metadata for the tag has to include information on the number of
reader and writer tasks that have been generated and how many of them have
terminated. The solution counts tasks with an in memory usage annotation
as reader-only tasks, and tasks with an out or inout memory usage annota-
tion as writer tasks. The variables readers generated and writers generated
count, respectively, the number of reader and writer tasks that have been is-
sued. The variables readers terminated and writers terminated count, respec-
tively, the number of reader and writer tasks that have finished.

Description of the issue operation. The first action to be taken is to de-
termine the conditions under which the task can be scheduled for execution.
To begin with, observe that since the issue operation is executed sequentially
by the parent task, the metadata member variables readers generated and writ-
ers generated store the number of reader and writer tasks that have been gener-
ated thus far, respectively. For a reader-only task, the issue operation copies in
a variable local to the task named w the value of the writers generated member
variable. The value of the variable w now denotes the number of writer tasks
that the reader-only task has to wait for. For a writer task, both the writ-
ers generated and readers generated member variables are copied into local to
the task variables named w and r respectively, because the task has to wait for
all reader tasks, whose number is stored in r, and writer tasks, whose number is
stored in w, to finish. Then the issue operation accounts for the generated task
by incrementing the readers generated counter in case of a reader-only task, and
the writers generated counter for a writer task. It is important that these two
actions are performed in this exact order; otherwise, a writer task, for example,
would wait for itself to finish, thus leading to deadlock.

Description of the release operation. The release operation is rather triv-
ial. Each task increments the counter for terminated tasks that corresponds to
its class. In more detail, a reader-only task increments the readers terminated
counter, whereas a writer task increments the writers terminated counter.

Description of the ready-check operation. The property of serialization
between generations indicates that the local variable w of a reader-only task,
and the local variable r of a writer task, counts the writer tasks and reader-only
tasks, respectively, that have to be executed first. Therefore, the ready-check
operation for a reader-only task is writers terminated == w, and for a writer
task is (writers terminated == w) ∧ (readers terminated == r)

54 CHAPTER 3. THE OPENMP 4.0 TASK DATAFLOW MODEL

3.2.2 The List Scheme

To put it briefly, the issue operation for the List Scheme inserts the task in the
task graph and the release operation removes the task from the task graph. The
List Scheme requires the task descriptor to contain a dependency counter named
depend count, which stores the number of dependencies that must be resolved
before the task becomes ready to execute.

Internal representation of the task graph. The List Scheme represents
the task graph as a list of tasks. Figure 3.5 shows the list representation of
the task graph for the example task sequence of figure 3.4. The generations of
interest to the List Scheme are (1) the oldest generation which consists of the
tasks that are either executing or are ready to execute, and (2) the youngest
generation with the tasks most recently added to the task graph. In detail, the
List Scheme manages the following information:

Information needed for the oldest generation The number of tasks that are
still executing or ready to execute. The last task that terminates from the
oldest generation must visit the tasks of the next generation and update
their dependency counters.

Information needed for the youngest generation The memory usage annota-
tion used by tasks belonging to the youngest generation. That annotation
is used as a condition to test if the insertion of the next task to the task
graph entails the creation of a new generation.

In order to delimit generations inside the list, the List Scheme inserts an end-of-
generation marker to each node of the list named last in generation. This flag
is set for each node that stores that stores a pointer to the last task, according
to their insertion order in the task graph, of some generation. In addition,
observe in the example of figure 3.5 that the oldest generation is not explicitly
represented in the list.

3.2. ALGORITHMS FORMAINTAINING DEPENDENCIES AT RUNTIME55

Figure 3.5: The list representation of the task graph for the List Scheme.

56 CHAPTER 3. THE OPENMP 4.0 TASK DATAFLOW MODEL

Internal representation of the metadata structure. The data structures
managed by the List Scheme are shown in figure 3.6. The metadata associated
with the tag is of type struct metadata. The head and tail pointers delimit
the list of tasks representing the task graph. Their initial value is NULL. In
case both head and tail are non-NULL pointers, then the head pointer points
to the first task of the generation following the oldest generation and the tail
pointer points to the last task of the youngest generation. On the other hand,
given that both head and tail pointers are NULL pointers, either there are no
generations or there is a single generation which is not represented explicitly
in the list. These two cases can be distinguished by the value of the num gens
member variable, that counts the number of generations that have been issued
and not yet terminated. The num gens member variable is initialized with
zero. Moreover, the member variable oldest num tasks stores the number of
tasks belonging to the oldest generation which are either executing or ready to
execute and is initialized with zero. In addition, the variable youngest annot of
type enum Annot Type indicates the the memory usage annotation of the tasks
that constitute the youngest annotation. Its initial value is Annot Invalid. For
the simple reason that out memory usage annotations are replaced with inout
memory usage annotations, no corresponding enumeration value is provided for
out memory usage annotations. The purpose of the youngest annot variable
is to determine whether to create a new generation upon task addition or not.
Finally, lock is a mutex object that is used to protect the shared metadata object
from being simultaneously accessed by concurrent issue and release operations.

1 struct task descriptor

2 {
3 // . . . other task−related info . . .

4 mutex lock;

5 int depend count;

6 };
7
8 struct list node

9 {
10 struct task descriptor *task;

11 int last in generation;

12 struct list node *next;

13 };
14
15 enum Annot Type

16 {
17 Annot Invalid, Annot In, Annot Inout

18 };
19
20 struct metadata

21 {
22 struct list node *head;

23 struct list node *tail;

24 int num gens;

25 enum Annot Type youngest annot;

26 int oldest num tasks;

27 mutex lock;

28 };

Figure 3.6: The data structures for the List Scheme.

3.2. ALGORITHMS FORMAINTAINING DEPENDENCIES AT RUNTIME57

The algorithm implementing the issue operation. The algorithm imple-
menting the issue operation is listed in figure 3.7. The issue operation receives
the following arguments:

struct task descriptor *task A pointer to the task that is inserted into the
task graph.

struct metadata *md a pointer to the metadata structure associated with
the tag listed in the task’s depend clause.

enum Annot Type annot The memory usage annotation used in the depend
clause of the task for the tag.

struct list node *node A pointer to a struct list node node to use in order
to insert the task into the list inside the tag’s metadata structure.

The issue operation returns the value 1 if it determines that the task has a
dependency on some previous generation of tasks. Otherwise, it returns zero.
As fas as the md parameter is concerned, the parent task upon creation of the
child task that is inserted into the task graph, searches the dictionary it main-
tains that maps tags to metadata structures, in order to locate the metadata
associated with the tag listed in the task’s depend clause.

To begin with, the issue operation initializes a local variable has deps, which
indicates whether the task has a dependency on some previous generation or
not, to zero (line 4), and, then, initializes the node to insert into the list (lines
6-8). Next, in line 10 the issue operation acquires the mutex variable lock to
ensure mutual exclusion for the rest of its operation. Afterwards, there are three
cases to consider:

Case 1 (lines 12-17) In the event that there are no generations, or, equiva-
lently, when the num gens variable of the metadata structure equals zero,
then the task forms the only active generation which is both the oldest and
the youngest generation. That being the case, the node is not inserted into
the list, since the oldest generation is never explicitly represented in the
list, and, due to the fact that there doesn’t exist a previous generation,
the task has no dependency on previous generations and, consequently,
the depend count of the task is not incremented. The variable num gens
is set to 1 in line 14 to account for the new generation. As this generation
is the oldest generation, the oldest num tasks variable is set to 1 in line 15
to account for the new task. Lastly, this generation is also the youngest
generation and, hence, the annot argument is saved in the youngest annot
variable in line 16.

Case 2 (lines 18-38) This case tests whether the task creates a new gen-
eration or not. Note that there exists at least one generation in the
list, since the test at line 12 of the algorithm failed. The condition
(annot == Annot Inout ∨ md → youngest annot! = annot) indicates
that the task must be inserted to a new generation, due to the fact that
this condition is equal to the complement of the condition (annot ==
Annot In ∧md → youngest annot == annot) which represents the con-
ditions under which the task is inserted in the current youngest generation

58 CHAPTER 3. THE OPENMP 4.0 TASK DATAFLOW MODEL

(see paragraph On the Parallel Nature of the Task Graph for more details).
In consequence, this case handles the addition of the task to a new genera-
tion, whereas the next case (Case 3) handles the addition of the task to the
current youngest generation. Line 20 remembers the annotation for the
new generation and line 21 increments the num gens variable to account
for the new generation. Also, the task has a dependency on the previous
generation and, as a result, its dependency counter is incremented by one
in line 24 and the has deps local variable is set to 1 in line 37. Lines
27-36 insert the task at the end of the list. If the previous generation is
not the oldest generation then it is explicitly stored in the list and, hence,
the last in generation flag of the last task inside the previous generation
which is pointed by definition by the tail pointer must be set to 1 in line
29 of the algorithm.

Case 3 (lines 39-55) When the task is inserted immediately into the youngest
generation, the variables num gens and youngest annot remain unchanged
because no new generation is created. The subtle point here is to test if
the youngest generation is the only generation, that is if the youngest gen-
eration is also the oldest generation. In that case (lines 41-44), the task is
added into the oldest generation and, as a result, the node is not inserted
into the list. Moreover, the depend count variable of the task is not in-
cremented because the task has no dependency on previous generations.
However, the oldest num tasks is incremented by one in line 43 to account
for the addition of the task into the oldest generation. On the other hand
(lines 45-54), the task is not added to the oldest generation. The node is
inserted at the end of the list in lines 51-52. Moreover, the dependency
counter of the task is incremented by one in line 48 and the has deps local
variable is set to 1 in line 53 to account for the dependency of the task
on the previous generation. Note that the last in generation flag is not
updated because the task is inserted into the current youngest generation
and not in a new one.

At last, the mutex variable lock is released in line 57 and the has deps local
variable is returned in line 59 as the return status of the issue operation.

3.2. ALGORITHMS FORMAINTAINING DEPENDENCIES AT RUNTIME59

1 int issue(struct task descriptor *task, struct metadata *md,

2 enum Annot Type annot, struct list node *node)

3 {
4 int has deps = 0;

5
6 node−>task = task;

7 node−> last in generation = 0;

8 node−>next = NULL;

9
10 acquire mutex(&md−>lock);

11
12 if (md−>num gens == 0)

13 {
14 md−>num gens = 1;

15 md−>oldest num tasks = 1;

16 md−>youngest annot = annot;

17 }
18 else if (annot == Annot Inout | | md−>youngest annot != annot)

19 {
20 md−>youngest annot = annot;

21 ++md−>num gens;

22
23 acquire mutex(&task−>lock);

24 ++tak−>depend count;

25 release mutex(&task−>lock);

26
27 if (md−>tail != NULL)

28 {
29 md−>tail−>last in generation = 1;

30 md−>tail−>next = node;

31 }
32 else

33 {
34 md−>head = node;

35 }
36 md−>tail = node;

37 has deps = 1;

38 }
39 else

40 {
41 if (md−>num gens == 1)

42 {
43 ++md−>oldest num tasks;

44 }
45 else

46 {
47 acquire mutex(&task−>lock);

48 ++tak−>depend count;

49 release mutex(&task−>lock);

50
51 md−>tail−>next = node;

52 md−>tail = node;

53 has deps = 1;

54 }
55 }
56
57 release mutex(&md−>lock);

58
59 return has deps;

60 }

Figure 3.7: The issue operation for the List Scheme

60 CHAPTER 3. THE OPENMP 4.0 TASK DATAFLOW MODEL

The algorithm implementing the release operation. The algorithm ap-
pears in figure 3.8. To begin with, the mutex variable lock is acquired in line
3. Secondly, as the task finished its execution and it belonged to the oldest
generation, the oldest num tasks variable is decremented by one in line 5. If
the task was the last task still executing among the tasks in the oldest genera-
tion the test in line 5 of the algorithm succeeds. In that case (lines 7-34), the
release operation decrements the num gens variable in line 29 to account for
the termination of the oldest generation and, also, updates the dependencies for
the next generation in lines 7-27. Since the oldest generation is not explicitly
represented in the list, the next generation, if it exists, is pointed to by the head
pointer. Hence, the release operation traverses the next generation starting with
the head pointer in the first iteration of the loop in lines 10-26. For each task
encountered, its dependency counter is decremented by one in line 15 and it is
marked for insertion into the ready list of the task graph in line 17 if the task
is now ready to execute. These tasks are part of the oldest generation now and,
thus, the oldest num tasks variable is incremented by one in line 21 for each
such task. Note the list node will not be referenced again and can be reclaimed
(line 24). The end of the next generation is determined by the last in generation
flag inside the nodes of the list in line 26, or when there is no next node. If
the next generation traversed in lines 7-27 was the youngest generation, the list
becomes empty (line 31), and, thus, the tail pointer is reset to NULL (line 33).
In the end, the mutex variable lock is released in line 37.

1 void release(struct task descriptor *task, struct metadata *md)

2 {
3 acquire mutex(&md−>lock);

4
5 if (−−md−>oldest num tasks == 0)

6 {
7 if (md−>head != NULL)

8 {
9 struct list node *t, *r;

10 do

11 {
12 t = md−>head; r = t;

13
14 acquire mutex(&t−>task−>lock);

15 if (−−t−>task−>depend count == 0)

16 {
17 // flag t−>task for insertion into ready−list

18 }
19 release mutex(&t−>task−>lock);

20
21 ++md−>oldest num tasks;

22 md−>head = t−>next;

23
24 // reclaim r

25
26 } while (t−>last in generation == 0 && md−>head != NULL);

27 }
28
29 −−md−>num gens;

30
31 if (md−>head == NULL)

32 {
33 md−>tail = NULL;

34 }
35 }
36
37 release mutex(&md−>lock);

38 }

Figure 3.8: The release operation for the List Scheme

3.2. ALGORITHMS FORMAINTAINING DEPENDENCIES AT RUNTIME61

Time Complexity. A simplistic analysis follows. Assume that a generation
of M tasks is followed by a generation of N tasks. Note that either M or N must
be 1 because there cannot exist two successive generations consisting of tasks
with in memory usage annotation on the tag.

Time Complexity of the issue operation The cost of the issue operation is
O(1) per task, because the issue operation performs a constant number of
updates on the metadata structure. Thus, the cost of the issue operation
for the two generations is O(M+N)= O(max(M,N)) considering that either
M or N is 1.

Time Complexity of the release operation The first M-1 tasks of the first
generation have an O(1) cost since they only decrement the oldest num tasks
variable. The last task of the first generation, though, has a O(N) cost
since it must traverse the tasks of the next generation which are N in
number. The cost of the release operation for the first generation is, thus,
O(M+N). As far as the second generation is concerned, there is an O(1)
cost per task and, hence, O(N) in total. As a result, the cost of the release
operation for the two generations is O(M+N) = O(max(M,N)) considering
that either M or N is 1.

Space Complexity. For the same scenario used in the analysis of the time
complexity, the space complexity for the List Scheme is O(M+N), that is linear
in the number of tasks, since one metadata structure and M+N nodes of constant
size are used. If the first generation with M tasks is the oldest generation,
the List Scheme uses N nodes in the list instead and, consequently, the space
complexity is O(N).

A starvation-free implementation. Assuming that the parent task creates
a finite number of child tasks, the implementation of the issue and release
operations is starvation-free even if the mutex variable lock of the metadata
structure is deadlock-free and not starvation-free. Consider the issue operation
for some child task. Since there is a bounded number of preceding sibling tasks,
the issue operation can fail to acquire the mutex lock only due to a bounded
number of concurrent release operations. Similarly, a release operation at the
worst case will fail to acquire the mutex lock against all the issue operations and
the rest of the release operations for the same generation, which are bounded
in number.

The case of multiple tags. The parent task maintains a dictionary from
tags to metadata structures. In case a child task lists multiple tags in its de-
pend clauses, the parent task calls the issue operation for each tag. The task
is inserted to the ready list if all issue operations return a status value of zero.
Moreover, the task descriptor is augmented with a list of pointers to the meta-
data structures associated with the tags. When the task terminates its execution
it calls the release operation for each such metadata structure. Furthermore, as
it is done in the algorithms in figures 3.7 and 3.8, accesses to the dependency
counter depend count of a task are pretected by a mutex variable lock in the task
descriptor. This mutex is needed because, for example, when the issue opera-
tion is called for a task T1 with some tag A and that issue operation increments

62 CHAPTER 3. THE OPENMP 4.0 TASK DATAFLOW MODEL

the dependency counter of T1, even if no release operation can decrement the
dependency counter of T1 with respect to the tag A due to the mutual exclusion
between the issue and the release operations on that tag, a release operation
for another tag B that was listed in the depend clauses of task T1 may execute
concurrently with the issue operation since that release operation operates on
another metadata structure. To make the above reasoning correct there is a
subtle point to consider as illustrated in figure 3.9. There are two solutions to
this problem. Either the parent task must initialize the depend count variable
of the task to 1 and decrement it by one after all issue operations are performed,
thus ensuring that in between no release operation can decrement that depen-
dency counter to zero, or the parent task must acquire the mutex variable lock
of the task before performing the issue operations and release it afterwards, thus
ensuring that no concurrent release operations updates the dependency counter
of the task in between.

Figure 3.9: The problem with the dependency counter of a task in the general
case of multiple tags.

3.3 Notes

The theory behind the task graph on this chapter and the description of the al-
gorithms for maintaining dependencies at runtime are based on [Vandierendonck
et al., 2013].

Chapter 4

A Lock-Free List Scheme

In this section i describe a lock-free version of the list scheme presented in the
previous chapter that i have developed for my thesis. The algorithms presented
assume a sequential consistent memory model. Relaxing the memory orderings
for the algorithms is a future work.

4.1 Internal Representation of the task graph

Figure 4.1 shows the list representation of the task graph for the example task
sequence of figure 3.4. The task graph is represented as a list of nodes. The
list starts with a sentinel node since it makes concurrent manipulation more
convenient. Moreover, notice that all generations are explicitly represented in
the list. Each node of the list contains (1) a pointer to the task, (2) the number
of the generation the task belongs to (notice that since the sentinel node has a
generation number of 0 the tasks start with a generation number of 1 contrary
to the lock-based list scheme of the previous chapter), (3) a boolean flag indi-
cating if the task associated with the node is a reader-only task, (4) a pointer
to the metadata structure, (5) a pointer to the previous node in the list, and,
finally, (6) a pointer to the next node in the list.

The metadata object contains the following information: (1) head and tail
pointers that delimit, respectively, the beginning and end of the list (note that
the head pointer always points to a sentinel node), (2) the number of genera-
tions that have been added to the task graph by the issue operation (variable
num gens issued), and, finally, (3) a flag that indicates whether the youngest
generation consists of task with an in memory usage annotation or not. More-
over, the task descriptor is augmented with a dependency counter, similarly to
the lock-based list scheme of the previous chapter, and an array of pointers to
the nodes used for the task in the metadata structures associated with the tags
in the depend clauses of that task. These additions are necessary to deal with
the general case of multiple tags.

63

64 CHAPTER 4. A LOCK-FREE LIST SCHEME

Figure 4.1: The list representation of the task graph for the Lock-Free List
Scheme.

4.1. INTERNAL REPRESENTATION OF THE TASK GRAPH 65

1 typedef enum task depend annotation

2 {
3 task depend annotation output,

4 task depend annotation input,

5 task depend annotation inout

6 } task depend annotation t;

7
8 typedef struct task depend metadata

9 {
10 Alignas(CACHE LINE) atomic uintptr t tail;

11 uint fast64 t num gens issued;

12 bool last gen in only;

13 Alignas(CACHE LINE) atomic uintptr t head;

14 } task depend metadata t;

15
16 typedef struct task depend node

17 {
18 Alignas(CACHE LINE) ort task node t *task;

19 task depend metadata t *md;

20 struct task depend node *prev;

21 uint fast64 t gen num;

22 bool in only;

23 Alignas(CACHE LINE) atomic uintptr t next;

24 } task depend node t;

25
26 typedef struct ort task node

27 {
28 Alignas(CACHE LINE) atomic uint fast64 t depend count;

29 Alignas(CACHE LINE) task depend node t **which dependencies;

30 uint fast64 t which dependencies count;

31 } ort task node t;

Figure 4.2: Data structures used for the lock-free list scheme

.
Figure 4.2 details the data structures employed by the lock-free list scheme.

An explanation follows:

task depend annotation t A enumeration type for the memory usage anno-
tation.

task depend metadata t The metadata structure. The tail and head point-
ers may be concurrently accessed by both the issue and a release operation
and, hence, are declared as atomic variables (the type atomic uintptr t is
capable of holding a pointer value). Moreover, to avoid false-sharing they
are cache-aligned. The num gens issued and last gen in only variables are
only updated by the issue operations and, thus, are declared as normal
variables.

task depend node t Except from the next pointer all the other fields are
updated by the issue operation and later read by release operations. As a
result, they are declared as normal variables. The next pointer is declared
as a atomic variable because it may be concurrently accessed by the issue
and a release operation. To avoid false-sharing the next pointer is cache-
aligned.

ort task node t The task descriptor is augmented with the dependency
counter which is a atomic variable since in the general case of multiple
tags multiple release operations may concurrently update the dependency
counter of some task. The which dependencies and which dependencies count
variables are updated by the issue operations and later read by the task
itself when it performs release operation and, hence, they are declared as
normal variables.

66 CHAPTER 4. A LOCK-FREE LIST SCHEME

The special format of the tail pointer The tail pointer of the metadata
structure is special to this algorithm in the sense that it consists of two fields.
The first field is the pointer value and the second field is a status indication.
The possible status values are the following:

none The tail pointer points to the sentinel node. In other words, the task
graph is empty and contains no generations.

oldest The tail pointer points to a node associated with a task that belongs
to the oldest generation.

youngest The tail pointer points to a node associated with a task that
doesn’t belong to the oldest generation (the current youngest generation
is not the oldest).

These two fields are represented in the tail pointer by stealing two bits from the
least-significant-bits of the pointer value which are enough to represent three
states. This is possible because memory allocators can be requested to return
pointer values that comply with certain alignment restrictions. Thus, these
two fields are packed into a single atomic variable and the indent is to em-
ulate a double compare-and-swap operation using a single compare-and-swap
operation. Alternatives would be either to require the presence of a double
compare-and-swap primitive which is not portable among architectures, or to
implement a software version of the double compare-and-swap primitive from
multiple single compare-and-swap operations which would result in a less effi-
cient solution. In the code presented afterwards, the status values are denoted as
none tail status, oldest tail status and youngest tail status. Moreover, a macro
EXTRACT PTR FROM TAIL(tail) returns the pointer field of the parameter
and a macro EXTRACT STATUS FROM TAIL(tail) returns the status field of
the parameter. Last but not least, a macro MAKE TAIL(node, status) packs
the pointer value node and the status value into a single value to be stored to
the tail pointer.

4.2. THE ALGORITHM IMPLEMENTING THE TOP-LEVEL ISSUE OPERATION67

4.2 The algorithm implementing the top-level
issue operation

Figure 4.3 shows the top level issue operation that is used in the general case of
multiple tags. The function issue task takes as arguments the task descriptor,
an array of tags (each tag is a void * pointer), and the number of dependencies
for each memory usage annotation. First, the operation updates the dependency
counter of the task to the number of tags in line 6. This ensures that while the
operation is in the process of issuing the task to each tag separately, concurrent
release operations (from the tags it has already been issued to) cannot decrease
the dependency counter to zero, unless of course all the issue operations have
completed. The issue operations for each tag are performed in the while loop
at lines 8-12. In the variable num true dependencies the operation keeps track
of the number of times the issue operation at line 9 returns 1, meaning that
for that tag the task has a dependency. After all the issue operation have
been completed, the variable surplus in line 14 indicates the number of tags
for which the task didn’t had a dependency. Since the dependency counter is
initialized with the total number of tags, the surplus in case it is non-zero must
be subtracted from the dependency counter as it is done in line 16. If that
atomic fetch sub operation decrements the dependency counter to zero the task
has no dependencies and must be inserted in to the ready list.

1 void issue task(ort task node t *tnode, void **dep array, int num output, int num input, int num inout)

2 {
3 int num dependencies = num output + num input + num inout;

4 int num true dependencies = 0;

5
6 atomic store(&tnode−>depend count, num dependencies);

7
8 for (int i = 0; i < num dependencies; ++i){
9 int dep = issue(get metadata(dep array[i]), GET ANNOTATION TYPE(i, num output, num input, num inout), tnode);

10
11 num true dependencies += dep;

12 }
13
14 int surplus = num dependencies − num true dependencies;

15
16 if (surplus > 0 && atomic fetch sub(&tnode−>depend count, surplus) == surplus){
17 . . . insert task into ready list . . .

18 }
19 }

Figure 4.3: The algorithm implementing the top-level issue operation with a
sequential consistent memory model

68 CHAPTER 4. A LOCK-FREE LIST SCHEME

4.3 The algorithm implementing the issue oper-
ation

Figure 4.4 shows the issue operation for a single tag. The operation receives as
arguments (1) the metadata structure associated with the tag, (2) the memory
usage annotation and (3) the task. To begin with, the issue operation allocates
a node to use for insertion into the list in line 3. Line 7 tests whether the task is
inserted in the current youngest generation or in a new one. In the latter case,
the num gens issued variable of the metadata structure is incremented by one
to account for the new generation, the last gen in only variable is updated to
indicate if the new generation consists of task with a in memory usage anno-
tation, and since the task is being added to a new generation it is the first in
this generation and, hence, the first in gen variable is set to true (lines 8-10).
Next, the issue operation initializes the node with the task and metadata (lines
13-14), the generation number of the task which simply equals the number of
generations issued (line 15), whether the task is a reader-only task (line 16) and
records the node in the which dependencies table of the task (line 17). After
this initialization is performed, the node is inserted at the end of the list. For
this to happen, the next pointer of the node is set to NULL (line 18), the next
pointer of the node currently pointed to by the tail pointer is set to the new
node and the prev pointer of the new node is set to that node (lines 24-25).
The last step is to update the tail pointer to point to the new node. In this
last step, the issue operation takes into account the current status of the tail
pointer to determine the new status of the tail pointer and whether the task
has a dependency or not. There are three cases to consider depending on the
current status of the tail pointer which is retrieved at line 22.

Case 1 (lines 29-39) In this case the tail status is none. This means that
there are no generations in this list and, hence, the task has no dependency.
For this reason, in this case, the issue operation returns 0 in line 39.
Normally, the issue operation would have to update the tail pointer to
point to the newly inserted node with a simple store operation as it is
done in line 37. Notice that a compare-and-swap operation is not necessary
because the task graph is empty and no release operation can occur. Also,
the new status of the tail pointer is set to oldest (line 37) since the node is
part of the oldest generation. However, due to a special case in the release
operation whenever the tail status is none the state of the list may not be
correct, meaning that normally the head would have to point to the same
node as the tail pointer and that node being the sentinel node, but in that
special case this is not true. For this reason, the issue operation reads the
head pointer at line 31 and if that happens, reclaims the nodes prior to
the sentinel node (line 32), marks the prev pointer of the sentinel node to
NULL since it is the first node of the list now (line 33) and sets the head
pointer to the sentinel node (line 34). After these actions the state of the
list has been corrected.

4.3. THE ALGORITHM IMPLEMENTING THE ISSUE OPERATION 69

Case 2 (lines 41-48) In this case the tail status is oldest. Hence, if the task
is inserted in the current youngest list (first in gen is false) the tail status
remains oldest and if the task is inserted in a new generation (first in gen
is true) the tail status must become youngest (line 41). Since there exists
a generation in the list, a release operation may arrive and hence the
issue operation must update the tail pointer with a compare-and-swap
operation. This is done in line 43. The tail pointer is updated to point to
the new node with a new status as computed in line 41. If that operation
succeeds (line 45) then the issue operation returns the variable first in gen
which indicates if the task had a dependency or not. That is, because
if that value was false then the task has been inserted into the oldest
generation and, hence, has no dependency on prior generations. On the
other hand, if that value was true then the task has been inserted into
a new generation and, hence, it has a dependency on the current oldest
generation which we know hasn’t terminated yet due to the compare-and-
swap operation. If the compare-and-swap operation fails this can only
happen due to a release operation. Moreover, since the status of the tail
was oldest that release operation can only have changed it to none. The
issue operation, then, retries in the while loop. Since the local tail status
variable is updated at line 48 at the next iteration of the while loop the
issue operation will enter case 1.

Case 3 (lines 50-55) In this case the tail status is youngest. Regardless of
the value of the first in gen variable the status of the tail variable will
remain youngest. Also, a release operation may arrive and update the
tail pointer concurrently with the issue operation and, for that reason,
the issue operation updates the tail pointer with a compare-and-swap
operation (line 50). If that operation succeeds, the issue operation returns
1 in line 52 since at the time of insertion the tail status was youngest
meaning that the task was not inserted into the oldest generation and,
hence, it has a dependency. If that operation fails, this can only happen
due to a release operation. In that case the tail status may have been
updated either to oldest or to none. The issue operation retrieves again
the pointer fields and status fields in lines 54-55 (notice that line 54 is not
necessary since the release operation only changes the status of the tail)
and in the next iteration of the while loop will enter either case 1 or case
2.

70 CHAPTER 4. A LOCK-FREE LIST SCHEME

1 int issue(task depend metadata t *metadata, task depend annotation t annot, ort task node t *tnode)

2 {
3 task depend node t *node = task depend node alloc();

4
5 bool first in gen = false;

6
7 if (annot != task depend annotation input | | !metadata−>last gen in only){
8 ++metadata−>num gens issued;

9 metadata−>last gen in only = (annot == task depend annotation input);

10 first in gen = true;

11 }
12
13 node−>task = tnode;

14 node−>md = metadata;

15 node−>gen num = metadata−>num gens issued;

16 node−>in only = (annot == task depend annotation input);

17 tnode−>which dependencies[tnode−>which dependencies count++] = node;

18 atomic store(&node−>next, NULL);

19
20 task depend node t *local tail = atomic load(&metadata−>tail);

21 task depend node t *local tail ptr = EXTRACT PTR FROM TAIL(local tail);

22 uintptr t local tail status = EXTRACT STATUS FROM TAIL(local tail);

23
24 node−>prev = local tail ptr;

25 atomic store(&local tail ptr−>next, node);

26
27 while (true){
28 if (local tail status == none tail status){
29 task depend node t *local head = atomic load(&metadata−>head);

30
31 if (local head != local tail ptr){
32 reclaim depend nodes(local tail ptr−>prev);

33 local tail ptr−>prev = NULL;

34 atomic store(&metadata−>head, local tail ptr);

35 }
36
37 atomic store(&metadata−>tail, MAKE TAIL(node, oldest tail status));

38
39 return 0;

40 } else if (local tail status == oldest tail status){
41 uintptr t new status = first in gen ? youngest tail status : oldest tail status;

42
43 bool succ = atomic compare exchange strong(&metadata−>tail, &local tail, MAKE TAIL(node, new status));

44
45 if (succ){ return first in gen; }
46
47 local tail ptr = EXTRACT PTR FROM TAIL(local tail);

48 local tail status = EXTRACT STATUS FROM TAIL(local tail);

49 } else{
50 bool succ = atomic compare exchange strong(&metadata−>tail, &local tail, MAKE TAIL(node, youngest tail status));

51
52 if (succ){ return 1; }
53
54 local tail ptr = EXTRACT PTR FROM TAIL(local tail);

55 local tail status = EXTRACT STATUS FROM TAIL(local tail);

56 }
57 }
58 }

Figure 4.4: The algorithm implementing the issue operation with a sequential
consistent memory model

4.4. THE ALGORITHM IMPLEMENTING THE RELEASE OPERATION FORAWRITER TASK71

4.4 The algorithm implementing the release op-
eration for a writer task

Figure 4.5 shows the release operation for a writer task. The function is called
with the node corresponding to the task and a boolean variable i am writer
which in this case is true. To begin with, the operation retrieves the metadata
structure in line 3. Notice that at this time the head pointer points to the
sentinel node and the sentinel node points to the node of the writer task since
the writer task is the only task in the oldest generation. Thus, the operation
must make the head pointer point to the latter node which now serves as the
sentinel node (line 8) and reclaim the previous sentinel node. This is done by
remembering the node at line 5 and at the end reclaiming it at line 71. The
prev pointer of the new sentinel node is made NULL at line 6 since it is now
the start of the list. The operation is responsible for updating the dependency
counters of the tasks belonging to the next generation. Since the issue operation
has recorded the generation number of the writer task in the gen num variable
of the node, the operation knows the number of the next generation which it
computes in line 11. The strategy employed by the release operation is to read
the tail pointer in line 10 and act accordingly depending on the generation
number of the node pointed to by the tail (lines 14-15). There are three cases
to consider.

Case 1 (lines 18-33) In this case the next generation is not the youngest
one. Thus, the operation does not have to update the tail pointer. The
aim is to traverse the nodes following the next pointers updating the de-
pendency counters for each node whose generation number is equal to the
next generation number (variable next gen num). This is accomplished
in lines 22-31. There is a subtle point to consider here. Notice that the
algorithm starts with the node following the task’s node (line 18). The
traversal starts with that node (local next) and continues in lines 22-31.
This is the current node. Observe that first the generation number of
the next node is obtained (lines 23-24), then the dependency counter is
updated for the task of the current node (lines 26-28) and, lastly, the
current node is set to the next node (line 30). This is done to avoid the
following problem. Assume that the operation doesn’t perform lines 23
and 24. Rather, it immediately updates the dependency counter of the
task corresponding to the current node (local next). Then the operation
would update the local next variable with a load operation on the next
pointer of the local next node. Before it does so, however, assume that
that task whose dependency counter was just updated had its dependency
counter updated to zero (from other release operations), that this task was
a writer task, it terminates and it performs a release operation on the same
list as we are now. This would make the local next node be the sentinel
node. This task will update the dependencies of the next generation and
it doesn’t take long to realize that the local next node may be reclaimed
and thus we cannot read its next pointer (also we cannot read the gener-
ation number of the next node since it too may have been reclaimed). To
avoid this problem, we first read the generation of the next node and then
update the dependency counter for the task associated with the current
node. Clearly this strategy solves the problem in case the next generation

72 CHAPTER 4. A LOCK-FREE LIST SCHEME

we are updating here consists of a single writer task. In case the next
generation consists of multiple reader tasks, this strategy also avoids any
problems because, as we will see in the release operation for reader tasks,
only the last reader (the notion of a last reader will be made clear in the
description of the release operation for reader tasks) will reclaim the nodes
and since we are not updating the dependency counter of the reader asso-
ciated with the current node that reader cannot make a release operation
on the same metadata structure and hence no node will be reclaimed.
Lastly, the operation returns in line 33 with a break statement.

Case 2 (lines 35-58) In this case the next generation is the youngest gen-
eration. The release operation in this case considers the memory usage
annotation of the youngest generation. If the youngest generation con-
sists of a writer task, in which case the test at line 35 is true, the tail
status need not be updated to oldest since the issue operation will insert
a task in a new generation (a generation can consist of only one writer
task). Hence, in this case the release operation updates the dependency
counter of the task in lines 36-38 and then returns in line 40. Otherwise,
the youngest generation consists of reader tasks and the issue operation
may insert more tasks in the same generation if they are reader tasks. For
that reason the tail status is updated to oldest in line 43. This is done
with a compare-and-swap operation since a issue operation may concur-
rently try to update the tail pointer. If the operation fails it means that
a issue operation has just added a node at the end of the list and hence
the release operation retries in the while loop and will enter one of the
cases again. On the other hand, if the operation succeeds, it traverses the
nodes up to the node that the tail pointer pointed to when it succeeded
the operation in line 43. Notice that any node inserted thereafter, will be
handled by the issue operation since the tail has been updated to oldest.
Also, as explained in the previous case, since the traversal at lines 49-55
involves reader tasks there is no problem with reclamation of the nodes.

Case 3 (lines 60-64) In this case the tail pointer points to the node of the
writer task. In this case the tail status must be updated to none since there
exists no next generation to wake up. This is accomplished in line 60 with
a compare-and-swap operation since a issue operation may concurrently
arrive and update the tail pointer. If that operation fails the release
operation retries in the while loop. Otherwise, it returns in line 64.

4.4. THE ALGORITHM IMPLEMENTING THE RELEASE OPERATION FORAWRITER TASK73

1 void release out(task depend node t *node, bool i am writer)

2 {
3 task depend metadata t *md = node−>md;

4
5 task depend node t *reclaim = node−>prev;

6 node−>prev = NULL;

7
8 atomic store(&md−>head, node);

9
10 task depend node t *local tail = atomic load(&md−>tail);

11 uint fast64 t next gen num = node−>gen num + 1;

12
13 while (true){
14 task depend node t *local tail ptr = EXTRACT PTR FROM TAIL(local tail);

15 uint fast64 t local tail gen num = local tail ptr−>gen num;

16
17 if (local tail gen num >= next gen num + 1){
18 task depend node t *local next = atomic load(&node−>next);

19 task depend node t *local next next;

20 uint fast64 t local next next gen num;

21
22 do{
23 local next next = atomic load(&local next−>next);

24 local next next gen num = local next next−>gen num;

25
26 if (atomic fetch sub(&local next−>task−>depend count, 1) == 1){
27 . . . mark task for insertion into ready list . . .

28 }
29
30 local next = local next next;

31 } while (local next next gen num == next gen num);

32
33 break;

34 } else if (local tail gen num == next gen num){
35 if (!local tail ptr−>in only){
36 if (atomic fetch sub(&local tail ptr−>task−>depend count, 1) == 1){
37 . . mark task for insertion into ready list . . .

38 }
39
40 break;

41 }
42 else{
43 bool succ = atomic compare exchange strong(&md−>tail, &local tail, MAKE TAIL(local tail ptr, oldest tail status));

44
45 if (!succ){ continue; }
46
47 task depend node t *local next = node;

48
49 do{
50 local next = atomic load(&local next−>next);

51
52 if (atomic fetch sub(&local next−>task−>depend count, 1) == 1){
53 . . . mark task for insertion into ready list . . .

54 }
55 } while (local next != local tail ptr);

56
57 break;

58 }
59 } else{
60 bool succ = atomic compare exchange strong(&md−>tail, &local tail, MAKE TAIL(local tail ptr, none tail status));

61
62 if (!succ){ continue; }
63
64 break;

65 }
66 }
67
68 if (i am writer){
69 reclaim−>prev = NULL;

70 }
71 reclaim depend nodes(reclaim);

72 }

Figure 4.5: The algorithm implementing the release operation for a writer task
with a sequential consistent memory model

74 CHAPTER 4. A LOCK-FREE LIST SCHEME

4.5 The algorithm implementing the release op-
eration for a reader-only task

Figure 4.6 shows the release operation for a reader-only task. This operation
is performed by every reader task belonging to the oldest generation. The
strategy is that every reader task performing the release operation moves the
head pointer to the right (using the next pointers). The last executing reader
task from the oldest generation is the last reader task that will try to update
the head pointer, and is responsible for reclaiming the previous nodes. In more
detail, the release operation starts by loading the head pointer in line 4. The
head pointer points to the sentinel node. Then it reads the next node in line 11
into local next and the node after the next node in line 12 into local next next.
There are two cases to consider depending on the value of local next next.

Case 1 (lines 15-21) In this case the head points to the sentinel node, the
sentinel node points to local next and the local next node points to lo-
cal next next. If the generation number of the local next next node is the
next generation number then the operation proceeds to line 34 and, in
essence, the local next node plays the role of the writer task. Otherwise,
the head is updated to the local next node using a compare-and-swap
primitive since multiple reader tasks may concurrently try to update the
head pointer. If that operation succeeds, the release operation returns
(the value of last is false cause otherwise it wouldn’t make the compare-
and-swap operation). Otherwise, it retries in the while loop. Notice that
the release out operation is called with false as a second parameter. This
is done to indicate that the release out operation is called from a reader
task and hence full reclamation of nodes must be done. In that case, the
release out operation doesn’t set the prev pointer of the sentinel node to
NULL (lines 68-70).

Case 2 (lines 23-29) In this case the value of the local next next variable
is NULL. This can happen if the head points to the sentinel node and the
sentinel node points to the last node of the list. Thus, the tail pointer
points to that last node (which is node local next). Because there may be
conflicts with release operations of reader tasks that may be issued, the
easiest thing to do is to update the tail pointer to none. After all, all the
tasks currently belonging to the oldest generation have finished execution.
But since the nodes haven’t been reclaimed, the issue operation then after
it reads a none status for tail will correct things. To that end, the release
operation reads the value of the tail variable in line 23. But, even though
at the time that local next next was read with a value of NULL the tail
pointer points to local next, at the time the tail is read at line 23 multiple
issue operations may have arrived and changed the value of the tail pointer.
We want to change the status of the tail pointer to none only if it points to
node local next. The test at line 25 makes that happen. If the tail points
to another node the operation retries the while loop in line 25. Note that
since no nodes are reclaimed we can continue with the same value of the
local head pointer. Otherwise, the tail pointer is updated to status none
in line 27. If that succeeds the operation returns in line 29. Otherwise,
the release operation retries in the while loop.

4.6. NOTES 75

1 void release in(task depend node t *node)

2 {
3 task depend metadata t *md = node−>md;

4 task depend node t *local head = atomic load(&md−>head);

5 task depend node t *local next;

6 task depend node t *local next next;

7 bool last;

8 uint fast64 t next gen num = node−>gen num + 1;

9
10 while (true){
11 local next = atomic load(&local head−>next);

12 local next next = atomic load(&local next−>next);

13
14 if (local next next){
15 last = (local next next−>gen num == next gen num);

16
17 if (last){ break; }
18
19 bool succ = atomic compare exchange strong(&md−>head, &local head, local next);

20
21 if (succ){ break; }
22 } else{
23 uintptr t local tail = atomic load(&md−>tail);

24
25 if (EXTRACT PTR FROM TAIL(local tail) != local next){ continue; }
26
27 bool succ = atomic compare exchange strong(&md−>tail, &local tail, MAKE TAIL(local next, none tail status));

28
29 if (succ){ return ; }
30 }
31 }
32
33 if (last){
34 release out(local next, false);

35 }
36 }

Figure 4.6: The algorithm implementing the release operation for a reader-only
task with a sequential consistent memory model

4.6 Notes

The function reclaim depend nodes is a simple function that traverses the list
starting from the node passed as parameter to the left following the prev point-
ers and reclaiming each node until the end is found (prev == NULL). When
the dependency counter of a task is made zero in the release out operation, that
task is added in a local list and after the release out operation returns, all the
tasks in that local list are added to the ready-list of the task performing the
release out operation.

The time and space complexity analysis remains mostly the same for the lock-
free variant presented in this chapter. Also, the algorithms presented here are
non-blocking assuming that a task generates a bounded number of children tasks
using the same reasoning as in the lock-based list scheme.

I have based the construction of the lock-free list scheme on the lock-free man-
agement of queue and list concurrent data structures. These constructions can
be found, for example, in Raynal [2015] and Herlihy and Shavit [2012].

76 CHAPTER 4. A LOCK-FREE LIST SCHEME

Chapter 5

Performance Evaluation

Background on OMPi task scheduling OMPi uses a work-stealing sched-
uler. Each worker thread has its own ready-list which is handled as a dequeue.
A thread adds tasks at the bottom of its ready-list and steals tasks from the
top of either its own ready-list or the ready-lists of other threads. To take ad-
vantage of the NUMA characteristics of modern architectures, a thread tries to
steal a task from the ready-list of a thread that is close in terms of the memory
hierarchy. More information about the OMPi compiler can be obtained from
http://paragroup.cs.uoi.gr/wpsite/. A relevant paper for the tasking runtime is
Agathos et al. [2011].

The experiments have been executed in a machine with two AMD Opteron
6166 processors (Magny-Cours architecture) with 12 cores each for a total of 24
cores. Each processor contains two dies with 6 cores each. Each die has two ded-
icated memory channels and thus is a NUMA node. The dies are connected with
a point-to-point interconnect. Each core has private L1 and L2 caches (64KB
and 512KB respectively) and each die has a 6 MB L3 cache. Magny-Cours uses
the directory-based cache-invalidation protocol explained in the second chapter.

The code that is generated by OMPi is compiled using gcc version 5.1.0 with
-O3 optimization flag.

5.1 Micro Benchmarks

This section presents experiments on microbenchmarks that compare the lock-
based and the lock-free list schemes. The lock-based list scheme is denoted
as LS-LB and the lock-free list scheme as LS-LF. The microbenchmarks are
performed on a single-tag since the issue and release algorithms operate on a
single-tag. The benchmarks in the Application Studies section involve multiple-
tags.

77

78 CHAPTER 5. PERFORMANCE EVALUATION

5.1.1 Single-Tag Case

The setup for the experiments in the single-tag case is as follows. The master
thread of the parallel team generates (iteratively 100 times) first W tasks that
write a single tag X and then R tasks that read that same tag. An additional
parameter Workload specifies the amount of work performed by each task (a
loop incrementing a volatile counter). Each experiment is executed 10 times
and the average execution time is reported.

Figures 5.1, 5.2, 5.3 and 5.4 show the results. The lock-free method is not
better only in the corner case with reader tasks only (W = 0 and R=1 – in
that case 100 reader tasks are generated). This is justified since in the lock-
based version the reader tasks are serialized by the lock and then they perform
a normal decrement operation on the oldest num tasks variable. In the lock-free
version, on the other hand, the reader tasks may need to contend multiple times
in the head pointer resulting longer latency and more cache-misses for the other
threads that succeed in the update of the head pointer. This fact, as it seems,
hurts performance in this case.

Figure 5.1: Latency results for the Single-Tag Microbenchmark with (W,R) =
(2,8)

5.1. MICRO BENCHMARKS 79

Figure 5.2: Latency results for the Single-Tag Microbenchmark with (W,R) =
(8,2)

Figure 5.3: Latency results for the Single-Tag Microbenchmark with (W,R) =
(5,5)

Figure 5.4: Latency results for the Single-Tag Microbenchmark with three cor-
ner cases

80 CHAPTER 5. PERFORMANCE EVALUATION

Figures 5.5, 5.6 and 5.7 show a microbenchmark in which 100000 tasks are
issued to the same tag. Each task has a WriterProb of being a writer task.

Figure 5.5: Latency results for the Single-Tag Microbenchmark with WriterProb
= 0.2

Figure 5.6: Latency results for the Single-Tag Microbenchmark with WriterProb
= 0.5

Figure 5.7: Latency results for the Single-Tag Microbenchmark with WriterProb
= 0.8

5.1. MICRO BENCHMARKS 81

5.1.2 Oldest-Only

The purpose of this micro benchmark is to show the disadvantage of the lock-free
scheme compared to the lock-based scheme when there is only one generation
active at any time in the task graph. Notice that the lock-based scheme in that
case doesn’t allocate a node to insert into the list, whereas the lock-free list
scheme does so and, thus, needs extra steps to first allocate the node, fill in the
details and then insert the node by manipulating the tail pointer. To illustrate
this point, i first issue a task that writes some tag and after a while (using
the sleep function) i insert another task that writes the same tag. Due to the
sleep function i am almost certain that the second writer task is inserted into
an empty list. This micro-benchmark is executed only with 2 threads (there
is no need for more because at any time only 1 task is active) and the results
is 0.00019 for for the lock-based version and 0.00021 for the lock-free version.
These numbers show the benefit of the lock-based version in this case.

5.1.3 Top Level Issue

The purpose of this micro benchmark is to evaluate the effectiveness of the
top-level issue operation with the following aspect in mind: in the lock-based
version while the issue operation is being called to each of the tags the lock for
the depend count variable of the task is being hold. Thus, release operations
to tags that the task has already been issued to cannot complete before the
top-level issue operation unlocks the lock for the depend count variable. On
the other hand, the lock-free version uses a atomic depend count variable and,
hence, these release operation can complete before the top-level issue operation
is finished. This aspect has the potential of increasing parallelism and, conse-
quently, performance. To evaluate this, i have implemented a micro benchmark
that uses 100 tags. First, to each tag, a writer task is issued. After a writer
task that has a dependence on all tags is being issued. Hence, the first set of
tasks will access the depend count of the latter task in their release operations.

Figure 5.8 shows the results. Clearly, the lock-free version shows some ad-
vantage over the lock-based version.

Figure 5.8: Latency results for the Top Level Issue Microbenchmark

82 CHAPTER 5. PERFORMANCE EVALUATION

5.2 Application Studies

This section presents experiments on three set of realistic applications: LU
factorization, Strassen Multiplication and a 2D Recurrence (Stencil). The ex-
periments evaluate the effectiveness of the task dataflow model compared to the
task model without dependencies in the OMPi compiler. The lock-based ver-
sion is denoted with the postfix LB and the lock-free version with the postfix LF.

The setup for each experiment is as follows. First the parameters for the appli-
cation are chosen. For example, Strassen Multiplication needs the dimensions
of the matrix. Next, the number of threads are specified. The experiment is,
then, executed for 10 times and a mean value is computed which is reported.

Each benchmark operates on a matrix. To increase the memory bandwidth
the array is distributed to the available memory modules. This is accomplished
using the first touch policy. The recurrence benchmark doesn’t initialize the
matrix and, hence, each block that is assigned to a thread is allocated when the
thread first touches that block to a near memory module. The other benchmarks
initialize the array, and by using parallel initialization the array is distributed
to the available memory modules.

As far as the lock-free version is concerned, these applications fit in the cat-
egories (1) corner cases and (2) oldest-only. For example, in the Strassen appli-
cation, each tag receives on average 2 nodes. What is more, it is very likely that
these nodes will be issued to an empty list, and, hence, fit in the oldest-only
category. There are also 8 tags with only reader tasks which as we saw in the
corner cases category has the potential of hurting performance. For the Recur-
rence application, strangely enough, the lock-free version performs better even
though it also fits in the cases above. This also happens for the LU application,
except that for the largest matrix size.

5.2. APPLICATION STUDIES 83

5.2.1 Recurrence

The first application is a 2D recurrence. In this application a function f is
applied to all elements of a 2-dimensional matrix with a row size and column
size equal to N. At the beginning, the matrix is uninitialized. The function f
assigns the value 1 to all elements in the first row and column, and for each
other element the function is f(i, j) = f(i, j− 1) + f(i− 1, j), where i is the row
number and j is the column number with 1 ≤ i < N and 1 ≤ j < N . In other
words, the function f assigns to each element the sum of the elements on the
top and on the left. Figure 5.9 shows the data dependencies for the function f
on a matrix with N = 8.

Figure 5.9: Data dependencies for the Recurrence application for a matrix with
N = 8

Sequential Implementation A straightforward sequential implementation
of the recurrence application involves a traversal of the array row-by-row as
shown in figure 5.10.

Parallelization Strategy To parallelize the recurrence application we tra-
verse the array in diagonal order as shown in figure 5.11. For example, as soon
as the diagonal D(6) has been computed, D(7) can be computed in parallel since
the elements in D(7) depend on elements on the previous diagonal D(6).

84 CHAPTER 5. PERFORMANCE EVALUATION

1 void recurrence seq(int size, int *array)

2 {
3 for (int i = 0; i < size; ++i)

4 {
5 for (int j = 0; j < size; ++j)

6 {
7 if (i == 0 | | j == 0)

8 {
9 array[i*size + j] = 1;

10 }
11 else

12 {
13 array[i*size + j] = f(array[i*size + j−1],array[(i−1)*size + j]);

14 }
15 }
16 }
17 }
18

Figure 5.10: Straighforward sequential implementation for the recurrence appli-
cation. The parameter array is a pointer to a 2-dimensional matrix with row
size and column size equal to size. The matrix is stored in row-major order
and, thus, element (i,j) is accessed as array[i*size + j].

Figure 5.11: Parallelization strategy for the Recurrence application for a matrix
with N = 8

5.2. APPLICATION STUDIES 85

Task Implementation The implementation using tasks is based on the par-
allelization strategy shown above. To begin with, a task operates on a block
of the original matrix with dimensions block sizexblock size. The choice of the
block size depends on the overhead of maintaining the tasks generated. Inside
a block the task computes the recurrence function f using the straightforward
sequential implementation. For that reason, to take advantage of cache-locality
it suffices that one row of the block fits in the L1 cache. This, however, is al-
most always the case for any choice of N and block size with a large L1 cache.
Thus, the block size parameter is not affected by cache considerations. How-
ever, a very small block size parameter results in a larger amount of tasks being
generated and the overhead of maintaining those extra tasks could overcome
the benefit of parallelization. Thus, the block size must be chosen so that the
sequential implementation on that block is faster than splitting the block into
sub-blocks and generating for tasks for the sub-blocks. A last consideration is
that the N and block size parameters in the experiments shown later are chosen
to be multiplies of the cache-line size in order to avoid false-sharing between
writes to different blocks.

The implementation using tasks uses the taskwait construct for synchroniza-
tion. In order to compute a diagonal D(i) the previous diagonal D(i-1) must
have been computed, and for that reason the task implementation traverses the
matrix in diagonal order starting with D(0), and for each diagonal it first gen-
erates the tasks for each block on that diagonal and then performs a taskwait
to wait for the termination of those tasks. In that way, we know that the cur-
rent diagonal has been computed and we can proceed on to the next diagonal.
Figure 5.12 shows the implementation of the recurrence application using tasks
and the taskwait construct for synchronization.

In more detail, the recurrence task() function first creates a parallel team com-
prised of num threads threads to collectively evaluate the recurrence. Then,
one thread is assigned the job of traversing the array in diagonal order using
the master construct in line 5. The number of diagonals is computed in line
9 and the for loop in line 11 traverses each diagonal in order. The for loop at
lines 21-44 generates the tasks for the current diagonal. At the end, at line 46
the master thread waits on the completion of the tasks for the current diagonal
using the taskwait construct. The rest of the code consists of details on how to
handle block boundaries for each task generated.

86 CHAPTER 5. PERFORMANCE EVALUATION

1 void recurrence task(int size, int *array, int num threads, int block size)

2 {
3 #pragma omp parallel num threads(num threads) firstprivate(size,array,block size)

4 {
5 #pragma omp master

6 {
7 int i, j;

8 int sub size = size/block size;

9 int num sweeps = 2*sub size−1;

10
11 for (i = 0; i < num sweeps; ++i)

12 {
13 int sweep size = (i < sub size) ? (i + 1) : (2*sub size − i−1);

14 int x = (i < sub size) ? (i) : (sub size − 1);

15 int y = (i < sub size) ? (0) : (i − sub size + 1);

16
17 x *= block size;

18 y *= block size;

19
20 // spawn tasks for this sweep

21 for (j = 0; j < sweep size; ++j)

22 {
23 #pragma omp task firstprivate(x,y,array,block size,size)

24 {
25 for (int ii = x; ii < x + block size; ++ii)

26 {
27 for (int jj = y; jj < y + block size; ++jj)

28 {
29 if (ii == 0 | | jj == 0)

30 {
31 array[ii*size + jj] = 1;

32 }
33 else

34 {
35 array[ii*size + jj] = f(array[ii*size+jj−1]

36 ,array[(ii−1)*size + jj]);

37 }
38 }
39 }
40 }
41
42 x −= block size;

43 y += block size;

44 }
45
46 #pragma omp taskwait

47 }
48 }
49 }
50 }
51

Figure 5.12: OpenMP task implementation for the Recurrence application using
the taskwait construct for synchronization.

5.2. APPLICATION STUDIES 87

Task Dataflow Implementation The task dataflow adaptation for the re-
currence application is straightforward. First, the taskwait statements are re-
moved. Then, for each task generated we add, using the depend clause, the block
that it reads and writes. In this way, the runtime is responsible for executing
the tasks in the correct order. The opportunities for increased parallelism is
that the task graph generated at runtime is the one shown in figure 5.9. In this
way, as soon as the two blocks needed for some block have been computed, that
block will be executed immediately by the runtime system. On the contrary,
in the task implementation discussed previously, first all tasks in one diago-
nal must terminate and then the tasks of the next diagonal can be generated.
Actually, for the task dataflow implementation a traversal in row order is also
correct because the runtime system will honor the dependencies. In addition, as
the experimental results, a traversal in row order results in better results which
i attribute to better cache locality for the metadata structures. The dataflow
annotations with a traversal in row order are shown in figure 5.13.

The for loop (lines 9 and 11) traverse the matrix in row order. Inside the
loop body (lines 13-53) the (x,y) pair indicates the start of the current block.
There are four cases to consider: If the block is the first one (x == 0 and y ==
0), then the task doesn’t read anything but writes itself. Thus a depend clause
with an inout annotation is used on the block itself (line 16). If the block is in
the first row, but not the first, then it reads the block on its left and also writes
itself. For the block on its left a in annotation is used in line 25 and a inout
annotation is used for the block in line 26. If the block is in the first column,
but not the first, then it reads the block above it and also writes itself. For the
block above it a in annotation is used in line 35 and a inout annotation is used
for the block in line 36. Otherwise, the block has to read both the block on its
left and the block above it, so the last case uses two in annotations in line 45
and, also, the inout annotation for the write on the block in line 47. Note that
the memory locations that are used in the depend clauses are the (x,y) entries,
that is the first element of each block, since that is sufficient.

88 CHAPTER 5. PERFORMANCE EVALUATION

1 void recurrence taskdep rowwise(int size, int *array, int num threads, int block size)

2 {
3 #pragma omp parallel num threads(num threads) firstprivate(size,array, block size)

4 {
5 #pragma omp master

6 {
7 int x, y;

8
9 for (x = 0; x < size; x += block size)

10 {
11 for (y = 0; y < size; y += block size)

12 {
13 if (x == 0 && y == 0)

14 {
15 #pragma omp task firstprivate(x,y,array,block size,size)

16 depend(inout: array[x*size+y])

17 {
18 // . . .

19
20 }
21 }
22 else if (x == 0)

23 {
24 #pragma omp task firstprivate(x,y,array,block size,size)

25 depend(in: array[x*size + y − block size])

26 depend(inout: array[x*size+y])

27 {
28 // . . .

29
30 }
31 }
32 else if (y ==0)

33 {
34 #pragma omp task firstprivate(x,y,array,block size,size)

35 depend(in: array[(x−block size)*size + y])

36 depend(inout: array[x*size+y])

37 {
38 //

39
40 }
41 }
42 else

43 {
44 #pragma omp task firstprivate(x,y,array,block size,size)

45 depend(in: array[x*size + y − block size],

46 array[(x−block size)*size + y])

47 depend(inout: array[x*size+y])

48 {
49 // . . .

50
51 }
52
53 }
54 }
55 }
56 }
57 }
58 }
59

Figure 5.13: OpenMP task dataflow annotations for the Recurrence application
with a traversal in row order.

5.2. APPLICATION STUDIES 89

Comparative Study between Task and Task-Dataflow Implementa-
tion The recurrence application has been executed with (N, block size) =
(32768, 512) and (N, block size) = (16384, 256), and for 1 up to 24 number of
threads. Figures 5.14 and 5.15 show the results. From the figures it can be
seen that the task dataflow versions perform better because they exploit more
parallelism than the task version.

Figure 5.14: Latency results for OMPi (task versus task-dep implementation)
for the recurrence application

Figure 5.15: Latency results for OMPi (task versus task-dep implementation)
for the recurrence application

90 CHAPTER 5. PERFORMANCE EVALUATION

5.2.2 Strassen Multiplication

The implementation for the Strassen Multiplication benchmark is from the KAS-
TORS benchmark suite (http://kastors.gforge.inria.fr). Implementation details
are omitted here. Figure 5.19 shows the parallelization patterns for the task
and task-dataflow implementations.

Comparative Study between Task and Task-Dataflow Implementation
The strassen multiplication has been executed with block size equal to 64 and
matrix sizes 1024, 2048, 4096. The block size is 64 because this benchmark
multiplies submatrices together and with a 64 by 64 matrix this computation
fits in the L1 cache, thus, producing better results. Figures 5.16, 5.17 and 5.18
show the results. From the figures it can be seen that the task dataflow version
performs better because it exploits more parallelism than the task version.

Figure 5.16: Latency results for OMPi (task versus task-dep implementation)
for the strassen application

5.2. APPLICATION STUDIES 91

Figure 5.17: Latency results for OMPi (task versus task-dep implementation)
for the strassen application

Figure 5.18: Latency results for OMPi (task versus task-dep implementation)
for the strassen application

92 CHAPTER 5. PERFORMANCE EVALUATION

Figure 5.19: Parallelization patterns for the task and task-dataflow implemen-
tation of the Strassen Multiplication benchmark. Each node denotes a compu-
tation on the input matrices. The task-dataflow implementation generates the
graph and performs one taskwait statement at the end. The task implementa-
tion generates the graph level by level as shown by the horizontal lines (that is,
each horizontal line is a taskwait statement).

5.2. APPLICATION STUDIES 93

5.2.3 LU Factorization

The LU decomposition of a N by N matrix essentially performs Gaussian elim-
ination on that matrix and stores in-place the multipliers used for each step
of the Gaussian elimination. For this presentation the exact computation per-
formed is irrelevant. Instead, the parallelization strategy is presented in figure
5.20.

Figure 5.20: Parallelization strategy for the LU application

The matrix is partitioned into sub-blocks. The LU kernel applies the pattern
shown in figure 5.20 to each block on the diagonal from top to bottom. The
exact example shown in the figure is the first iteration. On the second iteration,
the block on the second row and column would be red, the blocks on the right
and below it green and the rest of the blocks blue. First, Gaussian elimination
is performed in the red block. After this computation is finished, computation
starts in the green blocks. Each step of the Gaussian elimination performed in
the red block, normally needs to be performed in the entire row of the array,
that is also for the rest of the blocks on the same row which are the green blocks
(on right of the red block). As a result, the green blocks on the right of the
red block have an input dependency on the red block. Moreover, the purpose
of the first iteration is to eliminate the entries below the diagonal of the red
block. Consequently, the process must continue on the green blocks below the
red block. This must be done after Guassian elimination is performed in the
red block because elimination proceeds from top to bottom. Hence, the green
blocks below the red block have a dependency on the red block. Now consider
some green block below the red block. Each step performed there must be prop-
agated to the entire row of blocks on the left. This must be done for each such
green block and, thus, the blue blocks are computed after these green blocks.
Each blue block has a dependency on the greek block on its left and above it.

94 CHAPTER 5. PERFORMANCE EVALUATION

Task Implementation Figure 5.21 shows the task implementation for the
LU kernel. The master thread at lines 9-38 makes a diagonal sweep over the
array. For each iteration the lines 11-37 implement the aforementioned pattern.
Function lu0 performs the computation on the red block. This function is called
sequentially. After the function returns, the green blocks are generated at lines
13-23. At line 25, with a taskwait statement, the implementation ensures that
all green blocks have terminated. Thus, it proceeds on generation the blue tasks
at lines 27-35. The taskwait statement at line 37 waits for the blue tasks to ter-
minate before the master thread continues on the next block on the diagonal.

1 void lu decomposition task(double *array, size t size, size t block size, unsigned int nthreads)

2 {
3 size t diagonal index, right index, i index, j index,down index;

4
5 #pragma omp parallel firstprivate(size,block size) shared(array) \
6 private(diagonal index,right index,i index,j index,down index) num threads(nthreads)

7
8 #pragma omp master

9 for (diagonal index = 0; diagonal index < size; diagonal index += block size)

10 {
11 lu0(array, diagonal index, diagonal index, block size, size);

12
13 for (right index = diagonal index + block size; right index < size; right index += block size)

14 {
15 #pragma omp task untied firstprivate(diagonal index, right index, block size, size) shared(array)

16 fwd(array, diagonal index, diagonal index, diagonal index, right index, block size, size);

17 }
18
19 for (down index = diagonal index + block size; down index < size; down index += block size)

20 {
21 #pragma omp task untied firstprivate(diagonal index, down index, block size, size) shared(array)

22 bdiv(array, diagonal index, diagonal index, down index, diagonal index, block size, size);

23 }
24
25 #pragma omp taskwait

26
27 for (i index = diagonal index + block size; i index < size;i index += block size)

28 {
29 for (j index = diagonal index + block size; j index < size; j index += block size)

30 {
31 #pragma omp task untied firstprivate(i index, diagonal index, j index, block size, size) \
32 shared(array)

33 bmod(array, i index, diagonal index, diagonal index, j index, i index, j index, block size, size);

34 }
35 }
36
37 #pragma omp taskwait

38 }
39 }
40

Figure 5.21: Task Implementation for the LU kernel

5.2. APPLICATION STUDIES 95

Task Dataflow Implementation Figure 5.22 shows the task dataflow imple-
mentation for the LU kernel. The differences are: first, the lu0 task on the red
block is generated with an inout dependency on that block. The green blocks
are then generated with a input dependency on the red block and an inout de-
pendency on themselves. Then, without a taskwait statement, the blue tasks
are generated with an input dependency on the two green blocks on the left and
above and an inout dependency on themselves. The parallelization benefit of
this dataflow implementation is that each blue block doesn’t need to wait for
all green blocks to finish before it can start execution (as it is done in the task
implementation), but only on the two green blocks it directly depends on.

1 void lu decomposition task dep(double *array, size t size, size t block size, unsigned int nthreads)

2 {
3 size t diagonal index, right index, i index, j index,down index;

4
5 #pragma omp parallel firstprivate(size,block size) shared(array) \
6 private(diagonal index,right index,i index,j index,down index) num threads(nthreads)

7 #pragma omp master

8 for (diagonal index = 0; diagonal index < size; diagonal index += block size)

9 {
10 #pragma omp task shared(array) firstprivate(diagonal index, block size, size) \
11 depend(inout: array[diagonal index*size+diagonal index])

12 lu0(array, diagonal index, diagonal index, block size, size);

13
14 for (right index = diagonal index + block size; right index < size; right index += block size)

15 {
16 #pragma omp task firstprivate(diagonal index, right index, block size, size) shared(array) \
17 depend(in: array[diagonal index*size+diagonal index]) \
18 depend(inout: array[diagonal index*size+right index])

19 fwd(array, diagonal index, diagonal index, diagonal index, right index, block size, size);

20 }
21
22 for (down index = diagonal index + block size; down index < size; down index += block size)

23 {
24 #pragma omp task firstprivate(diagonal index, down index, block size, size) shared(array) \
25 depend(in: array[diagonal index*size+diagonal index]) \
26 depend(inout: array[down index*size+diagonal index])

27 bdiv(array, diagonal index, diagonal index, down index, diagonal index, block size, size);

28 }
29
30 for (i index = diagonal index + block size; i index < size;i index += block size)

31 {
32 for (j index = diagonal index + block size; j index < size; j index += block size)

33 {
34 #pragma omp task firstprivate(i index, diagonal index, j index, block size, size) shared(array) \
35 depend(in: array[i index*size+diagonal index], array[diagonal index*size+j index]) \
36 depend(inout: array[i index*size+j index])

37 bmod(array, i index, diagonal index, diagonal index, j index, i index, j index, block size, size);

38 }
39 }
40
41 #pragma omp taskwait

42 }
43 }
44

Figure 5.22: Task Dataflow Implementation for the LU kernel

96 CHAPTER 5. PERFORMANCE EVALUATION

Comparative Study between Task and Task-Dataflow Implementation
The strassen multiplication has been executed with block size equal to 64 and
matrix sizes 1024, 2048, 4096, 8192. The block size is 64 because this benchmark
multiplies submatrices together and with a 64 by 64 matrix this computation
fits in the L1 cache, thus, producing better results. Figures 5.23, 5.24, 5.25 and
5.26 show the results. From the figures it can be seen that the task dataflow
version performs better for large matrix sizes and not so much better for small
matrix sizes. In this case, the overhead of handling the task dependencies at
runtime overcomes the benefits of parallelization.

Figure 5.23: Latency results for OMPi (task versus task-dep implementation)
for the LU application

Figure 5.24: Latency results for OMPi (task versus task-dep implementation)
for the LU application

5.2. APPLICATION STUDIES 97

Figure 5.25: Latency results for OMPi (task versus task-dep implementation)
for the LU application

Figure 5.26: Latency results for OMPi (task versus task-dep implementation)
for the LU application

98 CHAPTER 5. PERFORMANCE EVALUATION

5.2.4 Comparison to Other OpenMP 4.0 Task Dependen-
cies Runtimes

In this section i present a comparative study between the OMPi runtime as
implemented for the purpose of this thesis and various OpenMP runtimes. The
OpenMP runtimes that i have selected are (1) the LibGOMP runtime for the
GCC compiler version 5.1.0, (2) the LibIOMP runtime (libiomp5 version) from
Intel that i have linked to the code generated by the CLANG compiler version
3.5.0, and the XKaapi library (version 3.0) that i link to the code generated
by the GCC compiler (also version 5.1.0). For OMPi i denote as OMPi-LB the
lock-based list scheme version and as OMPi-LF the lock-free list scheme version.

Recurrence Application For the Recurrence Application i have executed
the various runtimes for the matrix size of 16384. The LibIOMP runtime in this
case hanged and, hence, no results are reported for that runtime. Figure 5.27
shows the results. It can be seen that the OMPi versions perform favourably
compared to the other runtimes.

Figure 5.27: Latency results for Recurrence application for various OpenMP
runtimes

5.2. APPLICATION STUDIES 99

Strassen Application Figures 5.28, 5.29 and 5.30 show the results. Gen-
erally, the OMPi-LB version performs better in all cases, with the LibIOMP
runtime catching up for thread numbers larger than 20.

Figure 5.28: Latency results for Strassen application for various OpenMP run-
times

Figure 5.29: Latency results for Strassen application for various OpenMP run-
times

Figure 5.30: Latency results for Strassen application for various OpenMP run-
times

100 CHAPTER 5. PERFORMANCE EVALUATION

LU Factorization For this application i present results for matrix sizes 1024,
2048 and 4096. The LibIOMP runtime, again, hanged in my experiments and,
hence, no results are presented for that runtime. Figure 5.31, 5.32 and 5.33
show the results. For matrix sizes 1024 and 2048 the OMPi-LF version outper-
forms the other runtimes. For matrix size 4096 the results generally favour the
LibGOMP and Xkaapi runtimes.

Figure 5.31: Latency results for LU application for various OpenMP runtimes

Figure 5.32: Latency results for LU application for various OpenMP runtimes

Figure 5.33: Latency results for LU application for various OpenMP runtimes

Chapter 6

Conclusion

OpenMP 4.0 boosts parallel productivity by adding support for the task dataflow
model. The task dataflow model is a intuitive parallel programming model that
expresses a parallel algorithm with a set of tasks together with their data depen-
dencies. The runtime infrastructure is responsible for maintaining these data
dependencies and correctly executing the resulting task graph.

In this thesis i have implemented the List Scheme as presented in Vandieren-
donck et al. [2013] in order to handle runtime data dependencies in the OMPi
compiler. I have also developed a lock-free variant of the list scheme. The
experiments presented in Chapter 4 demonstrate the effectiveness of the task
dataflow model over the task model without dependencies. The experiments also
show that the lock-free variant needs further improvements, since even though
it outperforms the lock-based version in high concurrency scenarios as illus-
trated in the micro benchmarks, in the common cases utilized by applications
like those studied in the Performance Evaluation chapter the lock-free scheme is
less suited. Last but not least, the implementation performs well against other
OpenMP runtimes, and in particular the libgomp runtime by gcc, the libiomp
runtime by Intel and the Xkaapi runtime.

6.0.5 Future Work

As future work i indent to first optimize the memory orderings for the lock-free
variant to reduce the cost of unnecessary memory fences. Then, my goal is to
simplify and optimize algorithmically the lock-free variant even further. Another
line of research involves a lock-free and highly optimized implementation of the
Tickets Scheme.

101

102 CHAPTER 6. CONCLUSION

Bibliography

Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory Con-
sistency and Cache Coherence. Morgan & Claypool Publishers, 1st edition,
2011. ISBN 1608455645, 9781608455645.

Michel Raynal. Concurrent Programming: Algorithms, Principles, and Founda-
tions. Springer Publishing Company, Incorporated, 2015. ISBN 3642446159,
9783642446153.

Anthony Williams. C++ Concurrency In Action: Practical Multithreading.
Manning Publications, 2012. ISBN 9781933988771.

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Math-
ematizing c++ concurrency. SIGPLAN Not., 46(1):55–66, January 2011.
ISSN 0362-1340. doi: 10.1145/1925844.1926394. URL http://doi.acm.org/

10.1145/1925844.1926394.

Hans-J. Boehm and Sarita V. Adve. Foundations of the c++ concurrency mem-
ory model. SIGPLAN Not., 43(6):68–78, June 2008. ISSN 0362-1340. doi:
10.1145/1379022.1375591. URL http://doi.acm.org/10.1145/1379022.

1375591.

Hans Vandierendonck, George Tzenakis, and Dimitrios S. Nikolopoulos. Anal-
ysis of dependence tracking algorithms for task dataflow execution. ACM
Trans. Archit. Code Optim., 10(4):61:1–61:24, December 2013. ISSN 1544-
3566. doi: 10.1145/2555289.2555316. URL http://doi.acm.org/10.1145/

2555289.2555316.

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming, Re-
vised Reprint. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1st edition, 2012. ISBN 9780123973375, 9780123977953.

Spiros N. Agathos, Panagiotis E. Hadjidoukas, and Vassilios V. Dimakopou-
los. Design and implementation of openmp tasks in the ompi compiler. In
Proceedings of the 2011 15th Panhellenic Conference on Informatics, PCI
’11, pages 265–269, Washington, DC, USA, 2011. IEEE Computer Soci-
ety. ISBN 978-0-7695-4389-5. doi: 10.1109/PCI.2011.34. URL http:

//dx.doi.org/10.1109/PCI.2011.34.

Michael L. Scott. Shared-Memory Synchronization. Morgan & Claypool Pub-
lishers, 2013. ISBN 160845956X, 9781608459568.

103

http://doi.acm.org/10.1145/1925844.1926394
http://doi.acm.org/10.1145/1925844.1926394
http://doi.acm.org/10.1145/1379022.1375591
http://doi.acm.org/10.1145/1379022.1375591
http://doi.acm.org/10.1145/2555289.2555316
http://doi.acm.org/10.1145/2555289.2555316
http://dx.doi.org/10.1109/PCI.2011.34
http://dx.doi.org/10.1109/PCI.2011.34

104 BIBLIOGRAPHY

Michel Dubois, Murali Annavaram, and Per Stenstrm. Parallel Computer Or-
ganization and Design. Cambridge University Press, New York, NY, USA,
2012. ISBN 0521886759, 9780521886758.

Michael McCool, James Reinders, and Arch Robison. Structured Parallel Pro-
gramming: Patterns for Efficient Computation. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1st edition, 2012. ISBN 9780123914439,
9780124159938.

	Introduction
	Fork-Join Parallelism in OpenMP
	Task Parallelism in OpenMP
	Task Synchronization
	Motivation for Dataflow

	Thesis Contribution and Organization

	Architectural Background
	Components of a Cache-Coherent Shared-Memory Parallel System
	Shared Memory Correctness
	Cache Coherency
	Memory Consistency
	Examples of Memory Consistency Models

	Architectural Primitives for Concurrency
	Blocking Concurrent Algorithms
	Non-Blocking Concurrent Algorithms

	Concurrent Programming in the C Programming Language
	Synchronization Operations and Memory Orders

	Notes

	The OpenMP 4.0 Task Dataflow Model
	The Task Graph
	Algorithms for Maintaining Dependencies at Runtime
	The Tickets Scheme
	The List Scheme

	Notes

	A Lock-Free List Scheme
	Internal Representation of the task graph
	The algorithm implementing the top-level issue operation
	The algorithm implementing the issue operation
	The algorithm implementing the release operation for a writer task
	The algorithm implementing the release operation for a reader-only task
	Notes

	Performance Evaluation
	Micro Benchmarks
	Single-Tag Case
	Oldest-Only
	Top Level Issue

	Application Studies
	Recurrence
	Strassen Multiplication
	LU Factorization
	Comparison to Other OpenMP 4.0 Task Dependencies Runtimes

	Conclusion
	Future Work

