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Abstract

This thesis presents a thorough microscopic simulation investigation of a recently

proposed methodology for highway traffic estimation with mixed traffic, i.e., traffic

comprising both connected and conventional vehicles, which employs only speed

measurements stemming from connected vehicles and a limited number (sufficient

to guarantee observability) of flow measurements from spot sensors. The estimation

scheme is tested using the commercial traffic simulator Aimsun under various penet-

ration rates of connected vehicles, employing a traffic scenario that features conges-

ted as well as free-flow conditions. The case of mixed traffic comprising conventional

and connected vehicles equipped with adaptive cruise control, which feature a sys-

tematically different car-following behavior than regular vehicles, is also considered.

In both cases, it is demonstrated that the estimation results are satisfactory, even

for low penetration rates.

Keywords: traffic estimation, connected vehicles, microscopic simulation
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Chapter 1

Introduction

Traffic congestion is a significant problem for the majority of large cities in the

modern world (Papageorgiou et al., 2007). While the number of vehicles has been

increasing steadily during the past decades (Dargay et al., 2007), a corresponding

expansion of road networks is not deemed feasible for various reasons. On the other

hand, traffic management represents a valid alternative allowing to improve the

performance of traffic systems with fairly moderate effort. For this reason, traffic

authorities and automobile industries are currently focusing on the development of

innovative methods for traffic monitoring (Bishop, 2005).

Real-time traffic state estimation utilizing limited traffic data is of major im-

portance, not only for traffic monitoring but also for traffic control. In conventional

traffic, real-time traffic data are provided by spot sensors positioned at appropriate

locations on the highway. Since the cost of installation and maintenance of a suf-

ficient number of spot sensors that guarantees accurate traffic monitoring is high,

several studies deal with the development of traffic estimation algorithms employing

a limited amount of sensors, such as, for example, Muñoz et al. (2003), Alvarez-Icaza

et al. (2004), Wang and Papageorgiou (2005), Hegyi et al. (2006), Mihaylova et al.

(2007), Morbidi et al. (2014), to name only a few.

The eminent need for improvement of traffic conditions, for enhancement of

driver safety and comfort, and for reduced operation cost of traffic systems has

led to the introduction of various Vehicle Automation and Communication Systems

(VACS). VACS capabilities can be exploited for the development of novel traffic

estimation and control methodologies (Diakaki et al., 2015). Traffic control in the

presence of VACS is the subject of numerous papers, such as, for example, Varaiya

(1993), Rao and Varaiya (1994), Rajamani and Shladover (2001), Bose and Ioannou

(2003), Kesting et al. (2008), Shladover et al. (2012), Ge and Orosz (2014), Wang

et al. (2014), Roncoli et al. (2015), Roncoli et al. (2016).
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The problem of traffic estimation in the presence of VACS is addressed in nu-

merous studies, such as, for example, Work et al. (2008), De Fabritiis et al. (2008),

Herrera et al. (2010), Rahmani et al. (2010), Treiber et al. (2011), Gayah and Dixit

(2013), Yuan et al. (2012), Ramezani and Geroliminis (2012), Piccoli et al. (2015),

Seo et al. (2015), Bekiaris-Liberis et al. (2016), Roncoli et al. (2016) to name only

a few. Typically, such traffic state estimation algorithms employ data stemming

from connected vehicles, i.e., vehicles that can provide real-time information to a

central or local authority (Turksma, 2000). Connected vehicle data can be utilized

as a low-cost and efficient, complementary or primary, source of traffic information

towards traffic state estimation (Treiber and Kesting, 2013).

In addition to vehicle communication systems, automated vehicle systems play an

important role in modern intelligent transportation systems. While fully automated

highways, an innovation that would affect traffic conditions significantly (Kesting

et al., 2007), are unlikely to come into existence in the near future, partially auto-

mated highways are already part of reality. One of the crucial components of such

automated systems is Adaptive Cruise Control (ACC), which was already intro-

duced into modern vehicles by the automobile industry (Darbha and Rajagopal,

1999; Wang et al., 2014). ACC-equipped vehicles aim at increased driver safety and

improved comfort (Dragutinovic et al., 2005) and may have a different car-following

behavior than manually driven cars, thus changing the traffic flow characteristics

accordingly. Since a high penetration rate of ACC-equipped vehicles is not yet a

reality, the effect of various percentages of such vehicles on traffic conditions is typ-

ically examined utilizing microscopic simulation platforms, see, e.g., Treiber and

Helbing (2001), Marsden et al. (2001), VanderWerf et al. (2001), Rajamani et al.

(2005), van Arem et al. (2006), Kesting et al. (2007), Ntousakis et al. (2015).

In this text, the research on the validation of the scheme developed in Bekiaris-

Liberis et al. (2016) for estimation of densities and ramp flows, which is based on

a simple but exact macroscopic model for traffic density and employs mainly speed

measurements obtained from connected vehicles (equipped with ACC or not), is con-

tinued and extended. The distinguishing characteristic of this estimation scheme,

compared to virtually all previous related developments, is that it is only based on

the conservation-of-vehicles equation, without the resort of fundamental diagrams

or other empirical relationships, which would call for appropriate and tedious model

validation procedures, before field application. The performance of the estimation

scheme is tested under mixed traffic conditions, where connected vehicles, equipped

with ACC or not, are present at various penetration rates. The microscopic sim-

ulation software Aimsun (Transport Simulation Systems, 2014) is utilized for the
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testing, in which a highway stretch that includes several on-ramps and off-ramps is

built, and a scenario in which both congested and free-flow traffic conditions occur is

employed. Moreover, the performance of the estimation scheme is evaluated when,

for some instances, a very limited (or literally zero) number of speed measurements

from connected vehicles are available, and simple algorithms for resolving the prob-

lem of lack of reliable segment speed measurements are proposed. Additionally, it is

demonstrated that density estimation is highly insensitive to the choice of the filter

parameters, while ramp flow estimation is more sensitive.
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Chapter 2

Traffic state estimation exploiting

VACS capabilities

2.1 Innovative features of VACS

2.1.1 Connected vehicles

Data stemming from connected vehicles may contain a wide variety of traffic in-

formation, but the most commonly used are vehicle position (longitude, latitude,

and altitude) and vehicle speed. The most popular way of acquiring a vehicle’s

position is via the Global Positioning Systems (GPS), see, e.g., De Fabritiis et al.

(2008), Rahmani et al. (2010), Herrera et al. (2010), although cellular positioning is

also utilized, usually with less accurate results, see, e.g., Yim and Cayford (2001),

Bar-Gera (2007). GPS is a low-cost, efficient solution to gather traffic data, with

a reported position error of 5–15 m in older studies (Zito et al., 1995; Turksma,

2000), whereas recently, with the employment of Differential GPS (DGPS) and

map-matching algorithms, position accuracy up to 1–5 m can be achieved (Water-

son and Box, 2012). Speed measurement error is mostly reported to be as low as

1 km/h (Zito et al., 1995), reaching 5 km/h in some studies (Zhao et al., 2011).

Data from connected vehicles are mainly transmitted to a central traffic authority,

which reflects the so called Vehicle to Infrastructure (V2I) communication, typically

via a GPRS/GSM network (Bishop, 2005). In parallel, vehicles can send data to

one another, via Vehicle to Vehicle (V2V) communication, usually utilizing WiFi

802.11 (Waterson and Box, 2012). Connected vehicle data are usually small in size,

thus low-delay transmissions are possible (Messelodi et al., 2009). Reporting periods

vary among different experiments and commercial systems, most frequently ranging

between a few seconds and a few minutes, see, e.g., Bishop (2005), Zhang et al.
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(2007), Messelodi et al. (2009), Herrera et al. (2010).

2.1.2 Automated vehicles

As part of the Advanced Driver Assistance Systems (ADAS), earlier cruise control

systems were designed to merely maintain a certain speed set by the driver. However,

novel ACC systems are able, additionally to the cruise control feature, to preserve

a predefined safety time-gap to the leading vehicle (Bishop, 2005). Usually, the

desired ACC time-gap ranges between 0.9 and 2.5 s (Kesting et al., 2007), but

might go as low as 0.5 s (van Arem et al., 2006). The objective of the ACC system

is to compute and apply the appropriate acceleration or deceleration according to

the driver settings and the surrounding conditions. In order for this to happen,

information about the vehicle ahead is required, more specifically, the distance (space

gap) and speed difference of the two vehicles, which can be obtained via on-board

sensors (Kesting et al., 2007). Using this information, the ACC system calculates

the necessary acceleration or deceleration and transforms it to actual throttling

or breaking commands. Since the ACC system acquires knowledge of the preceding

vehicle’s position and speed (e.g., by measuring via on-board sensors the spacing and

relative speed with respect to the preceding vehicle as well as its own position and

speed), this information could be used to enhance the traffic information reported

by an ACC-equipped connected vehicle, thus providing two speed measurements

to the central authority instead of one. For more information on available ACC

models and technologies, see, e.g., Bishop (2005), Rajamani et al. (2005), Diakaki

et al. (2015), Ntousakis et al. (2015).

2.2 Traffic estimation using average speed meas-

urements

2.2.1 Traffic density dynamics as an LPV system

The density ρi(k) of highway segment i at time step k is considered to be the number

of vehicles at the segment divided by the segment length ∆i. The dynamics of the

density can be described by the following discrete-time equations

ρi(k + 1) = ρi(k) +
T

∆i

(qi−1(k)− qi(k) + ri(k)− si(k)) , (2.1)

where i = 1, . . . , N is the index of the specific highway segment of the network, k is

the discrete time index, ∆i is the length of segment i (km), qi is the flow (veh/h)
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at the end of segment i and T is the time-discretization step (h); ri and si are

the vehicle inflow and outflow (veh/h) of on-ramps and off-ramps at the specific

segment, respectively. Typically, a highway segment contains only one on-ramp or

one off-ramp. Given that

qi(k) = ρi(k)υi(k), (2.2)

where υi(k) is the average vehicle speed of segment i at time k, (2.1) can be rewritten

as

ρi(k + 1) =
T

∆i

υi−1(k)ρi−1(k) +

(
1− T

∆i

υi(k)

)
ρi(k) +

T

∆i

(ri(k)− si(k)) . (2.3)

In order for the discrete-time relations described by (2.1) and (2.2) to be sufficiently

accurate, the following inequality must hold

max
i,k

T

∆i

vi(k) < 1. (2.4)

Assuming that the average speed of vehicles at a segment, namely vi, is measured

(e.g. from connected vehicle reports) the state

x = (ρ1, . . . , ρN)T (2.5)

is defined. The deterministic part of the dynamics of segment densities given in

(2.3) can be written in the form of a Linear Parameter-Varying (LPV) system as

x(k + 1) = A(k)x(k) +Bu(k), (2.6)

where

A(k) =


aij = T

∆i
vi−1(k), if i− j = 1 and i ≥ 2

aij = 1− T
∆i
vi(k), if i = j

aij = 0, otherwise

(2.7)

B =

{
bij = T

∆i
, if i = 1 and j = 1

bij = 0, otherwise
(2.8)

u(k) = [ q0(k) r1(k)− s1(k) . . . rN(k)− sN(k) ]T (2.9)

C = [ 0 . . . 0 1 ] (2.10)

with A ∈ RN×N , B ∈ RN×(N+1). Note that q0, which is assumed to be measured (for

example, via fixed flow detector), is the flow of vehicles at the entry of the considered

highway stretch and acts as an input to (2.6); along with on-ramp and off-ramp flows,

ri and si, respectively; while vi, i = 1, . . . , N , are viewed as time-varying parameters

of (2.6). LPV systems are a well-studied subclass of linear time-varying systems,

whose dynamics vary as a result of the variation of certain parameters.
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Regarding the output, the density (or equivalently, the flow) at the mainstream

exit of the highway is assumed to be available and can be computed via a fixed flow

detector as

ρN =
qN
υN

, (2.11)

where υN is the speed of the last segment as reported by connected vehicles.

Although it is physically intuitive that the system described in (2.6)–(2.10) is

observable, the detailed proof that the system is indeed observable can be found in

Bekiaris-Liberis et al. (2016).

The measurement requirements for the proposed estimation algorithm are sum-

marized below.

• The speed of connected vehicles at any segment of the highway is measured

and used for computing the average segment speed vi, i = 1, . . . , N , employed

by the estimator.

• The flow of vehicles at the entry of the considered highway stretch, q0, is

available.

• The flow at the exit of the considered highway stretch, qN , is available.

2.2.2 Kalman filter

A Kalman filter is utilized in order to estimate the traffic state of the network.

Defining

x̂ = (ρ̂1, . . . , ρ̂N)T , (2.12)

as the system state estimate, the filter equations are

x̂(k + 1) = A(k)x̂(k) +Bu(k) + A(k)K(k) (z(k)− Cx̂(k)) (2.13)

K(k) = P (k)CT
(
CP (k)CT +R

)−1
(2.14)

P (k + 1) = A(k) (I −K(k)C)P (k)A(k)T +Q, (2.15)

where measurement z is a noisy version of y and Q = QT > 0 and R = RT > 0

are tuning parameters which, in the ideal case in which there is additive, zero-mean

Gaussian white noise in the state and output equations, represent the covariance

matrices of the process and measurement noise, respectively. The initial conditions

of the filter described by (2.13)–(2.15) are

x̂(k0) = µ (2.16)

P (k0) = H, (2.17)

where µ and H = HT > 0, in the ideal case when x(k0) is a Gaussian random

variable, represent the mean and auto covariance matrix of x(k0), respectively.
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2.2.3 Case of unmeasured flow at on-ramps and off-ramps

In case the flows at some on-ramps or off-ramps of the highway stretch are not

directly measured, these flows are considered as additional unmeasured states to be

estimated by the Kalman filter. This way, the state (2.5) is alterated to

x = (ρ1, . . . , ρN , θ1, . . . , θlr+ls)
T , (2.18)

where lr and ls are the number of unmeasured flows at on-ramps and off-ramps,

respectively, and

θi =

{
T
∆i
rni
, if ni ∈ Lr

T
∆i
sni
, if ni ∈ Ls

, (2.19)

for all i = 1, . . . , lr+ls, with Lr = {n1, . . . , nlr} and Ls = {nlr+1, . . . , nlr+ls} being the

sets of segments, denoted by ni, which have an on-ramp or an off-ramp, respectively,

whose flows are not directly measured. Assuming that the unmeasured on-ramp and

off-ramp flows are constant (or, effectively, slowly varying), the unmeasured ramp

flow dynamics may be reflected by a random walk, i.e.,

θi(k + 1) = θi(k) + ξθi (k) (2.20)

where ξθi is zero-mean white Gaussian noise. It is assumed that at a segment i there

can be either only one on-ramp or only one off-ramp, which is typically the case on

a highway, and hence, Lr ∩ Ls = ∅.
In this case, the deterministic part of the dynamics of the density given in (2.3)

and of θi given in (2.20) can be written as

x(k + 1) = A(k)x(k) +Bu(k), (2.21)

where

A(k) =



aij = T
∆i
vi−1(k), if i− j = 1 and i ≥ 2

aij = 1− T
∆i
vi(k), if i = j

anij = 1, if ni ∈ Lr and j = N + i

anij = −1, if ni ∈ Ls and j = N + i

aij = 1, if N < i ≤ N1 and j = i

aij = 0, otherwise

(2.22)

B =


bij = T

∆i
, if i = 1 and j = 1

bmij = T
∆mi

, if mi /∈ L̄, 1 ≤ mi ≤ N , 1 ≤ i ≤ N2,

and j = i+ 1

bij = 0, otherwise

(2.23)

u(k) =

{
ui = q0(k), if i = 1

ui+1 = rmi
− smi

, if mi /∈ L̄
, (2.24)
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with L̄ = Lr ∪Ls, N1 = N + lr + ls, N2 = N − lr − ls, A ∈ RN1×N1 , B ∈ RN1×(N2+1).

The measured outputs associate with system (2.21)–(2.24) are the density (or equi-

valently, the flow) at the mainstream exit of the highway and at highway segments

between any pair of unmeasured on-ramps and off-ramps, which can be obtained by

fixed flow sensors via

ρj =
qj
υj
, (2.25)

where υj is the speed of segment j as reported by connected vehicles and qj is the

corresponding flow of segment j, measured via a flow detector. Therefore,

y(k) = Cx(k), (2.26)

where C ∈ R(lr+ls)×(N+lr+ls) is defined as

C =


cij = 1, for all i = 1, . . . , lr + ls − 1 and some n∗

i ≤ j ≤ n∗
i+1 − 1

cij = 1, if i = lr + ls and j = N

cij = 0, otherwise

,(2.27)

where L̄∗ =
{
n∗

1, n
∗
2, . . . , n

∗
lr+ls

}
is the set L̄ ordered by <. If there is exactly one

unmeasured ramp within the considered highway stretch, then no additional meas-

urements are necessary for flow observability. On the other hand, if there are more

than one unmeasured ramps within the stretch, one mainstream measurement at

any highway segment is needed, say j, between every two consecutive unmeasured

ramps.

18



Chapter 3

Microscopic simulation setup for

testing the proposed traffic

estimation methodology

In order to thoroughly examine the effectiveness, sensitivity and further aspects of

the scheme described in Section 2.2 in a microscopic environment, the microscopic

traffic simulation software Aimsun by Transport Simulation Systems (Transport

Simulation Systems, 2014) is employed. In particular, the features provided by

Aimsun API and microSDK are exploited to extract data and results of the sim-

ulation or configure the simulation parameters and vehicle models. The default

car-following model implemented by Aimsun is Gipps model (Gipps, 1981, 1986),

which is used to model the dynamics of regular and connected vehicles without ACC

capabilities. The setup of the microscopic simulation-based testing of the proposed

estimation methodology is shown in Fig. 3.1. Upstream demand and on-ramp flow

data are fed to the microscopic model along with certain parameters; based on which

the model produces the traffic conditions of the employed scenarios. Specific traffic

measurements are produced via realistically emulated detection procedures and are

provided to the Kalman filter, whose parameters have been appropriately tuned; the

Kalman filter then estimates the desired traffic quantity, namely ρi, which may be

confronted to the “ground truth” of the simulator.

3.1 Traffic network configuration

For the evaluation of the estimation procedure, a highway stretch of 10 km is utilized,

as shown in Fig. 3.2. The stretch has 3 lanes and is divided into 20 homogenous

segments. Three on-ramps and three off-ramps are positioned at segments 8, 12, 16
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ρi

µ,H,Q,R

υi
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ρ̂iDemand data

Fig. 3.1: Setup of the microscopic simulation-based testing environment for the

proposed estimation methodology.

1 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 3.2: The highway stretch used in the experiment. Red vertical lines indicate

fixed flow sensors positioned at the network entry and exit.

and 10, 14, 18, respectively; acceleration lanes at on-ramp locations and deceleration

lanes at off-ramp locations are 100 m in length. The utilized network parameters

are summarized in Table 3.1.

3.2 Employed scenario

For the purpose of testing the estimation scheme in free-flow as well as congested

traffic conditions, a 3-hour simulation horizon is employed, setting the simulation

Network Number Number Segment length Free speed

length (km) of segments N of lanes ∆i (km) υf (km/h)

10 20 3 0.5 120

Table 3.1: Network parameter values
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Fig. 3.3: The inflow at the entry of the highway stretch and the on-ramp flows at

segments 8, 12, and 16.

step as well as the reaction time of all vehicles τ at 1 s. Inflows at the network

entrance and at on-ramps are the product of an exponential distribution, with a

specified mean value. The inflow at the network entrance q0 is chosen, on average, as

trapezoidal. The on-ramps at segments 8 and 16 feature, on average, a constant flow

of 600 veh/h for the whole simulation time; whereas the on-ramp flow at segment

12 is also on average trapezoidal. The demand profiles are shown in Fig. 3.3.

Turning rates at each off-ramp are constant at 10% of the mainstream flow of the

corresponding segment.

3.3 Measurement and ground truth configuration

A measurement step T = 10 s is considered, which corresponds to the detection in-

terval of flow sensors, as well as the interval for calculating average segment speeds.
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A conventional spot sensor is placed at the entrance of the network, providing meas-

urements of inflow q0, whereas an additional spot sensor is placed at the exit of the

network, providing measurements of the outflow q20. All flows are computed by

counting the number of vehicles that cross the corresponding detector within the

time interval (kT, (k + 1)T ]. Segment speed is computed by averaging arithmetic-

ally the instant speed of all vehicles in a segment at time step kT . The ground

truth in our experiments, considered for evaluating the performance of the proposed

estimation scheme, is represented by the total density of each segment, calculated

by dividing the number of vehicles in a segment at time kT with the segment length

(0.5 km).
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Chapter 4

Estimation results in the case of

all ramps being measured

4.1 Experimental configuration

The traffic network and employed scenario described in Section 3 are considered to

simulate a case featuring traffic conditions where all vehicles are connected, in order

to test the performance of the estimation scheme. Given that the microscopic model

parameters are stochastic (such as demand, destination, and vehicle attributes), 10

simulation replications are considered. Fig. 4.1 shows the traffic conditions for the

scenario described . For the first hour, the inflows at the entry of the network and

at all on-ramps are low, as presented in Fig. 3.3, and thus, free-flow conditions are

present in the whole network. During the second hour, the flows at the network

entrance and at on-ramp 12 start increasing. As a result, congestion is created at

segment 12 and segment 8, which propagates upstream reaching segment 4. Mild

congestion is also created in segment 16, where the third on-ramp is present. At

the beginning of the third hour of the simulation, since the inflows at the network

entry and at on-ramp 12 are decreased, congestion gradually dissolves, and free-flow

conditions are restored until the end of the simulation time, as shown in Fig. 4.1.

In order to evaluate the estimation results, the following performance index,

known as Coefficient of Variation (CV) of the estimated density ρ̂i with respect to

the ground truth density ρi, is used

CVρ =

√
1
KN

∑K
k=1

∑N
i=1[ρ̂i(k)− ρi(k)]2

1
KN

∑K
k=1

∑N
i=1 ρi(k)

. (4.1)
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Fig. 4.1: Average speed of all vehicles in the employed simulation scenario.

4.2 Performance evaluation in the case of all vehicles

being connected

In order to select the values of the filter parameters Q and R used in our experiments,

a manual tuning is performed, and the results are shown in Table 4.1. Matrix Q is

chosen be equal to IN , where IN denotes the identity matrix of dimension N , while

R is chosen equal to 100; initial values µ are chosen equal to 15, whereas H is equal

to IN . The parameters µ and H are given by (2.16), (2.17), respectively. The results

of the estimation of segment densities when all vehicles are connected are shown in

Fig. 4.2. It is evident from the plots that the proposed scheme successfully estimates

and dynamically tracks segment densities under various traffic conditions, that is,

under both congested and free-flow conditions. Note also the fast convergence of the

estimates towards the real values, starting from remote initial values, which were

deliberately chosen far from the real values in order to test the filter’s convergence

properties. The segment density estimation is characterized by a performance index

CVρ = 9.2%. Note that (4.1) is employed after the initial transient period of 20

minutes (due to the initial estimation error) to ensure that this period is excluded

from the computation of the performance indexs.
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Q R µ H

IN 100 (15, . . . , 15)T IN

Table 4.1: Filter parameters used in the simulation in the case that all ramps are

measured.
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Fig. 4.2: Comparison between real (black line) and estimated (blue line) density per

lane in veh/km for all network segments in the case that all vehicles are connected.
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4.3 Performance evaluation in the case of all vehicles

being connected featuring delayed speed re-

ports

In this section, the performance of the estimation scheme is tested when the speed

fed to the filter is delayed by some time steps. The values of the filter parameters are

the same as in Section 4.2 and are shown in Table 4.1. The estimation performance

is tested when the speed that is used by the filter is delayed by 3 time steps, i.e.,

υi(k) = νi(k − 3), where υi(k) is the speed that is utilized by the filter at time step

kT and νi(k) is the speed calculated from connected vehicle reports at time step

kT . The results are shown in Fig. 4.3 and density estimation is characterized by

a CVρ = 14.9. The plots show very little deterioration of the density estimation,

however the deterioration caused by the delay in the speed measurements is more

reflected in the value of the performance index CVρ.

4.4 Performance evaluation when connected vehicles

feature asynchronous speed reports

In this section, an alternative speed reporting scheme for the speed stemming from

connected vehicles is considered, in order to simulate a more realistic scenario. Seg-

ment speeds are derived from reports of a sub-population of the vehicles that are

connected and hence, have the ability to report their position and instant speed to

the central authority at a specific frequency. In order for the reporting scheme to be

more realistic, “asynchronous” reports are considered, that is, vehicles report their

speeds at different frequencies. This is implemented as follows. Upon entering the

network, connected vehicles are assigned randomly a reporting frequency f , taken

from a uniform distribution over the interval [0.1, 1] Hz. This way, at every sim-

ulation step (1 s), only a portion of connected vehicles report their instant speed,

depending on their reporting frequency. Eventually, all individual instant speed re-

ports of connected vehicles from each segment within time interval ((k − 1)T, kT ]

are averaged arithmetically and provide the average segment speed at time kT ,

namely, υi(k). Note that individual reports are considered as distinct measurements

regardless of the vehicle that is reporting. This way, within an interval of T = 10 s,

a vehicle that reports every 1 s, supplies the central authority with more measure-

ments than a vehicle that reports every 9 s, thus contributing more in the calculation

of the corresponding average segment speed. In order to assess the accuracy of speed
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Fig. 4.3: Comparison between real (black line) and estimated (blue line) density per

lane in veh/km for all network segments in the case that all vehicles are connected

and the speed fed to the filter is delayed by 3 time steps.
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measurements from connected vehicles, the result of averaging instant speeds of all

segment vehicles every 1 s and then obtaining the average for T = 10 s is considered

as ground truth.

Results of density estimation when using asynchronous speed reports are shown

in Fig. 4.4. One can observe in the plots that implementing a more realistic report-

ing scheme with asynchronous reports from connected vehicles does not deteriorate

the estimation performance significantly. The performance index of density estim-

ation with the alternative reporting scheme is equal to 10.7%, indicating that the

deterioration in the estimation performance is substantially small. For the rest of

the text connected vehicles are considered to report according to the asynchronous

reporting scheme described in this section.

4.5 Performance evaluation when speed reports

from connected vehicles are subject to meas-

urement noise

In order to simulate a more realistic approach, since all measurements produced

by the simulation are error-free, a zero-mean Gaussian white measurement noise

is added to all measurements. Thus, mainstream flow measurements as well as

individual vehicle speed measurements obtained from connected vehicles are affected

by additive noise with a Standard Deviation (SD) shown in Table 4.2. Considering

the speed measurement accuracy of GPS mentioned in Section 2.1, adding noise with

an SD of 5 km/h is a realistic choice, which in fact covers the worst-case scenario.

Moreover, the GPS positional error, which could potentially result in a decreased

speed measurements accuracy due to an erroneous determination of the segment

that a vehicle is on, is, as mentioned in Section 2.1, extremely small compared

to the length of a segment, and thus, its effect on the estimation performance is

deemed negligible. Note that in case the transmitting device is also connected with

the vehicle’s electronic system, the speed measurements can be retrieved from the

tachometer, whose measurements are substantially more accurate (Zito et al., 1995)

(resulting in a smaller SD of the speed measurement error). However, an error

that is representative of GPS devices is chosen, since devices equipped with GPS

(e.g., smartphones, navigation systems) are perhaps the most widespread devices

that enable the acquisition of speed information by the central authority (Bishop,

2005). Thus, since GPS feature larger measurement error than tachometers, the

performance of the estimation in worst-case-error scenarios is actually tested. As for
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Fig. 4.4: Comparison between real (black line) and estimated (blue line) density per

lane in veh/km for all network segments in the case that all vehicles are connected

and their speeds are reported asynchronously.
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Noise γqi γri γsi γυi

SD 500 veh/h 60 veh/h 60 veh/h 5 km/h

Table 4.2: Measurement noise (SD) of individual vehicles speed reported by connec-

ted vehicles and of mainstream and ramp flow gathered by spot sensors.

the infrastructure-based mainstream flow sensors, an error of about 10% is reported

to be realistic, see, e.g., Yue (2009). Since the average inflow is around 5000 veh/h

and the average ramp flow is around 600 veh/h an error with an SD of 500 veh/h

for mainstream flows and 60 veh/h for ramp flows is considered.

Results of density estimation when zero-mean Gaussian white measurement noise

is added to flow and speed measurements are shown in Fig. 4.5. The results do

not show any significant difference with the case that all measurements are noise-

free, allowing us to consider a more realistic scenario without having a considerably

negative result in the performance of the estimation scheme. The performance of the

estimation when noise is added to the speed and flow measurements is characterized

by a performance index CVρ = 11.1%, while the performance index of the estimation

with noise-free measurements was characterized by a performance index CVρ = 10.7.

All simulations for the rest of the text will be considered to include measurement

noise.
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Fig. 4.5: Comparison between real (black line) and estimated (blue line) density per

lane in veh/km for all network segments in the case that all vehicles are connected

and there is noise in flow and speed measurements.
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Chapter 5

Estimation results in the case of

unmeasured ramps

5.1 Experimental configuration

In this section the case of specific ramps in the network being unmeasured is tested,

utilizing the scheme described in Section 2.2.3. The estimation methodology is

described in Fig. 5.1 and the network configuration is shown in Fig. 5.2. Depending

of the number of unmeasured ramps, additional spot sensors may need to be placed

between subsequent unmeasured ramps in order to guarantee the observability of the

system (see Bekiaris-Liberis et al. (2016)), as described in Section 2.2. Regarding the

ground truth for the estimated ramp flows, since flows calculated in time intervals as

small as 10 s are very oscillatory, a moving average of the last 6 flow measurements

is considered as ground truth.

In order to evaluate the estimation results for unmeasured ramp flows, the CV

of the estimated on-ramp flow r̂i and off-ramp flow ŝi, with respect to the ground

truth on-ramp flow ri and off-ramp flow si, respectively, are given by the following

equations

CVr =

√
1
Klr

∑K
k=1

∑lr
i=1[r̂i(k)− ri(k)]2

1
Klr

∑K
k=1

∑lr
i=1 ri(k)

, (5.1)

CVs =

√
1
Kls

∑K
k=1

∑ls
i=1[ŝi(k)− si(k)]2

1
Kls

∑K
k=1

∑ls
i=1 si(k)

. (5.2)

Additionally, for evaluating the total unmeasured ramp flows estimation perform-

ance, total CV of the estimated ramp flow ∆i

T
θ̂i (see (2.19)) with respect to the
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Microscopic

Model
Kalman
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µ,H,Q,R
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Performance
Evaluation

CVρ
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ρ̂i, θ̂i

Fig. 5.1: Setup of the microscopic simulation-based testing of the proposed estima-

tion methodology in the case that there are unmeasured ramps.

1 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 5.2: The setup of the highway stretch in the case that there are unmeasured

ramps. Red vertical lines indicate fixed flow sensors positioned at the network entry

and exit as well as at the end of segments between subsequent ramps.
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Q σρ σr,s H

diag(σρ × IN , σr,s × I(lr+ls)) 1 0.1 I(N+lr+ls)

R σR µ

diag(σR × I(lr+ls)) 100 (15, . . . , 15, 5, . . . , 5)T

Table 5.1: Filter parameters used in the simulation in the case of unmeasured ramps.

ground truth ramp flow ∆i

T
θi, is used, given by the following equation

CVr,s =

√
1

K(lr+ls)

∑K
k=1

∑lr+ls
i=1 ∆i

2[θ̂i(k)− θi(k)]2

1
K(lr+ls)

∑K
k=1

∑lr+ls
i=1 ∆iθi(k)

. (5.3)

The entry of matrix Q that corresponds to density is chosen to be σρ×IN , where

IN denotes the identity matrix of dimension N and σρ is equal to 1, while the entry

that corresponds to unmeasured ramps is chosen as σr,s× I(lr+ls), where σr,s is equal

to 0.1. Similarly, matrix R is chosen to be σR × I(lr+ls), where σR is equal to 100,

as shown in Table 5.1. Additionally, the initial values µ that correspond to density

are set equal to 15, while entries that correspond to unmeasured ramps are equal to

5; and H = I(N+lr+ls) (see (2.16), (2.17)); note that these initial values have some

impact on the estimation results only at a short warm-up phase (when the filter is

switched on), hence they are of minor significance.

5.2 Case of one unmeasured ramp

The performance of the estimation scheme is evaluated when the first on-ramp

located at segment 8 is unmeasured . As described in Section 2.2, when there is only

one unmeasured ramp there is no need for an additional detector since the system

is still observable. The estimation results for densities and for the on-ramp flow

are shown in Fig. 5.3 and Fig. 5.4, respectively. The performance index of density

estimation is CVρ = 11.2% whereas for the estimation of on-ramp 8 the resulting

performance index is CVr,s = 35.4%. It is evident from the plots as well as from the

resulting performance indices that the density estimation is very satisfactory, almost

identical with the case that all ramps are measured, whereas ramp flow estimation

is also shown to be very satisfactory.
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Fig. 5.3: Comparison between real (black line) and estimated (blue line) density per

lane in veh/km for all network segments in the case that on-ramp 8 is unmeasured.
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Fig. 5.4: Comparison between real (black line) and estimated (blue line) ramp flow

in veh/h in the case that on-ramp 8 is unmeasured.

5.3 Case of two unmeasured ramps

In this section, the performance of the estimation scheme is evaluated for the case

there are two unmeasured ramps. Consequently, the on-ramp at the location of

segment 12 as well as the off-ramp at the location of segment 18 are considered

unmeasured, whereas an additional flow sensor is placed at the location of segment

13, in order to guarantee the observability of the system, as described in Section 2.2.

The resulting estimated densities and ramp flows are shown in Fig. 5.5 and Fig.

5.6, respectively. The performance index of density estimation is calculated equal to

CVρ = 10.9%, which is similar with the case of all ramps being measured as well as

with the case that the on-ramp at the location of segment 8 is unmeasured. The total

performance index for ramp flow estimation is calculated equal to CVr,s = 36.4%,

whereas the performance index of the estimation of on-ramp 12 is CVr = 37.2% and

of off-ramp 18 is CVs = 35.6%, indicating that the estimation performance is similar

for both ramps.

5.4 Case of all ramps being unmeasured

In this section, the estimation scheme is tested for the case that all ramps in the

network, i.e., on-ramps at the locations of segments 8, 12, and 16 as well as off-
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Fig. 5.5: Comparison between real (black line) and estimated (blue line) density

per lane in veh/km for all network segments when on-ramp 12 and off-ramp 18 are

unmeasured.
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Fig. 5.6: Comparison between real (black line) and estimated (blue line) ramp flows

in veh/h when on-ramp 12 and off-ramp 18 are unmeasured.

ramps at the locations of segments 10, 14, and 18 are considered unmeasured. In

order for the system to be observable, 5 additional detectors need to be placed

between every pair of subsequent unmeasured ramps, to provide measurements of

the corresponding segment flow. Consequently, flow detectors are placed at the

location of segments 8, 10, 12, 14, and 16 providing measurements of the flows q8,

q10, q12, q14, and q16, respectively. The results of density and ramp flow estimation are

presented in Fig. 5.7 and Fig. 5.8, respectively, where it is evident that both density

and ramp flow estimations are very satisfactory even when all ramps are considered

unmeasured. Density estimation is characterized by a performance index CVρ =

11.4%, whereas the estimation of all ramp flows is characterized by a performance

index CVr,s = 38.3%. In particular, on-ramp 8 is characterized by a flow estimation

performance index 36.2%, off-ramp 10 by 42.2%, on-ramp 12 by 41.9%, off-ramp 14

by 36.8%, on-ramp 16 by 34.6% and off-ramp 18 by 38.9%. In total, on-ramp flow

estimation is characterized by a performance index CVr = 37.6%, whereas off-ramp

flow estimation is characterized by a performance index CVs = 39.3%.
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Fig. 5.7: Comparison between real (black line) and estimated (blue line) density per

lane in veh/km for all network segments when all on-ramps and off-ramps in the

network are unmeasured.
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Fig. 5.8: Comparison between real (black line) and estimated (blue line) ramp flows

in veh/h when all on-ramps and off-ramps in the network are unmeasured.
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Chapter 6

Mixed traffic estimation results in

the presence of regular and

connected vehicles

6.1 Experimental configuration

In this chapter, the traffic network and scenario described in Section 5 is considered

to simulate a case where all ramps are unmeasured considering mixed traffic con-

ditions, i.e., traffic comprising conventional and connected vehicles. Within this

chapter, the attributes of both types of vehicles, such as desired speed, maximum

acceleration and deceleration etc., are given by a distribution with the same mean

and SD, and as a result, their overall behaviour is identical. The performance of

the estimation scheme is evaluated next for a variety of penetration rates of con-

nected vehicles. Currently, the penetration rate of connected vehicles is quite low,

however it is expected to increase substantially in the future (Diakaki et al., 2015).

To account for a variety of possible current and future traffic scenarios, the per-

formance of the estimation scheme is evaluated for a wide range of penetration rates

of connected vehicles, more specifically, 2%, 5%, 10%, 20%, and 50%. Given that

the microscopic model parameters are stochastic (such as demand, destination, and

vehicle attributes),10 simulation replications are considered for each penetration

rate.
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6.2 Computation of the measurements utilized by

the estimator

As mentioned in Section 2.2, the estimation scheme is developed based on the as-

sumption that the average of connected vehicles speed roughly equals the average of

conventional vehicles speed. Since the driving statistics for all vehicles (connected or

not) are the same, this assumption implies that the average speed of a small sample

(depending on the penetration rate) of (connected) vehicles is representative for the

average speed of the whole vehicle population in a segment. The accuracy of this

assumption depends on the variance of individual vehicle speeds, e.g. in dependence

of the average speed, see e.g., Garber and Gadirau (1989). In this section, this issue

is investigated within our simulation setup in order to gain some insights on the

accuracy level of the assumption above.

When calculating the average segment speed from reports by connected vehicles,

two are the main problems that may degrade the estimation performance:

• For low penetration rates, when only few vehicles are present in a segment,

the individual speed reports may be non-representative of the overall segment

speed, due to, for example, an accidental vehicle breaking or stopping at the

time of the report; or because all reports happen to originate from vehicles

driving in a slow or in a fast lane, which would be lower or higher, respectively,

compared to the average speed of vehicles in all lanes.

• In some cases, a low penetration rate may result in no connected vehicle being

present in a segment during a time interval of T = 10 s. Fig. 6.1 shows the

percentage of time intervals of T = 10 s that feature no connected vehicle

report, averaged over all segments and replications. It is evident from Fig. 6.1

that for penetration rates of 10% or lower a substantial percentage of time

intervals are bare of reports from connected vehicles. In fact, this percentage

reaches 50% for a penetration rate of 2%. In such cases, since there is no

information available about the current segment speed, a possible option is

to employ measurements reported for the same segment during previous time

intervals.

In order to obtain information about the actual difference between the ground

truth average segment speeds and the average speeds computed by connected vehicles

reports, Fig. 6.2 shows the error between the ground truth speed and the speed of

connected vehicles for a 20% penetration rate. It is evident that the difference in

speed in terms of SD is lower in high (i.e., when free-flow conditions prevail) and low
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Fig. 6.1: Average percentage of time intervals of T = 10 s that feature no connected

vehicle report against penetration rate of connected vehicles.

(i.e., when congested conditions are reported) overall speeds, whereas for medium

speeds the difference is larger. The mean speed difference is almost zero at any

speed. In addition, while the penetration rate of connected vehicles decreases, the

SD of the error increases as shown in Fig. 6.3, while the mean error is almost zero

for any penetration rate.

To address the problem of connected vehicle speed being non-representative of

the average segment speed and the problem of having no connected vehicle reports

in a segment for specific time intervals, the filter is fed with a moving average of the

available speed measurements. More specifically, for every time step k, the filter is

fed with a moving average of the n latest measurements, i.e., with

υi(k) =
n−1∑
j=0

νi(k − j)
n

, (6.1)

where υi(k) is the speed that is utilized by the filter at time step k, and νi(k) is the

average speed computed from connected vehicles reports at segment i and time step

k. Moreover, if there are no connected vehicle reports at all at segment i during

time interval ((k − 1)T, kT ], the speed νi(k) is chosen equal to the speed reported

at the previous time step, i.e., νi(k) = νi(k− 1). Note that an alternative but more

complex methodology for obtaining potentially more accurate measurements of the

overall speed via connected vehicle reports is via application of traffic modelling as

in Treiber et al. (2011), Rempe and Bogenberger (2016).
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Fig. 6.2: Mean and SD of the error between actual segment speed and speed reported

by connected vehicles, averaged over all segments and over 10 simulation replications,

for a 20% penetration rate of connected vehicles.

A reasonable choice for n in (6.1) is n = 6, since 60 s intervals are quite common

for aggregation of data stemming from connected vehicles in literature, see, e.g.,

Rahmani et al. (2010), Lovisari et al. (2015). However, in our experiments, at very

low penetration rates and light traffic, it is often the case that very few connected

vehicles travel on a segment during 6 consecutive time intervals (i.e., 60 s). As

a result, the filter may use speed measurements originating from very few (or even

just one) connected vehicles, which may not be representative of the current segment

speed. In order to tackle this issue, a larger time window for computing the average

segment speeds from connected vehicle reports is also tested, employing (6.1) with

n = 12. In fact, a complete absence of connected vehicle reports over the last 12

time intervals is very rare in our experiments.

Fig. 6.4 shows the mean and SD of the error between the actual segment speed

and the speed that is utilized by the filter for both cases, i.e., when utilizing (6.1)

with n = 6 and n = 12. It can be observed that for penetration rates lower than

10%, there is a small bias in the mean error that is similar for both cases, while the

SD of the error is slightly smaller for n = 12. However, for penetration rates higher

than 20%, there is no bias for either of the two cases, while the SD of the error

is slightly smaller for n = 6. Consequently, for low penetration rates the average
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Fig. 6.3: Mean and SD of the error between actual segment speed and speed repor-

ted by connected vehicles, averaged over all segments, against penetration rate of

connected vehicles.

speed, calculated via (6.1), is more representative of the overall segment speed for

n = 12, whereas for higher penetration rates it is more representative for n = 6,

albeit the corresponding differences are deemed minor.

6.3 Selection of the estimation scheme paramet-

ers

While employing the presented estimator in practice, it is important to minimize any

necessary tuning effort for the involved parameters. This will certainly be the case

if the estimator performance proves little sensitive to variations of these parameters

within a broad range of values. To investigate this issue, a series of experiments

are performed, evaluating the sensitivity of the estimation scheme to the values of

the filter parameters Q and R. To this end, the performance of the estimation is

compared, when each of the involved parameters σρ, σr,s, and σR is varied by several

orders of magnitude, while the other two remain constant. The results are shown in

Fig. 6.5, for a variety of penetration rates of connected vehicles. It is evident in the

plots that the performance of density estimation is highly insensitive to the values
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Fig. 6.4: Mean and SD of the error between actual segment speed and speed util-

ized by the estimation scheme averaged over all segments and over 10 simulation

replications against penetration rate of connected vehicles when the speed utilized

by the estimator is calculated via (6.1) for n = 6 (top) and n = 12 (bottom).
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Q σρ σr,s H

diag(σρ × IN , σr,s × I(lr+ls)) 1 0.03 I(N+lr+ls)

R σR µ

diag(σR × I(lr+ls)) 100 (15, . . . , 15, 5, . . . , 5)T

Table 6.1: Filter parameters used in the simulation in the case that all ramps are

unmeasured.

of the filter parameters σρ, σr,s, and σR. Ramp flow estimation is shown to be more

sensitive, especially for low penetration rates of connected vehicles.

The same values as in the case of some ramps of the network being unmeasured

described in Chapter 5 are chosen for the entry of matrix Q that corresponds to

densities and for matrix R , while the entry of Q that corresponds to unmeasured

ramps is chosen as σr,s × I(lr+ls), where σr,s is equal to 0.03. Similarly, the initial

values µ as well as matrix H are chosen to be the same as in the case of fewer ramps

being unmeasured; the values of the filter parameters are shown in Table 6.1. From

Fig. 6.5 one can observe that this choice for the parameters Q and R results in quite

low values for the performance indices for our basic scenario of 20% penetration rate

of connected vehicles, as well as for all other investigated penetration rates, hence

values of Q and R are kept the same throughout the rest of the text. However, for

very low penetration rates, Fig. 6.5 may be exploited, if one desires to obtain a better

ramp flow estimation performance (since density estimation is seen to be insensitive

to the choice of Q and R) by elaborating more on the choice of the parameters Q

and R. In particular, according to Fig. 6.5, the simple rule that for low penetration

rates the value of σρ needs to decrease, whereas the value of σR needs to increase,

may be considered.

6.4 Performance evaluation for varying penetra-

tion rates of connected vehicles

The results of the estimation of segment densities and ramp flows for a 20% pen-

etration rate of connected vehicles are shown in Fig. 6.6 and Fig. 6.7, respectively,

when the speed fed to the filter is calculated via (6.1) with n = 6. It is evident

from the plots that the estimation is quite satisfactory, both for segment densities

and for ramp flows. Segment density estimation is characterized by a performance

index CVρ = 17.4%, whereas ramp flow estimation is characterized by a performance
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Fig. 6.5: Performance comparison of the density and ramp flow estimations for dif-

ferent values of the parameters σρ (top), σr,s (middle), and σR (bottom), for various

penetration rates of connected vehicles, when the speed utilized by the estimator is

calculated via (6.1) with n = 6.
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index CVr,s = 39.0%. Fig. 6.8 and Fig. 6.9 show the results of density and ramp

flow estimation for a 5% penetration rate of connected vehicles when the speed fed

to the filter is calculated via (6.1) with n = 6. Density estimation is satisfactory,

characterized by a performance index CVρ = 27.8%, while ramp flow estimation is

less satisfactory, characterized by a performance index CVr,s = 62.4%.

Fig. 6.10 and Fig. 6.11 show the results of density and ramp flow estimation

for a 20% penetration rate of connected vehicles when the speed fed to the filter

is calculated via (6.1) with n = 12. The estimation is quite satisfactory, both for

segment densities and for ramp flows and is similar with the case of using (6.1) with

n = 6, shown in Fig. 6.6 and Fig. 6.7. Segment density estimation is characterized by

a performance index CVρ = 16.6%, whereas ramp flow estimation is characterized

by a performance index CVr,s = 37.4%. The results of the estimation for a 5%

penetration rate of connected vehicles when the speed fed to the filter is calculated

via (6.1) with n = 12 are shown in Fig. 6.12 and Fig. 6.13. Density estimation

is characterized by a performance index CVρ = 23.6%, while ramp flow estimation

is characterized by a performance index CVr,s = 46.1%. Both the plots and the

calculated performance indices indicate that using (6.1) with n = 12 results in a

better estimation, especially for ramp flows.

The performance indices of the estimation when the speed utilized by the filter is

calculated via (6.1) with n = 6 and with n = 12 are shown in Fig. 6.14, for varying

penetration rates of connected vehicles. In the first case, the filter can estimate

segment densities with a satisfactory performance even for penetration rates as low

as 2%. For unmeasured ramp flows the results for penetration rates of 5% or lower

are less satisfactory. In the second case, the utilization of the longer moving average

improves the estimated segment densities as well as the unmeasured ramp flows,

more evidently for penetration rates of 5% or lower. These results are in accordance

with Fig. 6.4.
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Fig. 6.6: Comparison between real (black line) and estimated (blue line) density per

lane in veh/km for all network segments for mixed traffic with a 20% penetration

rate of connected vehicles when the speed fed to the filter is calculated via (6.1)

with n = 6.
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ŝ18

Fig. 6.7: Comparison between real (black line) and estimated (blue line) ramp flow

in veh/h for all network on-ramps and off-ramps for mixed traffic with a 20% pen-

etration rate of connected vehicles when the speed fed to the filter is calculated via

(6.1) with n = 6.
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Fig. 6.8: Comparison between real (black line) and estimated (blue line) density per

lane in veh/km for all network segments for mixed traffic with a 5% penetration rate

of connected vehicles when the speed fed to the filter is calculated via (6.1) with

n = 6.

52



Time (h)
0 1 2 3

F
lo
w

(v
eh

/
h
)

0

1000

2000

On-ramp at segment 8

r8

r̂8

Time (h)
0 1 2 3

F
lo
w

(v
eh

/
h
)

0

1000

2000

Off-ramp at segment 10

s10
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Fig. 6.9: Comparison between real (black line) and estimated (blue line) ramp flow in

veh/h for all network on-ramps and off-ramps for mixed traffic with a 5% penetration

rate of connected vehicles when the speed fed to the filter is calculated via (6.1) with

n = 6.
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Fig. 6.10: Comparison between real (black line) and estimated (blue line) density

per lane in veh/km for all network segments for mixed traffic with a 20% penetration

rate of connected vehicles when the speed fed to the filter is calculated via (6.1) with

n = 12.

54



Time (h)
0 1 2 3

F
lo
w

(v
eh

/
h
)

0

1000

2000

On-ramp at segment 8

r8

r̂8

Time (h)
0 1 2 3

F
lo
w

(v
eh

/
h
)

0

1000

2000

Off-ramp at segment 10

s10
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Fig. 6.11: Comparison between real (black line) and estimated (blue line) ramp

flow in veh/h for all network on-ramps and off-ramps for mixed traffic with a 20%

penetration rate of connected vehicles when the speed fed to the filter is calculated

via (6.1) with n = 12.
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Fig. 6.12: Comparison between real (black line) and estimated (blue line) density

per lane in veh/km for all network segments for mixed traffic with a 5% penetration

rate of connected vehicles when the speed fed to the filter is calculated via (6.1)

with n = 12
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ŝ10

Time (h)
0 1 2 3

F
lo
w

(v
eh

/
h
)

0

1000

2000

On-ramp at segment 12

r12

r̂12

Time (h)
0 1 2 3

F
lo
w

(v
eh

/
h
)

0

1000

2000

Off-ramp at segment 14

s14
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Fig. 6.13: Comparison between real (black line) and estimated (blue line) ramp

flow in veh/h for all network on-ramps and off-ramps for mixed traffic with a 5%

penetration rate of connected vehicles when the speed fed to the filter is calculated

via (6.1) with n = 12
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Fig. 6.14: Performance indices of density estimation CVρ (top) calculated via (4.1)

and ramp flow estimation CVr,s (bottom) calculated via (5.3) for varying penetration

rates of connected vehicles when the speed fed to the filter is calculated via (6.1).
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Chapter 7

Mixed traffic estimation results in

the presence of regular and

ACC-equipped vehicles

7.1 Model of the ACC-equipped vehicles

In this section, in order to further evaluate the performance of the proposed es-

timation scheme under more heterogeneous conditions, a scenario of mixed traffic

comprising conventional vehicles and connected vehicles equipped with an ACC sys-

tem is considered. ACC-equipped connected vehicles can communicate data to the

central authority concerning their state, but feature a different car-following beha-

vior than conventional vehicles. Thus, the performance of our estimation scheme

is evaluated not only when data, gathered from the central authority, stem from a

small fraction of the total vehicle population, but also when these connected vehicles

behave differently than conventional vehicles.

For our experiments, ACC-equipped vehicles are characterized by a different

car-following model than the one used for conventional vehicles. While the default

car-following model implemented in Aimsun is the Gipps model (Gipps, 1981, 1986),

the following Constant Time-Gap (CTG) model is considered for an ACC-equipped

vehicle i, used in Rajamani et al. (2005), similar to the one proposed by Liang and

Peng (1999),

ẍi = K1(xi−1 − xi − Li−1 − hdẋi) +K2(ẋi−1 − ẋi), (7.1)

where index i − 1 refers to the vehicle preceding vehicle i; xi, ẋi, and ẍi are the

position, speed, and acceleration of vehicle i, respectively; Li is the length of vehicle

i; hd is the desired time-headway; and K1, K2 are control gains. Moreover, the
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acceleration ẍ is restricted between di and αi, which are the maximum deceleration

and acceleration of vehicle i, respectively. In addition, when the speed of vehicle i

computed based on (7.1) surpasses a certain treshold, say V ∗
i , then it is set equal

to this maximum speed. The values for the parameters of the model described by

(7.1) are given in the next section.

7.2 Experimental configuration

The scenario described in Section 5 is considered in this section. The control gains

are set at the values proposed by Liang and Peng (1999), namely K1 = 1.12 and

K2 = 1.70. Moreover, the time headway hd is chosen in the lower side of the typical

range (Kesting et al., 2007), randomly set for each ACC vehicle, according to a

bounded, between 0.5 and 2 s, normal distribution with a mean of 0.8 s and an SD

of 0.2 s. Finally, the simulation step is set equal to 0.2 s.

Since ACC-equipped vehicles feature a different behavior than conventional vehicles

and, as mentioned in Section 1, a substantial percentage of ACC-equipped vehicles

affects directly the traffic dynamics, different traffic conditions are expected in a

scenario with mixed traffic comprising conventional and ACC-equipped vehicles than

in the case of conventional and connected vehicles discussed in Section 6. As in the

connected vehicles case, the performance of the estimation scheme is evaluated for a

variety of penetration rates of ACC-equipped vehicles and 10 simulation replications

are considered for each penetration rate. Fig. 7.1 shows the traffic conditions cre-

ated for a 20% penetration rate of ACC-equipped vehicles. Comparing Fig. 7.1 with

Fig. 4.1, one can see that, due to the presence of ACC-equipped vehicles, congestion

is milder than with conventional vehicles only. In this case, congestion is created

during the second hour of the simulation, at segments 12 and 8, where the first two

on-ramps are located, and propagates upstream reaching segment 6. At the location

of the third on-ramp, i.e., at segment 16, some reduction of speed is observed, but

without a severe congestion being evident. Halfway through the third hour of the

simulation, after the inflows at the network entry and at on-ramp 12 are decreased,

free flow conditions are restored until the end of the simulation time.

7.3 Computation of the measurements utilized by

the estimator

As explained in Section 6.2, the developed estimation scheme is based on the as-

sumption that the average connected vehicles speed roughly equals the average con-

60



Fig. 7.1: Average speed of all vehicles in the employed simulation scenario of mixed

traffic comprising conventional and ACC-equipped vehicles, for a 20% penetration

rate of ACC-equipped vehicles.

ventional vehicles speed. However, since the behavior of ACC-equipped vehicles

differs from the behavior of conventional vehicles, the accuracy of this assumption

needs to be re-examined for the case of mixed traffic comprising ACC-equipped and

conventional vehicles. Similar issues as in the case of regular connected vehicles

described in Section 6.2, appear also when calculating the average segment speed

from reports of ACC-equipped vehicles. Besides the problem of no ACC-equipped

vehicle being present in a segment during a time interval of T = 10 s in cases of

low penetration rates, the different behavior between the two types of vehicles also

increases the inaccuracy in the computation of the average segment speed. Fig. 7.2

shows the percentage of time intervals of T = 10 s that feature no ACC-equipped

vehicle report, averaged over all segments and replications. The results are very

similar with the conventional connected vehicles case, showing that for penetration

rates of 10% or lower a substantial percentage of time intervals are bare of reports

from ACC-equipped vehicles.

Moreover, Fig. 7.3 presents the speed error between ACC-equipped vehicles

speed and overall speed for a 20% penetration rate of ACC-equipped vehicles. One

can observe that there is a bias in the speed of ACC-equipped vehicles in compar-

ison to the actual speed, which is less prominent at high or low speeds. Speeds

that are considered “medium” typically correspond to traffic conditions that appear

during transitions between congested and free-flow traffic, i.e., time intervals when
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Fig. 7.2: Average percentage of time intervals of T = 10 s that feature no ACC-

equipped vehicle report against penetration rate of ACC-equipped vehicles.

congestion is forming or dissolving. When congestion is forming, vehicles decelerate

to match the preceding vehicles’ speed, and thus, the low time-headway of ACC-

equipped vehicles allows them to avoid excessive breaking which in turn enables

them to hold a higher average speed. When congestion is dissolving vehicles typ-

ically accelerate aiming to reach their free-flow speed. In that case ACC-equipped

vehicles are able to match the preceding vehicle’s speed faster, thus holding a higher

average speed. Detailed microscopic simulation comparison between the accelera-

tion behavior of ACC-equipped and regular vehicles are reported by Rajamani et al.

(2005).

Moreover, for a small interval of actual speed between 45−50 km/h, which mainly

corresponds to when vehicles are entering congestion, the bias is close to zero. After

close examination of the traffic conditions when this speed range mostly appears, it

is observed that the majority of speed samples are collected during phases that con-

gestion is forming and the traffic is not homogenous because congestion is created

due to the high inflows at on-ramps. As a result, the rightmost lane becomes conges-

ted whereas in the leftmost lane much higher speeds prevail, two speed categories

in which the ACC-equipped vehicles generally exhibit a similar speed to regular

vehicles. This way, although the average segment speed is considered as “medium”,

vehicles exhibit behavior that is characteristic to different traffic conditions.

Fig. 7.4 shows the mean and SD of the speed error between actual speed and
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Fig. 7.3: Mean and SD of the error between actual segment speed and speed repor-

ted by ACC-equipped vehicles, averaged over all segments and over 10 simulation

replications, for a 20% penetration rate of ACC-equipped vehicles.

speed reported by ACC-equipped vehicles for various penetration rates of ACC-

equipped vehicles. It is evident that both the bias and SD of the error are increasing

as the penetration rate is decreasing. Compared to Fig. 6.3 one can observe that

larger SD and bias are evident in the case of ACC-equipped connected vehicles, which

are further grown as the penetration rate is decreasing, since at low penetration rates

the effect of ACC-equipped vehicles on traffic is smaller.

Since, as shown in Fig. 7.2, Fig. 7.3, and Fig. 7.4, it is possible that the

speed gathered from ACC-equipped vehicles may be non-representative of the overall

segment speed, or there may be no ACC-vehicle reports for some time steps, (6.1)

needs to be employed for computing the speed that is utilized by the estimator.

Fig. 7.5 shows the mean and SD of the error between the actual segment speed

(all vehicles) and the speed that is utilized by feed the filter for the case of mixed

traffic featuring conventional and ACC-equipped vehicles when utilizing (6.1) with

n = 6 and n = 12. It is evident in the plots that for penetration rates lower than

10% there is a bias in the mean error that is similar for both cases, while the SD of

the error is smaller for n = 12. For penetration rates higher than 20%, there is a

smaller bias for both cases, while the SD of the error is slightly smaller for n = 6.

The results exhibit a similar pattern with the conventional connected vehicles case,
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Fig. 7.4: Mean and SD of the error of between actual segment speed and speed

reported by ACC-equipped vehicles, averaged over all segments, against penetration

rate of ACC-equipped vehicles.

however, both the bias and SD of the error are larger in the ACC-equipped vehicles

case, indicating that the speed that is utilized by the filter is less representative of

the overall segment speed than in the connected vehicles case.

7.4 Performance evaluation for varying penetra-

tion rates of ACC-equipped vehicles

The same values for the filter parameters as in the case of regular connected vehicles,

which are shown in Table 6.1, are considered in this case. The results of seg-

ment densities estimation for a penetration rate of 20% of ACC-equipped connected

vehicles when the speed fed to the filter is calculated via (6.1) with n = 6 are shown

in Fig. 7.6, while results of ramp flows estimation are shown in Fig. 7.7. The estim-

ation results appear accurate for segment densities as well as for ramp flows, with

resulting performance indices equal to CVρ = 19.6% and CVr,s = 45.3%, respect-

ively. Fig. 7.8 and Fig. 7.9 show the results of density and ramp flow estimation

for a 5% penetration rate of ACC-equipped vehicles when the speed fed to the filter

is calculated via (6.1) with n = 6. Density estimation is fair, characterized by a
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Fig. 7.5: Mean and SD of the error between actual segment speed (all vehicles)

and speed utilized by the estimation scheme averaged over all segments and over 10

simulation replications against penetration rate of ACC-equipped vehicles when the

speed utilized by the estimator is calculated via (6.1) for n = 6 (top) and n = 12

(bottom).
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performance index CVρ = 48.3%, while ramp flow estimation is not satisfactory,

characterized by a performance index CVr,s = 183.7%.

Fig. 7.10 and Fig. 7.11 show the results of densities and ramp flows estimation

for a 20% penetration rate of ACC-equipped vehicles when the speed fed to the

filter is calculated via (6.1) with n = 12. The estimation results appear accurate

for segment densities as well as ramp flows, showing a slight improvement from

the case of n = 6, with resulting performance indices equal to CVρ = 19.1% and

CVr,s = 42.3%, respectively. The results of the estimation for a 5% penetration rate

of ACC-equipped vehicles when the speed fed to the filter is calculated via (6.1)

with n = 12 are shown in Fig. 7.12 and Fig. 7.13. Density estimation is satisfactory,

characterized by a performance index CVρ = 33.0%, while ramp flow estimation

is fair, characterized by a performance index CVr,s = 71.4%. Both the plots and

the calculated performance indices indicate that using (6.1) with n = 12 results

in a much better estimation, especially for ramp flows and low penetration rates.

Performance indices of the estimation when using (6.1) with n = 12 for various

penetration rates of ACC-equipped vehicles are shown in Fig. 7.14. The results of

density estimation are quite satisfactory for penetration rates of 5% or higher, and

fair for lower penetration rates. The results of ramp flow estimation are satisfactory

for penetration rates higher than 5%, and only fair for penetration rates of 5% or

lower.

7.5 Performance evaluation for varying penetra-

tion rates of ACC-equipped vehicles with a

look-ahead speed feature

In this section, the performance of the proposed estimation scheme in the case of

mixed traffic comprising conventional and ACC-equipped vehicles is tested, when

ACC-equipped vehicles report to the central authority the speed of the preceding

vehicle besides their own. As mentioned in Section 2.1, ACC-equipped vehicles are

capable of acquiring the speed and position of the preceding vehicle (in order to

regulate their own speed and position) via on-board sensors, which feature a range

of up to 200 m (Abou-Jaoude, 2003).

In order to extend the information stemming from ACC-equipped vehicles, a

system in which, whenever an ACC-equipped vehicle reports its location and speed

to the central authority, it also reports the speed of the preceding vehicle, if the

distance of the latter is lower than 200 m, is implemented. Furthermore, this addi-
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Fig. 7.6: Comparison between real (black line) and estimated (blue line) density per

lane in veh/km for all network segments for mixed traffic with a 20% penetration

rate of ACC-equipped vehicles when the speed fed to the filter is calculated via (6.1)

with n = 6.
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Fig. 7.7: Comparison between real (black line) and estimated (blue line) ramp flow

in veh/h for all network on-ramps and off-ramps for mixed traffic with a 20% pen-

etration rate of ACC-equipped vehicles when the speed fed to the filter is calculated

via (6.1) with n = 6.

tional reporting happens only if the preceding vehicle is not reporting its own speed

at the same time, so that the speed information of an individual vehicle is not used

twice at the same reporting instant; in reality, this may be achieved by the central

authority, which can identify the duplicate information from the two vehicles by

matching their position and discard the unnecessary report. Consequently, when

an ACC-equipped vehicle is reporting its speed, if its preceding vehicle, within a

distance of 200 m, is not reporting its speed at this time, the preceding vehicle’s

speed is also taken into account when calculating the segment speed as if it was

reporting itself.

The traffic network and scenario used in Section 7.4 are considered and 10 replic-

ations are simulated, for each penetration rate, when ACC-equipped vehicles feature

enhanced speed reports. Fig. 7.15 compares the performance of the estimation when

ACC-equipped vehicles feature enhanced reports to the performance of the estima-

tion when ACC-equipped vehicles feature normal reports. In both cases, the average

segment speed is computed using (6.1) with n = 12. It is evident in the plots that

the estimation performance, both in terms of segment densities and ramp flows, is

virtually identical for both cases.

This can be explained as follows. In spite of the fact that the look-ahead feature
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Fig. 7.8: Comparison between real (black line) and estimated (blue line) density

per lane in veh/km for all network segments for mixed traffic with a 5% penetration

rate of ACC-equipped vehicles when the speed fed to the filter is calculated via (6.1)

with n = 6.

69



Time (h)
0 1 2 3

F
lo
w

(v
eh

/
h
)

0

1000

2000

On-ramp at segment 8

r8

r̂8

Time (h)
0 1 2 3

F
lo
w

(v
eh

/
h
)

0

1000

2000

Off-ramp at segment 10

s10
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Fig. 7.9: Comparison between real (black line) and estimated (blue line) ramp flow in

veh/h for all network on-ramps and off-ramps for mixed traffic with a 5% penetration

rate of ACC-equipped vehicles when the speed fed to the filter is calculated via (6.1)

with n = 6.

in most cases provides an additional vehicle speed measurement, thus doubling the

available information, it has been observed in the simulations that the speed of

the preceding vehicle is typically very similar to the ACC-equipped vehicle’s speed.

The ACC system is designed to be able to track the speed of the preceding vehicle,

maintaining a specific time gap between the two vehicles. Especially in low time-gap

configurations, as is our case, ACC-equipped vehicles manage to accurately follow

the preceding vehicle’s speed, except for very few occasions. This way, although

double reports are obtained, the information is, in fact, almost identical, hence it

fails to improve the estimation performance. Moreover, in cases where there are no

ACC-equipped vehicles passing through a segment for a specific time interval, the

problem of the lack of information remains regardless of the look-ahead feature, and

thus, there is no improvement in the estimation performance.
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Fig. 7.10: Comparison between real (black line) and estimated (blue line) densities

in veh/km/lane for all network segments for mixed traffic with a 20% penetration

rate of ACC-equipped vehicles when the speed fed to the filter is calculated via (6.1)

with n = 12.
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ŝ18

Fig. 7.11: Comparison between real (black line) and estimated (blue line) ramp

flows in veh/h for all network ramps for mixed traffic with a 20% penetration rate of

ACC-equipped vehicles when the speed fed to the filter is calculated via (6.1) with

n = 12.
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Fig. 7.12: Comparison between real (black line) and estimated (blue line) density

per lane in veh/km for all network segments for mixed traffic with a 5% penetration

rate of ACC-equipped vehicles when the speed fed to the filter is calculated via (6.1)

with n = 12
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Fig. 7.13: Comparison between real (black line) and estimated (blue line) ramp flow

in veh/h for all network on-ramps and off-ramps for mixed traffic with a 5% penet-

ration rate of ACC-equipped vehicles when the speed fed to the filter is calculated

via (6.1) with n = 12
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Fig. 7.14: Performance indices of density estimation CVρ (top) calculated via (4.1)

and ramp flow estimation CVr,s (bottom) calculated via (5.3) for varying penetration

rates of ACC-equipped vehicles when the speed fed to the filter is calculated via (6.1)

with n = 12.
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Fig. 7.15: Performance comparison between different speed reporting schemes of

ACC-equipped vehicles for varying penetration rates. The performance indices of

density estimation CVρ (top) and of ramp flow estimation CVr,s (bottom) are cal-

culated via (4.1) and (5.3), respectively, and the speed fed to the filter is calculated

via (6.1) with n = 12.

76



Chapter 8

Conclusions

The estimation scheme proposed in Bekiaris-Liberis et al. (2016) has been thoroughly

tested in a microscopic simulation platform using the traffic simulator Aimsun of TSS

(Transport Simulation Systems, 2014). A highway stretch that contains on-ramps

and off-ramps and features a dynamic inflow demand has been employed for testing

the estimation performance in both congested and free-flow conditions for varying

penetration rates of connected vehicles, in two different scenarios. In the first scen-

ario, conventional and connected vehicles have statistically identical car-following

behavior; whereas in the second scenario the connected vehicles are ACC-equipped

and feature a different car-following behavior than conventional vehicles. In both

cases the proposed scheme has proven effective in estimating segment densities and

ramp flows for various penetration rates of connected vehicles. More specifically,

in the case of conventionally-driven connected vehicles, density estimation is very

satisfactory for penetration rates as low as 2%, while ramp flow estimation is very

satisfactory for penetration rates of 5% or higher, but fair even at lower penetrations.

In the case of ACC-equipped connected vehicles with strongly different longitudinal

behavior compared to conventional vehicles, density estimation is very satisfactory

for penetration rates of 5% or higher, but fair even at lower penetrations; while ramp

flow is very satisfactory for penetration rates of 10% or higher, but fair even at lower

penetrations. Moreover, an additional scenario, where ACC-equipped vehicles can

also report the speed of the preceding vehicle, has been tested. The results have

shown that this addition does not improve the estimation performance. Finally, the

estimation performance has been proven to be quite insensitive to the choice of the

filter parameters, which indicates that no serious fine-tuning effort will be required

in field applications.
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